Maintenance and Rehabilitation of Pavements and Technological Control

Proceedings of the Fifth International Conference
Park City, Utah, USA
8-10 August, 2007

Edited by
Hosin “David” Lee
M. Asghar Bhatti
Preface

The sustainable maintenance and rehabilitation of pavements is becoming a key challenge in many countries in 21st century. It is well known that road and airfield pavement is the backbone of the economic prosperity and public welfare. But, the sustainability challenges pavement builders and managers to respond creatively to new and dynamic problems of rehabilitating and maintaining pavements in the most environmentally friendly manner by lowering energy cost, reducing traffic noise, and minimizing air and water pollution.

With sustainability as the main theme the MAIREPAV5 (MAIntenance and REhabilitation of PAVements and Technological Control) conference was organized at the Canyons Resort in Park City, Utah, USA by the University of Iowa, from August 8-10, 2007. This is the 5th International Conference in the series of conferences organized to allow researchers, government agencies, consultants and contractors to exchange technological advancements and innovations of building and maintaining longer-lasting road and airfield pavement. The first conference was held in São Paulo, Brazil by Mackenzie University in 1999, the second in Auburn, USA by the University of Mississippi in 2001, the third in Guimarães, Portugal by University of Minho in 2003, and the fourth in Belfast, Northern Ireland by the University of Ulster in 2005.

This book consists of papers presented at the MAIREPAV5 conference. The book includes two keynote papers on FHWA pavement and materials program and importance of good construction on reducing maintenance costs and eighty-eight peer-reviewed papers. Each paper was reviewed by at least two experts from the International Organizing and Scientific Committee. The final revised manuscripts were then reviewed by the editors to ensure compliance with the recommendations and suggestion made by the reviewers. The book is organized into fifteen sections based on the order of the technical sessions presented at the conference: asphalt pavement materials, concrete pavement materials, pavement construction, asphalt pavement performance modeling, concrete pavement performance modeling, pavement economic analysis, asphalt pavement rehabilitation, concrete pavement rehabilitation and recycling, pavement evaluation, asphalt pavement recycling I, pavement noise and safety, pavement management, asphalt pavement recycling II, sustainable pavement materials, and pavement preservation.

We would like to recognize the co-sponsors of MAIREPAV5: International Society for Maintenance and Rehabilitation of Transportation Infrastructure (iSMARTi), Federal Highway Administration (FHWA), Transportation and Development Institute (T&DI) of American Society of Civil Engineers (ASCE), Transportation Research Board (TRB), Korean Society of Road Engineers (KSRE), and Public Policy Center (PPC) and Civil & Environmental Engineering Department of the University of Iowa. We would like to record our indebtedness to distinguished members of International Organizing and Scientific Committee who have peer-reviewed papers and guided us to the success of this conference. Finally, we would like to thank authors who convened in Park City, Utah from all over the world to share their knowledge and experiences in building and maintaining pavements and their invaluable contributions to this book.

It was our honor and privilege to host MAIREPAV5 and edit this book.

Hosin “David” Lee / M. Asghar Bhatti
MAIREPAV5 COMMITTEES

International Organizing Committee
Hussain Bahia, University of Wisconsin, USA
Timothy Biel, Utah Department of Transportation, USA
Ray Brown, Auburn University, USA
Rita Moura Fortes, Mackenzie Presbyterian University, Brazil
Jason Harrington, Federal Highway Administration, USA
Yeon Bok Kim, Korea Institute of Construction Technology, Korea
Paulo Pereira, Minho University, Portugal
Ezio Santagata, Politecnico di Torino, Italy
Waheed Uddin, University of Mississippi, USA
Alan Woodside, University of Ulster, UK
Thomas Yager, NASA, USA

International Scientific Committee
Imad Al-Qadi, University of Illinois at Urbana-Champaign, USA
Serji N. Amirkhanian, Clemson University, USA
Neeraj Buch, Michigan State University, USA
Chia-Pei Chou, National Taiwan University, Taiwan
Gerardo Flintsch, Virginia Tech, USA
Tien F. Fwa, National University of Singapore, Singapore
Roger Green, Ohio Department of Transportation, USA
Michael Heitzman, Iowa Department of Transportation, USA
Kwang Woo Kim, Kangwon National University, Korea
Arun Kumar, Queensland University of Technology, Australia
Kwang Ho Lee, Korea Highway Corporation, Korea
Massimo Losa, University of Pisa, Italy
Kunihito Matsui, Tokyo Denki University, Japan
João Merighi, Mackenzie Presbyterian University, Brazil
Louay Mohammad, Louisiana State University, USA
Roger Olson, Minnesota Department of Transportation, USA
Tom Papagiannakis, University of Texas at San Antonio, USA
Ali Selim, South Dakota State University, USA
Richard Thuma, Crawford, Murphy & Tilly, Inc., USA
Per Ullidtz, Dynatest, Denmark
Alex Visser, University of Pretoria, South Africa
Haifang Wen, Bloom Consultants, LLC, USA
Chris Williams, Iowa State University, USA
Moon Won, University of Texas at Austin, USA
David Woodward, University of Ulster, UK
Contents

