
Universidade do Minho
Escola de Engenharia

Renato Preigschadt de Azevedo

DSL based Automatic Generation of Q&A
Systems

July, 2021U
M

in
ho

 |
 2

02
1

Re
na

to
 P

re
ig

sc
ha

dt
 d

e
Az

ev
ed

o
D

SL
 b

as
ed

 A
ut

om
at

ic
 G

en
er

at
io

n
of

 Q
&

A
Sy

st
em

s

Universidade do Minho
Escola de Engenharia

Renato Preigschadt de Azevedo

DSL based Automatic Generation of Q&A
Systems

Doctorate Thesis
Doctoral Program in Informatics

Work developed under the supervision of:
Pedro Rangel Henriques
Maria João Varanda

July, 2021

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and good
practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated
licensing, they should contact the author through the RepositoriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt

ii

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisors Prof. Pedro Rangel Henriques and Prof.

Maria João Varanda Pereira, for the continuous support of my Ph.D. study and related research, for their

patience, motivation, and immense knowledge. Their guidance helped me in all the time of research and

writing of this thesis. I could not have imagined having better advisors and mentors for my Ph.D. study. I

would also like to thank the friendship and support, which were fundamental to making it less challenging

to be away from all the family and friends in Brazil. I consider myself a very lucky person to have known

and learned so much from you both during these years.

Besides my advisor, I would like to thank the rest of my pre-thesis committee: Prof. Nuno Oliveira,

Prof. José João, and Prof. Paulo Novais, for their insightful comments and encouragement.

Most importantly, none of this could have happened without my family. My mother, Maria Augusta,

and my father Ricardo, who had offered their encouragement and support (emotional and financial ;)

through phone calls and thoughts – despite my limited devotion to correspondence. My brother Ricardo

Junior, who, besides the support and my unconditional admiration, also made my absence less felt by

my parents and nephews. I also would like to thanks my godson Bruno for the understanding of my long

absence. Despite the distance, it is a great pride to be part of your achievements by dedication to your

studies.

I am very grateful to Isabela, who was my girlfriend during the start of this Ph.D. and became my wife

at the end of 2019. Thank you for understanding me very well. Thank you for always being on my side,

even when we lived on different continents. Thank you also for share my passion for research and teach.

I love you.

A very special gratitude goes out to all down at Colégio Técnico Industrial (CTISM) and the Federal

University of Santa Maria for helping and allowing me to leave Brazil for the doctorate in Portugal. A very

special thanks to professor Marcelo Freitas, who encouraged and helped me to get permission to leave

the CTISM for four years.

With a special mention to all my colleagues from the computer networks course, who also allowed me

to be out of my university for four years. It was fantastic to have the opportunity to do the Ph.D. outside

Brazil!

iii

I am also grateful to the following University of Minho staff: Helena, Conceição, Goretti, Carla, Aragão

for their unfailing support and assistance during this Ph.D. research.

Thanks to everyone in the gEPL, who is an excellent research laboratory with all of you during the last

four years.

In November 2018, I went to Universidad de San Luis - Argentina (UNSL) for several weeks to work with

professor Mário Beron. My time at UNSL has been highly productive and working with the professor was an

extraordinary experience. I learned a lot about language processing and security with the professors and

the students from UNSL. But one of the most significant benefits of being in Argentina was the friendship

acquired with professor Mario. Mario, you are the most obstinate worker that I have worked with.

I want to thank also all my friends from Brazil who supported me in several ways, with a barbecue

when I visited them, or some random discussions about any kind of subject. A big thanks to the friends

from Quarta Gelada who had been by my side during my academic life. A special thanks to the founder

of this group Giovani for putting professor Pedro Henriques on my academic and life path. I will always

be grateful for this. I have to also thank Rafael Pereira for receiving me the first time in Braga, on which

occasion I had met in person professor Pedro Henriques.

Getting through my dissertation required more than academic support, and I have many, many people

to thank for listening to and, at times, having to tolerate me over the past four years. I cannot begin to

express my gratitude and appreciation for their friendship. All the friends that the Padel made me, you

guys were fundamental to maintain clear-mindedness. It would be a lot more challenging to be away from

family and friends without you guys.

Also, I would like to thank my long-time friend Ricardo Martini, who accepted me as a roommate since

my arrival in Braga. It was a terrific two years and some months of sharing a house and so many triumphs

with you. Especially the trophy from the Galaico Durienses padel games. Also have to thank my godsons

Leandro and Greice, who shared so many happy moments in Braga, and many trips around Europe. I

have also to thank Bruno, Karine, and Walter (and family) for being so present in my life, even that they

lived in Lisbon.

I had the luck to know and have the friendship of my professors in Padel Carlos and José Carvalho.

You guys were so important for being there during these four years living in Portugal. Thank both of you

for crossing the life paths with me.

I have to also thanks professors Victor, Paulo, Solange for all the knowledge and partnership in the

area of computer networks and security. I am a very fortunate person to meet you all.

I would also thank the friends from my hometown that I knew in Braga. Luis, Maiara, Ricardo (Alemão),

and Tati, it was a pleasure to live with you guys in Braga. I also thank you, Lázaro, for being understanding

and teaching me how to brew my own beer, besides so many other teachings.

I probably forgot a lot of special people that were so important in this walk, but I can not forget to thank

João Marco and Alice. During my first stay in Braga (years before thinking of doing a Ph.D. there), I had

the luck to know both of you. Since then, you were outstanding friends and allowed the quarantine to be

a little bit easier for Isabela and me. Thank you, João Marco, for all the scientific, technical, and random

iv

discussions over a coffee, beer, party, or any place. I gained not only a few pounds of weight in Braga, but

I also gained a new brother.

Thanks for all your encouragement!

v

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do

Minho.

Braga

(Place)

(Renato Preigschadt de Azevedo)

vi

To my parents, who made this achievement possible.

vii

Resumo

Geração automática de Sistemas de Perguntas e Respostas ba-
seado em DSL

Para auxiliar o usuário na busca por informações relevantes, os sistemas de Perguntas e Respostas

(Q&A – Question and Answering) oferecem a possibilidade de formular perguntas através de linguagem

natural, obtendo respostas mais adequadas e concisas. Esses sistemas interpretam a pergunta do usuário

para entender suas necessidades de informação e retornam as respostas mais adequadas em um sentido

semântico; eles não realizam uma pesquisa estatística por palavras chaves, como acontece nos motores

de busca existentes. Existem várias abordagens para desenvolver e implantar sistemas de Q&A, tornando

difícil escolher a melhor maneira de construir o sistema. O desenvolvedor deve escolher linguagens e

técnicas que permitam o processamento de linguagem natural. Também é necessário fornecer uma

interface de usuário, permitindo que os usuários dos sistemas de Q&A possam fazer perguntas e obter

respostas. Para tornar mais fácil a construção e implantação de sistemas de Q&A, uma linguagem de

domínio específico para gerar sistemas de Q&A (AcQA) é proposta nesta tese. A linguagem AcQA
permite que os desenvolvedores de sistemas de Q&A se concentrem nos dados que serão utilizados para

construir a base de conhecimento e no conteúdo do sistema, em vez dos detalhes de implementação.

A linguagem proposta gera código e permite uma implantação completa do sistema de Q&A em um

servidor. Um experimento é conduzido para avaliar a viabilidade de usar a linguagem AcQA. O estudo foi

realizado principalmente com pessoas da área de informática e mostra que a linguagem AcQA simplifica

o desenvolvimento de um sistema de Q&A.

Palavras-chave: linguagens de domínio específico, sistemas de perguntas e respostas, AcQA, geração

de código, processamento de linguagem

viii

Abstract

DSL based Automatic Generation of Q&A Systems

In order to help the user to search for relevant information, Question and Answering (Q&A) Systems

provide the possibility to formulate the question freely in a natural language, retrieving the most appropriate

and concise answers. These systems interpret the user question to understand his information needs and

return him the more adequate replies in a semantic sense; they do not perform a statistical word search like

happens in the existing search engines. There are several approaches to develop and deploy Q&A Systems,

making it hard to choose the best way to build the system. The developer has to choose languages and

techniques that allow natural language processing. It is also necessary to provide a user interface where

the final users can ask questions and get answers. To turn easier the construction and deployment of Q&A

Systems, a way to automatically create Q&A Systems based on a DSL (AcQA) is proposed in this Ph.D.

thesis, thus allowing the setup and the validation of the Q&A System independent of the implementation

techniques. The proposed AcQA language allows the developers of Q&A Systems to focus on the data

and contents instead of implementation details. The proposed language generates code and can do a

full deployment of the Q&A System into a destination server. An experiment is conducted to assess the

feasibility of using AcQA. The study was carried out with people mainly from the computer science field

and shows that the AcQA language simplifies the development of a Q&A System.

Keywords: domain-specific languages, question & answer systems, AcQA, code generation, language

processing

ix

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 2

1.3 Research Hypothesis . 3

1.4 Thesis Organization . 3

2 Question Answering Systems - State of the Art 5

2.1 Generic Q&A System . 5

2.2 Classification . 7

2.2.1 Domain . 7

2.2.2 Type of Questions . 8

2.2.3 Analysis Type . 10

2.2.4 Data Source Type . 12

2.2.5 Data Source Characteristic . 14

2.2.6 Type of Matching Functions . 16

2.2.7 Techniques . 17

2.2.8 Answer Generation . 18

2.3 Q&A Systems . 19

2.4 Chapter’s Considerations . 22

3 Generative Programming and Domain-Specific Languages (DSLs) 24

3.1 Domain-Specific Languages . 24

3.2 DSL Classification . 25

3.3 Life cycle of DSLs . 26

x

CONTENTS

3.3.1 Phase one: decision . 26

3.3.2 Phase two: analysis . 26

3.3.3 Phase three: design . 27

3.3.4 Phase four: implementation . 27

3.3.5 Phase five: deployment . 28

3.4 Chapter’s Considerations . 28

4 AcQA - Automatic creation of Q&A Systems 29

4.1 AcQA architecture . 29

4.1.1 Core Module . 31

4.1.2 Data Module . 31

4.1.3 Presentation Module . 32

4.1.4 Steps needed to generate a Q&A System using AcQA 32

4.2 AcQA DSL Design . 33

4.2.1 AcQA main elements . 33

4.2.2 AcQA data input block . 34

4.2.3 AcQA techniques block . 35

4.2.4 AcQA UI block . 35

4.2.5 AcQA Server block . 36

4.2.6 AcQA NoDeploy and CleanKB definitions 36

4.3 Chapter’s Considerations . 37

5 Code Generation 38

5.1 AcQA Processor . 38

5.1.1 AcQA Specification . 38

5.2 AcQA Engine . 40

5.2.1 AcQA Data Input Techniques . 41

5.2.2 AcQA Frontends . 41

5.2.3 AcQA Server . 42

5.3 Chapter’s Considerations . 48

6 Case Studies (CS) 50

6.1 Community Q&A Sites . 50

6.2 CS1: Boards & Cards Games Q&A System Specification in AcQA DSL 50

6.2.1 Overview of Board & Card Games . 51

6.2.2 AcQA Specification . 52

6.3 CS2: PythonQA . 53

6.3.1 Extending PythonQA with Knowledge from Stack Overflow 56

xi

CONTENTS

6.3.2 PythonQA Q&A System Specification in AcQA DSL 58

6.4 CS3: Where is my Class? . 59

6.4.1 Description of Where is my Class? case study 59

6.4.2 AcQA Specification . 59

6.4.3 Data Importing . 60

6.4.4 Generated Systems . 60

6.5 Chapter’s Considerations . 61

7 Assessment 63

7.1 Experiment Design . 63

7.2 Participants . 67

7.3 Hypothesis definition . 67

7.3.1 Questionnaire . 67

7.4 Experiment results . 69

7.5 Chapter’s Considerations . 72

8 Conclusion 73

8.1 Discussing objectives and results . 73

8.2 Main contributions of this Thesis . 75

8.3 Other activities . 75

8.4 Future work . 76

Bibliography 77

xii

List of Figures

1 Recommended paths to read this thesis . 4

2 Generic architecture of a Q&A Systems. 6

3 Ontology with classification types of Q&A Systems. 23

4 AcQA architecture . 31

5 Steps needed to generate the Q&A System . 32

6 Full steps needed to process AcQA programs . 33

7 AcQA grammar main fragment . 34

8 AcQA grammar input block . 34

9 AcQA grammar techniques block . 35

10 AcQA grammar ui block . 36

11 AcQA grammar server block . 36

12 AcQA grammar NoDeploy and CleanKB definitions 37

13 Steps needed to generate the Q&A System . 39

14 Q&A System specification in AcQA . 39

15 Steps to generate a Q&A System . 41

16 XML fragment of an input file needed to generate the knowledge base of a Q&A System . 42

17 JSON fragment of an input file needed to generate the knowledge base of a Q&A System 43

18 Screenshot of the HTML5 UI generated by AcQA 44

19 Screenshot of REST API UI generated by AcQA . 44

20 Configuration written in Jinja template template mechanism to generate a correct configura-

tion file for the webserver Nginx . 45

21 Phrase Analysis: Process to extract the three main elements: action, keywords, and question

type . 46

22 Answer Retrieval . 48

23 Steps needed for data cleaning and processing from SE 51

xiii

LIST OF FIGURES

24 XML fragment of preprocessed Posts.xml from Stack Exchange Boards & Cards Games . 52

25 Q&A System specification in AcQA . 53

26 Steps to generate a Q&A System . 54

27 Screenshot of the Board Games Q&A System generated by AcQA 54

28 Screenshot of the Board Games Q&A System generated by AcQA 55

29 Screenshots of the API endpoint of the Board Games Q&A System generated by AcQA . 56

30 PythonQA Architecture . 57

31 Extending PythonQA . 57

32 Specification of PythonQA using the python FAQ as KB, written in AcQA 58

33 Specification of PythonQA using the StackOverflow as KB, written in AcQA 59

34 Mobile version written in flutter and deployed on an iPhone device 60

35 Mobile version written in flutter and deployed on an iPhone device 61

36 Support to the AcQA language inside the SublimeText editor 64

37 Desktop available to the participants . 65

38 Support to the AcQA language inside a developed HTML editor 66

39 Chart describing the participants prior experience with programming in GPL 69

40 Graph describing the experience in developing Q&A Systems answers from participants of

the experiment . 70

41 Graph presenting the programming languages known by the participants 70

42 Graph presenting participants answers to the ten likert-scale questions 71

xiv

List of Tables

1 Domain classification . 8

2 Type of Questions classification . 10

3 Classification of analysis types . 12

4 Classification of data source type . 13

5 Classification of Data Source Characteristics . 15

6 Classification of Matching Functions . 16

7 Techniques classification . 18

8 Classification of answer generation . 19

9 Statistics about the answers to the research questions (N=17) 71

xv

1

Introduction

This work is licensed under the

Creative Commons

Attribution-NonCommercial 4.0

International License. To view a copy

of this license, visit

http://creativecommons.
org/licenses/by-nc/4.0/.

The increase in the processing power and the availability of information gave rise to Q&A Systems and

consequently augmented the need for such systems. Q&A Systems dialog with the end-user in a more

natural way, accepting questions formulated in natural language and providing more accurate answers

when compared with the traditional search engines.

With the advent of smartphones with personal assistants, which allow the user to ask questions and get

answers from various subjects, these systems are being used by a large number of people. Approximately

forty or fifty years ago, the study about Q&A Systems began (Bobrow 1964; Fortnow and Homer 2003;

Plath 1976; Waltz 1978), but because of computational limitations, these systems had limited scope.

Some Q&A Systems were more or less successful; some were discontinued, demonstrating the difficulty

of building and maintaining a system capable of understanding natural language queries as humans can

do and provide the appropriate answers. Recently more efficient systems have appeared featuring real

applicability. However, to improve these tools, more research is necessary.

Questions are asked and answered several times per day by a human. Q&A Systems tries to do the

same level of interaction between computers and humans. This approach differs from standard search

engines (such as Google1, Bing2.) because it makes an effort to understand the intention that the question

expresses and try to give concise answers instead of using only keywords from the question asked and

provide documents as results.

1https://www.google.com
2https://www.bing.com

1

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

CHAPTER 1. INTRODUCTION

Unlike standard search engines that retrieve documents based on keywords, Q&A Systems aims to

recognize a high-level natural language in the input text. The high-level natural language understanding

of the user question enables the construction of concise answers instead of a set of possibly related

documents.

A simple Q&A System is composed of several processes: question analysis, query processing, and

answer formulation (Clark, Fox, and Lappin 2010). Question analysis is done by analyzing the user’s input

text to extract its meaning; it can be implemented with Natural Language Processing (NLP) techniques.

The query processing phase aims at recovering the information necessary to answer the question from

relevant documents or Knowledge Base (KB); information retrieval techniques or knowledge base querying

can be applied. In the third phase, using the collected information, a list of answer candidates is built,

and the elements are ranked according to the probability to satisfy the user’s needs.

To be able to create a successful question and answering system, all these processes have to be care-

fully specified by the domain specialist and implemented by the programmer. The programmer has to be

an expert in the chosen programming language. He also needs to master the various libraries required

to implement the system (Natural Language Processing, Knowledge Processing, Inference Mechanism,

Database, or Triple Storage Access). The complexity of such systems components makes the implemen-

tation process complex and error-prone; it is indeed a time-consuming and costly task.

The use of an approach based on formal Specifications written in Domain-specific Languages (DSLs)

can simplify and accelerate applications’ development. The design of a specific language to support the

development of a Q&A System allows the user to specify its components more abstractly and concisely,

avoiding implementation details. This approach makes the process of implementing the system more

straightforward and less error-prone. To the best of our knowledge, this is the first work that uses a DSL

to create Q&A Systems. We did not identify any similar work to compare and discuss.

1.1 Motivation

Considering the present importance of Q&A Systems and the many complex tasks that must be imple-

mented to create such an intelligent tool, the motivation for this thesis, proposed along with this document,

is to make the development of Q&A Systems easier following a systematic and rigorous approach. The

success of generative approaches to programming and the know-how of the research team under which

this thesis takes place also motivates the search for a solution in the area of language processing and

automatic generation of software.

1.2 Objectives

This thesis’s main objective is to create a language that allows building closed domain Q&A Systems auto-

matically from their formal specification. In order to attain that objective, the following specific objectives

2

1.3. RESEARCH HYPOTHESIS

must be achieved:

• Choose a generic architecture (among the existing ones or defining a new one) that can always be

adopted to build a closed domain Q&A System;

• Identify what components are stable in order to understand which information needs to be specified

in each concrete case;

• Define a DSL that allows an end-user to specify the issues that need to be described to build a

specific system;

• Develop a system that analyzes descriptions written in that DSL and resorting to standard compo-

nents generate the desired Q&A System;

• Validate with concrete case studies the approach proposed and the developed engine to process

the AcQA language.

1.3 Research Hypothesis

The purpose of this thesis is to prove that it is possible, effective, and advantageous to automatically create

Q&A Systems, based on their abstract and rigorous specification formally written in a DSL that allows the

end-user to focus on its content and the related knowledge, independently of technical details.

1.4 Thesis Organization

The structure of this document is as follows: Q&A Systems are discussed in Chapter 2; the concepts

of DSL are revised in Chapter 3; the AcQA language is presented in Chapter 4. In Chapter 5, the

AcQA engine and a discussion of concrete Q&A System that is used as a technological basis for the

AcQA language are presented; Three case studies are described and deployed in Chapter 6; Chapter

7, discuss the experiment and results, and finally, in Chapter 8 conclusions, the project schedule, and

working methodology are presented.

Figure 1 presents a roadmap with the recommended paths that can be taken to read this thesis.

3

CHAPTER 1. INTRODUCTION

Chapter 1 Chapter 2

Chapter 3

Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8

Figure 1: Recommended paths to read this thesis

4

2

Question Answering Systems - State of the Art

This chapter presents an overview of Q&A Systems along with a broad review of the state of the art.

Q&A Systems provide a way to process natural language inputs from a user extracting their meaning

and providing concrete and concise answers. These systems allow users to make questions more naturally

and get concise and straightforward answers, thus decreasing the effort necessary to find the correct

answer.

Structure of the chapter. Section 2.1 describe a generic Q&A System. In Section 2.3 is presented

a review of the literature in the Q&A System field; and Section 2.2 presents a classification of Q&A Systems

with the works described in Section 2.2.

