
Universidade do Minho
Escola de Engenharia

Nuno António de Lira Fernandes Faria dos Santos

December 2020

An Agile Process for Modeling Logical
Architectures: Demonstration Cases
from Large-scale Software Projects

 N
un

o
An

tó
ni

o
de

 L
ira

 F
er

na
nd

es
 F

ar
ia

 d
os

 S
an

to
s

A
n

 A
g

ile
 P

ro
ce

ss
 f

o
r

M
o

d
e

lin
g

 L
o

g
ic

a
l A

rc
h

it
e

ct
u

re
s:

D

e
m

o
n

st
ra

ti
o

n
 C

a
se

s
fr

o
m

 L
a

rg
e

-s
ca

le
 S

o
ft

w
a

re
 P

ro
je

ct
s

U
M

in
ho

|2
02

0

December 2020

Work done under the guidance of

Doctoral Program in Information Systems and Technology

Universidade do Minho
Escola de Engenharia

Nuno António de Lira Fernandes Faria dos Santos

An Agile Process for Modeling Logical
Architectures: Demonstration Cases
from Large-scale Software Projects

Prof. Dr. Ricardo J. Machado
Dr. Nuno C. Ferreira

Doctoral Thesis

Universidade do Minho
Escola de Engenharia

ii

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as

regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e

direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não

previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da

Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição

CC BY

https://creativecommons.org/licenses/by/4.0/

iii

Acknowledgements

To my wife Mónica, with her never-ending support and understanding of what this personal

project meant to me - and its impact in our lives throughout these years. To my boy Duarte, as

many times I was lifting him up when we were playing, he was the one actually lifting me up. To

my brothers, Zeza and Tiago, for their unconditional support throughout my life. To my father

António, who taught me the values from which I guide until today. To my mother Maria Fernanda,

always on my mind pushing me towards my goals.

To my supervisors, Prof. Dr. Ricardo J. Machado and Dr. Nuno Ferreira, for the advices. I

started my career with them, for four years even before this adventure started. Thank you both

for guiding me the way but letting me figure it out on my own, never closing me the paths I

suggested.

To my employers, CCG\ZGDV Institute, for providing me the conditions for doing what I love.

To everybody involved within the EPMQ lab: IT Engineering Process, Maturity and Quality. To my

Director, Ana Lima, for always supporting my research work. Specially, to Francisco Morais,

Jaime Pereira, Prof. Dr. Helena Rodrigues, Dr. Carlos Salgado, Prof. Marcelo Noguera for the

insightful discussions and debates during the research work and research projects we performed

together. But also, a big appreciation to Isabel Varajão, Cláudia Amaro, Rui Costa, João Peixoto,

and many, many others.

Dedicated…

To my beloved family.

To my wife, Mónica.

To my son, Duarte.

To my brothers, Zeza and Tiago.

To my father, António.

In the loving memory of my mother, Maria Fernanda.

iv

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not

used plagiarism or any form of undue use of information or falsification of results along the

process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of

Minho.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

v

Abstract

Developing software solutions is about providing responses to a set of business needs in form of a

working software. These business needs are the starting point for the development process, which

states the required business support that the software will provide, in form of functional and non-

functional requirements. Then, every implementation decision aims satisfying those requirements. Of

course, over time, the requirements change. In that sense, agile software development (ASD)

approaches bring a set of practices towards embracing those changes as soon as possible. As the

complexity of software increases, namely in terms of the quantity of the defined features, these

approaches face some challenges, typically related in properly defining how different teams have to

work together in order to deliver a unified solution. In complex solutions, the traceability between

business (or stakeholder) and software (components) perspectives may not be properly assured. Using

a logical architecture provides a view that organizes software components in order to meet functional

requirements. In a large-scale agile (LSA) setting, the logical architecture provides a view in how

different teams’ outputs fit together. Thus, this thesis presents a process for modeling logical

architectures adequate for ASD settings (a.k.a., “Agile Modeling” – AM) with requirements elicitation

and modeling techniques and, additionally, uses an architectural design method called “Four Step Rule

Set” (4SRS) in order to trace the requirements models to the architectural components. An AM process

should support evolutionary design, preventing the so-called “Big Design Up Front” (BDUF) with

eventual efforts that are afterwards disregarded in “You Aren’t Going to Need It” (YAGNI) elements. The

proposed process is called “Agile Modeling Process for Logical Architectures” (AMPLA). This research

work aimed defining how AMPLA covers the model evolution and abstraction level from business to

service-oriented logical architectures in LSA settings. Additionally, adopting an architectural style called

“microservices”, eases the agility in developing (and deploying) the solutions, where its design

principles promote continuous integration/delivery (CI/CD) and DevOps. Thus, AMPLA includes

architecture modeling as well as maintenance and evolution during ASD iterations.

Keywords: agile software development, agile modeling, large-scale agile, logical architectures,

microservices architecture

Um Processo Ágil para Modelar Arquiteturas Lógicas: Casos de Demonstração de Projetos de Software de Larga-escala

vi

Resumo

Desenvolver soluções de software é fornecer respostas a um conjunto de necessidades de negócios

na forma de um software executável. Essas necessidades de negócios são o ponto de partida para o

processo de desenvolvimento, que define como o software suportará o negócio, na forma de requisitos

funcionais e não funcionais. Então, qualquer decisão de implementação visa satisfazer esses requisitos.

Obviamente, com o tempo, os requisitos mudam. Nesse sentido, as abordagens de desenvolvimento

ágil de software (ASD) trazem um conjunto de práticas para abraçar essas mudanças o mais rápido

possível. À medida que a complexidade do software aumenta, principalmente em termos da quantidade

de recursos definidos, essas abordagens enfrentam alguns desafios, geralmente relacionados à

definição correta de como equipas diferentes devem trabalhar em conjunto para fornecer uma solução

unificada. Em soluções complexas, a rastreabilidade entre as perspetivas do negócio (ou dos

stakeholders) e software (componentes) pode não estar adequadamente garantida. Usando uma

arquitetura lógica, é fornecida uma visão que organiza os componentes de software para que os

requisitos funcionais sejam suportados. Num contexto ágil de larga-escala (LSA), fornece uma visão de

como os diferentes resultados se encaixam. Assim, esta tese apresenta um processo para modelar

arquiteturas lógicas adequadas às configurações de ASD (também conhecido como “Agile Modeling” -

AM), composto pelas técnicas de levantamento e modelação de requisitos e, adicionalmente, usa um

método arquitetural chamado “Four Step Rule Set” (4SRS) para rastreabilidade entre os requisitos e os

componentes arquiteturais. Um processo de AM deve oferecer suporte a uma conceção evolutiva,

impedindo o chamado “Big Design Up Front” (BDUF), com eventuais esforços que serão

posteriormente desconsiderados em elementos “You Aren’t Going to Need It” (YAGNI). O processo

proposto é chamado de “Agile Modeling Process for Logical Architectures” (AMPLA). Este trabalho de

investigação pretendeu definir como o AMPLA cobre a evolução dos modelos e nível de abstração

desde o negócio até a arquiteturas lógicas orientadas a serviços em contextos de LSA. Além disso, a

adoção de um estilo arquitetural chamado “micro-serviços” facilita a agilidade no desenvolvimento (e

instalação) das soluções, onde suas bases da conceção promovem a integração / entrega contínua (CI

/ CD) e cultura DevOps. Assim, o AMPLA inclui modelação da arquitetura, bem como manutenção e

evolução durante ciclos ágeis.

Palavras-chave: ágil em larga escala, arquitetura de micro-serviços, arquiteturas lógicas,

desenvolvimento ágil de software, modelação ágil.

vii

Table of Contents

PART I - INTRODUCTION

Chapter 1 - Introduction .. 2

1.1 Motivations .. 3

1.2 Key definitions ... 7

1.3 Core Concepts and Definitions ... 7

1.4 Research question and objectives .. 10

1.5 Research method .. 13

1.6 Document Structure .. 20

References ... 22

PART II - STATE OF THE ART

Chapter 2 - Requirements and Architecture Design in LSA ... 28

2.1 Introduction ... 29

2.2 Views on Debating Architectures and Agile ... 31

2.3 Using Architecture Approaches within Agile Software Development 35

2.4 Large-scale Agile Development (LSA) ... 46

2.5 Conclusions .. 65

References ... 67

Chapter 3 - Logical Architectures within Agile and “Continuous” Approaches 75

3.1. Introduction ... 76

3.2. Architecture lifecycle and viewpoints .. 79

3.3. Modeling approaches within the “continuous” paradigm .. 92

3.4. Microservices architectures ... 102

3.5. Conclusions .. 116

References ... 117

PART III - CONTRIBUTIONS

Chapter 4 - A Requirements Modeling Approach for Agile Settings ... 132

viii

4.1. Introduction ... 133

4.2. Upfront Modeling in ASD projects .. 136

4.3. Agile logical architecting with the 4SRS method ... 141

4.4. Demonstration cases ... 151

4.5. Conclusions .. 166

Further Reading .. 167

References ... 167

Chapter 5 – Agile Logical Architecting using AMPLA .. 172

5.1. Introduction ... 173

5.2. Agile architecting lifecycle (AAL) ... 177

5.3. Architecture evolution and management .. 183

5.4. Demonstration Cases .. 206

5.5. Conclusions .. 232

Further reading .. 234

References ... 235

Chapter 6 – Inter-team management within an LSA process based in logical architectures 241

6.1. Introduction ... 242

6.2. On modularization, communication and coordination ... 244

6.3. Delivering work items .. 253

6.4. Demonstration cases ... 265

6.5. Conclusions .. 293

Further reading .. 295

References ... 295

PART IV - CONCLUSIONS

Chapter 7 – Conclusions .. 302

7.1. Focus of the Work ... 303

7.2. Synthesis of the research efforts .. 311

7.3. Scientific Outputs .. 313

7.4. Future work ... 325

References ... 329

ix

APPENDIXES

Appendix A – iFloW models ... 332

Use Case model ... 332

Logical Architecture .. 333

Product Backlog ... 334

Appendix B - ISOFIN models ... 339

Logical Architecture .. 339

Product Spots Overview .. 340

Appendix C - UH4SP models ... 344

Use Cases decomposition ... 344

4SRS .. 346

Logical Architecture .. 347

Product Backlog ... 348

Appendix D – IMP_4.0 models ... 354

Use Case model ... 354

Logical Architecture .. 355

Microservices Architecture .. 356

Appendix E - IMSPM models ... 357

Use cases model .. 357

Sequence diagram ... 358

4SRS .. 359

Logical Architecture .. 360

x

Acronyms

4SRS – Four Step Rule Set

4SRS-MSLA - Four Step Rule Set for microservices logical architecture

AAL - agile architecting lifecycle

AC – Acceptance Criteria

AM - Agile Modeling

AMPLA - Agile Modeling Process for Logical Architectures

ASD - agile software development

BDUF - “big design upfront”

CA - Continuous architecture

CI/CD - continuous integration/delivery

CIA - Change Impact Analysis

CRE - continuous requirements engineering

CSE - continuous software engineering

DAD - Disciplined Agile Delivery

DDD - Domain-driven Design

DoD – Definition of Done

DoR – Definition of Ready

DSR - Design Science Research

DT – Design theory

DUARTE - Decomposing User Agile Requirements ArTEfacts

iFloW - Inbound Logistics Tracking System project

IMP_4.0 - Integrated Management Platform 4.0 project

IMSPM - Internal Management System of Project Management project

xi

ISOFIN - Interoperability in Financial Software project

IoT - internet of things

LeSS - Large-Scale Scrum

LSA - large-scale agile

MSA – microservices architecture

MSLA – microservices logical architecture

MTS - multiteams systems

MVP - minimum viable product

PBI - Product Backlog Items

RE - requirements engineering

SAFe - Scaled Agile Framework

SDLC - Software development lifecycle

SOA - service-oriented architectures

SoaML - Service oriented architecture Modeling Language

SISoS - Software-intensive system of systems

SoS - Scrum of Scrums

SRP - single responsibility principle

TBI - team backlog items

TDD - Test Driven Development ´

TPB - team product backlog

UH4SP - Unified Hub for Smart Plants project

UML – Unified Modeling Language

W2ReqComm – “What? and Why?” Requirements Communication

XP - eXtreme Programming

xii

YAGNI - “You Aren’t Gonna Need It”

xiii

List of Figures

Figure 1. Design Science Research Cycle (Kuechler & Vaishnavi, 2008)................................... 14

Figure 2. Design Theory for IS research (from (Hevner et al., 2004)) 16

Figure 3. Comparison of agile and plan-driven methods (Barry Boehm, 2002) 30

Figure 4. Focus on software architecture by agile developers (Falessi et al., 2010) 32

Figure 5. The Zipper model (Bellomo et al., 2014; R. Nord et al., 2014) 32

Figure 6. Informed anticipation in the context of agile release planning (Brown et al., 2010) 34

Figure 7. Lean Architecture vs Classic Software Architecture (Coplien & Bjørnvig, 2011) 38

Figure 8. ACRUM development process (Jeon et al., 2011) ... 38

Figure 9. A customization of Scrum for agile product-line architecting (Díaz et al., 2014) 40

Figure 10. Modified ATAM for Crystal Agile Model (Farhan et al., 2009) 41

Figure 11. Usage of architecture-centric to improve XP activities (R. L. Nord & Tomayko, 2006) 43

Figure 12. Mapping of QAW, ATAM and ARID on FDD (Kanwal et al., 2010) 45

Figure 13. Integrated conceptualisation of Kumbang (Raatikainen et al., 2008) 45

Figure 14. A hybrid framework for agile architecture work (Madison, 2010) 46

Figure 15. Disciplined Agile Delivery (DAD) .. 49

Figure 16. LeSS framework ... 50

Figure 17. SAFe levels (Portfolio, Program and Team) ... 51

Figure 18. Scrum@Scale .. 52

Figure 19. Nexus framework ... 53

Figure 20. "Spotify model" cross-matrix structure .. 53

Figure 21. Architecture of a CRE framework (Kirikova, 2017)... 57

Figure 22. Generic functions of CRE (Kirikova, 2017) .. 58

Figure 23. Five-Step risk-based approach (Barry Boehm & Turner, 2003) 60

Figure 24. Hybrid model combining RUP phases and Scrum ceremonies (Cho, 2009) 64

Figure 25. A Typical Phase of Hybrid Model (Cho, 2009) ... 65

Figure 26. Modern Agile .. 77

Figure 27. Heart of agile ... 77

Figure 28. Three levels of architectural design (Douglass, 1999) ... 80

Figure 29. The Software Architecture Development Life Cycle (SADLC) (Reddy et al., 2007) 83

Figure 30. Proposing architectural issues within the Spiral-based SADLC (Reddy et al., 2007) .. 84

Figure 31. MDA-based model abstraction (Dodani, 2006) .. 84

file:///C:/Users/nsantos/Documents/agile%204srs/doc%20final/DocFinal-NunoSantosPhD_v2.docx%23_Toc22891148

xiv

Figure 32. Classification schema... 85

Figure 33. Viewpoints classifications at Level 1.. 87

Figure 34. Viewpoints classifications at Level 2.. 89

Figure 35. Viewpoints classifications at Level 3.. 90

Figure 36. Viewpoints classifications at Level 4.. 91

Figure 37. "Stairway to Heaven" (Helena Holmstrom Olsson et al., 2012; Helena Holmström

Olsson & Bosch, 2014) ... 92

Figure 38. Continuous* framework (Fitzgerald & Stol, 2017) ... 95

Figure 39. The Continuous Architecting Framework For Embedded software and Agile (CAFFEA)

(Martini et al., 2015)... 99

Figure 40. Types of Technical debt (Kruchten, Nord, & Ozkaya, 2012) 101

Figure 41. A pictorical representation of a microservices architecture 102

Figure 42. Microservices main characteristics ... 103

Figure 43. Positioning the microservices tenets (Zimmermann, 2017) 107

Figure 44. UML profile for microservices design (Rademacher, Sachweh, & Zündorf, 2018b) . 109

Figure 45. Use Case Model for identification of service candidates (Kharbuja, 2016) 110

Figure 46. DDD patterns for domain-driven microservice design (Rademacher, Sorgalla, &

Sachweh, 2018) ... 111

Figure 47. Microservices architecture patterns .. 114

Figure 48. Integrated modeling roadmap ... 134

Figure 49. Overview of AMPLA .. 135

Figure 50. Hybrid ASD process with upfront requirements modeling 136

Figure 51. SPEM diagram for Initialization phase ... 138

Figure 52. Example of a Sprint Backlog based in Use Cases .. 138

Figure 53. The result of the V-Model to be delivered to multiple Scrum teams 140

Figure 54. Architecture modularization example .. 140

Figure 55. Relation between Use Cases, Components and User Stories 141

Figure 56. Candidate architecture design of AMPLA .. 143

Figure 57. Overview of DUARTE approach ... 145

Figure 58. Discovery and exploration of the scenarios .. 147

Figure 59. Use Case diagram of iFloW project ... 152

Figure 60. Example of a Sprint Backlog based in Use Cases .. 153

xv

Figure 61. ISOFIN Use Case Model ... 155

Figure 62. ISOFIN Logical Architecture .. 156

Figure 63. ISOFIN architecture modularization .. 157

Figure 64. User Story from 2.1.4.c .. 159

Figure 65 . Subset of project initial expectations .. 160

Figure 66. Scenarios elicited ... 161

Figure 67. UH4SP first-level Use Cases ... 161

Figure 68. Overview of AMPLA .. 174

Figure 69. Integrated modeling roadmap ... 174

Figure 70. Steps proposal for agile architecting ... 180

Figure 71. Classification of Candidate and Refined logical architectures 181

Figure 72. Architectural views and abstraction within AAL phases .. 182

Figure 73. Method for designing the candidate architecture with 4SRS 184

Figure 74. 4SRS method execution using tabular transformations .. 185

Figure 75. Simple example of a candidate UML components architecture 186

Figure 76. Recursive execution of 4SRS for refining a given example module 187

Figure 77. Distributed implementation of each architecture module 188

Figure 78. Incremental requirements and 4SRS execution throughout the Sprints 189

Figure 79. Parallel tasks within Sprints in SPEM diagram .. 189

Figure 80. Traceability between models and product backlog ... 190

Figure 81. AMPLA during Sprints .. 191

Figure 82. The performed disciplines within the Sprints ... 191

Figure 83. Parallel traceability within Sprints using the 4SRS ... 192

Figure 84. Possible targets of CIA within AMPLA .. 193

Figure 85. CA-related practices within “Analysis & Design” discipline 195

Figure 86. Inferring Domain's and sub-domain's bounded contexts from UML Use Cases 196

Figure 87. Architecture modularization example .. 198

Figure 88. Recursive architectural model transformations for service design 199

Figure 89. Dependency between different teams ... 200

Figure 90. Specifying microservices using 4SRS-MSLA .. 200

Figure 91. Participant with ports, interfaces and capabilities (methods/properties)................. 203

Figure 92. Defining associations between components .. 204

xvi

Figure 93. Service Architecture ... 205

Figure 94. Service Interface .. 206

Figure 95. The performed disciplines within the Sprints ... 208

Figure 96. The performed disciplines within the architectural spike Sprint 208

Figure 97. UH4SP information systems architecture .. 210

Figure 98. UH4SP logical architecture derived after 4SRS execution 211

Figure 99. The modularization of the logical architecture ... 212

Figure 100. UH4SP sub-system .. 213

Figure 101. Refined use cases resulting from the model transformation................................. 214

Figure 102. Participant with ports, interfaces and capabilities (methods/properties) 215

Figure 103. Service Architecture ... 215

Figure 104. Service Interface .. 216

Figure 105. UH4SP deployment diagram .. 217

Figure 106. Use Case model of IMP_4.0 project ... 220

Figure 107. use case refinement of {UC1} Stocks .. 221

Figure 108. IMP_4.0 MSLA overview (with collapsed components) .. 222

Figure 109. The IMP_4.0 Stocks microservice .. 222

Figure 110. IMSPM Use cases diagram ... 223

Figure 111. IMSPM Sequence diagram ... 224

Figure 112. 4SRS method execution within ISMPM project .. 224

Figure 113. IMSPM MSLA model .. 225

Figure 114. IMSPM Deployment diagram .. 226

Figure 115. Spots representation of the ISMPM MSLA model .. 227

Figure 116. Logical architecture-based distributed agile teams management framework 245

Figure 117. Decision framework within Modularization .. 246

Figure 118. Domain's and sub-domain's bounded contexts (DDD) ... 246

Figure 119. Architecture modularization example .. 248

Figure 120. The module representation... 249

Figure 121. Requirements communication theory ... 250

Figure 122. W2ReqComm example ... 251

Figure 123. Inter-team management theory .. 252

Figure 124. SPEM diagram for Initialization phase ... 254

xvii

Figure 125. Approach for delivering backlog items requirements ... 255

Figure 126.Relation between Use Cases, Components and User Stories 256

Figure 127. Agile requirements meda-model (Leffingwell, 2010) .. 261

Figure 128. Rule for deriving Themes .. 261

Figure 129. Rule for deriving Epics .. 262

Figure 130. Rule for deriving User Stories ... 263

Figure 131. Rule for deriving user story details .. 264

Figure 132. Rule for deriving Acceptance Criteria .. 264

Figure 133. Use Case diagram of the iFloW project ... 268

Figure 134. A Sprint Backlog based in Use Cases from the iFloW project 269

Figure 135. The result of the V-Model to be delivered to multiple Scrum teams 270

Figure 136. ISOFIN architecture modularization .. 271

Figure 137. W2ReqComm for IBS Management module .. 272

Figure 138. User Story from 2.1.4.c .. 274

Figure 139. Structure of UH4SP teams ... 276

Figure 140. UH4SP logical architecture modularization ... 277

Figure 141. W2ReqComm package for "Access company data" scenario 280

Figure 142. An example scenario including inter-team management 281

Figure 143. Evolution of AC, PV and EV ... 285

Figure 144. EVM monitoring ... 286

Figure 145. Sprint #3 burndown and team velocity measurement ... 286

Figure 146. Cumulative flow ... 287

xviii

List of Tables

Table 1. Characteristics of agile methodologies (Cho, 2009) .. 9

Table 2. Research challenges‘ priority at XP’s scientific workhops on LSA 47

Table 3. Applicability of the reviewed approaches .. 66

Table 4. Architecture-based activities within a SDLC (Kazman et al., 2003) 81

Table 5. Use of architecture-centric methods within a SDLC (Kazman et al., 2003) 82

Table 6. A comparison of enterprise architecture frameworks (Urbaczewski & Mrdalj, 2006) 82

Table 7. Architecture viewpoints categories ... 86

Table 8. Comparison and likeness of architecture viewpoints ... 86

Table 9. Microservices characteristics and principles (Zimmermann, 2017) 105

Table 10. Microservices patterns and categories ... 115

Table 11. Microservices migration patterns (Armin Balalaie et al., 2016a) 116

Table 12. List of microservices bad smells (Davide Taibi & Lenarduzzi, 2018) 116

Table 13. Contributions of projects in candidate architectures ... 135

Table 14. Traceability matrix of requirements within the initial expectations 150

Table 15. Traceability matrix of requirements within the identified project stakeholders and

solution actors .. 150

Table 16. User Stories derived from c-type components .. 158

Table 17. Contribution of projects in continuous architecting ... 177

Table 18. Comparison of agile architecting approaches and their contextualization within the

architecting lifecycle ... 179

Table 19. The inputs and outputs of AAL artefacts ... 182

Table 20. List of CIA practices and their targeted models .. 194

Table 21. Transition from UML (within AMPLA) to SoaML .. 202

Table 22. Deployment setting for UH4SP .. 218

Table 23. Deployment setting for IMSPM ... 226

Table 24. Contributions of projects in candidate architectures ... 244

Table 25. User story card template ... 258

Table 26. Checklist DoR for a User Story ... 265

Table 27. Mapping between iFloW roles and typical Scrum roles .. 267

Table 28. User Story card for "Test IBS Before Deployment" ... 273

Table 29. User Stories derived from c-type components .. 274

xix

Table 30. Analysis on the product backlog... 278

Table 31. Analysis on the Team B backlog .. 278

Table 32. A subset of the team backlog ... 278

Table 33. Traceability between use cases / user stories and the components from the 4SRS . 279

Table 34. Analysis on Team B Sprints ... 279

Table 35. Coordination arenas .. 282

Table 36. Agile metrics ... 283

Table 37. EVM controlling ... 285

Table 38. Feature's contributions to project's objectives .. 288

Table 39. Cumulative value of BVD ... 289

Table 40. Lead Time, Processing Time, Queue Time ... 290

Table 41. Work in Progress ... 290

Table 42. Demonstration case's contributions towards the research objectives 312

Table 43. Demonstration case's inputs towards the research contributions 316

Table 44. Published paper's relation with demonstration case and research contribution 324

Table 45 - iFloW Backlog list ... 334

Table 46. User Stories for c-types from ISOFIN App Management module 341

Table 47. User Stories for d-types from ISOFIN App Management module 342

Table 48. User Stories for i-types from ISOFIN App Management module 342

1

PART I

INTRODUCTION

Chapter 1 - Introduction

2

Chapter 1 - Introduction

Chapter 1 – Introduction……………………………………………………………………..3

1.1 Motivations………………………………………………………………3

1.2 Key definitions…………………………………………………………...7

1.3 Core Concepts and Definitions…………………………………………..7

Software Architectures………………………………………………...7

Agile Software Development (ASD)………………………………….8

Large-scale Agile Development……………………………………….9

1.4 Research question and objectives……………………………………….10

1.5 Research method………………………………………………………...13

The demonstration cases……………….……....……………..……….17

1.6 Document Structure………………………………………………………..20

References………………………………………………………………………...22

This chapter introduces the topic of the presented research for a proper understanding of

this research. It describes the motivations for this thesis, the research question and

objectives towards answering the question, and finally the research method.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

3

Chapter 1 - Introduction

“A problem well stated is a problem half solved.”

Charles F. Kettering, inventor, engineer, businessman

1.1 Motivations

Software architecture design, when performed in context of agile software development (ASD),

sometimes referred as “agile architecting”, promotes the emerging and incremental design of the

architectural artifact, in a sense of avoiding “big design upfront” (BDUF). Performing “agile architecting”

is not always straightforward, mainly because the architecture has a required life cycle and each stage

responds to different needs. There is a lack of a roadmap that guides agile architecting in an end-to-end

approach (from business requirements to deployment).

The role of architecture and architects have been changing due to the adoption of agile software

development (ASD) approaches. Although an initial misconception because popular ASD frameworks

(Scrum, XP, Kanban, DSDM) did not explicitly include architectural artifacts or roles, this role has been

emerging towards a balanced design and implementation as the architecture emerges throughout the

process. The architect plays a role in upfront planning, storyboarding and backlogs, Sprints and working

software stages of a project (Madison, 2010). More recently, agile scaling frameworks , like Disciplined

Agile Delivery (DAD) (Scott Ambler & Lines, 2012), Large-Scale Scrum (LeSS) (Larman & Vodde, 2016),

Scaled Agile Framework (SAFe) (Leffingwell, 2016), Scrum@Scale (Sutherland, 2018) and Nexus (K

Schwaber, 2015), have been adopted in industry. The architect’s role have been specified by actively

and passively support agile teams by driving architectural initiatives, participating in architectural

runways, harmonizing governance requirements, and ensuring technical alignment in solution contexts

(Uludag, Kleehaus, Xu, & Matthes, 2017).

The plethora of agile practices relate to management (e.g., Sprints, Scrum ceremonies),

development (e.g., pair programming, TDD, BDD, DevOps) or strategy (e.g., Lean Startup), but lack a

comprehensive description on how its adoption influences requirements modeling. Agile software

development (ASD) is currently the worldwide-adopted approach in software engineering. The mashup

of agile practices and industry coins (e.g., Scrum, XP, MVP, DevOps, large-scale agile, Squads/Tribes,

Management 3.0, and many others) cover all software and application lifecycle. Although none of this

Chapter 1 - Introduction

4

practices relate to requirements engineering (RE) discipline, or specifically to Agile modeling (AM) (S

Ambler, 2002), performing this practices into an ASD process has direct implications on how RE

practices are performed and how artifacts are built.

Stakeholders are crucial participants for eliciting requirements towards a new software solution.

However, agreeing a common understanding among them is a complex task in a project’s initial phase

when solution requirements and design need to be refined and/or are unknown. Companies often strive

to properly perform requirements engineering (RE) tasks in software solutions for complex ecosystems

(mainly those related to the emergence of new paradigms like Cloud Computing and more recently

Industry 4.0, Internet of Things (IoT), machine-to-machine, cyber-physical systems, etc.). The elicitation

for the required functionalities regarding the adoption of these recent technologies typically ends up

without consensus when technical decisions are required. This trend does not have yet mature

references and standards that companies may blindly follow, so the product development results in

refactoring efforts towards new architectural patterns.

Stakeholders must able to communicate in what way a future solution improves their business, by

defining the product roadmap. A product roadmap is an initial high level project scope and direction

(IIBA, 2017). Typically, a first release on a new product encompasses a product’s subset able to

address priority scenarios, previously identified in order to respond to market needs. In fact, many of

these product releases are market-driven, where the release is deployed into the market so it is possible

to get feedback from it, i.e., a minimum viable product (MVP).

In plan-driven approaches (e.g., Waterfall), tasks related to RE discipline are traditionally managed in

a phase separated in time from design and development. In change-driven approaches, like ASD, RE

discipline – also called “Agile RE” – activities remain the same but are executed continuously (Grau &

Lauenroth, 2014), and takes an iterative discovery approach (Cao & Ramesh, 2008). Elicitation,

analysis, and validation are present in all ASD processes (Paetsch, Eberlein, & Maurer, 2003).

ASD widely use User Stories (Cohn, 2004) as items in the backlog for “reminders of a conversation”

about a functionality. However, using only User Stories, without attached requirements specifications or

models, may be insufficient to assure a common understanding, or, in case of multi-teams, to clearly

define inter-systems interactions. Additionally, requirements modeling should prevent unnecessary

efforts in “You Aren’t Gonna Need It” (YAGNI) features, hence the need for an Agile Modeling (AM) (S

Ambler, 2002) approach.

Applying AM should start by enabling a first iteration of requirements modeling, which is then the

basis for further refinements, and later support discovery when they emerges, as the software

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

5

increments are being delivered throughout the Sprints. The inception, like the pregame phase or Sprint

zero in Scrum, aims providing a shared understanding of the project and the required information for

the development phase. In the same line of reasoning, Ambler presents an evolution and emerge-

oriented approach for using models in ASD, called “Agile Model-Driven Development” (AMDD) (SW

Ambler, 2003), where the starting point is “just-enough” requirements and architecture, which are

updated alongside Delivery Cycles phase.

The architecture should emerge gradually sprint after sprint, as a result of successive small

refactoring (Abrahamsson, Babar, & Kruchten, 2010). However, adopting any ASD approach heavily

depends on the project context (Philippe Kruchten, 2007). Typically contexts like size, large systems

with a lack of architectural focus, novice teams, high constraint on some quality attribute, among

others, have high risks in ASD projects (P Kruchten, 2013).

In order to ease architectural management incrementally as it emerges, the “power of small” (Erder

& Pureur, 2015) supports continuous architecting activities. In this sense, microservices architectures

(MSA) propose small and interconnected services. Developing such solutions faces several challenges

beyond typical architecture and service design concerns, including service exposition (API), inter-service

communication, and infrastructure deployment, among others. Designing microservices for a given

business capability or domain, typically uses patterns such as Domain-driven Design (DDD) (Evans,

2004), single responsibility principle (SRP) or Conway’s Law (Conway, 1968). However, microservice

design often faces challenges related to database partition, the proper size of the microservice, inter-

service communication and messaging, which are not addressed systematically by those patterns. By

applying a modeling method in the process of designing a MSA, one may foresee issues on bounded

contexts for microservices, namely intra-service behavior, interfaces and data models separation, and

inter-service communication and messaging requirements (Newman, 2015).

This thesis presents Agile Modeling Process for Logical Architectures (AMPLA), an Agile Modeling

(AM) oriented process composed by UML diagrams (Sequence, Use Cases and Component). AMPLA

uses agile practices in order to deliver small increments (of a requirements package) and to promote

continuous customer feedback. The proposed AM process also includes a candidate architecture and

further requirements refinement in parallel with a software increment delivery. By eliciting a set of “just-

enough” UML Use Cases, i.e., that includes at least the core requirements information, it is proposed

the use of a logical architecture derivation method, the Four Step Rule Set (4SRS). This approach is

suitable in agile software development contexts, where the solution’s architecture is unknown upfront.

Chapter 1 - Introduction

6

AMPLA is an approach for supporting the emergence of a candidate (logical) architecture, rather

than BDUF the architecture in an early phase. AMPLA includes the core known features within the initial

phase and designs a logical architecture using a stepwise method, without refining information. The

emerging characteristics of AMPLA are supported in four stages, two performed before development

cycles or Sprints and two in parallel with ASD cycles: (1) eliciting a small set of high-level requirements;

(2) deriving a candidate logical architecture; (3) define subsystems for refinement; and (4) refine

requirements and the architecture regarding the subsystem in small cycles or Sprints.

Projects at large-scale have been adopting agile practices in order to optimize how a group of teams

deliver software. Such adoption however has faced difficulties on how to assign work items, set

boundaries, and address communication and coordination. Process management thus deals with work

items that are dependent on each other, need for well-defined interfaces and shared understanding of

the existing knowledge. We propose a framework, built upon a design theory, based on previously

derived logical architectures to serve as the basis for the delivery of work items to distributed agile

teams. The logical architecture derived from AMPLA, and other artefacts, support the identification of

boundaries, dependencies and coordination needs. Although acknowledging the importance of

architecture in managing inter-team processes in a ‘large-scale agile development’ context, these

approaches lack of a structured approach for using such information to manage the software delivery

process. The term ‘large-scale agile’ (LSA) has been used to describe agile development in everything

from large teams to large multi-team projects to making use of principles of agile development in a

whole organization (Dingsøyr & Moe, 2014). Models are about presenting an abstraction of reality

towards a shared understanding of the problem, but a proper analysis allows depicting their input in

assigning work, derive dependencies, and manage inter-team communication and coordination.

Accordingly, this research proposes an approach for designing a microservices-oriented logical

architecture (MSLA), i.e., a logical view (Philippe Kruchten, 1995) on the behavior of microservices and

relationships between microservices. This approach uses UML use cases diagrams for domain

modeling, which are further used as an input for designing a MSLA in an automated way, by using an

adaptation of the 4SRS method. Each of these functionally decomposed UML use cases give origin to

one or more components, which will then compose the microservices.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

7

1.2 Key definitions

Agility

Agility is defined as the continuous readiness “to rapidly or inherently create change, proactively or

reactively embrace change, and learn from change while contributing to perceived customer value

(economy, quality, and simplicity), through its collective components and relationships with its

environment” (Conboy, 2009). It is also “the ability of an organization to both create and respond to

change in order to profit in a turbulent business environment” (Highsmith, 2002).

Agile Modeling

Agile modeling is the task of developing emerging model-based artifacts, related to requirements

and design, properly performed under agile software development. The models emerge as a “just-in-

time” need for further implementation.

Large-scale agile

The dimensions used to define a project as large-scale agile relate to number of involved teams,

costs, code size and number of requirements. For scope definition of the work, large-scale agile is

characterized by having more than one team, to have more team members than the numbers that are

typically suggested, or when large quantities of user stories (or requirements) or lines of code are

required.

Logical Architectures

A logical architecture is an abstraction view of functionality-based elements that support a system’s

functional requirements, relations between them and with external systems, embodying design

decisions. It is typically represented as objects or object classes, or as components.

Evolutionary design

Evolutionary design means that the design of the system grows as the system is implemented. As

the software solution evolves, the design changes.

1.3 Core Concepts and Definitions

Software Architectures

The concept of software architecture is regarded as a distinct discipline, however still tied closely to

other disciplines and communities, such as software design (in general), software reuse, systems

engineering and system architecture, enterprise architecture, reverse engineering, requirements

engineering, and quality (Philippe Kruchten, Obbink, & Stafford, 2006). So, why is software architecture

Chapter 1 - Introduction

8

so important in requirements engineering? Literature on software architecture encompasses a plethora

of definitions. Most agree that an architecture concerns both structure and behavior (Philippe Kruchten

et al., 2006), and is used for capturing key software system structural characteristics (Shaw & Garlan,

1996). Thus, what is software architecture?

The IEEE Recommended Practice for Architectural Description of Software Intensive Systems, IEEE

1471 defines architecture as the “fundamental organization of a system embodied in its components,

their relationships to each other, and to the environment, and the principles guiding its design and

evolution” (IEEE Computer Society, 2000).

The Software Engineering Institute (SEI), as a reference institute on software engineering and

software architecture field, defines software architecture as “the blueprint for both the system and the

project developing it, defining the work assignments that must be carried out by design and

implementation teams” (SEI, n.d.). They position it as an artifact used in the early analysis, able to

assess if the output of the design approach comprises the elicited requirements.

The Rational Unified Process (RUP) defines software architecture as the “set of significant decisions

about the organization of a software system, the selection of the structural elements and their interfaces

by which the system is composed together with their behavior as specified in the collaboration among

those elements, the composition of these elements into progressively larger subsystems, the

architectural style that guides this organization, these elements and their interfaces, their collaborations,

and their composition” (Philippe Kruchten, 2004).

The view regarding the software architecture strongly depends on the desired goal and context.

Kruchten uses five concurrent views for representing different concerns of a software architecture in its

approach called “4+1 View Model” (Philippe Kruchten, 1995). For addresses a specific set of concerns

of interest to different stakeholders in the system, Kruchten uses the logical view, the process view, the

physical view, the development view and the scenarios.

Software architectures are useful artifacts for development teams, especially for enterprise

integration and interoperability, which gave origin to a plethora of frameworks and references (Chen,

Doumeingts, & Vernadat, 2008), mainly address heterogeneous environments.

Agile Software Development (ASD)

ASD is not a framework or methodology, but rather a culture and a set of self-replicated ideas

(Philippe Kruchten, 2007).

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

9

Agile development processes are based in self-organized teams for resolving their problems,

dividing the implementation of complex software in small iterations periodically assessed, in order to

solve eventual problems as soon as they emerge.

Based in the agile manifesto, Cho states common characteristics on agile methodologies, as well

as some common perception on this methodologies’ strengths and weaknesses, as follows (Cho, 2009)

in Table 1.

Table 1. Characteristics of agile methodologies (Cho, 2009)

Characteristics Strengths Weaknesses

Iterative and incremental

development

Customer collaboration

Frequent delivery

Light and fast development

cycle

Tacit knowledge within a

team

Light documentation

Short development cycle

High customer satisfaction

Low bug rate

Quick adaptation to rapidly

changing business

requirements

Significant document reduction and heavy

dependence on tacit knowledge

Not sufficiently tested for mission/safety-critical

projects

Not adequate for highly stable projects

Can be successful only with talented individuals who

favor many degrees of freedom

Not appropriate for large-scale projects

Large-scale Agile Development

The term ‘large-scale agile development’ (LSA) has been used to describe agile development in

everything from large teams to large multi-team projects to making use of principles of agile

development in a whole organization (Dingsøyr & Moe, 2014). For Eckstein, LSA development occurs

when, for instance, a team in a XP-based project is composed by more than 12 members (Eckstein,

2013), or when in Scrum projects is performed Scrum of Scrums (Cristal, Wildt, & Prikladnicki, 2008).

For Dingsøyr and Moe, LSA development is characterized based on aspects of size such as number of

people involved in the development, lines of code in the solution, number of development sites, number

of teams, to definitions such as “agile in larger organizations” (Dingsøyr & Moe, 2014). Moreover, LSA

is defined as “agile development efforts with more than two teams” (Dingsøyr, Fægri, & Itkonen, 2014),

“projects are those with more than 100 people and are longer than 1 year duration” (Crocker, 2004).

Additionally, “very large-scale agile development” occurs when ten or more teams are in the project

(Dingsøyr et al., 2014).

Chapter 1 - Introduction

10

1.4 Research question and objectives

This PhD’s research question is as follows:

“How to adopt logical architectures in agile large-scale projects?”

Prause and Durdik argue that architectural design can be improved in agile methods by (Prause &

Durdik, 2012): (1) agile architectural modelling using an incremental, customer-involved process; and

(2) an initial vision of the system including initial design is created during the first iteration of the

development, where architectural design is more a draft that is changed during later development; (3)

more detailed design followed further on several iterations for designing the system; and (4) continuous

iterative design where design is embedded into agile development and architectural artifacts are

updated regularly.

The adoption of a logical architecture implies its usage as a complementary approach to agile in

the development life cycle, in parallel with up-front planning, storyboarding, Sprint, and working

software (Madison, 2010).

It is expected that this research output a method for using logical architectures in a typical software

agile development, as well as in agile large-scale contexts.

This topic must be addressed in the very beginning of the agile process, and afterwards the

research must aim at providing the architecture with the required flexibility during the iteration-cycles of

the process. Thus, these two project phases require distinct approaches. One addressed by one

objective, and the other one addressed by three objectives:

O1: To develop an approach capable of deriving logical architectures in order to establish

the initial requirements that are passed on to agile development teams.

Using logical architectures for establishing initial requirements allows to combine requirements

from backlogs (that focus only on functional features) with the quality attributes of the software (Jeon,

Han, Lee, & Lee, 2011). This PhD research aims at including some upfront design in the set-up phase

of the project (by some we do not mean BDUF, rather using existing research related to the sufficient

amount of information for architecture design (Waterman, Noble, & Allan, 2012)) – like in a “waterfall”

approach. Additionally, it aims using the architecture as input for an ASD approach (back to

requirements again) to build almost the totality of the Product Backlog, with ongoing architectural

refinement during the iterative development (Abrahamsson et al., 2010). This set-up phase of the

project is called “pregame” (Ken Schwaber, 1997), or “Sprint 0”.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

11

The 4SRS method allows deriving logical architectures aligned with the corresponding, and

previously elicited and modeled, user requirements. In this PhD thesis, the 4SRS method will be

adapted for adopting logical architectures in a typical software agile development. The conventional

version of the 4SRS method is typically applied in large-scale projects, but demands high quantity of

information (use cases, textual descriptions), which is often time consuming and, in every way,

misaligned with the general paradigm adopted by ASD approaches (“Working software over

comprehensive documentation”).

Within this software development phase, some existing knowledge and concepts are considered,

namely:

 The architecture should emerge gradually Sprint after Sprint, as a result of successive small

refactoring (Abrahamsson et al., 2010);

 Performing lightweight amount of effort in up-front design, by using, for instance, a “predefined

architecture” (Waterman et al., 2012), walking skeleton (Farhan, Tauseef, & Fahiem, 2009) and

simple artifacts (informal box-and-line diagrams, descriptions of a system metaphor, a succinct

document capturing the relevant decisions, etc.) (Erdogmus, 2009).

This way, the architecture is able to handle all the known “big rocks”, i.e., requirements that are

particularly hard to incorporate late in the project (Cockburn, 2006) and used as a starting point for the

generation of User Stories to be incorporated in the Backlog artifact.

O2: To adopt flexibility and agility mechanisms in the refinement of logical architectures

throughout the iterations of ASD teams.

The adoption of a logical architecture implies that it is used as a complementary approach to agile

in the development life cycle (Madison, 2010). This objective relies in adding the 4SRS method with

mechanisms to refine the requirements from pregame phase (addressed in O1) but also to respond to

changes during the ASD iterations. This research will aim in using the 4SRS to trace every decision

made during the development (“game” phase), from the stated user requirements (in O1) to the

delivered software.

Considering that changes in requirements are frequent (and embraced) in agile environments, the

resulting artifact from the previous objective must imperatively be able to respond to those changes

without losing information and not being subjected to unnecessary refactoring efforts. A research

opportunity arises, where some existing knowledge and concepts will be taken in consideration, namely:

Chapter 1 - Introduction

12

 Assessing the impact of changes in features within the architecture (Díaz, Pérez, & Garbajosa,

2014) as well as evaluating the architecture at the end of every cycle (Kanwal, Junaid, & Fahiem,

2010);

 As the requirements are being developed and refined, the architect should identify architecturally

significant requirements (ASR), feature- (or functionally-) oriented requirements, and the

dependencies between them to ensure the necessary elements from the architecture are present

in upcoming iterations (Nord, Ozkaya, & Kruchten, 2014);

 It is, thus, required to provide the logical architecture with agility (that, for Farhan et al., relates to

evaluate, discuss and correct quickly the architecture (Farhan et al., 2009)) during the small cycles

of the process.

The outputs from this research objective may be used in contexts where: substantial changes to the

software architecture need to be explored (Farhan et al., 2009); given a change in features (adding,

deleting or updating), it is possible to trace the changes to the stated requirements and assess the

changes to the architecture (Díaz et al., 2014); “small rocks” (in opposition to the “big rocks” stated

within the previous research objective) are handled as they appear during the project (Cockburn, 2006).

O3: To develop an approach oriented for continuous architecting, aiming to specify

microservices logical architectures (MSLA), identifying them and their interfaces.

Use domain-driven design for requirements engineering where, included in the proposed agile

modeling logical architecture, uses the 4SRS method is used for proposing MSLA in:

 Projects for breaking monoliths to microservices;

 Greenfield projects of microservices-based solutions.

O4: To use logical architectures to manage a team assignment and orchestration process

Research regarding the use of a logical architecture artefact as a supporting basis for an LSA project

that includes:

 a modelling approach for identification of concerns within the architecture;

 a set of issues for validating subsystems size;

 a format to communicate subsystems specifications to teams;

 steps for delivering dependencies, priorities, of subsystems to agile distributed teams.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

13

Additionally, for this research objective to be fulfilled, the method must be able to be used in a

typical ASD and in contexts of LSA projects. For scope definition of the work, LSA is characterized by

having more than one team, when the number of team members is larger than the typically suggested

limit (7 or 8 elements), or when large quantities of user stories (or requirements) or lines of code are

required. For both contexts (but especially in LSA projects), some existing knowledge and concepts will

be taken in consideration, among them: prioritizing requirements and depicting dependencies between

features; coordinating and synchronizing distributed teams (Dingsøyr & Moe, 2014).

1.5 Research method

Within the research objectives, it is clear that the way to fulfill them is by designing a method that

is able to derive logical architectures with the desired capabilities as the ones stated previously. In order

to fulfill the research objectives, this PhD thesis is structured according the Design Science Research

(DSR) methodology. The decision on using DSR relies mainly in the fact that the focus is to develop an

artifact, namely an agile modeling process. The artifact is developed under the execution in

demonstration cases. Due to the fact that these demonstration cases occur in different organizations

and environments, this thesis uses DSR instead of, for instance, Action Research (Baskerville & Wood-

Harper, 1998; Coughlan & Coghlan, 2002) or Design Action Research (Sein, Henfridsson, Purao, Rossi,

& Lindgren, 2011).

In this section, the DSR method is overviewed and the research process to be conducted in the

PhD thesis is described.

DSR addresses important unsolved problems in unique or innovative ways or solved problems in

more effective or efficient ways. The key differentiator between routine design and design research is

the clear identification of a contribution to the archival knowledge base of foundations and

methodologies. The design-science paradigm seeks to extend the boundaries of human and

organizational capabilities by creating new and innovative artifacts (Hevner, March, Park, & Ram,

2004), a body of knowledge about the design of artificial objects and phenomena (i.e., artifacts)

designed to meet certain desired goals (Simon, 1996). It seeks to create innovations that define the

ideas, practices, technical capabilities, and products (Denning, 1997) through which the analysis,

design, implementation, management, and use of information systems can be effectively and efficiently

accomplished.

Chapter 1 - Introduction

14

This PhD thesis structures its phases using the proposal from Kuechler and Vaishnavi (Kuechler &

Vaishnavi, 2008), as depicted in Figure 1.

This proposal begins with the Awareness of a Problem, and then a solution is created, drawn

abductively from existing knowledge. The rigor of DSR is derived from the effective use of prior research

(existing knowledge base). Solution and respective Artifacts are evaluated through metrics that

instantiate the research goals. These steps are repeated until a satisfactory solution to problem is

found.

Figure 1. Design Science Research Cycle (Kuechler & Vaishnavi, 2008)

The performed research strategies throughout the research process will be as follows:

1) Awareness of Problem

Some literature review on the topics under the PhD thesis provides the foundations that are

required to define the theory development (Webster & Watson, 2002) on agile, architectures, and

agile architecting. This phase intents to analyze the existing knowledge and to identify a research

opportunity that is not addressed by the analyzed literature.

2) Suggestion

The proposal of hypothesis is built based in the identification of the research opportunity. This

hypothesis is formalized in four research objectives that together answer the research question.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

15

3) Development

By performing demonstration cases, the proposed method and process are applied in R&D

funded research projects conducted within CCG\ZGDV institute. These projects are conducted

with ASD teams, but in different organizations and contexts. It is thus necessary to identify for

which research objectives each demonstration case will have contributions.

4) Evaluation

The evaluation used demonstration cases, aiming to experiment and evaluate of the method

applicability (Yin, 2014). Kitchenham proposes steps for conducting a demonstration case,

namely Context, Setting the Hypothesis, Planning, Validating and Analyzing the Results

(Kitchenham, Pickard, & Pfleeger, 1995). For the purpose of the PhD thesis, five demonstration

cases were performed within contexts of R&D funded research projects conducted within

CCG\ZGDV institute, each one with specific contributes within the thesis.

5) Conclusion

The demonstration case’s contribution is added to the research objective (O1, O2, O3, O4 or all).

Until all four objectives are validated, the research process is conducted by new DSR cycles.

Additionally, work publications relating to the main findings are prepared for submission to

journals and conferences.

Every doctoral work intends to develop a new theory, however its research should (or must) be

based in a supporting research theory. Design theory (DT) is about having in consideration the analysis

and evaluation of design within research (Larsen, Allen, Vance, & Eargle, 2015). Within the case of IS

research, DT focus on the design of IT artifacts. These artifacts are broadly defined as constructs

(vocabulary and symbols), models (abstractions and representations), methods (algorithms and

practices), and instantiations (implemented and prototype systems) (Hevner et al., 2004). It describes

the world as acted upon (processes) and the world as sensed (artifacts) (Hevner et al., 2004). From the

author’s point of view, DT is the theory in which the designed artifacts are the basis.

Hevner et al. defined a framework for understanding, executing, and evaluating IS research,

combining behavioral-science and design-science paradigms. It is composed by three spaces -

environment, knowledge base and IS research – and is structured as represented in Figure 2.

Chapter 1 - Introduction

16

Figure 2. Design Theory for IS research (from (Hevner et al., 2004))

The environment defines the problem space in which reside the phenomena of interest. For IS

research, it is composed of people, (business) organizations, and their existing or planned technologies.

Together these define the business need or problem as perceived by the researcher (Hevner et al.,

2004; Silver, Markus, & Beath, 1995; Simon, 1996). Framing research activities to address business

needs assures research relevance.

Given such an articulated business need, IS research is conducted in two complementary phases.

Behavioral science addresses research through the development and justification of theories that

explain or predict phenomena related to the identified business need. Design science addresses

research through the building and evaluation of artifacts designed to meet the identified business need.

The knowledge base provides the raw materials from and through which IS research is

accomplished. It is composed of foundations and methodologies. Additionally, uses reference

disciplines provide foundational theories, frameworks, instruments, constructs, models, methods, and

instantiations used from prior IS research and results in the develop/build phase of a research study;

and methodologies provide guidelines used in the justify/evaluate phase. Rigor is achieved by

appropriately applying existing foundations and methodologies.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

17

Regarding the use of DT, this thesis focus in developing an IT artifact, namely an agile architecting

method, i.e., a method for logical architectures that fulfills requirements for use within agile projects.

Agile teams are the surrounding environment of this thesis. Teams, their process and the

development artifacts have faced some critics when in large-scale contexts. These issues regard the

business need for this thesis’ underdevelopment DT.

As for assuring rigor, this thesis uses, for a knowledge base: (1) frameworks that propose emerging

architecture design - like Abrahamsson et al., Waterman et al. or Farhan et al. (Abrahamsson et al.,

2010; Farhan et al., 2009; Waterman et al., 2012); (2) as well as architectural design tasks within agile

iterations – like Jeon et al., Díaz et al. or Kanwal et al. (Díaz et al., 2014; Jeon et al., 2011; Kanwal et

al., 2010); (3) models related to the logical architecture artifacts; (4) constructs for the 4SRS method

execution; and (5) methods - namely the Design Science Research – that enable organizing the study.

All these concepts allow developing a rigorous research.

Upon these concepts, the hypothesis about use of the 4SRS in an emerging, iterative and

continuous approach is constructed, ultimately resulting in a research question and its research

objectives. The assessment of the hypothesis will be based upon the performance of demonstration

cases.

After the execution of demonstration cases, that result as well in refinements of the hypothesis, later

assessed in further demonstrated cases. As an output, the developed artifacts are applied in the

environment where the business need arose, as well as the new theory is scientifically validated and

able to be added to the knowledge base.

The demonstration cases

In this thesis, the research projects were used as demonstration cases, separately, within the scope

of DSR cycles. Each project had a clearly defined input for the research.

The ISOFIN Cloud (Interoperability in Financial Software) project

ISOFIN Cloud is a Portuguese funded project in co-promotion (QREN 2010/013837, under Fundos

FEDER through Programa Operacional Fatores de Competitividade – COMPETE and Fundos Nacionais

through FCT – Fundação para a Ciência e Tecnologia, FCOMP-01-0124-FEDER-022674). This project is

executed in a consortium comprising eight entities (private companies, public research centers and

universities), namely CCG\ZGDV Institute, i2S Insurance Knowledge, University of Minho, Faculty of

Chapter 1 - Introduction

18

Sciences and Technology (FCT NOVA) of Lisbon, Maisis - Information Systems, Knowledgebiz, and I-

Zone Knowledge Systems.