Preface i
MAIREPAV5 Committees ii
Contents iii

Keynote Lectures

1 The FHWA Pavement and Materials Program
 Peter J. Stephanos (Federal Highway Administration) 1

2 Importance of Good Construction on Reducing Maintenance Costs
 Ray Brown (National Center for Asphalt Technology) 7

A.1 Asphalt Pavement Materials

1 A Hamburg Wheel Track Study on HMA Mixes Using Acid and Non Acid Modified PMAs and
 Local Aggregates With and Without Lime Howard J. Anderson, Kevin VanFrank
 (Utah Department of Transportation) 13

2 Development of “Hybrid Asphalt Mixture” for Expressway Maintenance Shigeru Shimeno, Kazumasa
 Kawamura, Daijiro Matsumoto (Nippon Expressway Research Institute Company — Japan) 19

3 Evaluation of the Visco-Elastic Properties in Asphalt Rubber and Conventional Mixes
 Manuel J. C. Minhoto (Polytechnic Institute of Bragança — Portugal), Paulo A. A. Pereira, Jorge
 C. Pais (University of Minho — Portugal) 25

4 Hybridized Modified Asphalt (HMA) With Enhanced PG Plus Characteristics
 G. Mohammed Memon, Terry L. Atha (Hudson Asphalt) 31

5 Evaluation of the Mechanical Performance of Asphalt Pavement Structures Matching Design
 Methodologies and Laboratory Fatigue Test Data Leto Momm, Breno Salgado Barra
 (Federal University of Santa Catarina (UFSC) — Brazil) 37

6 Effect of Carboniferous-Triassic Rock Dust on the Marshall Stabilities of Hot Bituminous Mixtures
 Osman Nuri Çelik (Selcuk University — Turkey), Seyfullah Ceylan, Mevlüt Kaya
 (Konya City Municipality — Turkey) 43

B.1 Concrete Pavement Materials

1 Ohio’s Use of Fractured Slab Techniques – A Historical Review Arudi Rajagopal, Jack Croteau
 (Infrastructure Management and Engineering), Roger Green, Aric Morse
 (Ohio Department of Transportation) 49

2 Measurement of PCC Coefficient of Thermal Expansion for Various Aggregate Types
 Neeraj Buch, Shervin Jahangir-nejad, Joel Brown (Michigan State University) 55

3 Prediction of Reflective Cracking With Stress Intensity Factors Chen-Ming Kuo, Yo-Chuan Yo,
 Hsiao-Han Wang (National Cheng Kung University — Taiwan) 61

4 Evaluation of Pavements With Thin-Bonded Concrete Overlays Through 3D Finite Element
 Modeling Taizo Nishiyama (Japan Institute of Construction Engineering — Japan),
 M. Asghar Bhatti, Hosin “David” Lee (The University of Iowa) 67

5 Quantifying the Effects of Truck Weights on Axle Load Spectra of Single and Tandem
 Axle Configurations Syed Waqar Haider, Ronald S. Harichandran (Michigan State University) 73

6 Significant M-E PDG Design Inputs for Jointed Plain Concrete Pavements in Michigan
 Syed Waqar Haider (Michigan State University), Hassan K. Salama (Al-Azhar University — Egypt),
 Neeraj Buch, Karim Chatti (Michigan State University) 79
7 Influence of Traffic Inputs on Rigid Pavement Performance Using M-E PDG in the State of Michigan
Syed Waqar Haider (Michigan State University), Hassan K. Salama (Al-Azhar University — Egypt), Neeraj Buch, Karim Chatti (Michigan State University) 85

C.1 Pavement Construction

1 Evaluation of Selected Reinforcing Materials for Retarding Reflection Cracking of Asphalt Overlay on Concrete Pavement
Byung J. Cho, Young S. Doh, Seung-Zoon Kwon, Kwang W. Kim (Kangwon National University — Korea) 91

2 A Methodology for Selecting Treated Bases and Sub-Bases Mixtures for Pavement Design and Construction
José Vidal Nardi (Federal Centre of Technological Education of Santa Catarina (CEFET-SC) — Brazil) 97

3 Effect of High Groundwater Level on Roadway Pavements: A Full-Scale Experimental Study
W. Virgil Ping, Ching-Chin Ling (Florida State University), Bruce Dietrich, David Horhota (Florida Department of Transportation) 103

4 New Technologies in the Paving Process Need to Be Based on "Common Practice" and Operators' Heuristics
Henny ter Huerne, Seirgei Miller, André Dorée (Twente University — The Netherlands) 109

5 The Deflectometric Control During the Constructive Process and the Consideration of the Non-Linearity of the Materials Used on Pavement Construction
Glicério Trichês (Federal University of Santa Catarina — Brazil), Guido Paulo Simm Júnior (PROSUL Ltda, Federal University of Santa Catarina — Brazil) 115

A.2 Asphalt Pavement Performance Modeling

1 Evaluation of Asphalt Interlayer Mixes to Mitigate Reflective Cracking in Composite Pavements
Thomas Bennert (Rutgers University), Todd Lynn (SemMaterials, L.P.) 121

2 Basic Study on Rut Shape Characteristics in Consideration of Vehicle Dynamics
Kazuya Tomiyama, Akira Kawamura, Alimujiang Yiming (Kitami Institute of Technology — Japan), Tateki Ishida (Civil Engineering Research Institute — Japan), Shigenori Nakajima (Wacom Hokkaido CO., LTD — Japan) 127

3 Change of Deformation Strength Due to Mixture Aging
Jae H. Jung, Jong S. Lee, Jun S. Kweon, Kwang W. Kim (Kangwon National University — Korea) 133