2.1 Generic Q&A System

The wideness of information available associated with the demand for direct answers from the users

requires a different approach from standard search engines. The use of natural language to communicate

with computer systems turns information technology useful for all persons, allowing them to specify the

information needed deeply. Q&A Systems are not new, but they still need to be improved in terms of

answers accuracy and terms of knowledge domains. The main idea of these systems is to receive the user

question and analyze the keywords and the intention. To discover the intent within a question is not an

easy task. Besides the capability of understanding the user question, the system must retrieve the best

possible answers, ranking them.

There are several approaches in the literature explaining the construction of Q&A Systems (Ferrucci

2010; Kaisser and Becker 2004; Sasikumar and Sindhu 2014; Vargas-Vera and Lytras 2010), explaining the

typical sequence of development stages. At first, several technical approaches should be carefully studied

to allow the processing of natural language. In the past, small Knowledges Bases were used, allowing

the construction of simple Q&A Systems. These systems used simple schemas with small entities and

relations, ad-hoc approaches (manually constructed rules), among other strategies to create the knowledge

base (KB). The KB was specifically tailored to the specific domain, requiring much effort from the Q&A

System’s original designers to add new content or add a new domain. These strategies do not support

5

CHAPTER 2. QUESTION ANSWERING SYSTEMS - STATE OF THE ART

User Question

Query
Processing

Question
Interpretation

Document
Retrieval Document

Collection

Extraction of
Answer

Candidates

Answer
Building

Answer

Figure 2: Generic architecture of a Q&A Systems.

scalable systems and turn complex the development of open domain systems. Currently, there are several

approaches to the question analysis such as Query Graphs, Topic Entity Linking, Relation Matching using

Deep Convolutional Neural Network. Section 2.3 presents papers describing these new approaches.

To construct a Q&A System, we need to develop three processes: question analysis, query processing

(extraction of potential answers), and answer formulation. Figure 2 present the main processes needed

to a Q&A System accordingly to work in (Pasca 2007). The techniques used for question analysis seek to

recover meaning from the input text, sometimes employing Natural Language Processing (NLP) to achieve

the goal. Natural Language Processing is an area of computation that includes parsing, part-of-speech

(POS) tagging, statistical models, ontologies, and machine learning (A. Jain, Kulkarni, and Shah 2018).

Pattern matching and the use of tags can also be used to process the input text. Query processing

approaches are responsible for handling the input text to create the queries necessary to extract relevant

information from the KB. The answer formulation uses information gathered in question analysis and query

processing to generate or retrieve possible answers.

The result of a Q&A System can be fragments of documents, a list of links to web pages, images, a

simple and concise sentence, or a ranking of sentences. A basic Q&A System have to process the user’s

input questions and respond with an answer or a rank-ordered list of candidates’ answers.

As examples of Q&A Systems through natural language processing, we have: WolframAlpha: a math-

ematical Q&A System (Inc., Wolfram Research 2018), which offers knowledge by analyzing the collection

of information it possesses in its local database; IBM Watson: A system that was initially used to answer

generic questions from the American TV show Jeopardy! (Ferrucci 2010; Packowski, Sarah and Lakhana

6

2.2. CLASSIFICATION

2017), but today it is used in several domains.

The techniques necessary to build answers rely on the methods used in query processing and question

analysis. They usually use fragments of documents and sentences to define the most appropriate answers

and present them to the user. Also, a succinct answer approach can be used, where the technique tries

to present a concise answer.

2.2 Classification

These systems are usually classified according to the kind of domain they are able to deal with, being of

two types: closed domain or open domain. In this work, we use a broader classification based on the work

of (Mishra and S. K. Jain 2016).

Figure 3 presents in the form of an ontology the classification used by this work. The ontology shows

the classification proposed by (Mishra and S. K. Jain 2016). Q&A Systems can be classified by the kind

of domain, type of questions, analysis type, data source characteristics, type of matching functions, data

source types, type of answers generated, and techniques. An interactive version of this image with the

explanation is available at 1.

The classification proposed is explained in the following Subsections.

2.2.1 Domain

The domain can be classified as a general or restricted domain. Table 1 classifies the works presented in

Section 2.3 according to the domain classification.

• General (or open domain): General domain Question Answering Systems aims to answer anything

that the user asks. The questions are domain-independent. This type of Q&A System works with a

large repository of information to answer questions about all kinds of subjects. This type of system

is supported by large sets of information and generic ontologies.

• Restricted: Restricted domain Question Answering Systems works only with a specific domain, not

answering questions outside the proposed field. The information repository is made of data only

related to the area, being able to achieve better accuracy than general domain Q&A System. The re-

stricted domain is also known as a closed-domain system, usually based on well-defined, structured

databases and ontologies. These systems are limited to the particular domain implemented.

1https://acqa.di.uminho.pt/classification

7

CHAPTER 2. QUESTION ANSWERING SYSTEMS - STATE OF THE ART

Table 1: Domain classification

Domain
System General Restricted
Intelligent QAS based on Artificial Neural Network Ansari, Maknojia,

and Shaikh 2016
R-NET Etworks 2017
AskHERMES Y. G. Cao et al.

2011
FastQA Weissenborn,

Wiese, and Seiffe
2017

QAS on Education Acts Lende and
Raghuwanshi
2016

MEANS Ben Abacha and
Zweigenbaum
2015

PythonQA Ramos, Pereira,
and Henriques
2017

WAD Jayalakshmi and
Sheshasaayee
2017

Dynamic QAS based on Ontology Rajendran and
Sharon 2017

Ontological-semantic text analysis and the QAS Mochalova et al.
2015

Ontology-driven Visual QA Framework Besbes, Baazaoui-
Zghal, and
Ghezela 2015

QAAL Kalaivani and Du-
raiswamy 2012

From Captions to Visual Concepts and Back Fang et al. 2015
WolframAlpha Inc., Wolfram Re-

search 2018
IBM Watson Ferrucci 2010
Verb Focused Answering from CORD-19 George 2020

2.2.2 Type of Questions

Type of questions can be classified as a Confirmation, Causal, Factoid, Hypothetical, or List. Table 2

classifies the works presented in Section 2.3 by type of questions. Note that only categories with works

are presented in Table 2.

8

2.2. CLASSIFICATION

• Factoid: These questions are usually started with What, When, Which, Who, How. All these ques-

tions are simple and based on facts that are present in the information repository. Some examples

of these types of questions are: ’Who won the trophy for best actor in the 2017 Oscar ceremony?’,

’How to declare a String in Python programming language?’

• List: Answer with a list of facts to fulfill the user question is of the List type. For example, these

answers can contain a list of pilots to answer ’Which people won the Formula 1 championship?’, or

a list of students to correctly answer ’Which students have a grade greater than B+?’.

• Hypothetical: Questions asked for information related to any hypothetical scenario. Usually, these

questions begin with ’what would happen if’ (Kolomiyets, 2011).

• Causal: These types of questions require an explanation about an entity, not only an answer with an

entity. An example is ’Why should I use Python instead of Java to write my app?’. These questions

require advanced natural language processing techniques to be able to construct an answer for the

user. Questions usually start with why or how.

• Confirmation: When the user seeks to get an answer in the form of yes or no from the Q&A System

these types of questions require an inference mechanism to extract a yes or no answer from the

information repository.

9

CHAPTER 2. QUESTION ANSWERING SYSTEMS - STATE OF THE ART

Table 2: Type of Questions classification

Type of Questions
System Factoid List Confirmation
Intelligent QAS based on Artificial Neu-
ral Network

Ansari, Maknojia,
and Shaikh 2016

R-NET Etworks 2017
AskHERMES Y. G. Cao et al.

2011
FastQA Weissenborn,

Wiese, and Seiffe
2017

Weissenborn,
Wiese, and Seiffe
2017

QAS on Education Acts Lende and
Raghuwanshi
2016

MEANS Ben Abacha and
Zweigenbaum
2015

Weissenborn,
Wiese, and Seiffe
2017

PythonQA Ramos, Pereira,
and Henriques
2017

WAD Jayalakshmi and
Sheshasaayee
2017

Dynamic QAS based on Ontology Rajendran and
Sharon 2017

Ontological-semantic text analysis and
the QAS

Mochalova et al.
2015

Ontology-driven Visual QA Framework Besbes, Baazaoui-
Zghal, and
Ghezela 2015

QAAL Kalaivani and Du-
raiswamy 2012

From Captions to Visual Concepts and
Back

Fang et al. 2015

WolframAlpha Inc., Wolfram Re-
search 2018

Inc., Wolfram Re-
search 2018

IBM Watson Ferrucci 2010 Ferrucci 2010
Verb Focused Answering from CORD-19 George 2020

2.2.3 Analysis Type

Analysis type can be divided into the following types: Morphological, Syntactical, Semantic, Expected

Answer type, and Focus Recognition. The works presented in Section 2.3 are arranged according to this

classification in Table 3. Only categories with works are presented in Table 3.

10

2.2. CLASSIFICATION

• Morphological: This analysis aims at separating words into individual morphemes and assigns a

class to them (Mishra and S. K. Jain 2016). The type of analysis uses stemming and lemmatization

of words to do a morphological analysis of the text.

• Syntactical: The syntactical analysis identifies the grammatical construction of words to process

the questions. The analysis is done by looking at the class of words (noun, verbs, adjectives, or

adverbs), not only the words, to try to find the answer candidates.

• Semantic: It aims to deduce the possible meaning of the input question based on the words used

by the user. The semantic analysis usually works with the parse tree generated by the syntactical

analysis, interpreting the possible meaning based on the tree.

• Expected Answer type analysis: This analysis tries to identify the answer type required in the answer

based on the question category. In the sentence ’Who played Captain Jack Sparrow in the movie

Pirates of the Caribean?’, the expected answer type is a person. With this information, factoid and

list type questions can be answered with the correct answer type.

• Focus Recognition: Tries to identify the focus of the question to be able to give better answers to

the user. For example, if a user asks, ’I want a new computer with good processing power and

lightweight. Should I buy a mac?’, the answer needs to be a yes or no, possible to explain why to

choose that answer.

11

CHAPTER 2. QUESTION ANSWERING SYSTEMS - STATE OF THE ART

Table 3: Classification of analysis types

Analysis Type
System Morphological Syntactical Semantic Expected Answer

type
Intelligent QAS
based on Artificial
Neural Network

Ansari, Maknojia,
and Shaikh 2016

Ansari, Maknojia,
and Shaikh 2016

AskHERMES Y. G. Cao et al.
2011

Y. G. Cao et al.
2011

FastQA Weissenborn,
Wiese, and Seiffe
2017

QAS on Education
Acts

Lende and
Raghuwanshi
2016

MEANS Weissenborn,
Wiese, and Seiffe
2017

Weissenborn,
Wiese, and Seiffe
2017

PythonQA Ramos, Pereira,
and Henriques
2017

WAD Jayalakshmi and
Sheshasaayee
2017

Jayalakshmi and
Sheshasaayee
2017

Dynamic QAS
based on Ontol-
ogy

Rajendran and
Sharon 2017

Ontological-
semantic text
analysis and the
QAS

Besbes, Baazaoui-
Zghal, and
Ghezela 2015

Ontology-driven
Visual QA Frame-
work

Kalaivani and Du-
raiswamy 2012

IBM Watson Ferrucci 2010 Ferrucci 2010

2.2.4 Data Source Type

The data source can be of a Structured, Semi-Structured, and Unstructured type. Table 4 classifies the

works presented in Section 2.3 by data source type.

• Structured data source: This type of data source has only structured data in the knowledge base.

The documents have a well-defined schema to describe all the data. With this type of data, the

information extraction is straightforward since the data is produced according to the schema.

12

2.2. CLASSIFICATION

• Semi-Structured data source: There are no guarantees in this kind of data source that all stored

data complies with the schema.

• Un-structured data source: The data can be of any type. The data does not have a schema or even

the same format.

Table 4: Classification of data source type

Data source type
System Structured Semi-Structured Unstructured
Intelligent QAS based on Artificial Neu-
ral Network

Ansari, Maknojia,
and Shaikh 2016

R-NET Etworks 2017
AskHERMES Y. G. Cao et al.

2011
FastQA Weissenborn,

Wiese, and Seiffe
2017

QAS on Education Acts Lende and
Raghuwanshi
2016

MEANS Ben Abacha and
Zweigenbaum
2015

PythonQA Ramos, Pereira,
and Henriques
2017

WAD Jayalakshmi and
Sheshasaayee
2017

Dynamic QAS based on Ontology Rajendran and
Sharon 2017

Ontological-semantic text analysis and
the QAS

Mochalova et al.
2015

Ontology-driven Visual QA Framework Besbes, Baazaoui-
Zghal, and
Ghezela 2015

QAAL Kalaivani and Du-
raiswamy 2012

From Captions to Visual Concepts and
Back

Fang et al. 2015

WolframAlpha Inc., Wolfram Re-
search 2018

IBM Watson Ferrucci 2010

13

CHAPTER 2. QUESTION ANSWERING SYSTEMS - STATE OF THE ART

2.2.5 Data Source Characteristic

The data source can be classified by several characteristics: Source Size, Language, Heterogeneity, Genre,

and Media. This classification and the related works are presented in Table 5.

• Source Size: The size of the source data available to the QA System.

• Language: Classifies the Q&A System by the language that it addresses. If the language that the

QA System recognizes is comprised of a unique language, it is a single language Q&A System or

several languages (multilingual).

• Heterogeneity: This classification concerns the data sources, i.e., whether the data comes from a

single data source or several sources.

• Genre: This item classifies the type of language used in data sources (and questions). Formal is

when the text is written linguistically correct, and informal when written in a non-correctly way.

• Media: If the data available comprises text or another multimedia data format, such as audio, video.

14

2.2. CLASSIFICATION

Table 5: Classification of Data Source Characteristics

Data Source Characteristics
System Language Heterogeneity Genre Media
Intelligent QAS
based on Artificial
Neural Network

Single Ansari, Ma-
knojia, and Shaikh
2016

Multiple Src
Ansari, Maknojia,
and Shaikh 2016

Formal Ansari,
Maknojia, and
Shaikh 2016

Text Ansari, Ma-
knojia, and Shaikh
2016

R-NET Single Etworks
2017

Multiple Src
Etworks 2017

Formal Etworks
2017

Text Etworks 2017

AskHERMES Single Y. G. Cao et
al. 2011

Multiple Src Y. G.
Cao et al. 2011

Formal Y. G. Cao
et al. 2011

Text Y. G. Cao et al.
2011

FastQA Single Weis-
senborn, Wiese,
and Seiffe 2017

Multiple Src Weis-
senborn, Wiese,
and Seiffe 2017

Formal Weis-
senborn, Wiese,
and Seiffe 2017

Text Weissenborn,
Wiese, and Seiffe
2017

QAS on Education
Acts

Single Lende and
Raghuwanshi
2016

Unique Src Lende
and Raghuwanshi
2016

Formal Lende
and Raghuwanshi
2016

Text Lende and
Raghuwanshi
2016

MEANS Single Ben
Abacha and
Zweigenbaum
2015

Multiple Src
Ben Abacha and
Zweigenbaum
2015

Formal Ben
Abacha and
Zweigenbaum
2015

Text Ben Abacha
and Zweigenbaum
2015

PythonQA Single Ramos,
Pereira, and
Henriques 2017

Unique Src
Ramos, Pereira,
and Henriques
2017

Formal Ramos,
Pereira, and
Henriques 2017

Text Ramos,
Pereira, and
Henriques 2017

WAD Single Jay-
alakshmi and
Sheshasaayee
2017

Multiple Src Jay-
alakshmi and She-
shasaayee 2017

Formal Jay-
alakshmi and
Sheshasaayee
2017

Text Jayalak-
shmi and She-
shasaayee 2017

Dynamic QAS
based on Ontol-
ogy

Single Rajendran
and Sharon 2017

Unique Src Rajen-
dran and Sharon
2017

Formal Rajendran
and Sharon 2017

Text Rajendran
and Sharon 2017

Ontological-
semantic text
analysis and the
QAS

Single Mochalova
et al. 2015

Unique Src
Mochalova et al.
2015

Formal Mochalova
et al. 2015

Text Mochalova et
al. 2015

Ontology-driven
Visual QA Frame-
work

Single Besbes,
Baazaoui-Zghal,
and Ghezela 2015

Unique Src
Besbes, Baazaoui-
Zghal, and
Ghezela 2015

Formal Besbes,
Baazaoui-Zghal,
and Ghezela 2015

Text Besbes,
Baazaoui-Zghal,
and Ghezela 2015

QAAL Single Kalaivani
and Duraiswamy
2012

Multiple Src
Kalaivani and
Duraiswamy 2012

Formal Kalaivani
and Duraiswamy
2012

Text Kalaivani and
Duraiswamy 2012

From Captions to
Visual Concepts
and Back

Multilingual Fang
et al. 2015

Multiple Src Fang
et al. 2015

Formal Fang et al.
2015

Image Fang et al.
2015

WolframAlpha Single Inc., Wol-
fram Research
2018

Single Src Inc.,
Wolfram Research
2018

Formal Inc.,
Wolfram Research
2018

Text Inc., Wolfram
Research 2018

IBM Watson Multilingual Fer-
rucci 2010

Multiple Src Fer-
rucci 2010

Formal Ferrucci
2010

Text Ferrucci 2010
15

CHAPTER 2. QUESTION ANSWERING SYSTEMS - STATE OF THE ART

2.2.6 Type of Matching Functions

Q&A Systems uses different strategies to match the information in the knowledge base. Some strategies

are Set-Theoretic Models, Standard Boolean Model, Algebraic Model, Probability Model, and Feature-Based

Models. Table 6 classifies the works presented in Section 2.3 by matching functions type.

• Set-Theoretic Models: This type of matching function uses documents as sets of words or phrases.

• Standard Boolean Model: Use the Boolean model from Information Retrieval to extract answers.

Easy to implement but deliver responsibility to the user to write using boolean notation.

• Algebraic Model: This model represents documents and user questions as vectors, allowing a scalar

value in the matching function.

• Probability Model: Use probability relevance to classify documents and questions.

• Feature-Based Models: This matching function defines documents as vectors containing the weight

value of features to generate a relevance score.

Table 6: Classification of Matching Functions

Type of Matching Functions
System Algebraic Model Probability Model Feature-Based
AskHERMES Y. G. Cao et al.

2011
QAS on Education Acts Lende and

Raghuwanshi
2016

MEANS Ben Abacha and
Zweigenbaum
2015

PythonQA Ramos, Pereira,
and Henriques
2017

WAD Jayalakshmi and
Sheshasaayee
2017

Dynamic QAS based on Ontology Rajendran and
Sharon 2017

Ontology-driven Visual QA Framework Besbes, Baazaoui-
Zghal, and
Ghezela 2015

QAAL Kalaivani and Du-
raiswamy 2012

From Captions to Visual Concepts and
Back

Fang et al. 2015

16

2.2. CLASSIFICATION

2.2.7 Techniques

Q&A Systems can be classified by the techniques used to extract information and create an answer. These

techniques can be Data Mining, Information Retrieval, NLP, and Knowledge Retrieval. Techniques types

are classified in Table 7 according to works discussed in Section 2.3.

• Data Mining: Use Data Mining techniques to extract relevant documents to extract answer candi-

dates.

• Information Retrieval: Use information retrieval and NLP techniques to query a large knowledge

source, such as the web, to extract possible candidates’ answers.

• NLP: Process the answers and the knowledge base with Natural Language Processing and Under-

standing techniques to seek information that could be subjective or fact-based.

• Knowledge Retrieval: To be able to understand knowledge, this approach uses NLP, Knowledge

Acquisition, and data mining techniques to retrieve useful and correct answers.