This project aimed to deliver a set of coordinating services in a centralized infrastructure, enacting

the coordination of independent services relying on separate infrastructures. The ISOFIN platform

supports the semantic and application interoperability between enrolled financial institutions (Banks,

Insurance Companies and others). The cloud solution is able to be deployed in an Infrastructure-as-a-

Service (IaaS) layer. That layer will support the execution of a set of services that will allow suppliers to

specify the behavior of the services they intend on supplying, in a Platform-as-a-Service (PaaS) layer.

This will allow customers, or third-parties, to use the platform’s services, in a Software-as-a-Service

(SaaS) layer and billed accordingly.

The project included a set of 52 deliverables. This thesis used the following project deliverables:

- M/D207 – ISOFIN Logical Architecture;

- M/D210 – Financial Domain Applications/Services Specifications

The iFloW (Inbound Logistics Tracking System) project

The iFloW project is an R&D project that is part of a consortium program, called Human-Machine

Interface Excellence (HMIExcel), between University of Minho and Bosch Car Multimedia Portugal,

sponsored in co-promotion nº 36265/2013 (Project HMIExcel - 2013-2015). iFloW is an R&D project

that aims at developing an integrated logistics software system for inbound supply chain traceability.

iFloW is a real-time tracking software system of freights in transit from the suppliers to the Bosch plant,

located in Braga. The main goal of the project is to develop a tracking platform that allows to control the

raw material flow from remote (Asian) and local (European) suppliers to the Bosch’s warehouse, alerts

users in case of any deviation to the Estimated Time of Arrival (ETA) and anticipates deviations of the

delivery time window. The iFloW project, as its name refers, relates to logistics domain, and was mainly

focused in integration with third party logistics (3PL) service providers and integrating Radio Frequency

Identification (RFID) technology, Global Positioning System (GPS) technologies, and an integrated web-

based RFID- Electronic Product Code (EPC) compliant logistics information system.

The project included a set of four deliverables. This thesis used the following project deliverables:

- D4.4.2 - Specification of the model for experimental development;

- D5.3.8 – development of functionalities

- D6.7.9 – verification and validation of functionalities developed

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

19

The IMP_4.0 (Integrated Management Platform 4.0) project

The IMP_4.0 platform (POCI-01-0247-FEDER-009147, under Portuguese National Grants Program

for R&D projects P2020 – SI IDT) enables a software-house, F3M – Information Systems, SA, located in

Braga, Portugal, to optimize the development process of delivering solutions to their customers with

tools to support all their decision-making processes. The solution is based on public and private clouds,

which are interoperable with devices in an IoT and Cyber-Physical Systems (CPS) approach.

The IMP_4.0 project is about an ERP system for the textile production domain, where the focus is to

support milling, weaving and clothing processes, by providing a set of reusable and integrated software

modules. Additionally, the platform’s development includes establishment of generic modules and

variability management for enabling its extension to textile, footwear, cutlery, metal-mechanic,

glassware and other sectors. The research is conducted within an F3M’s software team. The team was

composed by one Product Manager that owned the business vision, four software architects, four

analysts that modeled requirements and architecture design, and two development teams responsible

for implementing the resulting architecture. The architects and analysts also performed the

measurements within this research.

The project included a set of 36 deliverables. This thesis used the following project deliverables:

- D.1.4 – Functional requirements specifications – initial version;

- D.1.5 – Functional requirements specifications – final version;

- D1.8 – Traceability mechanisms for production management;

- D1.9 – IMP_4.0 logical architecture – initial version;

- D1.10 – IMP_4.0 logical architecture – final version;

- D1.11 – IMP_4.0 platform services specification.

The UH4SP (Unified Hub for Smart Plants) project

UH4SP is a Portuguese funded project in co-promotion (Project ID 017871, under Portuguese

National Grants Program for R&D projects P2020 – SI IDT, and under COMPETE: POCI-01-0145-

FEDER-007043). The UH4SP project aims developing a platform for integrating data from distributed

industrial unit plants, allowing the use of the production data between plants, suppliers, forwarders and

clients. The consortium was composed with five different entities for software development where each

had specific expected contributes, from cloud architectures to industrial software services and mobile

applications. The solution is based in the Industry 4.0 paradigm, and IoT and cloud computing

technologies. The entities are geographically distributed, but each entity had a single located team.

Chapter 1 - Introduction

20

The project included a set of 50 deliverables. This thesis used the following project deliverables:

- D.3.1 – Functional and Technical Requirements Specification;

- D.3.2 – Technical and logical architecture;

- D3.3 – Service Specification For Material Reception And Shipment;

- D3.5 – Interoperability Between Platform And Services Requirements;

- D3.7 – Solution modelling;

- D4.1.1 – UH4SP Management Platform – Initial Version;

- D4.1.2 – UH4SP Management Platform – Final Version;

- D5.4 - Integration Services and Platform.

The Internal Management System of Project Management (IMSPM) project

In this case, the IMSPM is not a funded R&D project, but rather an internal project for i2S. This

project is an initiative from i2S for refactoring an existing platform for their internal project management

procedures, migrating it from a monolith system to a microservices architecture system.

Because it is an internal project, the existing documentation for this project is private. The only

available documentation is in form of an MSc thesis, whose work was associated with this PhD thesis.

This MSc thesis can be found in: Amaral, José Diogo Coelho, “The evolution of monolithic architectures

to microservice-based architectures” (free translation of “A evolução das arquiteturas monolíticas para

as arquiteturas baseadas em microserviços”), ISEP - DM – Engenharia Informática1.

If some projects were used in same DSR cycles as complimentary validation with each other, other

were used to validate as alternative approaches. Finally, some cases were used for specific stages of

AMPLA, for instance UH4SP was used for entire AMPLA process.

Throughout the thesis, the UH4SP is described as the main demonstration case in the contributions.

Whenever it is justifiable, whether complimentary or alternative, the inputs from the remaining

demonstration cases are described in the respective sections.

1.6 Document Structure

This document is structured in four parts: Part I – Introduction, refers to Awareness of the

Problem phase of the DSR, as well as the stating the Business Need of the DT; Part II – State of the

1
 Available at: http://hdl.handle.net/10400.22/11920

http://hdl.handle.net/10400.22/11920

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

21

Art, refers to Suggestion phase of the DSR and the outputs of the Knowledge Base of the DT; Part III

– Contributions, refers to the Development and Evaluation phases of the DSR and also the

Develop/Build and Justify/Evaluate from the IS Research of the DT, including the results of the

demonstration cases for each of the research contributions; and Part IV – Conclusions, refers to

Conclusion phase of the DSR as well as the Application in the Appropriate Environment and the Addition

to the Knowledge Base of the DT.

Part I is composed by one chapter. In Chapter 1, Introduction, the thesis’ motivation and

background is firstly introduced, including the research question and objectives, the research method

and the contributions.

Part II is composed by two chapters. Chapter 2, Requirements and Logical Architecture Design in

Large-scale Agile, introduces the modeling approaches and techniques of requirements engineering and

architecture design in ASD and LSA settings. Chapter 3, Continuous design as part of Agile Architecting,

describes continuous software engineering and continuous architecting approaches, and includes

discussions in architecture lifecycle, architecture management and microservices architectures.

Part III is composed by three chapters. These chapters relate to the research results of the

demonstration cases, towards the thesis’ research contributions. Chapter 4, Agile Modeling for

Candidate Logical Architectures, describes the modeling approach within AMPLA for candidate logical

architecture, namely upfront and emerging approaches for requirements engineering, which in the later

proposes DUARTE: Decomposing User Agile Requirements ArTEfacts (Upfront modeling; and Emerging

modeling) and “Just-Enough” Modeling. Chapter 5, Agile Logical Architecting using AMPLA, discusses

the model-abstraction evolution of a logical architecture throughout the project lifecycle, from a

candidate version to a refined one. Chapter 6, A design theory for a LSA process based in logical

architectures, the use of a design artifact, such as the logical architecture, in an agile-oriented multi-

teams process- and project-management. The chapters are structured this way because in chapters 4

and 5 the discussion relates to the modeling discipline, namely the architecture evolution throughout

the AMPLA process as well as a decrease of the abstraction, and in Chapter 6 the discussion relates to

the use of models in process- and project-management disciplines.

Finally, Part IV is composed by one chapter. Chapter 7, Conclusions, synthetizes how the research

contributions in a set of addressed topics allowed addressing the research objectives - and,

consequently, the research question – but also a synthesis of the research efforts in terms of the

Chapter 1 - Introduction

22

methods (DSR and DT) and the research projects, the scientific outputs and the published papers, and,

finally, future work.

References

Abrahamsson, P., Babar, M. A., & Kruchten, P. (2010). Agility and architecture: Can they coexist? IEEE

Software, 27(2), 16–22. https://doi.org/10.1109/MS.2010.36

Ambler, S. (2002). Agile modeling: effective practices for extreme programming and the unified

process. John Wiley & Sons, Inc.

Ambler, S. (2003). Agile model driven development is good enough. IEEE Software, 20(5), 71–73.

https://doi.org/10.1109/MS.2003.1231156

Ambler, S., & Lines, M. (2012). Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software

Delivery in the Enterprise. IBM Press.

Baskerville, R., & Wood-Harper, A. T. (1998). Diversity in information systems action research methods.

European Journal of Information Systems, 7(2), 90–107.

https://doi.org/10.1057/palgrave.ejis.3000298

Cao, L., & Ramesh, B. (2008). Agile requirements engineering practices: An empirical study. IEEE

Software, 25(1), 60–67. https://doi.org/10.1109/MS.2008.1

Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and

interoperability: Past, present and future. Computers in Industry, 59(7), 647–659.

https://doi.org/10.1016/j.compind.2007.12.016

Cho, J. (2009). A hybrid software development method for large-scale projects: rational unified process

with scrum. Issues in Information Systems, 10(2).

Cockburn, A. (2006). Agile software development: the cooperative game. Pearson Education.

Cohn, M. (2004). User stories applied: For agile software development. Addison-Wesley Professional.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

23

Conboy, K. (2009). Agility from first principles: reconstructing the concept of agility in information

systems development. Information Systems Research, 20(3), 329–354.

https://doi.org/10.1287/isre.1090.0236

Conway, M. E. (1968). How Do Committees Invent? Datamation, 28–31.

Coughlan, P., & Coghlan, D. (2002). Action research for operations management. International Journal

of Operations & Production Management, 22(2), 220–240.

https://doi.org/10.1108/01443570210417515

Cristal, M., Wildt, D., & Prikladnicki, R. (2008). Usage of Scrum practices within a global company. In

International Conference on Global Software Engineering (ICGSE) (pp. 222–226). IEEE.

https://doi.org/10.1109/ICGSE.2008.34

Crocker, R. (2004). Large Scale Agile Software Development. In Extreme Programming and Agile

Methods-XP/Agile Universe 2004 (p. 231). Springer. https://doi.org/10.1007/978-3-540-27777-

4_53

Denning, P. J. (1997). A new social contract for research. Communications of the ACM, 40(2), 132–

134. https://doi.org/10.1145/253671.253755

Díaz, J., Pérez, J., & Garbajosa, J. (2014). Agile product-line architecting in practice: A case study in

smart grids. Information and Software Technology, 56(7), 727–748.

https://doi.org/10.1016/j.infsof.2014.01.014

Dingsøyr, T., Fægri, T. E., & Itkonen, J. (2014). What is Large in Large-Scale? A Taxonomy of Scale for

Agile Software Development. In Product-Focused Software Process Improvement (pp. 273–276).

Springer.

Dingsøyr, T., & Moe, N. B. (2014). Towards Principles of Large-Scale Agile Development. In XP 2014:

Agile Methods. Large-Scale Development, Refactoring, Testing, and Estimation (pp. 1–8). Springer,

Cham. https://doi.org/10.1007/978-3-319-14358-3_1

Eckstein, J. (2013). Agile software development with distributed teams: Staying agile in a global world.

Addison-Wesley.

Chapter 1 - Introduction

24

Erder, M., & Pureur, P. (2015). Continuous architecture: Sustainable architecture in an agile and cloud-

centric world. Morgan Kaufmann.

Erdogmus, H. (2009). Architecture meets agility. IEEE Software, 26(5), 2–4.

https://doi.org/10.1109/MS.2009.121

Evans, E. (2004). Domain-driven design : tackling complexity in the heart of software. Addison-Wesley.

Farhan, S., Tauseef, H., & Fahiem, M. A. (2009). Adding agility to architecture tradeoff analysis method

for mapping on crystal. In WRI World Congress on Software Engineering (WCSE’09) (Vol. 4, pp.

121–125). IEEE. https://doi.org/10.1109/WCSE.2009.405

Grau, B. R., & Lauenroth, K. (2014). Requirements engineering and agile development - collaborative,

just enough, just in time, sustainable. International Requirements Engineering Board (IREB).

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems

research. MIS Quarterly, 28(1), 75–105.

Highsmith, J. A. (2002). Agile software development ecosystems Addison-Wesley. Boston, MA.

IEEE Computer Society. (2000). IEEE Recommended Practice for Architectural Description of Software

Intensive Systems - IEEE Std. 1471-2000.

IIBA. (2017). Agile Extension to the BABOK Guide v2. International Institute of Business Analysis.

Jeon, S., Han, M., Lee, E., & Lee, K. (2011). Quality attribute driven agile development. In 9th

International Conference on Software Engineering Research, Management and Applications (SERA)

(pp. 203–210). IEEE. https://doi.org/10.1109/SERA.2011.24

Kanwal, F., Junaid, K., & Fahiem, M. A. (2010). A hybrid software architecture evaluation method for

fdd-an agile process model. In International Conference on Computational Intelligence and Software

Engineering (CiSE) (pp. 1–5). IEEE. https://doi.org/10.1109/CISE.2010.5676863

Kitchenham, B., Pickard, L., & Pfleeger, S. (1995). Case studies for method and tool evaluation. IEEE

Software, 12(4), 52–62. https://doi.org/10.1109/52.391832

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

25

Kruchten, P. (1995). The 4+1 View Model of Architecture. IEEE Software, 12(6), 42–50.

https://doi.org/10.1109/52.469759

Kruchten, P. (2004). The rational unified process: an introduction. Addison-Wesley Professional.

Kruchten, P. (2007). Voyage in the agile memeplex. Queue, 5(5), 38.

https://doi.org/10.1145/1281881.1281893

Kruchten, P. (2013). Contextualizing agile software development. Journal of Software: Evolution and

Process, 25(4), 351–361. https://doi.org/10.1002/smr.572

Kruchten, P., Obbink, H., & Stafford, J. (2006). The past, present, and future for software architecture.

IEEE Software, 23(2), 22–30. https://doi.org/10.1109/MS.2006.59

Kuechler, B., & Vaishnavi, V. (2008). On theory development in design science research: anatomy of a

research project. European Journal of Information Systems, 17(5), 489–504.

Larman, C., & Vodde, B. (2016). Large-Scale Scrum: More with LeSS.

Larsen, K. R., Allen, G., Vance, A., & Eargle, D. (2015). Theories Used in IS Research Wiki. . Retrieved

from http://is.theorizeit.org

Leffingwell, D. (2016). SAFe® 4.0 Reference Guide: Scaled Agile Framework® for Lean Software and

Systems Engineering. Scaled Agile, Inc.

Madison, J. (2010). Agile architecture interactions. IEEE Software, 27(2), 41–48.

https://doi.org/10.1109/MS.2010.35

Newman, S. (2015). Building microservices - Designing fine-grained systems. O’Reilly Media, Inc.

Nord, R., Ozkaya, I., & Kruchten, P. (2014). Agile in distress: architecture to the rescue. In T. Dingsøyr

& N. B. Moe (Eds.), International Conference on Agile Software Development (XP’14) (pp. 43–57).

Springer Verlag. https://doi.org/10.1007/978-3-319-14358-3_5

Paetsch, F., Eberlein, A., & Maurer, F. (2003). Requirements engineering and agile software

development. In Proceedings of Twelfth IEEE International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises (WET ICE 2003). IEEE.

Chapter 1 - Introduction

26

Prause, C. R., & Durdik, Z. (2012). Architectural design and documentation: Waste in agile

development? In 2012 International Conference on Software and System Process (ICSSP) (pp. 130–

134). IEEE. https://doi.org/10.1109/ICSSP.2012.6225956

Schwaber, K. (1997). Scrum development process. In Business Object Design and Implementation (pp.

117–134). Springer. https://doi.org/10.1007/978-1-4471-0947-1_11

Schwaber, K. (2015). Nexus Guide. Scrum.org.

SEI. (n.d.). Architecture Practices. Software Engineering Group - Carnegie Mellon University.

Sein, M., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011). Action design research.

Management Information Systems Quarterly, 35(1), 37–56.

Shaw, M., & Garlan, D. (1996). Software Architecture: Perspectives on an Emerging Discipline. Prentice

Hall (Vol. 123).

Silver, M., Markus, M., & Beath, C. (1995). The information technology interaction model: A foundation

for the MBA core course. MIS Quarterly, 19(3), 361–390.

Simon, H. A. (1996). The sciences of the artificial (Vol. 136). MIT press.

Sutherland, J. (2018). The Scrum@Scale Guide - The Definitive Guide to Scrum@Scale: Scaling that

Works, Version 1.0.

Uludag, O., Kleehaus, M., Xu, X., & Matthes, F. (2017). Investigating the Role of Architects in Scaling

Agile Frameworks. In 2017 IEEE 21st International Enterprise Distributed Object Computing

Conference (EDOC) (pp. 123–132). IEEE. https://doi.org/10.1109/EDOC.2017.25

Waterman, M., Noble, J., & Allan, G. (2012). How much architecture? Reducing the up-front effort. In

AGILE India (pp. 56–59). IEEE. https://doi.org/10.1109/AgileIndia.2012.11

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature

review. Management Information Systems Quarterly, 26(2), 3.

Yin, R. K. (2014). Case study research: Design and methods (5th Edition). Sage publications.

27

PART II

STATE OF THE ART

Chapter 2 – Requirements and Architecture Design in LSA

28

Chapter 2 - Requirements and Architecture Design in LSA

Chapter 2 - Requirements and Architecture Design in LSA …………………………...29

2.1 Introduction……………………………………………………………. 29

2.2 Views on Debating Architectures and Agile……………………………31

2.3 Using Architecture Approaches within Agile Software Development…35

Software Architecture Methods within Initialization…………..........38

Software Architecture Methods within Development Iterations…….39

2.4 Large-scale Agile Development (LSA)………………………………46

Characteristics of LSA………………………………………………46

Agile Practices in Large-scale………………..……………………...54

Tailoring XP for large and complex projects………………………..60

Distributed Agile Teams: the Scrum of Scrums …………………...61

A Hybrid Method using RUP with Scrum…………………………..64

2.5 Conclusions……………………………………………………………..65

References…………………....……………………………………………...…...67

This chapter presents existing research regarding architecture design and large-scale agile

(LSA). Firstly, this chapter introduces agile software development (ASD) and the changes

in the software development that arose from this paradigm. Then, the chapter discusses

how the architectural design discipline suffered some changes within this paradigm as well

as how they coexist with ASD. Afterwards, it includes a section with existing approaches

oriented towards using architecture design methods in specific stages of ASD processes.

Additionally, LSA approaches and all its specific impacts in development practices are also

presented. This chapter ends with the conclusions of the previously presented works.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

29

Chapter 2 - Requirements and Architecture Design in LSA

“Agile architecture: a paradox,

an oxymoron, two totally incompatible approaches?”

 Pekka Abrahamsson, Muhammad Ali Babar

and Philippe Kruchten, Software Engineering researchers

2.1 Introduction

Software development lifecycle (SDLC) methodologies commonly fit within the spectrum of

plan-driven or change-driven (IIBA, 2015). Plan-driven approaches are used in stable contexts

that allow projects to follow early planned activities. Activities are usually sequential. Known plan-

driven approaches are the waterfall model (Royce, 1970), the “Vee” model (or V-Model) (Ferreira,

Santos, Machado, & Gasevic, 2013; Forsberg & Mooz, 1991) or the Rational Unified Process

(RUP) (Kruchten, 2004). In a plan-driven approach, requirements are defined upfront almost in

their totality before moving to implementation.

In opposition, change-driven approaches focus on rapid delivery of business value in short

iterations (IIBA, 2015). These approaches arose before ASD. In fact, ASD is seen as one of the

possible change-driven approaches, and not as one project management approach. These

approaches firstly appeared as prototyping in 1984 (BW Boehm, Gray, & Seewaldt, 1984),

followed by Rapid Prototyping (Fischer & Schneider, 1984), Evolutionary Delivery model (Gilb,

1985) and the spiral model (B. W. Boehm, 1988). Other frameworks like Rapid Application

Development (RAD) (Martin, 1991), the Dynamic System Development Method (DSDM)

(Stapleton, 1997) and Adaptive Software Development (Highsmith, 2000) were the first ones to

be related to a specific type of change-driven approaches, called agile software development

(ASD). All were prior to Scrum and eXtreme Programming (XP) (Beck & Andres, 2004)

frameworks.

The turning point for the term ‘agile’ (and ASD) relates to the signing of the ‘Agile Manifesto’

(Agile Alliance, 2001). The Manifesto does not define any methodologies or practices itself, but

rather outlines a philosophy in the form of a set of values and principles that frameworks such as

Scrum (Ken Schwaber, 1997) and eXtreme Programming (XP) adhere. There are also others, like

Kanban (Anderson, 2010), Agile Unified Process (AUP) 2005 (SW Ambler, 2005), Crystal

Chapter 2 – Requirements and Architecture Design in LSA

30

Methodologies (Cockburn, 2004) and Feature-Driven Development (FDD) (Palmer & Felsing,

2001).

Lean software development (Poppendieck & Poppendieck, 2003) is another framework for

change-driven approaches. It has been originated by lean production within Toyota (namely in

Toyota Production System - TPS), as an outgrowth of the larger Lean movement. It embodies

seven principles, originally described by Mary and Tom Poppendieck (Poppendieck &

Poppendieck, 2003):

1. Eliminate Waste

2. Build Quality In

3. Create Knowledge

4. Defer Commitment

5. Deliver Fast

6. Respect People

7. Optimize the Whole

The agile manifesto values working software over comprehensive documentation, and

emphasizes simplicity: maximizing the amount of work not done. This principle can be

interpreted in many ways. Most are quite good, but some interpretations can cause problems.

For example, XP advocates doing extra work to get rid of architectural features that do not

support the system’s current version. This approach works fine when future requirements are

largely unpredictable (Barry Boehm, 2002). Figure 3 depicts a comparison on best suited for

different contexts for agile and plan-driven methods.

Figure 3. Comparison of agile and plan-driven methods (Barry Boehm, 2002)

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

31

2.2 Views on Debating Architectures and Agile

There has been some discussion related to the strengths and weaknesses of software

architecture with regard of agility. Abrahamsson states key advantages of up-front architecting

(also called “Big Design Up Front” – BDUF)) (Abrahamsson, Babar, & Kruchten, 2010). Due to

the mutual influence between requirements and software architecture (Avgeriou, Grundy, Hall,

Lago, & Mistrík, 2011), upfront design implies having consistent and (somehow) stable

requirements across the project lifespan (Grundy, 2013).

A major criticism of upfront architecting is the potential efforts in capacity that may never be

used (Grundy, 2013), many times referred as “You Ain't Gonna Need It” (YAGNI). Non-agile

methodologies are accused of not involving the customer properly during all phases of the

project. Companies where architectural practices are well developed often tend to see agile

practices as “amateurish, unproven, and limited to very small Web-based sociotechnical

systems” (Kruchten, 2007).

On the other hand, practitioners of agile methods think that architecture-centric methods are

“too much work, equating them with high-ceremony processes emphasizing document

production” (R. L. Nord & Tomayko, 2006), or that “architectural design has little value”, and

that the architecture should emerge gradually Sprint after Sprint, as a result of successive small

refactoring (Abrahamsson et al., 2010).

In opposition to these stated accusations, Falessi et al. present a study where agile

developers perceive software architecture as relevant on the basis of aspects such as

communication among team members, inputs to subsequent design decisions, documenting

design assumptions, and evaluating design alternatives (Falessi et al., 2010). Practitioners were

also questioned about when they should focus on software architecture. The answers were

“always” (45%), “never” (5%) and “when the project is complex” (50%), as depicted in Figure 4.

Due to the reason of complexity is a broad term, the asked respondents who selected it to

choose geographic distribution (19%), number of requirements or lines of code (33%), number of

stakeholders (29%), and “other” (19%) as the leading cause of complexity.

Chapter 2 – Requirements and Architecture Design in LSA

32

Figure 4. Focus on software architecture by agile developers (Falessi et al., 2010)

Other works also propose useful adoption of architecture design to complement ASD typical

development. It is the case of the Zipper Model (Bellomo, Kruchten, Nord, & Ozkaya, 2014; R.

Nord, Ozkaya, & Kruchten, 2014). Like in any project, as the requirements are being developed

and refined, they are inputs for the architecture design, and allow identifying architecturally

significant requirements (ASR). Alongside, more feature- or functional-oriented requirements are

identified, as well as relationships between them and between the ASR’s. They are further

implemented in iterations based in their relationships (Figure 5). This way, the sometimes-

disregarded software infrastructure is considered at the same time as the features/functionalities

within the ASD iterations.

Figure 5. The Zipper model (Bellomo et al., 2014; R. Nord et al., 2014)

Additionally, some aspects must be considered for those interested in designing and

deploying agile processes engrained with sound architectural principles and practices

(Abrahamsson et al., 2010):

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

33

 Understand the context. There is a vast array of software development situations, and

although “out of the box” agile practices address many of these, there are outliers that

needs understanding: What is the system’s size, domain, and age? What is the business

model and the degree of novelty and hence of risk? How critical is the system? How many

parties will be involved?

 Clearly define the architecture: its scope and the architect’s role and responsibility.

 Define an architecture owner, Architects are part of the development group.

 Exploit architecture to better communicate and coordinate among various parties,

particularly multiple distributed teams, if any. Define how to represent the architecture,

based on what various parties’ need to know.

 Use important, critical, and valuable functionality to identify and assess architectural issues.

Understand interdependencies between technical architectural issues and visible user

functionality to weave them appropriately over time (the zipper metaphor).

The issues of trying to understand the apparent conflict and reconcile the two sides are in

multiple dimensions (Abrahamsson et al., 2010):

1) Semantics: What do we mean in this project or organization by “architecture”? The

concept of architecture often has fuzzy boundaries. In particular, not all design is architecture.

Agreeing on a definition is a useful exercise, and a good starting point.

2) Scope: How much architectural activity will you actually need? Most software projects

have a de facto, implicit architecture when they start; they will not need much of an architectural

effort.

3) Lifecycle: When in the lifecycle should we focus on architecture? Well, early enough, as

“architecture encompasses the set of significant decisions about the structure and behavior of

the system” (Kruchten, 2004): these are the decisions that will be the hardest to undo, change,

refactor. Which does not mean an only focus on architecture, but interleaving architecture

“stories” (i.e., stories more focused in quality requirements) and functional “stories” (i.e., stories

more focused in functional requirements) in early iterations.

4) Role: Who are the architects? On large, challenging, novel system, you may need a good

mix of experience, of “architectus reloadus”– maker and keeper of big decisions, focusing on

external coordination– and “architectus oryzus”– mentor, prototyper, troubleshooter, more code-

facing and focused on internal coordination.

Chapter 2 – Requirements and Architecture Design in LSA

34

5) Documentation: How much of an explicit description of the architecture is needed? While

in most cases, an architectural prototype, starting with a walking skeleton, for example, will

suffice, and one or a small number of solid metaphors to convey the message, there are

circumstances where more explicit software architecture documentation will be needed: to

communicate to a large audience, to comply with external regulations, for example.

6) Method: How are we identifying and resolving architectural issues? How to proceed to

identify architecturally significant requirements, to perform incremental architectural design, to

validate architectural features, etc. There are architectural methods for addressing such issues.

7) Value and cost: All agile approaches strive to deliver business value early and often. The

problem seems often that while the cost of architecture is somewhat visible, its value is hard to

grasp, as it remains invisible. An approach such as the Incremental Funding Method may allow

casting the right compromise between architecture and functionality, without falling into the trap

of BDUF.

According to Brown, Nord and Okzaya, ongoing sustainable achievement of Enhancement

Agility is only possible when coupled with Architectural Agility (Brown, Nord, & Ozkaya, 2010). To

achieve Architectural Agility, the agile community must first expand its focus on end user stories

and address the broader topic of capabilities (see Figure 6), including quality attribute

requirements and a diverse range of stakeholders.

Figure 6. Informed anticipation in the context of agile release planning (Brown et al., 2010)

The use of dependency analysis practices can be used to facilitate a “just-in-time”

approach to building out the architectural infrastructure. Real options and technical debt

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

35

heuristics can be used to optimize architectural investment decisions by analyzing uncertainty

and tradeoffs between incurred cost and anticipated value.

Interest is growing in separating the facts from myths about the necessity, importance,

advantages, and disadvantages of having agile and architectural approaches coexist. Like many

others in software development research and practice, a healthy focus on architecture isn’t

antithetic to any agile process, instead of agile practitioners jump directly to refactoring and

ignoring architecture (Abrahamsson et al., 2010).

Architectural design can be improved in agile methods by: (1) agile architectural modelling

with lowering the overhead of architectural modelling by using an incremental, customer-involved

process; and (2) an initial vision of the system including initial design is created during the first

iteration of the development, where architectural design is more a draft that is changed during

later development (Prause & Durdik, 2012); (3) there are several iterations for designing the

system, thus a more detailed design followed further on is created (Prause & Durdik, 2012); and

(4) continuous iterative design where design is embedded into agile development and

architectural artifacts are updated regularly (Prause & Durdik, 2012).

2.3 Using Architecture Approaches within Agile Software

Development

Although there is no explicit support for the concept of architecture in XP methodology, it

leads to a software system that should have some specific structures, which we call it, implicit

architecture.

One of them is Spike Solutions, used within planning game and when preparing user stories.

A Spike solution is a simple program from the potential solutions that could solve a specific

problem. In the XP method, the process starts by architectural spikes that could form some kind

of initial structure of system. Therefore, it could be mentioned as a kind of analysis and design

activity. Spike solution however is created for solving only one problem and the rest of the system

is ignored for the purposes of the spike solution for that problem.

Metaphors, on the other hand, are the result of architectural spikes and are claimed to be as

a resemblance of architecture in XP (Beck & Andres, 2004). Mainly, the metaphor has two

purposes. It is assumed as an abstraction of a system functionality that will keep the team on the

Chapter 2 – Requirements and Architecture Design in LSA

36

same page. A second reason is that the metaphor is supposed to contribute to the team’s

development of software architecture.

The XP development process is composed of several iterations, each of which results to a set

of integrated functionalities at the end. All new functionalities will be tested for their compatibility

with other functionalities already developed in the continuous integration step. Although this

process may be affective to the system architecture, even indirectly, still architectural smells

might be left in the system. These smells represent inefficiencies that could gradually mislead the

system`s architecture toward an unmanageable and unsuitable shape unless resolved as soon

as possible.

One of the proposals for performing design as concepts and requirements emerge, included

in the research of Abrahamsson (Abrahamsson et al., 2010) and Farhan (Farhan, Tauseef, &

Fahiem, 2009) is the approach of a walking skeleton. Abrahamsson refers to it as an

architectural prototype (Abrahamsson et al., 2010). Farhan refers to it as a tiny implementation

of the system that performs minimum functionality. Kazman proposes the design of a candidate

architecture (Kazman, 2013). He defines this design as: “If you are building a large, complex

system with relatively stable and well-understood requirements and/or distributed development,

doing a large amount of architecture work up-front will likely pay off. On larger projects with

unstable requirements, start by quickly designing a candidate architecture even if it leaves out

many details.”

How can a team decide what is “just enough architecture documentation” for their work? Who

is the audience for architecture documentation and models? What kinds of architecture

documentation might be easier to keep up to date? A detailed architectural plan may be overkill,

but an agile architecture model may contain descriptions of the system in several forms (Mancl,

Fraser, Opdyke, Hadar, & Hadar, 2009):

• architectural layers

• classes and packages

• interface agreements between internal system components (including internal

performance contracts)

• external interfaces

• extension points

• key end-to-end scenarios

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

37

When software architecture is expressed in the wrong format or documented excessively, or

the representations are used poorly, the result is the illusion of architecting. Clements et al. state

“If information isn't needed, don't document it” (Clements, Ivers, Little, Nord, & Stafford, 2003).

All documentation should have an intended use and audience in mind. Effective representation of

software architecture is possible with simple artifacts. The artifacts could include specifications

written in UML or an architecture description language if appropriate, but a few informal box-and-

line diagrams, descriptions of a system metaphor, a succinct document capturing the relevant

decisions, and combinations thereof might do the job as well or better (Erdogmus, 2009).

In general, the set-up phase of the project - often called ‘iteration 0’ (Abrahamsson et al.,

2010) - includes some upfront design, with ongoing architectural refinement during the iterative

development. However, how can an architect or developer determine what the correct amount of

“just enough up-front design” is, i.e., how can agile teams reduce the up-front effort without

sacrificing the benefits of an up-front design (Waterman, Noble, & Allan, 2012)? This work states

concepts for reducing the amount of effort in up-front decision making such as “using predefined

architecture”, “intuitive architecture”, “having architectural experience simplifies decision

making” and “being familiar with the architecture”.

Coplien and Bjørnvig present the concept of “Lean Architecture” (Coplien & Bjørnvig, 2011),

where some concerns enabling the architecture design are presented in order to facilitate agility.

The Lean perspective focuses on how we develop the overall system form by drawing on

experience and domain knowledge. Lean architecture and Agile feature development are much

more about focus and discipline, supported by common-sense arguments that require no

university degree or formal training. These concerns are depicted in Figure 7.

Chapter 2 – Requirements and Architecture Design in LSA

38

Figure 7. Lean Architecture vs Classic Software Architecture (Coplien & Bjørnvig, 2011)

Software Architecture Methods within Initialization

In Attribute-driven sCRUM (ACRUM), three new activities performed in parallel with known

Scrum activities. The main steps in the ACRUM progress side by side with the development

process of Scrum, keeping its agility intact. This process is depicted in Figure 8. This approach

uses a customized QAW and ADD used in Scrum projects (Jeon, Han, Lee, & Lee, 2011).

Figure 8. ACRUM development process (Jeon et al., 2011)

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

39

In summary, it added three steps to effectively analyze and manage quality attributes. First

is the analysis of quality attributes (AQUA). Second is the preparation of the correlation mapping

table (RAM) between the requirements and its analysis at the upper part. Finally, the success or

failure of the quality attributes is verified through the VAlidation of Quality attributes (VAQ) while

demonstration of each final Sprint. Each Sprint was composed of the activities from the Sprint

planning to the retrospective meeting. Such activities are repeated for each Sprint.

Software Architecture Methods within Development Iterations

Change-impact architectural knowledge as the main driver for agile architecting in order for

documenting architectural knowledge and tracing architecturally significant features with their

realization in the architecture (Díaz, Pérez, & Garbajosa, 2014). The models are traversed using

a Change Impact Analysis technique to retrieve the architectural design decisions and

architectural components and connections that are impacted as a consequence of changing

features. The documentation of architectural knowledge supports the rationalization of

architectural decisions taken during the solution design. The rationalization of early design

decision may help to evolve the architecture while preserving its integrity. The main types of

architectural knowledge are the design decisions driving the architecture solution, their

dependencies and rationale. The knowledge of adding feature increments or changing features in

each agile iteration can be captured in modeling primitives (rationale, constraints, assumptions,

etc.) that can be closed, open, optional or alternative design decisions. These four types of design

decisions offer a complete support for documenting the knowledge derived from the agile

architecting process.

Changes in features affect the system architecture and can lead to ripple effects that are not

obvious to detect. The Change Impact Analysis technique (Díaz et al., 2014) consists of two main

steps described below:

1. Given a change in features (adding, deleting or updating), the traceability-based algorithm

determines (1) the first-order design decisions that are involved with the feature to be

changed, (2) the design decisions that depend on the first-order design decisions, and (3)

the first-order architectural elements that are involved in each design decisions.

2. Given a change in the working architecture that realizes the change in features, the rule-

based inference engine fires propagation rules to obtain the change propagation in the

working architecture.

Chapter 2 – Requirements and Architecture Design in LSA

40

This approach for agile architecting is then deployed in Scrum processes. Figure 9 shows a

tailored Scrum development process in which agile architecting is considered as a key activity to

prepare the iteration (i.e., Sprint).

The first step consists of capturing the requirements of the Product Owner from the product

vision (features). Features may be decomposed into a list of user stories known as product

backlog. Then, user stories are prioritized, based on business value, and assigned to Sprints.

Scrum implements an iterative lifecycle based on these Sprints. Sprints start with Sprint planning

meeting in which the Product Owner and Team plan together what has to be done. In this

tailored Scrum, the agile architecting tasks are developed in conjunction with the Sprint planning

meetings. Agile architects interact with the rest of the team in planning the features to be done

by tracking architectural concerns —constraints, risks, viability, etc. — and balancing them with

business priorities. At the end of each Sprint, a working product and a working architecture are

delivered. In the Sprint review meeting, the Product Owner assesses the working product to

validate that user stories were met, or to introduce changes into the user stories.

Figure 9. A customization of Scrum for agile product-line architecting (Díaz et al., 2014)

The lightweight ATAM (Farhan et al., 2009), i.e., without some of its activities (see Figure 10),

validates architectures in a Crystal project and applying agility to ATAM. Crystal is a non-jealous

model and allows integration with other models. Crystal’s main theme is that there may be

slightly different policies and conventions for each project. It is based upon incremental

development not exceeding more than four months.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

41

Figure 10. Modified ATAM for Crystal Agile Model (Farhan et al., 2009)

The adapted method is composed by the following activities:

• Agile architect principles - is an overall umbrella activity that dictates the modifications in

ATAM to introduce agility in it so that it would be compatible with crystal.

• Reflective workshops - is a practice offered by crystal in which teams discuss closely the

track, progress, modifications, strengths and weaknesses of the project. These workshops

can also eliminate the need for step 1 and 2, and can aid in light weighting the steps 3 and

4.

• Osmotic communication - Crystal, background hearing of information can be provided.

• Information radiators - is a display posted in a place, passage or hallway where people can

see easily as they work or walk by. This enables more communication with fewer

interruptions. So we can reduce the amount of heavy documentations thus phase 1 and

step 9 can be light weighted.

• Ambassador user - Crystal presents the concept of closely involved user, in the development

process, called ambassador user. Therefore, teams can have quick feedbacks and can

modify requirements as per user satisfaction. This way overall ATAM process can be light

weighted.

• Early victory - is the first piece of software in running condition. For that, small problems are

solved initially and the underlying principle is that the team should go for easy tasks first.

This practice adds a value to the overall ATAM process.

Chapter 2 – Requirements and Architecture Design in LSA

42

• Walking skeleton - is a tiny implementation of the system that performs minimum

functionality. Such kind of skeleton can be evaluated, discussed and corrected quickly, so

this adds agility to ATAM process.

• Incremental re-architecture - Once we have walking skeleton of the system, there may be

incremental re-architecting quickly. This also lightweight the overall ATAM process and

makes it suitable for crystal agile model.

• Daily stand ups - Daily Stand-ups of a few minutes can fix the problems on daily basis.

Although this practice does not target any specific step of ATAM but it adds value to overall

process. Practices from 4.5 through 4.9 can eliminate phase 3 of ATAM.

Nord et al. explore the relationship and synergies between architecture-centric design and

analysis methods and the Extreme Programming framework (R. L. Nord & Tomayko, 2006).

Software Architecture Technology Initiative at Carnegie Mellon University’s Software Engineering

Institute (SEI) has developed and promulgated a series of architecture-centric methods for

architecture design and analysis.

The Quality Attribute Workshop (QAW) can help the development team understand the

problem by eliciting quality attribute requirements basing on business goals ensures that the

developers address the right problems.

The Attribute-Driven Design (ADD) method defines a software architecture by basing the

design process on the prioritized quality attribute scenarios that the software must fulfill.

The Architecture Trade-off Analysis Method (ATAM) and Cost-Benefit Analysis Method (CBAM)

provide detailed guidance on analyzing the design and getting early feedback on risks. The

development team can use incremental design practices to develop a detailed design and

implementation from the architecture. Architectural conformance and reconstruction techniques

ensure consistency between the architecture and implementation.

These SEI methods can enhance XP practices. The method’s applications within the XP

practices are presented in Figure 11. Using these methods results in an architecture-centric

approach: architecture connects business goals to the implementation, quality attributes inform

the design, and architecture-centric activities drive the software system life cycle. These methods

make developing software easier and more consistent. Although designing the architecture is

integral to the approach, the level of detail can be flexible.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

43

Figure 11. Usage of architecture-centric to improve XP activities (R. L. Nord & Tomayko, 2006)

Within the activities of “Planning and Stories” and “Designing”, this approach uses a

customized QAW and ADD like in aCRUM (Jeon et al., 2011). Within the activities of “Analysis

and Testing” (R. L. Nord & Tomayko, 2006) presented in Figure 11, the approach uses a

lightweight ATAM (Farhan et al., 2009).

However, Sharifloo et al. argue that this kind of integration presented by Nord et al. (R. L.

Nord & Tomayko, 2006) is not applicable into a real XP team because of the fact that they are

not derived from XP values and practices and are not in the way of agile principles (Sharifloo,

Saffarian, & Shams, 2008). In their paper, the primary goal in is to satisfy quality attributes when

developing a system using XP method. They introduced two architectural practices Continuous

Architectural Refactoring (CAR) that are applied in XP concurrently with other Real Architecture

Qualification (RAQ) practices and a new role called Architect is created that performs new

responsibilities raised from added practices. Truly, new practices are embedded into XP in order

to be conformed to XP values and culture. The purpose is to introduce practices that are going to

satisfy architectural needs of a system. In order to provide XP process model with architectural

practices, there is a need to think about quality attributes and their characteristics.

Kanwal et al. propose a hybrid software architecture evaluation method for FDD agile process

model (Kanwal, Junaid, & Fahiem, 2010). The proposed method is hybrid of QAW, ATAM and

Active Review for Intermediate Designs (ARID). Due to an emphasis of these models on rapid

development, there is an ever-increasing need of architecture evaluation, and a single

Chapter 2 – Requirements and Architecture Design in LSA

44

architecture evaluation method capable of preserving the agility does not exist now. FDD is most

suitable for the projects with large team size and low iteration time. Moreover, FDD is very

effective in business modeling of the projects.

FDD consists of five major phases with each phase having a set of related activities:

1. Develop an Overall Model

2. Build a Features List

3. Plan by Feature

4. Design by Feature

5. Build by Feature

FDD agile methods are characterized by customer satisfaction, fast response to changes,

and release in less time. This approach is hybrid of QAW, ATAM and ARID (see Figure 12). In

FDD, architecture is developed in phases 1 and 2.

For phase 1 of FDD, functional as well as non-functional requirements gathering activities

should be executed in parallel to ensure the development of proper architecture without affecting

the agility. For that, QAW is a very good choice as the major concentration of this architecture

method is on determining the quality attributes which establish the non-functional requirements

of the project.

For phase 2 of FDD, there are two sub activities that need architecture evaluation. While

building the features list, utility trees, sensitivity points and tradeoffs should also be determined to

develop a proper architecture. Utility trees, sensitivity points and tradeoffs are the inherent

features of ATAM. For the assessments (verifications) ARID is to be executed as it is primarily

developed for review activities.

Raatikainen et al. describe how software product family engineering and backlog management

can be integrated in the light of two approaches called “Agilefant” and “Kumbang” (Raatikainen,

Rautiainen, Myllärniemi, & Männistö, 2008). The main element of Kumbang is that it enables

describing product family from feature point of view as a feature model (see Figure 13). A feature

is loosely defined as an end-user visible characteristic of a system. As a means of expressing

variability and creating dependencies among features, Kumbang features can be composed of

other features. A feature can define any number of subfeature definitions, which state what kinds

of features can exist under that feature. If a feature does not define any subfeature definitions, it

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

45

is termed as a leaf feature, otherwise as a composed feature. Further, a feature can define any

number of constraints that create dependencies to other features.

Figure 12. Mapping of QAW, ATAM and ARID on FDD (Kanwal et al., 2010)

Consequently, the concept of feature backlog item in Agilefant corresponds with the concept

of leaf feature in Kumbang feature model. Further, all leaf features of Kumbang model can have

a corresponding feature backlog item in Agilefant, and vice-versa. This mapping, hence, provides

integration between a software product family model and items in a backlog.

Figure 13. Integrated conceptualisation of Kumbang (Raatikainen et al., 2008)

Chapter 2 – Requirements and Architecture Design in LSA

46

Madison advocates the coexistence of agile and architecture as complementary approaches

and principles (Madison, 2010). He emphasizes the software architect’s vital role as a linchpin

for combining the two. Madison’s approach (see Figure 14), called agile architecture, advocates

using agile to get to a good architecture by appropriately applying suitable combinations of

architectural functions (such as communication, quality attributes, and design patterns) and

architectural skills at four points (up-front planning, storyboarding, Sprint, and working software)

in the development life cycle.

Figure 14. A hybrid framework for agile architecture work (Madison, 2010)

2.4 Large-scale Agile Development (LSA)

Characteristics of LSA

The dimensions used to define a project as large-scale relate to costs, code size and number

of requirements (Dingsøyr, Fægri, & Itkonen, 2014). The same work focus on the size of teams

when characterizing scaling agile projects, mainly due the coordination and communication

needs and practices between teams (Dingsøyr et al., 2014).

There has been an increasing interest on research in this topic, which may include (Reifer,

Maurer, & Erdogmus, 2003): (1) Scale agile methods to very large projects with barely sufficient

up-front planning and architectural work; (2) Deploy a federation of coordinated teams (each

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

47

internally operating as an agile team) in scaling up agile ideas; (3) Use agile methods in teams

larger than a typical XP team; (4) Characterize the agile continuum through different project

caricatures, ranging from typical collocated XP projects to large, multiteam, multiyear ones.

Additionally, LSA initiatives can be about (Uludag, Kleehaus, Caprano, & Matthes, 2018):

Culture & Mindset; Communication & Coordination; Enterprise Architecture; Geographical

Distribution; Knowledge Management; Methodology; Project Management; Quality Assurance;

Requirements Engineering; Software Architecture; and Tooling. Main challenges relate to

stakeholders and challenges, Uludag acknowledges that challenges also relate to methodology

patterns, architecture principles, viewpoint patterns and anti-patterns. The challenge with more

identified papers relates to “Coordinating multiple agile teams that work on the same product”,

from the “Communication & Coordination” category. From the “Software Architecture” category

(in which this thesis focuses on), the “Considering integration issues and dependencies with

other subsystems and teams” challenge is the one present in more papers (and actually the

second one in all categories), followed by “Managing technical debts”. From the “Requirements

Engineering” category (in which this thesis also focuses on), the “Creating precise requirement

specifications for the Development Team” challenge is the one present in more papers, followed

by “Eliciting and refining requirements of end users”.

Additionally, at recent events within the International Conference on Agile Software

Development (“XP” conferences), there is a dedicated workshop for discussing research trends

and challenges in LSA. By gathering the results from workshops during XP2013 (Dingsøyr &

Moe, 2013), XP2014 (Dingsøyr & Moe, 2014), XP2016 (Moe, Olsson, & Dingsøyr, 2016),

XP2017 (Moe & Dingsøyr, 2017) and XP2018 (Dingsøyr, Moe, & Olsson, 2018), Table 2 depicts

the identified topics throughout the workshops, in an attempt of characterizing recognized

challenges and topics within LSA.

There are primarily five frameworks that address scaling agile practices: Disciplined Agile

Delivery (DAD) (Scott Ambler & Lines, 2012), Large-Scale Scrum (LeSS) (Larman & Vodde,

2016), Scaled Agile Framework (SAFe) (Leffingwell, 2016), Scrum@Scale (Sutherland, 2018)

and Nexus (K Schwaber, 2015). Each of these frameworks draws from variety of agile and lean

practices. Sometimes the “Spotify model” (Kniberg & Ivarsson, 2012) is included within these

scaling frameworks, however it is not much as a framework with practices and events for

Chapter 2 – Requirements and Architecture Design in LSA

48

companies to adopt, but rather a cross-matrix structure adopted by Spotify company. These

frameworks are now introduced.

Table 2. Research challenges‘ priority at XP’s scientific workhops on LSA

LSA workshop High Medium Low

XP2018 • Agile in public/ IT

government

• Agile transformation

• Business agility

• Scaling agile

• Patterns in large scale agile

development

• The role of architects and

architecture in agile

• Integrating non-software

and software parts of the

organization into agile

(enterprise agile)

• Knowledge sharing /

networks

• Inter-team coordination

• How DevOps affects agile

XP2017 •Inter-team coordination

•Agile transformation

•Agile transformation

•Business agility

•Knowledge sharing and

knowledge networks

XP2016 •Distributed Large-Scale

•Inter-team Coordination

•Knowledge Sharing

•Large-scale Agile

Transformations

•Multidisciplinary Work

•New Ways-of-Organizing

XP2014 •Organisation of large

development efforts

•Variability factors in scaling

•Inter-team coordination

•Key performance indicators

in large development efforts

•Knowledge sharing and

Improvement

•Release planning and

architecture

•Customer collaboration

•Scaling agile practices

•Agile contracts

•Agile transformation

•UX design

XP2013 •Inter-team coordination

•Large project organization

/ portfolio management

•Release planning and

Architecture

•Scaling agile practices

•Customer collaboration

•Large-scale agile

transformation

•Knowledge sharing and

Improvement

•Agile contracts

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

49

DAD is a hybrid approach that extends Scrum with proven strategies from Agile Modeling

(AM), XP, Unified Process (UP), Kanban, Lean Software Development, Outside In Development

(OID) and several other methods. A full lifecycle goes from the initial idea for the product, through

delivery, to operations and support and often has many iterations of the delivery lifecycle (Figure

15). Because it is not prescriptive and strives to reflect reality as best it can, DAD actually

supports several versions of a delivery lifecycle: (1) An agile/basic version that extends the Scrum

Construction lifecycle with proven ideas from RUP; (2) An advanced/lean lifecycle; (3) A lean

continuous delivery lifecycle; and (4) An exploratory “Lean Startup” lifecycle.

Figure 15. Disciplined Agile Delivery (DAD)

LeSS is one-team oriented for scaled projects within Scrum practices (Larman & Vodde,

2016). LeSS includes a single Product Backlog (because it’s for a product, not a team); one

Definition of Done for all teams; one Potentially Shippable Product Increment at the end of each

Sprint; one Product Owner; many complete cross-functional teams (with no single-specialist

teams); and all Teams in a common Sprint to deliver a common shippable product, every Sprint.

The roles, events and artifacts of LeSS are represented in Figure 16.

Chapter 2 – Requirements and Architecture Design in LSA

50

Figure 16. LeSS framework

The Scaled Agile Framework (SAFe) was created by Dean Leffingwell. The framework

articulates three levels of organization (Figure 17): Team, Program and Portfolio. Each level

incorporates agile and lean practices, has its own activities and all levels are tied together. At the

team level, SAFe specifies a blend of Scrum and XP practices. The code practices include Agile

Architecture, Continuous Integration, Test-First, Code Refactoring, Pair Work, and Collective Code

Ownership. SAFe does not expect teams to produce Potentially Shippable Increment (PSI) every

Sprint, but rather over a quarterly cadence. At the program level, provides features, which the

teams deconstruct and size to fit into iterations.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

51

Figure 17. SAFe levels (Portfolio, Program and Team)

The three scaling frameworks provide approaches that attempt to address some of the

issues that an organization faces and offer solutions to address these gaps. However, each

framework provides some benefits, but they have shortcomings as well. DAD creates four distinct

lifecycles, each of which an organization can adapt to fit its context. However, it also specifies an

overly complicated work items pool, which an organization can address in much simpler ways.

LeSS starts where Scrum leaves off when it comes to scaling agile practices in large organization.

However, in the process, it makes recommendations that are problematic, like having a single

Product Owner for up to ten teams SAFe organizes its practices into three levels (team, program

and portfolio), which is quite useful for larger organization.

At a team level, it embraces certain XP practices, which standard Scrum does not. However,

the framework has myriad of issues, including being overtly process heavy (Vaidya, 2014).

Scrum@Scale (Sutherland, 2018) is a framework for scaling Scrum, developed by Jeff

Sutherland – “one of the fathers” of Scrum – and Scrum Inc. It is defined as “A framework within

which networks of Scrum teams operating consistently with the Scrum Guide can address

complex adaptive problems, while creatively delivering products of the highest possible value”. In

Chapter 2 – Requirements and Architecture Design in LSA

52

short, it is a framework that uses Scrum for scaling Scrum, using approaches of “Scrum of

Scrums” (oriented for a team of Scrum Masters) and “MetaScrums” (oriented for a team of

Product Owners) for coordinating Scrum teams.

Figure 18. Scrum@Scale

Developed by Ken Schwaber – the “other father” of Scrum - and Scrum.org, the Nexus

Framework (K Schwaber, 2015) is a framework for large-scale product or software development

largely based on Scrum. By consisting in roles, events, and artifacts, Nexus is defined itself as an

exoskeleton resting on top of three to nine Scrum teams. These Scrum teams are dedicated to

the development of one integrated “done” product increment, and Nexus framework supports

them to deal with dependencies and interoperation.

In contrast to Scrum, Nexus is a quite new framework about which only a small amount of

literature was published (Uludag, Kleehaus, Xu, & Matthes, 2017).

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

53

Figure 19. Nexus framework

The “Spotify model” is a cross-matrix structure that promotes knowledge sharing among team

members by defining team’s “Squads”, “Tribes”, “Chapters” and “Guilds”. In short, Squads are

development teams oriented to feature development. Tribe manages a group of Squads. In order

to do so, it is responsible for facilitating synchronization meetings for identifying and resolving

dependencies between Squads (“Scrum of Scrums”-like meetings). Chapters gather within the

same Squad. Guilds are a more organic and wide-reaching “community of interest”, that cut

across the whole organization (in opposition to a Chapter, that is local to a Tribe).