4 A Study on Temperature Dependent Modulus for Asphalt Concrete
Kunihito Matsui, Kiyoshi Fujinami, (Tokyo Denki University — Japan), Shigeo Higashi (Kajimaroad Co., Ltd. — Japan), Tasuku Nagae (Sacata Denki Co., Ltd. — Japan) 139

5 Effects of Layer Interface Slip on the Response and Performance of Elastic Multi-Layered Flexible Airport Pavement Systems
James W Maina, Morris De Beer (CSIR Built Environment — South Africa), Kunihito Matsui (Tokyo Denki University — Japan) 145

B.2 Concrete Pavement Performance Modeling

1 Full-Scale Field Testing of Rapid-Setting Materials for Slab Replacement
L.A. Barna, J.S. Tingle, P.S. McCaffrey (U.S. Army Engineer Research and Development Center) 151

2 Finite Element Model to Study Structural Pavements Design: Investigation in Terms of Stresses and Strains Considering Elasto-Plastic Frictional Contact Mechanics Technologies
Alex Alves Bandeira, João Virgílio Merighi, Rita Moura Fortes (Mackenzie Presbyterian University — Brazil) 157

3 Study of the Bond Strength in the Interface of Porous Concrete and Portland Cement Concrete
Rita Moura Fortes, João Virgílio Merighi, Alex Alves Bandeira (Mackenzie Presbyterian University — Brazil) 163
4 A Wavelet-Based Interpretation of Vehicle-Pavement Interaction
H.M. Zelelew, (Washington State University), A.T. Papagiannakis (University of Texas at San Antonio),
B. Muhunthan (Washington State University)

5 Dynamic Time Domain Backcalculation of FWD Data
Ming-Lou Liu
(I-Shou University — Taiwan), Yi-Fang Chuang (National Central University — Taiwan),
Jui-Chang Chuang (I-Shou University — Taiwan)

C.2 Pavement Economic Analysis

1 A Cost-Comparison Methodology for Selecting Asphalt Concrete Mixtures
Kevin K. McGhee (Virginia Transportation Research Council),
Trenton M. Clark (Virginia Department of Transportation)

2 Life-Cycle Cost Analysis and Use Policies for Modified Asphalt Pavement
Kimio Maruyama, Jun Tako, Masayuki Kaneko (Civil Engineering Research Institute for Cold Region,
Public Works Research Institute — Japan)

3 Economics Analysis Between Rigid and Flexible Pavement
Silvio Rodrigues Filho
(ESA Engenharia e Sistemas Ltda — Brazil), Cássio Eduardo Lima de Paiva
(UNICAMP — Universidade Estadual de Campinas — Brazil)

4 Pay Factor Development for Hot Mix Asphalt Pavements Using Fatigue Testing Data
Michael Zelenock (Cadillac Asphalt), Andrea Kvasnak (Auburn University), Jason Bausano
(SemMaterials, L. P.), R. Christopher Williams (Iowa State University)

5 Vehicle Operating, Accident and User Time Costs in Pavement Management Systems:
Approach for Portuguese Conditions
Bertha Santos (University of Beira Interior — Portugal),
Luis Picado-Santos (University of Coimbra — Portugal),
Victor Cavaleiro (University of Beira Interior — Portugal)

6 Models for the Analysis of Maintenance Strategies Effects on Road Pavements Life Cycle Costs
José Manuel Coelho das Neves, João Gomes Morgado (CESUR, IST, Technical
University of Lisbon — Portugal)

A.3 Asphalt Pavement Rehabilitation

1 Maintenance and Rehabilitation of Low Cost Surface Dressing for Low Volume Roads —
Experimental Road Sites
Pétur Pétursson (Icelandic Building Research Institute — Iceland)

2 Rehabilitation Study of a Heavily Trafficked Urban Road
Joel R. M. Oliveira, Paulo A. A. Pereira
(University of Minho — Portugal), Luis G. Picado-Santos (University of Coimbra — Portugal)

3 Evaluation of the Rutting Susceptibility of Louisiana Superpave Mixtures
Louay Mohammad (Louisiana State University), Shadi Saadeh (Louisiana Transportation
Research Institute)

4 Crack Initiation Assessment of Wearing Course Mixtures Using Aggregate Skeleton Property
Iman Haryanto, Osamu Takahashi (Nagaoka University of Technology — Japan)

5 Quantify Pavement Segregation
Chieh-Min Chang (Naval Academy, Department of Marine
and Mechanical Engineering — Taiwan), Jian-Shiuh Chen, Chien-Cheng Fang (National Cheng Kung
University — Taiwan)

6 Evaluation of North Dakota’s Local Superpave Mixes’ Performance Using
the Asphalt Pavement Analyzer
Nabil Suleiman (University of North Dakota)

7 Study of Aggregate-Mastic Bond Properties in Bituminous Mixtures
Hugo M.R.D. Silva, Jorge C. Pais, Paulo A.A. Pereira (University of Minho — Portugal)

8 Correlation Between Monotonic and Repetitive Test Results in Bituminous
Mixtures
Hugo M.R.D. Silva, Jorge C. Pais, Paulo A.A. Pereira (University of Minho — Portugal)
9 Rehabilitation Alternatives Using New Asphalt Rubber Mixtures With Brazilian Materials
Paulo A. A. Pereira, Jorge C. Pais (University of Minho — Portugal), Glicério Trichês, Liseane P. T. L. Fontes (University Federal of Santa Catarina — Brazil) 265