17

CHAPTER 2. QUESTION ANSWERING SYSTEMS - STATE OF THE ART

Table 7: Techniques classification

Techniques
System Information Re-

trieval
NLP Knowledge Re-

trieval
Intelligent QAS based on Artificial Neu-
ral Network

Ansari, Maknojia,
and Shaikh 2016

AskHERMES Y. G. Cao et al.
2011

Y. G. Cao et al.
2011

QAS on Education Acts Lende and
Raghuwanshi
2016

MEANS Ben Abacha and
Zweigenbaum
2015

PythonQA Ramos, Pereira,
and Henriques
2017

WAD Jayalakshmi and
Sheshasaayee
2017

Jayalakshmi and
Sheshasaayee
2017

Dynamic QAS based on Ontology Rajendran and
Sharon 2017

Ontological-semantic text analysis and
the QAS

Mochalova et al.
2015

Ontology-driven Visual QA Framework Besbes, Baazaoui-
Zghal, and
Ghezela 2015

QAAL Kalaivani and Du-
raiswamy 2012

Kalaivani and Du-
raiswamy 2012

From Captions to Visual Concepts and
Back

Fang et al. 2015

WolframAlpha Inc., Wolfram Re-
search 2018

Inc., Wolfram Re-
search 2018

Inc., Wolfram Re-
search 2018

IBM Watson Ferrucci 2010 Ferrucci 2010 Ferrucci 2010

2.2.8 Answer Generation

The answer generated by the Q&A Systems can be divided into two categories: Extracted Answer or

Generated Answer. The works discussed in Section 2.3 are classified according to answer generation type

in Table 8.

• Extracted Answer: This type of QA System extracts answers in the form of sentences or paragraphs

directly from the knowledge base.

18

2.3. Q&A SYSTEMS

• Generated Answer: In this type of Q&A System, the answers are generated in the form of yes or no

questions, opinionated answers or ratings, or dialog answers.

Table 8: Classification of answer generation

Type of Answer
System Extracted Answer Generated Answer
Intelligent QAS based on Artificial Neu-
ral Network

Ansari, Maknojia, and Shaikh
2016

R-NET Etworks 2017
AskHERMES Y. G. Cao et al. 2011
FastQA Weissenborn, Wiese, and

Seiffe 2017
QAS on Education Acts Lende and Raghuwanshi

2016
MEANS Ben Abacha and Zweigen-

baum 2015
Ben Abacha and Zweigen-
baum 2015

PythonQA Ramos, Pereira, and Hen-
riques 2017

WAD Jayalakshmi and She-
shasaayee 2017

Dynamic QAS based on Ontology Rajendran and Sharon 2017
Ontological-semantic text analysis and
the QAS

Mochalova et al. 2015

Ontology-driven Visual QA Framework Besbes, Baazaoui-Zghal, and
Ghezela 2015

QAAL Kalaivani and Duraiswamy
2012

From Captions to Visual Concepts and
Back

Fang et al. 2015

WolframAlpha Inc., Wolfram Research 2018 Inc., Wolfram Research 2018
IBM Watson Ferrucci 2010 Ferrucci 2010

2.3 Q&A Systems

In this section, relevant works about Q&A Systems so further developed and described in the literature are

introduced.

The PythonQA (Ramos, Pereira, and Henriques 2017) system was developed using the Python pro-

gramming language, together with some libraries such as Natural Language ToolKit (NLTK) (Bird, Klein,

and Loper 2009), Django, among others. To process the user’s input, a module called Phrase Analysis

divides a phrase into several components and tries to identify three elements: action, keywords, and ques-

tion type. These three elements are then compared to the knowledge base to retrieve and show answers

to the users of the Q&A System.

19

CHAPTER 2. QUESTION ANSWERING SYSTEMS - STATE OF THE ART

In MEANS (Ben Abacha and Zweigenbaum 2015) the authors propose a semantic approach to a

medical Q&A System. They apply NLP to process the corpora and user questions. The sources documents

are annotated with RDF, based on an ontology. The authors propose ten question types to classify the

questions.

In work proposed by (Lende and Raghuwanshi 2016), a Q&A System to handle education acts is

presented. The knowledge base is created from the data publicly available from the United Kingdom par-

liament using NLP techniques. Only keywords are extracted from the user question, ignoring the question

type and possible actions present in the user’s text input. Other works are in the field of education as (Jiang,

Xu, and X. Wang 2019), (Agarwal et al. 2019), (Sreelakshmi et al. 2019). The work proposed by (Jiang, Xu,

and X. Wang 2019) created a Q&A System to assist traffic controllers in monthly training. This system uses

word vectors as inputs for the LSTM (Long Short-Term Memory) artificial recurrent neural network (RNN)

to process the user questions for the question analysis. In the paper (Agarwal et al. 2019), is proposed

the system EDUQA (Educational Domain Question Answering System). The EDUQA uses a conceptual

network model containing educational semantics, capturing the pedagogical meaning of textual content.

The EDUQA extract attributes from the conceptual network and generates a similarity coefficient based on

WordNet and dynamic generated vectors to produce answers. It is proposed in (Sreelakshmi et al. 2019)

the Quiz Q&A System, a system to generate quizzes about the data existing in the knowledge base. The

system uses PDF as input files to generate the knowledge base. The Quiz Q&A System uses the Stanford

NLP and a feed-forward neural network to generate the KB and pick the most relevant answers.

The work proposed by (Cai et al. 2020) proposes a framework to process Chinese questions using a

convolutional neural network (CNN) with a bidirectional long short-term memory network (BiLSTM).

The authors in (Y. G. Cao et al. 2011) created AskHERMES, a Q&A System for complex clinical ques-

tions that uses five types of resources as a knowledge base (MEDLINE, PubMed, eMedicine, Wikipedia,

and clinical guidelines). The user question is classified by twelve general topics, made by a support vector

machine (SVM). The authors developed a question summarization and answers presentation based on a

clustering technique to process the possible answers. In a work proposed by Weissenborn et al. (Weis-

senborn, Wiese, and Seiffe 2017), the authors propose a fast neural network Q&A System. The system

uses a simple heuristic, and their results show that the proposed system can achieve the same perfor-

mance compared to more complex systems. Another work on the domain of medicine is the Traditional

Chinese Medicine (TCM), proposed by (Zou, He, and Y. Liu 2020). The authors use a generated knowledge

graph using a semantic network produced by the Traditional Chinese Medicine Language System (TCMLS)

in this work. The TCM system works with questions only in Chinese.

The authors of (Almansa, Rubio, and Macedo 2020) present the Question-Answering Surveillance

architecture (QASF) to answer questions about chronic diseases. The QASF uses scientific papers as a

knowledge base to be able to answers questions. To process the user question and generate answers,

the authors propose the use of several technologies (dictionaries, ontologies, NLTK Snowball, WordNet,

among others).

In work proposed by (Etworks 2017) is introduced the R-NET, a neural network model for answering

20

2.3. Q&A SYSTEMS

questions. The neural network tries to answer questions from a given text. The work proposed in (Ansari,

Maknojia, and Shaikh 2016) creates a deep neural network from documents provided by the user. They

use deep cases and artificial neural network models to understand the contents of the user’s information.

WolframAlpha (Inc., Wolfram Research 2018) is a well-established open domain Q&A System that

initially was a closed domain system for mathematics. It allows the user to use the version available online

with the pre-existing knowledge base or to upload data through a paid subscription.

IBM Watson (Ferrucci 2010) is an open domain Q&A System that was initially created to compete in

the Jeopardy TV quiz program. Watson is currently an Artificial Intelligence framework provided by IBM

for various areas, one of which is the Q&A Systems and natural language processing. Watson is made

available through paid subscriptions.

In the work of Jayalakshmi et al. (Jayalakshmi and Sheshasaayee 2017), they use a similarity measure

based on the user-written question and discover the appropriate meaning between the words. The authors

propose the WAD Q&A System. It uses ontology and hierarchical web documents to perform entity linking

to predict the answers.

Rajendran et al. (Rajendran and Sharon 2017) propose a Q&A System that uses ontology assistance,

template assistance, and user modeling techniques to achieve 85% of accuracy in their experiments. The

authors of (Mochalova et al. 2015) also use ontologies to assist the Q&A System. This work proposes an

algorithm to automatically update the system’s ontology and use a semantic analyzer that operates on an

ontology to extract answers.

In work (Besbes, Baazaoui-Zghal, and Ghezela 2015), the authors improve question interpretation and

the representation of question structure using typed attributed graphs and a question ontology. They also

state that using domain ontologies and lexico-syntactic patterns improves the results. The NBAKB (NBA

Knowledge Graph) system is proposed in (Y. Li, J. Cao, and Y. Wang 2019). The NBAKB uses a knowledge

graph (KG) as a knowledge base. The knowledge graph is created by crawling several NBA-related sites

and uses the Basketball Knowledge Graph (BKA) to generate the relationships and annotations on the KG.

The system allows Chinese questions and uses BiLSTM-CNN to process the KG and the user question to

provide the answer.

It is proposed in (Kalaivani and Duraiswamy 2012) a graph matching algorithm for query matching

with an ontology using a spread activation algorithm. The spread activation algorithm uses the WordNet

(Miller 1995) to calculate semantic similarity.

An approach to automatically generate image descriptions is proposed in (Fang et al. 2015). Firstly

words describing the image are detected. Secondly, sentences relating to the objects in the picture are

produced. The final step is to rank the phrases according to the MERT (Och 2003) model and present the

best-ranked sentence to the user. The authors of the work (S. Lee et al. 2019), propose a Visual Question

Answering (VQA) that uses scene graphs and a model based on memory, attention, and composition (MAC)

to classify the answers. This work differs from the work proposed by (Fang et al. 2015), as there is no

image processing to extract meaning in the technique. The VQA uses only the already generated scene

graph description of the image.

21

CHAPTER 2. QUESTION ANSWERING SYSTEMS - STATE OF THE ART

The authors of (Shen et al. 2017) introduce implicit reasoning neural networks (IRNs) to infer infor-

mation present in the knowledge base without having to processes all the data in the KB. This approach

allows the Q&A System to outperform other approaches in the FB15k benchmark. In the work (Shang, J.

Liu, and Yang 2020), the authors present an answer generation model that uses deep learning techniques.

They also propose a novel position encoding method based on a trigonometric function to achieve better

results. It is used the Squad (Rajpurkar et al. 2016) data set to provide results. A Q&A System in the area

of Chinese mother-and-child is created in the paper (Yan and J. Li 2018). This system answers questions

about the implementation of the two-child policy. The authors propose the generation of a domain-specific

dictionary using word2vec based on deep learning techniques.

In work proposed by (Nguyen et al. 2016), they introduce a new dataset to assess machine reading

comprehension. The questions are a sample from a real user dataset, and the answers were generated

by humans. Some questions have multiple answers to access Q&A Systems.

The work proposed by (George 2020) presents an information retrieval technique where the system

tries to find question words, all the nouns, and verbs. The system uses the Stanford NLP library to make

structural connections, establishing dependency relations between words. After the system process the

question, the selected answer candidates are the sentences that match the verb in the question or have

the maximum similarity with the question. This work is similar to the work proposed by (Ramos, Pereira,

and Henriques 2017).

2.4 Chapter’s Considerations

In this chapter, concepts necessary for the construction of Q&A Systems were presented. It is also pre-

sented works that implement Q&A Systems and natural language processing. These works were classified

according to their characteristics in Section 2.2. This chapter serves as a basis for developing and con-

structing the language proposed in chapter 4.

22

2.4. CHAPTER’S CONSIDERATIONS

Q&A Classification

ApplicationDomain

Can Be

General

Is subtype of

Restricted
Is subtype of

TypeOfQuestions

Can Be

Factoid

Is subtype of

List

Is subtype of

Hypothetical

Is subtype of

Confirmation

Is subtype of

Causal

Is subtype of

AnalysisType

Can Be

Morphological

Is subtype of

Syntactical

Is subtype of

Semantic

Is subtype of

PragmaticAndDiscourse

Is subtype of

ExpectedAnswerType

Is subtype of

FocusRecognition

Is subtype of

DataSource

Can Be

Structured

Is subtype of

SemiStructured

Is subtype of

Unstructured

Is subtype of

TypeOfMatchingFunctions
Can Be

SetTheoreticModels

Is subtype of

StandardBooleanModel

Is subtype of

AlgebraicModel
Is subtype of

ProbabilityModel
Is subtype of

FeatureBasedModels

Is subtype of

DataSourceCharacteristic

Can Be

SourceSize

Is subtype of

Language

Is subtype of

Single Language
Is subtype of

Multilingual

Is subtype of

Heterogeneity

Is subtype of

Unique Source

Is subtype of Multiple Source

Is subtype of

Genre

Is subtype of

Formal Language

Is subtype of

Informal Language

Is subtype of

Media

Is subtype of

Text

Is subtype of

Audio
Is subtype of

Video

Is subtype of

Techniques

Can Be

DataMining

Is subtype of

InformationRetrieval

Is subtype of

NLP
Is subtype of

KnowledgeRetrieval

Is subtype of

AnswerType

Can Be

ExtractedAnswer

Is subtype of

GeneratedAnswer

Is subtype of

Figure 3: Ontology with classification types of Q&A Systems.

23

3

Generative Programming and Domain-Specific
Languages (DSLs)

Domain-Specific Languages (DSLs) can simplify and accelerate the development of applications (Adam

and Schultz 2015). This advantage comes with the disadvantage of learning a new language (Mernik,

Heering, and A. M. Sloane 2005). According to Fowler (Fowler 2010), Domain-Specific Language is a

computer programming language of limited expressiveness focused on a particular domain. DSLs are

relevant for two main reasons: improve programmer productivity and allow non-programmers to read and

understand the source code. The improved programmer productivity is achieved because DSLs try to

resolve a minor problem than general-purpose programming languages (GPL) (Ghosh 2010) making it

more straightforward to write and modify programs/specifications.

Structure of the Chapter. Section 3.1 presents an overview over DSL. A DSL classification is

presented in Section 3.2, and in Section 3.3 discussions about the lifecycle of the development of DSL is

presented.

3.1 Domain-Specific Languages

As the approach here proposed to make more accessible the creation of Q&A Systems is based on the

design of a DSL specially tailored to allow end-users to describe the domain and the Q&A tool they desire

in an abstract level, this Section is devoted to a brief review of the DSL concept and associated techniques

as well as Generative Programming concepts.

Since DSLs are smaller and easier to understand than GPLs, they allow domain specialists to see the

source code and get a more abstract view of their business. DSLs offer the capacity to domain specialists

to create a functional system with no prior knowledge of GPLs.

What distinguishes DSLs from GPLs is the expressiveness of the language: instead of providing all

the features that a GPL must contain, such as supporting diverse data types, control, and abstraction

structures, the DSL has to support only elements that are necessary to a real domain. Examples of

commonly used DSLs, according to (Ghosh 2010), are SQL, Ant, Rake, Make, CSS, YACC, Bison, ANTLR,

RSpec, Cucumber, HTML.

24

3.2. DSL CLASSIFICATION

Generative programming concerns the construction of specialized and highly optimized systems through

the combination and design of modules. According to (Czarnecki 1999), the goals of generative program-

ming are to decrease the conceptual gap between coding and domain concepts, achieve high reusability

and adaptability, simplify the management of several components, and increase efficiency (space and

execution time).

To be able to achieve the goals proposed by (Czarnecki 1999), generative programming recommends

applying some approaches described next.

• Separation of concerns, that is, deal with one important issue at a time and combine these issues

to generate a component.

• Parameterization of the components to be able to deal with families of components, allowing the

use of the developed component in different scenarios.

• Separation from the problem space to solution space.

• Dependencies and interactions management to allow the combination of components that have

parameters that differ and imply in another component.

• Perform domain-specific optimizations through the generation of some components statically or

making transformations to allow distributed processing.

Generative programming uses DSL at a modeling level (Cointe 2005) to allow users to operate directly

with the domain concepts instead of dealing with implementation details of GPLs.

According to (Czarnecki 2005) generative programming is a system-family approach, which allows the

automatic generation of a system-family member, that is, a system that can be automatically generated

from a textual or graphical DSL specification. In this thesis, the concepts related to generative programming

through the use of DSL are used to allow the creation of Q&A Systems. An engine will be used to process

the DSL formal specification (grammar) and generate a Q&A System according to the written description

of the DSL proposed. Also, through the DSL’s written description, a complete Q&A System is generated

without building the system line-by-line by the developer. Section 6.3.2 present the proposed approach.

3.2 DSL Classification

DSLs can be divided into three main categories: internal DSLs, external DSLs, and language workbenches

(Fowler 2010).

An internal DSL (also known as embedded DSL) is implemented as a subset of a general-purpose

language. The DSL code is valid in the GPL and can be processed by the GPL tools such as the compiler.

This type of DSL uses only a subset of the host GPL and has Ruby and Lisp as a few examples (Fowler

2010). According to (Ghosh 2010), internal DSLs are usually implemented as a library for a specific GPL.

25

CHAPTER 3. GENERATIVE PROGRAMMING AND DOMAIN-SPECIFIC LANGUAGES (DSLS)

External DSL is a language that is independent of other GPLs and their applications. An External

DSL has its own (customized) syntax. This DSL type requires a new and specific infrastructure to handle

the lexical analysis, parsing, compiling, and code generation. A few examples of external DSLs are SQL,

Regular Expressions, and Awk.

The language workbench is an environment designed to help create new DSLs, similar to the inte-

grated development environments (IDEs) for GPLs. As examples of this new type of DSLs are the systems:

Intentional’s DSL Workbench1 and JetBrains Meta Programming System (MPS)2.

3.3 Life cycle of DSLs

According to (Mernik, Heering, and A. M. Sloane 2005) to be able to develop a DSL, five phases should

be followed: decision, analysis, design, implementation, and deployment.

3.3.1 Phase one: decision

The first phase recommended by (Mernik, Heering, and A. M. Sloane 2005) is to discuss the need to

develop a new or use an existing DSL or even use a GPL. After this discussion, the developer has to decide

what approach to follow.

When there is already a DSL that was designed for the domain in question, and it is possible to

extend the language, this approach is recommended. If the developer has solid knowledge of the domain,

developing a new DSL is suggested.

In a new domain or a domain with little to no developer knowledge, using a GPL is the recommended

way to pursue.

After the decision is made by the developer, if the DSL is the chosen way, the following phases should

be adopted.

3.3.2 Phase two: analysis

In this phase, which comes after the developer decided to develop a DSL, knowledge from the domain

should be gathered. The developer should do a thoughtful analysis of the domain to consolidate the

knowledge on the subject. This analysis can be done with technical documents, knowledge extracted from

domain specialists, a systematic review of the area, among other ways.

The developer has to define at least the following data about the domain: scope, terminology, vocab-

ulary, concepts. Those data are needed to support the development of the DSL.

1http://www.intentsoft.com
2http://www.jetbrains.com/mps

26

3.3. LIFE CYCLE OF DSLS

3.3.3 Phase three: design

The developer’s choice to develop a new DSL or use an existing DSL determines how the design phase

should be done.

The recommendations for the development of a new DSL, according to (Mernik, Heering, and A. M.

Sloane 2005), are to use two approaches: informal or formal. The informal approach is when the DSL

developer wants to specify the language in natural language, with a set of examples. The formal approach

requires that the developer specifies the DSL using syntactic and semantic specification methods. These

methods can be but are not limited to rules, grammar, regular expressions, abstract state machines.

For the use of an existing DSL, the following approaches are recommended: piggyback, specialization

and extension. Piggyback is when parts of the existing DSL are used. In specialization, the developer

restricts the existing DSL, tackling a specific problem. The last approach is when the developer extends

an existing DSL.

According to (Mernik, Heering, and A. M. Sloane 2005), it is easier for the end-user of the DSL if the

developed DSL is based on an existing language. This approach uses the familiarity of the users in a given

language, making it easier to understand the language syntax.

3.3.4 Phase four: implementation

After the design of the DSL, the DSL should be implemented so that it can be used. According to (Mernik,

Heering, and A. M. Sloane 2005), there are some implementation patterns that can make a big difference

in the effort needed to implement the DSL. The seven recommended patterns are described next.

• Interpreter: In this pattern, the DSL constructs are recognized and executed in GPL interpreted

languages. A cycle of fetch, decode and execute is used. The advantage of using this pattern

instead of the compiler pattern is the simplicity and greater control of the execution environment.

Some examples of DSL using this pattern are ASTLOG (Crew 1997), Service Combinators (Davies

and Cardelli 1999).

• Compiler: The DSL constructs are translated to library calls and base language constructs. This

pattern has the advantages of allowing static analysis and a faster execution speed than the in-

terpreter pattern. ATMOL (Engelen 2002), ESP (Kumar 2002), FIDO (Klarlund and Schwartzbach

1999), Teapot (Chandra, Richards, and Larus 1999) are examples of DSL using this pattern.

• Preprocessor: DSL language constructors are translated to a base language. There are some sub-

patterns inside this one: macro processing, source-to-source transformation, and lexical processing.