Figure 20. "Spotify model" cross-matrix structure

Chapter 2 – Requirements and Architecture Design in LSA

54

Agile Practices in Large-scale

Literature encompasses many differences in agile practices when applied in large-scale

contexts. Scaling up the projects affect all agile practices and, for that reason, the practices that

do not have relations with the architectures are out of the scope of this chapter. In this section

are presented agile practices in large-scale for requirements engineering and prioritization,

coordination and risk management. From the challenges depicted in Table 2, “Organization of

large development efforts” encompasses requirements engineering and prioritization, “Inter-team

coordination” encompasses coordination, “Release planning and architecture” encompasses

requirements engineering and prioritization, and “Agile contracts” encompasses risk

management.

Requirements Engineering & Prioritization

Requirements Engineering (RE) for agile software is different from traditional Requirements

Engineering. Traditional RE is managed by RE specialists, in a phase separated in time from

design and development, and documented in specific requirements artefacts. In contrast, in agile

RE the detailed requirements are defined gradually in interaction between the customer (or

customer representative) and the development team. The International Institute of Business

Analysis (IIBA) felt the need to develop an agile version of their Business Analysis Body of

Knowledge (BABoK) called “The Agile Extension to the BABoK Guide” (IIBA, 2017). Also, the

International Requirements Engineering Board (IREB) coins the adoption of RE in this contexts as

“RE@Agile” (IREB, 2018). Also, IREB conducted a study that investigates how the discipline of

RE can be adapted to better support an agile project approach (Grau & Lauenroth, 2014), where

they state that RE activities remain the same but in agile projects they are executed continuously.

Engineering and management of requirements include elicitation, negotiation, prioritization, and

documentation (Fernandes & Machado, 2016), whether in an ASD or in a “traditional” setting.

Five RE-related agile practices are introduced for large-scale software development, namely

(Bjarnason, Wnuk, & Regnell, 2011):

• One Continuous Scope Flow. The scope for all software releases is continuously planned

and managed via one priority-based list (comparable to a product backlog). The business

unit gathers and prioritizes features from a business perspective. The software unit

estimates the cost and potential delivery date for each feature, based on priority and

available software resource capacity.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

55

• Cross-Functional Development Teams that include a customer representative assigned by

the business unit (comparable to customer proxy.) These teams have the full responsibility

for defining the detailed requirements, implementing and testing a feature (from the

common priority-based list) within the given boundaries of time and resources.

• Integrated RE. The RE tasks are integrated with the other development activities, i.e. the

detailing and formal documentation of requirements is done at the same time as design and

development of the feature and within the same (development) team together with its

customer representative (proxy).

• Gradual & Iterative Detailing of Requirements. The requirements are first defined at the high

level (features in the priority-based list) and then iteratively refined, by the development

team, into more detailed requirements as the design and implementation work progresses.

• User Stories & Acceptance Criteria are used to formally document the requirements agreed

for development. The acceptance criteria are then covered by test cases.

IIBA presents principles that guide these activities (IIBA, 2017):

• See the Whole (i.e., the context of the big picture);

• Think as a Customer (i.e., incorporate a clear understanding of the expected user

experience);

• Analyze to Determine What is Valuable (i.e., continuously assess and prioritize work to be

done in order to maximize the value being delivered at any point in time)

• Get Real Using Examples (i.e., using examples or models to, to identify specific details of the

need and the solution, towards setting context and identifying scope)

• Understand What is Doable (continually analyzing the need and the solutions that can satisfy

that need within the known constraints)

• Stimulate Collaboration and Continuous Improvement (i.e., promote Continuous structured

and unstructured feedback, like Retrospectives)

• Avoid Waste (by removing activities that do not add value), e.g.: avoid producing

documentation before it is needed, and when documentation is needed do just enough;

ensure commitments are met and there are no incomplete work items that adversely impact

downstream activities; avoid rework by making commitments at the last responsible

moment; try to elicit, analyze, specify, and validate requirements with the same models;

make analysis models as simple as possible to meet their intended purpose; ensure clear

Chapter 2 – Requirements and Architecture Design in LSA

56

and effective communication, and pay continuous attention to technical excellence and

accuracy. Quality defects (such as unclear requirements) result in rework and are waste.

IREB states that performing RE in agile context must aim four goals (IREB, 2018):

1. knowing the relevant requirements at an appropriate level of detail (at any time during

system development),

2. achieving sufficient agreement about the requirements among the relevant stakeholders,

3. capturing (and documenting) the requirements according to the constraints of the

organization,

4. performing all requirements related activities according to the principles of the agile

manifesto.

Reifer et al. state that, on large projects, some architectural development was needed before

pushing ahead with iterations (Reifer et al., 2003). This could be done quickly using an

architecture team. Team members then could move on to seed a LSA project’s subteams. While

the architecture will continue to evolve over the project’s life cycle, the tendency will be to

stabilize it and discourage any significant changes. However, the same authors state that this

approach poses a threat to agility because it might tip the scale in favor of up-front planning

rather than letting the architecture emerge naturally.

Requirements prioritization (and reprioritization) plays a crucial role in large-scale and

distributed agile projects. Daneva et al. seek to understand the implications of these tasks in agile

and distributed contexts (Daneva et al., 2013). They found the following:

• Understanding requirements dependencies is of paramount importance for the successful

deployment of agile approaches in large outsourced projects.

• The most important prioritization criterion in the setting of outsourced large agile projects is

risk.)

• The software organization has developed a new artefact that seems to be a worthwhile

contribution to agile software development in the large: ‘delivery stories’, which complement

user stories with technical implications, effort estimation and associated risk. The delivery

stories play a pivotal role in requirements prioritization.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

57

• The vendor’s domain knowledge is a key asset for setting up successful client-developer

collaboration.

• The use of agile prioritization practices depends on the type of project outsourcing

arrangement

Kirikova proposes a framework for continuous requirements engineering (CRE), FREEDOM

(Kirikova, 2017). It was proposed based in former applications in mobile development, within

Scrum setting and within IT startups.

The FREEDOM framework consists of several functional units, namely (Figure 21): F – Future

representation, R - Reality representation, E1 - requirements Engineering, E2 – fulfilment

Engineering, D - Design and implementation, O - Operations, and M - Management. They are

related by a number of links, which correspond to analysis, analytics, monitoring, feedback, and

change request information. Requirements engineering (E1 in Figure 21) can be a sub-function of

Reality representation (R), Future representation (F) and other functional units of the framework.

Figure 21. Architecture of a CRE framework (Kirikova, 2017)

In Figure 22 five generic RE functions are represented, namely: requirements acquisition,

requirements analysis, requirements representation, and requirements management. These

functions are similar to RE functions used in “traditional” settings (Fernandes & Machado, 2016;

Pohl, 2010): elicitation, analysis, specification, validation, and management. However, for CRE,

Kirikova uses “Requirements acquisition” rather than “Requirements elicitation”, because the

term "elicitation" mainly refers to requirements acquisition using interviews, questionnaires,

group sessions, or observation, but “acquisition” is more suitable since nowadays requirements

Chapter 2 – Requirements and Architecture Design in LSA

58

are also gained using model analysis, business intelligence and data analytics methods and tools

(Kirikova, 2017).

Figure 22. Generic functions of CRE (Kirikova, 2017)

Coordination

Most coordination practices proposed by agile methods emphasize an informal management

style. When the project is small, close interactions among team members are effective and

problems can be quickly spotted and corrected. However, as the size of the project increases,

opportunities for close interactions among project team members drop (Van de Ven, Delbecq, &

Koenig Jr, 1976). In large projects, it is difficult for developers to make important decisions only

through informal conversations. Miscommunications and misunderstandings happen more often

and are more difficult to solve. Large projects need to address unique challenges, such as the

knowledge loss caused by turnover of team members and long project duration, complex

requirements and interdependency of tasks, and limited resources (Xu & Ramesh, 2007). Relying

only on informal strategies is no longer adequate. To summarize, the coordination challenges of

using agile methods in large projects are (Xu, 2011):

• Lack of interaction among participants

• Communication difficulties

• Loss of knowledge

• Complex and unstable requirements

• Complex interdependency tasks

• Technical complexity

The analysis of Hossain et al. has revealed that the temporal, geographical and socio-cultural

distance of software development projects impact on using various Scrum practices in distributed

settings (Hossain, Babar, & Paik, 2009). They found that communication issues are the major

challenges when using Scrum in distributed settings; cultural differences among distributed team

members may also impact on team collaboration and communication processes; managing a

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

59

large team can also be considered as one of the key challenges; and lack of dedicated meeting

room for each site and Scrum team distribution at multiple sites also appear to be challenging

factors that restrict the team communication and collaboration processes.

In order to face these challenges, there are some archetypes and strategies for coordination

issues. Archetypes for coordination strategies in multiteam systems are classified by their

mechanistic, organic and cognitive coordination (Scheerer, Hildenbrand, & Kude, 2014). The

“Perfect Plan” strategy type is characterized by high mechanistic, low organic and low cognitive

coordination. While within teams, coordination may well be achieved through organic or cognitive

mechanisms, the focus of multiteam coordination in this strategy lies solely on mechanistic

coordination with little communication between individual actors. This type assumes that

software development can be “programmed” from a coordination perspective, e.g. through

complete upfront planning all dependencies as well as all contingencies can be resolved and

accounted for. Since the coordination is programmed through upfront planning with little

communication, one person or a very small set of people, needs to have a deep insight into the

full technical details of the entire software system in order to specify all details necessary for

individual work packages and correct integration.

Risk Management

Boehm and Turner describe a 5-step risk-based approach (see Figure 23) for benefiting of

both agile and plan-driven methods (Barry Boehm & Turner, 2003). They define tasks to evaluate

and determine Commercial Off-the-Shelf (COTS), reuse, and architecture choices during Systems

definition and architecting.

They include architectures in three distinctive agent-based system application projects within

a case study. The three applications were classified as their scalability and criticality:

• Small, relatively noncritical. This agent-based planning system for managing events such as

conferences or conventions is based on risk patterns observed in small Web-services

applications.

• Intermediate. An agent-based planning system for supply-chain management across a

network of producers and consumers, this application is based on risk patterns derived from

the experience with scaling up XP techniques to a 50-person project in a lease-management

application.

Chapter 2 – Requirements and Architecture Design in LSA

60

• Very large, highly critical. This agent-based planning system for national crisis management

is based on risk patterns observed in the US Defense Advanced Research Project Agency

and the US Army Future Combat Systems program—an agent-oriented, network-centric

system of systems being developed by more than 2,000 people.

Figure 23. Five-Step risk-based approach (Barry Boehm & Turner, 2003)

Tailoring XP for large and complex projects

Agile XP practices are suitable for large-scale, complex software development (Cao, Mohan,

Xu, & Ramesh, 2004). Having as basis a set of agile practices, namely Accept multiple valid

approaches, Accommodate requirements change, Engage the customer, Build on successful

experience, Develop good teamwork, Effective software development conforms to project

environment constraints, and Prepare for unexpected consequences from innovation in software

processes, it presents a set of 7 XP practices suited for large-scale agile projects:

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

61

• Practice 1: Designing upfront. It combines designing upfront with agile practices such as

short release, pair programming, and refactoring.

• Practice 2: Short Release cycles with a layered approach. The system continuously

accommodates requirements changes. The delivered functionalities suit the customer need

rather than focusing on documenting detailed specifications.

• Practice 3: Surrogate customer engagement. This practice is a modified version of XP

practice “on site customer”.

• Practice 4: Flexible pair programming. Contrary to “always paired” in XP, developers are

paired in analysis, design and testing. Coding is performed by solo programming. The

combination of solo programming and pair programming overcomes some shortfalls of pair

programming (e.g., developer’s resistance), while still benefiting from it where feasible.

• Practice 5: Identifying and managing developers. People factor is more important in agile

development than in traditional development. It emphasizes choosing the right people for

the team and creating a collaborative environment to support teamwork. Developers’

knowledge and experiences on different aspects of a project are greatly valued.

• Practice 6: Reuse with forward refactoring. This practice maps to the principle of building on

successful experience. Refactoring is used as a technique to enhance reuse. Developers

usually focus only on their current need instead of building components for later reuse.

However, for a large project, development of upfront architectural design and use of design

patterns are critical. Functionalities of the system are developed based on design patterns.

In addition, modules that have been developed to handle specific functionalities are

refactored and made generic enough so that they can be tailored to handle different

functionalities.

• Practice 7: Flatter hierarchies with controlled empowerment. Developers are empowered to

make their own decisions. On the other side, for a large and mission-critical application, the

empowerment might cause unexpected consequences such as incompatibilities among the

development process and products produced by different developers.

Distributed Agile Teams: the Scrum of Scrums

Besides the use of Scrum in small organizations or in small projects, some techniques for

adapting events, actors and artifacts arise in order to geographical distributed teams or multiple

Chapter 2 – Requirements and Architecture Design in LSA

62

teams could work for the same product development (Eckstein, 2013). Distributed Scrum is

classified in three distributed team models (Sutherland, Viktorov, & Blount, 2006): (1) Isolated

Scrums – teams are isolated across geographies; (2) Scrum of Scrums – multiple Scrum teams

working on the same product and in the same geographical space (Cristal, Wildt, & Prikladnicki,

2008); and (3) Totally Integrated Scrum – where multiple teams are geographical distributed

(Paasivaara, Durasiewicz, & Lassenius, 2008b). The Scrum methodology was also tested in

projects involving different organizations trying to implement the same product (Dingsøyr,

Hanssen, Dybå, Anker, & Nygaard, 2006).

Additionally, another scaled framework from Scrum is Large-Scale Scrum (LeSS) (Larman &

Vodde, 2016). This framework is one-team oriented for scaled projects within Scrum practices.

LeSS includes a single Product Backlog; one Definition of Done for all teams; one Potentially

Shippable Product Increment at the end of each Sprint; one Product Owner; many complete

cross-functional teams (with no single-specialist teams); and a common Sprint for all Teams,

every Sprint. The roles, events and artifacts of LeSS are represented in Figure 16 in Section 2.4.

Scrum uses structured meetings such as the daily Scrum meeting, the daily Scrum of

Scrums meeting, the Sprint planning meeting, and the Sprint review meeting. These meetings

are key components of the Scrum method and they should be adjusted to the distributed working

environment (Cho, 2007). Information and knowledge-sharing issues were the most important

issues in the company due to its geographically distributed working environment, where also

coordination, communication, control, training, and trust and confidence issues hinder

developers from being efficient (Cho, 2007). Paasivaara describes adaptation to meetings as well

(Paasivaara, Durasiewicz, & Lassenius, 2008a).

Each team’s parallel work within the same product development must be coordinated, but

breakthroughs and progress within the distributed Scrum teams are slow and hard to achieve

(Begel, Nagappan, Poile, & Layman, 2009).

Scrum roles and events can be easily adapted to such dependencies between teams since

the agile methodologies provide this kind of flexibility. These adaptations allow distributed teams

(geographical distributed or not) to work in parallel and at the same time, and are mandatory in

order to prevent an increase of the time to market, that could endanger the project execution.

The product backlog should be aligned by collaborating product owners (Leffingwell, 2007).

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

63

The role of a Scrum master should be adjusted. Since the Scrum master is the key person

for the success of Scrum, the Scrum master should be engaged more actively in projects as a

coordinator and a controller in distributed Scrum environment. As a coordinator/controller, the

Scrum master needs to ensure share of information and knowledge well between the sites and

that the tasks are divided and assigned well through the Sprint planning meeting. In addition, the

Scrum master needs to have the authority to motivate developers to work hard and to take

ownership of the projects. These tasks can be eased by using various tools such as Wiki,

VersionOne, and JIRA (Cho, 2007).

The various Scrum meetings should be adjusted due to the geographical distance. For

example, in daily Scrum meetings which are held every day for less than 15 minutes, team

members come to talk about what tasks have been done since the last meeting, what tasks will

be done before the next meeting, and what the issues and challenges are imposed on the tasks.

Scrum team members come to daily Scrum meetings to communicate with other team members

to find out what is going on. However, the effectiveness of communication between the sites is

severely limited compare to face-to-face conversation. To mitigate the problem, the daily Scrum

meeting and other Scrum meetings should be held with good communication devices. Among

many different multi-media devices, a video conferencing system between the sites is

recommended as the best way to communicate. Other tools including remote desktop, an email

system, an instant message system, and a phone system can mitigate the communication

problems too (Cho, 2007).

Regarding Sprints and events, it is normal that not all of team’s Sprints are synchronized

relating its start date. The Scrum Master and the Product Owner should have total availability to

work with all teams equitably. Besides, if problem reports arise from a team in a Sprint Review or

a Sprint Retrospective, there is still enough time to re-schedule aspects in other teams or re-

allocate resources at the end of the other team’s Sprints. Additionally, another issue that can be

considered is that one element of each team may participate in other team’s Sprint Review, and

all elements should participate instead of always the same element participating in those Sprint

Reviews, so all team elements have the opportunity to know other teams’ work.

Chapter 2 – Requirements and Architecture Design in LSA

64

A Hybrid Method using RUP with Scrum

Scrum and RUP can be combined by embedding Scrum ceremonies (Daily Scrum meeting

and Sprint meeting) and roles (Scrum Master, Team, Product Owner), and artifacts (product

backlog, sprint backlog, and burndown chart) within RUP phases (Cho, 2009) (see Figure 24). In

this work, the business modeling discipline is the main player in the inception phase. The

analysis and the design disciplines are mostly utilized in the elaboration phase. The

implementation and testing disciplines focus on the construction phase, whereas, the

deployment and configuration disciplines are in the transition phase.

Figure 24. Hybrid model combining RUP phases and Scrum ceremonies (Cho, 2009)

The daily Scrum meeting, the daily Scrum of Scrums, the Sprint planning meeting, and the

Sprint review meeting can be conducted iteratively in each RUP phase (Figure 25). The product

owner can create the product log as a part of the business modeling discipline. The Scrum

Master also can plays the usual role defined in the Scrum process. The tasks defined in the

product backlog and the Sprint backlog can be accomplished and monitored through the daily

Scrum meeting and the Sprint meeting.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

65

Figure 25. A Typical Phase of Hybrid Model (Cho, 2009)

2.5 Conclusions

The reviewed literature encompass applicability of software architecture methods within any of

the phases in an agile project, from sprint planning, user stories, backlogs, development, testing,

etc. Additionally, the aforementioned approaches relate to a diversity of agile methodologies, from

XP to Crystal, FDD or Scrum (as shown in Table 3).

The aforementioned approaches showed that there is an opportunity to improve software

development while maintaining a balance between agility and the architectural approach.

Therefore, several approaches to integrate and embed software architecture and agile methods

are proposed. These works all have in common the fact that architecture methods must perform

in parallel with common agile methodologies, and the architecture itself must possess agility and

flexibility enough to respond to changes rapidly.

Chapter 2 – Requirements and Architecture Design in LSA

66

Table 3. Applicability of the reviewed approaches

Reference Phase Architecture-driven

Method

Agile

Framework

(R. L. Nord

& Tomayko,

2006)

Planning and Stories, Designing, Analysis and

Testing

QAW, ADD,

ATAM/CBAM

XP

(Jeon et al.,

2011)

Planning and stories, and Designing QAW, ADD XP, Scrum

(Farhan et

al., 2009)

Analysis and Testing ATAM XP, Crystal

(Sharifloo et

al., 2008)

Planning and stories, before upcoming iteration XP

(Kanwal et

al., 2010)

All phases (Develop an Overall Model, Build a

Features List, Plan by Feature, Design by Feature,

Build by Feature)

QAW, ATAM, ARID FDD

(Madison,

2010)

up-front planning, storyboarding, Sprint, and

working software

communication, quality

attributes, and design

patterns

N/A

(Díaz et al.,

2014)

Planning and stories, Sprints Change Impact Analysis Scrum

These approaches do not include thorough requirements specification and a logical

architecture able to be used as basis for the development like 4SRS does. Additionally, the initial

backlog should include both functional and quality (non-functional) requirements (typically quality

ones only emerge during development), where 4SRS supports their identification by using the

Model/View/Controller (MVC) pattern. It is expected that the proposed approach uses these

“strengths” of 4SRS and adapt them to agile context, but also to include concerns that the

presented approaches provide (change impact analysis, architecture review and assessment, and

others).

This chapter essentially focused in presenting existing research regarding architecture design

and large-scale agile (LSA). After a brief contextualization of how the architectural design

discipline changed and coexisted with the adoption of ASD, it described existing approaches that

used architecture design methods in specific stages of ASD processes and described how

practices may require some change in scaled (i.e., LSA) settings. The presented works allowed

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

67

depicting that architecture has a specific role depending in the development stage where it is

applied and, foremost, that the design is evolutionary and that the work is performed in a

continuous way. The adoption of “continuous”-oriented approaches leads to specific concerns

towards defining practices for modeling requirements and architecture. Such concerns are

described in Chapter 3.

References

Abrahamsson, P., Babar, M. A., & Kruchten, P. (2010). Agility and architecture: Can they coexist?

IEEE Software, 27(2), 16–22. https://doi.org/10.1109/MS.2010.36

Agile Alliance. (2001). Manifesto for agile software development.

Ambler, S. (2005). The agile unified process (aup). Ambysoft.

Ambler, S., & Lines, M. (2012). Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software

Delivery in the Enterprise. IBM Press.

Anderson, D. (2010). Kanban: successful evolutionary change for your technology business. Blue

Hole Press.

Avgeriou, P., Grundy, J., Hall, J. G., Lago, P., & Mistrík, I. (2011). Relating Software

Requirements and Architectures.

Beck, K., & Andres, C. (2004). Extreme programming explained: embrace change. Addison-

Wesley Professional.

Begel, A., Nagappan, N., Poile, C., & Layman, L. (2009). Coordination in large-scale software

teams. In Workshop on Cooperative and Human Aspects on Software Engineering (ICSE)

(pp. 1–7). IEEE Computer Society.

Bellomo, S., Kruchten, P., Nord, R., & Ozkaya, I. (2014). How to Agilely Architect an Agile

Architecture. Cutter IT Journal.

Bjarnason, E., Wnuk, K., & Regnell, B. (2011). A case study on benefits and side-effects of agile

practices in large-scale requirements engineering. In 1st Workshop on Agile Requirements

Engineering (p. 3). ACM.

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64–69.

Chapter 2 – Requirements and Architecture Design in LSA

68

Boehm, B., Gray, T., & Seewaldt, T. (1984). Prototyping versus specifying: a multiproject

experiment. IEEE Transactions on Software Engineering, SE-10(3), 290–303.

Boehm, B., & Turner, R. (2003). Using risk to balance agile and plan-driven methods. Computer,

36(6), 57–66.

Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer,

21(5), 61–72.

Brown, N., Nord, R., & Ozkaya, I. (2010). Enabling agility through architecture. DTIC Document.

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2004). How extreme does extreme programming have

to be? Adapting XP practices to large-scale projects. In 37th Annual Hawaii International

Conference on System Sciences (p. 10 pp.). IEEE.

Cho, J. (2007). Distributed Scrum for large-scale and mission-critical projects. In Americas

Conference on Information Systems (AMCIS) (p. 235).

Cho, J. (2009). A hybrid software development method for large-scale projects: rational unified

process with scrum. Issues in Information Systems, 10(2).

Clements, P., Ivers, J., Little, R., Nord, R., & Stafford, J. (2003). Documenting Software

Architectures in an Agile World. DTIC Document.

Cockburn, A. (2004). Crystal clear: a human-powered methodology for small teams. Pearson

Education.

Coplien, J. O., & Bjørnvig, G. (2011). Lean architecture: for agile software development. John

Wiley & Sons.

Cristal, M., Wildt, D., & Prikladnicki, R. (2008). Usage of Scrum practices within a global

company. In nternational Conference on Global Software Engineering (ICGSE) (pp. 222–

226). IEEE. https://doi.org/10.1109/ICGSE.2008.34

Daneva, M., Van Der Veen, E., Amrit, C., Ghaisas, S., Sikkel, K., Kumar, R., … Wieringa, R.

(2013). Agile requirements prioritization in large-scale outsourced system projects: An

empirical study. Journal of Systems and Software, 86(5), 1333–1353.

Díaz, J., Pérez, J., & Garbajosa, J. (2014). Agile product-line architecting in practice: A case study

in smart grids. Information and Software Technology, 56(7), 727–748.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

69

https://doi.org/10.1016/j.infsof.2014.01.014

Dingsøyr, T., Fægri, T. E., & Itkonen, J. (2014). What is Large in Large-Scale? A Taxonomy of

Scale for Agile Software Development. In Product-Focused Software Process Improvement

(pp. 273–276). Springer.

Dingsøyr, T., Hanssen, G. K., Dybå, T., Anker, G., & Nygaard, J. O. (2006). Developing software

with scrum in a small cross-organizational project. In Software Process Improvement (pp.

5–15). Springer.

Dingsøyr, T., & Moe, N. B. (2013). Research challenges in large-scale agile software

development. ACM SIGSOFT Software Engineering Notes, 38(5), 38–39.

Dingsøyr, T., & Moe, N. B. (2014). Towards Principles of Large-Scale Agile Development: A

Summary of the workshop at XP2014 and a revised research agenda.

Dingsøyr, T., Moe, N. B., & Olsson, H. H. (2018). Towards an Understanding of Scaling

Frameworks and Business Agility: A Summary of the 6th International Workshop at XP2018

(in print). In XP2018 Scientific Workshops. Porto, Portugal: ACM.

Eckstein, J. (2013). Agile software development with distributed teams: Staying agile in a global

world. Addison-Wesley.

Erdogmus, H. (2009). Architecture meets agility. IEEE Software, 26(5), 2–4.

https://doi.org/10.1109/MS.2009.121

Falessi, D., Cantone, G., Sarcia ̀, S., Calavaro, G., D’Amore, C., & Subiaco, P. (2010). Peaceful

coexistence: agile developer perspectives on software architecture. IEEE Software, 27(2),

23–25.

Farhan, S., Tauseef, H., & Fahiem, M. A. (2009). Adding agility to architecture tradeoff analysis

method for mapping on crystal. In WRI World Congress on Software Engineering (WCSE’09)

- Volume 04 (Vol. 4, pp. 121–125). IEEE. https://doi.org/10.1109/WCSE.2009.405

Fernandes, J. M., & Machado, R. J. (2016). Requirements in Engineering Projects. Cham:

Springer International Publishing. https://doi.org/10.1007/978-3-319-18597-2

Ferreira, N., Santos, N., Machado, R. J., & Gasevic, D. (2013). Aligning Domain-related Models

for Creating Context for Software Product Design. (G. Berlin Heidelberg, Ed.), SWQD’13.

Chapter 2 – Requirements and Architecture Design in LSA

70

Vienna, Austria: Springer-Verlag.

Fischer, G., & Schneider, M. (1984). Knowledge-based communication processes in software

engineering. In 7th international conference on Software engineering (pp. 358–368). IEEE

Press.

Forsberg, K., & Mooz, H. (1991). The relationship of system engineering to the project cycle.

INCOSE International Symposium, 1(1), 57–65. https://doi.org/10.1002/j.2334-

5837.1991.tb01484.x

Gilb, T. (1985). Evolutionary Delivery versus the “waterfall model.” ACM SIGSOFT Software

Engineering Notes, 10(3), 49–61. https://doi.org/10.1145/1012483.1012490

Grau, B. R., & Lauenroth, K. (2014). Requirements engineering and agile development -

collaborative , just enough , just in time , sustainable. International Requirements

Engineering Board (IREB).

Grundy, J. (2013). Foreword - Architecture vs Agile: competition or cooperation? In Agile Software

Architecture: Aligning Agile Processes and Software Architectures (pp. xxi–xxvi). Elsevier.

Highsmith, J. A. (2000). Adaptive Software Development. Addison-Wesley.

Hossain, E., Babar, M. A., & Paik, H. (2009). Using scrum in global software development: a

systematic literature review. In Fourth IEEE International Conference on Global Software

Engineering (ICGSE) (pp. 175–184). IEEE.

IIBA. (2015). A Guide to the Business Analysis Body of Knowledge® (BABOK® Guide) Version 3.

IIBA. (2017). Agile Extension to the BABOK Guide v2. International Institute of Business Analysis.

IREB. (2018). IREB Certified Professional for Requirements Engineering ‑ Advanced Level

RE@Agile.

Jeon, S., Han, M., Lee, E., & Lee, K. (2011). Quality attribute driven agile development. In 9th

International Conference on Software Engineering Research, Management and Applications

(SERA) (pp. 203–210). IEEE. https://doi.org/10.1109/SERA.2011.24

Kanwal, F., Junaid, K., & Fahiem, M. A. (2010). A hybrid software architecture evaluation method

for fdd-an agile process model. In International Conference on Computational Intelligence

and Software Engineering (CiSE) (pp. 1–5). IEEE.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

71

https://doi.org/10.1109/CISE.2010.5676863

Kazman, R. (2013). Foreword - Bringing the Two Together: Agile Architecting or Architecting for

Agile? In Agile Software Architecture: Aligning Agile Processes and Software Architectures

(pp. xxix–xxx). Elsevier.

Kirikova, M. (2017). Continuous Requirements Engineering. In International Conference on

Computer Systems and Technologies - CompSysTech’17. Ruse, Bulgaria: ACM.

https://doi.org/https://doi.org/10.1145/3134302.3134304

Kniberg, H., & Ivarsson, A. (2012). Scaling agile@ spotify.

Kruchten, P. (2004). The rational unified process: an introduction. Addison-Wesley Professional.

Kruchten, P. (2007). Voyage in the agile memeplex. Queue, 5(5), 38.

https://doi.org/10.1145/1281881.1281893

Larman, C., & Vodde, B. (2016). Large-Scale Scrum: More with LeSS.

Leffingwell, D. (2007). Scaling software agility: best practices for large enterprises. Pearson

Education.

Leffingwell, D. (2016). SAFe® 4.0 Reference Guide: Scaled Agile Framework® for Lean Software

and Systems Engineering. Scaled Agile, Inc.

Madison, J. (2010). Agile architecture interactions. IEEE Software, 27(2), 41–48.

https://doi.org/10.1109/MS.2010.35

Mancl, D., Fraser, S., Opdyke, B., Hadar, E., & Hadar, I. (2009). Architecture in an agile world.

Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented

Programming Systems Languages and Applications. Orlando, Florida, USA: ACM.

https://doi.org/10.1145/1639950.1639981

Martin, J. (1991). Rapid application development. Macmillan Publishing Co., Inc.

Moe, N. B., & Dingsøyr, T. (2017). Emerging Research Themes and updated Research Agenda

for Large-Scale Agile Development: A Summary of the 5th International Workshop at

XP2017. In Proceedings of the XP ’17 Workshops.

Moe, N. B., Olsson, H. H., & Dingsøyr, T. (2016). Trends in Large-Scale Agile Development: : A

Chapter 2 – Requirements and Architecture Design in LSA

72

Summary of the 4th Workshop at XP2016. In Proceedings of the Scientific Workshop

Proceedings of XP2016 on - XP ’16 Workshops (pp. 1–4). New York, New York, USA: ACM

Press. https://doi.org/10.1145/2962695.2962696

Nord, R. L., & Tomayko, J. E. (2006). Software architecture-centric methods and agile

development. IEEE Software, 23(2), 47–53. https://doi.org/10.1109/MS.2006.54

Nord, R., Ozkaya, I., & Kruchten, P. (2014). Agile in distress: architecture to the rescue. In T.

Dingsøyr & N. B. Moe (Eds.), International Conference on Agile Software Development

(XP’14) (pp. 43–57). Springer Verlag. https://doi.org/10.1007/978-3-319-14358-3_5

Paasivaara, M., Durasiewicz, S., & Lassenius, C. (2008a). Distributed agile development: Using

Scrum in a large project. In IEEE International Conference on Global Software Engineering

(ICGSE) (pp. 87–95). IEEE. https://doi.org/10.1109/ICGSE.2008.38

Paasivaara, M., Durasiewicz, S., & Lassenius, C. (2008b). Using scrum in a globally distributed

project: a case study. Software Process: Improvement and Practice, 13(6), 527–544.

Palmer, S., & Felsing, M. (2001). A practical guide to feature-driven development. Pearson

Education.

Pohl, K. (2010). Requirements Engineering. Springer.

Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit.

Addison-Wesley.

Prause, C. R., & Durdik, Z. (2012). Architectural design and documentation: Waste in agile

development? In 2012 International Conference on Software and System Process (ICSSP)

(pp. 130–134). IEEE. https://doi.org/10.1109/ICSSP.2012.6225956

Raatikainen, M., Rautiainen, K., Myllärniemi, V., & Männistö, T. (2008). Integrating product family

modeling with development management in agile methods. In Proceedings of the 1st

international workshop on Software development governance (pp. 17–20). ACM.

Reifer, D. J., Maurer, F., & Erdogmus, H. (2003). Scaling agile methods. IEEE Software, 20(4),

12–14.

Royce, W. W. (1970). Managing the development of large software systems. In IEEE WESCON

(Vol. 26). Los Angeles.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

73

Scheerer, A., Hildenbrand, T., & Kude, T. (2014). Coordination in Large-Scale Agile Software

Development: A Multiteam Systems Perspective. In 47th Hawaii International Conference

on System Sciences (HICSS) (pp. 4780–4788). IEEE.

https://doi.org/10.1109/HICSS.2014.587

Schwaber, K. (1997). Scrum development process. In Business Object Design and

Implementation (pp. 117–134). Springer. https://doi.org/10.1007/978-1-4471-0947-

1_11

Schwaber, K. (2015). Nexus Guide. Scrum.org.

Sharifloo, A. A., Saffarian, A. S., & Shams, F. (2008). Embedding architectural practices into

Extreme Programming. In 9th Australian Conference on Software Engineering (ASWEC) (pp.

310–319). IEEE. https://doi.org/10.1109/ASWEC.2008.4483219

Stapleton, J. (1997). DSDM, dynamic systems development method: the method in practice.

Cambridge University Press.

Sutherland, J. (2018). The Scrum@Scale Guide - The Definitive Guide to Scrum@Scale: Scaling

that Works, Version 1.0.

Sutherland, J., Viktorov, A., & Blount, J. (2006). Adaptive Engineering of Large Software Projects

with Distributed/Outsourced Teams. In Proc. International Conference on Complex

Systems, Boston, MA, USA (pp. 25–30).

Uludag, O., Kleehaus, M., Caprano, C., & Matthes, F. (2018). Identifying and Structuring

Challenges in Large-Scale Agile Development Based on a Structured Literature Review. In

2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC)

(pp. 191–197). IEEE. https://doi.org/10.1109/EDOC.2018.00032

Uludag, O., Kleehaus, M., Xu, X., & Matthes, F. (2017). Investigating the Role of Architects in

Scaling Agile Frameworks. In 2017 IEEE 21st International Enterprise Distributed Object

Computing Conference (EDOC) (pp. 123–132). IEEE.

https://doi.org/10.1109/EDOC.2017.25

Vaidya, A. (2014). Does DAD know best, is it better to do LeSS or just be SAFe? Adapting scaling

agile practices into the enterprise. In Pacific NW Software Quality Conference (PNSQC).

PNSQC.org.

Chapter 2 – Requirements and Architecture Design in LSA

74

Van de Ven, A. H., Delbecq, A. L., & Koenig Jr, R. (1976). Determinants of coordination modes

within organizations. American Sociological Review, 322–338.

Waterman, M., Noble, J., & Allan, G. (2012). How much architecture? Reducing the up-front

effort. In AGILE India (pp. 56–59). IEEE. https://doi.org/10.1109/AgileIndia.2012.11

Xu, P. (2011). Coordination in large agile projects. Review of Business Information Systems

(RBIS), 13(4).

Xu, P., & Ramesh, B. (2007). Software process tailoring: an empirical investigation. Journal of

Management Information Systems, 24(2), 293–328.

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

75

Chapter 3 - Logical Architectures within Agile and

“Continuous” Approaches

Chapter 3 - Logical Architectures within Agile and “Continuous” Approaches……..76

3.1. Introduction……………………………………………………………..76

3.2. Architecture lifecycle and viewpoints…………………………………..79

Software architecture lifecycle overview……………...…………….79

Software architecture methods……………..……….……………….85

Software architecture classification levels...………………………...85

3.3. Modeling approaches within the “continuous” paradigm………………92

Continuous software engineering……………………..……………..92

Continuous Architecture..…………………...………………………97

Architectural Management, Evolution, Change, and Debt………….99

3.4. Microservices architectures……………………………………………102

Microservices modeling……………………..……………………..108

Defining service boundaries………………………………………..112

Microservices patterns……………………………………………...113

3.5. Conclusions……………………………………………………………116

References…………………………………...………………………………….117

This chapter describes how the design is evolutionary and that the work addresses

specific concerns towards defining practices for modeling requirements and

architecture within the “continuous” paradigm. This chapter starts by presenting

the software architecture lifecycle. Afterwards, it describes the “continuous”

practices, starting with continuous software engineering approaches, then

continuous architecting approaches and architecture management and debt. For

easing the continuous architecting and management, this chapter also describes

microservices architectures and their modeling. This chapter ends with the

conclusions of the previously presented works.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

76

Chapter 3 - Logical Architectures within Agile and

“Continuous” Approaches

“Meaningful architecture is a living, vibrant process of deliberation,

 design, & decision, not just documentation.”

Grady Booch, co-author of UML

3.1. Introduction

If, on one hand, the previous section focused on approaches for delivering products or

services using agile practices supported by architectural methods, on the other hand this section

points out that the product delivery is a continuous process.

While there are frameworks for “delivering the product right” (e.g., Scrum, XP, etc.) in short

cycles, ASD is about getting feedback, learning and adapting. It is also about “delivering the right

product”. It is in this sense that approaches like “Lean Startup” (Ries, 2011) and “Lean Six

Sigma” (George & George, 2003), by using tools like “Plan - Do - Check - Act or Adjust” (PDCA)

and “Define, Measure, Analyze, Improve and Control” (DMAIC) cycles, suggest that product

companies must get feedback and learn from customers after a product is deployed in the

marketplace. Such feedback is conducted under controlled experiments, such as “A/B testing”

(Kohavi & Longbotham, 2017). The GROWS method (Hunt, 2015) is another example of learning-

oriented ASD.

Modern Agile2 framework was created by a community of practitioners that aim to modernize

ASD practices. It also presents revised principles of the ones from the Agile Manifesto, namely

(Figure 26) (Kerievsky, 2016): “Make people awesome” (i.e., “Customer Obsession” by figuring

out what’s holding them back and making essential changes to help them achieve awesome

results); “Make safety a prerequisite” (i.e., learn blamelessly from failures and quickly improve);

“Experiment and learn rapidly” (fail fast and quickly move on to new experiments in order to

achieve continuous improvement); and “Deliver value continuously” (a safe, continuous

deployment pipeline lowers stress by making releasing an automated event).

2
 http://modernagile.org/

http://modernagile.org/

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

77

Figure 26. Modern Agile

Heart of Agile3 was created by Alistair Cockburn, one of the authors of the Agile Manifesto, in

an attempt to go back to the essence of the Agile Manifesto, based in four actions: Collaborate;

Deliver; Reflect; Improve.

Figure 27. Heart of agile

The four actions can be further expanded using the Japanese concept “Shu-Ha-Ri” of skill

progression in training and learning (Novack, 2016)., The diagram extends more specific actions

to complement the four primary actions (Learning and Income extending Deliver, Insights and

Improvements extending Reflect, Collaboration and Trust extending Collaborate, and Experiment

3
 http://heartofagile.com

http://heartofagile.com/

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

78

and Change extending Improve). In addition, it highlights the need to “return to center” where the

heart of agile resides (the fourth stage “Kokoro”, meaning "heart" in Japanese).

Heart of Agile and Modern Agile have some similarities, since both concepts (Ageling, 2018):

 have a solid foundation in the original Agile Manifesto

 are lightweight

 are based on four principles

 are easy to understand, with a lot behind them

 are going back to the core

There are differences though. While Heart of Agile is about returning to the essence of the

Agile Manifesto, Modern Agile claims to be an evolved version of it. Additionally, Heart of Agile

guides on doing and mastering things, while Modern Agile’s principles are primarily to reflect on

the present and the future.

Heart of Agile and Modern Agile both are inspirational concepts, bringing “Agile” back to a

core. Both with a different perspective. And they are not mutually exclusive (Ageling, 2018).

Modern Agile principles can help identifying topics to improve or enhance and Heart of Agile can

guide this journey of improvement.

This paradigm has required the software teams to adopt “continuous”-oriented approaches

for delivering software products, i.e., “continuous software engineering” (CSE) (Bosch, 2014).

This way of working originated from the adoption of continuous integration (CI) and continuous

deployment (CD) practices. Performing both practices properly – CI and CD – allows companies

to have a continuous delivery environment. Inside the CSE, a widely used approach towards

continuous delivery is DevOps (Loukides, 2012), linking software “development” to “operations”

(or maintenance) after deployment to the marketplace. Similar linkage between “development”

and the “business analysis” is proposed by BizDev (Fitzgerald & Stol, 2017), and the three

disciplines are linked in BizDevOps (Gruhn & Schäfer, 2015).

Following the “continuous”-oriented paradigm, in order to define properly support CI and CD

practices, practices such as continuous requirements engineering (CRE) (Kirikova, 2017) and

continuous architecture (Erder & Pureur, 2015) arose. Together, they allow a “full-cycle” support

of continuous practices. Fitzgerald and Stol called it “Continuous ∗” (i.e. Continuous Star)

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

79

(Fitzgerald & Stol, 2017). CRE and CA are discussed in this section, since the scope of this thesis

focuses on these requirements and architecture discipline, rather than CI or CD, for instance.

Regarding RE, Pohl identifies two perspectives on continuity of requirements engineering

(Pohl, 2010): continuous changes in the business environment, and requirements engineering

activities in each phase of the systems development lifecycle. Specifically within the second one,

RE is performed as a sub-function of future representation, reality representation, fulfilment

Engineering, design and implementation, operations, and management (Kirikova, 2017). Of

course, it mainly relates to performing RE continuously rather than only in an initial upfront effort

(Grau & Lauenroth, 2014). The effort of avoiding upfront RE, from practices and principles

proposed by entities like International Institute of Business Analysis (IIBA, 2017) and

International Requirements Engineering Board (IREB, 2018), has been presented in chapter 2.

In terms of architecture and design, the “continuous” paradigm is called Continuous

architecture (CA) (Erder & Pureur, 2015). CA is an architectural approach that can encompass

continuous delivery, providing it with a broader architectural perspective. The CA principle

recommends delaying design decisions until they are absolutely necessary (Erder & Pureur,

2015). The developed system should be architected to enable changes, leveraging “The Power of

Small”. Moreover, the systems should be architected with a special focus on the build, test, and

deploy phases.

Finally, the CA principle also suggests following Conway’s law (Conway, 1968), modeling the

organization of the development teams after the design of the system they are working on.

Migration to microservices (Newman, 2015) is one of the most common situations when

companies adopt continuous architecting processes (Davide Taibi, Lenarduzzi, & Pahl, 2017). In

an era where software solutions are more and more cloud-based, microservices architectures

provide many benefits in CA and CI/CD (and DevOps). Thus, continuously architect

microservices is within the scope of this thesis.

3.2. Architecture lifecycle and viewpoints

Software architecture lifecycle overview

Architecture design includes from conceptual level to more refined one (Fernandes &

Machado, 2016). Such argument is in line with the design process proposed by Douglass:

architectural, mechanistic, and detailed (Douglass, 1999). Architectural design defines the

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

80

strategic decisions that affect most or all the software components, such as concurrency model

and the distribution of components across processor nodes. Mechanistic design elaborates

individual collaborations by adding “glue” objects to bind the mechanism together and optimize

its functionality. Such objects include containers, iterators, and smart pointers. Detailed design

defines the internal structure and behavior of individual classes. This includes internal data

structuring and algorithm details. These three levels of design are depicted in Figure 28.

Figure 28. Three levels of architectural design (Douglass, 1999)

During a SDLC, the architecture aims different inputs, target-users and viewpoints at each

stage. Other authors, like Kazman, Nord and Klein explore the use of architecture during SDLC

stages (Kazman, Nord, & Klein, 2003) - Business needs and constraints, Requirements,

Architecture design, Detailed design, Implementation, Testing, Deployment, and Maintenance

(Table 4). Within these stages, they described the different goals of architecture-based activity

and how architecture-centric methods, namely the Architecture Tradeoff Analysis Method (ATAM),

the Quality Attribute Workshop (QAW), the Cost-Benefit Analysis Method (CBAM), Active Reviews

for Intermediate Designs (ARID), and the Attribute-Driven Design (ADD) method contribute to

those stages (Table 5).

An architecture has a particular scope. It may relate from software, hardware, organization or

information, the overall system which encompasses all four, or the enterprise that hosts the

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

81

system (or will host a future system to be developed) (Eeles & Cripps, 2009). Within an

organization or development project, many architectural viewpoints are defined, each more

suitable for a given user but all related to each other. The “4+1” View Model (Kruchten, 1995) is

one of the widely known architecture model, which presents the logical, process, physical,

development and scenarios views. Other views like Siemens’ Five-view Model (Soni, Nord, &

Hofmeister, 1995), Reference Model of Open Distributed Processing (RM-ODP) (ISO, 1998), NIST

Enterprise Architecture Model (Fong & H., 1989), Department of Defense Architecture

Framework (DoDAF) (DoD, 2009) or the Zachman Framework™ (Zachman, 2011) present

relations between these viewpoints. Urbaczewski and Mrdalj compare some of these frameworks

(Table 6) in order to provide context for their suitability (Urbaczewski & Mrdalj, 2006).

Table 4. Architecture-based activities within a SDLC (Kazman et al., 2003)

Life-Cycle Stage Architecture-Based Activity

Business needs and

constraints

 Create a documented set of business goals: issues/environment, opportunities,

rationale, and constraints using a business presentation template.

Requirements Elicit and document six-part quality attribute scenarios using general scenarios,

utility trees, and scenario brainstorming.

Architecture design Design the architecture using ADD.

 Document the architecture using multiple views.

 Analyze the architecture using some combination of the ATAM, ARID, or CBAM.

Detailed design Validate the usability of high-risk parts of the detailed design using an ARID view.

Implementation

Testing

Deployment

Maintenance Update the documented set of business goals using a business presentation

template.

 Collect use case, growth, and exploratory scenarios using general scenarios, utility

trees, and scenario brainstorming.

 Design the new architectural strategies using ADD.

 Augment the collected scenarios with a range of response and associated utility

values (creating a utility-response curve); determine the costs, expected benefits,

and ROI of all architectural strategies using the CBAM.

 Make decisions among architectural strategies based on ROI, using the CBAM

results.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

82

Table 5. Use of architecture-centric methods within a SDLC (Kazman et al., 2003)

Life-Cycle Stage QAW ADD ATAM CBAM ARID

Business needs

and constraints

Input Input Input Input

Requirements Input; Output Input Input; Output Input; Output

Architecture design Output Input; Output Input; Output Input

Detailed design Input; Output

Implementation

Testing

Deployment

Maintenance Input; Output

Table 6. A comparison of enterprise architecture frameworks (Urbaczewski & Mrdalj, 2006)

SLDC Phase/

Framework

Planning Analysis Design Implementation Maintenance

Zachman Yes Yes Yes Yes No

DoDAF Yes Yes Yes Describes final

products

No

FEAF Yes Yes Yes Yes Detailed

Subcontractor’s view

TEAF Yes Owner’s

Analysis

Yes Yes No

TOGAF Principles that support decision making across

enterprise; provide guidance of IT resources; support

architecture principles for design and implementation

A software architecture, just like a software project, has a lifecycle. The Software Architecture

Development Life Cycle (SADLC) (Reddy, Govindarajulu, & Naidu, 2007) has inputs from the

business architecture or from software development life cycle for performing its architecture

analysis and design. Then, the SADLC follows Software Architecture Analysis, Architecture

design, Evaluation of design and ending in the Implementation of the Architecture (Figure 29). In

the SADLC, the control moves from spiral model to the architectural issues area with design

(SDLC) information and resolve all architectural issues (Figure 30).

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

83

Figure 29. The Software Architecture Development Life Cycle (SADLC) (Reddy et al., 2007)

The OMG modeling infrastructure, or Four-Layer Architecture, comprises a hierarchy of model

levels just in compliance with the foundations of MDD (Model-Driven Development) (Atkinson &

Kuhne, 2003). Each model in the Four-Layer Architecture (except for the one at the highest level)

is an instance of the one at the higher level, which range from M0 to M3. The first level (user

data), i.e., M0, refers to the data manipulated by software. Models of user data - one level above -

are called user concepts models, i.e., M1. Models of user concepts models are language

concepts models, i.e., M2. These are models of models and so are called metamodels. A

metamodel is a model of a modeling language. It is also a model whose elements are types in

another model. It describes the structure of the different models that are part of it, the elements

that are part of those models and their respective properties. The language concepts metamodels

are at the highest level of the modeling infrastructure. The hierarchy of models is as follows: M3

– Language concepts metamodels: M2 – Language concepts: M1 – User concepts: M0 – User

data:

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

84

Figure 30. Proposing architectural issues within the Spiral-based SADLC (Reddy et al., 2007)

In comparison, the Model-driven Architecture (MDA) (OMG, 2003) proposes a hierarchical

structure for model abstraction, namely:

 Computation-independent model (CIM)

 Platform-independent model (PIM)

 Platform-specific model (PSM)

Figure 31. MDA-based model abstraction (Dodani, 2006)

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

85

Software architecture methods

There are approaches that support assure an alignment of the architecture with other relevant

information. Some known approaches are Reuse-Driven Software Engineering Business (RSEB)

(Jacobson, Griss, & Jonsson, 1997), Family-oriented Abstraction Specification and Translation

(FAST) (Weiss, 1999), Feature-Oriented Reuse Method (FORM) (Kang et al., 1998),

Komponentenbasierte Anwendungsentwicklung (KobrA – that is German for “component-based

application development”) (Bayer, Muthig, & Göpfert, 2001), Quality-driven Architecture Design

(QADA) (Matinlassi, Niemelä, & Dobrica, 2002), Product Line Software Engineering (PulSE)

(Bayer, Flege, & Knauber, 1999). All the methods previously stated have the objective of

supporting the design of a software architecture based in elicited information related to software

requirements.

Software architecture classification levels

In this section, we propose a classification schema for architecture viewpoints, were the

viewpoints are described under a set of proposed dimensions for the schema (Figure 32), namely

the viewpoint framework, the software development phase and the level of abstraction.

Figure 32. Classification schema

For the viewpoint framework, the classification schema uses Kruchten’s 4+1 framework

(Kruchten, 1995). The adoption of this framework over the remaining is due to its widely known.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

86

However, for a better classification, the architecture levels are also fitted in other viewpoint

frameworks: NIST EA Model (Fong & H., 1989), Siemens Five-view Model (Soni et al., 1995),

SEI’s viewpoint and target audience framework (P. C. Clements & Northrop, 1996), ISO RM-ODP

(ISO, 1998), Rozanski & Woods Viewpoint Catalog (Rozanski & Woods, 2005), DoDAF 2.0 (DoD,

2009) and Zachman Enterprise Ontology (Zachman, 2011).

The classification is proposed by analyzing its fitting within the schema dimensions based in
found definitions in literature. We propose a set of architecture levels. These levels refer to the
architecture’s scope, as well as context of use. The proposal was based in a comparison and
likeness of the viewpoints from the presented frameworks, depicted in Table 7. Additionally, the
levels were grouped in

Table 8): Concepts, Information systems, Software systems, and Infrastructure.

Table 7. Architecture viewpoints categories

Concepts Inf. Systems Software Systems Infrastructure

Conceptual architecture

Reference architecture

Enterprise architecture

Process architecture

Information system

architecture

Logical architecture

Component architecture

Data models / Classes

Technical architecture

Deployment architecture

Physical architecture

Table 8. Comparison and likeness of architecture viewpoints

NIST EA

Model

Kruchten

4+1 Model

Siemens

Five-view

Model

SEI’s

viewpoint

and target

audience

ISO RM-

ODP (ISO,

1998)

Viewpoint

Catalog

DoDAF 2.0 Zachman

Enterprise

Ontology

Business Scenarios Conceptual Conceptual Enterprise Context All Scope

Information Module Module Information Functional Capability Concepts

 Logical Logic

Information

Systems

Process Process Information Data and

Information

Data Concurrency Operational Physics

Delivery

Systems

 Engineering Project Technology

 Development Code Computation Development Services

 Execution Deployment Standards Product

 Physical Hardware Physical Technical Operational Systems

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

87

Level 1 – conceptual level

The conceptual architecture is derived from business requirements and are understood and

supported by senior management (D. Chen, Doumeingts, & Vernadat, 2008). With this definition

in mind, the conceptual architecture can be classified as:

Conceptual – Phase: Planning; 4+1: Logical; Abstraction: CIM. (Others: NIST EA Model:

Business; Siemens Five-view Model: Conceptual; SEI’s viewpoint and target audience:

Conceptual; ISO-RM ODP: Information; Viewpoint Catalog: Context; DoDAF 2.0: Capability;

Zachman: Concepts.)

A reference architecture is a framework in which system related concepts are organized

(Zwegers, 1998). It is also defined as a set of coherent engineering and design principles used in

a specific domain. It aims at structuring the design of a specific system architecture by defining a

unified terminology, the structure of the system, responsibilities of system components, by

providing standard (template) components, by giving examples, etc. (Brussel, Wyns, Valckenaers,

Bongaerts, & Peeters, 1998). With this definition in mind, the reference architecture can be

classified as:

Reference – Phase: Planning; 4+1: Logical; Abstraction: CIM. (Others: NIST EA Model:

N/A; Siemens Five-view Model: Conceptual; SEI’s viewpoint and target audience:

Conceptual; ISO-RM ODP: Information; Viewpoint Catalog: Functional; DoDAF 2.0:

Standards; Zachman: Scope.)

