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Abstract. Numerical direct multiple shooting (MS) methods have shown
to be important and efficient tools to solve optimal control problems
(OCP). The use of an MS method to solve the OCP gives rise to a finite-
dimensional optimization problem with a set of “continuity constraints”
that should be satisfied together with the other algebraic states and con-
trol constraints of the OCP. Using non-negative functions to measure the
violation of the “continuity constraints” and of the algebraic constraints
separately, the finite-dimensional problem is reformulated as a multi-
objective problem with three objectives to be optimized. This paper ex-
plores the use of a multi-objective approach, the weighted Tchebycheff
scalarization method, to minimize the objective functional and satisfy all
the constraint conditions of the OCP. During implementation, a penalty
term is added to the Tchebycheff aggregated objective function aiming
to force and accelerate the convergence of the constraint violations to
zero. The effectiveness of the new methodology is illustrated with the
experiments carried out with six OCP.
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1 Introduction

In this paper, we consider solving an optimal control problem (OCP) by a direct
multiple shooting (MS) method, and explore the use of a weighted Tchebycheff
scalarization method to take care of the simultaneous minimization of three
objective functions. An OCP is a constrained optimization problem that has a
set of dynamic equations as constraints. There are three types of OCP that differ
in the formulation of the functional to be optimized: OCP in the Bolza form, in
the Lagrange form and in the Mayer form. They are equivalent and it is possible
to convert a problem in one of the forms into another one [1]. Here, we assume
that the OCP is in the Mayer form:

min
u(t)∈U

J(y(t),u(t)) ≡M(T,y(T ))

s.t. y′(t) = f(t,y(t),u(t)) , t ∈ [0, T ], y(0) = y0, y(T ) = yT ,
0 = he(t,y(t),u(t)), e ∈ E , t ∈ [0, T ],
0 ≥ gj(t,y(t),u(t)), j ∈ F , t ∈ [0, T ],

(1)

where y ∈ Rs is the vector of state variables, u ∈ U ⊂ Rc is the vector of
control, U represents a class of functions (in particular functions of class C1 and
piecewise constant), E = {1, 2, . . . , lh} and F = {1, 2, . . . , lg} [1]. In the problem
of Mayer, the functional is not an integral but a function M that depends in
general on the dependent variables y and the final point of the t-domain T . For
simplicity, we assume that the initial point of the t-domain is 0.

In the OCP we want to find u that minimizes the objective functional J
subject to the dynamic system of ordinary differential equations (ODE) and the
mixed states and control (equality and inequality) constraints.

Methods for solving OCP like (1) can be classified into two classes. In an in-
direct method, the first-order necessary conditions from Pontryagin’s maximum
principle are used to reformulate the original problem into a boundary value
problem [2]. On the other hand, direct methods solve the OCP directly. They
transform the infinite-dimensional OCP into a finite-dimensional optimization
problem that can be solved by efficient nonlinear programming (NLP) algo-
rithms. All direct methods discretize the control variables but differ in the way
they treat the state variables.

In a direct MS method the t-domain is partitioned into smaller subintervals
and the system of ODE is integrated in each subinterval independently. Besides
the control variables, the new state start values (for the state variables) at each
subinterval make the decision variables of the finite NLP problem [2,3]. When
a direct MS method is used to solve the OCP, a set of “continuity constraints”
must be defined and should be satisfied together with the other algebraic mixed
states and control constraints. To solve the resultant finite NLP problem, well-
known NLP methods can be used, namely a sequential quadratic programming
procedure or an interior-point method [3,4]. To reduce the need for numerical (or
analytical) derivatives, a first-order descent method based on the filter method-
ology has been proposed in [5].



To minimize the objective function and satisfy all the constraints - the “con-
tinuity constraints” and the algebraic constraints - the herein proposed method-
ology reformulates the NLP problem as a multi-objective optimization (MOO)
problem with three objectives to be simultaneously optimized. Thereafter, the
weighted Tchebycheff scalarization method is used to solve the reformulated fi-
nite MOO problem. We also take advantage of the weighted Tchebycheff method
by solving problems with non-convex Pareto fronts and force the simultaneous
minimization of the objectives by adding a penalty term to the weighted Tcheby-
cheff scalar function.