The following languages are examples of these subpatterns, respectively, S-XML (Clements et al.

2004), SWUL (Bravenboer and Visser 2004), SSC (Buffenbarger and Gruell 2001).

– Macro processing: when the DSL use expansion of macro processors.

27

CHAPTER 3. GENERATIVE PROGRAMMING AND DOMAIN-SPECIFIC LANGUAGES (DSLS)

– Source-to-source transformation: translation of the DSL into a base language.

– Lexical processing: when only simple lexical scanning is applied.

• Embedding: When the DSL is constructed as a library of a GPL. Examples of DSL using this pattern

are Hawk (Launchbury, Lewis, and Cook 1999) and Nowra (A. Sloane 2002).

• Extensible compiler/interpreter: This pattern extends an existing GPL compiler or interpreter. Ac-

cording to (Mernik, Heering, and A. M. Sloane 2005), interpreters are simple to extend. However,

compilers are hard to extend unless they were made with extension as a basic feature. The DSL

DiSTiL (Smaragdakis and Batory 1997) uses this pattern.

• Commercial Off-The-Chelf (COTS): It is the use of tools and notations already developed to a specific

domain. OWL-Light (Bechhofer 2009) is an example of a DSL using this pattern.

• Hybrid: This approach is when at least two of the above approaches are applied. An example of

DSL using this pattern is GAL (Thibault, Marlet, and Consel 1999).

3.3.5 Phase five: deployment

In this last phase, the implemented DSL is used. When the first four DSL lifecycle phases are used as a

guideline, a usable DSL is ready to be deployed and used.

The end-user of the DSL can write specifications in the developed DSL in this phase. According to

(Tomassetti 2020), it is essential for the DSL developer to provide some tools to support the end-user

development. The tools can make it easier to write specifications on the developed DSL. Tools can be

necessary to use a language (compiler or an interpreter for the DSL). Some tools can be helpful to the

end-user of the DSL, as an editor with syntax highlighting and auto-completion, or even with debugging

support.

Developers and domain experts use the DSLs to specify models in this final phase.

3.4 Chapter’s Considerations

In this Chapter were discussed concepts about DSL and code generation. These concepts are essentials

to the DSL proposed in this thesis. The use of an External DSL is designed precisely to fit adequately

in the main objective of this work: the formal and assisted development of Q&A Systems. This decision

demanded the construction of a new compiler for the AcQA DSL proposed in this work. The AcQA DSL

is presented in Chapter 4.

28

4

AcQA - Automatic creation of Q&A Systems

As stated in the previous chapters, the use of DSLs and generative programming allows domain specialists

to build entire systems without the need for GPLs knowledge. It is proposed in this thesis the AcQA
(Automatic creation of Q&A Systems) domain-specific language that allows a specialist to develop a Q&A

System. The focus of AcQA language is on the knowledge associated with the domain, allowing the

developer to focus on the data to create that knowledge rather than on how to implement Q&A Systems.

The language provides question analysis, answer formulation, and the formula to rank answer candidates.

This chapter describes the AcQA architecture and presents the main components.

Structure of the chapter. In section 4.1 the arquitecture of AcQA is presented; Section 4.2 shows

the design of the AcQA DSL and in Section 4.3 remarks about the proposed language are presented.

4.1 AcQA architecture

Generative programming and domain-specific languages allow domain specialists to develop entire Q&A

Systems without the need to code or knowledge in GPLs. This work is based on concepts of generative pro-

gramming and domain-specific languages. These concepts are used to enforce constraints and validation

of inputs, offering correctness guarantees and performance benefits.

This section describes the domain-specific language AcQA (Automatic creation of Q&A Systems).

AcQA allows an expert or regular user to specify this kind of system more straightforwardly than in a

GPL. The focus is on the behavior of the whole system rather than how to implement them. This approach

allows the user to focus on the data made available for building the system knowledge base and several

behaviors such as the techniques that need to be used to process the user inputs (questions) and its

front-end (Web, WebService, others). Experienced Q&A Systems developers who already have tools to

construct Q&A Systems can extend the AcQA language to use these tools. Domain experts with no

previous experience developing Q&A Systems can develop a functional Q&A System using only the AcQA
DSL.

During the development phase, the developer should address several issues, such as which back-end

is used to support the Q&A System (language, framework, server technologies, database). What languages

29

CHAPTER 4. ACQA - AUTOMATIC CREATION OF Q&A SYSTEMS

are supported, which are the possible input formats (text, audio, Braille), how to communicate with the

user (graphic, speech, Braille). These are questions that the developer has to consider at the beginning

of the developing phase when creating a Q&A System in GPL’s. When the Q&A System is developed using

AcQA, the user can customize the system at any time, not needing to worry about all the techniques

that can be used in development. As an example of the complexity underlying the development of a Q&A

System, in (Azevedo, Henriques, and Pereira 2018) Python was used as a GPL for the engine combined

with Django and the Python Natural Language Toolkit (Bird, Klein, and Loper 2009).

To achieve the objective of generating a Q&A System, the concepts discussed in Chapters 2 and 3 are

applied in the AcQA language. Figure 4 shows the architecture of AcQA and how all the steps needed

to generate the Q&A System are connected. The specification of the desired Q&A System in AcQA is

written by the user. The Core module is responsible for validating the specification written in AcQA and

make the connection with the Data and Presentation modules. If the AcQA specification is syntactic and

semantical validated by the AcQA Processor, in the Core module, the AcQA Engine interacts with the

Data module and the Presentation module. The Data module is responsible for processing and mapping

the input files to a format that the AcQA language understands and is used by the AcQA Engine to

generate the knowledge base. The Presentation module is responsible for generates the front-end that

allows the interaction with the users of the Q&A System.

30

4.1. ACQA ARCHITECTURE

AcQA
Processor

Figure 4: AcQA architecture

4.1.1 Core Module

In this module, the AcQA grammar is processed and validated. All these steps are executed into the

AcQA Processor and produce an internal data representation. Suppose the specification written inAcQA
is validated by the AcQA Processor. In that case, the AcQA Engine uses the techniques needed to

generate the Q&A System, like the question analysis, answer retrieval, and answer formulation techniques.

These techniques are described in Chapter 5.

4.1.2 Data Module

User data may be available in various formats and sources, needing to be made available in a format

that the AcQA language understands. The Data module can pre-process and process the user data to

31

CHAPTER 4. ACQA - AUTOMATIC CREATION OF Q&A SYSTEMS

Figure 5: Steps needed to generate the Q&A System

make them available to the AcQA Engine into the Core module. The available data formats that AcQA
understands are described in Chapter 5.

4.1.3 Presentation Module

It is responsible for providing an interface where users or systems can interact with the Q&A System. All

the interactions with the generated Q&A System are provided by this module. It can add more data into

the knowledge base or manage the Q&A System user’s permissions.

4.1.4 Steps needed to generate a Q&A System using AcQA

The steps needed for the AcQA language to generate a Q&A System are done inside the AcQA Engine.

The engine knows the AcQA Processor internal data representation and uses it to process the specifica-

tion written in AcQA. If AcQA Engine can successfully validate all the requirements, it generates the

Q&A System. Figure 5 shows the steps needed to generate a Q&A System.

The AcQA DSL grammar was specified using the tool ANTLR (Parr 2013). This tool recognizes the

grammar file and is used as a base in the AcQA Processor. The AcQA Processor is the compiler for

AcQA DSL. This processor is responsible for recognizing specifications written in AcQA and produces

an internal representation that is available to the AcQA Engine. The AcQA Engine is responsible for

preparing all the required configuration and code generation needed to run the Q&A System. These steps

are presented in Figure 6. The python language is used to handle the tasks needed both by the compiler

and the generated Q&A System. Chapter 6 presents and discusses examples of Q&A Systems generated

32

4.2. ACQA DSL DESIGN

AcQA
Processor

internal data
representation

Figure 6: Full steps needed to process AcQA programs

by AcQA to answers questions of Board & Card Games, about Python programming language, and to

answer questions about where are classes and meetings by a robot.

The AcQA grammar and design are presented in Section 4.2.

4.2 AcQA DSL Design

When a developer implements a Q&A System, several issues should be addressed, such as back-end

technologies to process the user’s questions, retrieve the appropriate answers, or front-end technologies

to get input from the user and display the built answers. To make the development phase of Q&A System

easier, the AcQA language is proposed and described in this section.

The AcQA language is an external DSL, containing a custom syntax to make the specification and

parameterization of a Q&A System more user-friendly. There is also a default value for parameters, thus

allowing the user to specify only a few values and build the Q&A System automatically.

The AcQA language already has several off-the-shelf elements to allow the construction of a Q&A

System. This section presents the elements available to be used by the Q&A System creator.

All the parameters written in AcQA are syntactically and semantically validated. AcQA Engine is

responsible for enforcing semantic correctness.

4.2.1 AcQA main elements

Figure 7 shows the main elements of AcQA grammar. This Figure shows the declaration of the main

definitions needed to set up the initial working Q&A System. Each line of a specification in AcQA needs

to have a comment or a declaration (lines 1 and 2). AcQA DSL has six main declaration blocks (line

3): Input File, Techniques, UI, Server, NoDeploy, and CleanKB. These blocks specify the behavior of the

generated Q&A System. Lines 4-6 present the definition that allows comments in AcQA specification.

33

CHAPTER 4. ACQA - AUTOMATIC CREATION OF Q&A SYSTEMS

1 a c q a F i l e : l i n e s + EOF ;
2 l i n e s : (comment | d e c l | TERMINATOR | EOF) ;
3 d e c l : i n p u t f i l e | t e c h n i q u e s | u i | s e r v e r |

↩→ n o d e p l o y | c l e a n k b ;
4 comment:COMMENT | SINGLE_LINE_COMMENT |

↩→ MULTILINE_COMMENT ;
5 S INGLE_L INE_COMMENT: ’ −− ’ ~[\ n] * ;
6 MULTIL INE_COMMENT: ’ /* ’ . * ? (’ */ ’ | EOF) ;
7 . . .

Figure 7: AcQA grammar main fragment

4.2.2 AcQA data input block

Figure 8 presents the fragment of AcQA grammar to define the input file of the Q&A System. Line 1

specifies the input keyword INPUT into the grammar to define data that has to be imported to create the

Q&A System’s knowledge base of the Q&A System. The input keyword needs to have at least the path

param containing the file location that needs to be processed to generate the Q&A System. The input block

also allows the user to set optional parameters (line 2) to change the parser’s behavior, such as parser type,

parser options. The user can choose between several parser types for parsing the data needed to build

the knowledge base. In this release of AcQA, it is possible to parse the following file formats: eXtensible

Markup Language (XML), Raw Text (in any encoding, as long as it works with Python), SQL, HTML, DOC,

XLS, JSON, or PDF. Other file formats can be processed through the extension of an interface provided

by the AcQA language, and it is the developer’s responsibility to develop this extension. The optional

parameters are 𝑘𝑒𝑦 => 𝑣𝑎𝑙𝑢𝑒 (as defined in lines 3-5) to change the parser’s behavior.

1 i n p u t f i l e : INPUT ’ (’ PATH (’ , ’ i n p u t _ o p t i o n s) *
↩→ ’) ’ ;

2 i n p u t _ o p t i o n s : INPUT_PARSER | pa rams ;
3 p a r am s : k e y ’ = ’ v a l u e ;
4 k e y : I D E N T I F I E R ;
5 v a l u e : NUMER I C _ L I T E R A L | STR ING_L I T ERAL | INT |

↩→ PATH ;
6 PATH : S TR ING_L I T ERAL ;
7 S T R I NG_ L I T E R A L : ’ \ ’ ’ (~ ’ \ ’ ’ | ’ \ ’ \ ’ ’) * ’ \ ’ ’ ;
8 . . .

Figure 8: AcQA grammar input block

34

4.2. ACQA DSL DESIGN

4.2.3 AcQA techniques block

The Techniques block (line 1 - Figure 9) defines which techniques are used in the question analysis,

answer retrieval, and answer formulation processes. If this block is not specified, the default behavior uses

techniques associated with the Triplets approach. These Triplets techniques are initially based on works

described in (Azevedo, Henriques, and Pereira 2018) and (Ramos, Pereira, and Henriques 2017), where

a closed-domain Q&A System is implemented to answer Python-related questions. The Triplets technique

is presented in more detail in Section 5.2.3.1. These techniques were used as the initial approaches to

accelerate the development of AcQA and use the know-how from the language processing group (gEPL)1

of the University of Minho. The not obligatory options are defined as 𝑘𝑒𝑦 => 𝑣𝑎𝑙𝑢𝑒.

1 t e c h n i q u e s : TECHNIQUES ’ (’ TECHNIQUES_TYPE (’ , ’
↩→ t e c h n i q u e s _ o p t i o n s) * ’) ’ ;

2 t e c h n i q u e s _ o p t i o n s : pa r ams ;
3 p a r am s : k e y ’ = ’ v a l u e ;
4 k e y : I D E N T I F I E R ;
5 v a l u e : NUMER I C _ L I T E R A L | STR ING_L I T ERAL | INT |

↩→ PATH ;
6 PATH : S TR ING_L I T ERAL ;
7 S T R I NG_ L I T E R A L : ’ \ ’ ’ (~ ’ \ ’ ’ | ’ \ ’ \ ’ ’) * ’ \ ’ ’ ;
8 . . .

Figure 9: AcQA grammar techniques block

4.2.4 AcQA UI block

The UI block is responsible for specifying which type of UI the system deploys (line 1 - Figure 10). The

available front-ends to provide access to the Q&A System are twofold: HTTP and RESTful WebService. The

HTTP front-end is a graphical interface available through the HTTP protocol, having a responsive interface

and can be accessed through computers, tablets, or cell phones. Using the RESTful front-end allows the

creators of the Q&A System, who already have some developed platform, to provide access to the user

who wants to ask questions by integrating their platform with the AcQA generated Q&A System.

1https://epl.di.uminho.pt

35

CHAPTER 4. ACQA - AUTOMATIC CREATION OF Q&A SYSTEMS

1 u i : U I ’ (’ U I _TYPE (’ , ’ u i _ o p t i o n s) * ’) ’ ;
2 u i _ o p t i o n s : pa r ams ;
3 p a r am s : k e y ’ = ’ v a l u e ;
4 k e y : I D E N T I F I E R ;
5 v a l u e : NUMER I C _ L I T E R A L | STR ING_L I T ERAL | INT |

↩→ PATH ;
6 PATH : S TR ING_L I T ERAL ;
7 S T R I NG_ L I T E R A L : ’ \ ’ ’ (~ ’ \ ’ ’ | ’ \ ’ \ ’ ’) * ’ \ ’ ’ ;
8 . . .

Figure 10: AcQA grammar ui block

4.2.5 AcQA Server block

The block of AcQA that configures and deploys the system to a given location is the Server (line 1 - Figure

11). The user needs to specify at least the hostname of the server, the user name, and the password or

key to access the server. If the Server block is not defined, the AcQA language cannot generate the Q&A

System, as it requires a fully functional server to deploy the generated code. The parameters path and

hostname are syntactically verified in the grammar of AcQA. AcQA Engine is responsible for enforcing

the semantic correctness of these parameters.

1 s e r v e r : SERVER ’ (’ HOST (’ , ’ s e r v e r _ o p t i o n s) * ’)
↩→ ’ ;

2 s e r v e r _ o p t i o n s : (USER | PASSWORD | KEY) ’ = ’
↩→ v a l u e ;

3 p a r am s : k e y ’ = ’ v a l u e ;
4 k e y : I D E N T I F I E R ;
5 v a l u e : NUMER I C _ L I T E R A L | STR ING_L I T ERAL | INT |

↩→ PATH ;
6 PATH : S TR ING_L I T ERAL ;
7 S T R I NG_ L I T E R A L : ’ \ ’ ’ (~ ’ \ ’ ’ | ’ \ ’ \ ’ ’) * ’ \ ’ ’ ;
8 . . .

Figure 11: AcQA grammar server block

4.2.6 AcQA NoDeploy and CleanKB definitions

To allow the programmer to change the knowledge base or clean a knowledge base of the generated Q&A

System, these two definitions were made, as defined in Figure 12.

The developer can define in the specification the keyword nodeploy, so the AcQA Engine does not

update the code generated and deployed into a server. It only updates the knowledge base of the resulting

Q&A System.

36

4.3. CHAPTER’S CONSIDERATIONS

If the developer wants to clean the knowledge base of the generated Q&A System, it can use the

keyword cleankb. When used the keyword cleankb, the AcQA Engine connects to the Q&A System

running server and removes all the data from the knowledge base.

1 n o d e p l o y : NODEPLOY ;
2 c l e a n k b : CLEANKB ;

Figure 12: AcQA grammar NoDeploy and CleanKB definitions

4.3 Chapter’s Considerations

In this chapter, the main aspects of the AcQA language were presented. The main objective of AcQA
language is to allow users to develop Q&A Systems using a systematic and rigorous approach based on a

DSL instead of GPL.

The specification in AcQA does not require extensive knowledge of general programming languages

from the developer, leaving the effort to be focused on the data and upon which techniques are used in

the generated Q&A System.

In Chapter 5, the concrete aspects of AcQA are discussed, along with the techniques and parameters

that can be used in the language.

37

5

Code Generation

This chapter presents the transformation processes needed to generate the Q&A System code from the

specification of AcQA DSL.

Structure of the chapter. Section 5.1 present the AcQA Processor, responsible for processing

and transform a specification written in AcQA into an intermediate representation that later is used in

the AcQA Engine; The AcQA Engine is described in detail along with the techniques available on the

AcQA language in Section 5.2. The main remarks are presented in Section 5.3.

5.1 AcQA Processor

To generate the Q&A System, first, an interpretation and translation of the specification written in AcQA
are needed to generate an intermediate representation of the code. In this thesis, this is done by the

AcQA Processor. The AcQA language compiler is the front-end in the internal structure of the compiler,

generating the intermediate representation through the parsing of AcQA code and the lexical and seman-

tic analysis. The internal representation is then used by the AcQA Core to generate the fully functional

Q&A System. Figure 13 shows the steps needed to generate the Q&A System through a compiler perspec-

tive. The AcQA Processor generates the internal representation, and the AcQA Engine (discussed in

Section 5.2) uses the internal representation to generate the Q&A System.

As already stated in Chapter 4, the AcQA DSL grammar was specified using the tool ANTLR (Parr

2013). In AcQA Processor, the ANTLR was used to process the specification (written in AcQA) and is

responsible for all the required analysis (lexical, syntactic, and semantical). To maintain coherence, all

the modules that comprise the AcQA Processor are written in python 3 language in conjunction with the

python 3 ANTLR library.

5.1.1 AcQA Specification

Figure 14 presents a code fragment of a specification written in AcQA DSL to configure a Q&A System

for Board Games. Line 1 in Figure 25 specifies the file name (with a valid path) and which parser is

38

5.1. ACQA PROCESSOR

Internal RepresentationAcQA Processor
(parsing and lexical

and semantical
analysis)

Q&A Specification
in AcQA

Q&A SystemAcQA Engine (code
generation and

deploy)

Figure 13: Steps needed to generate the Q&A System

Figure 14: Q&A System specification in AcQA

39

CHAPTER 5. CODE GENERATION

used to process and load the user data into the knowledge base. It is possible to set optional variables

to determine a specific behavior of the parser. In this example, the techniques block was omitted, so the

generated system uses by default the triplets technique.

The UI’s are specified in lines 2-4. It is obligatory to specify at least one parameter: the UI type. In

lines 2-3, an HTTP UI is defined with some parameters of the UI: the title of Q&A System, the HTML used

in section About, the admin credentials to access the admin page, and the URL used to configure the

services in the Server, respectively. In line 4, a setup of a RESTful web service is shown. The parameter

security defines which type of security is used by the RESTful web service. In this example, the JSON Web

Token (Beltran 2016) is used to provide authentication and authorization in the web service.

The code at line 5 (Figure 25) configures in which Server the Q&A System is deployed, and the first

parameter is the hostname of the Server. The last two parameters are the login information that is used

to connect to the server through an SSH (Secure Shell) protocol (Ylonen 1996).

The AcQA DSL allows the user to change the behavior of the whole Q&A System. For example,

the user can change the language of the system to Portuguese instead of English using the parameter

language=”portuguese” inside the UI block. The changes are applied in tokenizer, POS (Part-of-Speech)

tagger, lemmatizer, and Wordnet language. These concepts are discussed in Section 5.2.3.1.

