Corrigendum

M. Mota*, J. Teixeira, A. Yelshin, S. Cortez

Centro de Eng. Biolólgica, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Available online 14 February 2008

The authors regret that the legends for Figs. 1–11 are missing in the above-referenced manuscript. The legends are listed below.

Fig. 1. Scheme of a rod microparticle motion in a granular bed. Trajectory of rod particle in the tortuous channel between spheres is shown by the dashed curve.

Fig. 2. Sketch of comparative sizes of particles used as the dispersed phase: (1) S. cerevisiae, (2) L. bulgaricus, and (3) Latex microsphere.

Fig. 3. Binary packing permeability k vs. x_c based on the model [37]. Porosities of fine and coarse packings were assumed to be equal, curves 1 –5. Horizontal line corresponds to the permeability of fine packing ($x_c = 0$).

Fig. 4. Dependence of binary packing porosity ε, curve 1, and pore size d_{por}, curve 2, on x_c. Line 3 refers to the fine packing pore size.

Fig. 5. Micrographs of L. bulgaricus (a) and S. cerevisiae (b).

Fig. 6. Normalised concentration C_n breakthrough curves vs. elution volume v: (1) microspheres; (2) S. cerevisiae; (3) L. bulgaricus. Curves are the Gaussian distribution fit.

Fig. 7. Normalised concentration C_n vs. eluted volume v for the fine particle column ($d_f = 0.1115$ mm): (1) dextran blue; (2) microspheres. Samples volume, 5 mL.

Fig. 8. Dependence C_n on v for the coarse particle column ($d_c = 1.125$ mm): (1) dextran blue; (2) microspheres; (3) bacillus; (4) yeast.

Fig. 9. Results obtained on separation particles on different packings. Curves: (1) $R = 1/(1/2\lambda - 2.8\lambda^2)$; (2) $R = 1.6/(1 + 2\lambda - 2.8\lambda^2)$; (3) $R = 1.5/(1 - \lambda)^2$; and (3’) $R = 1.5/(1 - \lambda)^3$. In the fine particles packing, all cells (bacillus and yeast) were retained within the packing. Points marked by thick arrows belong to coarse particle packing.

Fig. 10. Attempts to fit yeast data by hindered diffusion model (7). Curves (1 and 1’) $F_2(\lambda) = 0$; (2 and 2’) Renkin approach. For curves 1, 2 and 1’, 2’ the tortuosity factor is $\tau = 1.0$ and 1.55, respectively.

Fig. 11. Behaviour of the rod-like particles data depending on the scaling parameter: rod length or diameter. Main data are the same as in Fig. 9. Points in dashed ellipses are corresponded to λ which is defined as the ratio of rod length to the pore size. If we use λ as the ratio of rod diameter to the pore size, data move to the position shown by arrows and the fitting function, curve 4, becomes $R = 1.5/(1 - \lambda)^{35}$, giving an inflated value for z in (9).

DOI of original article:10.1016/j.jchromb.2006.05.041.

* Corresponding author. Fax: +351 253 678986.

E-mail address: MMota@reitoria.uminho.pt (M. Mota).