Figure 33. Viewpoints classifications at Level 1

CIM

PIM

PSM

Logical Process PhysicalDevelopmentScenario

Planning

Analysis

Design

Implementation

Deployment

Refer.
Conc.

CIM

PIM

PSM

Logical Process PhysicalDevelopmentScenario

Rerer.

Concec.

CIM

PIM

PSM

Planning Analysis DeploymentImplementationDesign

Design

Analysis

Planning

Logical Process PhysicalDevelopmentScenario

Deployment

Implementation

Rerer.

Concec.

Rerer.

Concec.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

88

Level 2 – Information systems level

An enterprise architecture tries to describe and control an organization’s structure,

processes, applications, systems and techniques in an integrated way (Lankhorst, 2009).

Enterprise architecture provides a way to enable cross-functional, cross-discipline collaboration

essential to articulating and implementing strategic business requirements. A coherent

description of enterprise architecture provides insight, enables communication among

stakeholders and guides complicated change processes (H. Chen, 2008). With this definition in

mind, the enterprise architecture can be classified as:

Enterprise – Phase: Analysis; 4+1: Process; Abstraction: CIM. (Others: NIST EA Model:

Business; Siemens Five-view Model: Conceptual; SEI’s viewpoint and target audience:

Conceptual; ISO-RM ODP: Enterprise; Viewpoint Catalog: Context; DoDAF 2.0: Capability;

Zachman: Scope.)

The process architecture represents the fundamental organization of service development,

service creation, and service distribution in the relevant enterprise context (Winter & Fischer,

2006). A process architecture can also be defined as an arrangement of the activities and their

interfaces in a process (Browning & Eppinger, 2002). Process architecture ensures that all the

relevant information, which consists of the foundation and guidelines for the process review and

improvement, are made explicit and can be referred to (Jeston & Nelis, 2008). With this

definition in mind, the process architecture can be classified as:

Process – Phase: Analysis; 4+1: Process; Abstraction: CIM. (Others: NIST EA Model:

Information Systems; Siemens Five-view Model: N/A; SEI’s viewpoint and target

audience: Process; ISO-RM ODP: N/A; Viewpoint Catalog: N/A; DoDAF 2.0: Capability;

Zachman: Concepts.)

An information system architecture is about the logical constructs for controlling and

defining interfaces and for integrating the components that compose the system, which for

information systems relates to an entire enterprise (Zachman, 1987). It must represent the

concepts in the real world that are part of the information system and its development (Sowa &

Zachman, 1992). Additionally, it must provide a linkage between information strategy and

business strategy (Zachman, 1987). Ferreira et al. use an information system logical

architecture, where its logical components relate to activities performed within the information

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

89

system (Ferreira, Santos, Machado, & Gašević, 2012). With this definition in mind, the

information systems architecture can be classified as:

Inf. System – Phase: Design; 4+1: Logical; Abstraction: PIM. (Others: NIST EA Model:

Business; Siemens Five-view Model: N/A; SEI’s viewpoint and target audience:

Process; ISO-RM ODP: Information; Viewpoint Catalog: Information; DoDAF 2.0: Data and

Information; Zachman: N/A.)

Figure 34. Viewpoints classifications at Level 2

Level 3 – Software features

A system logical architecture can be viewed as a constructed set of the system’s design

decisions (Ferreira, Santos, Machado, Fernandes, & Gasević, 2014), a view of a system

composed of a set of problem-specific abstractions supporting functional requirements and

suiting the purpose of identifying common design elements across the different parts of a system

(Kruchten, 1995), a module view representing the static structure of the software system (the

system’s functional blocks) (P Clements, Garlan, Little, Nord, & Stafford, 2003). It is a design

artifact representing a functionality-based structure of the system being designed (Azevedo,

2014), represented as objects or object classes (Kruchten, 1995) or as components (Azevedo,

2014). With this definition in mind, the logical architecture can be classified as:

Logical – Phase: Design; 4+1: Logical; Abstraction: PIM. (Others: NIST EA Model: N/A;

Siemens Five-view Model: Module; SEI’s viewpoint and target audience: Module; ISO-

RM ODP: Information; Viewpoint Catalog: Functional; DoDAF 2.0: Operational; Zachman:

Logic.)

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

90

Component is a modular unit with well-defined Interfaces that is replaceable within its

environment (UML, 2011). With this definition in mind, the component architecture can be

classified as:

Component – Phase: Design; 4+1: Development; Abstraction: PIM. (Others: NIST EA

Model: Data; Siemens Five-view Model: Development; SEI’s viewpoint and target

audience: Code; ISO-RM ODP: Computation; Viewpoint Catalog: Development; DoDAF

2.0: Services; Zachman: Technology.)

A class architecture provides a classification of objects and to specify the Features that

characterize the structure and behavior of those objects (UML, 2011). With this definition in

mind, the class architecture can be classified as:

Data / Class – Phase: Design; 4+1: Development; Abstraction: PIM. (Others: NIST EA

Model: Data; Siemens Five-view Model: Development; SEI’s viewpoint and target

audience: Code; ISO-RM ODP: Computation; Viewpoint Catalog: Concurrency; DoDAF

2.0: Standards; Zachman: Technology.)

Figure 35. Viewpoints classifications at Level 3

Level 4 – IT infrastructures

The technical architecture provides the technical components that enable the business

strategies and functions (D. Chen et al., 2008). It describes the capabilities that are required to

support the deployment of business, data, and application services, in terms of IT infrastructure,

middleware, networks, communications, processing, standards, and so on (Booch, 2010). With

this definition in mind, the technical architecture can be classified as:

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

91

Technical – Phase: Implementation; 4+1: Development; Abstraction: PSM. (Others: NIST EA

Model: Delivery Systems; Siemens Five-view Model: Code; SEI’s viewpoint and target

audience: N/A; ISO-RM ODP: Technical; Viewpoint Catalog: Development; DoDAF 2.0:

Systems; Zachman: Technology.)

A deployment architecture defines the execution architecture of systems and the assignment of

software artifacts to system elements (UML, 2011). With this definition in mind, the deployment

architecture can be classified as:

Deployment – Phase: Deployment; 4+1: Physical; Abstraction: PSM. (Others: NIST EA

Model: Delivery Systems; Siemens Five-view Model: Execution; SEI’s viewpoint and

target audience: Physical; ISO-RM ODP: Computation; Viewpoint Catalog: Deployment;

DoDAF 2.0: Product; Zachman: Concepts.)

A physical architecture show a system's physical layout, revealing which pieces of software

run an what pieces of hardware (Fowler, 2004). With this definition in mind, the physical

architecture can be classified as:

Physical – Phase: Deployment; 4+1: Physical; Abstraction: PSM. (Others: NIST EA Model:

Delivery Systems; Siemens Five-view Model: Hardware; SEI’s viewpoint and target

audience: Physical; ISO-RM ODP: Technical; Viewpoint Catalog: Operational; DoDAF 2.0:

Systems; Zachman: Technology.)

Figure 36. Viewpoints classifications at Level 4

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

92

3.3. Modeling approaches within the “continuous” paradigm

Continuous software engineering

While agile practices have succeeded in involving the customer in the development cycle,

there is an urgent need to learn from customer usage of software also after delivering and

deployment of the software product. Among the plethora of available practices that a company

may use towards “being agile”, Olsson, Alahyari and Bosch propose a pathway for stages that a

company should embrace, called “Stairway to Heaven” (Helena Holmstrom Olsson, Alahyari, &

Bosch, 2012; Helena Holmström Olsson & Bosch, 2014). It is composed by five stages, as

depicted in Figure 37: (i) Traditional development; (ii) Agile R&D organization; (iii) Continuous

integration; (iv) Continuous deployment; and (v) R&D as an experiment system.

Figure 37. "Stairway to Heaven" (Helena Holmstrom Olsson et al., 2012; Helena Holmström Olsson &

Bosch, 2014)

Traditional development

Traditional development is typically the starting point for most companies. Traditional

development is a software development approach characterized by slow development cycles,

sequential phases (waterfall-style), and a rigorous planning phase in which requirements are

frozen upfront (Sommerville, 2007). Projects adopting this development approach suffer from

long feedback cycles and difficulties to integrate customer feedback into the product development

process (Helena Holmstrom Olsson et al., 2012; Sommerville, 2007). Typically, software delivery

takes place in the end of the project life cycle, and it is then that customers can provide

feedback.

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

93

Agile R&D organization

Adopting agile development practices is typically for overcoming the challenges from

overcoming the customer’s long feedback cycles. Agile practices are characterized by small

cross-functional development teams, short development Sprints resulting in working software,

and continuous planning in which the customer is involved to allow for continuous customer

feedback (Highsmith, 2002). In agile organizations, however, product management and system

verification still work according to the traditional development approach (Helena Holmstrom

Olsson et al., 2012).

Continuous integration (CI)

This step relates to the establishment of practices that allow for frequent integration of work,

daily builds, and fast commit of changes (e.g., automated builds and automated testing). At this

point, both product development organization and test and verification organization work

according to agile practices with short feedback cycles and continuous integration of work. Work

is integrated frequently, leading to multiple integrations per day (Humble & Farley, 2011).

Continuous deployment (CD)

CD implies the continuous push out of changes to the code instead of doing large builds and

having planned releases of large chunks of functionality. This allows for continuous customer

feedback, the ability to learn from customer usage data, and to eliminate work that does not

produce value for the customer. At this point, R&D, product management, and customers are all

involved in a rapid, agile development cycle in which response time is short (Helena Holmstrom

Olsson et al., 2012).

R&D as an experiment system

The final step in the “Stairway to Heaven” model relates to the ability of the organization to

respond based on instant customer feedback, where actual deployment of software functionality

is seen as a way of validating functionality. Customers are exposed to partial implementation of a

functionality and the organization uses their feedback for determining the value of that particular

functionality (Bosch, 2012).

Olsson and Bosch state the following when organizations evolve from one step to another

(Helena Holmström Olsson & Bosch, 2014):

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

94

- From Traditional to Agile R&D: requires a careful introduction of agile practices into the

organization, a shift to small development teams, and a focus on features rather than

components

- From Agile to Continuous Integration: requires an automated test suite, a main branch to

which code is continually delivered, and a modularized architecture

- From Continuous Integration to Continuous Deployment: requires internal and external

stakeholders to be fully involved and a proactive customer with whom to explore the concept

- From Continuous Deployment to R&D as an “Innovation System”: requires careful

ecosystem management in order to align internal business strategies with the dynamics of a

competitive business ecosystem.

Finally, a characteristic for all transitions is the critical alignment of internal and external

processes in order to maximize the benefits as provided by the business ecosystem of which a

company is part.

A research conducted by Fitzgerald and Stol showed that software engineering has evolved

with the adoption of agile practices and CI, Lean Startup and Lean Thinking approaches

(Fitzgerald & Stol, 2017). They also discuss the need for a holistic approach that also refers the

adoption of agile approaches in other organizational functions, like Enterprise Agility (Overby,

Bharadwaj, & Sambamurthy, 2005) and Beyond Budgeting (Bogsnes, 2008). Finally, the

approach is complemented by integrating development and operations (DevOps) (Loukides,

2012), and integrating business strategy and development (BizDev) (Fitzgerald & Stol, 2017).

Hence, they propose a holistic approach encompassing all these concepts and emphasizing in

CSE, called “Continuous ∗” (i.e. Continuous Star) (Fitzgerald & Stol, 2017). Continuous ∗

considers the entire software life cycle, with three main sub- phases (Figure 38): Business

Strategy & Planning, Development, and Operations.

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

95

Figure 38. Continuous* framework (Fitzgerald & Stol, 2017)

Each activity from Continuous * is briefly explained:

- Continuous planning: endeavor involving multiple stakeholders from business and

software functions, where plans are dynamic open-ended artifacts that evolve in response to

changes in the business environment;

- Continuous budgeting: budgeting (organization’s investments, revenue and expense

outlook) becomes a continuous activity to facilitate changes during the year;

- Continuous integration: a typically automatically triggered process comprising inter-

connected steps such as compiling code, running unit and acceptance tests, validating code

coverage, checking coding standard compliance and building deployment packages;

- Continuous delivery: the practice of continuously deploying good software builds

automatically to some environment, but not necessarily to actual users;

- Continuous deployment: the practice of ensuring that the software is continuously ready

for release and deployed to actual customers;

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

96

- Continuous verification: Adoption of verification activities including formal methods and

inspections throughout the development process rather than relying on a testing phase

towards the end of development;

- Continuous testing: a process typically involving some automation of the testing process,

or prioritization of test cases, to help reduce the time between the introduction of errors and

their detection;

- Continuous compliance: seeks to satisfy regulatory compliance standards on a

continuous basis;

- Continuous security: security being treated as a key concern throughout all phases of the

development lifecycle and even post deployment, supported by a smart and lightweight

approach to identifying security vulnerabilities;

- Continuous evolution: technical debt is incurred when an architecture is unsuitable to

facilitate new requirements;

- Continuous use: Recognizes that the initial adoption versus continuous use of software

decisions are based on different parameters, and that customer retention can be a more

effective strategy than trying to attract new customers;

- Continuous trust: Trust developed over time as a result of interactions based on the belief

that a vendor will act cooperatively to fulfill customer expectations without exploiting their

vulnerabilities;

- Continuous run-time monitoring: run-time behaviors of all kinds must be monitored to

enable early detection of quality-of-service problems, such as performance degradation, and

also the fulfillment of service level agreements (SLAs);

- Continuous improvement: Based on lean principles of data-driven decision-making and

elimination of waste, which lead to small incremental quality improvements;

- Continuous innovation: a sustainable process that is responsive to evolving market

conditions and based on appropriate metrics across the entire lifecycle of planning,

development and run-time operations;

- Continuous experimentation: software development based on experiments with

stakeholders consisting of repeated Build-Measure-Learn cycles.

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

97

Continuous Architecture

Continuous Architecture (CA) is a set of principles and tools targeted at addressing the gap

between the Agile delivery and architecture practices (Erder & Pureur, 2015). It brings together

the work of the agile developer to start building and the enterprise architect that will look at a 5-

year plan. CA is the response required from the adoption of Continuous Delivery by software

development teams.

The main objective of Continuous Delivery is to respond quickly to business needs by

frequently delivering high-quality software in rapid cycles. Unlike traditional software delivery

approaches that emphasize the importance of delivering various documents such as

requirements, architecture, and design specifications, the overall goal of Continuous Delivery is to

produce production-quality software rapidly in an incremental manner. Instead of validating

various artifacts produced as part of the Software Development Life Cycle (SDLC), quality is

enforced by systematically testing the software components using automated tests (Erder &

Pureur, 2015).

Continuous architecting has a set of specific goals (Erder & Pureur, 2015):

- To create an architecture that can evolve with applications, that is testable , that can respond

to feedback and in fact is driven by feedback

- To make Enterprise Architecture real

- To make solution architecture sustainable

- To create real world, actionable, useful strategies

CA is characterized by the following principles (Erder & Pureur, 2015):

1. Architect Products – not solutions for Projects

2. Focus on Quality Attributes – not on Functional Requirements

3. Delay Design Decisions Until They Are Absolutely Necessary To Keep The Architecture

Manageable

4. Leverage “The Power Of Small” To Architect For Change

5. Architect for Build, Test and Deploy To Deliver Capabilities Continuously

6. Model The Organization Of Your Teams After The Design Of The System To Promote

Interoperability

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

98

As part of CA, especially within large-scale agile (LSA) settings, (Martini, Pareto, & Bosch,

2014) identifies the following practices:

- Risk Management;

- architectural decisions and changes;

- Pattern Distillation;

- communication of architecture:

o providing architectural knowledge (communication output),

o monitor the current status of the system (communication input);

- Inter-features Architecting;

- Architecting for Testability;

- Controlling Erosion.

The CA practices require focus in the architecture role, as well as in architecting tasks within

developing and maintaining software architecture. Martini and Bosch present Continuous

Architecting Framework For Embedded software and Agile (CAFFEA) (Martini, Pareto, & Bosch,

2015), an organizational framework oriented for architecture governance. The frameworks

presents roles, challenges and tasks within architecture teams and governance teams viewpoints

(Figure 39). Roles are described as belonging to the Architects and to the Team. The existing

roles for Architects are Chief Architect, Governance Architect and Team Architect. Chief architects

are responsible for the whole overall portfolio architecture, which might include more products

and more than one system; Governance architects are responsible for areas of the architecture,

related to single products or systems or sub-systems, but not related to only one team; and Team

architects are usually most experienced developer in a team who have the most knowledge about

the architecture and support/lead the team on such area (Martini et al., 2014). Within the

Teams, within this framework they have roles responsible for coordination and cooperation

practices, which are complementary to the typical agile (and feature-oriented) teams. Roles for

Teams are Runway Team, Architecture Teams, Governances Teams.

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

99

Figure 39. The Continuous Architecting Framework For Embedded software and Agile (CAFFEA)

(Martini et al., 2015)

Architectural Management, Evolution, Change, and Debt

The architecture is not static either during the project, after either the project ended (and the

software is delivered and “in production”). Architectural changes as the architecture evolves,

because of enhancement and maintenance requirements, are addressed as architecture

management (Babar, 2013). Changes come in different flavours, such as redefining or adding

requirements, changing infrastructure and technology, or causing changes by bugs and wrong

decisions. to avoid design erosion, software architects need to embrace change by systematically

alternating design activities with iterative architecture assessment and refactoring (Stal, 2014).

Architecture maintenance is performed by architectural methods that support evaluation of

developed features during cycles (Kanwal, Junaid, & Fahiem, 2010). At this point, the major

concern is to accommodate the required changes without damaging the architectural integrity.

Prior design decisions are reassessed for the potential impact of the required changes and new

decisions are made (Babar, 2013).

Any change that will influence the system’s safety requirements after we have finished the

safety analysis and safety planning for development of safety-critical software will require a

change impact analysis. Using agile development we may add new requirements, change existing

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

100

requirements and make current requirements more detailed both in the product backlog and in

the Sprint backlogs (Stålhane, 2014).

Change impact analysis (CIA) is important for software maintenance and is closely related to

traceability in two ways (Stålhane, 2014):

(1) From code to requirements – which requirements are affected if we change this code?

This also gives us information on which tests that need to be re-run;

(2) From requirements to code – what code must be changed if this requirement is

changed?

Steps in a typical impact analysis process are (Wiegers, 2014):

 Identify the sequence in which the tasks must be performed and how they can be

interleaved with currently planned tasks.

 Determine whether the change is on the project’s critical path. If a task on the critical path

slips, the project’s completion date will slip. Every change consumes resources, but if you

can plan a change to avoid affecting tasks that are currently on the critical path, the change

will not cause the entire project to slip.

 Estimate the impact of the proposed change on the project’s schedule and cost.

 Evaluate the change’s priority by estimating the relative benefit, penalty, cost, and technical

risk compared to other discretionary requirements.

 Report the impact analysis results to all stakeholders so that they can use the information to

help them decide whether to approve or reject the change request.

A change in a system may have effects that have to be determined, which leads to use CIA

techniques (Arnold, 1996). In agile architecting, CIA is used in decision-making process of adding

or changing features, focusing in affected dependencies with earlier design decisions, rationale,

constraints, and risks (Pérez, Díaz, Garbajosa, & Yagüe, 2014).

It is crucial to perform a CIA if the change affects an architecturally significant requirement

(ASR) (L. Chen, Ali Babar, & Nuseibeh, 2013). ASRs are requirements that play an important role

in determining the architecture of the system (Paul Clements & Bass, 2010). This concept mostly

arose from the need to differentiate the quality requirements (i.e., non-functional requirements

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

101

(Sommerville, 2007), which are commonly related to the architecture of the system) that do not

have great impact to the system design as the ones that actually do have importance in design

decisions (L. Chen et al., 2013).

These techniques may arise as a way of managing the technical debt (Kruchten, Nord, &

Ozkaya, 2012; Tom, Aurum, & Vidgen, 2013). Technical debt may relate from architecture,

source code, testing, among others (Martini, Besker, & Bosch, 2018). Architectural debt relates

to a group of architecturally connected files that incur high maintenance costs over time due to

their flawed connections (L. Xiao, Cai, Kazman, Mo, & Feng, 2016).

Figure 40. Types of Technical debt (Kruchten, Nord, & Ozkaya, 2012)

Software architecture denotes a potential area for refactoring activities due to its continuous

growth and evolution. Software architecture assessment and refactoring should happen regularly,

in all iterations (Stal, 2014).

Refactoring activities should be conducted iteratively in a systematic way, towards a process

for continuous architecture improvement, which can include (Stal, 2014):

 Architecture assessment: Identify architecture smells and design problems;

 Prioritization: Prioritize all identified architectural issues by determining the priority of the

affected requirements;

 Select appropriate refactoring patterns;

 Quality assurance: For each refactoring application, check whether it changes the semantics

of the system.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

102

3.4. Microservices architectures

Microservices are an architectural style oriented towards modularization, where the idea is to

split the application into smaller, interconnected services, running as a separate process (Figure

41) that can be independently deployed, scaled and tested (Thönes, 2015).

They also extend from the ’design-stage architecture’ into deployment and operations as a

continuous development style (Pahl & Jamshidi, 2016). That is why, when working with

microservices, considerations range from architecture to deployment (or DevOps) issues

(Aderaldo, Mendonca, Pahl, & Jamshidi, 2017).

Figure 41. A pictorial representation of a microservices architecture4

The main difference when dealing with a monolithic application and a microservices

architecture is that a monolithic application puts all its functionality into a single process and

scales by replicating the monolith on multiple servers, while a microservices architectures puts

4
 https://www.nginx.com/blog/introduction-to-microservices/

https://www.nginx.com/blog/introduction-to-microservices/

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

103

each element of functionality into a separate service and scales by distributing these services

across servers, replicating as needed (J. Lewis & Fowler, 2014).

A microservices system encompasses all of the things about your organization that are related

to the application it produces. For that reason, Nadareishvili, Mitra, McLarty, and Amundsen

present a microservice design model comprised of five parts (Figure 42) (Nadareishvili, Mitra,

McLarty, & Amundsen, 2016): Service, Solution, Process and Tools, Organization, and Culture.

Figure 42. Microservices main characteristics

The main characteristics of microservices are (J. Lewis & Fowler, 2014):

 Componentization via Services: Software is broken up into multiple services that are

independently replaceable and upgradeable and communicate by means of inter-process

communication facilities using an explicit component-published-interface.

 Organized Around Business Capabilities: Microservices are implemented around business

areas, in which services include a user-interface, storage, and any external collaborations.

 Products not Projects: Development teams own a product throughout its entire lifetime,

taking full responsibility for the software in production.

 Smart Endpoints and Dumb Pipes: Simple messaging or a lightweight messaging bus is

used to provide communication among microservices.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

104

 Decentralized Governance: teams use the right tool (or programming language) for a given

situation, instead of a single tool for the entire solution. It is also referred as polyglot

programming.

 Decentralized Data Management: Microservices prefer letting each service manage its own

database, either different instances of the same database technology, or entirely different

database systems. It is also referred as polyglot persistence.

 Infrastructure Automation: Many of the products or systems being built with

microservices use infrastructure automation techniques, based in automated testing and

deployment, towards continuous delivery.

 Design for Failure: applications need to be designed so that they can tolerate the failure

of services.

 Evolutionary design.

The development of microservices follow the following principles (Newman, 2015):

1. “Model around business concepts”, to be represented as bounded contexts and domain

models according to Domain-Driven Design (DDD) patterns (Evans, 2004).

2. “Adopt a culture of automation” in testing and deployment; practice continuous delivery.

3. “Hide internal implementation details” such as databases; define technology-agnostic

Application Programming Interfaces (APIs).

4. “Decentralize all the things”: e.g., apply shared governance, prefer service choreography

over orchestration, and use dumb middleware but smart endpoints.

5. Make services “independently deployable”, e.g., let versioned (service) endpoints co-exist;

deploy only one service per (virtual) host.

6. “Isolate failure”, e.g. introduce circuit breakers to make services robust.

7. Be “highly observable”, e.g. via semantic monitoring with data aggregation.

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

105

Although these characteristics and principles overlap, they also differ substantially (Table 9)

(Zimmermann, 2017):

Table 9. Microservices characteristics and principles (Zimmermann, 2017)

Characteristics by Lewis/Fowler (J. Lewis &

Fowler, 2014)

Relationship Newman’s Principles

(Newman, 2015)

Componentization via services (similar to) Hide internal implementation

details

Organized around business capabilities (matches) Model around business

concepts

Products not projects (no pendant)

Smart endpoints and dumb pipes (included in) Decentralize all the things

Decentralized governance (superset of)

Decentralized data management (superset of)

Infrastructure automation (superset of) Adopt a culture of automation

Design for failure (subset of) Isolate failure

Evolutionary design (no pendant)

 (no pendant) Highly observable

Independently deployable (not formally listed

as a characteristic, but described as a

definition

(matches) Independently deployable

Also, in the same work, Zimmerman summarizes common tenets on microservices

(Zimmermann, 2017):

1. Fine-grained interfaces to single-responsibility units that encapsulate data and processing

logic are exposed remotely, typically via RESTful HTTP resources or asynchronous

message queues. These remote units constitute services that can be deployed, changed,

substituted, and scaled independently of each other.

2. Business-driven development practices and pattern languages such as domain-driven

design (DDD) (Evans, 2004) are employed to identify and conceptualize services.

3. Cloud-native application design principles are followed, e.g., as summarized in IDEAL

(isolated state, distribution, elasticity, automated management and loose coupling)

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

106

(Haberle, Charissis, Fehling, Nahm, & Leymann, 2015) or the twelve app factors in

Heroku’s method (Wiggins, 2012).

4. Multiple computing paradigms (such as functional and imperative) and storage

paradigms (e.g., relational databases and several types of NoSQL stores) are leveraged

in a polyglot programming and persistence strategy. Some of these polyglot services only

guarantee eventual rather than strong consistency.

5. Lightweight containers are used to deploy services. Docker and Dropwizard are

frequently mentioned as two related options (although these two technologies do not

reside on the same level of abstraction and have rather different scopes, operating

system virtualization vs. code library assembly).

6. Decentralized continuous delivery is practiced during service development (which

requires/promotes a high degree of automation and autonomy).

7. DevOps Lean, but holistic and largely automated approaches to configuration,

performance and fault management are employed, which extend agile practices and

include service monitoring.

Finally, Zimmerman summarizes the analysis by positioning the seven tenets (T-x), the nine

characteristics from Lewis and Fowler (LFy), and Newman’s seven principles (N-z) in Kruchten’s

4+ 1 viewpoint scheme (Kruchten, 1995). Figure 43 shows consensus and/or complementary

positions in three viewpoints (scenario, development, and process) and little focus on the

remaining two (logical, physical); one tenet, five L/F characteristics and two N principles deal

with cross-cutting concerns that span multiple viewpoints (e.g., decentralized governance).

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

107

Figure 43. Positioning the microservices tenets (Zimmermann, 2017)

They enable companies to increase the deployment frequency of new releases as one crucial

part within the Continuous Delivery (CD) pipeline (Armin Balalaie, Heydarnoori, & Jamshidi,

2016a; L. Chen, 2018; O’Connor, Elger, & Clarke, 2017). They affect the way teams are

structured, source code is organized and continuously built/packed, and software products are

continuously deployed (Familiar, 2015).

There is some discussion about similarities and differences to SOA. Microservices are not

entirely new, but qualify as “SOA done right”, comprising an organic implementation approach to

SOA (Zimmermann, 2017). Common characteristics include business orientation, polyglot

programming in multiple paradigms and languages, and design for failure; decentralization and

automation are emphasized specifically in the microservices implementation approach. An

important microservices property is that services can be deployed independently of each other,

which requires services to communicate with each other via remoting protocols such as HTTP

and asynchronous message queues (Zimmermann, 2017).

Typically there are two types of patterns to define the required microservices (Richardson,

2018): decomposition by business capability or by domains. The second one is highly adopted

(Newman, 2015; Pautasso, Zimmermann, Amundsen, Lewis, & Josuttis, 2017; Steinegger,

Giessler, Hippchen, & Abeck, 2017), making use of DDD (Evans, 2004) approach.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

108

Independent of whether an MSA-based system is designed greenfield, i.e., from scratch, or

brownfield, i.e., by decomposing a monolith, microservices need to be identified (Newman,

2015). There is not a common standard on modeling the architectures (Francesco, Malavolta, &

Lago, 2017). In fact, ‘modeling’ is not highly considered in microservice-related research (Cerny,

Donahoo, & Trnka, 2018), although its provided benefits in terms of abstraction, model

transformation, code generation, modeling viewpoints and languages (Rademacher, Sorgalla,

Wizenty, Sachweh, & Zündorf, 2018). There seems to be a tendency to use languages used to

describe service-based architectures (Di Francesco, 2017) (SoaML, SOMA, SOADL, CAML,

CloudML and StratusML), however UML is suitable to model services and operations as well

(Alshuqayran, Ali, & Evans, 2016; Rademacher, Sachweh, & Zündorf, 2018a). Modeling

approaches in SOA is more mature, namely for service design and interfaces, and their

applicability in MSA have many similarities (Rademacher, Sachweh, & Zundorf, 2017). Modeling

in MSA may be based in integrating API and SOA styles of service design and delivery, together

with a service model that contains both styles of service and articulates their relationships (Z.

Xiao, Wijegunaratne, & Qiang, 2016).

Models may be used in different abstraction levels (OMG, 2003). In microservices, domain

models are used when adopting DDD for identifying the services, where afterwards may be used

additional models – intermediate and deployment – for specifying service interfaces, deployment,

etc. (Rademacher, Sorgalla, & Sachweh, 2018). Additionally, these different models may be used

within different languages, like UML for domains and SoaML for interfaces (Rademacher,

Sorgalla, & Sachweh, 2018).

Microservices modeling

DDD is always the basis for defining a microservices architecture, allowing to decompose a

problem in subdomains that a microservice may tackle, and also assuring the microservice

complies with the Single Responsibility Principle (SRP) (Indrasiri & Siriwardena, 2018).

Rademacher, Sachweh and Zündorf present a UML Profile for identifying microservices, namely

when adopting DDD (Rademacher, Sachweh, & Zündorf, 2018b).

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

109

Figure 44. UML profile for microservices design (Rademacher, Sachweh, & Zündorf, 2018b)

Kharbuja uses DDD for identifying bounded contexts within requirements modeled in Use

Cases, defining steps to derive a domain model for a microservice, namely (Kharbuja, 2016):

 Step 1: The initial analysis of the case study produces use case model

 Step 2: For each use case, task trees are generated listing the functionalities needed to

accomplish the desired goal of the respective use cases.

 Step 3: The initial task trees created for each use case at Step 2 are analyzed. The tasks

are categorized as are either functionally independent from their corresponding use cases or

common in multiple use cases.

 Step 4: The use case model obtained in Step 3 is analyzed again for further refactoring.

 Step 5: The use cases obtained in step 4 are used to identify the service candidates. The

final use cases obtained in Step 4 have appropriate level of granularity and cohesive

functionalities.

An example of a UML Use Case model usage for candidate service is depicted in Figure 45.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

110

Figure 45. Use Case Model for identification of service candidates (Kharbuja, 2016)

 Rademacher et al. present some patterns on modeling microservices domains using DDD

(Rademacher, Sorgalla, & Sachweh, 2018). Figure 46 depicts DDD modeling patterns for

microservice design, using UML notation.

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

111

Figure 46. DDD patterns for domain-driven microservice design (Rademacher, Sorgalla, & Sachweh,

2018)

The Extended Increment Architecture approach (Zúñiga-Prieto, Insfran, & Abrahao, 2016)

lengthens the SoaML metamodel in order to handle microservices architecture design. Within this

approach, a Participant may refer to:

(i) a microservice to be integrated;

(ii) a microservice/component already existing in the current architecture with which the

microservice(s) to be integrated will interoperate; and

(iii) a microservice/component to be created in order to consume microservice services or

provide it with services. In addition, the Services Architecture diagram allows depicting how

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

112

parts of a microservice work together to play the owning microservice role(s). Finally, a

reference to a Service Contract that describes interoperation among Participants is

described, as well as the integration logic.

In order to allow these languages properly address microservice specific characteristics

(mainly in comparison to SOA), some model-driven development (MDD) works propose

metamodels that enable microservices architectures modeling (Düllmann & Van Hoorn, 2017;

Rademacher, Sorgalla, Sachweh, & Zündorf, 2018), allowing to instantiate data, service and

operations of microservices. The DDD application can be enriched by defining semantics in OWL

(Diepenbrock, Rademacher, & Sachweh, 2017).

 An agile approach for service design and service engineering relies on early understanding of

user needs and service touchpoints for rapid adaptation to emerging user needs (Berre, 2012).

Model-based development approaches, properly combined with agile practices, are useful for

service design and engineering, relating value models, process models, user interface and

interaction flow models, and service architectures and service contract models (Berre, 2012).

Defining service boundaries

Decomposing an existing monolith to microservices has many challenges (Di Francesco,

2017; D Taibi, Lenarduzzi, Pahl, & Janes, 2017). Typically, the decomposition starts by

developing services for a given business process (Lenarduzzi & Taibi, 2018), making use of

simplified microservices patterns (Davide Taibi et al., 2017; Davide Taibi, Lenarduzzi, & Pahl,

2018). These patterns are used until the architectures emerges to a complexity that requires new

decisions DDD approach, on data driven as the database-is-the-service pattern (Messina, Rizzo,

Storniolo, Tripiciano, & Urso, 2016), on approaches as SMART (G. Lewis, Morris, Simanta,

Smith, & Wrage, 2007) or ENTICE (Kecskemeti & Marosi, 2016), etc.

Some works have researched on how to extract these services from monoliths (Gysel,

Kölbener, Giersche, & Zimmermann, 2016; Mazlami, Cito, & Leitner, 2017; Quiroz, Kim,

Parashar, Gnanasambandam, & Sharma, 2009). Decomposing into microservices have impact

on the source code, but concerns like multi-tenancy, statefulness and data consistency must be

taken in consideration (Furda, Fidge, Zimmermann, Kelly, & Barros, 2018), while a new

infrastructure may be developed (Armin Balalaie et al., 2016a).

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

113

These works have followed the microservices architectures as they have evolved in

complexity, starting by deploying the individual services in lightweight container technologies,

then introducing discovery services and reusable fault-tolerant communication libraries, service

proxies, or sidecars, and ultimately serverless architectures (Jamshidi, Pahl, Mendonca, Lewis, &

Tilkov, 2018), usually guided by the reference proposal in (Yale Yu, Silveira, & Sundaram, 2016).

Microservices patterns

Although recent, developing microservices has had such good acceptance that some patterns

have been already identified. Taibi, Lenarduzzi and Pahl described architectural patterns

categorized by Orchestration and Coordination, Deployment, Data (Davide Taibi et al., 2018).

Issues such as data consistency, security, communication, deployment, and other patterns

(Krause, 2014; Namiot & Sneps-Sneppe, 2014; Richardson, 2018; Davide Taibi et al., 2018)

have also been addressed.

The patterns from these works often overlap, so for simplicity reasons, further it is presented

a set of widely accepted microservices patterns, proposed by Richardson (Richardson, 2018)

(Figure 47). The patterns are classified in: (1) Application patterns; (2) Application Infrastructure

patterns; and (3) Infrastructure patterns. Additionally, the patterns are divided, following a

division structure as listed in Table 10. This pattern catalogue prescribe a set of development

approaches for MSA projects. Inside each category, patterns may be exclusive, complimentary or

dependent between them. It is thus possible to depict how a MSA project development process

may be organized.

Any migration of an application’s architecture to microservices brings challenges that make

this migration a non-trivial task. Balalaie, Herdarnoori and Jamshidi proposed migration steps,

after analyzing the architecture before the migration and the target architecture (A Balalaie,

Heydarnoori, Jamshidi, Tamburri, & Lynn, 2015). Migrating the system towards the target

architecture should be done incrementally and in several steps without affecting the end-users of

the system. Furthermore, as the number of services is growing, there is a need of a mechanism

for automating the delivery process.

By describing an experience report of their migration process, a set of migration steps may be

generalized as follows (Armin Balalaie, Heydarnoori, & Jamshidi, 2016b):

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

114

 Preparing the Continuous Integration Pipeline;

 Expose legacy functionalities as a REST API;

 Introducing Continuous Delivery practices (e.g., separate the source code, the configuration,

and the environment specification);

 Introducing Edge Server (minimize the impact of internal changes on end-users);

 Introducing Dynamic Service Collaboration (Service Discovery, Load Balancer and Circuit

Breaker);

 Introducing the Resource Manager;

 Introducing additional services to complete the target architecture;

 Clusterization.

Figure 47. Microservices architecture patterns5

Driven by the common “alliance” between DevOps culture and microservices architectures,

these authors also include the following cross-cutting steps for these migrations (Armin Balalaie

et al., 2016a):

 Filling the Gap Between the Dev and Ops via Continuous Monitoring;

 Changing Team Structures (small cross-functional teams for each new service constructed).

5
 List of patterns from http://microservices.io/patterns/index.html, accessed in 28/08/2017

http://microservices.io/patterns/index.html

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

115

Table 10. Microservices patterns and categories

Core patterns Decomposition Security UI patterns

 Monolithic architecture

 Microservice

architecture

 Decompose by business

capability

 Decompose by

subdomain

 Access Token Server-side page

fragment composition

 Client-side UI

composition

Cross cutting concerns Testing Observability Deployment

patterns

 Microservice chassis

 Externalized

configuration

 Service Component

Test

 Consumer-driven

contract test

 Consumer-side

contract test

 Log aggregation

 Application metrics

 Audit logging

 Distributed tracing

 Exception tracking

 Health check API

 Log deployments and

changes

 Multiple service

instances per host

 Service instance per

host

 Service instance per VM

 Service instance per

Container

 Serverless Deployment

 Service Deployment

platform

Data management Communication

Database

architecture

Maintaining data

consistency

Communication style Service discovery

 Database per

Service

 Shared database

 Saga

 Event sourcing

 Domain event

 Agregate

 Remote Procedure Invocation

 Messaging

 Domain-specific protocol

 Client-side discovery

 Server-side discovery

 Service registry

 Self registration

 3rd party registration

Querying Reliability External API Transactional messaging

 API Composition

 CQRS

 Circuit

Breaker

 API gateway

 Backend for

front-end

 Transactional outbox

 Transaction log tailing

 Polling publisher

These steps were afterwards introduced as migration patterns, as depicted in Table 11.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

116

Table 11. Microservices migration patterns (Armin Balalaie et al., 2016a)

Pattern name

Enable the Continuous Integration Recover the Current Architecture Decompose the Monolith

Decompose the Monolith Based on

Data Ownership

Change Code Dependency to

Service Call

Introduce Service Discovery

Introduce Service Discovery Client Introduce Internal Load Balancer Introduce External Load Balancer

Introduce Circuit Breaker Introduce Configuration Server Introduce Edge Server

Containerize the Services Deploy into a Cluster and

Orchestrate Containers

Monitor the System and Provide

Feedback

Along with adopting patterns, also bad practices (architectural bad smells) are identified

(Davide Taibi & Lenarduzzi, 2018). Splitting a monolith, including splitting the connected data

and libraries, is the most critical issue, resulting in potential maintenance issues when the cuts

are not done properly. Moreover, the conversion to a distributed system increases the system’s

complexity, especially when dealing with connected services that need to be highly decoupled

from any point of view, including communication and architecture (namely Hard-Coded

Endpoints, Not Having an API Gateway, Inappropriate Service Intimacy, and Cyclic Dependency)

(Davide Taibi & Lenarduzzi, 2018). The list of bad smells presented by Taibi and Lenarduzzi is

depicted in Table 12.

Table 12. List of microservices bad smells (Davide Taibi & Lenarduzzi, 2018)

Microservices bad smells

API Versioning Hard-Coded Endpoints Not Having an API

Gateway

Too Many Standards

Cyclic Dependency Inappropriate Service

Intimacy

Shared Libraries Wrong Cuts

ESB Usage Microservice Greedy Shared Persistency

3.5. Conclusions

This chapter addressed the architecture design discipline, in terms of its lifecycle, the

evolutionary design and the architecting as a continuous practice.

The works presented in Section 3.2 propose different inputs, target-users and viewpoints of

architectures at each stage of the software development life cycle (SDLC). This has also led to

proposals for proper usage of specific architecture methods depending on the stage of the SDLC.

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

117

Mainly because the stages of the SDLC initially require architectures that include information

modeled at a higher-level of abstraction. As the SDLC evolves, typically the level of abstraction

decreases.

Software architecture design, when performed in context of ASD, sometimes referred as “agile

architecting”, promotes the emerging and incremental design of the architectural artifact, in a

sense of avoiding “big design upfront” (BDUF). There is a lack of a pathway that guides agile

architecting in an end-to-end approach (from business requirements to deployment). This

research proposes in Chapter 5 a pathway that includes architecture design from software

development life-cycle (SDLC) stages of software development that use ASD approaches, where

two main artifacts are considered: a candidate logical architecture and a refined logical

architecture.

If, in agile architecting, architecture evolves throughout the SDLC with the “just-enough”

architecture for preventing BDUF and is oriented towards the “continuous” paradigm, the design

must have as input only the “just-enough” requirements. Chapter 4 introduces processes for

agile requirements, which later are used for the logical architecture design.

References

Aderaldo, C. M., Mendonca, N. C., Pahl, C., & Jamshidi, P. (2017). Benchmark Requirements

for Microservices Architecture Research. In 2017 IEEE/ACM 1st International Workshop on

Establishing the Community-Wide Infrastructure for Architecture-Based Software Engineering

(ECASE) (pp. 8–13). IEEE. https://doi.org/10.1109/ECASE.2017.4

Ageling, W.-J. (2018). Heart of Agile vs Modern Agile How does it compare? Agile Insights.

Alshuqayran, N., Ali, N., & Evans, R. (2016). A systematic mapping study in microservice

architecture. In Service-Oriented Computing IEEE 9th International Conference on Service-

Oriented Computing and Applications (SOCA). IEEE. https://doi.org/10.1109/SOCA.2016.15

Arnold, R. S. (1996). Software change impact analysis. IEEE Computer Society Press.

Atkinson, C., & Kuhne, T. (2003). Model-Driven Development: A Metamodeling Foundation.

IEEE Software, 20(5), 36–41.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

118

Azevedo, S. M. F. (2014). Refinement and variability techniques in model transformation of

software requirements. University of Minho.

Babar, M. A. (2013). Making Software Architecture and Agile Approaches Work Together:

Foundations and Approaches. In Agile Software Architecture: Aligning Agile Processes and

Software Architectures. Elsevier. https://doi.org/10.1016/B978-0-12-407772-0.00001-0

Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016a). Microservices Architecture Enables

DevOps: An Experience Report on Migration to a Cloud-Native Architecture. IEEE Software, 33(3),

42–52.

Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016b). Migrating to Cloud-Native Architectures

Using Microservices: An Experience Report. In A. Celesti & P. Leitner (Eds.), Advances in Service-

Oriented and Cloud Computing. ESOCC Workshops 2015. Communications in Computer and

Information Science (Vol. 567, pp. 201–215). Springer, Cham. https://doi.org/10.1007/978-3-

319-33313-7_15

Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D. A., & Lynn, T. (2015). Microservices

migration patterns. Software: Practice and Experience, 48(11), 2019–2042.

https://doi.org/10.1002/spe.2608

Bayer, J., Flege, O., & Knauber, P. (1999). PuLSE: a methodology to develop software product

lines. In Proceedings of the 1999 symposium on Software reusability. ACM.

Bayer, J., Muthig, D., & Göpfert, B. (2001). The library system product line. A KobrA case

study. Fraunhofer IESE.

Berre, A. J. (2012). An Agile Model-Based Framework for Service Innovation for the Future

Internet. In International Conference on Web Engineering. (pp. 1–4). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-35623-0_1

Bogsnes, B. (2008). Implementing Beyond Budgeting: Unlocking the Performance Potential.

Wiley.

Booch, G. (2010). Enterprise Architecture and Technical Architecture. IEEE Software, 27(2),

96–96. https://doi.org/10.1109/MS.2010.42

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

119

Bosch, J. (2012). Building Products as Innovation Experiment Systems. In Software Business.

Proceedings of the International Conference of Software Business (ICSOB 2012) (pp. 27–39).

Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30746-1_3

Bosch, J. (2014). Continuous Software Engineering. Springer Cham.

Browning, T. R., & Eppinger, S. D. (2002). Modeling impacts of process architecture on cost

and schedule risk in product development. IEEE Transactions on Engineering Management,

49(4), 428–442.

Brussel, H. Van, Wyns, J., Valckenaers, P., Bongaerts, L., & Peeters, P. (1998). Reference

architecture for holonic manufacturing systems: PROSA. Computers in Industry, 37(3), 255–274.

https://doi.org/10.1016/S0166-3615(98)00102-X

Cerny, T., Donahoo, M. J., & Trnka, M. (2018). Contextual understanding of microservice

architecture. ACM SIGAPP Applied Computing Review, 17(4), 29–45.

https://doi.org/10.1145/3183628.3183631

Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and

interoperability: Past, present and future. Computers in Industry, 59(7), 647–659.

https://doi.org/10.1016/j.compind.2007.12.016

Chen, H. (2008). Towards service engineering: service orientation and business-IT alignment.

In Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS).

IEEE. https://doi.org/10.1109/HICSS.2008.462

Chen, L. (2018). Microservices: Architecting for Continuous Delivery and DevOps. In IEEE

International Conference on Software Architecture (ICSA). Seattle, USA: IEEE.

Chen, L., Ali Babar, M., & Nuseibeh, B. (2013). Characterizing Architecturally Significant

Requirements. IEEE Software, 30(2), 38–45. https://doi.org/10.1109/MS.2012.174

Clements, P., & Bass, L. (2010). Relating Business Goals to Architecturally Significant

Requirements for Software Systems. CMU/SEI-2010-TN-018.

Clements, P. C., & Northrop, L. M. (1996). Software Architecture: An Executive Overview.

CMU/SEI-96-TR-003; ADA305470.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

120

Clements, P., Garlan, D., Little, R., Nord, R., & Stafford, J. (2003). Documenting software

architectures: views and beyond. IEEE.

Conway, M. E. (1968). How Do Committees Invent? Datamation, 28–31.

Di Francesco, P. (2017). Architecting microservices. In IEEE International Conference on

Software Architecture Workshops, ICSAW 2017: Side Track Proceedings.

https://doi.org/10.1109/ICSAW.2017.65

Diepenbrock, A., Rademacher, F., & Sachweh, S. (2017). An Ontology-based Approach for

Domain-driven Design of Microservice Architectures. In INFORMATIK2017.

https://doi.org/10.18420/in2017_177

DoD. (2009). DoD Architecture Framework Version 2.0: Volume 2 - Architectural Data and

Models.

Dodani, M. H. (2006). A Picture is Worth a 1000 Words? Journal of Object Technology, 5(2),

35–40.

Douglass, B. (1999). Doing hard time: developing real-time systems with UML, objects,

frameworks, and patterns. Addison-Wesley Professional.

Düllmann, T. F., & Van Hoorn, A. (2017). Model-driven Generation of Microservice

Architectures for Benchmarking Performance and Resilience Engineering Approaches *. In ICPE

’17 Companion. L’Aquila, Italy: ACM. https://doi.org/10.1145/3053600.3053627

Eeles, P., & Cripps, P. (2009). The process of software architecting. Pearson Education.

Erder, M., & Pureur, P. (2015). Continuous architecture: Sustainable architecture in an agile

and cloud-centric world. Morgan Kaufmann.

Evans, E. (2004). Domain-driven design : tackling complexity in the heart of software. Addison-

Wesley.

Familiar, B. (2015). Microservices, IoT and Azure: Leveraging DevOps and Microservice

Architecture to deliver SaaS Solutions. Apress.

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

121

Fernandes, J. M., & Machado, R. J. (2016). Requirements in Engineering Projects. Cham:

Springer International Publishing. https://doi.org/10.1007/978-3-319-18597-2

Ferreira, N., Santos, N., Machado, R., Fernandes, J. E., & Gasević, D. (2014). A V-Model

Approach for Business Process Requirements Elicitation in Cloud Design. In A. Bouguettaya, Q.

Z. Sheng, & F. Daniel (Eds.), Advanced Web Services (pp. 551–578). Springer New York.

https://doi.org/10.1007/978-1-4614-7535-4_23

Ferreira, N., Santos, N., Machado, R. J., & Gašević, D. (2012). Derivation of process-oriented

logical architectures: An elicitation approach for cloud design. In International Conference on

Product Focused Software Process Improvement (pp. 44–58). Springer.

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap and agenda.

Journal of Systems and Software, 123, 176–189. https://doi.org/10.1016/J.JSS.2015.06.063

Fong, E. N., & H., G. (1989). Information Management Directions: The Integration Challenge.

Fowler, M. (2004). UML distilled: a brief guide to the standard object modeling language.

Addison-Wesley Professional.

Francesco, P. Di, Malavolta, I., & Lago, P. (2017). Research on Architecting Microservices:

Trends, Focus, and Potential for Industrial Adoption. In IEEE International Conference on

Software Architecture (ICSA) (pp. 21–30). IEEE. https://doi.org/10.1109/ICSA.2017.24

Furda, A., Fidge, C., Zimmermann, O., Kelly, W., & Barros, A. (2018). Migrating Enterprise

Legacy Source Code to Microservices: On Multitenancy, Statefulness, and Data Consistency. IEEE

Software, 35(3), 63–72. https://doi.org/10.1109/MS.2017.440134612

George, M. L., & George, M. (2003). Lean six sigma for service. New York, NY: McGraw-Hill.

Grau, B. R., & Lauenroth, K. (2014). Requirements engineering and agile development -

collaborative, just enough, just in time, sustainable. International Requirements Engineering

Board (IREB).

Gruhn, V., & Schäfer, C. (2015). BizDevOps: Because DevOps is Not the End of the Story. In

Fujita H. & Guizzi G. (Eds.), SoMeT 2015: Intelligent Software Methodologies, Tools and

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

122

Techniques. Communications in Computer and Information Science (pp. 388–398). Springer,

Cham. https://doi.org/10.1007/978-3-319-22689-7_30

Gysel, M., Kölbener, L., Giersche, W., & Zimmermann, O. (2016). Service cutter: A systematic

approach to service decomposition. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

https://doi.org/10.1007/978-3-319-44482-6_12

Haberle, T., Charissis, L., Fehling, C., Nahm, J., & Leymann, F. (2015). The Connected Car in

the Cloud: A Platform for Prototyping Telematics Services. IEEE Software, 32(6), 11–17.

https://doi.org/10.1109/MS.2015.137

Highsmith, J. A. (2002). Agile software development ecosystems Addison-Wesley. Boston, MA.

Humble, J., & Farley, D. (2011). Continuous delivery: reliable software releases through build,

test, and deployment automation. Pearson Education.

Hunt, A. (2015). GROWS Overview. Retrieved from

http://growsmethod.com/grows_overview.html

IIBA. (2017). Agile Extension to the BABOK Guide v2. International Institute of Business

Analysis.

Indrasiri, K., & Siriwardena, P. (2018). Microservices for the enterprise: Designing,

Developing, and Deploying. Apress.

IREB. (2018). IREB Certified Professional for Requirements Engineering ‑ Advanced Level

RE@Agile.

ISO. (1998). ISO/IEC 10746-1 Information technology – Open Distributed Processing –

Reference Model: Overview.

Jacobson, I., Griss, M., & Jonsson, P. (1997). Software Reuse: Architecture, Process and

Organization for Business Success. Addison Wesley Longman.

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

123

Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J., & Tilkov, S. (2018). Microservices: The

Journey So Far and Challenges Ahead. IEEE Software, 35(3), 24–35.

https://doi.org/10.1109/MS.2018.2141039

Jeston, J., & Nelis, J. (2008). Business process management : practical guidelines to

successful implementations. Elsevier/Butterworth-Heinemann.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., & Huh, M. (1998). FORM: A feature-oriented

reuse method with domain-specific reference architectures. Annals of Software Engineering.

Kanwal, F., Junaid, K., & Fahiem, M. A. (2010). A hybrid software architecture evaluation

method for fdd-an agile process model. In International Conference on Computational Intelligence

and Software Engineering (CiSE) (pp. 1–5). IEEE. https://doi.org/10.1109/CISE.2010.5676863

Kazman, R., Nord, R., & Klein, M. (2003). A life-cycle view of architecture analysis and design

methods. Retrieved from http://www.dtic.mil/docs/citations/ADA421679

Kecskemeti, G., & Marosi, A. (2016). The ENTICE approach to decompose monolithic

services into microservices. In International Conference on High Performance Computing &

Simulation (HPCS) (pp. 591–596). IEEE. https://doi.org/10.1109/HPCSim.2016.7568389

Kerievsky, J. (2016). An Introduction to Modern Agile.

Kharbuja, R. (2016). Designing a Business Platform using Microservices. Technische

Universität München.

Kirikova, M. (2017). Continuous Requirements Engineering. In International Conference on

Computer Systems and Technologies - CompSysTech’17. Ruse, Bulgaria: ACM.

https://doi.org/https://doi.org/10.1145/3134302.3134304

Kohavi, R., & Longbotham, R. (2017). Online Controlled Experiments and A/B Tests. In

Encyclopedia of machine learning and data mining (pp. 922–929). Springer US.

Krause, L. (2014). Microservices: Patterns and Applications - Designing Fine-grained Services

by Applying Patterns. microservicesbook.io.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

124

Kruchten, P. (1995). The 4+1 View Model of Architecture. IEEE Software, 12(6), 42–50.

https://doi.org/10.1109/52.469759

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical Debt: From Metaphor to Theory and

Practice. IEEE Software, 29(6), 18–21. https://doi.org/10.1109/MS.2012.167

Lankhorst, M. (2009). Enterprise Architecture at Work: Modelling, Communication and

Analysis. The Enterprise Engineering Series. Springer.

Lenarduzzi, V., & Taibi, D. (2018). Microservices, Continuous Architecture, and Technical

Debt Interest: An Empirical Study. In 44th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA) . Prague, Czech republic: IEEE.