The paper is organized as follows. Section 2 introduces the direct MS method
for solving the OCP in the Mayer form, Sect. 3 shows the mathematical formu-
lation of the finite NLP problem and the objective functions that are required to
be simultaneously minimized. Section 4 briefly presents the basic multi-objective
concepts, the objective function to be minimized in the weighted Tchebycheff
scalarization context and the details concerning the new algorithm. Section 5 il-
lustrates the implementation of the methodology with six OCP and we conclude
the paper in Sect. 6.

2 Direct Multiple Shooting Method

In a direct MS method, the controls are discretized in the NLP. On a specific grid
defined by 0 = t1 < t2 < · · · < tN−1 < tN = T , where N − 1 is the total number
of subintervals, the control u(t) is discretized, namely using a piecewise constant:
u(t) = qi, for t ∈ [ti, ti+1] and i = 1, . . . , N−1, so that u(t) only depends on
the control parameters q = (q1, q2, . . . , qN−1). Besides the discretized controls,
the state start values at the nodes of the grid - herein represented by xi ∈ Rs,
i = 1, 2, . . . , N − 1 - are also decision variables of the NLP problem [2]. The
variables xi, i = 1, 2, . . . , N − 1 are the initial values for the state variables for
the N − 1 independent initial value problems on the subintervals [ti, ti+1]:

y′(t) = f(t,y(t), qi), for t ∈ [ti, ti+1] and y(ti) = xi.

The continuity of the solution trajectories yi(t;xi, qi) is guaranteed by satisfying
the “continuity conditions”:

yi(ti+1;xi, qi) = xi+1, i = 1, . . . , N − 1, (2)

as well as the initial state, x1 = y0, and the final state, xN = yT , constraints.
The dynamic system is then solved by an ODE solver on each shooting subin-
terval [ti, ti+1] independently, and the state variables y(t) are considered as de-
pendent variables y(t, q).

3 The NLP Problem

We assume that the NLP problem is a non-convex constrained optimization
problem (COP). We also assume that the OCP is in the Mayer form, the ODE



system has initial and boundary state values, and algebraic equality and inequal-
ity constraints, involving state and control variables, are present. The dynamic
system is solved, in each subinterval [ti, ti+1], by the explicit 4th order Runge-
Kutta integration formula based on 5 points. The mathematical form of the COP
is the following:

min
xi, i∈IN ;qi, i∈I

M(T,y(T ))

s.t. gj(y
i(t;xi, qi), qi) ≤ 0, t ∈ [ti, ti+1], i ∈ I, j ∈ F

he(y
i(t;xi, qi), qi) = 0, t ∈ [ti, ti+1], i ∈ I, e ∈ E

yi(ti+1;xi, qi)− xi+1 = 0, i ∈ I, x1 − y0 = 0,xN − yT = 0 ,

(3)

where I = {1, . . . , N − 1} and IN = I ∪ {N}. In order to solve the optimization
problem (3), the objective function, the “continuity constraints” yi(ti+1;xi, qi)−
xi+1 = 0, i ∈ I, the initial state and the final state constraints, and the alge-
braic equality and inequality constraints must be evaluated by solving the ODE
system. An optimal solution to the problem (3) satisfies all the constraints and
achieves the least objective function value.

To measure the violation of the “continuity constraints”, initial state and
final state constraints, the following non-negative function is used

θ(x, q) =
∑
l∈L

∑
i∈I

(yil(ti+1;xi, qi)− xi+1
l )2 +

∑
l∈L

(x1l − yl0)2 +
∑
l∈L

(xNl − ylT )2 ,

(4)
where L = {1, 2, . . . , s}. If the solution (x, q) satisfies these constraints, θ(x, q)
is zero; otherwise is positive. Similarly, the non-negative function, p, used to
measure the algebraic equality and inequality constraints violation, is defined as
follows:

p(x, q) =
∑
j∈F

∑
i∈I

max
{

0, gj(y
i(t;xi, qi), qi)

}2
+
∑
e∈E

∑
i∈I

he(y
i(t;xi, qi), qi)2,

(5)
where p(x, q) = 0 when the corresponding constraints are satisfied, otherwise
p(x, q) > 0.