B.3 Concrete Pavement Rehabilitation and Recycling

1 Full Scale Traffic Tests of Rapid-Setting Materials for Full-Depth Patching of Concrete Pavements
Lucy P. Priddy, Jeb S. Tingle (U.S. Army Engineer Research and Development Center) 271

2 Rehabilitation of Continuously Reinforced Concrete Pavement with Bonded Overlay
Yoon-Ho Cho (Chung-Ang University — Korea), Dong-Ho Kim, Seong Cheol Choi, Moon C. Won (The University of Texas at Austin) 277

3 The Effectiveness of Shot-Peening and Water-Blasting Techniques on Micro and Macrotexture Characteristics of Airport Pavements
Maurizio Crispino, Riccardo Rampini (Politecnico di Milano, DIIAR — Italy) 283

4 Use of Crushed Concrete as Aggregates in Continuously Reinforced Concrete Pavement
Moon C. Won (The University of Texas at Austin) 289

5 The Use of Crushed Concrete Slabs in Base Layers of Airport Pavements
Maurizio Crispino, Emanuele Toraldo, Mauro Pozzi (Politecnico di Milano, DIIAR — Italy) 295

6 Evaluation of Spall Repair Materials for Airfields
Reed B. Freeman, L. Webb Mason, Lucy Phillips Priddy, Travis Mann (U.S. Army Engineer Research and Development Center) 301

C.3 Pavement Evaluation

1 Infrared Thermagraphic Inspection of De-Bonding Between Layers of Airport Flexible Pavement
Yukitomo Tsubokawa, Junicht Mizukami, Toru Esaki (National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure and Transport — Japan), Kimitoshi Hayano (Port and Airport Research Institute — Japan) 307

2 Measurements of Pavement Macrotexture With Stationary and Mobile Profilometers
M. Losa, P. Leandri, R. Bacci (University of Pisa — Italy) 313

3 Development of Laser Pavement Image Processing System to Enhance Existing Automated Pavement Distress Detection Process
Jungyong “Joe” Kim, Hosin “David” Lee (The University of Iowa), Duk-Geun Yun, Jung-Gon Sung (Korean Institute of Construction Technology — Korea) 319

4 Evaluation of Pavement Smoothness Through the Simulation Model of 3-Meter Straightedge
Chia-pei Chou, Hong-chang Chen (National Taiwan University — Taiwan) 325

5 Macro and Microtexture Evaluation of an Urban Road
Charles Silva de Aguiar, Paulo Roberto Farias Falcão, Li Chong Lee Barcelar de Castro, Márcio Muniz de Farias (Researches of the Road Engineering Laboratory, CEFTRU/UnB — Brazil) 331

6 Correcting the DCP Indices to Incorporate Skin-Friction Effects
Moshe Livneh (Technion-Israel Institute of Technology — Israel) 337

A.4 Asphalt Pavement Recycling I

1 Aging and Recycling Properties of Rubberized Binders
Soon-Jae Lee, Serji N. Amirkhanian (Clemson University), Seung-Zoon Kwon (Kangwon National University — Korea) 343

2 Full Depth Pavement Reclamation Using Lime Kiln Dust
Lawrence W. Cole (Carmeuse Lime Company) 349

3 Long-Term Performance of Recycled Asphalt Mixtures in Cold, Snowy Regions
Chigusa Ueno, Jun Tako, Ryuji Abe (Civil Engineering Research Institute for Cold Region — Japan) 355
4 Freeze-Thaw Durability of Cement-Stabilized Aggregate Base Material Blended with Reclaimed Asphalt Pavement Rebecca A. Crane (Smith Geotechnical Engineering Consultants), W. Spencer Guthrie (Brigham Young University) 361

5 Performance Testing for Cold In-place Recycling with Foamed Asphalt Hosin “David” Lee, Yongjoo Kim (The University of Iowa), Michael Heitzman (Iowa Department of Transportation) 367

B.4 Pavement Noise and Safety

1 Evaluating Improvement Measures for Wet-Weather Operational Safety Ghim Ping Ong (Purdue University), Tien F. Fwa (National University of Singapore — Singapore) 373

2 Traffic Noise Study to Analyse the Effects of Vehicles and Pavement Surface Types Sungho Mun, Kwang Ho Lee (Korea Expressway Corporation — Korea) 379

3 Using the Driving Simulator to Evaluate Road Surface Roughness Tateki Ishida (Civil Engineering Research Institute for Cold Region, Public Works Research Institute — Japan), Akira Kawamura (Kitami Institute of Technology — Japan), Jun Tako (Civil Engineering Research Institute for Cold Region, Public Works Research Institute — Japan) 385

4 A Solution to the Pavement Edge Drop Off Problem Ronald W. Gamache (TransTech Systems, Inc.) 391

5 Road Pavements Design and Traffic Safety – Evaluation of Relationships Between Accident Risk and Functional Properties of Road Pavements José Manuel Coelho das Neves, Ana Isabel Capote Fernandes (Technical University of Lisbon — Portugal) 397

6 Acoustic Absorption Potential of Porous Wearing Course Mixtures Ezio Santagata, Stefano Damiano Barbati (Politecnico di Torino — Italy) 403