Lewis, G., Morris, E., Simanta, S., Smith, D., & Wrage, L. (2007). SMART: Analyzing the

Reuse Potential of Legacy Components in a Service-Oriented Architecture Environment. In AIAA

Infotech@Aerospace 2007 Conference and Exhibit. Reston, Virigina: American Institute of

Aeronautics and Astronautics. https://doi.org/10.2514/6.2007-2865

Lewis, J., & Fowler, M. (2014). Microservices: a definition of this new architectural term.

Retrieved March 24, 2017, from https://martinfowler.com/articles/microservices.html

Loukides, M. (2012). What is DevOps?

Martini, A., Besker, T., & Bosch, J. (2018). Technical Debt tracking: Current state of practice:

A survey and multiple case study in 15 large organizations. Science of Computer Programming,

163, 42–61. https://doi.org/10.1016/J.SCICO.2018.03.007

Martini, A., Pareto, L., & Bosch, J. (2014). Role of Architects in Agile Organizations. In J.

Bosch (Ed.), Continuous Software Engineering. Springer Cham.

Martini, A., Pareto, L., & Bosch, J. (2015). Towards Introducing Agile Architecting in Large

Companies: The CAFFEA Framework. In Agile Processes in Software Engineering and Extreme

Programming. Proceedings of the International Conference on Agile Software Development

(XP2015) (pp. 218–223). Springer, Cham. https://doi.org/10.1007/978-3-319-18612-2_20

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

125

Matinlassi, M., Niemelä, E., & Dobrica, L. (2002). Quality-driven architecture design and

quality analysis method, A revolutionary initiation approach to a product line architecture. VTT

Technical Research Centre of Finland.

Mazlami, G., Cito, J., & Leitner, P. (2017). Extraction of Microservices from Monolithic

Software Architectures. In 2017 IEEE International Conference on Web Services (ICWS) (pp.

524–531). IEEE. https://doi.org/10.1109/ICWS.2017.61

Messina, A., Rizzo, R., Storniolo, P., Tripiciano, M., & Urso, A. (2016). The Database-is-the-

Service Pattern for Microservice Architectures. In International Conference on Information

Technology in Bio- and Medical Informatics (ITBAM) (pp. 223–233). Springer, Cham.

https://doi.org/10.1007/978-3-319-43949-5_18

Nadareishvili, I., Mitra, R., McLarty, M., & Amundsen, M. (2016). Microservice Architecture:

Aligning Principles, Practices, and Culture. O’Reilly.

Namiot, D., & Sneps-Sneppe, M. (2014). On micro-services architecture. International Journal

of Open Information Technologies, 2(9), 24–27.

Newman, S. (2015). Building microservices - Designing fine-grained systems. O’Reilly Media,

Inc.

Novack, J. (2016). Shu Ha Ri: An Agile Adoption Pattern. SolutionsIQ.

O’Connor, R. V., Elger, P., & Clarke, P. M. (2017). Continuous software engineering-A

microservices architecture perspective. Journal of Software: Evolution and Process, 29(11),

e1866. https://doi.org/10.1002/smr.1866

Olsson, H. H., Alahyari, H., & Bosch, J. (2012). Climbing the “Stairway to Heaven” -- A

Multiple-Case Study Exploring Barriers in the Transition from Agile Development towards

Continuous Deployment of Software. In 38th Euromicro Conference on Software Engineering and

Advanced Applications (pp. 392–399). IEEE. https://doi.org/10.1109/SEAA.2012.54

Olsson, H. H., & Bosch, J. (2014). Climbing the “Stairway to Heaven”: Evolving From Agile

Development to Continuous Deployment of Software. In J. Bosch (Ed.), Continuous Software

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

126

Engineering (pp. 15–27). Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-319-11283-1_2

OMG. (2003). MDA Guide Version 1.0.1. Object Management Group.

Overby, E., Bharadwaj, A., & Sambamurthy, V. (2005). A Framework for Enterprise Agility and

the Enabling Role of Digital Options. In Business Agility and Information Technology Diffusion.

IFIP International Working Conference on Business Agility and Information Technology Diffusion

(TDIT 2005) (pp. 295–312). Boston: Springer. https://doi.org/10.1007/0-387-25590-7_19

Pahl, C., & Jamshidi, P. (2016). Microservices: A Systematic Mapping Study. In 6th

International Conference on Cloud Computing and Services Science (CLOSER) (Vol. 1, pp. 137–

146). SCITEPRESS - Science and and Technology Publications.

https://doi.org/10.5220/0005785501370146

Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., & Josuttis, N. (2017). Microservices

in Practice, Part 1: Reality Check and Service Design. IEEE Software, 34(1), 91–98.

https://doi.org/10.1109/MS.2017.24

Pérez, J., Díaz, J., Garbajosa, J., & Yagüe, A. (2014). Bridging User Stories and Software

Architecture: A Tailored Scrum for Agile Architecting. In A. W. . Ali Babar, Muhammad ; Brown &

I. Mistrik (Eds.), Agile Software Architecture - Aligning Agile Processes and Software Architectures

(pp. 215–241). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-407772-0.00008-3

Pohl, K. (2010). Requirements Engineering. Springer.

Quiroz, A., Kim, H., Parashar, M., Gnanasambandam, N., & Sharma, N. (2009). Towards

autonomic workload provisioning for enterprise Grids and clouds. In 2009 10th IEEE/ACM

International Conference on Grid Computing (pp. 50–57). IEEE.

https://doi.org/10.1109/GRID.2009.5353066

Rademacher, F., Sachweh, S., & Zundorf, A. (2017). Differences between Model-Driven

Development of Service-Oriented and Microservice Architecture. In IEEE International Conference

on Software Architecture Workshops (ICSAW) (pp. 38–45). IEEE.

https://doi.org/10.1109/ICSAW.2017.32

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

127

Rademacher, F., Sachweh, S., & Zündorf, A. (2018a). Analysis of Service-oriented Modeling

Approaches for Viewpoint-specific Model-driven Development of Microservice Architecture. ArXiv

Preprint ArXiv:1804.09946.

Rademacher, F., Sachweh, S., & Zündorf, A. (2018b). Towards a UML Profile for Domain-

Driven Design of Microservice Architectures. In Software Engineering and Formal Methods (pp.

230–245). Springer. https://doi.org/10.1007/978-3-319-74781-1_17

Rademacher, F., Sorgalla, J., & Sachweh, S. (2018). Challenges of Domain-Driven

Microservice Design: A Model-Driven Perspective. IEEE Software, 35(3), 36–43.

https://doi.org/10.1109/MS.2018.2141028

Rademacher, F., Sorgalla, J., Sachweh, S., & Zündorf, A. (2018). Towards a Viewpoint-specific

Metamodel for Model-driven Development of Microservice Architecture.

Rademacher, F., Sorgalla, J., Wizenty, P. N., Sachweh, S., & Zündorf, A. (2018). Microservice

Architecture and Model-driven Development: Yet Singles, Soon Married (?). In Second

International Workshop on Microservices: Agile and DevOps Experience (MADE18) collocated with

XP18. Porto, Portugal: ACM.

Reddy, A., Govindarajulu, P., & Naidu, M. (2007). A Process Model for Software Architecture.

International Journal of Computer Science and Network Security, 7(4), 272–280.

Richardson, C. (2018). Microservice Patterns (1st ed.). Manning.

Ries, E. (2011). The lean startup: How today’s entrepreneurs use continuous innovation to

create radically successful businesses. Crown Books.

Rozanski, N., & Woods, E. (2005). Software systems architecture : working with stakeholders

using viewpoints and perspectives. Addison-Wesley.

Sommerville, I. (2007). Software Engineering. London: Pearson/Addison Wesley.

Soni, D., Nord, R. L., & Hofmeister, C. (1995). Software architecture in industrial applications.

In Proceedings of the 17th international conference on Software engineering - ICSE ’95 (pp.

196–207). New York, New York, USA: ACM Press. https://doi.org/10.1145/225014.225033

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

128

Sowa, J. F., & Zachman, J. A. (1992). Extending and formalizing the framework for

information systems architecture. IBM Systems Journal, 31(3), 590–616.

Stal, M. (2014). Refactoring Software Architectures. In Agile Software Architecture - Aligning

Agile Processes and Software Architectures. Elsevier Inc.

Stålhane, T. (2014). Change Impact Analysis in Agile Development.

Steinegger, R. H., Giessler, P., Hippchen, B., & Abeck, S. (2017). Overview of a Domain-

Driven Design Approach to Build Microservice-Based Applications. In Third International

Conference on Advances and Trends in Software Engineering (SOFTENG’17). IARIA.

Taibi, D., & Lenarduzzi, V. (2018). On the Definition of Microservice Bad Smells. IEEE

Software, 35(3), 56–62. https://doi.org/10.1109/MS.2018.2141031

Taibi, D., Lenarduzzi, V., & Pahl, C. (2017). Processes, Motivations, and Issues for Migrating

to Microservices Architectures: An Empirical Investigation. IEEE Cloud Computing, 4(5), 22–32.

https://doi.org/10.1109/MCC.2017.4250931

Taibi, D., Lenarduzzi, V., & Pahl, C. (2018). Architectural Patterns for Microservices: A

Systematic Mapping Study. In Int.Conference on Cloud Computing and Services Science,

CLOSER. INSTICC.

Taibi, D., Lenarduzzi, V., Pahl, C., & Janes, A. (2017). Microservices in agile software

development: a workshop-based study into issues, advantages, and disadvantages. In

Proceedings of the XP2017 Scientific Workshops (p. 23). ACM.

Thönes, J. (2015). Microservices. IEEE Software, 32(1), 116–116.

https://doi.org/10.1109/MS.2015.11

Tom, E., Aurum, A., & Vidgen, R. (2013). An exploration of technical debt. Journal of Systems

and Software, 86(6), 1498–1516. https://doi.org/10.1016/J.JSS.2012.12.052

UML, O. M. G. (2011). 2.4. 1 superstructure specification. document formal/2011-08-06.

Technical report, OMG.

Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches

129

Urbaczewski, L., & Mrdalj, S. (2006). A comparison of enterprise architecture frameworks.

Issues in Informations Systems, 7(2), 18–23.

Weiss, D. M. (1999). Software Product-Line Engineering: A Family-Based Software

Development Process. Addison-Wesley Professional.

Wiegers, K. (2014). Best Practices for Change Impact Analysis | Jama Software. Retrieved

December 4, 2018, from https://www.jamasoftware.com/blog/change-impact-analysis-2/

Wiggins, A. (2012). The Twelve-Factor App. https://12factor.net.

Winter, R., & Fischer, R. (2006). Essential Layers, Artifacts, and Dependencies of Enterprise

Architecture. 10th IEEE International Enterprise Distributed Object Computing Conference

Workshops (EDOCW).

Xiao, L., Cai, Y., Kazman, R., Mo, R., & Feng, Q. (2016). Identifying and quantifying

architectural debt. In Proceedings of the 38th International Conference on Software Engineering -

ICSE ’16 (pp. 488–498). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2884781.2884822

Xiao, Z., Wijegunaratne, I., & Qiang, X. (2016). Reflections on SOA and Microservices. In 2016

4th International Conference on Enterprise Systems (ES) (pp. 60–67). IEEE.

https://doi.org/10.1109/ES.2016.14

Yale Yu, Silveira, H., & Sundaram, M. (2016). A microservice based reference architecture

model in the context of enterprise architecture. In 2016 IEEE Advanced Information

Management, Communicates, Electronic and Automation Control Conference (IMCEC) (pp.

1856–1860). IEEE. https://doi.org/10.1109/IMCEC.2016.7867539

Zachman, J. A. (1987). A framework for information systems architecture. IBM Systems

Journal, 26(3), 276–292.

Zachman, J. A. (2011). The Zachman Framework for Enterprise Architecture.

Zimmermann, O. (2017). Microservices tenets. Computer Science-Research and

Development. Retrieved from https://link.springer.com/article/10.1007/s00450-016-0337-0

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

130

Zúñiga-Prieto, M., Insfran, E., & Abrahao, S. (2016). Incremental Integration of Microservices

in Cloud Applications. In 25th Int. Conf. on Information Systems Development (ISD2016).

Retrieved from http://aisel.aisnet.org/isd2014/proceedings2016/ISDMethodologies/8/

Zwegers, A. J. R. (1998). On systems architecting : a study in shop floor control to determine

architecting concepts and principles. Technische Universiteit Eindhoven.

131

PART III

CONTRIBUTIONS

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

132

Chapter 4 - A Requirements Modeling Approach for Agile

Settings

Chapter 4 - A Requirements Modeling Approach for Agile Settings………………133

4.1. Introduction……………………………………………………………133

4.2. Upfront Modeling in ASD projects……………………………..……..136

Deriving a Use case-driven Product Backlogs……………..………136

Deriving a User story-driven Product Backlog………………...…..139

4.3. Agile logical architecting with the 4SRS method……………………..141

The Decomposing User Agile Requirements arTEfacts (DUARTE)

approach…………..……………………...…...……………………144

“Just-Enough” modeling…………………………..…………….…148

4.4. Demonstration cases…………………………………………………..151

Upfront RE for use case-driven product backlogs: the iFloW case151

Upfront RE for user stories-driven product backlogs: the ISOFIN Cloud …………………………154

 Emerging RE using DUARTE: the UH4SP case-………………..157

Discussion……………………………………….……………….163

4.5. Conclusions……………………………………………………………166

Further Reading………………………………………………………………....167

References………………………………………………………………………167

This chapter discusses requirements engineering (RE) in ASD processes,

addressing the necessary information as stakeholders communicates their

business needs or their “minimum viable product” (MVP). Thus, this chapter

introduces both upfront and emerging approaches for RE. Regarding the latter, an

approach called “Decomposing User Agile Requirements ArTEfacts” (DUARTE) is

proposed. Both RE approaches are evaluated and discussed using three

demonstration cases, two for upfront modeling and one applying DUARTE

approach. This chapter ends with the conclusions.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

133

Chapter 4 - A Requirements Modeling Approach for Agile

Settings

“Without requirements and design, programming is the art of

adding bugs to an empty text file”

Louis Srygley, Application Architect

“The biggest enemy of agility (at the code level) is unnecessary complexity. ….

… Don’t write code or future scenarios that may never occur.”

Allen Holub, Agile Consultant

4.1. Introduction

At the time that the ‘Agile Manifesto’ (Agile Alliance, 2001) was proposed, there was a big

shift on focusing in delivering software and less in technical documentation and specifications.

Based in one of the values of the Manifesto, ‘Working software over comprehensive

documentation’, specification of requirements have been reducing to as minimum as possible.

Thus, the use of software models was also reduced, both in requirements and in design tasks,

where only models that actually help teams develop software are used (K Schwaber & Beedle,

2001).

In plan-driven approaches (e.g., Waterfall), tasks related to Requirements Engineering (RE)

discipline are traditionally managed in a phase separated in time from design and development.

In change-driven approaches, like ASD, RE discipline – also called “Agile RE” – activities remain

the same but are executed continuously (Grau & Lauenroth, 2014), and takes an iterative

discovery approach (Cao & Ramesh, 2008). Elicitation, analysis, and validation are present in all

ASD processes (Paetsch, Eberlein, & Maurer, 2003). Additionally, requirements modeling require

an agile approach in order to prevent unnecessary efforts in “You Aren’t Gonna Need It” (YAGNI)

features, hence the need for an Agile Modeling (AM) (S Ambler, 2002) approach.

In ASD frameworks, the requirements are included in a product backlog, which then drives

the development process, thus most of the RE activities are always performed earlier. ASD widely

use User Stories (Cohn, 2004b) as items in the backlog for “reminders of a conversation” about

a functionality. However, using only User Stories, without attached requirements specifications or

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

134

models, may be insufficient to assure a common understanding or, in case of multi-teams, to

clearly define inter-systems interaction.

Stakeholders must able to communicate in what way a future solution improves their

business, by defining the product roadmap. A product roadmap is an initial high level project

scope and direction (IIBA, 2017). Typically, a first release on a new product encompasses a

product’s subset able to address priority scenarios, previously identified in order to respond to

market needs. In fact, many of these product releases are market-driven, where the release is

deployed into the market so it is possible to get feedback from it, i.e., a minimum viable product

(MVP). Alongside with these requirements concerns, projects struggle to design candidate

architectures for the MVP, endangering development when they conclude that the architecture

requires modifications and updates. In an era where software development is more and more

agile-oriented, the upfront effort is replaced by the emergence of the design throughout iterative

cycles. Such efforts are in opposition to “Big Design Upfront” (BDUF). In ASD contexts, BDUF

approaches often result in features that are disregarded after some time (YAGNI features).

From business needs to agile logical architecting, this chapter introduces requirements

modeling activities and artifacts that are part of an integrated modeling roadmap (Figure 48).

This roadmap is proposes a sequential order of artifacts that relate to the outputs that are used

within the Agile Modeling Process for Logical Architectures (AMPLA), presented in Figure 49. In

terms of the integrated modeling roadmap, this chapter encompasses stages 1 and 2.

Requirements modeling, called “Decomposing User Agile Requirements ArTEfacts” (DUARTE)

process uses ASD known techniques for deriving an UML use case diagram. Then, the candidate

logical architecture will be derived (cf. Chapter 5) using as input the diagrams from DUARTE.

Figure 48. Integrated modeling roadmap

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

135

Figure 49. Overview of AMPLA

The research addressed in chapter is the result of applying RE approaches in ASD-based

software research projects. Firstly, model-based approaches are hybrid – i.e., first performing

requirements and design in waterfall and implementation in ASD. That was the case of ISOFIN

and iFloW projects. Then, in order to address situations of unknown and need to be discovered

requirements, the research addressed emerging requirements, which was applied in the UH4SP

project. The contributions of the projects are summarized in Table 13.

Table 13. Contributions of projects in candidate architectures

Research contribution \ demonstration case UH4SP iFloW ISOFIN

Upfront Requirements modeling X X

Emergent Requirements modeling X

This chapter is is structured as follows:

 Section 4.2 discusses upfront approaches for RE;

 In opposition, Section 4.3 discusses upfront and emerging approaches for RE, where an

approach called DUARTE is proposed;

 Section 4.4 describes three demonstration cases, two for upfront modeling and one applying

DUARTE approach, as well as the discussions from the three cases;

 Section 4.5 presents the chapter’s conclusions;

 The chapter ends with complimentary reading.

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

136

4.2. Upfront Modeling in ASD projects

When requirements are known upfront and considered stable, plan-driven approaches may

be used for RE, even if further phases use change-driven approaches like ASD frameworks. Such

situation is seen like a “hybrid” approach. In this case, requirements are gathered upfront.

A process that uses requirements modeling together with Scrum-based cycles (or “Sprints”)

is depicted in Figure 50. The process is composed of three phases: Initialization, Implementation,

and Deployment.

Figure 50. Hybrid ASD process with upfront requirements modeling

The initialization phase includes typical activities from domain engineering, RE and design.

The implementation phase uses small iterations and incremental releases in the form of Scrum

Sprints. Finally, the Deployment phase is similar to the Transition phase of RUP.

Within the initialization phase, the objective was to develop a product backlog artifact in order

to start the development phase in the form of Sprints that, due to the perceived complexity of the

project, was delivered together with widely accepted forms of requirements documentation.

Deriving a Use case-driven Product Backlogs

The Business Modeling results - organization’s processes and current gaps - are documented

in a report designated as ‘As-Is report’. Then, the requirements are elicited, formally specified in

the form of UML use cases, quality (non-functional) requirements and the logical architecture

(UML component diagram), documented in a report designated as ‘To-Be report’ (which was

Initialization Implementation Deployment

Business
Modeling

Requirements

Analysis and
Design

Deploy

Test

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

137

constantly updated as the implementation went along). UML use cases and UML component

diagram compose the ‘Solution Requirements Specification’ that result in the ‘To-Be Report’. The

‘To-Be’ use case models then compose the ‘Product Backlog’.

This differs from ASD frameworks. XP uses Themes, Epics and User Stories for addressing

requirements. Scrum and Kanban only prescribe using work items in the Product Backlog

regardless the form (however commonly these items are in form of User Stories). Test Driven

Development (TDD), Acceptance Test Driven Development (ATDD), BDD and Specification by

Example (SBE), use testable scenarios as input for the software development. However,

approaches like the Agile Unified Process (AUP) (SW Ambler, 2005), Jacobson’s “Use Case 2.0”

(Jacobson, Spence, & Bittner, 2011), or others like (Cho, 2009; Durdik, 2011) use UML and use

case-driven Product Backlogs.

More detail on these tasks, including the activities during the Sprint 0 event, are represented

in a SPEM diagram in Figure 51. In this diagram, roles are explicitly assigned to the activities

and tasks. Each task outputs a work product or a deliverable. In the case of the ‘Sprint 0’, this

ceremony includes specific tasks, namely prioritizing and estimating use cases, constructing the

product backlog (that result in the ´Product Backlog’) and finally the planning of the following

Sprints (that result in the ´Sprint Backlog’).

Then, this backlog is used to define a ‘Sprint Backlog’ for every Sprint, as typically occurs in,

e.g., Scrum projects. In Figure 52 is depicted an example of a ‘Sprint Backlog’ tracking sheet,

composed by use cases and whose progress was monitored. In these type of backlogs, each use

case elicited during Initialization is a Product Backlog Item (PBI). The logical architecture model

is used to support development of components, but it does not have direct impact in ‘Product

Backlog Construction’. Within this task, the logical architecture may be consulted in order to

include in ‘Sprint Backlog’ use cases where components have any kind of associations, but the

construction of the backlog is a responsibility that relies uniquely the team.

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

138

Figure 51. SPEM diagram for Initialization phase

Figure 52. Example of a Sprint Backlog based in Use Cases

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

139

Deriving a User story-driven Product Backlog

In the previous section, the UML use cases and UML component diagram (that compose the

‘Solution Requirements Specification’) were modeled upfront and used as input in a Sprint 0. As

previously mentioned, ASD frameworks like Scrum, XP or Kanban flavor using User Stories as

starting points for PBI’s (although only XP clearly states using User Stories). Using “INVEST”

criteria (“Independent”, “Negotiable”, “Valuable”, “Estimable”, “Small”, “Testable”), these

frameworks claim User Stories to be better suitable for defining work items within a timebox such

as Sprints rather than Use Cases.

Thus, this section presents a hybrid approach that includes an upfront requirements

modeling (e.g., in UML) should use a User Story-driven Product Backlog. The use of Use Cases

and User Stories regard a different context of use (Cohn, 2004a) and different granularity

(Leffingwell, 2010). In order to deal with these differences, an approach that supports traceability

between requirements and software is proposed.

Figure 53 proposes a traceable path, using a V-Model, between requirements in UML Use

Cases, a logical architecture in UML Components and delivery of User Stories. The process uses

the V-Model proposed by Ferreira et al. for deriving a logical architecture aligned with

requirement modeled in Use Cases (Nuno Ferreira, Santos, Machado, Fernandes, & Gasević,

2014). The V-Model uses models in a successive way, where a previous model is input for a next

one. Namely, the requirements elicitation included a definition of the solution’s executing

business processes, sequential ordering of functionalities (afterwards modeled in A-type

sequence diagrams (Nuno Ferreira et al., 2014)) and finally modeling in Use Case diagrams.

The pathway to elicit business process needs (“Input from Business Processes”) required to

derive software requirements (A-type sequence diagrams and UML Use Cases) is described in

previous works (N. Ferreira, Santos, Machado, & Gašević, 2013; N Ferreira, Santos, Soares,

Machado, & Gasevic, 2012; Nuno Ferreira et al., 2014; Nuno Ferreira, Santos, Machado, &

Gasevic, 2012; Nuno Ferreira, Santos, Soares, Machado, & Gašević, 2013; Santos, Ferreira, &

Machado, 2017). It is not the purpose of this section to address the derivation of the UML Use

Cases. Rather, what it should be retained from this process is that requirements were elicited in

UML Use Cases and afterwards the architecture was designed, both performed upfront before

any kind of development tasks.

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

140

Figure 53. The result of the V-Model to be delivered to multiple Scrum teams

Some software architectures are too complex to be directly used by agile teams as their

requirements input artifact. Additionally, each agile team may be responsible for implementing

only some parts of the whole architecture. The software logical architecture is the artifact typically

delivered to implementation teams (Scrum or other), and it regards the architecture diagram that

is modularized. The components (representing software functionalities) that compose it are

classified as belonging to a given software module, and thus covered by the module (Figure 54).

Figure 54. Architecture modularization example

After the modularization, all entities not directly connected to the module must be removed

from the resulting diagram. Inside the system border defined for the given module, through the

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

141

respective module coverage, the components are maintained as originally characterized.

Additionally, it also allows depicting the interfaces that are outside the system border.

Due to the fact that, in the 4SRS method, the components are derived through the

decomposition of Use Cases in three different types (interface, data and control), one User Story

is created for each component, as depicted in Figure 55, as it complies with the greater flexibility

for the Product Owner to follow the team’s work.

Figure 55. Relation between Use Cases, Components and User Stories

In short, there are two model inputs for composing the Product Backlog: the architecture

components and the Use cases. The derivation of User Stories for composing the backlog is

based in the components, as depicted in Figure 55, to define the size of the backlog but also

using inputs from architecture components and the Use cases for defining the information about

the user story. This discussion is described in detail in Chapter 6.

4.3. Agile logical architecting with the 4SRS method

Chapter 1 introduced Agile Modeling Process for Logical Architectures (AMPLA), a process

for model derivation applicable in an Agile RE and AM context. AMPLA is a process for candidate

architecture design based on successive and specific artifacts generation, which starts by

discovery and exploration of user needs, A-type sequence diagrams, use case models, a software

logical architecture diagram, feedbacks from customers and issues identification, and the

consequent software delivery.

This section introduces the model derivation until the candidate architecture design (Figure

56), relating to requirements elicitation and modeling. The generated artifacts and the alignment

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

142

between the explored needs and modeled software requirements can be represented by a

V-Model (Figure 56). In our proposed V-Model, the artifacts are generated based on the rationale

and in the information existing in previously defined artifacts, i.e., A-type sequence diagrams are

based on discovered and explored scenarios, use case model is based on A-type sequence

diagrams, the logical architecture is based on the use case model, and finally feedback from

customers based in the logical architecture. After the feedback and consequent learning and

adjustments (if needed), the approach ends with the candidate logical architecture, which is then

used as input for defining the required backlog items for delivering the software. When software

delivery begins, the process is performed in typical cycles, whether in Scrum, Kanban, or other

frameworks.

AMPLA is composed by artifacts, phases and milestones (Figure 56). AMPLA’s successive

model derivation is performed in iterative cycles, easing the execution of agile feedback loops and

hence contributing to the process’ agility. These loops encompass phases of (1) Do; (2) Learn;

and (3) Adjust. Each loop may include all phases of AMPLA, or just a subset of them.

The artifacts should be modeled incrementally, where the ideal is to have short cycles to

have design prototypes ready for customer analysis and feedback. It is better to deliver small

portions of models and quickly validate with customers that the right product is being developed,

rather than deliver bigger portions of models and realize that they do not reflect customer needs.

Hence, the path encompassing “Discovery / Explore”, “A-type sequence diagrams”, “use cases”,

“4SRS” and “logical architecture” relate to (1) Do phase. “Feedback” from customers relate to

the (2) Learn. Finally, the (3) Adjust is reflected in new, changed or eliminated artifacts output

during the (1) Do phase.

It has three established phases: (i) Requirements Elicitation; (ii) Requirements Analysis &

Modeling; (iii) Architecture Design; and (iv) Delivery Cycles. For milestones, besides the

checkpoints before passing from one phase to another, there are additional ones within phases

that aim promoting agility. In Requirements Analysis & Modeling, the use cases refinement are

validated for having “just-enough” detail before executing the 4SRS method. The execution of the

4SRS outputs a candidate version of the logical architecture, which is the first system model

prototype that is presented to stakeholders for feedback. The last milestone from this phase

relates to the feedback gathered from the architecture, where issues and adjustments are

identified before passing on to the Delivery Cycles phase.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

143

Figure 56. Candidate architecture design of AMPLA

The mashup of agile practices and industry coins (e.g., Scrum, XP, MVP, DevOps, large-

scale agile, Squads/Tribes, Management 3.0, and many others) cover all software and

application lifecycle. Although none of this practices relate to RE discipline, or specifically to Agile

modeling (AM) (S Ambler, 2002), performing this practices into an ASD process has direct

implications on how RE practices are performed and how artifacts are built.

Applying AM should start by enabling a first iteration of requirements modeling, which is

then the basis for further refinements and emerges, as the software increments are being

delivered throughout the Sprints. The inception, like the pregame phase or Sprint zero in Scrum,

aims providing a shared understanding of the project and the required information for the

development phase. In the same line of reasoning, Ambler presents an evolution and emerge-

oriented approach for using models in ASD, called “Agile Model-Driven Development” (AMDD)

(SW Ambler, 2003), where the starting point is “just-enough” requirements and architecture,

which are updated alongside Delivery Cycles phase.

This section describes an AM process for modeling emergent user requirements towards a

candidate logical architecture, called “Decomposing User Agile Requirements arTEfacts”

(DUARTE) approach. It starts in eliciting user requirements, using ASD techniques like Lean

Startup (Ries, 2011), Design Thinking (Brown, 2009), Domain-driven Design (DDD) (Evans,

2004), Behavior-driven Development (BDD) (Smart, 2015), and others, which results in modeling

UML Use Cases. Requirements are modeled until they are considered as “just-enough”, until

used within the 4SRS method. The 4SRS allows deriving a candidate logical architecture, to be

used within ASD delivery cycles.

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

144

The Decomposing User Agile Requirements arTEfacts (DUARTE)

approach

In opposition to upfront and stable requirements, “Agile RE” is executed continuously (Grau

& Lauenroth, 2014), and takes an iterative discovery approach (Cao & Ramesh, 2008). This

section introduces DUARTE, a requirements-related approach performed within AMPLA, which

aims at iteratively elicit and model emerging requirements that will later be used within the 4SRS

method in order to derive the candidate logical architecture.

DUARTE is about eliciting and modeling requirements, promoting agility (and hence Agile RE

practices) by including practices and mindsets from approaches like Lean Startup, Design

Thinking, DDD, BDD, Kent Beck’s 3X6 and BizDev (Fitzgerald & Stol, 2017). Additionally, uses

agile practices in order to deliver small increments (of a requirements package) and to promote

continuous customer feedback (Figure 57).

Lean Startup is a hypothesis-driven approach, where a "Build-Measure-Learn" cycle is the

basis for supporting product development adequate to the market. Design Thinking addresses

understanding the customer need through systematic exploration, in order to understand the

right product to develop. It is also worth referring that this cycle is inspired by the “Plan-Do-

Check-Act” (PDCA) from Lean Manufacturing. The agile scaling framework DAD also

encompasses an “Exploratory lifecycle” that uses the "Build-Measure-Learn" cycle from Lean

Startup. With Lean Startup, the following concepts arose: (i) Minimal Viable Product (MVP), (ii)

Minimal Marketable Feature (MMF), (iii) Minimal Marketable Release (MMR), and (iv) Minimal

Marketable Product (MMP). (i) An MVP is a version of a new product that is created with the least

effort possible to be used for validated learning about customers. A development team typically

deploys an MVP to the market to test a new idea, to collect data about it, and thereby learn from

it. (ii) An MMF is the smallest piece of functionality that can be delivered that has value to both

the organization delivering it and the people using it. An MMF is a part of an MMR or MMP. (iii)

An MMR is the release of a product that has the smallest possible feature set that addresses the

customers’ current needs. (iv) An MMP is the first deployment of a MMR.

Design Thinking addresses understanding the customer need through systematic

exploration. The objective is to understand the right product to develop. This approach

encompasses “Empathize”, “Define”, “Ideate”, “Prototype” and “Test” phases.

6 https://www.facebook.com/notes/kent-beck/the-product-development-triathlon/1215075478525314/

https://www.facebook.com/notes/kent-beck/the-product-development-triathlon/1215075478525314/

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

145

BDD is an agile practice that consists in defining increments of software behavior and their

delivery. Similar to BDD, Test Driven Development (TDD), Acceptance Test Driven Development

(ATDD) and Specification by Example (SBE) use testable scenarios as input for the software

development. All these have in common to start by defining development based in scenarios and

use the “Given, When, Then” (gherkin language).

DDD is an approach that proposes the division of concepts by domains, or sub-domains, if

applicable. BizDev is continuous linking Business Strategy & Planning and Development. 3X

relates to Kent Beck’s vision of product development phases, explore, expand, extract.

Figure 57. Overview of DUARTE approach

The elicitation and discovery phase of DUARTE relates to eliciting customer needs, exploring

alternatives, discover new requirements, all aligned with current agile practices from ASD

frameworks, techniques and philosophies. In AMPLA, this phase outputs a set of scenarios, i.e.,

processes and activities performed using the solution under development. These scenarios are

documented in A-type sequence diagrams, a stereotyped version of UML sequence diagrams that

only include actors and use cases.

A-type Sequence

Use Cases

4SRS

Logical
Architecture

Discovery / Explore Feedback
Feature validation

Scenario validation

Functionality validation

 Just-Enough
Use Cases
milestone

Candidate Architecture
milestone

Architecture
Design

Modularization

Phases color caption

Analyze and
Learn

milestone

Requirements
Elicitation

Requirements
Analysis & Modeling

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

146

At this stage, the use cases included in these diagrams are not yet composing part of the

Use Case model from the next stage. Rather, they are classified as candidate use cases, because

they relate to specific activities and tasks that a given actor performs (in software or not) within a

given scenario. The flows between actors and candidate use cases relate to the actions

performed. The use of these diagrams, instead of UML Activity diagrams, BPMN, or any other

process-oriented language, relates to the use of candidate use cases, which help to construct the

model in the next stage, because the candidate use cases are input for the use case model.

Applying agile practices in this phase influences:

 In Lean Startup, stakeholders define scenarios with the experiment mindset in mind. At

this point, stakeholders have decided which features to include/experiment in the MVP. The

scenarios for such features are elicited with the knowledge to date, where is not the purpose

to have detailed technical description of how the solution will support such scenarios, but

rather to define the referring processes. The remaining features may be refined afterwards.

It is not the purpose of AMPLA to define how to reach minimum features (typically using

‘bespoke RE’ or ‘market-driven RE’ techniques), but rather to use the resulting business

need as input for scenario modeling.

 In Design Thinking and Kent Beck’s 3X, the customer’s desires and expectations are

included in the scenarios, but the idea is also to discover and explore scenarios with

different solutions and processes rather than only address what customers dictate. A-type

sequence diagrams represent as many tasks as the scenarios are discovered and explored

(Figure 58).

 In BDD (or TDD, ATDD or SBE), the requirements discipline is addressed in the discovery

and definition of scenarios (in gherkin language format). This format is mapped in A-type

sequence diagrams, where “Given” contextualize each sequence diagram, “When” relates

to a main sequence, or alternatively optional or exception sequence (if existing), and “Then”

relate to the flows within the diagram.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

147

Figure 58. Discovery and exploration of the scenarios

These scenarios, right or wrong (have in mind this is an exploration phase) are modeled in

A-type sequence diagrams. These diagrams are the first visual prototype where customers are

able to provide feedback.

The Requirements Analysis and Modeling phase of DUARTE aims modeling a UML Use

Cases diagram. Using as input the elicited scenarios, namely the model artifacts relating to A-

type sequence diagrams, the Use Cases diagram is built and each Use Case refined. The

gathering from the sequence diagrams are based in a set of decisions, which are aligned with

agile practices as Design Thinking and DDD.

In this phase, candidate use cases from A-type sequence diagrams will give origin to

“typical” use cases, i.e., formal software functional requirements. The idea is to use the gathered

information and use it to model Use Cases and their refinements. The gathered information

allows identifying detailed information about a requirement, which correspond to a use case

functionally decomposed in refined use cases. Cruz et al. (Cruz, Machado, & Santos, 2014) and

Azevedo et al. (Azevedo, Machado, Braganca, & Ribeiro, 2010) present such refinement by sub-

domains that compose a domain or by splitting a process. They model use case refinement in

decomposition trees, and so does this approach. The candidate use cases from A-type sequence

A-type Sequence

A-type Sequence

A-type Sequence

A-type Sequence

A-type Sequence

A-type Sequence

A-type Sequence

A-type Sequence

A-type Sequence

A-type Sequence

A-type Sequence

A-type Sequence

Discover & Explore

Idea
Generarion

time

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

148

diagrams are grouped in a logical way, typically grouping them to the scenario from A-type

sequence diagrams that originated them.

Applying agile practices in this phase influences:

 In Lean Startup, as customers define which scenarios to include in MVP/MMR/MMP,

they are expressed in more detail rather than the scenarios that are left out at this phase.

Thus, there is more context to define the models that will compose MMF, which result in

more decomposition of those use cases. The remaining requirements that are not refined

for the MMF are identified however not afterwards decomposed.

 In Design Thinking, Use Cases are used as designed prototypes aiming firsts customer

feedbacks

 In BizDev, use case models trace back to the scenarios, which support the continuous

linking Business Strategy & Planning and Development;

 In BDD, the candidate use cases from A-type sequence diagrams are grouped in domains

and sub-domains. The refinement “branches” of the decomposition tree hence relate to a

single domain or sub-domain, which define bounded contexts for a (sub-)domain. This

aspect assures a given team to work on a sub-domain and the independence is assured by

the bounded context.

“Just-Enough” modeling

In this section, the objective is to describe the elicitation of the core requirements, and

additionally to include techniques for deciding when the “just-enough” requirements model is

complete. The elicitation of “just-enough” requirements, rather than promoting their elicitation all

upfront, typically faces insufficient knowledge about using recent technologies. Not only there is

an inclusion of a new technology, and their unpredictable adoption, but of new business models,

processes, and the role of stakeholders within the supply chain.

The business needs, project goals, vision document, and other information that act as inputs

for requirements is gathered in the inception phase (or earlier) of the project. In this phase, and

namely in agile context, where the requirements are not known upfront, it is very difficult to know

in advance how much RE is “just-enough”. The vision document, for instance, reflects

stakeholder’s intentions (i.e., features) towards the entire product, however the main purpose at

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

149

this time is to assure that such features are included. At this point, stakeholders have decided

which features to include in the MVP. The requirements that are object of “just-enough”

refinement and modeling relate to such features, while the remaining features from the product

roadmap may be refined afterwards.

The DUARTE approach starts by eliciting high-level requirements for the MVP. Key

stakeholders are interviewed in order to list a set of their expectations towards the solution (as in

“I expect that the solution is able to do this, and that…”) and their perceived importance, namely

to depict the scenarios with highest priority for this release. The interviewees may also identify

features of the product roadmap to be included in further releases. The “just-enough” subset

should include all identified features, however only the features related to the MVP are object of

decomposition. For instance, if a roadmap contains fifty features and only ten are to be

implemented in the MVP, the high-level architecture should clearly support those ten, but also

include initial support for the upcoming forty features.

This section illustrates the elicitation process based on stakeholders’ expectations. However,

every business requirements-related information or document that provide inputs for the software

requirements elicitation are useful for validating if high-level requirements were considered.

Techniques like interviews, questionnaires, workshops, etc., are additional and complemental

approaches of the aforementioned document analysis for gathering inputs on requirements. The

use of these techniques is a decision of the requirements engineers as they best fit in a given

context.

The elicitation process’ goal is to model functional requirements in UML Use Case diagrams,

promoting the modeling of the product roadmap by functional decomposition, in compliance with

a work-breakdown structure (WBS). Use cases are decomposed once or twice, instead of several

times like in upfront contexts. Since the main idea is to model “just-enough” requirements, one

decomposition may be sufficient, namely the ones that stakeholders are aware at this point. The

use of UML Use Case diagrams is mandatory in this approach, since the 4SRS method for

deriving the logical architecture requires Use Cases as input.

To validate if the modeled use cases cover the requirements defined in the product scope,

Table 14 exemplifies the crosschecking between the stakeholders’ expectations and the project

goals. Since the expectations and goals list emphasizes the MVP features, there is a context for

MVP features to be more decomposed than the remaining. The premises is that if all these

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

150

concerns are included in the Use Case model, with more emphasis in decomposition detail to

MVP requirements, one may consider that we have “just-enough” requirements information for

this stage.

Table 14. Traceability matrix of requirements within the initial expectations

Req. Expec. 1 Expec. 2 Expec. 3 Expec. n

UC.1 x

UC.2 x

UC.3 x

UC.n x x

Like in any requirements process, one of the first critical tasks is to identify all projects

stakeholders, as well as the solution’s interacting actors. By mapping stakeholders to the use

cases (Table 15), one must assure that every stakeholder/actor has at least a requirement

mapped to it, or is a symptom that critical requirements are missing.

Table 15. Traceability matrix of requirements within the identified project stakeholders and solution

actors

Req. Stkh A Stkh B Stkh C Stkh D

UC.1 x

UC.2 x x

UC.3 x

UC.n x

The mappings from Table 14 and Table 15 validates that the UML Use Cases diagram

includes the features for MVP but also the product roadmap, and that all stakeholders have

related functionalities. Both tables provide the required traceability to the expectations and

stakeholder/actor needs, which hence are the mechanism used to respond to changes. When

applied to mid-and long term projects, the approach supports updates of expectations and

stakeholder/actor needs over time, as well as the inclusion of new Use Cases, by tracing

requirements in Table 14. Additionally, the approach is able to lead with organizational

changes, by tracing the Use Cases to stakeholder/actor needs in Table 15. The approach

differs from the segmentation of requirements into different priorities by setting an initial set of

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

151

Use Cases to the entire solution, refining subsets of the model (section 3.2) and prioritizing them

before actually begin the implementation.

Having all the “just-enough” requirements elicited, gathered, modeled and validated, these

Use Cases are now able to be used as input for the candidate logical architecture derivation,

composed with the “just-enough” architectural components.

4.4. Demonstration cases

Upfront RE for use case-driven product backlogs: the iFloW case

iFloW is an R&D project sponsored by the consortium between University of Minho (UMinho)

and Bosch Car Multimedia Portugal (Bosch), that aims at developing an integrated logistics

software system for inbound supply chain traceability (cf. Chapter 1). iFloW is a real-time tracking

software system of freights in transit from the suppliers to the Bosch plant, located in Braga. The

main goal of the project is to develop a tracking platform that by integrating information from

freight forwarders and on-vehicle GPS devices allows to control the raw material flow from remote

(Asian) and local (European) suppliers to the Bosch’s warehouse, alerts users in case of any

deviation to the Estimated Time of Arrival (ETA) and anticipates deviations of the delivery time

window.

The organization’s logistics-related processes and current gaps were documented in a report

designated as ‘As-Is report’. Then, the requirements were elicited, formally specified in the form

of UML use cases, a list of quality (non-functional) requirements and in a first version of the

logical architecture (UML component diagram). This set of requirements was documented in a

report designated as ‘To-Be report’ (which was constantly updated as the implementation went

along). Both use case models (especially the ‘To-Be’) were used as basis to define a ‘Product

Backlog’. This differs from other agile frameworks where, for instance, in Scrum (Ken Schwaber,

1997), backlogs are composed of user stories. A user story is a customer-centric characterization

of a requirement. It contains only the information needed for the project developers to see clearly

what is required to implement (Scott Ambler & Lines, 2012). However, use cases are also used

in agile frameworks (Jacobson et al., 2011; Kroll & MacIsaac, 2006).

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

152

The use case diagram illustrated in Figure 59 shows the overall use case model of the iFloW

project. Each of the use cases were functionally decomposed, which resulted in 90 lower level

use cases. The use case model is presented in Annex A.

The Initialization phase ends with a Sprint 0 ceremony. Most of the technological research was

performed during this ceremony, prior to the implementation in the following Sprints. Like in a

typical Sprint 0, each item (use case) was prioritized by its perceived value from stakeholders, in

this case by using MoSCoW (“Must”, “Should”, “Could”, “Won’t”) prioritization technique

(Waters, 2009). In addition, each use case was estimated related to a quantitative effort for its

implementation. A commonly used technique is use case points (Anda, Dreiem, Sjøberg, &

Jørgensen, 2001; Karner, 1993; Nageswaran, 2001), however in this project this technique was

not used. Rather, the team of the iFloW project defined that for each Sprint corresponds a total

effort of 20 points (which resulted in approximately five points per week) as basis for distribution

of these points per use case and following a comparative technique similar to a planning poker

(Grenning, 2002). Additionally, each use case was prioritized, and the work was estimated so

‘Sprint Backlogs’ (which use cases from the ‘Product Backlog’ to implement during the Sprint)

could be defined.

Figure 59. Use Case diagram of iFloW project

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

153

Within the implementation phase, the use cases from the ‘Product Backlog’ were

implemented iteratively and incrementally during eight four-week Scrum Sprints. In this phase,

typical Scrum iterations were performed, where each ‘Sprint Backlog’ is a selected subset from

the ‘Product Backlog’. In Figure 60 is depicted an example of a ‘Sprint Backlog’ tracking sheet,

composed by the iFloW use cases and whose progress was monitored.

Figure 60. Example of a Sprint Backlog based in Use Cases

Each Sprint has a standard planning and structure consisting of several milestones, previously

negotiated by the project members:

 Sprint development: lasts four weeks, and is allocated to the development of the items from

the ‘Sprint Backlog’;

 Sprint Monitoring meeting takes place in second week to show Sprint progress and

monitor Sprint tasks. The attendees are the Product Owner, R&D coordination and

development team;

 Sprint Verification and Validation (V+V) meeting takes place in the fourth (i.e., last)

week and the goal is to test and validate the requirements implemented by the development

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

154

team. The attendees are the Product Owner, the development team, a member of the Bosch

IT department, and an assigned Product User from Bosch. In each Sprint V+V meeting, the

Product User was assigned a different user from Logistics department so the performed tests

could encompass different insights from the organization. During the Sprint, if any requirement

(use case) is moved to a next Sprint due to a given constraint and will not be presented in this

meeting, the team is notified;

 Sprint Closure and Planning meeting takes place at most two days after the Sprint V+V

meeting, and the attendees are the Product Owner, the R&D coordination, a member of the

Bosch IT department and the development team. It is similar to a Sprint Retrospective and a

Sprint Planning meeting from typical Scrum, performed within the same meeting. The main

goal is to analyze the progress of the implementation phase, by assessing the percentage and

completion of the use case implementation and thus updating the burndown chart. If

applicable, short rework actions (depicted from the Sprint V+V) are approved to perform until

the end of the Sprint. Additionally, the next Sprint is planned, resulting in the construction of

the ‘Sprint Backlog’ artifact;

 Sprint Rework meeting takes place the day after the Sprint Closure meeting. After Sprint

V+V, some rework actions can arise due to a suggestion by the verification and validation

team. If applicable, the development team has to implement these rework actions until the end

of the Sprint. The Sprint Rework meetings are used to validate the rework actions performed.

The attendees are the assigned Product Users, Product Owner, a member of the Bosch IT

department and the development team.

Upfront RE for user stories-driven product backlogs: the ISOFIN Cloud

case

The ISOFIN (Interoperability in Financial Software) Cloud was a project where the

architecture aimed enacting the coordination of independent services allowing the semantic and

application interoperability between enrolled financial institutions (Banks, Insurance Companies

and others) (cf. Chapter 1). The global ISOFIN architecture relies on two main service types:

Interconnected Business Service (IBS) and Supplier Business Service (SBS). IBSs concern a set

of functionalities that are exposed from the ISOFIN core platform to ISOFIN Customers. An IBS

interconnects one or more SBS’s and/or IBS’s exposing functionalities that relate directly to

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

155

business needs. SBS’s are a set of functionalities that are exposed from the ISOFIN Suppliers

production infrastructure. Finally, users may also use ISOFIN Applications, which are software

applications that result of joining an interface to a single IBS.

Just like in the previous demonstration case, the requirements were identified and modeled

upfront. Figure 61 depicts the resulting use case model. All these use cases were refined using

functional decomposition, until 80 use cases were modeled. These refined use cases were then

used within the 4SRS method towards the logical architecture design.

Figure 61. ISOFIN Use Case Model

The ISOFIN logical architecture diagram from performing the 4SRS method is depicted in

Figure 62. In the “middle” of the logical architecture diagram is the “Repository” package,

containing the several information repositories used in the ISOFIN Platform execution. The rest of

the packages reflect the ISOFIN Platform usage, i.e., ISOFIN Applications, IBSs, Subscriptions,

Alerts, Logs, Policies and Security Management. All these packages are associated to

{U2} Develop IBS

{U3} Create ISOFIN
Application

{U4} Define Alert

{U5} Execute
Maintenance

{U6} Conduct Test

{U7} Perform Audit

{U1} Manage
Subscription

SBS System Administrator

SBS Audit Tester

System Administrator

Auditor
Audit Tester

SBS Suplier

SBS Business Analyst

Alert Creator

IBS Developer

IBS Business Analyst

SBS Publisher

SBS Developer

Isofin Customer

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

156

components regarding the “Repository” package. Finally, also depict the «generates» association,

that assures a relation between the developed IBSs and ISOFIN Applications and the components

that relate to their interface with users (ISOFIN Customer).

Figure 62. ISOFIN Logical Architecture

Then, the logical diagram was modularized and partitioned in a set of “spots” that traverse

the logical architecture, covering the components. These spots represent applications to be

developed and that depict independent applications that may be implemented by different teams,

due to the complexity presented during the project. Seven applications were identified, which

relate to the spots within the modularized architecture in Figure 63, which are: IBS Management

Module; ISOFIN App Management Module; Alert Management Module; Subscription Management

Module; Security Management Module; Policies Management Module; and Logs Management

Module.

Repositories

Alert Editor

<<data>>
{AE4.1.d} Configured Alert

Information

<<interface>>
{AE4.1.i} Alert Configuration

Interface

Alert Installer

<<control>>
{AE4.2.1.c} Alert Code

Generator

<<control>>
{AE4.2.2.c1} Schedule Alert

<<control>>
{AE4.2.2.c2} Execute Alert

ISOFIN App
Communication

<<interface>>
{AE3.5.1.i} Send Information

From ISOFIN App

<<interface>>
{AE3.5.2.i} Receive

Information in ISOFIN App

<<interface>>
{AE3.6.1.i} Send Configuration
Commands From ISOFIN App

<<interface>>
{AE3.6.2.i} Receive

Configuration Commands to
ISOFIN App

<<interface>>
{AE3.6.3.i} Send Usage

Commands From ISOFIN App

<<interface>>
{AE3.6.4.i} Receive Usage
Commands to ISOFIN App

ISOFIN App Installer

<<interface>>
{AE3.3.1.i} ISOFIN Application

Publisher Interface

<<control>>
{AE3.3.2.c} ISOFIN App

Deployer

<<interface>>
{AE3.3.2.i} ISOFIN App
Deployment Interface

<<control>>
{AE3.3.3.c} Export ISOFIN App

Code

<<control>>
{AE3.3.4.c} ISOFIN App

Documentation Generator

<<interface>>
{AE3.3.4.i} ISOFIN App
Documentation Editor

<<control>>
{AE3.4.2.c} Test ISOFIN

Application Before
Deployment

Security Management

<<control>>
{AE1.6.c} Grant Access to

ISOFIN Platform

<<interface>>
{AE1.6.i} ISOFIN Platform

Access and Usage
Management

<<control>>
{AE2.2.6.c1} Selected Object

permissions

<<control>>
{AE2.4.1.c} IBS

Communication Validation

<<control>>
{AE3.5.1.c} ISOFIN App

Communication Validation

Logs Management

<<interface>>
{AE2.4.1.i1} IBS Log Manager

<<interface>>
{AE3.5.1.i1} ISOFIN App Log

Manager

<<interface>>
{AE4.3.i1} Alert Log Manager

<<interface>>
{AE1.3.5.i1} Subscription Log

Manager

Supplier Subscription
Management

<<control>>
{AE1.3.1.c} Evaluate Supplier

subscription

<<interface>>
{AE1.3.1.i} Supplier

subscription evaluation
interface

<<interface>>
{AE1.3.3.i} Supplier’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.1.i} Publish SBS

Subscsription in Catalog
Interface

Customer
Subscription
Management

<<control>>
{AE1.3.2.c} Evaluate Customer

subscription

<<interface>>
{AE1.3.2.i} Customer

subscription evaluation
interface

<<interface>>
{AE1.3.4.i} Customer’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.2.i} Publish Customer

Subscsription in Catalog
Interface

IBS Communication

<<interface>>
{AE2.4.1.i} Send Information

From IBS

<<interface>>
{AE2.4.2.i} Receive
Information in IBS

<<interface>>
{AE2.5.1.i} Send Configuration

Commands From IBS

<<interface>>
{AE2.5.2.i} Receive

Configuration Commands to
IBS

<<interface>>
{AE2.5.3.i} Send Usage
Commands From IBS

<<interface>>
{AE2.5.4.i} Receive Usage

Commands to IBS

IBS Installer

<<control>>
{AE2.2.7.c} IBS Interface

Generator

<<data>>
{AE2.2.7.d} IBS Interface

Repository

<<interface>>
{AE2.3.1.i} IBS Publisher

Interface

<<control>>
{AE2.3.2.c} IBS Deployer

<<interface>>
{AE2.3.2.i} IBS Deployer

Interface

<<control>>
{AE2.3.3.c} IBS Documentation

Generator

<<interface>>
{AE2.3.3.i} IBS Documentation

Editor

<<control>>
{AE2.7.2.c} Test IBS Before

Deployment

IBS Editor

<<control>>
{AE2.1.2.c1} Selected Object

configurations

<<data>>
{AE2.1.2.d} IBS Configuration

Repository

<<interface>>
{AE2.1.2.i} Low-level IBS
Configuration Interface

<<data>>
{AE2.1.3.d} IBS Structure

Repository

<<interface>>
{AE2.1.3.i} Update IBS

Structure Interface

<<control>>
{AE2.1.4.c} Compiles IBS

information

<<interface>>
{AE2.1.4.i} Update IBS

Interface

<<interface>>
{AE2.2.3.i} IBS Structure

interface

<<control>>
{AE2.2.4.c} Define IBS Code

Gaps

<<interface>>
{AE2.2.4.i} IBS Coding and

Compiling Interface

<<control>>
{AE2.2.5.c} Compile IBS code

<<data>>
{AE2.2.5.d} IBS Pre-
Deployment Storage

<<interface>>
{AE2.2.6.i} Permissions

Interface

<<control>>
{AE2.7.1.c} IBS Customization

Filter

<<interface>>
{AE2.7.1.i} IBS Customization

Interface

<<interface>>
{AE2.6.3.i} IBS

Interconnectivity interface

IBS Repository

<<data>>
{AE2.1.1.d} IBS Repository

<<interface>>
{AE2.6.1.i} IBS Repository

Interface

SBS Repository

<<data>>
{AE2.6.2.d} SBS Repository

<<interface>>
{AE2.6.2.i} SBS Repository

Interface

Alert Repository

<<data>>
{AE4.3.d} Alert Repository

<<interface>>
{AE4.3.i/c} Scheduled Alert

Dispatcher

Subscription
Repository

<<control>>
{AE1.3.5.c1} Subscription

Duplicity Verification

<<data>>
{AE1.3.5.d} ISOFIN Platform
Subscription Info Repository

<<interface>>
{AE1.3.5.i} Subscription

Repository Interface

<<data>>
{AE1.4.d} ISOFIN Platform
Subscription Assessment

Repository

<<interface>>
{AE1.8.1.i} Manage ISOFIN

Suppliers

<<interface>>
{AE1.8.2.i} Manage ISOFIN

Customers

Logs Repository

<<data>>
{AE2.4.1.d} IBS Logs

Repository

<<data>>
{AE3.5.1.d} ISOFIN App Logs

Repository

<<data>>
{AE4.3.d1} Alert Logs

Repository

<<interface>>
{AE4.3.i2} Log Repository

Interface

<<data>>
{AE1.3.5.d1} Subscription Logs

Repository

Security Repository

<<data>>
{AE1.2.1.d} ISOFIN Platform

Policies Repository

<<data>>
{AE1.6.d} ISOFIN Platform

Access Repository

ISOFIN App
Repository

<<data>>
{AE3.3.1.d} ISOFIN App

Repository

<<interface>>
{AE3.3.1.i1} ISOFIN App

Repository

Policies Management

<<interface>>
{AE1.2.1.i} Configure Supplier

Policies Interface

<<interface>>
{AE1.2.2.i} Configure

Customer Policies Interface

Subscription Management

<<interface>>
{AE1.1.1.i} Fulfillment

Subscription Requirements
Interface

<<control>>
{AE1.1.2.c1} Verifiy

Subscription data duplicity

<<control>>
{AE1.1.2.c} Validate

subscription requirement
fulfillment

<<interface>>
{AE1.1.2.i} Manual

Subscription Validation
Interface

<<interface>>
{AE1.4.i} Subscription Request

Interface

<<control>>
{AE1.7.c} Control Subscription

Requests

<<interface>>
{AE1.7.i} Suscription Request

Status Interface

ISOFIN App Editor

<<interface>>
{AE3.1.i} ISOFIN Application

Model Editor

<<interface>>
{AE3.2.1.i} IBS Information

Retrieval

<<control>>
{AE3.2.2.c} Generate ISOFIN

App Code

<<interface>>
{AE3.2.2.i} ISOFIN Application

Coding and Compiling
Interface

<<interface>>
{AE3.2.3.i} ISOFIN Application

Model Interface

<<control>>
{AE3.2.4.c} Associate Visual

Representation to
Functionality

<<interface>>
{AE3.4.1.i} ISOFIN Application

Customization Interface

««GENERATES»»

<<interface>>
{AE2.7.2.i} IBS Test Generator

<<interface>>
{AE2.6.2.i1} SBS Pallet

Retrieval Interface

<<interface>>
{AE2.6.1.i1} IBS Pallet

Retrieval Interface

2x

6x

6x

6x

6x

5x

6x

6x

2x

2x

2x

3x

3x

««GENERATES»»

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

157

Figure 63. ISOFIN architecture modularization

Using these rules, remaining User Stories were derived that are listed in Table 16. In Figure

64 is represented a User Story sentence based in the derivation from Table 16.