In this paper, the constraint violation functions θ(x, q) and p(x, q), and
the optimality measure M(T,x, q), are used to reformulate the COP (3) into
a tri-objective optimization (TOO) problem. In this TOO problem, both the
feasibility measures – defined by the above defined constraint violation functions
– and the optimality measure (defined by the objective function M(T,x, q)) are
minimized simultaneously.

To simplify the notation, the letter x will be used to denote the vector of
the decision variables x = (x, q) (with n = sN + c(N − 1) components) and
f1(x) = θ(x), f2(x) = p(x) and f3(x) = M(T, x(T )). Thus, the TOO problem is
the following:

min
x∈Ω⊆Rn

(f1(x), f2(x), f3(x)) , (6)

where x ∈ Rn is the vector of the decision variables, n is the number of decision
variables, Ω is the feasible search region (often called feasible decision space)



and the components of the vector f : Rn → R3 are the objective functions (also
called criteria, payoff functions, or cost functions) to be optimized. The feasible
criterion space F is defined as the set F = {f(x) such that x ∈ Ω}. This set
is also called the attainable set. However, we note that there are points in the
feasible objective space that do not correspond to a single point x ∈ Ω. The
space Rn is called the decision space and R3 is called the objective space.

When the objective functions are not conflicting, it is possible to find a
solution where every objective function attains its minimum [6]. However, if the
objectives are conflicting, i.e., the improvement of one objective leads to another
objective deterioration, one single optimal solution does not exist, but a set of
alternatives - the non-dominated solutions - further ahead called Pareto optimal
set. The decision-maker then selects one (or more than one) compromise solution,
among the alternatives, that better satisfies his/her preferences.

4 Multi-Objective Optimization

The process of optimizing systematically and simultaneously a collection of ob-
jective functions is called MOO [7]. The simultaneous optimization of several
objectives has been attracting the attention of scientific researchers, since it is
possible to find a set of solutions that represent different compromises between
the objectives. The decision-maker is then able to choose the solution that better
suits his/her goals.

4.1 Basic Concepts

First, and assuming that the number of objectives, m, is greater than 1, the
definition of dominance is presented.

Definition 1. A vector f = (f1, . . . , fm) is said to dominate f̄ = (f̄1, . . . , f̄m)
if and only if

∀i ∈ {1, . . . ,m} fi ≤ f̄i and ∃i ∈ {1, . . . ,m} such that fi < f̄i. (7)

When two solutions f1 = f(x1) and f2 = f(x2), x1, x2 ∈ Ω ⊆ Rn are compared,
one of these three cases is true: i) f1 dominates f2, ii) f1 is dominated by f2,
iii) f1 and f2 are non-dominated. The next definition states the condition for a
feasible solution to be a Pareto optimal solution.

Definition 2. Let f ∈ Rm be the objective functions vector. A solution x1 ∈ Ω
is said to be Pareto optimal if and only if there is no other solution x2 ∈ Ω for
which f(x2) dominates f(x1).

This means that x1 is a Pareto optimal solution if there is no other feasible
solution, x2, which would decrease some objective fi without causing a simul-
taneous increase in at least one other objective. In MOO, there is no single
optimal solution, but a set of optimal solutions called Pareto optimal set (in the
space of the decision variables). The corresponding function vectors are said to
be non-dominated (ND) (see [8] for details concerning MOO).



Definition 3. Given a MOO problem with objective function vector f ∈ Rm
and the Pareto optimal set X∗, the Pareto optimal front (PF ∗) is defined as:

PF ∗ = {f = (f1(x), . . . , fm(x)) such that x ∈ X∗}.

4.2 Scalarization Approaches to MOO

The goal of a MOO algorithm is to find a good approximation to the Pareto
front PF ∗ (and to the Pareto optimal set), i.e., to find a reasonable number of
Pareto function vectors which are evenly distributed along the Pareto optimal
front. The most popular methods to solve the MOO problem produce an ap-
proximation to the PF ∗ directly [9]. They are stochastic methods and although
they are naturally prepared to produce many solutions, since they are in general
population-based techniques, the computational effort to achieve the solutions
is substantial.

Alternatively, a single solution can be found by aggregating the objective
functions into a scalar objective function that is used in a single-objective op-
timization (SOO) context. When combining the objectives, a vector of weights
should be provided by the decision-maker prior to the optimization. In order
to be able to obtain an approximation to the PF ∗, the SOO method must be
run as many times as the desired number of points using different vectors of
weights [10]. The most used aggregation method is the weighted sum approach
that assigns to each objective function fi, of the vector f , a non-negative weight
wi, minimizing the function that is the weighted sum of the objectives. Although
this function is differentiable and simple to implement, it suffers from a draw-
back since certain Pareto optimal solutions in non-convex regions of the Pareto
optimal front cannot be found.