C.4 Pavement Management

1 Applying Value Engineering Techniques to Pavement Rehabilitation Design Procedures Sameh Zaghloul (Formerly of Stantec Consulting, now of H.W. Lochner, Inc.), Mohamed Elfino (Virginia Department of Transportation) 409

2 Development and Use of Pavement Performance Prediction Model in Small Towns Network Rehabilitation Management Hesham Mahgoub, Ali A. Selim (South Dakota State University) 415

3 Comparison of Laboratory Skid Resistance Measurement Techniques Bob Allen, Paul Phillips (Aggregate Industries — UK), David Woodward (University of Ulster — UK) 421

4 Project-Level Use of Asphalt Pavement Performance Curve Masaki Seino, Jun Tako, Kimio Maruyama (Civil Engineering Research Institute for Cold Region, Public Works Research Institute — Japan) 427

5 Development and Implementation of a New Pavement Management System Luis Picado-Santos, Adelino Ferreira (University of Coimbra — Portugal) 433

6 Actual Applications of LTPP Data for Pavement Research and Management Purposes Sameh Zaghloul (Formerly of Stantec Consulting, now of H.W. Lochner), Jack Springer, (US Department of Transportation, Federal Highway Administration) 439

A.5 Asphalt Pavement Recycling II

1 Laboratory Investigation of Utilizing High Percentage of Rap in Rubberized Asphalt Mixtures Feipeng Xiao, Serji N. Amirkhanian (Clemson University) 445

2 Mixing Method Renovation for Reducing Stiffness of Recycled Asphalt Mixture Tae W. Park, Sung U. Kim, Nam W. Park, Kwang W. Kim (Kangwon National University — Korea) 451
3 Laboratory Study of Recycled Asphalt Pavement Materials as Base Course
Haifang Wen, Tuncer B. Edil (University of Wisconsin at Madison) 457

4 Experimental Investigation for the Analysis of Cold-Recycled Bituminous Mixtures
Ezio Santagata, Giuseppe Chiappinelli, Pier Paolo Riviera (Politecnico di Torino — Italy) 463

5 Laboratory Investigation of Recycled Aged CRM Mixtures
Soon-Jae Lee, Hakseo Kim, Chandra K. Akisetty, Serji N. Amirkhanian (Clemson University) 469

B.5 Sustainable Pavement Materials

1 Laboratory Investigation of Warm Asphalt Binder Properties – A Preliminary Analysis
Tejash S. Gandhi, Serji N. Amirkhanian (Clemson University) 475

2 Use of Warm Mix Asphalt Additives for Cold In-Place Recycling Using Foamed Asphalt
Hosin “David” Lee (The University of Iowa), Youngjoo Kim (Iowa Department of Transportation),
Song-Do Hwang, Kyudong Jeong (Korean Institute of Construction Technology — Korea) 481

3 Development of a Simplified Design Procedure for Determining Layer Thickness in Long Life Pavements
Hyun Jong Lee, Jung Hun Lee (Sejong University — Korea), Hee Mun Park, Soo Ahn Kwon (Korean Institute of Construction Technology — Korea) 487

4 Asphalt Concrete “Inverted Section” Pavements for Long-Life Roads
Michela Agostinacchio (DIIAR - Politecnico di Milano — Italy), Saverio Olita (University of Basilicata — Italy) 493

5 Sustainability and Highway Surfacing Materials in the UK
W. Alan Strong, David Woodward, Alan R Woodside (University of Ulster — UK) 499

6 Performance and Durability of Grouted Open Grade Asphalt Concretes
Giovanni Da Rios, Michela Agostinacchio, Federico Fiori (DIIAR - Politecnico di Milano — Italy) 505

C.5 Pavement Preservation

1 Quantifying the Benefits of Flexible Pavement Preventive Maintenance Techniques – A Synthesis and Survey
Eli Cuelho, Robert Mokwa, Michelle Akin (Montana State University) 511

2 A Network-Level Optimization Model for Pavement Maintenance and Rehabilitation Programming
Zheng Wu, Gerardo W. Flintsch (Virginia Polytechnic Institute and State University) 517

3 Soil Stabilization Studying of Tropical Brazilian Soil by Unconfined Strength Compression Tests
Daniela Massami Ide, Anna Silvia Pacheco Peixoto, Sérgio Silva Macedo (UNESP/FEB — Brazil) 523

4 The Possibility of Building a Road Maintenance Fund Scheme to Initiate Pavement Smoothness Incentive in Taiwan
Isaac I.C. Chen (National Taiwan University, MOTC Institute of Transportation — Taiwan) 529

5 Maintenance and Preservation of the District of Columbia’s National Highway System Pavement Assets
Gonzalo R. Rada, Amy L. Simpson, Jonathan L. Groeger (MACTEC Engineering & Consulting, Inc) 535

6 Predicting Chip Seal Embedment
Haryati Yaacob (University of Technology — Malaysia), David Woodward, Alan Woodside (University of Ulster — UK) 541

Author Index 547
REHABILITATION STUDY OF A HEAVILY TRAFFICKED URBAN ROAD

Joel R. M. Oliveira (corresponding author) and Paulo A. A. Pereira
University of Minho
Guimarães, Portugal
joliveira@civil.uminho.pt

Luís G. Picado-Santos
University of Coimbra
Coimbra, Portugal

Abstract: Rehabilitation of urban roads is usually carried out with special restrictions in order to limit traffic congestion and to assure the link between different routes through the urban areas. Therefore, the user costs resulting from the rehabilitation works should also be taken into consideration in the project phase. The present paper focuses on the analysis of a heavily trafficked urban road rehabilitation project. The original pavement design did not take into account the current traffic levels which are well above the initial values. The pavement is reaching failure in several areas and needs urgent measures to avoid complete failure. The pavement condition is also a result of lack of structural strength and a deficient drainage. Different pavement rehabilitation alternatives were assessed in order to choose the best solution, which should improve the bearing capacity of the pavement, through the rehabilitation of the existing layers and the improvement of the drainage systems, in order to minimize the maintenance operations in the future. The rehabilitation alternatives were also analyzed in terms of the impact of the maintenance operations in the environment.