Emerging RE using DUARTE: the UH4SP case

The UH4SP project aims developing a platform for integrating data from distributed

industrial unit plants, allowing the use of the production data between plants, suppliers,

forwarders and clients (cf. chapter 1). The consortium was composed with five different entities

for software development where each had specific expected contributes, from cloud architectures

to industrial software services and mobile applications. The entities are geographically

distributed, but each entity had a single located team. An analysis team composed with elements

from each entities, aiming to define the initial requirements, conducted the requirements phase.

Since they belong to different entities, they had to schedule on-site meetings to perform

requirements workshops. Only when beginning the software delivery cycles, after boundaries

were clear, each team was responsible for refining their requirements.

Repositories

Alert Editor

<<data>>
{AE4.1.d} Configured Alert

Information

<<interface>>
{AE4.1.i} Alert Configuration

Interface

Alert Installer

<<control>>
{AE4.2.1.c} Alert Code

Generator

<<control>>
{AE4.2.2.c1} Schedule Alert

<<control>>
{AE4.2.2.c2} Execute Alert

ISOFIN App
Communication

<<interface>>
{AE3.5.1.i} Send Information

From ISOFIN App

<<interface>>
{AE3.5.2.i} Receive

Information in ISOFIN App

<<interface>>
{AE3.6.1.i} Send Configuration
Commands From ISOFIN App

<<interface>>
{AE3.6.2.i} Receive

Configuration Commands to
ISOFIN App

<<interface>>
{AE3.6.3.i} Send Usage

Commands From ISOFIN App

<<interface>>
{AE3.6.4.i} Receive Usage
Commands to ISOFIN App

ISOFIN App Installer

<<interface>>
{AE3.3.1.i} ISOFIN Application

Publisher Interface

<<control>>
{AE3.3.2.c} ISOFIN App

Deployer

<<interface>>
{AE3.3.2.i} ISOFIN App
Deployment Interface

<<control>>
{AE3.3.3.c} Export ISOFIN App

Code

<<control>>
{AE3.3.4.c} ISOFIN App

Documentation Generator

<<interface>>
{AE3.3.4.i} ISOFIN App
Documentation Editor

<<control>>
{AE3.4.2.c} Test ISOFIN

Application Before
Deployment

Security Management

<<control>>
{AE1.6.c} Grant Access to

ISOFIN Platform

<<interface>>
{AE1.6.i} ISOFIN Platform

Access and Usage
Management

<<control>>
{AE2.2.6.c1} Selected Object

permissions

<<control>>
{AE2.4.1.c} IBS

Communication Validation

<<control>>
{AE3.5.1.c} ISOFIN App

Communication Validation

Logs Management

<<interface>>
{AE2.4.1.i1} IBS Log Manager

<<interface>>
{AE3.5.1.i1} ISOFIN App Log

Manager

<<interface>>
{AE4.3.i1} Alert Log Manager

<<interface>>
{AE1.3.5.i1} Subscription Log

Manager

Supplier Subscription
Management

<<control>>
{AE1.3.1.c} Evaluate Supplier

subscription

<<interface>>
{AE1.3.1.i} Supplier

subscription evaluation
interface

<<interface>>
{AE1.3.3.i} Supplier’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.1.i} Publish SBS

Subscsription in Catalog
Interface

Customer
Subscription
Management

<<control>>
{AE1.3.2.c} Evaluate Customer

subscription

<<interface>>
{AE1.3.2.i} Customer

subscription evaluation
interface

<<interface>>
{AE1.3.4.i} Customer’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.2.i} Publish Customer

Subscsription in Catalog
Interface

IBS Communication

<<interface>>
{AE2.4.1.i} Send Information

From IBS

<<interface>>
{AE2.4.2.i} Receive
Information in IBS

<<interface>>
{AE2.5.1.i} Send Configuration

Commands From IBS

<<interface>>
{AE2.5.2.i} Receive

Configuration Commands to
IBS

<<interface>>
{AE2.5.3.i} Send Usage
Commands From IBS

<<interface>>
{AE2.5.4.i} Receive Usage

Commands to IBS

IBS Installer

<<control>>
{AE2.2.7.c} IBS Interface

Generator

<<data>>
{AE2.2.7.d} IBS Interface

Repository

<<interface>>
{AE2.3.1.i} IBS Publisher

Interface

<<control>>
{AE2.3.2.c} IBS Deployer

<<interface>>
{AE2.3.2.i} IBS Deployer

Interface

<<control>>
{AE2.3.3.c} IBS Documentation

Generator

<<interface>>
{AE2.3.3.i} IBS Documentation

Editor

<<control>>
{AE2.7.2.c} Test IBS Before

Deployment

IBS Editor

<<control>>
{AE2.1.2.c1} Selected Object

configurations

<<data>>
{AE2.1.2.d} IBS Configuration

Repository

<<interface>>
{AE2.1.2.i} Low-level IBS
Configuration Interface

<<data>>
{AE2.1.3.d} IBS Structure

Repository

<<interface>>
{AE2.1.3.i} Update IBS

Structure Interface

<<control>>
{AE2.1.4.c} Compiles IBS

information

<<interface>>
{AE2.1.4.i} Update IBS

Interface

<<interface>>
{AE2.2.3.i} IBS Structure

interface

<<control>>
{AE2.2.4.c} Define IBS Code

Gaps

<<interface>>
{AE2.2.4.i} IBS Coding and

Compiling Interface

<<control>>
{AE2.2.5.c} Compile IBS code

<<data>>
{AE2.2.5.d} IBS Pre-
Deployment Storage

<<interface>>
{AE2.2.6.i} Permissions

Interface

<<control>>
{AE2.7.1.c} IBS Customization

Filter

<<interface>>
{AE2.7.1.i} IBS Customization

Interface

<<interface>>
{AE2.6.3.i} IBS

Interconnectivity interface

IBS Repository

<<data>>
{AE2.1.1.d} IBS Repository

<<interface>>
{AE2.6.1.i} IBS Repository

Interface

SBS Repository

<<data>>
{AE2.6.2.d} SBS Repository

<<interface>>
{AE2.6.2.i} SBS Repository

Interface

Alert Repository

<<data>>
{AE4.3.d} Alert Repository

<<interface>>
{AE4.3.i/c} Scheduled Alert

Dispatcher

Subscription
Repository

<<control>>
{AE1.3.5.c1} Subscription

Duplicity Verification

<<data>>
{AE1.3.5.d} ISOFIN Platform
Subscription Info Repository

<<interface>>
{AE1.3.5.i} Subscription

Repository Interface

<<data>>
{AE1.4.d} ISOFIN Platform
Subscription Assessment

Repository

<<interface>>
{AE1.8.1.i} Manage ISOFIN

Suppliers

<<interface>>
{AE1.8.2.i} Manage ISOFIN

Customers

Logs Repository

<<data>>
{AE2.4.1.d} IBS Logs

Repository

<<data>>
{AE3.5.1.d} ISOFIN App Logs

Repository

<<data>>
{AE4.3.d1} Alert Logs

Repository

<<interface>>
{AE4.3.i2} Log Repository

Interface

<<data>>
{AE1.3.5.d1} Subscription Logs

Repository

Security Repository

<<data>>
{AE1.2.1.d} ISOFIN Platform

Policies Repository

<<data>>
{AE1.6.d} ISOFIN Platform

Access Repository

ISOFIN App
Repository

<<data>>
{AE3.3.1.d} ISOFIN App

Repository

<<interface>>
{AE3.3.1.i1} ISOFIN App

Repository

Policies Management

<<interface>>
{AE1.2.1.i} Configure Supplier

Policies Interface

<<interface>>
{AE1.2.2.i} Configure

Customer Policies Interface

Subscription Management

<<interface>>
{AE1.1.1.i} Fulfillment

Subscription Requirements
Interface

<<control>>
{AE1.1.2.c1} Verifiy

Subscription data duplicity

<<control>>
{AE1.1.2.c} Validate

subscription requirement
fulfillment

<<interface>>
{AE1.1.2.i} Manual

Subscription Validation
Interface

<<interface>>
{AE1.4.i} Subscription Request

Interface

<<control>>
{AE1.7.c} Control Subscription

Requests

<<interface>>
{AE1.7.i} Suscription Request

Status Interface

ISOFIN App Editor

<<interface>>
{AE3.1.i} ISOFIN Application

Model Editor

<<interface>>
{AE3.2.1.i} IBS Information

Retrieval

<<control>>
{AE3.2.2.c} Generate ISOFIN

App Code

<<interface>>
{AE3.2.2.i} ISOFIN Application

Coding and Compiling
Interface

<<interface>>
{AE3.2.3.i} ISOFIN Application

Model Interface

<<control>>
{AE3.2.4.c} Associate Visual

Representation to
Functionality

<<interface>>
{AE3.4.1.i} ISOFIN Application

Customization Interface

««GENERATES»»

<<interface>>
{AE2.7.2.i} IBS Test Generator

<<interface>>
{AE2.6.2.i1} SBS Pallet

Retrieval Interface

<<interface>>
{AE2.6.1.i1} IBS Pallet

Retrieval Interface

2x

6x

6x

6x

6x

5x

6x

6x

2x

2x

2x

3x

3x

««GENERATES»»

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

158

The requirements elicitation started by listing a set of stakeholder expectations towards the

product roadmap, encompassing the entire product but only MVP features were detailed. The

expectations list of the project included 25 expectations (Figure 65),

Table 16. User Stories derived from c-type components

Component As a(n)

<actor>

I want/need

<description>

In order to

<outcome>

2.1.2.c1
Selected Object

Configurations

ISOFIN

Customer /

IBS Developer

select object

configurations

change (IBS

Structure)

configurations

2.1.4.c
Compiles IBS

information
IBS Developer

compile IBS

(changes and)

information

create a new IBS

2.2.4.c
Define IBS Code

Gaps
IBS Developer

(automatically

generated code)

and define IBS

code gaps

create IBS code

2.2.5.c
Compile IBS

code
IBS Developer

compile IBS code

(and create new

IBS catalog)

(keep IBS catalog

and store)

compile(d) IBS

Code

2.2.6.c1
Selected Object

Permissions
IBS Developer

select object

permissions

set(/manage)

permissions (and

create IBS)

2.2.7.c
IBS Interface

Generator
IBS Developer

(automatically)

Generate IBS

Interface

(store the)

generate(d) IBS

interface

2.3.2.c IBS Deployer IBS Developer deploy IBS
execute IBS

deployment

2.7.1.c

IBS

Customization

Filter

Business User

filter IBS

(configuration

and)

customization

customize IBS

2.7.2.c
Test IBS Before

deployment

Business User

/ IBS

Developer

test IBS before

deployment

render IBS Pre-

Runtime

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

159

Figure 64. User Story from 2.1.4.c

categorized by environment, architecture, functional and integration issues, which relate to

business needs that afterwards promoted the discussion of scenarios (Figure 66). These

scenarios were elicited with the customer, but this work additionally aimed exploring and

discovering alternatives. The project’s objectives that were stated referred to: (1) to define an

approach for a unified view at the corporate (group of units) level; (2) to develop tools for third-

party entities; (3) in-plant optimization; and (4) system reliability. This task output 15 A-type

sequence diagrams, divided in four groups of scenarios. These groups relate directly to the

project’s four objectives.

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

160

Figure 65 . Subset of project initial expectations

Afterwards, the requirements analysis included gathering the candidate use cases and

defining the decomposition tree. The Use Case model was composed by 37 use cases after the

refinement. They relate to business needs that afterwards allowed depicting functional

requirements, modeled in use cases (Figure 67).

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

161

Figure 66. Scenarios elicited

Figure 67. UH4SP first-level Use Cases

The Use Case model was globally composed by 37 use cases after the decomposition (Annex

C): Use case {UC.1} Manage business support was decomposed in five use cases, use case

{UC.2} Configure cloud service was decomposed in eight use cases, use case {UC.3} Manage

cloud interoperability and portability was decomposed in five use cases, use case {UC.4} Manage

cloud security and privacy was decomposed in three use cases, use case {UC.5} Manage

industrial units was decomposed in two use cases, use case {UC.6} Manage local Platform was

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

162

decomposed in five use cases, and use case {UC.7} Performs business activities was

decomposed in ten use cases.

Almost the entire model was detailed in one lower-level (e.g., {UC5.1}, {UC5.2}, etc.). Only the

cases of {UC.1} Manage business support, {UC.2} Configure cloud service and {UC.7} Performs

business activities included an additional decomposition, composed with three use cases each,

and are examples of bigger sized features of the MVP (based in the quantity of low-level use

cases). Use cases {UC.3} Manage cloud interoperability and portability and {UC.4} Manage cloud

security and privacy relate to features not addressed in the MVP, hence were not object of further

decomposition.

The total of 37 use cases perceive the low effort in decomposing at this phase, taking into

account the large-scale nature of the project, namely the number of expectations (25) and that it

is to be implemented by five separate teams.

The impacts of these agile techniques in modeling the use cases:

 By applying DDD, Use Cases are grouped by the domains and sub-domains. This means

that each of the tree’s “branches” relate only to a given domain, which also assures that the

contexts are properly bounded. The identified domains relate directly to the four scenario

groups. Two of them, “tools for third-party entities” and “system reliability”, was afterwards

divided in two and three domains, respectively, hence making a total of seven. Two of the

“system reliability” bounded context are not even depicted due to MVP decisions.

 By applying Lean Startup, the features defined to be included in the MVP are identified in

the model by having refined use cases, while the remaining were just identified in the first-

level. Use cases {UC.3} and {UC.4} relate to features not addressed in the MVP, hence were

not object of further decomposition. The remaining use cases were included in the MVP,

where, namely, {UC.1} was decomposed in five use cases, {UC.2} was decomposed in eight

use cases, {UC.5} was decomposed in two use cases, {UC.6} was decomposed in five use

cases, and {UC.7} was decomposed in ten use cases.

The UH4SP logical architecture had as input 37 use cases and, after executing 4SRS

method (Annex C), was derived with 77 architectural components (Annex C) that compose it. The

logical architecture is discussed in Chapter 5.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

163

Discussion

Use case-driven Product Backlog from upfront requirements modeling

Defining a hybrid approach (waterfall-based during initialization and Scrum-based during

implementation), with the inclusion of artifacts modeling and documentation, strengthened the

adoption of a Scrum process in a context as the one presented within the iFloW project. However,

the entire adoption was a learning process, with advantages and disadvantages, which are

detailed in this section.

This demonstration case showed the following advantages:

Requirements documentation waterfall-based – the fact that the Product Backlog was

composed of 90 use cases led to a shared perception of the system complexity that originated

the need to perform proper efforts in documenting the requirements. Thus, consuming efforts in

almost exclusively for requirements engineering typically performed in waterfall approaches, in

the initialization phase, allowed the project team to gain the required knowledge to implement a

system of such complexity.

Implementation Scrum-based – within a customer perspective, Bosch was always aware of the

system’s current state of development. The iterative development, in form of Scrum Sprints, was

crucial to manage Bosch’s expectations, due to the periodical meetings and the incremental

delivery of working software.

Use of a logical architecture – to enforce a proper organization on the set of components. The

relationships among components suggest dependencies that may affect the implementation (see

Section 6.5).

On the other hand, it also showed the following disadvantages:

Effort estimation for use cases - the fact that it was a completely new development team,

estimating the required effort for implementing use cases by comparing with other was itself a

learning process. In many Sprints there were use cases not implemented due to error in

estimating and required almost constant updates on effort estimating (see Section 6.5).

User story-driven Product Backlog from upfront requirements modeling

The upfront requirements modeling and logical architecture design, by using an architectural

method like the 4SRS, provided information regarding the ‘who?’, ‘what?’, and ‘why?’ on

modules’ software requirements, which is the required information to be delivered to Scrum

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

164

teams, for instance. The purpose is to provide information regarding software functionalities,

regardless of the implementation techniques and technologies (e.g., programming languages) the

team uses. This means that functional requirements were elicited, but technical decisions have

to be made by implementation teams.

Modularizing the architecture provides information about software functionalities of the

module, interfaces with other modules, and the context of the module’s usage. Decisions

regarding messaging, protocols, amongst others, are made by the implementation team (or by

the person responsible, like a project manager or a product owner). Nevertheless, the models

provide functional and behavioral information of the module in design that will later support the

technical specifications of the modules.

These models allow deriving software requirements compliant with Scrum teams, in the form

of User Stories. The information from the 4SRS method execution regarding the components

specification and the original use case model is gathered in order to derive the User Stories. The

approach also allow identifying some contact points where there is a need for synchronizing

efforts within distributed Scrums and effort dependencies. User Stories also properly cover these

points. Since User Stories are not exclusive for the Scrum framework, this approach can be used

in other ASD contexts besides Scrum.

Overall, in the ISOFIN project, there were clear advantages in using this approach:

(1) since the project consortium was composed by Scrum teams, they easily understood the

artifacts (i.e., User Stories);

(2) User Stories were derived having an already designed logical architecture as input, allowing

them to be properly aligned within reduced time.

Connection points between modules were identified and properly covered by User Stories but

there was not enough time during this research work to assess that the team’s efforts were in

fact synched. Besides the identification of connection points, the authors believe that there is a

vast area of progress in the topic of distributed Scrum teams.

DUARTE approach within AMPLA

Applying DUARTE affected use case modeling with the following advantages:

 Overall, the use of agile practices per se did not make the process agile, but allowed specifying

agilely the right product for the customer’s needs. Delivering the product right is promoted by

using Scrum, Kanban, XP, SAFe or LeSS, for instance, which is also present in AMPLA.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

165

 Promoting scenarios discovery and exploration allowed defining 15 scenarios from four groups

(from the project’s objectives). Without the exploring, each groups would probably include one

or two scenarios.

 Defining bounded contexts using DDD allowed to clearly understanding boundaries between

what requirements different teams could address. The use of the Lean Startup strategy

allowed to refine only the use cases from the MVP hypothesis that the project aim validating,

rather than refining all use cases, even those that would not been included in the MVP.

 These practices ease customer feedback, which is fundamental in any ASD process.

However, AMPLA proposes additional activities and artifacts in agile RE methods and may

require having dedicated teams for modeling, which may be perceived as a disadvantage. The

main threat to validity is that AMPLA was only applied by the method’s designers.

AMPLA provides a method for deriving a candidate logical architecture based in UML Use

Cases, the 4SRS method. The approach also validated the coverage of the elicited “just-enough”

model, gathered together with identified key stakeholders. The “just-enough” UML Use Case

model allows to early identify main features, which provides an overview of the project and its

scope. We acknowledge the impact of features’ characteristics (size, complexity,

interconnections, dependencies between subsystems etc.) to management issues, as tasks

planning, budget proposals, and resource and skills allocation, which will be addressed further.

The design of “just-enough” architecture used an architectural method, the 4SRS, to derive

the candidate architecture based in the small set of (“just-enough”) UML Use Cases. There is not

any difference within the steps of the method, in comparison with the original method, to derive a

candidate architecture. Rather, as the input are high-level requirements in opposition to more

refined ones, one may experience difficulties in identifying a proper classification of the use case

in order to decide the components to be maintained within the second step, since a more refined

information helps in better define the component’s nature. However, as in AMPLA the

requirements will be later refined and will emerge, the 4SRS method is used as in a “living table”

that is opened alongside the development Sprints, rather than a waterfall-based and one-time-

execution approach, providing traceability between the requirements and the components in

order to agilely respond to changes.

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

166

4.5. Conclusions

This chapter discusses requirements modeling approaches in ASD settings, where research

addressed initial artifact proposal regarding processes of upfront requirements elicitation and

modeling, and a later artifact proposal for emerging requirements (DUARTE). Upfront

requirements was used towards use case-driven and user story-driven Product Backlogs. DUARTE

was used towards user story-driven Product Backlogs based in AMPLA.

While use case-driven Product Backlogs used directly the UML Use Cases from the

requirements modeling as backlog items, the inputs for being able to define user story-driven

Product Backlogs required a set of models, namely UML Use Cases and logical architecture

(UML Components), supported by architectural method 4SRS and V-Model for traceability

purposes.

AMPLA is a process for model derivation applicable in an Agile RE and AM context. Firstly,

more specifically regarding Agile RE, this section presented the DUARTE approach, which is

inspired by a V-Model approach (Nuno Ferreira et al., 2014) based in successive model

derivation, namely referring to sequence, use case and components diagrams, this process aims

modeling the same artifacts however using agile practices such as Lean Startup, Design

Thinking, DDD, BDD, and others. The model derivation follows typical agile feedback loops,

encompassing discovery and exploration, learning from feedbacks and adjusting posterior loops.

It also addresses AM so requirements emerge from these loops, by including only core and high-

level requirements in early phase of projects, use them for deriving a UML components diagram

using the 4SRS method, and further incremental refinements within development cycles (e.g.,

Scrum Sprints).

This chapter essentially described the:

- A hybrid process with upfront modeling and use case-driven Product Backlog, when

requirements are known upfront and are stable, followed by ASD cycles (Sprints);

- The DUARTE approach for requirements modeling, which demonstrated how requirements

models like Sequence and Use Cases diagrams are affected when using agile practices such

as Lean Startup, Design Thinking, Domain-driven Design (DDD), Behavior-driven

Development (BDD), and others;

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

167

- A framework for assessing “just-enough” modeled requirements in order to design a

candidate architecture.

The resulting UML use case model is now ready for use in the logical architecture design. In

Chapter 5, the architecture evolves by performing “just-enough” design, which is derived by

using the “just-enough” requirements within an execution of the 4SRS method.

Further Reading

About RE in agile, or “Agile RE”, “The Agile Extension to the BABoK Guide” (IIBA, 2017),

“RE@Agile” (IREB, 2018) and “Beyond Requirements” (McDonald, 2015) focus on performing

RE techniques in ASD settings. These techniques are particularly helpful when balancing between

product discovery and delivery, as in performing “Dual-track agile”7 or a “Mobius Loop”8.

Dean Leffingwell presents the associations between the types of requirements information in

product backlogs in the book “Agile Software Requirements” (Leffingwell, 2010).

The process of developing models in a iterative, incremental and evolutionary fashion is

presented in “Agile Modeling” (S Ambler, 2002).

The traceability of requirements to software delivery is presented by “User Story Mapping”

technique (Patton & Economy, 2014)

References

Agile Alliance. (2001). Manifesto for agile software development.

Ambler, S. (2002). Agile modeling: effective practices for extreme programming and the unified

process. John Wiley & Sons, Inc.

Ambler, S. (2003). Agile model driven development is good enough. IEEE Software, 20(5), 71–

73. https://doi.org/10.1109/MS.2003.1231156

Ambler, S. (2005). The agile unified process (aup). Ambysoft.

Ambler, S., & Lines, M. (2012). Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software

Delivery in the Enterprise. IBM Press.

7
 https://www.productplan.com/glossary/dual-track-agile

8
 https://mobiusloop.com/

https://www.productplan.com/glossary/dual-track-agile
https://mobiusloop.com/

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

168

Anda, B., Dreiem, H., Sjøberg, D. I. K., & Jørgensen, M. (2001). Estimating software

development effort based on use cases—experiences from industry. In ≪ UML≫ 2001—

The Unified Modeling Language. Modeling Languages, Concepts, and Tools (pp. 487–502).

Springer.

Azevedo, S., Machado, R. J., Braganca, A., & Ribeiro, H. (2010). The UML «include» relationship

and the functional refinement of use cases. In Software Engineering and Advanced

Applications (SEAA), 2010 36th EUROMICRO Conference on (pp. 156–163). IEEE.

Brown, T. (2009). Change by Design: How Design Thinking Transforms Organizations and

Inspires Innovation. New York: Harper Collins.

Cao, L., & Ramesh, B. (2008). Agile requirements engineering practices: An empirical study.

IEEE Software, 25(1), 60–67. https://doi.org/10.1109/MS.2008.1

Cho, J. (2009). A hybrid software development method for large-scale projects: rational unified

process with scrum. Issues in Information Systems, 10(2).

Cohn, M. (2004a). Advantages of user stories for requirements. InformIT Network.

Cohn, M. (2004b). User stories applied: For agile software development. Addison-Wesley

Professional.

Cruz, E. F., Machado, R. J., & Santos, M. Y. (2014). On the Decomposition of Use Cases for the

Refinement of Software Requirements. In 2014 14th International Conference on

Computational Science and Its Applications (pp. 237–240). IEEE.

https://doi.org/10.1109/ICCSA.2014.54

Durdik, Z. (2011). Towards a process for architectural modelling in agile software development.

In Proceedings of the joint ACM SIGSOFT conference -- QoSA and ACM SIGSOFT

symposium -- ISARCS on Quality of software architectures -- QoSA and architecting critical

systems -- ISARCS - QoSA-ISARCS ’11 (p. 183). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2000259.2000291

Evans, E. (2004). Domain-driven design : tackling complexity in the heart of software. Addison-

Wesley.

Ferreira, N., Santos, N., Machado, R., Fernandes, J. E., & Gasević, D. (2014). A V-Model

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

169

Approach for Business Process Requirements Elicitation in Cloud Design. In A.

Bouguettaya, Q. Z. Sheng, & F. Daniel (Eds.), Advanced Web Services (pp. 551–578).

Springer New York. https://doi.org/10.1007/978-1-4614-7535-4_23

Ferreira, N., Santos, N., Machado, R. J., & Gasevic, D. (2012). Derivation of Process-Oriented

Logical Architectures: An Elicitation Approach for Cloud Design. (A. J. O. Dieste and N.

Juristo, Ed.), 13th International Conference on Product-Focused Software Development and

Process Improvement - PROFES 2012. Madrid, Spain: Springer-Verlag, Berlin Heidelberg,

Germany .

Ferreira, N., Santos, N., Machado, R. J., & Gašević, D. (2013). Aligning domain-related models

for creating context for software product design. Lecture Notes in Business Information

Processing (Vol. 133 LNBIP). https://doi.org/10.1007/978-3-642-35702-2_11

Ferreira, N., Santos, N., Soares, P., Machado, R., & Gašević, D. (2013). A Demonstration Case

on Steps and Rules for the Transition from Process-Level to Software Logical Architectures

in Enterprise Models. In J. Grabis, M. Kirikova, J. Zdravkovic, & J. Stirna (Eds.), The Practice

of Enterprise Modeling (Vol. 165, pp. 277–291). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-41641-5_20

Ferreira, N., Santos, N., Soares, P., Machado, R. J., & Gasevic, D. (2012). Transition from

Process- to Product-level Perspective for Business Software. 6th International Conference

on Research and Practical Issues of Enterprise Information Systems (CONFENIS’12).

Ghent, Belgium.

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap and agenda.

Journal of Systems and Software, 123, 176–189.

https://doi.org/10.1016/J.JSS.2015.06.063

Grau, B. R., & Lauenroth, K. (2014). Requirements engineering and agile development -

collaborative , just enough , just in time , sustainable. International Requirements

Engineering Board (IREB).

Grenning, J. (2002). Planning poker or how to avoid analysis paralysis while release planning.

Hawthorn Woods: Renaissance Software Consulting, 3.

IIBA. (2017). Agile Extension to the BABOK Guide v2. International Institute of Business Analysis.

Chapter 4 – Agile Requirements Modeling Approach for Agile Settings

170

IREB. (2018). IREB Certified Professional for Requirements Engineering ‑ Advanced Level

RE@Agile.

Jacobson, I., Spence, I., & Bittner, K. (2011). Use case 2.0: The Definite Guide. Ivar Jacobson

International.

Karner, G. (1993). Resource estimation for objectory projects. Objective Systems SF AB, 17.

Kroll, P., & MacIsaac, B. (2006). Agility and discipline made easy: Practices from OpenUP and

RUP. Pearson Education.

Leffingwell, D. (2010). Agile software requirements: lean requirements practices for teams,

programs, and the enterprise. Addison Wesley Longman.

McDonald, K. J. (2015). Beyond Requirements: Analysis with an Agile Mindset (1st Edition) (Agile

Soft). Addison-Wesley Professional.

Nageswaran, S. (2001). Test effort estimation using use case points. In Quality Week (pp. 1–6).

Paetsch, F., Eberlein, A., & Maurer, F. (2003). Requirements engineering and agile software

development. In Proceedings of Twelfth IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2003). IEEE.

Patton, J., & Economy, P. (2014). User Story Mapping: Discover the Whole Story, Build the Right

Product. O’Reilly.

Ries, E. (2011). The lean startup: How today’s entrepreneurs use continuous innovation to create

radically successful businesses. Crown Books.

Santos, N., Ferreira, N., & Machado, R. J. (2017). Transition from Information Systems to

Service-Oriented Logical Architectures: Formalizing Steps and Rules with QVT. In M.

Ramachandran & Z. Mahmood (Eds.), Requirements Engineering for Service and Cloud

Computing (pp. 247–270). Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-319-51310-2_11

Schwaber, K. (1997). Scrum development process. In Business Object Design and

Implementation (pp. 117–134). Springer. https://doi.org/10.1007/978-1-4471-0947-

1_11

Schwaber, K., & Beedle, M. (2001). Agile Software Development with Scrum. Upper Saddle

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

171

River: Prentice Hall.

Smart, J. F. (2015). BDD in Action: Behavior-driven development for the whole software lifecycle.

Manning.

Waters, K. (2009). Prioritization using moscow. Agile Planning.

Chapter 5 – Agile Logical Architecting using AMPLA

172

Chapter 5 – Agile Logical Architecting using AMPLA

Chapter 5 – Agile Logical Architecting using AMPLA………………………………173

5.1. Introduction………………………………………..…………………..173

5.2. Agile architecting lifecycle (AAL)…………………..………………..177

5.3. Architecture evolution and management……..……………………….183

Candidate architecture design using the 4SRS method……………183

Incremental design for refining the logical architecture…………...186

Continuous Architecture and change-impact analysis……………..190

Microservices design towards Continuous Architecting…………..195

5.4. Demonstration Cases………………………………………………….206

Architecture Spikes: the iFloW case……………………………….206

Agile logical architecting: the UH4SP case………………………..209

The 4SRS-MSLA in brownfield projects: the IMP_4.0 case………218

Microservices deployment using the 4SRS-MSLA: the IMSPM case………223

Discussion………………………………………………………….227

5.5. Conclusions……………………………………………………………232

Further reading………………………………………………………………….234

References………………………………………………………………………235

This chapter relates to agile architecting approaches within AMPLA, using the

requirements models from the previous chapter. It starts by proposing an agile

architecting lifecycle, from business to deployment, supported by a pathway

composed by multiple architecture viewpoints. As part of the pathway, the chapter

firstly derives a candidate logical architecture using the 4SRS method. Afterwards,

the models are incrementally refined throughout agile iterations. This chapter also

includes a continuous architecture management by embracing changes using a

change-impact analysis approach. The models are refined until they are at a

service-level, in form of a microservices logical architecture, whose derivation was

supported by the 4SRS-MSLA method. Architectural design during Sprints is

demonstrated in the iFloW case. The AMPLA entire lifecycle is demonstrated in the

UH4SP project. Finally, the IMP_4.0 and the ISMPM cases relate to the usage of

the 4SRS-MSLA in brownfield projects. This chapter ends with the conclusions.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

173

Chapter 5 – Agile Logical Architecting using AMPLA

“You should use iterative development only

on projects that you want to succeed.”

Martin Fowler, Author of the book “Refactoring”

5.1. Introduction

In previous section, a logical architecture derived from requirements was used in ASD

methods so an agile architecting approach (AMPLA) was followed. This approach proposed

modeling firstly a candidate version of the logical architecture, followed by incremental

refinement as software emerged during delivery cycles. This section discusses architectural

methods within delivery cycles phase of AMPLA.

ASD approaches are characterized from their frequent customer involvement, and well-known

frameworks, such as Scrum and XP have specific events where incremental prototypes are

shown and validated by the customer. It is during these events that eventual changes are

proposed. However, changes in features and/or architecture may lead to unexpected

consequences if not properly and previously analyzed. Thus, architecting includes analyzing

dependencies, constraints, risks, etc. which are impacted by the changes (Pérez, Díaz,

Garbajosa, & Yagüe, 2014). Changes in the software, often called refactoring (Fowler, 2018), are

adopted in ASD as a way to continuous improve the structure and understandability of the source

code during development (Moser, Abrahamsson, Pedrycz, Sillitti, & Succi, 2008).

In order to manage such changes, changes – or refactoring – are able to be traced to

architectural models as well as requirements and business needs. Models are then a way to

provide stakeholders with affected changes before the code is refactored. AMPLA supports the

required traceability, where the 4SRS method support mapping between the requirements

models (using UML use cases) and architectural model composed by UML components.

This chapter discusses the agile logical architecting topic addressed within the AMPLA

process (Figure 49). In terms of the integrated modeling roadmap, this chapter encompasses

stages 3, 4, 6 and 7.

Chapter 5 – Agile Logical Architecting using AMPLA

174

Figure 68. Overview of AMPLA

Figure 69. Integrated modeling roadmap

Previous works about agile architecting show that architecture emerges throughout the

project. This chapter proposes the design of a candidate version of the architecture. The

candidate version is a result of performing the 4SRS method with the requirements models

resulting from applying DUARTE approach within AMPLA. Alongside with DUARTE, some design

decisions are made focusing in concerns more related to domain and information systems

context.

These delivery cycles then start with the scope refinement of each area, performed

continuously within the iterations as needed. The architecture is thus refined in an incremental

way, allowing it to emerge as iterations occur. During these iterations, when stakeholders review

current software development status, e.g., at a Sprint Review event, they analyze the delivered

increment, accept it as it stands, or propose changes and/or new requirements. Before moving

on towards these changes, there is a need to analyze its impact on the solution architecture. For

this reason, there was a need to propose within AMPLA a need for using its traceability capability,

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

175

promoted by the 4SRS method, between requirements and architecture, towards managing this

impact as well as manage any technical debts.

However, agile architecting, as any architecting, includes multiple viewpoints. This research

focuses in the logical one. Logical architecting is about addressing how components are

organized so the software meets the business needs. The 4SRS method, historically, uses UML

use case models to derive logical architectures. For agile settings, there must be a concern of

supporting the logical architecture to emerge throughout Sprints but, in order to support the

continuous flow, the relationship with other viewpoints and how they emerge is also a research

point.

The software product delivery is a continuous process. The need advocated by ASD

approaches on getting feedback, learning and adapting - towards “delivering the right product”,

supported by approaches like “Lean Startup” (Ries, 2011) and “Lean Six Sigma” (George &

George, 2003) – has put software companies adopting a “continuous” agenda (Fitzgerald & Stol,

2017). Within this agenda, practices as continuous integration, continuous delivery and

continuous deployment play an important role. Also, the DevOps (Loukides, 2012) culture has

brought the “Ops” concern early within the software process, rather than only in pre-production

stage.

As a result, the architecting discipline must also encompass “dev” and “ops” concerns, which

are overlapped rather than in separated stages. The multiple viewpoints are thus an aspect to

consider continuously. Erder and Pureur propose some principles for continuous architecting,

including leveraging the “power of small” which eases an incremental architecture management

(Erder & Pureur, 2015).

In this sense, microservices architectures (MSA) (Newman, 2015) is one of the most common

situations when companies adopt continuous architecting processes (Taibi, Lenarduzzi, & Pahl,

2017), based in patterns such as Domain-driven Design (DDD) (Evans, 2004), single

responsibility principle (SRP) or Conway’s Law (Conway, 1968), which assure they are bounded

so that they can scale independently.

MSA are an architectural style oriented towards modularization, where the idea is to split the

application into smaller, interconnected services, running as a separate process that can be

independently deployed, scaled and tested (Thönes, 2015). MSA are currently getting widespread

attention as they extend the ‘design-stage architecture’ into deployment and operations as a

continuous development style (Pahl & Jamshidi, 2016).

Chapter 5 – Agile Logical Architecting using AMPLA

176

However, projects often struggle to properly bound them, resulting in insufficient knowledge

for decisions related to database partition, the proper size of the microservice, inter-service

communication and messaging, which are not addressed systematically by those patterns. By

applying a modeling method in the process of designing a MSA, one may foresee issues on

bounded contexts for microservices, namely intra-service behavior, interfaces and data models

separation, and inter-service communication and messaging requirements (Newman, 2015).

This chapter describes an approach for designing a microservices-oriented logical architecture

(MSLA), i.e., a logical view (Kruchten, 1995) on the behavior of microservices and relationships

between microservices. This approach uses UML use cases diagrams for domain modeling,

which are further used as an input for designing a MSLA using a set of rule-based decisions, by

using an adaptation of the 4SRS method. Each of these functionally decomposed UML use cases

give origin to one or more components, which will then compose the microservices.

The research addressed in this chapter is the result of a set of agile architecting practices

applied throughout different stages of software development, with emphasis to logical

architecting. The evolution of agile architecting from grooming to software delivery stages –

including initial inputs, candidate architecture design, incremental refinement, continuous

architecting and change-impact analysis, and microservice logical architecture design (using

4SRS-MSLA method) and deployment - is presented within the UH4SP project. The specific

practice of architecture spikes during Scrum Sprints is discussed within the iFloW project. Finally,

regarding microservices logical architectures, aside from the UH4SP project, two research

projects are used as complimentary demonstration cases. The IMP_4.0 project used the 4SRS-

MSLA method for proposing a MSLA from a requirements modeling of a monolithic solution. The

IMSPM used the 4SRS-MSLA but also discussed usage of other microservices patterns. The

contributions of the projects are summarized in Table 17.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

177

Table 17. Contribution of projects in continuous architecting

Research contribution \ demonstration case UH4SP IMP_4.0 iFloW IMSPM

Agile logical architecting X

Candidate architecture design X

Recursive Subsystem design X

Architectural Spikes X

Change impact analysis X

Microservices design X X X

Microservices deployment process X

This chapter is structured as follows:

 Section 5.2 presents an approach for agile logical architecting;

 Section 5.3 presents logical architecting, through candidate design, incremental

refinement and Change-impact analysis techniques within iterations, and the

microservices logical architecture design;

 Section 5.4 describes the demonstration cases, applying the aforementioned

approaches, and main discussions around agile architecting;

 Section 5.5 presents the chapter’s conclusions;

 The chapter ends with complimentary reading

5.2. Agile architecting lifecycle (AAL)

ASD frameworks typically are structured in three phases within the lifecycle: Stories (or

Requirements), Planning (of the cycles) and Delivery (of a working software increment). Note that

(continuous) integration sometimes fall inside Delivery phase (when continuous integration,

continuous delivery and DevOps practices are adopted), otherwise the process includes a

Maintenance or Operations phase. For instance, well-known ASD framework as Scrum includes

the Stories definition within the Pregame phase (Schwaber, 1997), whereas XP lifecycle includes

User Stories definition within the Exploration phase (Beck & Andres, 2004). Planning – namely,

the definition of the Product Backlog and its items – is also performed in the Pregame phase of

Scrum (Schwaber, 1997) but in XP it is performed in the Planning phase (Beck & Andres, 2004).

Delivery of software is performed in the Development phase of Scrum (Schwaber, 1997) and

Iterations to Release phase of XP (Beck & Andres, 2004). The Postgame phase of Scrum and

Chapter 5 – Agile Logical Architecting using AMPLA

178

Productionizing phase of Scrum may be included in the Delivery phase of the development

lifecycle, or in an afterwards Operations phase.

With that in mind, an agile architecting lifecycle (AAL) should be oriented to these three

phases. We propose architecting tasks, artefacts, possible inputs and outputs, for each of the

three phases: Grooming, Backlog and Delivery.

AAL should first propose a high-level architecture, composed by main functional

requirements and that allowed defining a separation of concerns. This separation is input for

planning of each concern implementation, which each relate to a subsystem of the architecture.

During delivery cycles (e.g., Scrum Sprints), each subsystem is refined into a more detailed

architecture, composed with logical components that at this phase have more detail for being

passed on to implementation teams.

Approaches differ from using a predefined artifact to using simplified versions initially, but

the approaches in (Abrahamsson, Babar, & Kruchten, 2010; Cockburn, 2006; Coplien &

Bjørnvig, 2011; Erdogmus, 2009; Farhan, Tauseef, & Fahiem, 2009; Harvick, 2012; Mancl,

Fraser, Opdyke, Hadar, & Hadar, 2009; Rick Kazman, 2013; Waterman, Noble, & Allan, 2012;

Zhang, Hu, Lu, & Gu, 2011) all advocate an initial model that afterwards is refined. Table 18

compares the research works presented in section 2.2, within the proposed AAL phases.

In any SDLC, whether waterfall, ASD, or other, the performed software engineering

disciplines typically fall under the scope of business modeling, requirements, design,

implementation, testing and deployment. The difference between these SDLC relies in the time

where they are performed, but inputs from all disciplines are required.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

179

Table 18. Comparison of agile architecting approaches and their contextualization within the

architecting lifecycle

Agile architecting

approaches

Grooming Backlog Delivery

(Nord & Tomayko, 2006) Planning and stories Designing Analysis and Testing

(Jeon, Han, Lee, & Lee,

2011)

Planning and stories Designing -

(Farhan et al., 2009) - - Analysis and Testing

(Sharifloo, Saffarian, &

Shams, 2008)

Planning and stories - -

(Kanwal, Junaid, & Fahiem,

2010)

Develop an Overall

Model, Build a Features

List, Plan by Feature

Design by Feature Build by Feature

(Madison, 2010) up-front planning,

storyboarding

Sprints working software

(Díaz, Pérez, & Garbajosa,

2014)

Software Product Line

(SPL) Backlog, Agile

Product Line

Architecting (APLA)

Sprints Working Product-Line

Architecture (PLA),

Working Products (SPL)

Based in this premise, AAL pathway includes all disciplines, with the goal of incrementally

evolving an architecture and reducing BDUF. Figure 70 proposes including in an AAL pathway

description of Context, Functionalities, a Candidate Architecture and, then, a Refined

Architecture.

In terms of Context, it relates to the knowledge acquisition of domain and enterprise settings

where software solutions will execute. The understanding of such knowledge is the starting point.

Functionalities relate to the definition of software needs (in opposition to a more process and

business orientation of the previous stage), e.g., the definition of a “minimum viable product”

(MVP). Then, a first candidate version is proposed and refined afterwards in order to emerge

during delivery cycles. Proposing a candidate version relates to defining a high-level architecture,

composed by main functional requirements and that allow defining a separation of concerns.

This separation is input for planning of each concern implementation, which each relate to a

subsystem of the architecture. During delivery cycles (e.g., Scrum Sprints), each subsystem is

refined into a more detailed architecture, composed with logical components that at this phase

have more detail for being passed on to implementation teams.

Chapter 5 – Agile Logical Architecting using AMPLA

180

Figure 70. Steps proposal for agile architecting

As referred, Context relates to knowledge acquisition of the domain, enterprise, business

and information system where the project is scoped. It is composed in its majority with Business

Modeling tasks. Typical examples of this exercise may be the modeling of the enterprise’s

business processes (e.g., using Business Process Modeling Notation – BPMN), identification of

technical and/or product glossary, relationships between main domain concepts, specification of

the structure of the involved systems (like the name, the exchanged data, the data location –

e.g., which table from the database, etc.) and how to access that data. This is typically performed

under an “as-is” analysis, however, even when the aim is to perform the characterization of the

“to-be” situation, it is advisable that the SDLC firstly includes a proper domain characterization,

by analyzing the business processes, the information (data), and the systems

(hardware/software) that compose the ecosystem.

Additionally, in Functionalities, process reference models have an interesting role in

requirements elicitation. For instance, it is common that manufacturing sector follows Supply

Chain Operations Reference (SCOR). These reference models are composed with processes, sub-

processes, roles, tasks, operations, that easily may be mapped in a business process notation

language (Santos, Duarte, Machado, & Fernandes, 2013). It is not expected that an enterprise

follows only one reference model. For instance, the GS1 global standard for traceability is widely

adopted for carrying out tasks for product traceability (Neiva, Santos, Martins, & Machado,

2015), and may be adopted complementary.

Now that the solution needs are identified – and properly specified – the next step typically

relates to designing the system. System design is typically performed using a model, e.g., an

architecture. However, architecture design should be addressed as an iterative process, as

design should start in a conceptual level and refined until it is detailed enough, which is to say

the abstraction level goes from high to low during this process. For that reason, the pathway

proposes designing a Candidate Architecture and afterwards a Refined Architecture.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

181

Architecture design includes from conceptual level to more refined one (Fernandes &

Machado, 2016). Such argument is in line with the design process proposed by Douglass:

architectural, mechanistic, and detailed (Douglass, 1999). The evolution of architecture was

already discusses in Section 3.4.

Figure 71 presents the results from classifying Candidate and Refined architectures using

the proposed framework. The presented classification is as follows:

Candidate Logical – Phase: Analysis/Design; 4+1: Logical; Abstraction: CIM/PIM.

Refined Logical – Phase: Design; 4+1: Logical; Abstraction: PIM/PSM.

Figure 71. Classification of Candidate and Refined logical architectures

The AAL is thus composed by three phases: Stories, Planning and Delivery. Figure 72

depicts the pathway between phases under the eleven viewpoints. Additionally, Table 19 inputs

and outputs between viewpoints throughout the AAL.

CIM

PIM

PSM

Logical Process PhysicalDevelopmentScenario

Planning

Analysis

Design

Implementation

Deployment

Candidate
Logical

CIM

PIM

PSM

Logical Process PhysicalDevelopmentScenario

Log
(Refin.)

CIM

PIM

PSM

Planning Analysis DeploymentImplementationDesign

Design

Analysis

Planning

Logical Process PhysicalDevelopmentScenario

Deployment

Implementation

Logical
(Refined)

Cand.
Log.

Log
(Refin.)

Cand.
Log.

Log
(Refin.)

Cand.
Log.

Chapter 5 – Agile Logical Architecting using AMPLA

182

Figure 72. Architectural views and abstraction within AAL phases

Table 19. The inputs and outputs of AAL artefacts

View Input Output Relation SA

Conceptual e.g., Product Vision,

Product Roadmap,

Domain model

e.g., Concepts,

vocabulary, ontology

Information System

Reference Process Reference Models Domain’s best practices Process

Enterprise Structure of Enterprise Enterprise processes Process

Process Business processes,

Process reference models

Process requirements Information Systems

Information System Logical

Logical Components, Data/Class

Components Technical

Data/Class Technical

Technical Deployment

Deployment Physical

Physical

Conceptual

ABSTRACTION

CIM
Grooming Backlog Delivery

PIM

PSM

CODE

TIME

Reference Enterprise

Process

Information
System

Logical

Components Data / Class

Technical Deployment Physical

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

183

5.3. Architecture evolution and management

Candidate architecture design using the 4SRS method

This research uses the 4SRS method, by taking advantage from the method’s ability to use

a functionally decomposed UML Use Case model – so, requirements have been elicited and split

in smaller pieces as possible - as input to derive in a stepwise manner a component-based logical

architecture (i.e., the software product version of the 4SRS). For this reason, the method

evolution is presented and its steps are detailed in this section.

The 4SRS method takes as input a set of use cases in the problem space, describing the

requirements for the processes that tackle the initial problem. They are then refined trough

successive 4SRS iterations (by recurring to tabular transformations), producing progressively

more detailed requirements and a design specification, in the form of a logical architecture

representation of the system, representing the intended concerns of the involved business and

technological stakeholders. These tabular transformations are supported by a spreadsheet where

each column has its own meaning and rules. Some of the steps have micro-steps, of which some

can be completely automated. A correct application of the tabular transformations assures

alignment and traceability, between the derived logical architecture diagram and the initial use

cases representations, and at the same time allows adjusting the results of the transformation to

any changing requirements.

The 4SRS method has proven successful in differentiated contexts, for instance:

 Process architectures (Nuno Ferreira, Santos, Machado, Fernandes, & Gasević, 2014; Nuno

Ferreira et al., 2012; Machado, 2002),

 Software product architectures (Fernandes, Machado, Monteiro, & Rodrigues, 2006;

Machado, Fernandes, Monteiro, & Rodrigues, 2005; Machado et al., 2006),

 Software product lines (A Bragança & Machado, 2007, 2005; Alexandre Bragança &

Machado, 2009),

 Software product lines with variability (Azevedo, Machado, Muthig, & Ribeiro, 2009;

Azevedo, Machado, & Maciel, 2012),

 Class diagrams (Cruz, Machado, & Santos, 2014; Santos & Machado, 2010) and

 Service-oriented (Salgado, Teixeira, Santos, Machado, & Maciel, 2015) - namely, SoaML

(OMG, 2012) - logical architectures.

Chapter 5 – Agile Logical Architecting using AMPLA

184

The usage context of the proposed 4SRS, with “just-enough requirements and deriving the

logical architecture with “just-enough” components is depicted in Figure 73. Previous

experiences with the 4SRS method relate do BDUF contexts, where a larger number of

requirements were known upfront, rather than executing the method with smaller number of

requirements. However, since in AMPLA the requirements will be later refined and will emerge,

the 4SRS method is regularly revisited alongside the development Sprints.

Figure 73. Method for designing the candidate architecture with 4SRS

The 4SRS method is composed by four steps: Component Creation; Component Elimination;

Packaging and Aggregation; and Component Associations.

The first step regards the creation of software architectural components. The 4SRS method

associates, to each component found in analysis, a given category: interface, data, and control.

Interface components refer to interfaces with users, software or other entities (e.g., devices, etc.);

data components refer to generic repositories, typically containing the type of information to be

stored in a database; and control components refer to the business logic and programmatic

processing. This categorization makes the architectures derived by the 4SRS to be compliant

with architectures from object-oriented programming, or by Model-View-Controller (MVC) patterns.

In the second step, components are submitted to elimination according to pre-defined rules.

At this moment, the system architect decides which of the original three components (i, c, d) are

maintained or eliminated, firstly taking into account the context of a use case from Step 1, and

 Just-enough UML Use Cases
Diagram

 Just-enough 4SRS

U2.1 AE2.1i

U2.2

AE2.1d

AE2.2d

AE2.2c

Candidate Architecture

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

185

later compared for redundancy within the entire system. Additionally, each component is named

and textually described relating to its behavior.