Alternatively, the weighted Tchebycheff approach also assigns a vector of
weights to the objectives and relies on a nonlinear weighted aggregation of the
functions fi to form a single objective [11,12]. Thus, it is able to deal with a
non-convex Pareto front [13]. In the minimization context, the resulting SOO
problem has the form

min
x∈Ω

Ψ(x;w) ≡ max
{
w1

∣∣f1(x)− zU1
∣∣ , . . . , wm ∣∣fm − zUm∣∣} (8)

where w = (w1, . . . , wm) is the vector of weights satisfying wi ≥ 0, i = 1, . . . ,m
and w1+· · ·+wm = 1, the vector zU = (zU1 , . . . , z

U
m) is the ideal (or Utopia) point

in the objective space, i.e., zUj = min{fj(x) such that x ∈ Ω}, j = 1, . . . ,m.
Each term can be view as a distance function that minimizes the distance be-
tween the solution point and the ideal point in the objective space. Minimizing
Ψ(x;w) can provide approximations to the complete Pareto optimal front by
varying the vector of weights [8,10]. The function is not smooth at some points
but the use of a derivative-free method to minimize Ψ(x;w) overtakes this issue.

In our problem, zU1 and zU2 are known in advance, since f1 and f2 are con-
straint violations.



4.3 Weighted Tchebycheff Algorithm for OCP

In this section, the main ideas of the proposed methodology are presented
in Algorithm 1. The algorithm has been designed to simultaneously minimize
the three above defined objective functions θ(x), p(x) and M(T, x(T )) using a
weighted Tchebycheff scalarization approach that takes advantage of a penalty
term to accelerate the convergence of the constraints violation to zero.

Algorithm 1 Weighted Tchebycheff algorithm with a penalty term for OCP

Require: n (number of decision variables), Nw, Nruns
1: Generate a set of Nw weight vectors, wi, i = 1, . . . , Nw with positive components
2: for r = 1 to Nruns do
3: Compute zU3 and V iol using Algorithm 2
4: Set zUi = 0, i = 1, 2
5: Given x0 ∈ Ω based on the ODE initial conditions
6: for j = 1 to Nw do
7: Set V iolold = V iol
8: Compute x(wj), an approximation to the subproblem

minx Ψ(x;wj) + µj
(
wj1f1(x) + wj2f2(x)

)
,

using x0 as initial approximation, where µj = 2κ and κ = b j
2
c.

9: Set V iol = f1(x(wj)) + f2(x(wj))
10: if V iol < V iolold then
11: Update zU3 with the current value f3(x(wj))
12: end if
13: Update x0 = x(wj)
14: Set F r,ji = fi(x(wj)), i = 1, 2, 3
15: end for
16: end for
17: Identify the ND solutions among (F r,j1 , F r,j2 , F r,j3 ), j = 1, . . . , Nw, r = 1, . . . , Nruns.

Relative to the ideal point zU , the tested strategy considers zU1 = zU2 = 0 all
over the iterative process and zU3 is initially estimated using a payoff table, as
shown in Algorithm 2. A large set of points in the decision space are randomly
generated in Ω, the corresponding function vectors are evaluated and the small-
est f3 value is identified to give the estimate of zU3 . There is a different estimated
value for each run. During the inner cycle that runs for all vectors of weights
wj , j = 1, . . . , Nw (from line 6 to line 15 in Algorithm 1) the zU3 is updated with
the most recent value of f3(x(wj)), if the sum of f1 and f2 (therein called V iol)
for that wj has decreased relative to that of the previous wj−1.

Another important issue addressed in Algorithm 1 is the initial approxima-
tion provided to the NLP solver. The x0 for the first subproblem (in the inner
cycle), corresponding to the weights vector w1, is generated taking into account
the ODE initial conditions. For the remaining subproblems, x0 is the solutions
of the previous subproblem (see lines 5 and 13).