INTRODUCTION

The type of road studied in the present paper can be classified as a good candidate for the use of Long Life Pavement (LLP) design principles. Due to the very high traffic levels, any maintenance operation causes disruption and delays on the normal flow of the traffic, with increased costs to the users and the environment. An analysis of a part of the UK network whole life cost, carried out by Chenevière and Ramdas (2006), suggests that the adoption of the LLP design principles, on a heavily trafficked road network, presents large potential benefits even before considering the environmental benefits of such an approach. Therefore, a comprehensive study was carried out to analyze the most adequate rehabilitation alternative for this urban road.

CHARACTERIZATION OF THE ROAD AND PAVEMENT CONDITION

The road section studied in this paper (approximately 3 km long) is part of a main link of the city of Braga with the Portuguese highway network. The traffic assessment carried out during this study showed an Average Annual Daily Traffic (AADT) value of about 50000 vehicles, 2000 of which are classified as heavy vehicles. The road cross-section comprises a dual carriageway, each with three traffic lanes, along 1 km, and two traffic lanes along the other 2 km.
Urban roads usually present some restrictions regarding the final level of the pavement surface, due to the presence of adjacent footpaths and infrastructures installed below them. This has a significant influence on the solution chosen to rehabilitate the pavement, since it restrains the thickness of eventual overlays. This is the case of the present study.

Although the pavement has been in service for less than 15 years, several maintenance operations have already been carried out, including overlays and surface course replacements in some areas. Nonetheless, the pavement is reaching failure in a major part of the length and a different maintenance strategy is needed for the next pavement rehabilitation. Thus, a comprehensive analysis of the pavement condition and bearing capacity was carried out. Following a visual analysis of the surface, a series of Falling Weight Deflectometer (FWD) tests was performed and some boreholes were opened, in order to collect some samples for further laboratory testing. Visual observation of the pavement condition showed a high level of degradation for several distress types, namely rutting and alligator cracking.

FWD tests were performed on the most trafficked lane of each way with an approximate spacing of 50 meters, in order to characterize the bearing capacity of the pavement throughout the length of the studied road section. The ASHTTO cumulative difference approach has been used to analyze the results in terms of homogeneous sections by plotting the maximum deflection values obtained in each point versus distance along the project (Figure 1) and by calculating the cumulative differences between the area under the response curve at any distance and the total area developed from the overall project average response at the same distance (ARA, 2004). The homogeneous section boundaries are defined as the positions where the slope of the graph changed sign.

![Figure 1 – Maximum deflection values and Homogeneous Sections obtained (North-South way)](image)

According to the results obtained from the previous figure, the characteristic deflection values for each homogenous section were obtained by the statistical analysis of the percentile 85. The resulting values for the North-South way are presented in Table 1. A similar analysis was also carried out for the opposite way.

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>0.3</th>
<th>0.45</th>
<th>0.6</th>
<th>0.9</th>
<th>1.2</th>
<th>1.5</th>
<th>1.8</th>
<th>2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def. Section 1 (μm)</td>
<td>1027</td>
<td>638</td>
<td>450</td>
<td>330</td>
<td>190</td>
<td>130</td>
<td>96</td>
<td>76</td>
<td>61</td>
</tr>
<tr>
<td>Def. Section 2 (μm)</td>
<td>1028</td>
<td>668</td>
<td>469</td>
<td>340</td>
<td>179</td>
<td>105</td>
<td>74</td>
<td>54</td>
<td>40</td>
</tr>
<tr>
<td>Def. Section 3 (μm)</td>
<td>1281</td>
<td>821</td>
<td>566</td>
<td>392</td>
<td>188</td>
<td>112</td>
<td>76</td>
<td>57</td>
<td>46</td>
</tr>
</tbody>
</table>

Based on the results obtained for both ways, boreholes were defined in specific locations with the objective of assessing the pavement structure and the mechanical characteristics of the.
materials comprised in each layer. Thus, six boreholes were open (three in each way) and samples were collected from each for further laboratory testing. From the analysis of the pavement structure on the six different locations it was possible to conclude that quality control during the construction phase was not well performed. The same pavement structure (particularly the thickness of each layer) was not found in any of the six different locations. Therefore, it was difficult to define the pavement structure that should be used while modeling the existing pavement to back-calculate the stiffness modulus of each layer. The structures of two points were used as references along the road to represent the existing pavement, according to the deflection values (presented in Table 1 for the North-South way). Thus, one structure was used for Sections 1, and 2 while the other was used for section 3, as can be observed in Figure 2. A similar approach was used for the opposite way. For the two pavement structures presented in Figure 2, the stiffness moduli results obtained by back-calculation are presented in Table 2.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Structure 1</th>
<th>Structure 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Course</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>Binder Course</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Granular Base</td>
<td>320</td>
<td>80</td>
</tr>
<tr>
<td>Granular Sub-base</td>
<td>130</td>
<td>290</td>
</tr>
<tr>
<td>Subgrade</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>440 mm</td>
</tr>
</tbody>
</table>