To generate the internal representation of the specification shown in Figure 14 a multidimensional

array is defined to store all the required information. The AcQA Processor store all the data read from

the specification. The processor verifies if the file ’boardgames.xml’ exists and if the parser is known

by the AcQA language. All the specification written in AcQA language is syntactically and semantically

validated. For example, if the file ’boardgames.xml’ does not exist or has invalid content, an error is thrown.

These errors are discussed in Section 5.2.

5.2 AcQA Engine

To be able to generate the fully functional Q&A System, the AcQA Engine uses the internal representation

produced by the AcQA Processor.

The steps needed to generate the fully operational Q&A System are depicted in Figure 26. The AcQA
grammar is processed by the AcQA Processor to generate the internal representation that is used by

the AcQA Engine. The specification is written by the user and recognized by the AcQA compiler inside

the AcQA Processor. The data from the user is imported through the Input Parser set in the AcQA
specification. The AcQA Engine then generates a Q&A System specified by the user. The Q&A System is

deployed into the Server when AcQA Engine executes the Deploy Engine. After that, the Deploy Engine

processes the User data to create the knowledge base used by the fully operational Q&A System.

The AcQA Engine generates all the code that is used by the Q&A System. The Engine and the code

generated are all written in python 3. The Sections 5.2.1, 5.2.2, and present the techniques that can be

used in AcQA.

40

5.2. ACQA ENGINE

AcQA
Processor

Figure 15: Steps to generate a Q&A System

5.2.1 AcQA Data Input Techniques

To be able to create the knowledge base that is used by NLP techniques, as discussed in Section 5.2.3.1,

the AcQA language allows the user to choose from a set of parsers. There are several parser types for

parsing the user data needed to build the knowledge base. It is possible to parse the following file formats:

eXtensible Markup Language (XML), Raw Text (in any encoding, as long as it works with python), SQL,

HTML, DOC, XLS, CSV, or JSON. Other file formats can be added through the extension of an interface

provided by the AcQA language, and it is the responsibility of the developer to write this extension. These

techniques create an abstract data model used as input data to the natural language processing techniques.

Figures 16 and 17 present a fragment of an XML and JSON input files that can be used to generate the

knowledge base of a Board & Card Games Q&A System.

5.2.2 AcQA Frontends

To allow the interaction with the Q&A System, AcQA generates at least one front-end. As already stated

in Section 4.2.4, AcQA has two options to use as a front-end: an HTML5 UI and a REST web service.

The HTML5 user interface allows a user to access the resulting Q&A System with any modern browser.

This UI is accessible both on computers and mobile devices. Figure 18 shows a screenshot of the desktop

version of the generated Q&A System of the Board & Card Games Q&A. This user interface allows a user

41

CHAPTER 5. CODE GENERATION

1 < acqa >
2 <qa >
3 < q u e s t i o n > P l a y i n g e x p l o d i n g k i t t e n s and t h e

↩→ game i s u n c l e a r
4 a b o u t t h e e f f e c t o f nope c a r d s mid a t t a c k . I f a

↩→ p l a y e r ha s a l r e a d y d r awn
5 one o f t h e i r a t t a c k and i t ’ s a nope , c an t h e y

↩→ p l a y i t ? Wha t h a p p e n s ?
6 </ q u e s t i o n >
7 < a n sw e r q u e s t i o n i d =”1” > W h i l e n o t e x p l i c i t y

↩→ s t a t e d i n t h e r u l e s , my
8 u n d e r s t a n d i n g i s t h a t Nope r e a c t s t o a c a r d (o r

↩→ p a i r , o r t r i p l e) j u s t
9 p l a y e d , i n w h i c h c a s e on c e y ou ’ v e d r awn t h e

↩→ A t t a c k ha s a l r e a d y
10 r e s o l v e d and y ou can ’ t Nope i t .
11 </ answe r >
12 </qa >
13 </ acqa >

Figure 16: XML fragment of an input file needed to generate the knowledge base of a Q&A System

to ask a question in two ways: textual and by voice. If the user chooses to ask a question using their voice,

the server sends a request to an external API to process the audio and return a textual representation of

the user’s asked question. With the required credentials, the API can be set by the options in the AcQA
UI block. If the user chooses to use the default Google API, it is possible to use between 36 languages to

process the user’s voice. The HTML5 UI uses the Django and the bootstrap framework.

AcQA also has a REST web service that can be used to allow interaction with the Q&A System.

In this interface, a REST web service is exposed as an endpoint, thus allowing that interaction with the

AcQA generated Q&A System can be done by software or different user interfaces. The REST web service

exposes several interfaces to the programmer (Figure 18), such as uploading a new file to be used as a

knowledge base, removing all the data in the knowledge base, asking questions, logging in, and logging

out.

5.2.3 AcQA Server

To be able to deploy the resulting Q&A System, a server is needed. The AcQA Engine can be deployed to

a variety of Linux Servers. The AcQA language uses templates to automatically deploy the Q&A System

and the requirements to run the generated code. As already stated, all the generated code is written in

python 3 language so that the Q&A System can run in several operational systems. The AcQA Engine

can work with Debian-like and RedHat-like Linux distributions.

42

5.2. ACQA ENGINE

1 {
2 "acqa": {
3 "qa": {
4 "question": "Playing

↩→ exploding kittens
↩→ and the game is
↩→ unclear \n\tabout
↩→ the effect of
↩→ nope cards mid
↩→ attack. If a
↩→ player has
↩→ already drawn one
↩→ of their attack
↩→ and it's a nope,
↩→ can they play it?
↩→ What happens?",

5 "answer": "While not
↩→ explicity stated
↩→ in the rules, my
↩→ \n\tunderstanding
↩→ is that Nope
↩→ reacts to a card
↩→ (or pair, or
↩→ triple) just \n\
↩→ tplayed, in which
↩→ case once you 've
↩→ drawn the Attack
↩→ has already \n\
↩→ tresolved and you
↩→ can 't Nope it."

6 }
7 }
8 }

Figure 17: JSON fragment of an input file needed to generate the knowledge base of a Q&A System

43

CHAPTER 5. CODE GENERATION

Título
https://acqa.di.uminho.pt

Figure 18: Screenshot of the HTML5 UI generated by AcQA

Figure 19: Screenshot of REST API UI generated by AcQA

44

5.2. ACQA ENGINE

1 s e r v e r {
2 s e r v e r _ n ame { { s e r v e r _ n ame } } ;
3 c h a r s e t u t f − 8 ;
4 a c c e s s _ l o g / v a r / l o g / n g i n x / q a c o r e −

↩→ a c c e s s . l o g ;
5 e r r o r _ l o g / v a r / l o g / n g i n x / q a c o r e − e r r o r

↩→ . l o g ;
6 c l i e n t _ m a x _ b o d y _ s i z e 75M ;
7 l o c a t i o n / med i a {
8 a l i a s / v a r / acqaQA / a c q a c o r e /

↩→ med i a ;
9 }
10 l o c a t i o n / s t a t i c {
11 a l i a s / v a r / acqaQA / a c q a c o r e /

↩→ q aS y s t em / s t a t i c ;
12 }
13 l o c a t i o n / {
14 i n c l u d e p r o x y _ p a r am s ;
15 p r o x y _ p a s s h t t p : / / u n i x : / v a r /

↩→ acqaQA / a c q a c o r e / q a c o r e .
↩→ s o c k ;

16 }
17 }

Figure 20: Configuration written in Jinja template template mechanism to generate a correct configuration
file for the webserver Nginx

When the AcQA Engine process performs all the required processes for the correct installation of

the Q&A System, the Engine connects to the server using the SSH credentials written in the server block.

The password parameter can be interchanged by the RSA (Rivest-Shamir-Adleman) cryptographic key for

added security (Stallings 2017). There is also an optional parameter to specify which server type (Debian,

Fedora, among others). Several installation processes are executed if the AcQA Engine successfully

connects to the server: python 3 language; Natural Language ToolKit (NLTK); Nginx WebServer (Nedelcu

2013), gUnicorn (Chesneau 2021) wrapper for python and Django (Django Software Foundation 2021);

several minor libraries and configurations. After the correct installation of all the requirements, the AcQA
generated code is then uploaded to the server to start processing the input data to generate the knowledge

base of the Q&A System. All these steps are made by theAcQA Engine. To be able to configure the server

according to the options defined by the user in the AcQA specification, several templates are written in

the template mechanism Jinja (Ronacher 2008). These templates generate the correct configuration files

needed to run the generated Q&A System on the Linux server. Figure 20 presents a jinja template to

configure the Nginx according to the server name configured by the user on the UI block.

45

CHAPTER 5. CODE GENERATION

5.2.3.1 AcQA NLP Techniques

In this thesis, a natural language processing approach was used to extract meaning from the user’s ques-

tions. The triplets technique was developed using the Python programming language and some libraries

such as Natural Language ToolKit (NLTK) and WordNet.

To process the input from the user, a module called Phrase Analysis divides a phrase into several

components and tries to identify three elements: action, keywords, and question type.

An example of the triplets generated by the question Is there an easy way I can tell if an MTG card

is ”rare”just by looking at it? is: <action: tell; keywords: mtg, card, rare, look; question type:tell >. The

question and the triplets were extracted from the running example, described in subsection 6.2.1. With

these three elements, the PythonQA can discover and store the intent from the user question.

Figure 21 describes the significant phases of the Phrase analysis. Firstly the question is processed

with the NLTK library to replace contractions, converting them to their complete form. The following two

steps use the NLTK library to divide the phrase into multiple strings using the Tokenizer package, allowing

the use of the POS (Part-of-Speech) tagger.

Question

Replace
contractions

tokenizer

POS Tagger

Normalize to lower
case

List of
expressions

Verbs
(action)?

Lemmatize

Yes
Wordnet

No

More than 1 verb?

Remove "do" and
"be"

Dictionary l_action

Yes

No

Remove Stopwords
Compare begining

of phrase

Remove Verbs

Remove ".", ",", "?"

Remove "Python"

Split words by "/" or
"\"

Dictionary
keywords

Dictionary q_type

Compare middle of
phrase

Actions

Keywords

Question Type

Figure 21: Phrase Analysis: Process to extract the three main elements: action, keywords, and question
type

After the POS tagger is applied, the words are converted to their lower form, avoiding problems when

46

5.2. ACQA ENGINE

comparing words. This conversion has to be done after the POS tagger because this can decrease the

efficiency of the tagger. The verbs are then processed to find actions in the question. If no verb were found,

the system tries to analyze the phrase in WordNet, to detect if a word can be a verb. The next step is to

convert these verbs found in the infinitive mode using the NLTK WordLemmatizer package. If more than

one verb were found, the system would try to identify and exclude false-positive verbs. A value for quality

is assigned for each verb recognized in the previous steps. To identify keywords, firstly, the following infor-

mation is removed: stopwords, verbs, unwanted characters. After the removal of unwanted information,

the keyword candidates are processed to split words that may have a slash (”/”or ”\”) between them. A
dictionary is then created with the keywords found in the previous steps and the value of assertiveness.

The Triplets techniques contain a list of expressions that were extracted with the analysis of the PyFAQ

(Python Frequently Asked Questions) (python). This list has expressions like How, When, Where. This

expression list is used to discover the question type of the phrase. The system searches for the presence

of these words and generates a dictionary of question types. Depending on the position in the sentence

(beginning or middle) is assigned a weight for the question type.

The Knowledge Base is constructed with the entries retrieved by the AcQA parser. All the inputs are

processed by the Phrase Analysis module of the Triplets techniques. For each input found, an entry is

created in the KB with the actions, keywords, and question type. Then the knowledge base is constructed

with the structure: <actions, keywords, question type, Answer>. The information stored in the KB is

crucial for the information module to be able to extract and present concise answers to users.

Answer retrieval is the technique responsible for processing the information gathered in the Phrase

Analysis module and presenting an answer to the user. Figure 22 depicts the steps necessary to find

and handle the answer candidates. The analysis of Actions and Keywords is made looking for a direct

match with the KB. After the previous phase, the Triplets techniques use an NLTK Stemmer package to

get the base word. With the base word, the system tries to find synonyms to match more answers from

the KB. A trust value is assigned to each answer retrieved in these steps. The search for answers that

equal the question type is done first with a direct match and then with a similar question type. A trust

value is assigned for each answer retrieved from the KB. All these steps are made to recover more answers

from candidates that match the intents from user questions (stored as the triplet: actions, keywords, and

question type).

47

CHAPTER 5. CODE GENERATION

Answer Retrieval

User question

Direct Match

Synonyms

Stem Words

Trust Value

Actions

Direct Match

Synonyms

Stem Words

Trust Value

Keywords

Direct Match

Similar Question
Type

Trust Value

Question Type

Answers

Probability Function

Answer

Show Answer

Figure 22: Answer Retrieval

With all these candidate answers retrieved, a probability function is applied to rank them and present

to the user the most likely answer. The less probable answers are made available to the user if they are

not satisfied with the answer provided by the system (the best ranked one).

5.3 Chapter’s Considerations

In this chapter, the main concepts of theAcQA language were presented. This chapter discussed how the

AcQA Engine generates and deploys the Q&A System. The AcQA processor generates an intermediary

representation of the code written by the user and exposes this data so the AcQA Engine can generate

the code needed to construct the Q&A System. After the correct execution of steps needed by the AcQA

48

5.3. CHAPTER’S CONSIDERATIONS

Engine, the Q&A System is deployed in a Linux server. The deployed system is accessible through the UI

defined in the AcQA specification.

49

6

Case Studies (CS)

This chapter contains three case studies presenting the use of the AcQA language in different scenarios.

Structure of the chapter. Section 6.1 introduces concepts of Community Q&A Sites needed to

introduce the first two case studies: Board & Card Games Q&A System (Section 6.2) and the PythonQA

(Python Q&A System) (Section 6.3). The third case study, to enable a robot to answer questions about

classes and meetings time and location, is presented in Section 6.4.

6.1 Community Q&A Sites

Community Q&A Sites allows users to post questions and answers to questions already asked. StackEx-

change (SE) is an Online Social Question and Answering site which contains several Q&A subjects. Stack

Overflow is one of the 166 Stack Exchange Community1. Python programming language is one of several

languages discussed on the Stack Overflow site. The choice to use StackExchange in this thesis case

studies among another Community Question Answer site (CQAS) is because of the public availability of

the data and is regularly updated.

StackExchange works as a regular CQAS with users posting questions, answers, commenting, and

voting positively or negatively in posts and comments. Users can only modify their posts, being the author

of the question responsible for choosing an answer as a correct one. Users can register in the SE to be

able to vote and maintain a reputation, gaining rights and badges based on the reputation.

6.2 CS1: Boards & Cards Games Q&A System Specification

in AcQA DSL

This case study demonstrates theAcQA DSL use to generate a Q&A System to answer questions about

Board & Cards Games. Section 6.2.2 presents the AcQA DSL syntax by specifying a board & card

games Q&A System. The language syntax of AcQA was defined to be simple, allowing the user to create

1www.stackexchange.com

50

6.2. CS1: BOARDS & CARDS GAMES Q&A SYSTEM SPECIFICATION IN ACQA DSL

StackExchange
Files

Extract Questions
with Answers

XML File

Figure 23: Steps needed for data cleaning and processing from SE

a specification of a Q&A System without the need to have prior knowledge of GPL’s. The language syntax

also allows the user to parameterize the techniques used to build the knowledge base and process answers

and other parameters.

6.2.1 Overview of Board & Card Games

The Q&A System specified in AcQA is intended to answer questions concerning board & card games.

This subsection gives an overview of the domain of the Q&A System. It also discusses the data used in

the running example.

According to Gobet, Retschitzki, and Voogt 2004, board games are games with a fixed set of rules

that limit the number of pieces on a board, the number of positions for these pieces, and the number of

possible moves. There are several discussion groups on the Internet about these types of games; they

allow users to ask questions about the rules and strategies or even questions of the games themselves.

An example of one question about the game Exploding Kittens is How many persons can play the original

game?. In this case study, we use data available from StackExchange (SE)2 in Archive.org3.

Board & Cards Games is one of the 166 Stack Exchange Community. The data handwrote into the

system by community members is used as a base for the knowledge base of this case study.

SE provides an anonymized data dump facility through the Archive.org Site 4. All user contributions

are made over the Creative Commons cc-by-sa 3.0 license5 allowing the data to be made available for

any purpose, even commercially. We used in this work the data made available on 2019-03-04 and have

approximately 40,7 MB of size and 31395 Posts (questions or answers).

The data from SE was pre-processed to extract Questions that have answers from the Posts XML

file. Figure 31 details the steps necessary to process the data from the StackExchange and insert it in the

Knowledge Base of AcQA generated Q&A System. Firstly questions that have answers are extracted from

the posts file. After the extraction of all question → answer pairs, is created an XML file to be consumed

2www.stackexchange.com
3https://archive.org/details/stackexchange
4https://archive.org/details/stackexchange
5http://creativecommons.org/licenses/by-sa/3.0/

51

CHAPTER 6. CASE STUDIES (CS)

1 < q u e s t i o n i d = ” 1 ” > P l a y i n g e x p l o d i n g k i t t e n s and
↩→ t h e game i s u n c l e a r

2 a b o u t t h e e f f e c t o f nope c a r d s mid a t t a c k . I f a
↩→ p l a y e r ha s a l r e a d y d r awn

3 one o f t h e i r a t t a c k and i t ’ s a nope , c an t h e y
↩→ p l a y i t ? Wha t h a p p e n s ?

4 </ q u e s t i o n >
5 < a n sw e r q u e s t i o n i d =”1” > W h i l e n o t e x p l i c i t y

↩→ s t a t e d i n t h e r u l e s , my
6 u n d e r s t a n d i n g i s t h a t Nope r e a c t s t o a c a r d (o r

↩→ p a i r , o r t r i p l e) j u s t
7 p l a y e d , i n w h i c h c a s e on c e y ou ’ v e d r awn t h e

↩→ A t t a c k ha s a l r e a d y
8 r e s o l v e d and y ou can ’ t Nope i t .
9 </ answe r >

Figure 24: XML fragment of preprocessed Posts.xml from Stack Exchange Boards & Cards Games

later by the AcQA parser. This XML file is specified in AcQA to generate the KB of the Q&A System.

Figure 24 shows a fragment of the output data pre-processed from the StackExchange input file, exhibiting

a question about the game Exploding Kittens 6.

6.2.2 AcQA Specification

Figure 25 presents a code fragment of a specification written in AcQA DSL to generate a Q&A System

for Board Games. Line 1 in Figure 25 specifies the file name (with a valid path on the developer operating

system) and which parser is used to process and load the user data into the knowledge base. It is possible

to set optional variables to determine a specific behavior of the parser. In this example, the techniques

block was omitted, so the generated system uses by default the triplets techniques.

The UI’s are specified in lines 2-4. It is obligatory to specify at least one parameter: the UI type. In

lines 2-3, an HTTP UI is defined with some parameters of the UI: the title of Q&A System, the HTML used

in section About, the admin credentials to access the admin page, and the URL used to configure the

web server in the Linux server, respectively. In line 4, a setup of a RESTful web service is shown. The

parameter security defines which type of security is used by the RESTful web service. In this example, the

JSON Web Token (Beltran 2016) is used to provide authentication and authorization in the web service.

The code at line 5 (Figure 25) configures in which Server the Q&A System is deployed, and the first

parameter is the hostname of the server. The last two parameters are the login information that is used

to connect to the server through an SSH (Secure Shell) protocol Ylonen 1996. There is also an optional

parameter to specify the server Linux distribution (Debian, Fedora, among others). Currently, the default

6https://explodingkittens.com/

52

6.3. CS2: PYTHONQA

Figure 25: Q&A System specification in AcQA

value is Debian-like7 and is the Linux server used in this case study.

The AcQA DSL allows the user to change the behavior of the whole Q&A System. For example,

the user can change the language of the system to Portuguese instead of English using the parameter

language=”portuguese” inside the UI block. The changes are applied in tokenizer, POS (Part-of-Speech)

tagger, lemmatizer, and Wordnet language.