In the third step, the remaining components (those that were maintained after executing

step 2), where there is an advantage in treating them in a unified process, should give the origin

to aggregations or packages of semantically consistent components.

The final step refers to the associations between components. The method provides steps

for identifying such associations based in descriptions from use cases, as well as from the own

components during the components creation.

The execution of the 4SRS transformation steps can be supported in tabular

representations. These representations enables partial automation of the transformations steps

and constitute the main mechanism to automate a set of decision assisted model transformation

steps. A small part of the 4SRS method execution table is represented in Figure 74. The table is

not zoomed due to size limitations. The cells are filled with the set of decisions that were taken

and made possible the derivation of a logical architecture. Each column of the table concerns a

step/micro-step of the method execution.

Figure 74. 4SRS method execution using tabular transformations

The output is a logical architectural diagram, composed by a set of software components

and relations/flows between them. The architectural diagram is modeled in UML Components,

as depicted in a simple example in Figure 75.

represente

d by
represent

{U.C.1.1.1} Create user account cdi

{C1.1.1.c} Generated C F

{C1.1.1.d} Generated C T User data

This C stores the data of the user.

By "data" we interpret that is all the

information relevant for this object,

such as: Name, personal

information, password,email,

company, role, profile settings, data

access, etc.

{C1.1.1.d}

{C1.1.2.d}

{C1.1.3.d}

{C1.1.4.d}

{C1.1.5.d}

{C1.1.6.d}

T User data

This C stores the data of the user.

By "data" we interpret that is all the

information relevant for this object,

such as: Name, personal

information, password,email,

company, role, profile settings, data

access, etc.

SP1.1 Authentication

Service

{C1.1.1.i}

{C1.1.1.i} Generated C T
Insert user

name interface

This C defines the interface with the

cloud consumers to create a new

user.

{C1.1.1.i} T
Manage user

interface

This C defines the interface with the

cloud consumers to create a new

user and associate user companie

and a profile with a pre configured

permissions

SP1.1 Authentication

Service
{C1.1.1.d}

{C1.5.1.i2}

{C1.2.1.i2}

{C1.2.1.i}

4ii - UC

Associations

Step 1 - component creation Step 2 - component elimination

Use Case Description
2i - use case

classification

2ii - local

elimination

2iii -

component

naming

2iv - component description

2v - component

representation

Step 4 - component association

4i - Direct

Associations

Step 3 - packaging &

aggregation
2vi - global

elimination

2vii -

component

renaming

2viii - component specification

Chapter 5 – Agile Logical Architecting using AMPLA

186

Figure 75. Simple example of a candidate UML components architecture

It must be pointed out that AMPLA and the 4SRS supports the logical view (Kruchten, 1995)

of the architecture, namely the identification and design of software components referring to

functional requirements. Architecture design should also address quality requirements.

Addressing quality requirements is out of the scope of AMPLA, but is able to coexist with other

architecture-centric methods such as QAW or ADD.

The use of 4SRS throughout the process, first in the scope of the candidate architecture, and

afterwards in the scope of each refinement, provides the traceability between components and

the functional requirements, allowing an agile response to changing requirements. The number

of components or the number of associations between components are possible indicators to

determine the architecture’s riskiest components.

Incremental design for refining the logical architecture

As referred in the previous section, the output of performing the 4SRS method during

requirements is a candidate logical architectural diagram, composed by a set of software

components and relations/flows between them.

The idea is to refine the architecture incrementally, in parallel with the implementation

efforts regarding the architectural components that already were refined. Like in most cases, the

best approach to issue complex problems is to divide them into smaller ones and address them

one by one, ultimately allowing to address the big solution.

With the purpose of modularizing the architecture, the candidate logical architecture is

partitioned into sub-systems. AMPLA is able to be performed in parallel within a typical ASD

context, however the subsystem bordering is helpful in complex ecosystems contexts. This

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

187

bordering is likely to reflect the ecosystem, e.g., IoT, cloud, infrastructure, embedded systems,

etc., and the dependencies between the subsystems. The sub-system border provides context for

modeling more refined Use Cases, as well as context for making technical design decisions that

in the initial phase were very difficult to make. The Use Cases may then be used for a new

execution of the 4SRS (Figure 76), since they relate to “new” Use Cases that emerged and hence

did not exist before the definition of the sub-systems. Within these “new” Use Cases, they may

relate to refined use cases from the previous model, as well as relating to new use cases within

the same level of refinement. E.g., a sub-system related to a use case {UC1.5} may result in

refinements like {UC1.5.1} and {UC1.5.2}, as well as new use cases in the same level of

refinement like {UC1.6} and {UC1.7}.

Figure 76. Recursive execution of 4SRS for refining a given example module

By performing the 4SRS method within this new use case model, the resulting software

components relate to refined components for that sub-system that can be “replaced” in the initial

candidate architecture, resulting in a more refined version. In order to assure that the defined

sub-system, even though composed by more components, is still able to fit in the overall logical

architecture, its interfaces must be maintained (system of systems theory). It must be pointed

out that the execution of the 4SRS for the new and emerged use cases in Figure 76 are an

increment to the previous execution, rather than performing a new 4SRS execution with only the

new use cases.

The sub-system requirements are object of analysis within each iterative cycle. In this

section is described the refinement process aligned with iterative cycles, e.g., Scrum Sprints.

Figure 77 depicts the distribution of the module requirements for refinement and respective

 UML Use Cases Diagram

4SRS

U2.1 AE2.1i

U2.2

AE2.1d

AE2.2d

AE2.2c

(Just-in-time) Logical Architecture

2x

4x

2x

4x

Chapter 5 – Agile Logical Architecting using AMPLA

188

implementation tasks to be included as Product Backlog Items (PBI), distributed within the cycles

(Sprints).

After each subsystem is defined, the process is then structured as an iterative approach

(e.g., Scrum Sprints). Within every iteration, the team performs tasks involving several software

engineering disciplines. The terminology from RUP’s and AUP’s disciplines is used (only for

demonstration purposes) to depict the type of effort involved within the Sprints. These efforts are

illustrated in Figure 77 by the colored bars within each cycle, where each bar is a software

engineering disciplines, and with more or less effort during the cycle, similar to RUP and AUP.

The main difference is that, in parallel with carrying out typical disciplines within the Sprints

(Implementation, Testing and Deploy) that result in the delivery of a software increment, other

team members are responsible for refining requirements regarding the features not yet included

in the team’s Sprint Backlog, and that are planned to be implemented in further Sprints. These

requirements are modeled, hence the Requirements discipline, and then an incremental

execution of the 4SRS method, hence the Analysis & Design (A&D) discipline.

Figure 77. Distributed implementation of each architecture module

The Requirements and A&D tasks are performed in iterative cycles and incrementally,

synchronized with the development and deployment during the Sprints, in a sense that what is

modeled during a cycle is then ready to be implemented in next cycles (Figure 78). While the

implementation is being performed, requirements from the original logical architecture, not yet

refined in previous cycles, are modeled in use cases. They originate a new increment of the 4SRS

method, deriving additional components. These models require validation from customer before

being ready to be included in the Team Backlog. The first time this requirements cycle is being

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

189

performed, the development Sprint is not yet performed (or a Sprint 0 cycle is performed where

no software is delivered, but rather the development infrastructure is built). Then, requirements

and the 4SRS address the functionalities to be implemented in the next Sprint or even more

ahead Sprints. It is assumed that, since the components have been refined, they are in an

improved situation to be now passed for implementation.

Figure 78. Incremental requirements and 4SRS execution throughout the Sprints

While this refined information is implemented, coded, tested and deployed, ending in a

delivery of a software increment to customer, in parallel other model is refined within the same

approach (i.e., use cases, 4SRS and architecture). This process is depicted in Figure 79 as a

Software Process Engineering Metamodel (SPEM) diagram. This way, when a cycle is finished, it

is expectable that new sub-systems were refined and able for implementation.

Figure 79. Parallel tasks within Sprints in SPEM diagram

Requirements
Modeling

Logical
Architecture

Refinement and
Update

Logical
Architecture

Sprint
Backlog

Logical
Architecture

Testing Deployment
Software
Release

«input»

«input»

«input»

Development

«input»

«input»

Team
Backlog

«input»

«input»

New user
stories

«input»

Chapter 5 – Agile Logical Architecting using AMPLA

190

Continuous Architecture and change-impact analysis

After the feedback and consequent learning and adjustments (if needed), the approach ends

with the candidate logical architecture, which is then used as input for defining the required

backlog items for delivering the software (please consult Chapter 6 for more details).

Figure 80. Traceability between models and product backlog

The derivation of models described so far is performed before the Sprints cycles. Only then,

there is context for deriving backlog items. The transformation of the artifacts in backlog items

may be performed before or during a Sprint 0 cycle, where no software was delivered. When

software delivery begins, the process is performed in typical cycles, whether in Scrum, Kanban,

or other frameworks. Figure 81 depicts a process structured in Scrum Sprints.

The main difference is that, in parallel with delivering a software increment, other team

members are responsible for refining requirements not yet included in the backlog, and that are

planned to be implemented in further Sprints.

In all Sprints, the requirements refining for further Sprints justifies the inclusion of the

Requirements discipline in the each Sprint, as shown in Figure 82. Other example of

Requirements discipline are spikes (originally defined within XP), a technique used for activities

such as research, innovation, design, investigation and prototyping. With spikes, one can properly

estimate the development effort associated with a requirement or even a better understanding a

requirement.

Some design-oriented spikes (similar to architectural spikes from XP) like monitoring the

current status of the system, controlling the technical debt, compliance with regulatory

requirements, among others, result in a focus in Analysis & Design. These are some of the

UML Use Cases Software Architecture

4SRS

Requirements
Elicitation

Logical Architecture Design
Product Backlog

...

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

191

continuous architecting (CA) tasks (Martini, Pareto, & Bosch, 2014). Afterwards, the typical

disciplines are carried out within the Sprints: Implementation, Testing and Deploy. We use the

terminology from RUP’s disciplines (only for demonstration purposes) to depict the type of effort

involved.

Figure 81. AMPLA during Sprints

Figure 82. The performed disciplines within the Sprints

Use
Cases

4SRS

Logical
Architecture

deliver

Use
Cases

4SRS

Logical
Architecture

deliver

Use
Cases

4SRS

Logical
Architecture

deliver

Use
Cases

4SRS

Logical
Architecture

deliver

refine

refine
refine

refine

Software
Increment

Software
Increment

Software
Increment

Software
Increment

Business Modeling

Requirements

Analysis & Design

Implementation

Test

Deploy

Chapter 5 – Agile Logical Architecting using AMPLA

192

It is during these delivery cycles (in Figure 83 the cycles are represented as Scrum Sprints)

that the software supervision (of what is delivered) is performed. As ASD promote rapid

feedbacks and adaptation, many events (or ceremonies) are performed whether for customer

feedback on the delivered software increment, or for team review. In the later, many design and

implementation decisions are made, whether related to the team’s perception of the delivered

quality, the development process, the adopted technologies or concerning the way the

architecture is emerging. Moreover, it is based within the customer feedback or team review that

changes are proposed during the cycles. For both cases, a proper in-depth analysis (especially

for safety-critical systems) related to the proposed changes should be performed.

Figure 83. Parallel traceability within Sprints using the 4SRS

Just like during the refinement process, the remaining Sprints the teams perform tasks

related to several disciplines, as previously depicted in Figure 82. In this section, the “Analysis &

Design” discipline is focused.

The architecture should be present at all moments of the development. Whenever new

requirements emerge, or a need for change/refactoring of a given component is identified, the

architect should carefully analyze the impact before accepting such occurrences.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

193

As described in the previous section, AMPLA provides traceability between requirements

models (UML Use Cases), architectural components (UML Components) and the product backlog

items. Thus, it is within these three artifacts that impact analysis is based in.

The architect may analyze the architectural artifact (arrow (a) in Figure 84) for a component

candidate for refactoring, which remaining components are affected by any change to that

component, or depicting which quality characteristic is affected. Alternatively, the architect may

trace back to the requirements model for depicting the business value of the requirements that

relates to the component affected by the refactoring (arrow (b) in Figure 84). Finally, when a new

requirement emerges, it is added to the UML Use Cases model and afterwards “is followed” the

AMPLA process flow towards the architecture and product backlog (arrow (a) in Figure 84). Arrow

(c) may also relate to address technical and architectural debt, as a requirement typically is

refined which ultimately gives origin to a product backlog item (User Story and backlog task) in

order to tackle the debt.

Figure 84. Possible targets of CIA within AMPLA

UML Use Cases Software Architecture

4SRS

Requirements
Elicitation

Logical Architecture Design
Product Backlog

...

Business Modeling

Requirements

Analysis & Design

Implementation

Test

Deploy

(a)

Chapter 5 – Agile Logical Architecting using AMPLA

194

Martini, Pareto and Bosch describe context, scope and within which agile ceremony was

more appropriate for a set of given CA practices (Martini et al., 2014). In AMPLA it is also agreed

that CA, as the name implies, is a continuous process, thus the proposed CIA practices should

not be limited to a moment in time within cycles (or Sprints), like, e.g., Retrospectives, but rather

at any time of the delivery. Of course, CIA practice could not be performed right after a given

change proposal, although evidently the quickest response to that proposal is adequate.

It is not the purpose of this research to provide inputs for architects to accept or deny any

change proposal, but rather to provide CIA practices insights and where the architectural

information (derived within AMPLA) is located in order for providing the required inputs for an

appropriate decision, as listed in Table 20.

Table 20. List of CIA practices and their targeted models

Type of practice Target Analyzed model

Architecture significant requirement

(ASR)

The goal which derived the ASR UML Component

Quality characteristic Capability of assuring SLAs UML Component

Business and customer value of the

requirement

Priority of the requirement UML Use Cases

Which components are affected Dependencies between

components

UML Components, 4SRS

Compliance with standards Legal and regulation assurance UML Components

Requirements emerge Add new requirements UML Use Case

Managing architectural debt Refine requirements and update

architecture and product backlog

UML Use Case, UML Components

and Product Backlog items

Thus, the proposed CIA practices allow analysing, monitoring and assessing the

architectures in many ways. If analysed all, or just some of them, the architect is able to provide

an appropriate acceptance or denial of a change proposal.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

195

Figure 85. CA-related practices within “Analysis & Design” discipline

Microservices design towards Continuous Architecting

Breaking the monolith system

Any software project is performed in one of these contexts: either in a greenfield project, i.e.,

from scratch; or alternatively, in a brownfield project, i.e., on top of an existing legacy system.

Independent of whether an MSA-based system is designed, greenfield or brownfield (by

decomposing a monolith), a set of microservices need to be identified (Newman, 2015).

Accordingly, the ‘Decomposition by business capability’ pattern or ‘Decomposition by subdomain’

(Richardson, 2018) - also known as DDD - is a common approach for designing microservices

architectures.

In this section, whether the context is greenfield or brownfield, use cases are always the final

output form the initial domain modeling process, as they are the input for the 4SRS-MSLA

method. If in a greenfield project, the requirements are elicited based in the processes that the

MSA aims to support, where we propose the use of Use Case models, requirements that are

structured by decomposing functionalities in a tree-like form (Figure 86). The tree’s “branches”

are a reflection of the boundaries of the domains and subdomains derived from applying DDD

pattern. If in a brownfield project, the decomposition begins by analyzing the processes and their

mapping within the monoliths’ components. The elicitation refers to processes that legacy (or, in

this case, monoliths) systems currently support. The processes are the basis for identifying the

Business Modeling

Requirements

Analysis & Design

Implementation

Test

Deploy

- Architectural value (quality) of the
sprint increment;
- business value of the sprint
increment;
- dependencies to another
increments;
- architecture compliance;
- risk management;
- architectural debt;
- controlling architecture erosion
- ...

Chapter 5 – Agile Logical Architecting using AMPLA

196

domains with the DDD pattern. By applying reverse engineering to requirements modeling, the

output is again an UML Use Case model.

Figure 86. Inferring Domain's and sub-domain's bounded contexts from UML Use Cases

Each use case is functionally decomposed based on specific tasks that the current solution

supports. Additionally, this elicitation requirements process may be used to analyze current

limitations on the business domain and hence stakeholders may elicit new requirements, which

are added to the use case model.

Functional decomposition relates to dividing functionalities in smaller pieces. Within UML use

cases, this requirements technique is used for enabling a software functionality to be divided into

refined use cases. Such technique allows for providing detail in describing a given requirement.

This tree-like organization results in a structure for specifying lower-level details on each

requirement, where low-level requirements are a specialization of the higher-level requirements.

The requirements analyst then decides when decomposition may end. Often, the tendency is to

perform scaffolding, where low-level requirements end up in Create, Read, Update and Delete

(CRUD) operations. This is just an example, since decomposing aiming for CRUD operations is a

decision that the requirements analyst has to make.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

197

Greenfield settings

The requirements engineering process follows the DUARTE approach within the AMPLA

process (cf. Section 4.3) that, based in successive model derivation, namely referring to

sequence, use case and components diagrams, allows deriving just enough requirements/use

cases into a candidate logical architecture. Requirements emerge in a continuous way, as the

4SRS method is regularly revisited alongside the development Sprints (cf. Section 5.3). Although

not mandatory that the requirements engineering process (necessary for the proposed

microservices design approach) follows either DUARTE or AMPLA, for the purpose of this

research this section describes how this approach for microservices uses the resulting models

from DUARTA/AMPLA. However, it is only necessary that the requirements engineering process

outputs a UML use cases diagram.

Designing microservices for a given business capability or domain, typically uses patterns

such as Domain-driven Design (DDD) (Evans, 2004), single responsibility principle (SRP) or

Conway’s Law (Conway, 1968). However, microservice design often faces challenges related to

database partition, the proper size of the microservice, inter-service communication and

messaging, which are not addressed systematically by those patterns. By applying a modeling

method in the process of designing a MSA, one may foresee issues on bounded contexts for

microservices, namely intra-service behavior, interfaces and data models separation, and inter-

service communication and messaging requirements (Newman, 2015).

The requirements elicitation started by listing a set of stakeholder expectations towards the

product roadmap, encompassing the entire product but only MVP features were detailed. They

relate to business needs that afterwards allowed depicting functional requirements, modeled in

use cases. After executing the 4SRS, the logical architecture is derived. This architecture was

afterwards divided in a set of modules to be assigned to each of the project’s teams (Figure 87).

The modularization exercise followed the DDD rationale.

Chapter 5 – Agile Logical Architecting using AMPLA

198

Figure 87. Architecture modularization example

By identifying the domains present in the architecture (DDD) we propose to refine sub-

systems (regarding each domain) of the architecture iteratively, in order to identify, model and

specify a set of software services in SoaML diagrams, such as Service Participants, Service

Interface, Capabilities, Service Data, Service Architecture, Service Contracts, among others, until

all logical components are supported by software services.

The 4SRS method takes as input a set of UML Use Cases describing the user requirements

and derives a software logical architecture using UML Components. The logical architecture is

then refined trough successive 4SRS iterations (by recurring to tabular transformations),

producing progressively more detailed requirements and design specifications. An overview of the

approach is depicted in Figure 88.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

199

Figure 88. Recursive architectural model transformations for service design

Each module could have sub-domains, which was responsibility of the assigned team to

identify them. At this point, it was also important to identify dependencies and flows between

domains for performing aimed business processes. The modeling support for this exercise can

be, e.g., sequence diagrams as in Figure 89, where microservices regarding the sub-system were

identified within the scope of a given business process. In fact, these diagrams are powerful tools

for bordering the modules, as well as validating (not just the modules but as well the whole)

architecture. Additionally, defining the sequence flows also supported eliciting communication

specification between microservices.

Designing microservices logical architectures in SoaML using the 4SRS-MSLA

Resulting from the modularization, now each sub-system is refined independently. For that

purpose, new UML Use Cases are identified, regarding only the sub-system, in order to refine the

existing information. This section describes the steps that comprise the 4SRS-MSLA method

(Figure 90), from where each UML component is initially specified. Next, these components are

identified and their behavior derived in microservices (SoaML’s Service Participants), as also the

channels and contracts between them.

First V-Model

Use Cases Diagrams

(Software) 4SRS

U2.1 AE2.1i

U2.2
AE2.1d
AE2.2d
AE2.2c

Software System
Logical Architecture

Second V-Model

 Use Cases Diagrams
(Refined)

(Services) 4SRS

U2.1 AE2.1i

U2.2
AE2.1d
AE2.2d
AE2.2c

Transition Steps:
1 – Architecture
Partitioning
2 – Use Case
Transformation

Service-Oriented Logical
Architecture

Chapter 5 – Agile Logical Architecting using AMPLA

200

Figure 89. Dependency between different teams

Figure 90. Specifying microservices using 4SRS-MSLA

The aim for using the 4SRS-MSLA is to have a logical view of the microservices’ internal

behavior and communications, so that all the elicited functional requirements are met in the

derived solution. The four steps of the 4SRS-MSLA are the following:

Remote Equipment Analysis sequence diagram

«Mobile/Web App»

{C7.2.1.i}
Remote Equipment

Analysis

«Microservice»

{C2.1.1.i}
Authentication

Service

«Microservice»

{C2.2.1.i}
Authorization

Service

Factory
IT manager

Get_authen(user, password)

Authentication web token

Get_authorization(consult equipment service, authen_token)

Authorized service

«API»

{C6.1.3.i}

Equipment
management service

Team B Team C Team A

UML Use Cases

UML Components

4SRS-MSLA

«Participant»
«Participant»

Identify
MS

«Participant»Derive MS
behavior

«Participant»

Derive MS
Channels and

Contracts

SoaML Participants

SoaML Participants + UML
Components

SoaML Participants + UML
Components

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

201

Step 1. Components Creation

The first step regards the creation of three components, where the 4SRS-MSLA method

associates, for each use case, a component for interface with users or systems (i-type), a

component for the data model (d-type), and a component for logic/control of the microservice

domain (c-type).

Step 2. Components Elimination

In the second step, components are submitted to elimination tasks. In previous versions of

the method, the redundancy identification often includes components that are (functionally)

similar but with different usage, which result in eliminating redundant components but defining a

wider representation for the retained component. This often occurs within c- or i-types

components. Nevertheless, the microservices principles suggest that the microservice has only

one specific purpose, hence one may suggest that a component should be eliminated only if its

purpose is exactly the same as of another one, and thus not eliminating any of them if their

purpose is just similar.

Step 3. Component Packaging / Microservice Identification

The third step consists in grouping a set of components in packages, which further compose

higher-level microservices. In 4SRS-MSLA, packaging is based in the use cases model obtained in

the first-level refinement. Components, regardless of their category (i-, d-, or c-type), are assigned

to one package (higher-level microservice) based in the process they relate to, or based in the

non-leaf use case (that includes the leaf) originally derived from. Such packaging assures that the

DDD pattern is followed.

Step 4. Microservices Associations

The associations between components are then generalized in order for depicting the

associations between microservices. In a microservices context, these associations relate to

service channels that exist in order to allow communication between microservices to support a

given business process or information flow. This view is intended for identifying the need for such

channels, regardless of the communication Pattern adopted, i.e., messaging between services or

use of middleware such as API Gateways or lightweight message bus. Identifying such

associations is based in descriptions from use cases (dependencies between functionalities at

Chapter 5 – Agile Logical Architecting using AMPLA

202

user requirements level), as well as from the components themselves, during the execution of

step 2.

In this section, the inputs from the derived UML models by performing AMPLA and the

4SRS-MSLA are used to model the SoaML diagrams and their components. The modeling so far

allows deriving the microservices’ internal behavior, their data models, and the existing

communications. These different concerns are included in different SoaML diagrams, in form of

transition rules. These rules are grouped in ‘Boundary’, ‘Data’ and ‘communication’, as depicted

in Table 21.

Table 21. Transition from UML (within AMPLA) to SoaML

Rule Input from UML Output in SoaML

1. Boundary UML Packages Service Participants

2. Boundary UML Packages Service Architecture diagram

3. Boundary UML Components (within

Packages)

Service Capabilities (methods)

4. Boundary i-types Separate web apps from Service Participants

1. Data d-types Service Capabilities

1. Communication 4SRS (associations) Service Participants (Requests/Services and Ports)

Service Interfaces

2. Communication UML Sequences Service Interfaces

Each microservice identified within the 4SRS-MSLA method execution is represented as a

Service Participant. Thus, the set of Service Participants compose the microservices architecture.

The required invocations for the Participant (Figure 91) were identified based in the use case

description, where the interactions with other use cases were previously described. Additionally,

the same interactions allowed identifying the need for methods that call those services and the

properties (data) within the Capabilities.

It is during Step 2 of the 4SRS-MSLA that it is defined the expected behavior of the

microservice. In order to align with typical composing layers of a microservice (UI, API, Logic and

database), this approach proposes maintaining a general purpose description, but also the

inclusion of HTTP verbs under which that component is called (used for defining «request»

ports), the invocation of HTTP verbs required to consume services that are necessary in order to

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

203

fulfill its purpose (used for defining «service» ports), and the properties that compose the

dedicated database of the microservice (input for Service Data).

Figure 91. Participant with ports, interfaces and capabilities (methods/properties)

In Step 3 of the 4SRS-MSLA, it is common that i-type components that relate to user

interface (UI) actions are grouped together into one or more i-type components. This occurs

because these components are typically part of a web application rather than a given consumed

service.

Data management

In Step 3 of the 4SRS-MSLA, d-types may also be grouped if the goal is to centralize the data,

as in the "shared database" pattern. Alternatively, they may be included in the package from the

higher-level microservice they relate. This decision results in including within the microservice

d-type components that are responsible for the related data access, which reflects an application

of a "database per service".

If the solution uses the shared database pattern, the MSLA is likely to have a dedicated

package for d-type components, which must be assured when performing Step 3 of 4SRS, i.e.,

assigning a package to d-type components. This package is not transformed into a microservice,

but rather is remained as a dedicated package (just like the UI package for web apps). If the

solution uses the database per service pattern, d-types are assigned in Step 3 to a given service,

i.e., any package except for the UI. Additional patterns are then followed, like “API Composition”,

“Command Query Responsibility Segregation” (CQRS) and Saga. These patterns are out of the

scope, but will be discussed in future research.

Inter-service communication

Defining inter-service communication is very complex during specifications, as some

information about communication needs (parameters, formats, protocols, etc.) are not always

«Participant»
Microservice 1

«Request»
«from association with use

case 2»

«Request»
«from association with use

case 4»

Port x

Port y

Port z

«Service»
«from association with use

case 2»

GetExample1(): int
GetExample2(): int
PutExample3(): int

«Capability»
Microservice 1

(a) (b)

Chapter 5 – Agile Logical Architecting using AMPLA

204

clear during specification tasks. This section proposes defining such communication needs, by

using inputs that may come from the 4SRS-MSLA method execution as from the sequence

diagrams exercise (Figure 89). In terms of modeling, SoaML diagrams able to be used are the

ones such as Service Architecture, Service Interface and Service Channels.

From the 4SRS-MSLA, in Step 4 defining microservices associations should follow some

constraints in order to prevent ineffective communication”. Figure 92 represents the associations

and rules that this step has to follow for proper component association. On the left side, are

represented direct associations between components within the same sub-domain (i.e., i-, c- and

d-type components derived from the same use case), and, on the right side, the associations

derived from use case dependencies. In terms of the required association rules, five rules are

mainly applied. On the left side, if the three components are maintained, i-type should associate

with c-type, and c-type associate with d-type(s) (Figure 92a). Next, associations with the ones

exemplified on the right side should be assigned only to c-types (Figure 92a, b and c). Use case-

related associations between i- or d-types should only occur if any c-types were not maintained

(Figure 92d). Finally, by applying these rules, there may be a case where only d-types were

maintained. In this case, an analysis by the architect is required, since d-types usually respond

(in CRUD actions towards data) to another component’s call.

Figure 92. Defining associations between components

In order to implement API Composition, modeling refers to the microservice’s response to a

given process, which is derived from the associations from Step 4 and depicted in Service

«interface»
{C1.1.i} .

«control»
{C1.1.c} .

«data»
{C1.1.d} .

«interface»
{C1.3.i} .

«control»
{C1.3.c} .

«data»
{C1.3.d} .X

X
«control»
{C1.1.c} .

«data»
{C1.1.d} .

«interface»
{C1.3.i} .

«control»
{C1.3.c} .

«data»
{C1.3.d} .X

X
«control»
{C1.1.c} .

«data»
{C1.1.d} .

«control»
{C1.3.c} .

«data»
{C1.3.d} .X

«interface»
{C1.1.c} .

«data»
{C1.1.d} .

«data»
{C1.3.d} .X

«data»
{C1.1.d} .

«data»
{C1.3.d} .

a) b) c)

d) e)

Same Use Case Use Case Flows Same Use Case Use Case Flows Same Use Case Use Case Flows

Same Use Case Use Case Flows Same Use Case Use Case Flows

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

205

Participant’s service ports. Additionally, identifying needs for implementing CQRS refers to the

dependencies between microservices, using the Service Architecture (Figure 93). It should be

referred that both patterns are typically used only in “database per service” settings.

Figure 93. Service Architecture

The approach for a given communication pattern (API gateways, remote procedure

invocation, messaging or a domain-specific protocol, etc.) is not yet defined in MSLA, rather it

only defines the necessity of existence of a flow between microservices. However, any design

decisions on adopting a given pattern may be directly included in the components specification,

the ServiceChannels, or in Service Interface diagram (Figure 94). For these interfaces, besides

defining the parameters of the exchanged data,

Chapter 5 – Agile Logical Architecting using AMPLA

206

Figure 94. Service Interface

the design decisions rely in whether the communication is synchronous or asynchronous. This

decision will then support the protocol for brokerage to be used (e.g., REST and gRPC for

synchronous, or MQTT, AMQP, OPC-UA or Kafka for asynchronous).

Automatization

The agility provided by a microservices architecture mainly provides from having an

infrastructure that supports a proper continuous integration/deployment (CI/CD) pipeline of the

microservices to a production environment.

For this particular goal, obstacles refer to maximizing as possible CI/CD of the

microservices, namely by performing a set of tests to the microservice. For this purpose,

modeling may only provide some guidance on the expected behavior of the microservice.

Components and associations are the required input for performing several types of testing,

from unit to acceptance testing. Additionally, component testing is enabled by validating the

microservice behavior as described its composing components. Service integration contract

testing is enabled by validating the scenarios where services invoke other services. These invokes

are represented as ServiceChannels by the associations described in Step 4. Diagrams such as

Service Contracts or even UML Sequence diagrams enable the contract validation.

5.4. Demonstration Cases

Architecture Spikes: the iFloW case

By revisiting what was discussed in the previous chapter about the iFloW project, it should

be pointed out that iFloW is an R&D project between a University of Minho (UMinho) and Bosch

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

207

Car Multimedia Portugal (Bosch) consortium, that aims at developing an integrated logistics

software system for inbound supply chain traceability (cf. Chapter 1). The main goal of the

project is to develop a tracking platform that is backed by integrating information from freight

forwarders and on-vehicle GPS devices. Main functionalities regard the control of raw material

flow from Asian and European suppliers, and deviation of Estimated Time of Arrival (ETA) value.

The elements from UMinho had no previous knowledge of the domain (in this case, logistics)

or of the involved technologies, such as third-party service providers, GPS, EPCIS or SAP-OER.

Thud, besides performing upfront gathering and documentation of organization’s

(logistics-related) activities, to define terms, and to analyze flows, legacy software and data,

Scrum Sprints often included performing spikes. Spikes, originally defined within XP, are a

technique used for activities such as research, innovation, design, investigation and prototyping.

Additionally, the team also performed architectural spikes, whenever required a deeper

understanding of a design decision.

Within the project, there was a concern of analyzing the performed software engineering

disciplines throughout the Sprints. In this research, we use the terminology from RUP’s

disciplines (only for demonstration purposes) to depicts the type of effort involved.

In all Sprints, the need for updates to the logical architecture was assessed (within the Analysis

& Design). Afterwards, the typical disciplines were carried out within the Sprints: Implementation,

Testing and Deploy.

The use of spikes in the iFloW project justifies the inclusion of the Requirements discipline in

the each Sprint, as shown in Figure 95. These spikes were, in their majority, originated from

middleware-based use cases (for instance, related to integration with third-party service

providers, GPS, EPCIS or SAP-OER).

Within the remaining use cases, the Requirements discipline was not required. Thus, in

comparison with the disciplines included in Figure 95, the Sprint performed the remaining

disciplines like illustrated with exception of Requirements. In fact, it is what indeed occurs in

typical Scrum process (where almost every requirements-related effort is performed before Sprint

cycles, like Sprint 0 or similar).

Chapter 5 – Agile Logical Architecting using AMPLA

208

Figure 95. The performed disciplines within the Sprints

At a given point in time, both Bosch and UMinho identified the need for refactoring the code

and the architecture of the system, namely to cope with security and standardization issues.

Such refactoring led to a pause in the implementation tasks. The software logical architecture

was revisited and the impacts were analyzed. Some design-oriented spikes (similar to

architectural spikes from XP) were conducted, which then followed the re-design of the

architecture. In this case, there was a focus in Analysis & Design instead of Implementation (see

Figure 96, where it is detailed the sixth Sprint. Similarly to the other Sprints, this effort also lasted

four weeks. This effort was required in this case but it may occur, or not, in any project.

Figure 96. The performed disciplines within the architectural spike Sprint

Business Modeling

Requirements

Analysis & Design

Implementation

Test

Deploy

Business Modeling

Requirements

Analysis & Design

Implementation

Test

Deploy

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

209

Agile logical architecting: the UH4SP case

The UH4SP project is the demonstration case that encompasses the modeling result of the

agile architecting lifecycle (AAL) presented in Section 5.2, which analyzes the evolution of an

architecture for a software initiative throughout SDLC stages, from an enterprise level to the

deployment of software components. The UH4SP artifacts presented in this section relate to the

three main stages of AAL: Grooming, Backlog and Delivery. During these stages, the architecture

evolves within different viewpoints, which are directly related between them (Concepts,

Information Systems, Software Systems and Infrastructure).

The Conceptual architecture, due to the I4.0 nature of the project, relied in identifying

concerns aligned with Industrial reference models like Industrial Internet Reference Architecture

(IIRA) and Industrie 4.0 Reference Architecture Model (RAMI 4.0). By analyzing its layers, for

instance within IIRA, the management of corporate-level production, tools for collaborative

processes within the supply chain and the microservices architecture refer to the Business layer,

and the production data at the industrial unit level are acquired from a Manufacturing Execution

System (MES), at the Operations layer.

This separation reflected the intended adoption of layers relating to business management,

intermediate management at a cloud layer, and industrial local management at an edge layer.

Such adoption was reflected in terms of the reference models for the Reference Architecture, by

adopting NIST Cloud Computing Reference Architecture (NIST-CCRA) for the cloud layer and

OpenFog Reference Architecture for the edge layer.

The information system architecture (Figure 97) is thus based in the same separation. At

the industrial physical space level (D), operations take place and the interaction between the

various actors and the system is verified through the various interface devices. It is at this level

that operational information is generated to support the services to be made available by the

system. At an intermediate level (C), typically located at the edges for each industrial unit,

distributed capabilities, namely related to computation, networking, and storage and offered. At

the cloud level (B), a service-oriented architecture is deployed to support horizontal functionality

integration. Finally, at the top-level (A), business apps, either desktop web apps or mobile web

apps, are the main interfaces with human actors. They use the cloud services to execute their

processes.

Chapter 5 – Agile Logical Architecting using AMPLA

210

For the logical architecture design, the functional requirements for supporting the business

processes under the information system were elicited, since a logical architecture is an

abstracted view of a system supporting functional requirements. The requirements analysis in the

UH4SP project included gathering the requirements from a set of “to-be” scenarios and modeling

a set of functional decomposed UML use cases. The Use Case model was composed by 37 use

cases. This modeling work was based in the DUARTE approach, previously discussed in Chapter

4.

After executing the 4SRS method (Annex C), the logical architecture components

(exemplified in Figure 98 and zoomed in Annex C) was derived with 77 architectural components.

The components were grouped into five major packages, namely: P1 Configurations; P2

Monitoring; P3 Business management; P4 UH4SP integration; P5 UH4SP fog data. The logical

architecture diagram was then used to specify microservices, responsible for retrieving

production data from local industrial units. The

Figure 97. UH4SP information systems architecture

Cement Plant X

Industrial Groups Third-parties

UH4SP Fog of
Plant Z

UH4SP IT Supplier

UH4SP Fog of
Plant X

UH4SP Fog of
Warehouse Y

Cement Plant Z Intermediary Warehouse Y

IIoT environment

UH4SP
Cloud

Business
Apps

Business
Apps

Business
Apps

IoT GatewayIoT Gateway

HubHub

IoT GatewayIoT Gateway IoT GatewayIoT Gateway

ServerServer HubHubServerServer
HubHubServerServer

D

C

B

A

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

211

logical architecture is discussed in Chapter 5. This architecture was afterwards divided in a set of

modules to be assigned to each of the project’s teams (Figure 99).

Figure 98. UH4SP logical architecture derived after 4SRS execution

The modularization depicted in Figure 99 originated five modules/subsystems, each

assigned for ‘Team A’, ‘Team B’, ‘Team C’, ‘Team D’ and ‘Team E’. The bordering was based in

the contributions that each team brings to the consortium, namely IoT, cloud infrastructure,

cloud applications and sensors/embedded systems. Each border is thus a part of a complex

ecosystem and the dependencies are depicted in Figure 99.

‘Team B’ was the focus of this research. During the first “Just-enough” modeling, there were

37 use cases and 77 architectural components after performing the 4SRS method. After

modularizing, 11 use cases from the 37, and the 15 components from the 77, compose the

module under analysis. Finally, the requirements refinement output 29 use cases, i.e., 18 refined

functionalities, which then derived 37 architectural components from the 4SRS method. Having

in mind the large-scale and complex ecosystem context of the project, these values may be

perceived as acceptable. It is an increase of almost three times as the original models.

The refinement was performed incrementally and in parallel with team’s Sprints (using

Scrum). The requirements were refined, modeled and validated with the consortium, and only

afterwards were input for the 4SRS method. The requirements validation was thus iterative as

well. In UH4SP, after modeling in UML Use Cases, the requirements package was also

composed with wireframes, to enrich the discussion. Additionally, in Scrum’s Sprint Retrospective

ceremonies, these models were object of feedback, and, if applicable, missing requirements were

included. These validations were crucial in the project to enable a complete team buy-in.

Chapter 5 – Agile Logical Architecting using AMPLA

212

After the 4SRS method, those five use cases derived 11 components. The MVP was

implemented at the end of these Sprints, which was composed by 94 components. These

components supported the project’s pilot scenarios. However, next releases in order to follow the

product roadmap are to be developed.

Each modularization may be refined. Flow between components (including components

from different modules) are validated by modeling some processes. Dependencies can be

depicted using, e.g., A-type sequence diagrams, namely some functionalities that must be

implemented and executable in order for other functionalities to proper execute. In fact, this

variant sequence diagrams pare powerful tools for bordering the modules, as well as validating

(not just the modules but as well the whole) architecture.

Figure 99. The modularization of the logical architecture

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

213

It must be assured that a module has composing software components that, together,

deliver working software. Only if the set of components are able to deliver working software, it is

also possible to perform acceptance testing and, afterwards, integration testing within the code

deployment.

We applied filtering and collapsing techniques to the border that relates to the components

within the module. These techniques redefine the system boundaries, which now regards only

the given module as a subsystem to be designed. During the filtering process, all entities not

directly connected to the module must be removed from the resulting filtered diagram.

Inside the system border defined for the given module through the respective coverage, the

components were maintained as originally characterized. The components with direct

connections to the module are maintained, and the ones without direct connection are removed.

Figure 100 depicts one of the UH4SP sub-systems, namely the one composed with fog related

functionalities.

Figure 100. UH4SP sub-system

The transition from the software system logical architectural diagram to the service use case

diagram is performed by applying defined rules (Machado, Fernandes, Monteiro, & Rodrigues,

2006). An inbound (software) component is transformed into a (service) use case of the same

type. By inbound we mean that the element belongs to the partition under analysis. On the other

hand, an outbound (software) component is transformed into an actor, representing an external

Chapter 5 – Agile Logical Architecting using AMPLA

214

software component that interacts with the (service) use case, for instance, through messaging or

APIs. The service use case diagram are depicted in Figure 101.

Figure 101. Refined use cases resulting from the model transformation

The use cases are then used as input for a recursive execution of the 4SRS (Machado et al.,

2006). The recursive execution of the 4SRS method is composed with the same steps as the

previous execution, with the difference that at this point the addressed requirements relate to

refined functionalities. This section describes how to use the 4SRS within the design of the

microservices architecture. With that purpose, the 4SRS is used to derive services based in use

cases. The front-end apps used within the monitor and configuration of the fog infrastructure,

namely its computation and storage, is not described since it is out of the presented partition. In

this case, the 4SRS must derive typical software components rather than software services.

Each microservice identified within the 4SRS method execution is represented as a Service

Participant. Thus, the set of Service Participants compose the microservices architecture. The

required invocations for the Participant (Figure 102) were identified based in the use case

description, where the interactions with other use cases were previously described. Additionally,

the same interactions allowed identifying the need for methods that call those services and the

properties (data) within the Capabilities.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

215

Figure 102. Participant with ports, interfaces and capabilities (methods/properties)

The Capabilities of a given service are applicable for a Database per service scenario. On the

other hand, Capabilities of services that include representation (micro-step 2.v) as well as the

services with association (further in Step 4) are applicable for a Shared database scenario.

A given ServiceChannel is related to a service associations from the 4SRS (step 4). They

allow that services can consume or provide other services. Within SoaML diagrams, these

associations provide input for the Service Interface or Contracts between services, and a Service

Architecture with the definition of provided and consumed services (Figure 103).

Figure 103. Service Architecture

Chapter 5 – Agile Logical Architecting using AMPLA

216

The Service Architecture includes the other services that are consumed. Additionally,

microservices are consumed by exposing an API. Hence, it is not specified in this diagram any

particular service but rather the «Microservice API» stereotype of service interface (the

specification of such extension to the metamodel is out of the scope of this thesis).

This API is also referred in the Participant diagram, which supports the service ports Get

Plant Data API and Put Plant Data API. The remaining consumed services are represented in the

request port.

The Service Interface diagram (Figure 104) refers to one of the interfaces included in the

Service Architecture. It shall be noted that the use of tools such as API Gateway or Enterprise

Service Bus and the representation of the associations between services in such scenarios are

out of the scope of this thesis.

Figure 104. Service Interface

Finally, the deployment of the functionalities were also addressed. For that reason, the

Deployment Architecture depicts the deployment location of the applications. The deployment

architecture for the UH4SP project is depicted in Figure 105: (a) UH4SP business apps layer,

either desktop web apps or mobile web apps, are the main interfaces with human actors; (b)

UH4SP integration layer, located at the edges for each industrial unit, distributed capabilities,

namely related to computation, networking, and storage; (c) UH4SP cloud services layer, a

microservice-oriented architecture; and (d) local industrial unit system layer, where operational

information is generated.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

217

Figure 105. UH4SP deployment diagram

A cloud infrastructure is responsible for supporting the deployment of UH4SP services, the

required computing, virtualization and storage needs. Developing the infrastructure required for

meeting the deployment needs included infrastructure tools for assuring communication between

industrial units and cloud services and between bussiness apps and the cloud services layer, but

also for promoting the continuous integration and delivery of the microservices architecture. Such

infrastructure is composed by a set of software tools, depicted in Table 22.

«Browser»
Authentication

Web app

UH4SP business apps layer

«mobile device»
Driver Guidance

«Broker»

<<Server>>
SLV Application

REST API

SLV Platform Core
MQTT

UH4SP cloud services layerUH4SP integration layer Local industrial unit systems layer

«SLVCollaborative»

REST API

Logic

Data

«Auth»

REST API

Logic

Data

Driver

Sys Admin
Corporate manager
Company manager
Factory manager

Client
Supplier

Forwarder

«Browser»
Collaborative

Web app

Sys Admin
Corporate manager
Company manager
Factory manager

Client
Supplier

Forwarder

http://slvportal.cachapuz.com/slvweb/
HubReportService.svc/json/GetData

http://uh4sp2.cachapuz.com/api

uh4spcollaborative.cachapuz.com

uh4spauthentication.cachapuz.com

PROXY

PROXY

«Browser»
Vizualizer

«Collector»

Logic

Data

«SLVOperations»

Logic

REST API

Sys Admin

«API Gateway»

REST API

Https://api.uh4sp.com
+ (To services access)

/Auth
/SLVCollaborative
/SLVOperations

/AuthFace
/Guidance

/Optimization

«Optimization»

Logic

REST API

Data

Data

«AuthFace»

Logic

REST API

Data

«Guidance»

Logic

REST API

Data

Pub/Sub

Pub/Sub

Pub/Sub

Pub/Sub

«LocalBroker»

MQTT

Pub/Sub

Pub/Sub

Pub/Sub

Chapter 5 – Agile Logical Architecting using AMPLA

218

Table 22. Deployment setting for UH4SP

Infrastructure/deployment Used software tool

Deployment Virtual machines

Monitoring Kibana

Factory gateway Node-Red + Mosquitto

Cloud gateway Mosquitto

Service discovery Fluentd

Load balancer Elasticsearch

Cloud resource management Terraform

Cloud provider Microsoft Azure

Configurations management Ansible

API documentation Swagger

The 4SRS-MSLA in brownfield projects: the IMP_4.0 case

The IMP_4.0 platform enables a software-house, F3M – Information Systems, SA, to optimize

the development process for delivering solutions to their customers with tools to support all their

decision-making processes. The solution is based on public and private clouds, which are

interoperable with devices in an IoT and Cyber-Physical Systems (CPS) approach.

The IMP_4.0 project is about an Enterprise Resource Planning (ERP) system for the textile

production domain, where the focus is to support milling, weaving and clothing processes, by

providing a set of reusable and integrated modules. Additionally, the platform’s development

includes establishment of generic modules and variability management for enabling its extension

to textile, footwear, cutlery, metal-mechanic, glassware and other sectors.

In terms of development, the IMP_4.0 project included developing:

 a set of management ERP-based features for the manufacturing sector to be delivered to

customers cloud-based;

 microservices for process execution;

 shopfloor software services for manufacturing processes, e.g., the control of the production

lines, instructions for cutting machines.

The research is conducted within an F3M’s software team. The team was composed by one

Product Manager, which owned the business vision, a team of four software architects and four

analysts, that modeled requirements and executed the 4SRS-MSLA method, and two

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

219

development teams, responsible for implementing the resulting microservice architecture. The

architects and analysts also performed the measurements within this research.

Within the IMP_4.0 project, all software product management, from the identification of

market needs, asset identification and releases management, was based on an initial domain

engineering, where it was intended to characterize the processes of the spinning, textile and

garment domains, in terms of commonalities and domain variabilities.

The software requirements for the identified processes resulted in a specification of UML Use

Cases. The Use Case model was composed by the following use cases, related to the ERP’s

modules (Figure 106), namely Stocks; Sales; Purchases; Production; Planning; Outsourcing;

Quality Control; Packing list; Finances; and Stakeholder Management. Additional use cases

related to integration with cloud infrastructures were also included.

Each use case was refined in functional decomposed use cases, resulting in 86 low-level (also

called leaf) use cases, i.e., the ones that could not be further divided. The decomposition process

ended when leaf use cases represented basic CRUD operations. The functional decomposition

shows that the 10 bounded contexts were structured within the tree’s “branches” (Annex D). For

representative purposes, Figure 107 depicts the functional decomposition related to Stocks.

Chapter 5 – Agile Logical Architecting using AMPLA

220

Figure 106. Use Case model of IMP_4.0 project

The next phase related to the execution of the 4SRS method. The 86 leaf-use cases were

used as input, which allowed deriving 140 components after creating (Step 1) and

eliminating/maintaining the components (Step 2). Next, component packaging (Step 3)

formalized the identification of the microservices within the architecture, as well as their interface

between web applications (ERP modules) and the MSA.

{UC0} IMP_4.0

{UC1} Stocks

{UC2}
Purchases

{UC3} Sales

{UC4}
Production

Warehouse Chief

Supplier

{UC7} Planning

{UC5}
Outsoutcing

{UC6} Quality
Control

{UC8} Packing
List

{UC9} Finances

Sales Manager

Production

Manager

Quality

Responsivle

Financial

Manager

Logistics

Manager

Machinery/Devices
CRM

Outlook

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

221

Figure 107. Use case refinement of {UC1} Stocks

Based in the first-level of use cases, the MSLA is composed by the following microservices:

Stocks; Sales; Purchases; Production Orders; Bills of Materials; Planning; Outsourcing; Quality

Control; Packing list; Checking Accounts; Banking; and Stakeholder Management. Step 4 allowed

identifying the required flows between the derived microservices. The general microservice

identification and inter-service communication result, by collapsing the components, is depicted

in Figure 108, while Figure 109 depicts the specific component behavior for the particular Stocks

microservice.

From the initial 86 use cases, the application of the 4SRS-MSLA allowed to specify 140

components, from where the IMP_4.0 project MSLA derived to 12 microservices. It would be

very difficult to design an architecture composed with such detail on components without the

support of an architectural method such as the 4SRS.

In terms of MSLA implementation, at the time of this research, two parallel teams already had

developed 6 microservices, of the 12 resulting from the 4SRS-MSLA, and their corresponding

{UC1} Stocks

{UC1.1} Control
Information about Stock

of Goods

{UC1.3} Analize
Stock State

{UC1.2} Control
Information about Stock

in Warehouse

Warehouse
Chief

{UC1.5} Control
Minimum Stock

{UC1.6} Analize

Historic

{UC1.7} Count
Inventory

{UC1.8} Register
Entrys / Exits

Sales Manager

{UC1.9} Perform
Picking

{UC1.10} Link Entrys /
Exits Document

«extend»

Chapter 5 – Agile Logical Architecting using AMPLA

222

web applications. Namely, the deployed microservices are Stocks ({P1}), Purchases ({P2}), Sales

({P3}); Production Orders ({P4.1}), Bills of Materials

Figure 108. IMP_4.0 MSLA overview (with collapsed components)

({P4.2}), and Checking Accounts ({P9.1}). As teams were developing each bounded context

(microservice and web app), the domains were iteratively validated and, whenever a domain was

implemented, their communication was also validated so the business processes were

incrementally supported.

Figure 109. The IMP_4.0 Stocks microservice

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

223

Microservices deployment using the 4SRS-MSLA: the IMSPM case

The last demonstration case is different from the remaining, whereas it is an internal project

at a software company called i2S Insurance Knowledge, S.A., located in Porto, Portugal. One of

the applications used in i2S, called Internal Management System of Project Management

(IMSPM), in recent years has had to increase new functionalities, which has led to the application

to grow from two modules (customer management and proposal management) to six. This

increase in functionality was accompanied by an increase in the load on the system, number of

users and number of accesses.

In project management it has been found that there are several tasks during the execution

of this process that are performed by different people in the organization. For this representation

a use-case diagram was used, identifying the different actors that intervene in the process. The

use case of Figure 110 represents an external view of the system and graphically the actors

associated with the use of the application.

Additionally, as part of the artifacts included in the AMPLA process, an A-type sequence

diagram was modeled, referring to the business processes and the dependencies among them

that compose the ISMPM problem domain. In addition, the diagrams depicted in Figure 111

allowed an upfront understanding of how the microservices were going to communicate.

Figure 110. IMSPM Use cases diagram

Chapter 5 – Agile Logical Architecting using AMPLA

224

Figure 111. IMSPM Sequence diagram

After performing the 4SRS-MSLA (Figure 112) to the modeled use cases, the MSLA was

derived. A zoomed version of the 4SRS table is depicted in Annex E. Each use case relates to a

business domain, thus each one resulted in a microservice. Then, the 4SRS-MSLA was used to

model the components included within the microservices. Thus, the microservices are Project

Opening, Billing, PPR, Service Request, Change Request, Project Forecast, Sage Invoice

Integration, Budgets, Resource Forecast, Customer Billing, and Project Closure. A simplified view

of the microservices, without providing component information from each microservices, is

depicted in Figure 113. Annex E also includes a zoomed version of the MSLA.

Figure 112. 4SRS method execution within ISMPM project

As described in Section 5.2, the logical viewpoint should be complemented with additional

architectural views. In this project, the logical viewpoint was design together with the deployment

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

225

viewpoint, which allowed specifying the infrastructure that would support the microservices

architecture execution and deployment.

Figure 113. IMSPM MSLA model

The deployment viewpoint is typically adopted in these kinds of projects, as mainly

contributing to specify how the infrastructure will promote the automatization that the

microservices architectures paradigm ease and that contribute to the “continuous” agenda of

software development, which includes continuous testing, integration, deployment and delivery as

well as DevOps.

Figure 114 depicts the deployment diagram for the IMSPM project. Since each microservice

will be executed in one different (Docker) container, that layer refers to the designed components

from the logical viewpoint, i.e., the MSLA. Remaining layers refer to applying other widely

adopted microservices patterns – application patterns (namely, database per service, client-side

UI composition), application infrastructure patterns (namely, messaging, circuit breaker) and

infrastructure patterns (namely, service per container, service registry and API gateway). Such

design was afterwards operationalized under a set of software tools, which compose the

continuous delivery setting. This setting is depicted in Table 23.