Figure 3 – Reference structures used to model the pavement along the road

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness (mm)</th>
<th>Stiffness (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Course</td>
<td>60</td>
<td>950</td>
</tr>
<tr>
<td>Binder Course</td>
<td>80</td>
<td>450</td>
</tr>
<tr>
<td>Granular Base</td>
<td>320</td>
<td>300</td>
</tr>
<tr>
<td>Granular Sub-base</td>
<td>130</td>
<td>100</td>
</tr>
<tr>
<td>Subgrade</td>
<td>----</td>
<td>36</td>
</tr>
</tbody>
</table>

There are records of groundwater appearance at the pavement surface in some locations, especially in the raining season. Tests performed over the collected samples confirmed high water content in some subgrade soils. The main reason for this is the absence of a subsurface drainage system, what indirectly contributes to the reduced pavement bearing capacity by decreasing the strength of the granular materials. From the results obtained, it can be concluded that the pavement needs urgent rehabilitation measures in order to avoid total reconstruction and to improve the pavement condition to assure an appropriate service level.

DESIGN OF PAVEMENT REHABILITATION ALTERNATIVES

According to the traffic volume measured in the studied road section, the minimum design life that should be considered in the design of any rehabilitation alternative is 20 years. Thus, the corresponding number of equivalent standard axles (of 80 kN) was estimated to be of 84×10^6. For such a high level of traffic and with an existing pavement in such a poor condition, a partial reconstruction of the pavement was needed. Due to constrain in raising the final level of the pavement surface, the solution would have to include removal of the top part of the pavement and the application of new layers.
The traditional alternative (hereafter mentioned as alternative A) would consist of removing the bound layers (surface and binder courses) of the existing pavement and substituting them by new bituminous layers. The milled material would be dumped into a landfill deposit and new aggregates and binder would be used to produce the mixtures for the new layers. This alternative would also include the construction of a subsurface drainage system to reduce the water susceptibility of the pavement throughout the year.

A different alternative (B) would comprise the recycling of part of the existing materials in order to improve the bearing capacity of the pavement without increasing significantly the amount of new materials used and the disposal of construction waste. In order to reduce the influence of the structure variability throughout the project, this alternative would include the reclamation of the surface course material (to be included in the production of a new bituminous mixture for the new binder course) and the recycling of the remaining material (in a thickness of about 150 to 230 mm) with the addition of cement. This would make the main structural layer and the pavement would become semi-rigid. The thickness of the new binder and surface courses would be then calculated in accordance with the design traffic.

A similar alternative (B1) would include the construction of a subsurface drainage system. This should increase the stiffness of the subgrade and granular layers and reduce the thickness of the bituminous bound layers. In both B and B1 alternatives, a Stress Absorbing Membrane Interlayer (SAMI) would be applied between the cement recycled layer and the new bituminous layers in order to reduce the crack propagation phenomenon. This is usually observed in pavements with cementitious base courses.

For each alternative, the thickness of each new/recycled layer was calculated using BISAR 3.0 program. Computations were made until the traditional failure criteria (i.e., fatigue of bound layers and permanent deformation of subgrade) were fulfilled. The criteria used in this study are those developed in the SHELL method (Claessen et al., 1977). Cracking in the cementitious base course (alternatives B and B1) was not taken into account for design purposes, since a SAMI was used to resist the movements of the cracks, reducing the propagation rate to the overlay.

The design calculations resulted in the solutions presented in Tables 3 and 4, in terms of pavement constitution. Table 5 summarizes the thicknesses that need to be milled off for each alternative, as well as the increase in the final level of the pavement surface.

Table 3 – Pavement structure 1 design results for the studied alternatives

<table>
<thead>
<tr>
<th>Layer</th>
<th>Alternative A</th>
<th>Alternative B</th>
<th>Alternative B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Course</td>
<td>Asphalt Concrete 40</td>
<td>Asphalt Concrete 50</td>
<td>Asphalt Concrete 40</td>
</tr>
<tr>
<td>Binder Course</td>
<td>Asphalt Concrete 70</td>
<td>Recycled AC 80</td>
<td>Recycled AC 50</td>
</tr>
<tr>
<td>SAMI</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Base Course</td>
<td>High Modulus Bituminous Macadam 110</td>
<td>Cement Recycled Material 150</td>
<td>Cement Recycled Material 150</td>
</tr>
</tbody>
</table>