Finally, the penalty term that is added to the Tchebycheff objective function
(8) for the minimization in each subproblem is justified by the need to force
even further and accelerate the decrease of the objective functions f1 and f2
(constraint violations θ (4) and p (5) respectively). The penalty parameter µ is
set initially to one and doubles every two subproblems. See line 8 in Algorithm 1.

Algorithm 2 Generate payoff table to compute zU3
Require: n (number of decision variables)
1: for j = 1 to 50n do
2: Randomly generate xj ∈ Ω
3: Compute f ji ≡ fi(x

j), i = 1, 2, 3
4: end for
5: Set zU3 = minj=1,...,50n f

j
3

6: Set V iol = maxj=1,...,50n(f j1 + f j2 )

5 Numerical Results

In this preliminary study, the fminsearch from MATLAB R© is tested to com-
pute x(wi), in line 8 of the Algorithm 1. For all experiments, the options for
fminsearch are set as follows: ‘MaxFunEvals’ = 1000n, ‘MaxIter’ = 500n and
‘TolFun’ = 1e − 04, where n is the total number of decision variables in the fi-
nite optimization problem. Parameter values for all the illustrated problems are:
number of runs, Nruns = 5 and number of subintervals in [0, T ], N = 10. We
note that the addition of more subintervals gives very little improvement in the
optimal objective values, but greatly increases the overall computational effort.

To generate the weight vectors (see line 1 of Algorithm 1), the simplex-lattice
design method for generating an evenly distributed set of weights in a simplex
is used. The constructive method for the creation of a {m, q}-simplex lattice,
presented in [14], is used to obtain the uniformly distributed vectors of weights.
With m = 3 (number of objectives) and q = 8 (q + 1 is the number of points
on each axis), a total of 45 design points are created. Since only design points
that have positive components seem adequate for this TOO problem, a total of
Nw = 21 vectors of weights are selected. Figure 1 shows the 55 design points of
the {3, 8}-simplex lattice and the 21 selected points of the simplex.

The best solution obtained by the algorithm is selected from the final com-
puted ND solutions, after running the algorithm 5 times. It corresponds to
the final ND solution that has the least value of V iol. The results are shown
for six problems: “trajectory”, “VanderPol”, “obstacle”, “reactor”,“Fuller” and
“Tankreactor”. Table 1 contains the best solutions obtained for the selected
problems and Fig. 2 – 7 display:

– (a) the 3-dimensional approximation to the Pareto front
– (b) the 2-dimensional projection f1 − f3 of the Pareto front (for Problem 1)

and the trajectory in the state space (for Problems 2 – 6)
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Fig. 1. Design and selected points of the {3, 8}-simplex lattice

– (c) the state variables of the selected best solution
– (d) the optimal control of the best solution.

We note that the solutions computed after repeating the process 5 times (Nruns =
5, corresponding to the outer cycle) are displayed in the (a) (and (b) for Prob-
lem 1) plots with a ‘blue’ filled circle and the final ND solutions (after the 5
runs) are identified with a ‘red’ bigger open circle.

Problem 1. “trajectory” – Find u(t) that minimizes J (with T = 3 fixed):

min
u(t)

J ≡
∫ T

0

(y2(t) + u2(t)) dt

s.t. y′(t) = (1 + y(t))y(t) + u(t), t ∈ [0, T ]
y(0) = 0.05, y(T ) = 0, |y(t)| ≤ 1, |u(t)| ≤ 1, t ∈ [0, T ].

For Problem 1, the initial provided x0 is y(ti) = 1, i ∈ IN and u(ti) = 0, i ∈
I. The best computed solution in terms of constraints violation (identified among
the final 44 ND solutions) is (θ, p,M) = (7.8962e-10, 0, 0.023928), as depicted
in Table 1. This table also shows the run (among the 5 runs) where the best
solution was obtained, and j corresponds to the index of the weights vector wj in
that run. In Table 2, a comparison with other results in the literature is shown.
This table displays t (time in seconds required to obtain the reported solution),
fe (number of function evaluations required to produce the solution), as well as
tavg (average time for Algorithm 1 to produce a solution over the 5 runs and
21 weight vectors) and feavg (average value of function evaluations – over the 5
runs and 21 weight vectors). Figure 2 shows the plots above mentioned relative
to this problem. The selected solution is very satisfactory and the profiles for
the state and control are as expected.