The steps needed to generate the fully operational Q&A System are depicted in Figure 26. The AcQA
grammar is processed by the compiler from AcQA to generate the AcQA Engine. The specification is

written by the user and recognized by the AcQA compiler. The data from the user is imported through the

Input Parser set in the AcQA specification. The AcQA Engine then generates a Q&A System specified

by the user. The Q&A System is deployed into the server when AcQA Engine executes the Deploy Engine.

After that, the Deploy Engine processes the User data to create the knowledge base used by the fully

operational Q&A System.

When a User of the Q&A System accesses the provided URL in theAcQA specification (in our example:

boardgames.acqa.com), an HTTP Web UI is displayed, as shown in Figure 27. Figure 29 displays the

RESTful web service endpoint, with the included documentation needed to use the web service. Figure 28

shows the result from the user question: ”How many turns can an attack card skip in exploding kittens?”.

It is presented an answer with 53.7% of confidence that contains an explanation with an image from the

game website. This answer is part of the knowledge extracted from StackExchange and correctly answers

the user question. If more than one answer is generated, the answers are presented to the user according

to the ranking generated by the trust value. In the example presented in Figure 28 there is only one answer

retrieved by the Q&A System.

6.3 CS2: PythonQA

PythonQA is a closed-domain Question and Answering system that answer questions about the Python

programming language. As a closed domain Q&A System, PythonQA can provide concise answers rather

7https://debian.org

53

CHAPTER 6. CASE STUDIES (CS)

User Data

AcQA
Engine

Q&A Specification
in AcQA

AcQA DSL
Grammar

Triplets
Techniques

Available Techniques

Imports

HTTP REST API

Available Frontends

Debian
Template

HTTP

Q&A System Deployed

WebService
RESTful

Title
https://acqa.uminho.pt/

User

Figure 26: Steps to generate a Q&A System

Título
https://acqa.di.uminho.pt

Figure 27: Screenshot of the Board Games Q&A System generated by AcQA

54

6.3. CS2: PYTHONQA

Figure 28: Screenshot of the Board Games Q&A System generated by AcQA

than a set of related documents, depending on the quality and size of the knowledge base.

Python has gained attention from the scientific community and programmers around the world, from

both beginners and experienced programmers. Many Community Question and Answering Sites (CQAS)

address the Python language because of the demand created by users who use the programming language

regularly. Thus, Python was chosen as the domain of the Q&A System for this case study. Nonetheless,

other languages such as Java, Haskell, or Julia could serve as the domain of the PythonQA without the

need for structural changes. Some examples of this CQAS are StackExchange 8, Yahoo Answers 9, among

others.

The architecture of PythonQA is shown in Figure 30. The system receives a question from the user

and sends it to the Question Analysis module. In this module, the question is parsed to produce a query

that will be used to retrieve relevant information from the knowledge base. The information is processed

in the Answer Retrieval module to compose the final answer.

8https://stackexchange.com
9https://answers.yahoo.com/

55

CHAPTER 6. CASE STUDIES (CS)

Figure 29: Screenshots of the API endpoint of the Board Games Q&A System generated by AcQA

The PythonQA system was developed using the AcQA DSL, using as a knowledge base the python

frequently asked questions.

6.3.1 Extending PythonQA with Knowledge from Stack Overflow

The PythonQA was able to return satisfactory answers, but the Knowledge Base is too narrow. The only

source of knowledge is extracted from the Python Frequently Asked Questions. The PyFAQ has only 169

pairs of Question-Answer Ramos, Pereira, and Henriques 2017, restricting the knowledge of the system.

To increase the KB, we have to choose between CQAS such as StackExchange10 or Yahoo Answers11.

We decided to extend the PythonQA with data from the StackExchange because of the public availability

of the data, as well as being regularly updated.

The data is available as a direct download through the Archive.org Site12. The size of all compressed

datasets is approximately 40 GB. Each SE file has at least 8 XML files: Votes, Tags, Users, PostLinks, Posts,

PostHistory, Comments, and Badges. The Users file contains the information about the users, like Display

Name, Creation Data, and other information. The Badges file includes a relationship between badges and

users. Tags used in the SE are inside the Tags file. The contents of the questions and answers are in the

10www.stackexchange.com
11answers.yahoo.com
12https://archive.org/details/stackexchange

56

6.3. CS2: PYTHONQA

Parser/Intention
Recognition

Query Building

Question Analysis

User

Process

Data

SQL

Relational Database

Answer Formulation

Answer Retrieval

Figure 30: PythonQA Architecture

Posts file. This XML file defines if the post is a question or an answer, the creation date, page views, score,

owner, title, and the content of the question. The Comments file contains comments produced by users

of SE about the questions and answers.

StackExchange
Files

Extract Questions
with Answers

XML File

Figure 31: Extending PythonQA

Data from StackOverflow was downloaded to create the knowledge base of PythonQA. Figure 31 detail

the steps necessary to process the data from the StackExchange and insert it in the Knowledge Base of

PythonQA. Firstly is extracted the questions that have answers from the Posts file. Next, only questions and

answers with the python tag associated with the pair Question→ Answer are selected. After the extraction

of all Question→ Answer pairs, an XML file is produced to serve as input data to the AcQA data module

(parser). The last process is to upload the data to the Q&A System, so the AcQA generated code can be

able to generate the knowledge base through the phrase analysis module, as already discussed in Section

5.2.3.1.

The generated Q&A System was able to handle 480 thousand Question → Answer pairs. These

57

CHAPTER 6. CASE STUDIES (CS)

questions and answers were uploaded to the Q&A System and processed in the background, allowing the

use of the PythonQA during the construction of the knowledge base.

Some preliminary tests were made, with ten random questions extracted from StackOverflow that

were not imported to the knowledge base. The original KB was only able to correctly answer 20% of

the analyzed questions, while the extended KB successfully fulfilled 80%. This result was due to limited

information on the original KB. When looking in the alternative answers, the PythonQA with the extended KB

was able to provide the correct answer in 50% of the unanswered questions on the first answer alternative.

The extended PythonQA presented more details in the answers, providing solutions that contained code

fragments and links to more relevant information. The extraction of more detailed answers was possible

because the information available in StackOverflow is curated by a large community of developers. For

instance, with the following questions: q1: ”How can I create a stand-alone binary from a Python script?”,

and q2: ”How do I validate an XML against a DTD in Python”. The q1 is correctly answered in PythonQA

with original and extended KB. However, with the question q2 only with the extended KB, a relevant answer

is presented.

6.3.2 PythonQA Q&A System Specification in AcQA DSL

Figure 32 presents the specification written in AcQA DSL to generate the PythonQA Q&A System. This

case study specification is very similar to the specification written in the case study discussed in Section

6.2. Line 1 in Figure 32 defines the data that is used to create the knowledge base of the Q&A System and

which parser is used. In this case study, the AcQA language processed the specification more than one

time: the first run was to process the data from the python frequently asked questions, and later to import

the data originated from the StackOverflow site (Figure 33). In both times, the data was generated in XML,

so for this reason, the parameter parser was parser.xml. Figure 33 besides the different input data also

have the nodeploy command (Line 5), configuring the AcQA Engine to not reinstall the resulting Q&A

System, only to upload and process the new input data (with questions and answers from StackOverflow).

As PythonQA used the default triplets technique, the technique block was omitted. This Q&A System

was deployed with only the HTML5 user interface, as specified in lines 2-3. The parameters in the UI

block define the username, password of the administrator, and the URL that the resulting Q&A System is

deployed.

The last line in the specification (line 4 in Figure 25) defines the server information where the PythonQA

is deployed.

Figure 32: Specification of PythonQA using the python FAQ as KB, written in AcQA

58

6.4. CS3: WHERE IS MY CLASS?

Figure 33: Specification of PythonQA using the StackOverflow as KB, written in AcQA

6.4 CS3: Where is my Class?

This case study shows the use of the AcQA DSL to produce a Q&A System to answer questions about

where and when are classes and meetings to students on a university campus. Some extensions were

made to the AcQA user interface to answer questions asked by voice instead of by text. A mobile

application was made to allow students to interact with a robot in the halls of the university buildings. This

application is detailed in Section 6.4.4.

6.4.1 Description of Where is my Class? case study

Students need to know where and when are the classes or meetings occurring on the campus. To be able

to answer these types of questions, a Q&A System was proposed. Where is my Class? is a Q&A System

that allow students or university staff to use their voice to discover in which rooms or buildings are some

specific class or meeting. This study case has to deal with the following requirements: temporal data and

students speaking several languages.

The rooms schedule is made available every week and comprises a one-week data span, so the Q&A

System knowledge base has to be updated every week. The users (students and university staff) also do

not usually use a specific day in the question if the question is for the location of an event occurring on the

same day. For example, to know the location of the class Algorithm I, the user can ask Where is the class

algorithm I? or can ask Where is the class algorithm I on Monday morning?. The Q&A System generated

by the AcQA DSL allows the developer to deal with this situation. If temporal elements are not present

in the question, the Q&A System automatically insert the day and day-shift so that the answer can be

correctly answered.

The students and university staff are from several countries around the world, so the language is a

relevant requirement in this study case. The system has to answer questions in a variety of languages.

To be able to allow the internationalization of the recognized languages, an API can be used in AcQA
specification.

6.4.2 AcQA Specification

Figure 34 presents the specification written inAcQA DSL to generate theWhere is my Class? Q&A System.

This case study specification is also very similar to the specification written in the case studies discussed

in Section 6.2 and 6.3. Line 1 in Figure 34 defines the data that is used to create the knowledge base of

59

CHAPTER 6. CASE STUDIES (CS)

Figure 34: Mobile version written in flutter and deployed on an iPhone device

the Q&A System and which parser is used. This Q&A System was generated with the data available by a

JSON file, so for this reason, the parameter parser is parser.json.

This Q&A System also used the default triplets technique, information that can be inferred in the

specification as there is no techniques definition. The UI’s defined in the specification are HTML5 and

REST, as specified in lines 2-4. The parameters in lines 2-3 the UI block define the username, password

of the administrator, and the URL that the resulting Q&A System is deployed. In line 4, the JSON Web

Token is defined as an authentication mechanism.

The last line in the specification (line 5 in Figure 34) defines the server information where the PythonQA

is deployed.

6.4.3 Data Importing

The University Information Technology (IT) department provides information about the rooms allocation in

their proprietary JSON format. A conversion is needed to use the university JSON data format as input

data to generate the knowledge base. The data contains information about rooms, professors, classes,

and meetings. A pre-processing step is needed to generate pairs of questions and answers to use as a

seed to generate the knowledge base.

A parser was developed to use as the input the data available from the university and generates as

the output data understandable by the AcQA parser.

The created parser connects to the REST API generated by the AcQA Engine. It automatically up-

dates the knowledge base of the Q&A System to use the new data when available from the university IT

department.

6.4.4 Generated Systems

To achieve the requirements of this study case, the Q&A System generated by AcQA produces an HTML5

user interface and generates code in the flutter language to allow the deployment in mobile devices and a

robot running Android.

The HTML5 user interface is generated in the same way as in the previous case studies. In this case,

the only difference is that an option is defined in the UI to allow the resulting Q&A System to pre-process

the user question and add temporal data if the question misses this information.

The mobile code generated by the AcQA Engine is written in the flutter framework, thus allowing the

deployment in the Android and the Apple stores and devices. The generated mobile code also allows the

60

6.5. CHAPTER’S CONSIDERATIONS

Figure 35: Mobile version written in flutter and deployed on an iPhone device

use of the localization and voice recognition of the running device, thus not needing to process the input

data across some API to convert the voice into text.

The interface of the mobile version is similar to the HTML5 version of the generated Q&A System.

Figure 35 shows the user interface on the mobile version of the generated system.

6.5 Chapter’s Considerations

In this chapter, three case studies were presented to the reader. Three different Q&A System were de-

scribed and deployed using the AcQA DSL. The AcQA language was able to construct the Q&A Systems

according to the specifications. It made it possible for the developer to add data in the knowledge base

using the exposed REST web service. One of the main benefits of deploying an Q&A System using the

AcQA DSL is that the infrastructure needed to run all the required services can be deployed inside the

61

CHAPTER 6. CASE STUDIES (CS)

developer employee premises, not needing to use third parties-providers to be able to deploy the Q&A

System.

62

7

Assessment

An experiment was designed and conducted to assess the use of AcQA language and test the perfor-

mance and usability of the resulting Q&A System. This experiment aims at recognizing if it is feasible to

use a language like AcQA to create in a short time and with a minimum effort Q&A Systems.

Structure of the chapter. Section 7.1 present the experiment design, Section 7.2 present infor-

mation about the participants of the experiment. The hypothesis definition is made in Section 7.3. The

survey with the questions asked to the participants is presented in Section 7.3.1, and the results of the

experiments are discussed in 7.4.

7.1 Experiment Design

A complete infrastructure was developed to allow the use of a graphic editor (SublimeText) to write the

AcQA specification and a Linux server to deploy the resulting Q&A System, enabling participants to use

and test the AcQA language.

The AcQA language was introduced to the participants through a tutorial on the development and

deployment of a complete Q&A System. The tutorial contains a complete description of a specification

written in AcQA to generate a Q&A System on the domain of Board & Cards Games, similar to the

description provided in Section 6.3. It is described the input file needed to create the knowledge base of

the Q&A System. As input file, the participant can choose among seven ready to use XML files extracted

from Stack Exchange data dump (as was the examples presented in Sections 6.2,6.3):

• cooking.xml: Seasoned Advice is a question and answer site for professional and amateur chefs

• diy.xml: Home Improvement Stack Exchange is a question and answer site for contractors and

serious DIYers.

• fitness.xml: Physical Fitness Stack Exchange is a question and answer site for physical fitness

professionals, athletes, trainers, and those providing health-related needs.

63

CHAPTER 7. ASSESSMENT

Figure 36: Support to the AcQA language inside the SublimeText editor

• hardware.xml: Hardware Recommendations Stack Exchange is a question and answer site for peo-

ple seeking specific hardware recommendations.

• lifehacks.xml: Lifehacks Stack Exchange is a question and answer site for people looking to bypass

life’s everyday problems with simple tricks.

• mechanics.xml: Motor Vehicle Maintenance & Repair Stack Exchange is a question and answer site

for mechanics and DIY enthusiast owners of cars, trucks, and motorcycles.

• parenting.xml: Parenting Stack Exchange is a question and answer site for parents, grandparents,

nannies, and others with a parenting role.

A Windows Server was deployed to provide the participant with a fully configured Integrated Develop-

ment Environment (IDE). This Windows Server exposes a remote desktop server accessible through the

remote desktop connection application, allowing the participant to connect to a fully functional remote

desktop. The user has in the desktop folders containing the datasets available to use in the deployment

of the Q&A System. It also has a shortcut to a fully functional Integrated Development Environment (IDE)

based on Sublime Text Editor, configured to provide support and syntax highlighting for development under

AcQA eco-system.

The support for the AcQA language inside the SublimeText editor was made to enable syntax high-

lighting and code coloring, making easier the understanding of the code written in AcQA by the developer.

The AcQA support into SublimeText also contains the tools to run the AcQA language through the build

tools of the editor. Figure 36 shows the support to AcQA eco-system in the SublimeText editor.

The remote desktop server also has the AcQA language installed for all system users, eliminating the

need for the developer to install anything on their computer. The remote access server makes it possible

64

7.1. EXPERIMENT DESIGN

Figure 37: Desktop available to the participants

for the participant to access the remote desktop to write specifications in the AcQA language. Figure 37

presents the desktop available to the participant when accessing the Windows Server.

There is also another option for the participants to code and use the AcQA language, which is using

an HTML5 editor developed to recognize the AcQA eco-system. This developed editor also has support

for AcQA syntax highlight, code completion, and code coloring. Figure 38 presents the developed HTML

editor for the AcQA language. This HTML editor was implemented using the following technologies:

• Server side:

– Python

– Flask framework

– Nginx WebServer

– gUnicorn

– AcQA language and utilities

• Client side:

– JavaScript

– Bootstrap library

65

CHAPTER 7. ASSESSMENT

Figure 38: Support to the AcQA language inside a developed HTML editor

– jQuery library

– Socket.io library

– Resumable library

– Monaco-editor Editor

The AcQA eco-system was implemented into the HTML editor and into the server that executes the

AcQA editor. With the support build for the AcQA eco-system, the user can create and run AcQA code

direct inside a modern web browser.

When the participant access the experiment URL, a Linux server is automatically deployed inside a

virtualization system to allow access as a superuser for the participant. Credentials to a clean install of

a Linux server (Ubuntu Server) are also provided to each participant to allow that a Q&A System can be

deployed and tested by the experiment participant.

The participants are asked to write a specification in AcQA and run the code to deploy a Q&A System.

After the execution of the AcQA specification and the resulting system is deployed with success, the

participant can access the Q&A System to ask some questions. The Linux server is accessible on the

internet, allowing the participant to use the Q&A System on their computer or mobile device.

After writing the AcQA specification and after building and testing the Q&A System generated by

AcQA Engine, the participants were requested to answer a survey organized in four parts: section one

contains a questionnaire that gathers information about the participants’ prior experience and academic

background; section two collects information about the participant’s programming experience; section

three asks the subject about his experience in the design and development of Q&A Systems; and finally,

66

7.2. PARTICIPANTS

Section four enquires the participant about AcQA usage. The questionnaire is detailed in Section 7.3.1.

The survey was implemented using the Django framework and the library Django-survey-and-report. This

library so we can guarantee some requirements, such as preserving anonymity.

The experiment described here is accessible at https://acqa.di.uminho.pt/experiment/.
It presents the tasks needed to evaluateAcQA language. It is available to anyone who wants to participate

and send feedback about the experience, thus helping develop the language.

7.2 Participants

The participants in the experiment received a description of a possible scenario within which they were

supposed to create, resorting to AcQA, to generate a Q&A System to answer questions about a specific

domain.

This experiment was applied to people with distinct education levels, reaching undergraduate, M.S., or

Ph.D. students, masters, and doctors. All the participants are from the computer science area and have

prior programming experience, ranging from beginners to experts. There were seventeen participants that

successfully carried out the experiment and answered the survey.

7.3 Hypothesis definition

The experiment was planned to understand if the following research questions (RQ) are true:

• RQ1. Does the AcQA usage help to understand Q&A Systems design?

• RQ2. Does the AcQA usage affect the time required to deploy a Q&A System?

• RQ3. The tools provided with AcQA can successfully assist the user in the development of the

Q&A System?

• RQ4. Can AcQA effectively help the user in the deployment of the Q&A System?

7.3.1 Questionnaire

A survey was made to collect information about the participants and how AcQA performed in the experi-

ment. The questionnaire was divided into four sections to gather different information from the participants:

information about the participants’ prior experience and academic background; information about the par-

ticipant’s programming experience; information about his experience in the design and development of

Q&A Systems; and finally, section four enquires the participant about the AcQA usage and the resulting

Q&A System.

67

https://acqa.di.uminho.pt/experiment/

CHAPTER 7. ASSESSMENT

The information regarding the academic background was the highest educational qualification, in

which area the participant acquired the qualification and the current occupation. The last two questions

are not mandatory.

The second section of the questionnaire questions the participant about their prior experience with

programming languages and if they ever developed a Q&A System. The only mandatory question is if the

participant has ever written a computer program using a programming language. In this section, there

are other questions: which programming languages (including languages for special purposes like SQL

or Matlab) have the participant used so far; how would they rate the level of their programming skills;

how interested are they in programming in general; and if they have experience with development of Q&A

System.

The section about the experience in the design and development of Q&A Systems gathers informa-

tion about the usage of technologies needed to develop these systems, like natural language processing,

artificial intelligence, or even proprietary technologies. The only mandatory question is if the participant

already used some of these technologies.

The fourth section of questions is requested to be answered only after ending the experiment. It

contains Likert Robinson 2014 scale questions about using the AcQA language and general-purpose

languages experience. This section has the following mandatory questions:

• Q1: Concepts of Q&A Systems can easily be specified with the AcQA language.

• Q2: Concepts of Q&A Systems can easily be specified with a GPL language.

• Q3: The AcQA DSL seems simple to use.

• Q4: Developing a Q&A System in any GPL seems simple to use.

• Q5: AcQA programs are easy to understand.

• Q6: GPL programs are easy to understand.

• Q7: AcQA seems too technical to specify concepts of Q&A Systems.

• Q8: GPL seems too technical to specify concepts of Q&A Systems.

• Q9: It is easy to make changes to existing AcQA programs.

• Q10: It is easy to understand the meaning of AcQA source code quickly.