Table 4 – Pavement structure 2 design results for the studied alternatives

<table>
<thead>
<tr>
<th>Layer</th>
<th>Alternative A</th>
<th>Alternative B</th>
<th>Alternative B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Course</td>
<td>Asphalt Concrete 50</td>
<td>Asphalt Concrete 50</td>
<td>Asphalt Concrete 40</td>
</tr>
<tr>
<td>Binder Course</td>
<td>Asphalt Concrete 80</td>
<td>Recycled AC 80</td>
<td>Recycled AC 50</td>
</tr>
<tr>
<td>SAMI</td>
<td>--</td>
<td>10</td>
<td>--</td>
</tr>
<tr>
<td>Base Course</td>
<td>High Modulus Bituminous Macadam 130</td>
<td>Cement Recycled Material 230</td>
<td>Cement Recycled Material 230</td>
</tr>
</tbody>
</table>
Table 5 – Thickness variations for the studied alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Structure</th>
<th>Thickness milled off (mm)</th>
<th>Increase in the final level (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 / 2</td>
<td>140 / 150</td>
<td>80 / 110</td>
</tr>
<tr>
<td>B</td>
<td>1 / 2</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>B1</td>
<td>1 / 2</td>
<td>80</td>
<td>20</td>
</tr>
</tbody>
</table>

TECHNICAL-ECONOMIC AND ENVIRONMENTAL EVALUATION

According to the principles used in the design program (e.g. linear elastic behavior of all layers), it was not possible to take into account the structural contribution of the SAMI in alternatives B and B1. Thus, the inclusion of the membrane should be assumed as a safety factor, due to its contribution to a better distribution of the traffic loads to the layers underneath. The solutions presented in Table 4 could be assumed as technically equivalent, but the same is not valid in economic and environmental terms. Table 6 shows the costs estimation obtained for each alternative without taking into account the costs of disposing the construction waste in a landfill.

Table 6 – Cost estimation for the studied alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Cost (thousand €)</th>
<th>Difference (%)</th>
<th>Pavement</th>
<th>Drainage</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>965.8</td>
<td>0.0</td>
<td>121.9</td>
<td>1087.7</td>
<td>0.0</td>
</tr>
<tr>
<td>B</td>
<td>874.7</td>
<td>-24.3</td>
<td>0</td>
<td>874.7</td>
<td>-24.3</td>
</tr>
<tr>
<td>B1</td>
<td>772.2</td>
<td>-21.7</td>
<td>121.9</td>
<td>894.1</td>
<td>-21.7</td>
</tr>
</tbody>
</table>

According to the results presented in Table 6, the alternatives which include recycled materials are less expensive than the traditional alternative, even without quantifying the costs of waste disposal. Therefore, in technical and economic terms, the best solution is alternative B1, since it can assure a better behavior of the pavement, with less variation on the bearing capacity of the granular layers due to the reduction of water within the pavement structure. Furthermore, the traditional alternative would result in an increase in the pavement surface level of about 80 to 110mm. In order to apply this solution, it would be necessary to raise all the footpaths adjacent to road, the cost of which was not included in this estimation. On the other hand, the alternative B1 has just a marginal increase of 20 mm which can be made without modifying the footpaths.

IMPACT OF DIFFERENT REHABILITATION ALTERNATIVES ON THE ENVIRONMENT

Even though the cost of new materials has been considered in the previous estimation, the savings obtained by reducing the consumption of natural resources (aggregates and binder) and by reducing the disposal of construction by-products is not easy to quantify. This represents an important part of the environmental costs that are attributed to the traditional rehabilitation alternative. Table 7 shows the estimation of the volumes of materials involved in each alternative, and the percentage of savings obtained by choosing alternatives B and B1 rather than the traditional alternative (A).

Table 7 – Volumes of material used in the studied alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>New Material (m3)</th>
<th>Savings (%)</th>
<th>Landfill (m3)</th>
<th>Savings (%)</th>
<th>Recycled (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12460</td>
<td>0.0</td>
<td>7593</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>5584</td>
<td>-55.2</td>
<td>4056</td>
<td>-46.6</td>
<td>1264</td>
</tr>
<tr>
<td>B1</td>
<td>3951</td>
<td>-68.3</td>
<td>4116</td>
<td>-45.8</td>
<td>790</td>
</tr>
</tbody>
</table>
Significant savings can be observed in Table 7 for alternatives B and B1, especially for the environment, with reductions of more than 55% in the consumption of new resources and of more than 45% in the disposal of construction by-products. This is particularly important since the disposed material still presents potential value to be used in the pavement industry.

According to Pereira and Picado-Santos (2006), the cost of milling the top 10 cm of an existing asphalt pavement, transport and disposal of the material in a landfill is close to €20/m³, on average. Deducting the cost of the milling operation (which has already been taken into account), the cost of transporting and dumping the construction by-products in the landfill would be of about €6.5/m³. The cost of disposing the milled material in the present project can be estimated in about €50 000, which is a significant value (about 4.5% of the overall costs of alternative A).

Apart from the purely economic point of view, issues like CO₂ emissions are becoming increasingly important nowadays. Therefore, the amount of gas emissions during the overall construction cycle (transport of disposed materials; production of new aggregates and binder; transport of resources to the mixing plant; mixture production; transport of the mixture to site) should be taken into account when selecting any rehabilitation alternative. In the present study, these emissions would be greatly reduced by selecting alternatives B or B1.

CONCLUSIONS

According to the results presented in this paper, the main conclusions to be drawn are as follows:
- Significant savings can be obtained by choosing rehabilitation strategies that include recycled materials in the new layers (overall cost savings of up to 24% in the present project);
- Significant environmental cost savings can be obtained when using recycled materials, (reductions of more than 55% in the consumption of new resources and of more than 45% in the disposal of construction by-products were calculated for the present project);
- CO₂ emissions can be greatly reduced by using rehabilitation strategies comprising “in situ” recycled materials.

REFERENCES