Problem 2. “VanderPol” – Find u(t) that minimizes J (with T = 5 fixed):

min
u(t)

J ≡ 1
2

∫ T

0

(
y21(t) + y22(t) + u2(t)

)
dt

s.t. y′1(t) = y2(t),
y′2(t) = −y1(t) + (1− y21(t))y2(t) + u(t), t ∈ [0, T ]
y1(0) = 1, y2(0) = 0, y1(T )− y2(T ) + 1 = 0 .



Table 1. Best selected solutions

problem ND solutions (θ, p,M) run (ja)

“trajectory” 44 (7.8962e-10, 0, 0.023928) 2 (14–21)

“VanderPol” 42 (2.0699e-07, 0, 1.716531)b 5 (21)
“obstacle” 8 (4.7033e-11, 0, 0.652339)c 1 (21)
“reactor” 52 (8.3010e-12, 0, 0.552876) 3 (21)

“Fuller” 62 (2.1857e-07, 0, 3.133665)d 1 (21)
“Tankreactor” 39 (6.4011e-08, 0, 0.026682) 1 (21)

a j corresponds to the index of the vector of weights (j = 1, . . . , Nw).
b another interesting ND solution (4.14976e-05, 0, 1.692121) from run 5 (j=15).
c another interesting ND solution (4.3023e-10, 0, 0.185424) from run 4 (j=21).
d another interesting ND solution (3.2306e-05, 1.4921e-07, 3.105910) from run 3 (j=15).

Table 2. Solutions comparison

problem Algorithm 1 other methods

fe/feavg t/tavg (θ, p,M)/M fe (t)

“trajectory” 413∗/3094 0.62∗/4.30 (8.848e-11, 0, 0.264)a 21494 (22.5)

“VanderPol” 966/16943 0.54/9.77 M = 1.6860b 6‡ + 6† (0.31)
“obstacle” 1293/6676 0.72/3.92 (1.31e-08, 4.88e-10, 2.46)a 52702 (53.7)

M = 0.03180c – (0.66)

“reactor” 1505/16504 1.07/9.36 M = 0.572162d – (0.29)
“Fuller” 1171/15959 0.74/9.26 M = 3.0305914e –
“Tankreactor” 2223/20669 1.36/12.56 (9.950e-05, 0, 0.036)a 16320 (18.0)

M = 0.02680f/0.028196g –

∗ average of 8 runs with 8 weight values (equal function vectors). ‡ number of gradient evaluations;
† number of function evaluations. a [5]; b [3]; c [15]; d [16]; e [1]; f [17]; g [18].

For Problem 2, the best computed ND solution was found among 42 final
ND solutions. The initial approximation y1(ti) = 1, y2(ti) = 0, i ∈ IN and
u(ti) = 0.5, i ∈ I is used, see Tables 1 and 2. Figure 3 displays the ND solutions,
the trajectory in the state space, the state variables and control relative to the
best solution. The two selected solutions and the profiles for the states and
control (of the identified best solution) are similar to those shown in [3].

Problem 3. - “obstacle” Find u(t) that solves (with T = 2.9 fixed):

min
u(t)

J ≡ 5y1(T )2 + y2(T )2

s.t. y′1(t) = y2(t)
y′2(t) = u(t)− 0.1(1 + 2y1(t)2)y2(t), t ∈ [0, T ]
y1(0) = 1, y2(0) = 1,

1− 9(y1(t)− 1)2 − (y2(t)−0.40.3 )2 ≤ 0, −0.8− y2(t) ≤ 0, |u(t)| ≤ 1, t ∈ [0, T ].
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Fig. 2. ND solutions and state and control variables for Problem 1 “trajectory”
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Fig. 3. ND solutions, trajectory, and states and control for Problem 2 “VanderPol”



For Problem 3, the best solution was found among 8 final ND solutions. The
initial approximation y1(ti) = 1, y2(ti) = 1, i ∈ IN and u(ti) = 1, i ∈ I is
used and the results are shown in the Tables 1 and 2. Figure 4 displays the ND
solutions, the trajectory in state space, the trajectory of the state variables and
control relative to the best solution. The two solutions identified in Table 1 are
satisfactory and the profiles of the state variables and control (relative to the
defined best solution) follow the pattern shown in [15] (where larger numbers of
subintervals in [0, T ] are used).
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Fig. 4. ND solutions, trajectory and states and control for Problem 3 “obstacle”

Problem 4. “reactor” – Maximize yield of y2(t) after one hour operation by
manipulating a transformed temperature u(t):

max
u(t)

J ≡ y2(T )

s.t. y′1(t) = −y1(t)

(
u(t) +

u2(t)

2

)
y′2(t) = y1(t)u(t), t ∈ [0, T ]
y1(0) = 1, y2(0) = 0, 0 ≤ y1(t), y2(t) ≤ 1, 0 ≤ u(t) ≤ 5, t ∈ [0, T ].