The last two questions in the fourth section of the questionnaire asked the participant about difficulties

using the AcQA language and suggestions to improve AcQA. These questions are optional.

68

7.4. EXPERIMENT RESULTS

Figure 39: Chart describing the participants prior experience with programming in GPL

7.4 Experiment results

As said above, the described experiments were conducted involving seventeen participants. There was

one undergraduate student, four Ph.D. students, three master’s students, six masters, and three Ph.D.

The participants are from the computer science area and have programming experience, ranging from

beginners to experts, as presented in the graph in Figure 39. According to the answers, the majority of

participants self-declared as beginners concerning the development of Q&A Systems. Figure 40 shows the

chart with the percentage of the respondents according to the prior experience developing Q&A System.

The participants have heterogeneous experience with programming languages, with some knowing a

few GPL and some knowing some DSL. Figure 41 shows the languages known by the participants and

the percentage of the participants who know that languages. The most mentioned language was the DSL

SQL.

The answers provided by the participants in this experiment were subjected to a reliability test using

the Cronbach alpha scale. As the values for the Cronbach alpha scale computed were higher than the

threshold of 0.66, the reliability of the measuring instrument can be confirmed.

Figure 42 shows a graph with the answers to the questionnaire, quantified on a 1-5 scale (Likert-scale),

and used as a base to calculate the research questions.

Table 9 shows the average, median, and standard deviation of the research questions quantified on a

1-5 scale. The research question 1 (Does the AcQA usage help to understand Q&A Systems design) got an

average rate of 4, mainly because the respondents did not have prior experience (52.94% of respondents)

or are beginners (35.29%) developing Q&A Systems. Only 5.88% of participants stated that they were

regular Q&A System developers and 5.88% self-declared as experts.

Analyzing the experiment outcomes and the answers collected from the seventeen questionnaires, it

69

CHAPTER 7. ASSESSMENT

Figure 40: Graph describing the experience in developing Q&A Systems answers from participants of the
experiment

Figure 41: Graph presenting the programming languages known by the participants

70

7.4. EXPERIMENT RESULTS

Figure 42: Graph presenting participants answers to the ten likert-scale questions

is fair to conclude that the four research questions were positively confirmed: (1) the exercise of writing a

specification in AcQA DSL contributes for a clear understanding about the design of a Q&A System; (2)

using AcQA specification language and engine, the time required to deploy a Q&A System is reduced; (3)

the editing tools provided with AcQA aid the user during the development of a Q&A System; (4) resorting

to AcQA system, the deployment of a Q&A System becomes more accessible and faster.

Table 9: Statistics about the answers to the research questions (N=17)

Average1 Median St. Dev.
RQ1 4.00 4.00 0.50
RQ2 3.66 3.66 0.50
RQ3 3.91 4.00 0.41
RQ4 4.23 4.50 0.49

The participants answered two optional questions at the end of the survey, asking what the difficulties

occurred when using the AcQA language and what suggestions to improve AcQA they suggest. Two

participants had some difficulties understanding the included datasets, with one suggesting that the exper-

iment tutorial should be revised and improved to provide more details about the datasets. One participant

stated that they had no difficulty using the AcQA language, writing that the language is pretty straightfor-

ward for people that are familiar with computer syntax. In the suggestions questions, some participants

had written answers. Some participants suggest improvements on AcQA support into the SublimeText,

making different colors for the syntax highlighting. One recommended that the language accepts addi-

tional sources of data, making the content more reliable. The AcQA language already supports several

1A five-grade scale, starting from strongly disagree (1) to strongly agree (5) was used in the questionnaires

71

CHAPTER 7. ASSESSMENT

types of input data, not only the example datasets provided in the experiment. One user also stated that

writing code in AcQA was very straightforward, being the AcQA language very easy to understand and

to deploy the Q&A System.

Some participants stated that the support tools provided (syntax highlighting and build help on a code

editor) made it easier to program and understand the AcQA code.

The respondents think that AcQA helps design a Q&A System and decreases the time required to

deploy these systems. Respondents also gave a positive answer that AcQA helps to understand Q&A

System design.

7.5 Chapter’s Considerations

In this chapter, experiments made with participants were discussed. The experiment and tools developed

to support AcQA developers were made available to the participants and presented in this chapter.

The experiment results, described in Section 7.4, present the analysis of the respondent’s answers to

a questionnaire. This analysis has confirmed that the AcQA language can support the development of

Q&A Systems, making it easier for developers to deploy a functional solution. The heterogeneity of the

participant’s knowledge also supports this statement. All the research questions were positively confirmed

using the Cronbach alpha scale reliability test.

72

8

Conclusion

This thesis presented the domain-specific languageAcQA, which allows the specification of a Q&A System.

The specification in AcQA does not require extensive knowledge of general programming languages from

the developer, leaving the effort to be focused on the data upon which techniques are used in the generated

Q&A System.

Three case studies were presented in Chapter 6 to show the viability of the proposed approach and

expressiveness of AcQA language. These case studies describe the domain and how to use the proposed

AcQA language. Two Q&A Systems were created to answer questions from data obtained from the

StackExchange CQAS. These case studies described how to create a Q&A System to answer questions

about Board & Cards Games and about the Python GPL. The result systems successfully were able to

answer questions about the proposed domains. One third case study presented a system to answer

students from a university about classes and meeting times and places. This case study also successfully

dealt with internationalization being able to answer questions in several languages.

The discussion presented in Chapter 7 presented the AcQA language to several participants to eval-

uate the feasibility to develop Q&A System using the proposed DSL. The results corroborated that using

AcQA to develop Q&A System is possible and even more accessible than using GPLs.

8.1 Discussing objectives and results

The main objective discussed in this Ph.D. thesis was to create a language that allows developers to be able

to build closed domain Q&A Systems automatically, using a formal specification. Five specifics objectives

were made to achieve the main objective. Next, we revisit these objectives, and the main results are

presented.

• Choose a generic architecture (among the existing ones or defining a new one) that can always be

adopted to build a closed domain Q&A System

The generated code from the running of the AcQA language, presented in details in Chapters 4,

5 used a generic architecture (Figure 2) to serve as a base of the resulting Q&A System. Section

73

CHAPTER 8. CONCLUSION

5.2 describes the techniques and technologies used to generate code and deploy a functional Q&A

System. The techniques available to process natural language are also described in detail in Section

5.2.3.1, and used in the case studies presented in Chapter 7.

• Identify what components are stable in order to understand which information needs to be specified

in each concrete case.

The study conducted in Chapter 2 supported the definition of the elements required in the DSL.

The information collected in this study helped define which elements are mandatory to develop a

Q&A System, and which ones are helpful to the developers.

With the required and optional components to specify a Q&A System defined, the definition of the

AcQA DSL was possible.

• Define a DSL that allows an end-user to specify the issues that need to be described to build a

specific system.

To tackle this objective, the information collected in the review of Q&A System was used to apply

the lifecycle of developing a DSL, as discussed in Section 3.3. A DSL named AcQA was proposed

to generate Q&A System through a formal specification written in that language. AcQA DSL is an

external DSL and aims to have a simple syntax, yet allowing powerful customization of the resulting

Q&A System. The syntax of AcQA is presented in Chapter 4.

• Develop a system that analyzes descriptions written in that DSL and resorting to standard compo-

nents generate the desired Q&A System.

To allow the processing of the AcQA language and achieve this objective, a set of tools was made

to process specifications written in AcQA, as discussed in Chapter 5. The tools that support

writing specification in AcQA language are the AcQA Processor and AcQA Engine. These tools

are responsible for processing and transform a specification written in AcQA, generating code

(AcQA Processor), and deploy the result code into a destination server (AcQA Engine).

Along with the required tools to process AcQA specifications, some supporting tools were devel-

oped to assist developers in writing code inAcQA and deploying the Q&A System into a destination

Linux server. Support for the AcQA language was implemented into the SublimeText editor. De-

velopers have code highlighting and code completion, assisting the process of writing AcQA code.

To allow the development of AcQA without requiring any setup or software installation, a web

editor was developed to assist the users of the AcQA language. This web editor also has the code

highlighting and code completion, and suggestion. The supporting technologies were discussed in

Section 7.1.

• Validate with concrete case studies the approach proposed and the developed engine to process

the AcQA language.

74

8.2. MAIN CONTRIBUTIONS OF THIS THESIS

To be able to achieve this objective, some case studies (three in Chapter 6) were created. The

specifications wrote in AcQA successfully generated a Q&A System and correctly answered the

user’s questions about a specific domain.

8.2 Main contributions of this Thesis

Within the specified objectives and results achieved, the main contributions of this Ph.D. work are:

• Proposal of a DSL (AcQA) to generate and automatically deploy a fully functional Q&A System.

• Proposal of the necessary and supporting tools to aid the development of specification written in

AcQA.

• The deployment of the code generated by AcQA into a running server makes it easier to deploy

a Q&A System, even when the developer does not has knowledge of servers technologies and

operating systems.

• Detailed analysis and review of Q&A System classification and technologies used.

• Development of the case studies, detailing the usage of AcQA. Especially the case study Where
is my Class?, developed to answer a demand from the Polytechnic Institute of Bragança (IPB).

• Design and implementation of an AcQA experiment to evaluate the AcQA language usage feasi-

bility by users.

8.3 Other activities

During the fruitful period of this doctorate, some projects and academic cooperation with other professors

were made, as the participation in some events, as detailed next.

• Participation in the international cooperation project Reinforcing the security of software systems

through reverse engineering methods, techniques and tools. This is a bilateral research project

between Instituto Politecnico de Braganca (IPB) and Universidad de San Luis (UNSL), Argentina.

• The course Computación Forense (Computer forensics) was presented to undergraduate stu-

dents from Universidad de San Luis. The purpose of this course was to present tools and techniques

that can be used in forensic analysis. This course was held in Argentina.

• Participation in the International Summer School on Deep Learning 2017, learning tech-
niques used in this Ph.D. thesis.

75

CHAPTER 8. CONCLUSION

• A master class on Computer Systems Security was taught with the professors João Marco Silva and

Vítor Fonte at the University of Minho.

• An undergraduate class on Computer Networks was taught together with the professors João Marco

Silva, Solange Lima, and Paulo Carvalho, also at the University of Minho.

• Supervision of the participation of the University of Minho in the event Cyber Cloud Expo, held in

Braga.

• Assisted a University of Minho committee to join the Android Training Program - Portugal (ATP),

made by Google.

• Participation in the project Privacy Shield, from Federal University of Santa Maria (UFSM). Pro-

fessors Walter Filho from UFSM, and João Marco Silva from the University of Minho, also participate

in this project.

During this doctorate, these activities helped to start and keep several productive connections with

professors around Portugal and Argentina.

8.4 Future work

As future work, an extension of AcQA language to integrate more techniques to process the user’s ques-

tions (Ben Abacha and Zweigenbaum 2015,Weissenborn, Wiese, and Seiffe 2017,Gondek et al. 2012,J.

Lee et al. 2019) can be made. There is also possible to add support to other user interfaces, extending the

already defined HTML5, REST API, and the Flutter application. As the servers are already implemented

as templates, it is also possible to create new templates to deploy the resulting Q&A System into different

servers operating systems.

Improve the customization of the techniques, allowing the developer to make more significant changes

in the algorithms and parameters while writing an AcQA specification.

Apply the AcQA experiment with more and diverse users, extracting more information from the users,

helping the development of the AcQA language. With more information from the users of AcQA, it is

possible to define the directions to follow during AcQA language development.

Keep the cooperation with the University of Minho (UM), Instituto Politécnico de Bragança (IPB), Uni-

versidad Nacional de San Luis (UNSL - Argentina), adding in the cooperation the Federal University of

Santa Maria (UFSM), where this author is an adjunct professor.

76

Bibliography

Adam, S. and U. P. Schultz (2015). “Towards tool support for spreadsheet-based domain-specific lan-

guages”. In: ACM SIGPLAN Notices. Vol. 51. 3. ACM, pp. 95–98 (cit. on p. 24).

Agarwal, A. et al. (May 2019). “EDUQA: Educational Domain Question Answering System Using Conceptual

Network Mapping”. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing - Proceedings. Vol. 2019-May. Institute of Electrical and Electronics Engineers Inc., pp. 8137–

8141. isbn: 9781479981311. doi: 10.1109/ICASSP.2019.8683538. arXiv: 1911.05013 (cit. on

p. 20).

Almansa, L., G. Rubio, and A. Macedo (Sept. 2020). “A Question Answering System over Chronic Diseases

and Epigenetics Knowledge”. In: Anais Principais do Simpósio Brasileiro de Computação Aplicada à

Saúde (SBCAS). Sociedade Brasileira de Computacao - SB, pp. 203–214. doi: 10.5753/sbcas.2
020.11514. url: http://www.ncbi.nlm.nih.gov/pubmed (cit. on p. 20).

Ansari, A., M. Maknojia, and A. Shaikh (Mar. 2016). “Intelligent question answering system based on

Artificial Neural Network”. In: 2016 IEEE International Conference on Engineering and Technology

(ICETECH). IEEE, pp. 758–763. isbn: 978-1-4673-9916-6. doi: 10.1109/ICETECH.2016.75693
50. url: http://ieeexplore.ieee.org/document/7569350/ (cit. on pp. 8, 10, 12, 13, 15,

18, 19, 21).

Azevedo, R., P. R. Henriques, and M. J. V. Pereira (2018). “Extending PythonQA with Knowledge from

StackOverflow”. In: Trends and Advances in Information Systems and Technologies, WorldCist2018.

Ed. by Á. Rocha et al. 1st ed. Vol. 745. Advances in Intelligent Systems and Computing. Springer

International Publishing, pp. 568–575. isbn: 978-3-319-77702-3. doi: https://doi.org/10.10
07/978-3-319-77703-0_56 (cit. on pp. 30, 35).

Bechhofer, S. (2009). “OWL: Web Ontology Language”. In: Encyclopedia of Database Systems. Ed. by

L. LIU and M. T. ÖZSU. Boston, MA: Springer US, pp. 2008–2009. isbn: 978-0-387-39940-9. doi:

10.1007/978-0-387-39940-9_1073. url: https://doi.org/10.1007/978-0-387-39
940-9_1073 (cit. on p. 28).

Beltran, V. (2016). “Characterization of web single sign-on protocols”. In: IEEE Communications Magazine

54.7, pp. 24–30 (cit. on pp. 40, 52).

77

https://doi.org/10.1109/ICASSP.2019.8683538
https://arxiv.org/abs/1911.05013
https://doi.org/10.5753/sbcas.2020.11514
https://doi.org/10.5753/sbcas.2020.11514
http://www.ncbi.nlm.nih.gov/pubmed
https://doi.org/10.1109/ICETECH.2016.7569350
https://doi.org/10.1109/ICETECH.2016.7569350
http://ieeexplore.ieee.org/document/7569350/
https://doi.org/https://doi.org/10.1007/978-3-319-77703-0_56
https://doi.org/https://doi.org/10.1007/978-3-319-77703-0_56
https://doi.org/10.1007/978-0-387-39940-9_1073
https://doi.org/10.1007/978-0-387-39940-9_1073
https://doi.org/10.1007/978-0-387-39940-9_1073

BIBLIOGRAPHY

Ben Abacha, A. and P. Zweigenbaum (2015). “MEANS: A medical question-answering system combining

NLP techniques and semantic Web technologies”. In: Information Processing and Management 51.5,

pp. 570–594. issn: 03064573. doi: 10.1016/j.ipm.2015.04.006. url: http://dx.doi.
org/10.1016/j.ipm.2015.04.006 (cit. on pp. 8, 10, 13, 15, 16, 18–20, 76).

Besbes, G., H. Baazaoui-Zghal, and H. B. Ghezela (2015). “An ontology-driven visual question-answering

framework”. In: Proceedings of the International Conference on Information Visualisation 2015-Septe,

pp. 127–132. issn: 10939547. doi: 10.1109/iV.2015.32 (cit. on pp. 8, 10, 12, 13, 15, 16, 18,

19, 21).

Bird, S., E. Klein, and E. Loper (2009). Natural Language Processing with Python. 1st. O’Reilly Media, Inc.

isbn: 0596516495, 9780596516499 (cit. on pp. 19, 30).

Bobrow, D. G. (1964). “A question-answering system for high school algebra word problems”. In: Proceed-

ings of the October 27-29, 1964, fall joint computer conference, part I. ACM, pp. 591–614 (cit. on

p. 1).

Bravenboer, M. and E. Visser (2004). “Concrete Syntax for Objects: Domain-Specific Language Embedding

and Assimilation without Restrictions”. In: Proceedings of the 19th Annual ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA ’04. Vancouver,

BC, Canada: Association for Computing Machinery, pp. 365–383. isbn: 1581138318. doi: 10.1145
/1028976.1029007. url: https://doi.org/10.1145/1028976.1029007 (cit. on p. 27).

Buffenbarger, J. and K. Gruell (2001). “A Language for Software Subsystem Composition”. In: Proceed-

ings of the 34th Annual Hawaii International Conference on System Sciences (HICSS-34)-Volume 9 -

Volume 9. HICSS ’01. USA: IEEE Computer Society, p. 9072. isbn: 0769509819 (cit. on p. 27).

Cai, L. Q. et al. (2020). “Intelligent Question Answering in Restricted Domains Using Deep Learning and

Question Pair Matching”. In: IEEE Access 8, pp. 32922–32934. issn: 21693536. doi: 10.1109
/ACCESS.2020.2973728 (cit. on p. 20).

Cao, Y. G. et al. (2011). “AskHERMES: An online question answering system for complex clinical questions”.

In: Journal of Biomedical Informatics 44.2, pp. 277–288. issn: 15320464. doi: 10.1016/j.jbi.2
011.01.004. arXiv: NIHMS150003. url: http://dx.doi.org/10.1016/j.jbi.2011.01
.004 (cit. on pp. 8, 10, 12, 13, 15, 16, 18–20).

Chandra, S., B. Richards, and J. Larus (1999). “Teapot: a domain-specific language for writing cache

coherence protocols”. In: IEEE Transactions on Software Engineering 25.3, pp. 317–333. doi: 10.1
109/32.798322 (cit. on p. 27).

Chesneau, B. (2021). Gunicorn - Python WSGI HTTP Server for UNIX. url: https://gunicorn.org/
#docs (cit. on p. 45).

Clark, A., C. Fox, and S. Lappin (2010). The Handbook of Computational Linguistics and Natural Language

Processing. Wiley-Blackwell (cit. on p. 2).

Clements, J. et al. (Mar. 2004). Fostering Little Languages. English (US) (cit. on p. 27).

Cointe, P. (2005). “Towards generative programming”. In:Unconventional Programming Paradigms. Springer,

pp. 315–325 (cit. on p. 25).

78

https://doi.org/10.1016/j.ipm.2015.04.006
http://dx.doi.org/10.1016/j.ipm.2015.04.006
http://dx.doi.org/10.1016/j.ipm.2015.04.006
https://doi.org/10.1109/iV.2015.32
https://doi.org/10.1145/1028976.1029007
https://doi.org/10.1145/1028976.1029007
https://doi.org/10.1145/1028976.1029007
https://doi.org/10.1109/ACCESS.2020.2973728
https://doi.org/10.1109/ACCESS.2020.2973728
https://doi.org/10.1016/j.jbi.2011.01.004
https://doi.org/10.1016/j.jbi.2011.01.004
https://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1016/j.jbi.2011.01.004
http://dx.doi.org/10.1016/j.jbi.2011.01.004
https://doi.org/10.1109/32.798322
https://doi.org/10.1109/32.798322
https://gunicorn.org/#docs
https://gunicorn.org/#docs

BIBLIOGRAPHY

Crew, R. F. (Oct. 1997). “ASTLOG: A Language for Examining Abstract Syntax Trees”. In: Conference

on Domain-Specific Languages (DSL 97). Santa Barbara, CA: USENIX Association. url: https://
www.usenix.org/conference/dsl-97/astlog-language-examining-abstract-
syntax-trees (cit. on p. 27).

Czarnecki, K. (1999). “Generative Programming: Principles and Techniques of Software Engineering Based

on Automated Configuration and Fragment-Based Component Models”. PhD Thesis. Technical Univer-

sity of Ilmenau (cit. on p. 25).

Czarnecki, K. (2005). “Overview of generative software development”. In: Unconventional Programming

Paradigms. Springer, pp. 326–341 (cit. on p. 25).

Davies, R. and L. Cardelli (May 1999). “Service Combinators for Web Computing”. In: IEEE Transactions

on Software Engineering 25.03, pp. 309–316. issn: 1939-3520. doi: 10.1109/32.798321 (cit. on

p. 27).

Django Software Foundation (July 1, 2021). Django. Version 3.2. url: https://djangoproject.com
(cit. on p. 45).

Engelen, R. A. V. (2002). “Atmol: A domain-specific language for atmospheric modeling”. In: the Journal

of Computing and Information Technology (cit. on p. 27).

Etworks, S. E. L. F. A. N. (2017). “R-Net: Machine Reading Comprehension With Self-Matching Networks

*”. In: arXiv, pp. 1–11. url: https://www.microsoft.com/en-us/research/wp-content/
uploads/2017/05/r-net.pdf (cit. on pp. 8, 10, 13, 15, 19, 20).

Fang, H. et al. (2015). “From captions to visual concepts and back”. In: Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition 07-12-June, pp. 1473–1482. issn:

10636919. doi: 10.1109/CVPR.2015.7298754. arXiv: 1411.4952 (cit. on pp. 8, 10, 13, 15,

16, 18, 19, 21).

Ferrucci, D. (2010). “Build watson: An overview of DeepQA for the Jeopardy! Challenge”. In: 2010 19th

International Conference on Parallel Architectures and Compilation Techniques (PACT), p. 1 (cit. on

pp. 5, 6, 8, 10, 12, 13, 15, 18, 19, 21).

Fortnow, L. and S. Homer (2003). A short history of computational complexity. Tech. rep. Boston University

Computer Science Department (cit. on p. 1).

Fowler, M. (2010). Domain-specific languages. Pearson Education (cit. on pp. 24, 25).

George, E. J. (Sept. 2020). “Verb focused answering from cord-19”. In: Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics). Vol. 12284 LNAI. Springer Science and Business Media Deutschland GmbH, pp. 206–213. isbn:

9783030583224. doi: 10.1007/978-3-030-58323-1_22 (cit. on pp. 8, 10, 22).

Ghosh, D. (2010). DSLs in action. Manning Publications Co. (cit. on pp. 24, 25).

Gobet, F., J. Retschitzki, and A. de Voogt (2004). Moves in mind: The psychology of board games. Psy-

chology Press (cit. on p. 51).

Gondek, D. C. et al. (2012). “A framework for merging and ranking of answers in DeepQA”. In: IBM Journal

of Research and Development 56.3.4, pp. 14–1 (cit. on p. 76).

79

https://www.usenix.org/conference/dsl-97/astlog-language-examining-abstract-syntax-trees
https://www.usenix.org/conference/dsl-97/astlog-language-examining-abstract-syntax-trees
https://www.usenix.org/conference/dsl-97/astlog-language-examining-abstract-syntax-trees
https://doi.org/10.1109/32.798321
https://djangoproject.com
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf
https://doi.org/10.1109/CVPR.2015.7298754
https://arxiv.org/abs/1411.4952
https://doi.org/10.1007/978-3-030-58323-1_22

BIBLIOGRAPHY

Inc., Wolfram Research (2018). Wolfram Alpha (cit. on pp. 6, 8, 10, 13, 15, 18, 19, 21).

Jain, A., G. Kulkarni, and V. Shah (2018). “Natural language processing”. In: International Journal of

Computer Sciences and Engineering (cit. on p. 6).

Jayalakshmi, S. and A. Sheshasaayee (2017). “Automated Question Answering System Using Ontology

and Semantic Role”. In: International Conference on Innovative Mechanisms for Industry Applications

(ICIMIA 2017). Icimia, pp. 528–532. isbn: 9781509059607 (cit. on pp. 8, 10, 12, 13, 15, 16, 18, 19,

21).

Jiang, W., Q. Xu, and X. Wang (July 2019). “Research and application of question answering system in

the field of air traffic control”. In: Chinese Control Conference, CCC. Vol. 2019-July. IEEE Computer

Society, pp. 8622–8626. isbn: 9789881563972. doi: 10.23919/ChiCC.2019.8865973 (cit. on

p. 20).

Kaisser, M. and T. Becker (2004). “Question Answering by Searching Large Corpora With Linguistic Meth-

ods.” In: TREC (cit. on p. 5).

Kalaivani, S. and K. Duraiswamy (2012). “Comparison of question answering systems based on ontology

and semantic web in different environment”. In: Journal of Computer Science 8.8, pp. 1407–1413.

issn: 15493636. doi: 10.3844/jcssp.2012.1407.1413 (cit. on pp. 8, 10, 12, 13, 15, 16, 18,

19, 21).

Klarlund, N. and M. Schwartzbach (1999). “A domain-specific language for regular sets of strings and

trees”. In: IEEE Transactions on Software Engineering 25.3, pp. 378–386. doi: 10.1109/32.7983
26 (cit. on p. 27).

Kumar, S. (2002). “Esp: A Language for Programmable Devices”. AAI3033049. PhD thesis. isbn: 0493457933

(cit. on p. 27).

Launchbury, J., J. R. Lewis, and B. Cook (1999). “On Embedding a Microarchitectural Design Language

within Haskell”. In: Proceedings of the Fourth ACM SIGPLAN International Conference on Functional

Programming. ICFP ’99. Paris, France: Association for Computing Machinery, pp. 60–69. isbn: 1581131119.

doi: 10.1145/317636.317784. url: https://doi.org/10.1145/317636.317784 (cit. on

p. 28).

Lee, J. et al. (2019). “Biobert: pre-trained biomedical language representation model for biomedical text

mining”. In: arXiv preprint arXiv:1901.08746 (cit. on p. 76).

Lee, S. et al. (Sept. 2019). “Visual Question Answering over Scene Graph”. In: Proceedings - 2019 1st Inter-

national Conference on Graph Computing, GC 2019. Institute of Electrical and Electronics Engineers

Inc., pp. 45–50. isbn: 9781728141299. doi: 10.1109/GC46384.2019.00015 (cit. on p. 21).

Lende, S. P. and M. M. Raghuwanshi (2016). “Question answering system on education acts using NLP

techniques”. In: IEEE WCTFTR 2016 - Proceedings of 2016 World Conference on Futuristic Trends in

Research and Innovation for Social Welfare. isbn: 9781467392143. doi: 10.1109/STARTUP.2016
.7583963 (cit. on pp. 8, 10, 12, 13, 15, 16, 18–20).

Li, Y., J. Cao, and Y. Wang (Dec. 2019). “Implementation of Intelligent Question Answering System Based

on Basketball Knowledge Graph”. In: Proceedings of 2019 IEEE 4th Advanced Information Technology,

80

https://doi.org/10.23919/ChiCC.2019.8865973
https://doi.org/10.3844/jcssp.2012.1407.1413
https://doi.org/10.1109/32.798326
https://doi.org/10.1109/32.798326
https://doi.org/10.1145/317636.317784
https://doi.org/10.1145/317636.317784
https://doi.org/10.1109/GC46384.2019.00015
https://doi.org/10.1109/STARTUP.2016.7583963
https://doi.org/10.1109/STARTUP.2016.7583963

BIBLIOGRAPHY

Electronic and Automation Control Conference, IAEAC 2019. Institute of Electrical and Electronics

Engineers Inc., pp. 2601–2604. isbn: 9781728119076. doi: 10.1109/IAEAC47372.2019.8997
747 (cit. on p. 21).

Mernik, M., J. Heering, and A. M. Sloane (2005). “When and how to develop domain-specific languages”.

In: ACM computing surveys (CSUR) 37.4, pp. 316–344 (cit. on pp. 24, 26–28).

Miller, G. A. (1995). “WordNet: a lexical database for English”. In: Communications of the ACM 38.11,

pp. 39–41. issn: 00010782. doi: 10.1145/219717.219748. url: http://portal.acm.org/
citation.cfm?doid=219717.219748 (cit. on p. 21).

Mishra, A. and S. K. Jain (2016). “A survey on question answering systems with classification”. In: Journal

of King Saud University - Computer and Information Sciences 28.3, pp. 345–361. issn: 22131248.

doi: 10.1016/j.jksuci.2014.10.007. url: http://dx.doi.org/10.1016/j.jksuci.2
014.10.007 (cit. on pp. 7, 11).

Mochalova, V. A. et al. (2015). “Ontological-semantic text analysis and the question answering system

using data from ontology”. In: ICACT Transactions on Advanced Communications Technology (TACT)

Vol. 4.4, pp. 651–658 (cit. on pp. 8, 10, 13, 15, 18, 19, 21).

Nedelcu, C. (2013). Nginx HTTP Server - Second Edition. 2nd. Packt Publishing. isbn: 1782162321 (cit. on

p. 45).

Nguyen, T. et al. (2016). “MS MARCO: A human generated MAchine reading COmprehension dataset”.

In: CEUR Workshop Proceedings 1773.Nips, pp. 1–10. issn: 16130073. arXiv: 1611.09268 (cit. on

p. 22).

Och, F. (2003). “Minimum error rate training in statistical machine translation”. In: Proceedings of the 41st

Annual Meeting on Association for Computational Linguistics - Volume 1. Vol. 1, pp. 160–167. isbn:

9781905593446. doi: 10.3115/1075096.1075117. url: http://dl.acm.org/citation.
cfm?id=1075117 (cit. on p. 21).

Packowski, Sarah and Lakhana, A. (2017). “Using IBM Watson Cloud Services to Build Natural Language

Processing Solutions to Leverage Chat Tools”. In: Proceedings of the 27th Annual International Con-

ference on Computer Science and Software Engineering. November. Markham, Ontario, Canada: IBM

Corp., pp. 211–218. url: http://dl.acm.org/citation.cfm?id=3172795.3172819
(cit. on p. 6).

Parr, T. (2013). The Definitive ANTLR 4 Reference. 2nd. Pragmatic Bookshelf. isbn: 1934356999, 9781934356999

(cit. on pp. 32, 38).

Pasca, M. (2007). “Lightweight Web-based fact repositories for textual question answering”. In: Proceed-

ings of the sixteenth ACM conference on Conference on information and knowledge management.

ACM, pp. 87–96 (cit. on p. 6).

Plath, W. J. (1976). “REQUEST: A natural language question-answering system”. In: IBM Journal of Re-

search and Development 20.4, pp. 326–335 (cit. on p. 1).

Rajendran, P. S. and R. Sharon (Dec. 2017). “Dynamic question answering system based on ontology”.

In: 2017 International Conference on Soft Computing and its Engineering Applications (icSoftComp).

81

https://doi.org/10.1109/IAEAC47372.2019.8997747
https://doi.org/10.1109/IAEAC47372.2019.8997747
https://doi.org/10.1145/219717.219748
http://portal.acm.org/citation.cfm?doid=219717.219748
http://portal.acm.org/citation.cfm?doid=219717.219748
https://doi.org/10.1016/j.jksuci.2014.10.007
http://dx.doi.org/10.1016/j.jksuci.2014.10.007
http://dx.doi.org/10.1016/j.jksuci.2014.10.007
https://arxiv.org/abs/1611.09268
https://doi.org/10.3115/1075096.1075117
http://dl.acm.org/citation.cfm?id=1075117
http://dl.acm.org/citation.cfm?id=1075117
http://dl.acm.org/citation.cfm?id=3172795.3172819

BIBLIOGRAPHY

IEEE, pp. 1–6. isbn: 978-1-5386-2053-3. doi: 10 . 1109 / ICSOFTCOMP . 2017 . 8280094. url:
http://ieeexplore.ieee.org/document/8280094/ (cit. on pp. 8, 10, 12, 13, 15, 16, 18,

19, 21).

Rajpurkar, P. et al. (2016). “Squad: 100,000+ questions for machine comprehension of text”. In: arXiv

preprint arXiv:1606.05250 (cit. on p. 22).

Ramos, M., M. J. V. Pereira, and P. R. Henriques (2017). “A {QA} System for learning Python”. In: Com-

munication Papers of the 2017 Federated Conference on Computer Science and Information Systems,

FedCSIS 2017, Prague, Czech Republic, September 3-6, 2017. Pp. 157–164. doi: 10.15439/2017
F157. url: https://doi.org/10.15439/2017F157 (cit. on pp. 8, 10, 12, 13, 15, 16, 18, 19,

22, 35, 56).

Robinson, J. (2014). “Likert Scale”. In: Encyclopedia of Quality of Life and Well-Being Research. Ed. by

A. C. Michalos. Dordrecht: Springer Netherlands, pp. 3620–3621. isbn: 978-94-007-0753-5. doi: 10
.1007/978-94-007-0753-5_1654. url: https://doi.org/10.1007/978-94-007-075
3-5_1654 (cit. on p. 68).

Ronacher, A. (2008). Welcome to Jinja2 — Jinja2 Documentation (2.9). url: http://jinja.pocoo.
org/docs/2.9/ (cit. on p. 45).

Sasikumar, U. and L. Sindhu (2014). “A Survey of Natural Language Question Answering System”. In:

International Journal of Computer Applications 108.15 (cit. on p. 5).

Shang, S., J. Liu, and Y. Yang (2020). “Multi-Layer Transformer Aggregation Encoder for Answer Genera-

tion”. In: IEEE Access 8, pp. 90410–90419. issn: 21693536. doi: 10.1109/ACCESS.2020.2993
875 (cit. on p. 22).

Shen, Y. et al. (2017). “Modeling Large-Scale Structured Relationships with Shared Memory for Knowledge

Base Completion”. In: Proceedings of the 2nd Workshop on Representation Learning for NLP. arXiv:

1611.04642. url: http://arxiv.org/abs/1611.04642 (cit. on p. 22).

Sloane, A. (2002). “Post-design domain-specific language embedding: a case study in the software en-

gineering domain”. In: Proceedings of the 35th Annual Hawaii International Conference on System

Sciences, pp. 3647–3655. doi: 10.1109/HICSS.2002.994492 (cit. on p. 28).

Smaragdakis, Y. and D. Batory (Oct. 1997). “DiSTiL: A Transformation Library for Data Structures”. In: Con-

ference on Domain-Specific Languages (DSL 97). Santa Barbara, CA: USENIX Association. url: https:
//www.usenix.org/conference/dsl-97/distil-transformation-library-data-
structures (cit. on p. 28).

Sreelakshmi, A. S. et al. (Nov. 2019). “A Question Answering and Quiz Generation Chatbot for Education”.

In: 2019 Grace Hopper Celebration India, GHCI 2019. Institute of Electrical and Electronics Engineers

Inc. isbn: 9781728142647. doi: 10.1109/GHCI47972.2019.9071832 (cit. on p. 20).

Stallings, W. (2017). Cryptography and network security: principles and practice. Pearson Upper Saddle

River (cit. on p. 45).

82

https://doi.org/10.1109/ICSOFTCOMP.2017.8280094
http://ieeexplore.ieee.org/document/8280094/
https://doi.org/10.15439/2017F157
https://doi.org/10.15439/2017F157
https://doi.org/10.15439/2017F157
https://doi.org/10.1007/978-94-007-0753-5_1654
https://doi.org/10.1007/978-94-007-0753-5_1654
https://doi.org/10.1007/978-94-007-0753-5_1654
https://doi.org/10.1007/978-94-007-0753-5_1654
http://jinja.pocoo.org/docs/2.9/
http://jinja.pocoo.org/docs/2.9/
https://doi.org/10.1109/ACCESS.2020.2993875
https://doi.org/10.1109/ACCESS.2020.2993875
https://arxiv.org/abs/1611.04642
http://arxiv.org/abs/1611.04642
https://doi.org/10.1109/HICSS.2002.994492
https://www.usenix.org/conference/dsl-97/distil-transformation-library-data-structures
https://www.usenix.org/conference/dsl-97/distil-transformation-library-data-structures
https://www.usenix.org/conference/dsl-97/distil-transformation-library-data-structures
https://doi.org/10.1109/GHCI47972.2019.9071832

BIBLIOGRAPHY

Thibault, S., R. Marlet, and C. Consel (1999). “Domain-specific languages: from design to implementation

application to video device drivers generation”. In: IEEE Transactions on Software Engineering 25.3,

pp. 363–377. doi: 10.1109/32.798325 (cit. on p. 28).

Tomassetti, F. (2020). How to create pragmatic , lightweight languages Learn the process to create DSLs

and GPLs. Ed. by Leanpub. 1st ed. Leanpub (cit. on p. 28).

Vargas-Vera, M. and M. D. Lytras (2010). “Aqua: A closed-domain question answering system”. In: Infor-

mation Systems Management 27.3, pp. 217–225 (cit. on p. 5).

Waltz, D. L. (1978). “An English language question answering system for a large relational database”. In:

Communications of the ACM 21.7, pp. 526–539 (cit. on p. 1).

Weissenborn, D., G. Wiese, and L. Seiffe (2017). “FastQA: A simple and efficient neural architecture for

question answering”. In: arXiv preprint arXiv:1703.04816 (cit. on pp. 8, 10, 12, 13, 15, 19, 20, 76).

Yan, G. and J. Li (July 2018). “Mobile medical question and answer system with auto domain lexicon extrac-

tion and question auto annotation”. In: Proceedings - 2018 33rd Youth Academic Annual Conference

of Chinese Association of Automation, YAC 2018. Institute of Electrical and Electronics Engineers Inc.,

pp. 637–641. isbn: 9781538672556. doi: 10.1109/YAC.2018.8406451 (cit. on p. 22).

Ylonen, T. (1996). “SSH–secure login connections over the Internet”. In: Proceedings of the 6th USENIX

Security Symposium. Vol. 37 (cit. on pp. 40, 52).

Zou, Y., Y. He, and Y. Liu (July 2020). “Research and implementation of intelligent question answering

system based on knowledge Graph of traditional Chinese medicine”. In: Chinese Control Conference,

CCC. Vol. 2020-July. IEEE Computer Society, pp. 4266–4272. isbn: 9789881563903. doi: 10.239
19/CCC50068.2020.9189518 (cit. on p. 20).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. Lourenço 2021

Lourenço, J. M. (2021). The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. url: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 83).

83

https://doi.org/10.1109/32.798325
https://doi.org/10.1109/YAC.2018.8406451
https://doi.org/10.23919/CCC50068.2020.9189518
https://doi.org/10.23919/CCC50068.2020.9189518
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

	The Front Matter
	Cover
	Copyright
	Acknowledgements
	Statement
	Quote
	Resumo
	Abstract

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Research Hypothesis
	Thesis Organization

	Question Answering Systems - State of the Art
	Generic Q&A System
	Classification
	Domain
	Type of Questions
	Analysis Type
	Data Source Type
	Data Source Characteristic
	Type of Matching Functions
	Techniques
	Answer Generation

	Q&A Systems
	Chapter's Considerations

	Generative Programming and Domain-Specific Languages (DSLs)
	Domain-Specific Languages
	DSL Classification
	Life cycle of DSLs
	Phase one: decision
	Phase two: analysis
	Phase three: design
	Phase four: implementation
	Phase five: deployment

	Chapter's Considerations

	AcQA - Automatic creation of Q&A Systems
	AcQA architecture
	Core Module
	Data Module
	Presentation Module
	Steps needed to generate a Q&A System using AcQA

	AcQA DSL Design
	AcQA main elements
	AcQA data input block
	AcQA techniques block
	AcQA UI block
	AcQA Server block
	AcQA NoDeploy and CleanKB definitions

	Chapter's Considerations

	Code Generation
	AcQA Processor
	AcQA Specification

	AcQA Engine
	AcQA Data Input Techniques
	AcQA Frontends
	AcQA Server

	Chapter's Considerations

	Case Studies (CS)
	Community Q&A Sites
	CS1: Boards & Cards Games Q&A System Specification in AcQA DSL
	Overview of Board & Card Games
	AcQA Specification

	CS2: PythonQA
	Extending PythonQA with Knowledge from Stack Overflow
	PythonQA Q&A System Specification in AcQA DSL

	CS3: Where is my Class?
	Description of Where is my Class? case study
	AcQA Specification
	Data Importing
	Generated Systems

	Chapter's Considerations

	Assessment
	Experiment Design
	Participants
	Hypothesis definition
	Questionnaire

	Experiment results
	Chapter's Considerations

	Conclusion
	Discussing objectives and results
	Main contributions of this Thesis
	Other activities
	Future work

	Bibliography