For Problem 4 the best computed solution was found among 52 final ND
solutions. The initial approximation y1(ti) = 1, y2(ti) = 1, i ∈ IN and u(ti) =
0, i ∈ I is used and the results are shown in the Tables 1 and 2. The usual plots
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Fig. 5. ND solutions, trajectory and states and control for Problem 4 “reactor”

are shown in Fig. 5. The profiles of states and optimal control are identical to
those shown in [16].

Problem 5. “ Fuller” – Minimize J (with T = 8 fixed) in this OCP linear in the
control:

min
u(t)

J ≡
∫ T

0

y21(t) dt

s.t. y′1(t) = y2(t),
y′2(t) = u(t), t ∈ [0, T ]
y1(0) = 2, y2(0) = −2, y1(T ) = 2, y2(T ) = 2, |u(t)| ≤ 1, t ∈ [0, T ].
|u(t)| ≤ 1, t ∈ [0, T ] .

The initial approximation used is y1(ti) = 2, y2(ti) = −2, i ∈ IN and
u(ti) = 1, i ∈ I. From the results shown in Tables 1 and 2 and Fig. 6, rela-
tive to Problem 5, we can conclude that the proposed methodology is able to
compute reasonably good solutions and the profiles of the trajectory in state
space, the trajectory of the states y1 and y2, and the control u, are identical to
those presented in [1].

Problem 6. “Tankreactor” – In a continuous stirred-tank chemical reactor, y1
represents the deviation from the steady-state temperature, y2 represents the
deviation from the steady-state concentration and u is the effect of the coolant
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Fig. 6. ND solutions, trajectory and state and control variables for Problem 5 “Fuller”

flow on the chemical reaction:

min
u(t)

J ≡
∫ T

0

(y1(t)2 + y2(t)2 +Ru(t)2) dt

s.t. y′1(t) = −2(y1(t) + 0.25) + (y2(t) + 0.5) exp
(

25y1(t)
y1(t)+2

)
−(y1(t) + 0.25)u(t)

y′2(t) = 0.5− y2(t)− (y2(t) + 0.5) exp
(

25y1(t)
y1(t)+2

)
, t ∈ [0, T ]

y1(0) = 0.05, y2(0) = 0.

The optimal solution reported in [17], for T = 0.78 and R = 0.1, is J∗ =
0.02680. Using the initial approximation y1(ti) = 0.05, y2(ti) = 0, i ∈ IN and
u(ti) = 0, i ∈ I, the results obtained by Algorithm 1 are shown in Tables 1 and 2.
The identified best solution is very satisfactory and the resulting plots (c) and
(d) in Figure 7 are similar to those in [18].

6 Conclusions

A weighted Tchebycheff scalarization methodology is proposed to solve a finite-
dimensional nonlinear optimization problem that arises from the use of a direct
multiple shooting method when applied to an OCP.

The proposed methodology aggregates three objective functions. Two of them
measure constraint violations – from the “continuity constraints” and from the
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Fig. 7. ND solutions, trajectory and states and control for Problem 6 “Tankreactor”

algebraic state and control constraints – that are required to be as close as pos-
sible to zero, and the other is the optimality measure – the objective functional
from the OCP. Moreover, a penalty term is added to the Tchebycheff objective
to force the constraint violations to decrease even faster. The preliminary numer-
ical experiments show the effectiveness of the methodology when compared to
similar strategies. A significant reduction in function evaluations (and time) and
objective function improvements are achieved with the proposed methodology,
when compared to the multiple shooting descent-based filter method presented
in [5]. The comparison with other direct multiple shooting techniques (and even
with indirect methods) shows similar computational effort and very good ap-
proximated solutions in general.
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