«Microservice»

{MS1} Project Opening
«Microservice»

{MS2} Biling
«Microservice»

{MS3} PPR
«Microservice»

{MS4} Service Request
«Microservice»

{MS5} Change Requests

«Microservice»

{MS6} Project Forecasts

«Microservice»

{MS7} Sage Invoice
Integration

«Microservice»

{MS8} Budgets «Microservice»

{MS9} Resource Forecast
«Microservice»

{MS10} Customer Biling

«Microservice»

{MS11} Project Revenues

«Microservice»

{MS12} Project Closure

API

UILogic

DB

API UI

DB

Logic

API
Logic

DB

UI

API

DB
UI

Logic
API

DBUI

Logic

API

Logic

DB

UI

API DB

UI

Logic

API DB

Logic UI

DB API

UI

API

UI

DB

API

Logic

API

UI

DB

Logic

Chapter 5 – Agile Logical Architecting using AMPLA

226

Table 23. Deployment setting for IMSPM

Infrastructure/deployment Used software tool

Deployment Docker containers

Monitoring Portainer tool

Version control Gitlab

Continuous delivery Jenkins

Inter-service communication HTTP

API documentation Swagger

API Gateway Ocelot

Figure 114. IMSPM Deployment diagram

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

227

Finally, it is worth referring that the MSLA is able to define the scope of development work

for each microservice. Figure 115 depicts the scope of eight microservices (the remaining four

were not defined as priority for now), referring that, for implementing a given microservice, the

scope of the work refers to the components covered by a spot within Figure 115. Namely, the

spot not only may cover the components from the microservice, but also, if applicable, cover

work to be done related to service communication necessary for the microservice proper

execution. Thus, if it is identified that a microservice needs to invoke another microservice for its

own purpose, one or more components from another microservice (typically, the ones related to

interfaces or APIs) must be covered by the spot. Only when all the components from the spot are

implemented, it is possible to properly test the microservice and deploy it.

Figure 115. Spots representation of the ISMPM MSLA model

Discussion

Candidate architecture design using the 4SRS method

Especially when new technological paradigms arise, stakeholders have many difficulties in

eliciting technical design decisions. In opposition to waterfall-based frameworks, where all the

requirements and design tasks are performed only upfront, within ASD projects these tasks

should be performed continuously.

Starting from understanding the problem domain and existing references, the architect is

able to specify functionalities and design a logical architecture. This logical architecture then

allows defining a Backlog that scopes the software development in an ASD manner.

Chapter 5 – Agile Logical Architecting using AMPLA

228

AMPLA provides a method for deriving a candidate logical architecture based in UML Use

Cases, the 4SRS method. There is not any difference within the steps of the method, in

comparison with the original method, to derive a candidate architecture. Rather, as the input are

high-level requirements in opposition to more refined ones, one may experience difficulties in

identifying a proper classification of the use case in order to decide the components to be

maintained within the second step, since a more refined information helps in better define the

component’s nature. However, as in AMPLA the requirements will be later refined and will

emerge, the 4SRS method is used as in a “living table” that is opened alongside the development

Sprints, rather than a waterfall-based and one-time-execution approach, providing traceability

between the requirements and the components in order to agilely respond to changes.

Incremental design for refining the logical architecture

In the UH4SP project, architecture design followed an incremental approach. Five teams

composed the project. However, this research focused in only one team. After modularizing, 11

use cases from the 37, and the 15 components from the 77, compose the module under

analysis. Finally, the requirements refinement output 29 use cases, i.e., 18 refined

functionalities, which then derived 37 architectural components from the 4SRS method. Having

in mind the large-scale and complex ecosystem context of the project, these values may be

perceived as acceptable. It is an increase of almost three times as the original models.

The refinement was performed incrementally and in parallel with team’s Sprints (using

Scrum). The requirements were refined, modeled and validated with the consortium, and only

afterwards were input for the 4SRS method. The requirements validation was thus iterative as

well.

After modeling in UML Use Cases, the requirements package was also composed with

wireframes, to enrich the discussion. Additionally, in Scrum’s Sprint Retrospective events, these

models were object of feedback, and, if applicable, missing requirements were included. These

validations were crucial in the project to enable a complete team buy-in.

Architecture evolution and management

The hybrid ASD performed in the iFloW project included a joint use of models within (Scrum)

Sprints, combining UML Use Cases for requirements and UML Components for the logical

architectural design. Besides providing an organization on the set of components, the logical

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

229

architectural model was additionally used for depicting the relationships among components

suggest dependencies that affect the implementation of functionalities and their inclusion in the

further Sprint Backlogs (cf. Section 4.5).

During Sprints, the software logical architecture was revisited and the impacts were analyzed at

the end of each iteration, in order to predict refactoring efforts. Additionally, when a change was

identified, the logical architecture representation allowed analyzing which components are

targeted with impacts from those changes.

Later, within the UH4SP project, the method for logical architecture assessing was revisited,

namely with a focus in component traceability.

Defining a traceability method for supporting CIA for architectural decision-making from

feature adding and changing arose many challenges. We believe that the model traceability

between architecture and requirements strengthened AMPLA in a sense of architecture

maintenance during ASD. However, implementing the method was a learning process, with

advantages and disadvantages, which are detailed in this section.

Applying CIA within AMPLA allowed supporting architectural decision-making with the

following advantages:

Identify architecture value proposed for change: is a feature is proposed for change,

traceability to architectural models allows identifying if that change affects components that are

ASR’s, if the requirements relates to a high customer value feature or if it relates to an imposition

from standards and policies compliance.

Depicting dependencies: revisiting the 4SRS method execution allows identifying

dependencies with other components from architecture, which are affected by a given change

Adding and refining requirements: the decision to add or refine requirements - either derived

from new needs from stakeholders or from technical debts - is eased by modeling the new

requirements and derive the resulting new components by performing the 4SRS method.

CIA practices validation: in this research, the presented scenarios included using all the CIA

practices proposed in section 5.3 (ASR, Quality characteristic, Business and customer value of

the requirement, which components are affected, Compliance with standards, Requirements

emerge, and Managing architectural debt).

However, applying the method faces some obstacles/disadvantages, namely:

Chapter 5 – Agile Logical Architecting using AMPLA

230

Quantity of models for Sprint 0 and refinements: AMPLA proposes activities and artifacts for

modeling (sequence, use cases, 4SRS and components diagrams) that are additional to typical

work in Sprints, which may be perceived as a disadvantage. However, the method provides

traceability between models, which eases agility of analyzing changes.

Need for revisiting a set of models within each change: whenever a change is proposed, CIA

may result considering changes in more than one model (e.g., change use cases, then perform

4SRS and derive new logical architecture), which can be time consuming.

It also needs to be pointed out some threats to validity of this research, namely:

Method’s learning curve: AMPLA was only applied by the method’s designers, thus it was

not possible to depict in the UH4SP project any possible data regarding the adoption of the

method by other teams.

Team’s involvement: it was difficult to commit the entire UH4SP consortium towards the

approach. The candidate architecture was proposed and the sub-systems delivered to all entities,

however it was not possible to assess CIA and possibly identify new change scenarios besides

the one’s our team addressed. Other teams used Scrum for their sub-systems but did not follow

a refinement approach like AMPLA, thus the traceability was not assured.

Newly-formed team: the fact that it was a completely new development team and, mainly,

first time implementing microservices architectures, may have led to situations that the team was

unable to identify a need for changing in how a microservice should have been implemented and

hence reporting such change during Sprint Reviews.

Identified practices: Although the scenarios refer to three different change needs - in fact

other changes were proposed during the UH4SP project, but they fell under the scope of these

three scenarios, thus for demonstration purposes they were already represented - it is impossible

to assure that additional scenarios may occur in the future that require other CIA practices than

the ones here proposed. The proposed CIA practices were based in the scenarios, and the

literature review did not perceived the need for additional practices, however missing practices

cannot be ruled out.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

231

Microservice modeling in SoaML

The research in microservices architecture design using AMPLA encompassed the settings

where projects from such nature, namely breaking legacy and monolith systems (brownfield) and

greenfield projects. IMP_4.0 and IMSPM for brownfield and UH4SP for greenfield

The proposed 4SRS-MSLA method was used in a project setting where a software team from

F3M aimed to break an existing monolith application to microservices, but struggling to define a

proper strategy. Although the application was structured in modules, its processes were deeply

dependent and data models between the modules were shared.

The application of the presented method had as main contributions to the F3M team in:

 Identifying the required domains for decomposing the existing F3M’s monolith application

into a set of microservices;

 Providing a modeling support for specifying the intra-service behavior, after identifying

required i-, c- and d-type components required for the microservices;

 Depicting required separations with the web app interfaces and the data models, when

packaging i- and d-type components; and

 Identifying inter-service communication and messaging that a microservice requires to

perform its mission.

Additionally, it is also worth referring some additional advantages of the method reported

during the IMP_4.0 project. Although not included explicitly in the method, the models were

origin of some discussions about MSA development and deployment, as following.

 Database architecture: the decisions regarding d-type components after performing

Steps 3 and 4 of 4SRS-MSLA originated discussions about if the service had shared

database with another service rather than a dedicated one. Deciding which package in Step

3 for a given d-type, or use case flow-related associations to d-types, were the main reasons

for starting those discussions.

 Querying (API Composition and CQRS): The dependencies between microservices from

the associations in Step 4 and depicted in Service Channels or service ports were input for

discussions of patterns like API Composition, Command Query Responsibility Segregation

(CQRS) and Saga.

 Testing: Component testing is enabled by validating the microservice behavior as described

its composing components. Service integration contract testing is enabled by validating the

Chapter 5 – Agile Logical Architecting using AMPLA

232

scenarios where services invoke other services. These invocations are represented as

ServiceChannels by the associations described in Step 4. This testing and valuable for a

proper continuous integration/deployment (CI/CD) pipeline.

 Communication style: The MSLA only defines the necessity of existence for a flow

between microservices. However, any design decisions on adopting a given pattern (API

gateways, remote procedure invocation, messaging or a domain-specific protocol, etc.) may

be directly included in the components specification.

Nevertheless, the method still has its limitations. In terms of database partition, the derived

model was still far from the required specifications on implementing distributed relational and

non-relational databases, mainly regarding consistency problems.

In the UH4SP project, stakeholders elicit requirements regarding front-end functionalities,

since they are more aware of the business and not so much of the technology. Hence, starting in

modeling a logical architecture based in business requirements allowed using stakeholder inputs

for an initial stage and afterwards refine the information necessary to specify the MSLA.

The UH4SP was composed by five teams, where each one was assigned to a module from

the architecture. Since a module could have one or more microservices, this research allowed

validating loosed development from different teams. Sequence diagrams were also useful for

discussing and developing microservice communications that were developed by different teams.

As a disadvantage, the diagrams were only the starting point for developing and deploying

the microservices. In terms of data management, inter-service communication,

messaging/brokers, deployment and infrastructure, the diagrams do not provide still the

necessary detail for implementing application, infrastructure application and infrastructure

patterns (Richardson, 2018).

5.5. Conclusions

Agile Architecting Lifecycle (AAL) encompasses software design that evolves from

architectural, mechanistic, and detailed design to development and deployment. The AAL

pathway goes through three stages: Grooming, Backlog and Delivery. Throughout the stages, the

architecture is designed under eleven viewpoints, grouped in categories of Concepts, Information

Systems, Software Systems and Infrastructure. The viewpoints are more suited depending on the

stage they are performed.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

233

Grooming encompasses most architecture design. Starting from understanding the problem

domain and existing references, the architect is able to specify functionalities and design a logical

architecture. This logical architecture then allows defining a Backlog that scopes the software

development in an ASD manner. As software increments are developed and the architecture

emerges, the Delivery stage encompasses design at the deployment level.

Microservices architectures are seen with great advantages in software development, and

especially for cloud applications. Although its advantages, teams struggle with properly designing,

developing, and deploying this technology. Performing traditional techniques in software

engineering, in terms of requirements modeling, is still far from providing a proper level of detail

for developing microservices. However, there is room for specifying services based in the elicited

requirements.

This research proposed defining a method for deriving a microservices logical architecture

from functional requirements. The method has as input an UML logical components diagram,

where domains (DDD) were identified within the architecture. That information was used for

iterative refinement of the architecture, enabling deriving microservices specifications, afterwards

modeled in SoaML diagrams, which are complementary for a proper specification of

microservices behavior and associations, such as Service Participants and Contracts. The

traceability associated to 4SRS-MSLA method assures an alignment between the initial Use Case

model and the derived architecture proposed solution. The 4SRS-MSLA steps were adapted to

meet widely known microservices characteristics.

This chapter discussed the agile logical architecting topic addressed within the AMPLA

process. This research also included a discussion on describing agile logical architecting by

proposing an architecture classification framework. With inputs from business needs and

software requirements – using “Decomposing User Agile Requirements ArTEfacts” (DUARTE) -

the candidate logical architecture is derived from the 4SRS, in form of a V-model-based model

derivation. As key results for this topic, this chapter proposed:

 AAL pathway with three stages: Grooming, Backlog and Delivery.

 Adaptations of the 4SRS method for candidate logical architecture design contexts.

This chapter also addressed Backlog and Delivery stages of the AAL pathway, namely how

the candidate architecture is incrementally refined throughout (Scrum) Sprints, aiming to provide

Chapter 5 – Agile Logical Architecting using AMPLA

234

required component specifications for software addressing from development teams. Such

addressing during Sprints was also continuously managed, where this research proposed

traceability mechanism for allowing an impact-analysis in aspects such as ASR, Quality

characteristic, Business and customer value of the requirement, Which components are affected,

Compliance with standards, Requirements emerge, and Managing architectural debt. The

iterative refinement of the architecture is used for deriving microservices specifications, by

proposing the 4SRS-MSLA, allowing to model SoaML diagrams. As key results for this topic, this

chapter proposed:

 Architecture refinement within Sprints

 Architecture evolution and management, with techniques of change-impact analysis

 Modeling of microservices logical architectures (4SRS-MSLA)

For multiteam projects, in LSA settings, the candidate architecture derived from the first

execution of the 4SRS is used for modularization. Chapter 6 discusses how architectural modules

from AMPLA are used to assign work to multiteams and support the evolution of models and of

the developed software through inter-team management and communication.

Further reading

The “Agile Software Architecture” from Muhammad Ali Babar, Alan W. Brown and Ivan

Mistrik includes several contributions in the topic of agile architecting, ranging from architecture

design, combination with agile methods and change-impact analysis (Ali Babar, Brown, & Mistrík,

2014).

Designing microservices architecture includes addressing the services’ scope, database,

inter-service communication, security, observability, among others. Kasun Indrasiri and Prabath

Siriwardena discuss a plethora of concerns and technologies for different approaches on

designing, developing and deploying microservices architectures (Indrasiri & Siriwardena, 2018).

Additionally, Richardson presents patterns and anti-patterns on developing microservices

(Richardson, 2018).

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

235

References

 Abrahamsson, P., Babar, M. A., & Kruchten, P. (2010). Agility and architecture: Can they

coexist? IEEE Software, 27(2), 16–22. https://doi.org/10.1109/MS.2010.36

Ali Babar, M., Brown, A. W., & Mistrík, I. (2014). Agile Software Architecture: Aligning Agile

Processes and Software Architectures. Elsevier.

Azevedo, S., Machado, R. J., Muthig, D., & Ribeiro, H. (2009). Refinement of Software Product

Line Architectures through Recursive Modeling Techniques . (R. Meersman, P. Herrero, & T.

Dillon, Eds.), On the Move to Meaningful Internet Systems: OTM 2009 Workshops. Springer

Berlin / Heidelberg. https://doi.org/10.1007/978-3-642-05290-3_53

Azevedo, S., Machado, R., & Maciel, R. (2012). On the Use of Model Transformations for the

Automation of the 4SRS Transition Method. In M. Bajec & J. Eder (Eds.), Advanced

Information Systems Engineering Workshops (Vol. 112, pp. 249–264). Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-642-31069-0_22

Beck, K., & Andres, C. (2004). Extreme programming explained: embrace change. Addison-

Wesley Professional.

Bragança, A., & Machado, R. (2007). Automating mappings between use case diagrams and

feature models for software product lines. Software Product Line Conference, ….

Bragança, A., & Machado, R. (2009). A model-driven approach for the derivation of architectural

requirements of software product lines. Innovations in Systems and Software Engineering,

5(1), 65–78. https://doi.org/10.1007/s11334-009-0078-3

Bragança, A., & Machado, R. J. (2005). Deriving Software Product Line’s Architectural

Requirements from Use Cases: An Experimental Approach. In 2nd International Workshop

on Model-Based Methodologies for Pervasive and Embedded Software (MOMPES’05) .

Rennes, France.

Cockburn, A. (2006). Agile software development: the cooperative game. Pearson Education.

Conway, M. E. (1968). How Do Committees Invent? Datamation, 28–31.

Coplien, J. O., & Bjørnvig, G. (2011). Lean architecture: for agile software development. John

Wiley & Sons.

Chapter 5 – Agile Logical Architecting using AMPLA

236

Cruz, E., Machado, R., & Santos, M. (2014). From business process models to use case models:

A systematic approach. Advances in Enterprise Engineering …. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-319-06505-2_12

Díaz, J., Pérez, J., & Garbajosa, J. (2014). Agile product-line architecting in practice: A case study

in smart grids. Information and Software Technology, 56(7), 727–748.

https://doi.org/10.1016/j.infsof.2014.01.014

Douglass, B. (1999). Doing hard time: developing real-time systems with UML, objects,

frameworks, and patterns. Addison-Wesley Professional.

Erder, M., & Pureur, P. (2015). Continuous architecture: Sustainable architecture in an agile and

cloud-centric world.

Erdogmus, H. (2009). Architecture meets agility. IEEE Software, 26(5), 2–4.

https://doi.org/10.1109/MS.2009.121

Evans, E. (2004). Domain-driven design : tackling complexity in the heart of software. Addison-

Wesley

Farhan, S., Tauseef, H., & Fahiem, M. A. (2009). Adding agility to architecture tradeoff analysis

method for mapping on crystal. In WRI World Congress on Software Engineering (WCSE’09)

- Volume 04 (Vol. 4, pp. 121–125). IEEE. https://doi.org/10.1109/WCSE.2009.405

Fernandes, J. M., & Machado, R. J. (2016). Requirements in Engineering Projects. Cham:

Springer International Publishing. https://doi.org/10.1007/978-3-319-18597-2

Fernandes, J. M., Machado, R. J., Monteiro, P., & Rodrigues, H. (2006). A Demonstration Case

on the Transformation of Software Architectures for Service Specification. In B. Kleinjohann,

L. Kleinjohann, R. Machado, C. Pereira, & P. S. Thiagarajan (Eds.), From Model-Driven

Design to Resource Management for Distributed Embedded Systems (Vol. 225, pp. 235–

244). Springer US. https://doi.org/10.1007/978-0-387-39362-9_25

Ferreira, N., Santos, N., Machado, R., Fernandes, J. E., & Gasević, D. (2014). A V-Model

Approach for Business Process Requirements Elicitation in Cloud Design. In A.

Bouguettaya, Q. Z. Sheng, & F. Daniel (Eds.), Advanced Web Services (pp. 551–578).

Springer New York. https://doi.org/10.1007/978-1-4614-7535-4_23

Ferreira, N., Santos, N., Machado, R. J., & Gasevic, D. (2012). Derivation of Process-Oriented

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

237

Logical Architectures: An Elicitation Approach for Cloud Design. (A. J. O. Dieste and N.

Juristo, Ed.), 13th International Conference on Product-Focused Software Development and

Process Improvement - PROFES 2012. Madrid, Spain: Springer-Verlag, Berlin Heidelberg,

Germany .

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap and agenda.

Journal of Systems and Software, 123, 176–189.

https://doi.org/10.1016/J.JSS.2015.06.063

Fowler, M. (2018). Refactoring: improving the design of existing code (2nd edition). Addison-

Wesley Professional.

George, M. L., & George, M. (2003). Lean six sigma for service. New York, NY: McGraw-Hill.

Harvick, R. (2012). Agile Architecture for Service Oriented Component Driven Enterprises:

Encouraging Rapid Application Development using Agile. DataThunder Publishing. Retrieved

from http://dl.acm.org/citation.cfm?id=2331400

Indrasiri, K., & Siriwardena, P. (2018). Microservices for the enterprise: Designing, Developing,

and Deploying. Apress.

Jeon, S., Han, M., Lee, E., & Lee, K. (2011). Quality attribute driven agile development. In 9th

International Conference on Software Engineering Research, Management and Applications

(SERA) (pp. 203–210). IEEE. https://doi.org/10.1109/SERA.2011.24

Kanwal, F., Junaid, K., & Fahiem, M. A. (2010). A hybrid software architecture evaluation method

for fdd-an agile process model. In International Conference on Computational Intelligence

and Software Engineering (CiSE) (pp. 1–5). IEEE.

https://doi.org/10.1109/CISE.2010.5676863

Kazman, R. (2013). Foreword - Bringing the Two Together: Agile Architecting or Architecting for

Agile? In Agile Software Architecture: Aligning Agile Processes and Software Architectures

(pp. xxix–xxx). Elsevier.

Kruchten, P. (1995). The 4+1 View Model of Architecture. IEEE Software, 12(6), 42–50.

https://doi.org/10.1109/52.469759

Loukides, M. (2012). What is DevOps?

Chapter 5 – Agile Logical Architecting using AMPLA

238

Machado, R. J. (2002). Heterogeneous Information Systems Integration: Organizations and

Methodologies. In Springer (Ed.), 4th International Conference on Product Focused

Software Process Improvement - PROFES’02. Rovaniemi, Finland.

Machado, R. J., Fernandes, J. M., Monteiro, P., & Rodrigues, H. (2005). Transformation of UML

Models for Service-Oriented Software Architectures. Proceedings of the 12th IEEE

International Conference and Workshops on Engineering of Computer-Based Systems. IEEE

Computer Society. https://doi.org/http://dx.doi.org/10.1109/ECBS.2005.73

Machado, R. J., Fernandes, J., Monteiro, P., & Rodrigues, H. (2006). Refinement of Software

Architectures by Recursive Model Transformations. (J. Münch & M. Vierimaa, Eds.),

Product-Focused Software Process Improvement. Springer Berlin / Heidelberg.

https://doi.org/10.1007/11767718_38

Madison, J. (2010). Agile architecture interactions. IEEE Software, 27(2), 41–48.

https://doi.org/10.1109/MS.2010.35

Mancl, D., Fraser, S., Opdyke, B., Hadar, E., & Hadar, I. (2009). Architecture in an agile world.

Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented

Programming Systems Languages and Applications. Orlando, Florida, USA: ACM.

https://doi.org/10.1145/1639950.1639981

Martini, A., Pareto, L., & Bosch, J. (2014). Role of Architects in Agile Organizations. In J. Bosch

(Ed.), Continuous Software Engineering. Springer Cham.

Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., & Succi, G. (2008). A Case Study on the

Impact of Refactoring on Quality and Productivity in an Agile Team. In IFIP Central and East

European Conference on Software Engineering Techniques (pp. 252–266). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-540-85279-7_20

Neiva, R., Santos, N., Martins, J. C. C., & Machado, R. J. (2015). Deriving UML logical

architectures of traceability business processes based on a GS1 standard. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics) (Vol. 9158). https://doi.org/10.1007/978-3-319-21410-8_41

Newman, S. (2015). Building microservices - Designing fine-grained systems. O’Reilly Media, Inc.

Nord, R. L., & Tomayko, J. E. (2006). Software architecture-centric methods and agile

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

239

development. IEEE Software, 23(2), 47–53. https://doi.org/10.1109/MS.2006.54

OMG. (2012). Service Oriented Architecture Modeling LanguageTM (SoaML®).

http://www.omg.org/spec/SoaML/.

Pahl, C., & Jamshidi, P. (2016). Microservices: A Systematic Mapping Study. In 6th International

Conference on Cloud Computing and Services Science (CLOSER) (Vol. 1, pp. 137–146).

SCITEPRESS - Science and and Technology Publications.

https://doi.org/10.5220/0005785501370146

Pérez, J., Díaz, J., Garbajosa, J., & Yagüe, A. (2014). Bridging User Stories and Software

Architecture: A Tailored Scrum for Agile Architecting. In A. W. . Ali Babar, Muhammad ;

Brown & I. Mistrik (Eds.), Agile Software Architecture - Aligning Agile Processes and

Software Architectures (pp. 215–241). Morgan Kaufmann. https://doi.org/10.1016/B978-

0-12-407772-0.00008-3

Richardson, C. (2018). Microservice Patterns (1st ed.). Manning.

Ries, E. (2011). The lean startup: How today’s entrepreneurs use continuous innovation to create

radically successful businesses. Crown Books.

Salgado, C. E., Teixeira, J., Santos, N., Machado, R. J., & Maciel, R. S. P. (2015). A SoaML

Approach for Derivation of a Process-Oriented Logical Architecture from Use Cases.

Exploring Services Science, 80–94. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-319-14980-6_7

Santos, M. Y., & Machado, R. J. (2010). On the Derivation of Class Diagrams from Use Cases

and Logical Software Architectures. In 2010 Fifth International Conference on Software

Engineering Advances (Vol. 0, pp. 107–113). Nice, France: IEEE. Retrieved from

http://doi.ieeecomputersociety.org/10.1109/ICSEA.2010.24

Santos, N., Duarte, F. J., Machado, R. J., & Fernandes, J. M. (2013). A transformation of

business process models into software-executable models using MDA. Lecture Notes in

Business Information Processing (Vol. 133 LNBIP). https://doi.org/10.1007/978-3-642-

35702-2_10

Schwaber, K. (1997). Scrum development process. In Business Object Design and

Implementation (pp. 117–134). Springer. https://doi.org/10.1007/978-1-4471-0947-

Chapter 5 – Agile Logical Architecting using AMPLA

240

1_11

Sharifloo, A. A., Saffarian, A. S., & Shams, F. (2008). Embedding architectural practices into

Extreme Programming. In 9th Australian Conference on Software Engineering (ASWEC) (pp.

310–319). IEEE. https://doi.org/10.1109/ASWEC.2008.4483219

Taibi, D., Lenarduzzi, V., & Pahl, C. (2017). Processes, Motivations, and Issues for Migrating to

Microservices Architectures: An Empirical Investigation. IEEE Cloud Computing, 4(5), 22–

32. https://doi.org/10.1109/MCC.2017.4250931

Thönes, J. (2015). Microservices. IEEE Software, 32(1), 116–116.

https://doi.org/10.1109/MS.2015.11

Waterman, M., Noble, J., & Allan, G. (2012). How much architecture? Reducing the up-front

effort. In AGILE India (pp. 56–59). IEEE. https://doi.org/10.1109/AgileIndia.2012.11

Zhang, X., Hu, Y., Lu, Y., & Gu, J. (2011). University Dormitory Management System Based on

Agile Development Architecture. In International Conference on Management and Service

Science. IEEE. https://doi.org/10.1109/ICMSS.2011.5998992

Chapter 6 – Inter-team management within an LSA process based in logical architectures

241

Chapter 6 – Inter-team management within an LSA process

based in logical architectures

Chapter 6 – Inter-team management within an LSA process based in logical

architectures…………………………………………………………………………...242

6.1. Introduction……………………………………………………………242

6.2. On modularization, communication and coordination………………...244

Modularization……………………………………………………..245

Communicating the requirements………………………………….249

Inter-team management…………………………………………….251

6.3. Delivering work items…………………………………………………253

Approach for using Use cases as basis for Scrum backlogs…….....253

Deriving User stories from components……………………………254

Deriving User stories and Product Backlog Items from Use Cases and Components…..260

6.4. Demonstration cases…………………………………………………..265

Team management approach based in a use case-driven backlog: the iFloW case………….266

Team management approach based in a User stories-driven backlog derivation: the ISOFIN

case…….269

Multi-team management and coordination: the UH4SP case……...275

Discussions…………………………………………………………290

6.5. Conclusions……………………………………………………………293

Further reading………………………………………………………………….295

References………………………………………………………………………295

This chapter discusses how the logical architecture model from the previous

chapter is able to support teams’ management in an LSA setting. The approach

proposes an architecture modularization, where the modules encompass the work

scope of different teams. Afterwards, the chapter describes how the models

regarding the module are basis for inter-team management and communication.

The same models are the starting point for deriving product backlogs, whether

based in use cases, user stories, or other items. The chapter includes three

demonstration cases, one regarding the use case-driven backlog case, and two

regarding the user stories-driven backlog cases, as well as a discussion of the

results. This chapter ends with the conclusions.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

242

Chapter 6 – Inter-team management within an LSA process

based in logical architectures

“Depending on where you’re looking,

one person’s system is another’s subsystem”

Grady Booch, co-author of UML

6.1. Introduction

Digital transformation of businesses has increased the rate of creation of new software

ecosystems. Additionally, software solutions allow third-party integration (e.g., using Application

Programming Interfaces – APIs) towards full support of the supply chain. Many times this means

that software development teams are no longer developing software “alone”, rather cooperating

with distributed teams belonging to other companies. While agile software development (ASD)

has been adopted to optimize how a team delivers software, its use in scaled and distributed

(i.e., not co-located) contexts is still object of research, with some emphasis in planning and inter-

team coordination (Moe & Dingsøyr, 2017).

Software development processes in these contexts need to address how software delivered by

a team fits in the overall solution, but also how teams must define their boundaries, interfaces,

dependences and priorities. Only then, it is possible to apply ASD practices at scaled context, i.e.,

the concept of “large-scale agile” (LSA) (Dingsøyr & Moe, 2014).

Managing projects that include multiple teams is a complex task in large-scale software

projects. The process of delivering software using more than one development team, often

distributed, faces issues of dependencies, boundaries, coordination and/or synchronization. The

challenges of making decisions, setting goals, communicating, building trust and managing the

team are far harder (Owen, 2016). With ASD, such task had to be rethought (Dingsøyr, Bjørnson,

Moe, Rolland, & Seim, 2018).

In process management, architectures are an artefact capable of supporting a set of

coordination decisions. Additionally, architecture is a central artefact when scaling up agile

methods, as it is explicitly present in popular “commercial” LSA frameworks, like Scaled Agile

Framework (SAFe), Large-Scale Scrum (LeSS), Disciplined Agile Delivery (DAD), Scrum@Scale,

Nexus or Enterprise Scrum. Communities such as Industrial XP include “Evolutionary Design”

Chapter 6 – Inter-team management within an LSA process based in logical architectures

243

practices, and “Spotify model” have specific architecting roles. “Scientific” LSA proposals like

Agile Product Line Architecting (APLA) (Díaz, Pérez, & Garbajosa, 2014), a tailored XP for large-

scale projects (Cao, Mohan, Xu, & Ramesh, 2004), or a hybrid RUP+Scrum (Cho, 2009) also

include explicit architecture practices.

Although acknowledging the importance of architecture in managing inter-team processes in

an LSA context, these approaches lack of a structured approach for using such information to

manage the software delivery process. Models are about presenting an abstraction of reality

towards a shared understanding of the problem, but a proper analysis allows depicting their

input in assigning work, derive dependencies, and manage inter-team communication and

coordination.

This chapter describes how a logical architectural artefact is used as basis for managing the

process of setting delivery boundaries, communicating the requirements, coordinating and

synchronizing multiple teams. The approach presented in further sections is an integrating part of

AMPLA, after the candidate version of the logical architecture is derived (cf. Section 5.3).

The research addressed in chapter is the result of using a logical architecture diagram as

basis for managing work of multi-teams in ASD and LSA settings, from architecture

modularization, requirements communication and inter-team coordination. This study was first

applied in ISOFIN and afterwards in UH4SP project. Then, this research addressed defining work

instructions for these teams by deriving backlogs. First, using a use case-driven backlog in the

iFloW project. Then, deriving user stories statements (in the ISOFIN project) and afterwards

deriving other agile product backlog items (in the UH4SP project). In addition, in the UH4SP

project, the derived product backlog progress was monitored using a set of agile metrics. The

contributions of the projects are summarized in Table 13.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

244

Table 24. Contributions of projects in candidate architectures

Research contribution \ demonstration case UH4SP ISOFIN iFloW

Modularization, coordination and communication

from separation of concerns

 X

Modularization, coordination and communication

from DDD bounded contexts

X

Use case-driven backlogs X

Deriving user story statements X

Deriving product backlog items X

ASD metrics monitoring X

This chapter is structured as follows:

 Section 6.2 discusses architecture modularization, inter-team communication and

coordination;

 Section 6.3 describes approaches for backlog definition;

 Section 6.4 describes the demonstration cases and main discussions around use case-

driven backlogs, LSA process based in logical architecture, and agile product backlog

items derivation;

 Section 6.5 presents the chapter’s conclusions;

 The chapter ends with complimentary reading.

6.2. On modularization, communication and coordination

As described in previous chapters, the AMPLA approach is the process for architecture

design, based on successive and specific artefacts generation. AMPLA is composed by discovery

of user needs, A-type sequence diagrams, use case models, a logical architecture, feedbacks and

issues, and the consequent software delivery. The artefacts are generated based in the

information existing in previously defined artefacts. When software delivery begins, the process is

performed in typical cycles, whether in Scrum, Kanban, or other frameworks.

AMPLA has four established phases: (i) Requirements Elicitation (ii) Requirements Analysis &

Modelling, (iii) Architecture Design, and (iv) Delivery Cycles. Chapter 4 covered phases (i) and (ii),

while Chapter 5 covered phases (iii) and (iv). This section also describes team management-

driven work that is performed within phases (iii) and (iv).

Chapter 6 – Inter-team management within an LSA process based in logical architectures

245

The derived logical architecture from AMPLA’s V-Model is then the foundational artefact for a

distributed agile team framework. The framework, depicted in Figure 116, addresses the

architecture modularization, team assignment, dependencies, requirements modelling towards

coordination and communication within distributed teams.

Figure 116. Logical architecture-based distributed agile teams management framework

Modularization

Like in most cases, the best approach to issue complex problems is to divide them into

smaller ones and address them one by one, ultimately addressing the big solution. With the

purpose of modularizing the architecture, the logical architecture is partitioned into sub-systems.

Properly addressing the boundaries across teams is crucial (Rolland, Fitzgerald, Dingsoyr, & Stol,

2016). This is applicable for multiteams systems (MTS) (Mathieu, Marks, & Zaccaro, 2001). It is

aligned with the feature teams concept (Larman & Vodde, 2008). A feature team works

independently by being given the responsibility for a whole feature. One well-known case of

assigning a subset of the architecture is the definition of Tribes in the “Spotify model” (Kniberg &

Ivarsson, 2012). The framework in modularization is depicted in Figure 117.

 The first concern in modularizing the architecture is in identifying architecture modules by the

entities’ core competencies. Then, each team is assigned with a part of the solution (e.g.,

payments, accounts, integration, mobile app, etc.), tiers (front-end, back-end, middleware, data

Communication

BA/PO or team of BA s/PO s

Modules

Solution
Domains (DDD)

High-level Use
Cases

Architecture
Tiers

Scenarios

Module SizeTeams Modules

Module Boundaries

Minimum
Marketable

Feature (MMF)

Elementary
Business

Processes

Filtering
components

Collapsing
components

Use Case s
Funcional

Decomposition

Team s
Expertise

Team s
Product

Babklog (TPB)

Dependencies

W2ReqComm Package

Inter-team Communication

Outbound
components

Team x DoD/
AC triggers

Team y DoR

Module
Refinements

Interfaces
Documentation

Context of Use

Communication
Channels

Communication
Periodicity

Team #x Scrum team Team #y PO
and/or CA

Inter-team Coordination

Backlog Items
Dependencies

discussion
Events

Architecting
CoP

AMPLA V-Model

Logical
Architecture

Use Cases
A-Type

Sequences

Id
en

tify

Modularization

Coordination

Team #x CA and/or BO
Team #y CA
and/or BO

Depends on

Set

4SRS

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

246

repositories, etc.), “branch” from high-level Use Cases, or scenarios. In this research, use cases

are grouped by the (sub-)domains (DDD). This means that each of the tree’s “branches” relate

only to a given domain, which also assures that the contexts are properly bounded (Figure 118),

allowing teams to work independently. Mapping the use cases to the components enables the

identification of the module’s component coverage.

Figure 117. Decision framework within Modularization

Figure 118. Domain's and sub-domain's bounded contexts (DDD)

BA/PO or team of BA s/PO s

1) Identify Modules

Solution
Domains (DDD)

High-level Use
Cases

Architecture
Tiers

Scenarios

2) Define Module Size

3) Assign Modules to
Teams

4) Set Module Boundaries

Minimum
Marketable

Feature (MMF)

Elementary
Business

Processes

Filtering
components

Collapsing
components

Use Case s
Funcional

Decomposition

Team s
Expertise

Team s
Product

Babklog (TPB)

System

System
Administrator

Cloud consumers

{U.C.1} Manage
business support

{U.C.3} Manage cloud
interoperability and

portability

{U.C.4}
Manage cloud

security and privacy

{U.C.2} Configure
cloud service

{U.C.7} Performs
business activities

{U.C.6} Manage
local Platform

{U.C.5} Configure
industrial units

settings

{U.C.1} Manage business support

{U.C.1.3} Consult SLA

{U.C.1.1} Configure
users account

{U.C.1.2} Configure
users profile

System
Administrator

Cloud Consumer

{U.C.2.2} Monitor
platform

{U.C.2} Configure cloud
service

{U.C.2.3} Measure
services utilization

{U.C.2.1} Manage
services

{U.C.2.4} Link
global and local

entities

System
Administrator

{U.C.2.5} Define
SLA

Cloud Consumers

{U.C.5} Configure
industrial units settings

{U.C.5.1}
Catalog entities

Local manager
Corporate manager

{U.C.5.2}
Configure tasks

{U.C.6.6} Perform
simulation models

System
Administrator

Operators

{U.C.6.4}
Provide users training

Drivers

{U.C.6.1}
Manage local IT

resources

{U.C.6.2} Schedule
interventions

{U.C.6} Manage local
platform

{U.C.6.5}
Generate templatesLocal Manager

{U.C.7} Perform business
activities

{U.C.7.1} Access
business information

Local Manager

{U.C.7.2} Manage
operations

Operator

Clients
Suppliers

Forwarders

Corporate
manager

{U.C.7.3}
Configure industrial

unit guidance

Industrial unit IS

{U.C.7.1} Access
business information

{U.C.7.1.1} Consults
information

{U.C.7.1.2} Configure
information access

Clients
Suppliers

Forwarders

Local Manager

{U.C.7.1.3}
Perform business

notifications

Corporate
manager

{U.C.1.1} Configure users account

{U.C.1.1.1} Create
user account

{U.C.1.1.2} Edit
user account

{U.C.1.1.3} Disable
user account

Cloud Consumer System
Administrator

IT Manager

Corporate Manager

{U.C.6.3} Perform
interventions

System
Administrator

System
Administrator

Bounded
Context

Bounded
Context

Bounded
Context

Bounded
Context

Bounded
Context

Chapter 6 – Inter-team management within an LSA process based in logical architectures

247

In Scrum of Scrums (SoS) literature, the distribution of work between teams shows that each

team can self-assign them to any stories from the product backlog. The difference for this

approach is that a team product backlog (TPB) is proposed, i.e., a subset of product backlog, at

the outset. The predefinition of a subset (or a given feature) of the backlog is also present in

approaches like SAFe, DAD, Enterprise Scrum, and Spotify model. In opposition, the team

assignment of items from the backlog in LeSS, APLA, Scrum@Scale and Nexus do not follow any

grouped stories or features.

Hence, architecture modularization within this research aims at partitioning the logical

architecture to define architectural subsets or a group of components will be assigned for a team

to implement. It must be assured that a module has composing software components that,

together, deliver working software. Only if the set of components are able to deliver working

software, it is also possible to perform acceptance testing and, afterwards, integration testing

within the code deployment.

However, a module should be bounded not only by representing working software but by also

assuring business value delivery. In this research, modularization applies the concepts of a

Minimum Marketable Feature (MMF) (Denne & Cleland-Huang, 2003) and an Elementary

Business Process (EBP) (Larman, 2004). An MMF is defined as a small, self-contained feature

that can be developed quickly and delivered significant value to the user. EBP refers to a single

task that adds measurable business value. A module should also be able to support at least one

of the scenarios previously modelled in A-Type Sequence diagrams during the V-Model execution

(including interfaces for components referring to inputs and outputs of the scenario). These

decisions in mind output a selection for inbound components. The logical architecture is now a

group of architectural modules, like a SoS.

Then, with these decisions in mind, the components to be included in the module are

selected. The logical architecture is now a group of architectural modules, as depicted in Figure

119 as a group of “spots”.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

248

Figure 119. Architecture modularization example

The application of filtering and collapsing techniques (cf. Section 5.3) redefine the system

borders. During the filtering process, all components not directly connected to the module must

be removed. The inbound components are maintained. The components with direct connections

to the module are maintained (as outbound), and the ones without direct connection are

removed. The spot represents the sub-system borders, where the software components from the

module, as well as the components that directly interact with the model.

Inside the system border defined for the given module, through the respective coverage, the

components were maintained as originally characterized. The components with direct

connections to the module are maintained, and the ones without direct connection are removed.

On the other hand, for representing the interfaces that are outside the system border, we

adopted the UML notation for components, to represent inputs and outputs of the functionality.

The component-based diagram uses a typical representation of UML component graphic nodes

(OMG, 2009). A connector may be notated by a “ball-and-socket” connection between a provided

interface and a required interface.

Chapter 6 – Inter-team management within an LSA process based in logical architectures

249

Figure 120. The module representation

The outbound components relate to interface and communication (e.g., APIs) needs.

Additionally, they derive dependencies between teams. The dependency is identified within A-type

Sequence diagrams (see Inter-team management section). A given scenario is only feasible if the

constituent components, inbound and outbound are implemented and integrated. Hence, only

when the component or story meets its “Definition of Done” (DoD) / “Acceptance Criteria” (AC),

the TPB item meets its “Definition of Ready” (DoR) to start the implementation.

Communicating the requirements

While a given team is responsible for delivering working software related to the assigned

module, the associations between outbound components require that the team work together

with other teams when the integration is needed. Along with managing the dependencies (see

next section), a proper communication of “what” is being delivered by the team and required

integration is also advisable.

In MTS, global or co-located, the knowledge possessed by each other must be properly

communicated with other team in interest. It is not an easy task, since many issues arise due to

geographic, temporal, or sociocultural distance.

Knowledge can be shared in Communities of Practice (CoP) - groups of experts who share a

common interest or topic and gather to promote discussions (Paasivaara & Lassenius, 2014) –

and other gatherings, meetings and informal meetups.

2x

Example

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

250

Shared Mental Models or mini demos (Bjørnson, Wijnmaalen, Stettina, & Dingsøyr, 2018;

Dingsøyr, Bjørnson, et al., 2018), as well as Video and Audio conferences, online chat,

documentation and email (Ahmad, Lenarduzzi, Oivo, & Taibi, 2018) are the most common used

tools for communicating knowledge between teams.

AMPLA seeks addressing knowledge sharing using models, where the main purpose is to

design the artefacts related to implementing features, to be incorporated in the presented events

and tools. The outbound components derived from the filtering and collapsing exercise in Figure

120 allows identifying the dependencies.

Figure 121. Requirements communication theory

We propose an organization of the information, namely a multi-view perspective of the

module to be delivered to implementation teams, the “What? and Why? Requirements

Communication” (W2ReqComm) package. The W2ReqComm provides the development teams

not only the information regarding the functionalities of the module but also to describe how, and

in which scenarios, their future users will use them. This artefact is composed by the software

5) Derive Dependencies

6) Model ITReqComm Package 8) Manage Communication

Outbound
components

Team x DoD/AC
triggers Team y

DoR

Module
Refinements

Interfaces
Documentation

Context of Use

Communication
Channels

Communication
Periodicity

Team #x Scrum team
Team #y PO
and/or CA

Chapter 6 – Inter-team management within an LSA process based in logical architectures

251

components from the logical architecture that compose the module and their interfaces with

external modules.

Additionally, the W2ReqComm includes information regarding the modules usage in the real

world. Such information may be described though one or more scenarios, or by including a

scenario representation through an A-type sequence diagram previously modelled. The scenario

should include the functionalities that the module relates to, but also include the functionality

belonging to another team module, in order to provide the implementation team with much

context information as possible. An example of a W2ReqComm is depicted in Figure 122.

Figure 122. W2ReqComm example

Inter-team management

The process for managing inter-teams development from this research aims identifying

coordination needs for addressing dependencies between components, as well as structuring of

roles and events. The coordination and management events involve team representatives –

architects, PO’s, BO’s – instead of the entire team.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

252

The identified dependencies trigger the discussions between the representatives, which base

in the artefacts from Communication. Discussions take place in planned or unplanned events,

using the available communication channels.

It is also worth referring that dependency does not only relate to synchronizing a component’s

DoD/AC to another component’s DoR. They are also used to define team interfaces, where, for

instance, if one team has some doubts in implementing a component from a module boundary,

practices such as CoP between the predefined representatives promote discussions in

overcoming the given doubts. These associations for this phase are depicted in Figure 123.

Figure 123. Inter-team management theory

By modelling some processes to validate the flow between components (including

components from different modules), e.g., using A-type sequence diagrams, dependencies can

be depicted, namely some functionalities that must be implemented and executable in order for

other functionalities to proper execute. In fact, A-type sequence diagrams are powerful tools for

bordering the modules, as well as validating (not just the modules but as well the whole)

architecture.

7) Manage Inter-team
Coordination

5) Derive Dependencies

8) Manage Communication

Outbound
components

Team x DoD/AC
triggers Team y

DoR

Communication
Channels

Communication
Periodicity

Backlog Items
Dependencies

discussion

Events

Architecting CoP

Team #x CA and/or BO
Team #y CA
and/or BO

Chapter 6 – Inter-team management within an LSA process based in logical architectures

253

Coordination arenas, inspired by Dingsøyr et al. (Dingsøyr, Moe, Fægri, & Seim, 2018;

Dingsøyr, Rolland, Moe, & Seim, 2017), structure how teams involve with each other, from

collaborative tools, communication, chats, but also events (or ceremonies). These arenas are

enablers for team cooperation, where the models are the core artefact within the discussion.

6.3. Delivering work items

As the presented framework addressed mechanisms for modularization, communication and

coordination of multi-teams, this section rather addresses how a team under analysis manages

and controls the work items that they have to deliver.

In ASD approaches, these work items are a composing part of a backlog that the team uses to

define the work to be done within the overall project/product and within a given iteration (e.g., a

Scrum Sprint).

This section introduces defining backlogs, and its composing items, from requirements

models (namely UML Use Cases, Components and Sequence Diagrams) using rules that assure

the backlog items cover the gathered requirements.

This research addressed three possible ways to define a backlog from the requirements

models: using a backlog composed by use cases directly from those models, deriving user stories

statements from use cases and architectural components, and deriving additional backlog items

(themes, epics, user stories, details and acceptance criteria). Each one is further described.

Approach for using Use cases as basis for Scrum backlogs

As already proposed in Section 4.2, one approach for delivering work items in a backlog is by

composing it directly with the Use Cases modeled during Requirements stage (i.e., Initialization

phase of the hybrid approach in section 4.2).

These tasks are represented in a SPEM diagram in Figure 51, depicting tasks that output

work products (Use Case Prioritization and Use Case Estimation) and deliverables, namely

‘Project Scope’, ‘As-Is report’, ‘To-Be Report’ and the ‘Product Backlog’. The Business Modeling

results are documented in a report designated as ‘As-Is report’. Requirements results are

modeled in the form of UML use cases. Design results regard the proposal of the logical

architecture (UML component diagram). UML use cases (output of Requirements) and UML

component (output of Design) diagrams compose the ‘Solution Requirements Specification’ that

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

254

result in the ‘To-Be Report’. Use case models are used as basis to define a ‘Product Backlog’.

This kind of backlog is demonstrated further in Section 6.5.

Figure 124. SPEM diagram for Initialization phase

Deriving User stories from components

Using logical architectures for establishing initial requirements allows to combine

requirements from backlogs (that focus only on functional features) with the quality attributes of

the software (Jeon, Han, Lee, & Lee, 2011). This research proposes including some upfront

design in the set-up phase (e.g., Sprint 0, for Scrum projects) of the project - by some we do not

mean BDUF, rather “just-enough” (Ambler, 2007) for a candidate architecture - and to use the

architecture as input for an ASD approach (back to requirements again) to build almost the

totality of the Product Backlog (illustrated in Figure 125). The 4SRS method allows deriving

logical architectures aligned with the corresponding, and previously elicited and modeled, user

requirements. A logical architecture is a view that primarily supports the functional requirements,

taken mainly from the problem domain (Kruchten, 1995). The conventional version of the 4SRS

method is typically applied in large-scale projects, but demands high quantity of information (use

cases, textual descriptions), which is often time consuming and, in every way, misaligned with

the general paradigm adopted by ASD.

Chapter 6 – Inter-team management within an LSA process based in logical architectures

255

Figure 125. Approach for delivering backlog items requirements

The starting point for the User Stories derivation is the logical architecture diagram that

results from the 4SRS method execution. In some cases regarding very large products, it is easy

to see that these models can be extremely large and heavy to be analyzed as a whole, because

these diagrams represent all the modules needed to run all desired functional requirements.

Moreover, it is unlikely that, for large systems, only one Scrum team will perform all the work. In

a model where there may be hundreds of modules, a Scrum team could take an amount of time

not feasible with the needs of a dynamic market.

Thus, deriving User Stories from the modules presented in the previous section allows that

several Scrum teams can work in parallel, reducing the time required to implement and deliver

the solution to the customer.

The first critical decision related to the development of our approach was to understand what

should be the relation between the components and the User Stories. In the 4SRS method, the

components are derived through the decomposition of Use Cases in three different types

(interface, data and control).

In a first hypothesis, we decided to create one User Story for each components, as depicted in

Figure 126. This decision intends to maintain the core principles for writing User Stories (i.e., the

INVEST characteristics – Independent, Negotiable, Valuable, Estimable, Small and Testable).

Additionally, it complies with the greater flexibility for the Product Owner to follow the team’s

work. If the User Stories are always complex and require great effort to implement, there is the

risk of diluting one of the main advantages recognized of agile methodologies: the ease of

changing the direction of the team and the ability to see, in real time, which is state of

commitment of the team to a Sprint. When implementing User Stories of great complexity, which

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

256

may occupy the entire Sprint, only one can draw conclusions about the speed and commitment

of the team at the end of the Sprint, when work (supposedly) must be completed. These

arguments all meet the characteristic of having small User Stories (Small) and, thus, simplifying

the implementation effort estimation (estimable).

Figure 126.Relation between Use Cases, Components and User Stories

The information from the 4SRS method execution, mainly micro-steps 2i - "Use Case

Specification", 2iii - "Component naming" and 2viii - "Component specification", together with

the actors associated with each use case (where each component was derived) are key elements

in the generation of User Stories, since in them are encapsulated information required to write

User Stories respecting the INVEST principles. The proposed technique for deriving user stories is

composed by three steps, as follows:

Step 1 – Group Components.

The first step is to group components and analyze their functionality and their interfaces. This

step has as input the components from the logical architecture or, in case of an architecture

modularization as the one presented in the previous section, from a given module.

Step 2 – Analyze component specification and use case description

In this step, we gather the information from micro-steps 2i - "Use Case Specification", 2iii -

"Component naming" and 2viii - "Component specification" and the involved actor (by reversing

to the use cases that derived the component). This step uses the traceability characteristic that

the 4SRS method provides, by allowing to easily depicting the original use case.

All these details of each component should be stored with the same structure to give input to

create a “card” for each User Story, containing all the information needed to carry out its

estimation and subsequent implementation. Thus, for each component is important to obtain the

Chapter 6 – Inter-team management within an LSA process based in logical architectures

257

following information: Name; Code; Type; Description; Package; Associations ; Direct

Associations; UC Associations; Original Use Case; the Actors Involved; and the UC from the

functional decomposition.

Alongside this information, it is also important to depict if the component is part of more than

one module. Regarding the teams that have habits to keep information always visible from User

Stories (placing its features in physical format, often in the form of cards), it was created a User

Story template that includes all information collected and previously listed, as well as some

information that the implementation team will generate in grooming, as the number of Story

Points, acceptance criteria, or any other comment that the team find relevant register and save.

Table 25 depicts a template including the information needed for any stakeholder (from the

customer / Product Owner to implementation teams). The completion of the card is also

intended to be basic and quick as all information regarding the component and the Use Case is

available from the execution of the 4SRS method, while information on the User Story is

mandatory and is defined by the implementation team during grooming.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

258

Table 25. User story card template

U
se

r
S

to
ry

US # (name)

Acceptance

criteria

 #1

 #2

 #3

Story

Points

A
rc

hi
te

ct
ur

e

Component # (num) (name)

Type
(interface/

data/ control)
Package

Specification

Multiple (Yes/No) Module

Association

Direct

Associations

UC

Associations

U
se

 C
as

e

UC # (num) (name)

Description

UC Ass. (num / name)

Actors

O
th

er

s

(Comments)

Step 3 – Write the User Story

This is the final step and where the effecting output of the process is generated. The 4SRS

method execution, followed by an analysis on the derived diagrams and documentation, allows

triggering the procedure for mapping a logical architecture to output a set of User Stories that

comply with the INVEST principles.

One of the great advantages of applying the 4SRS method to derive the component is that it

quickly allows realizing the ultimate goal of the component: data manipulation, communication or

logic operations, by reading the type of component. This standardization of component types

simplifies the management of User Stories because, after all, they are centered on three very

specific types of tasks.

The "who", the actors involved and who will perform tasks on the User Story to implement,

are easily identified by analyzing their User Story Card and looking for those involved in the Use

Chapter 6 – Inter-team management within an LSA process based in logical architectures

259

Case that derived the component (by executing the 4SRS method). As the logic surrounding the

need to represent properties of systems in Use Case and User Story is similar (to capture

specific requirements in terms of interaction between users and system), it is easy to validate

that those involved in the Use Cases will be benefited by the implementation actors Story of a

particular User.

Regarding the "what," you can also find a direct relationship between this component and the

name of component. Firstly, it is necessary to find an action, represented by a verb, to identify

what you want to implement. The division between components of control, and data interface

simplifies this demand, since the component interface always refer to the creation of a specific

interface and is therefore an action which is fixed and constant need for the existence of a

communication interface for between component and / or actors. In most cases, the name of

component only indicates what kind of interface is required. Thus, in cases of interface (i-type)

components, the actors involved just need their existence in order to use them in their workflows.

By using the name of the corresponding components, and using connections want/need to have

(want/need to have), the connection between the "who" (actor) and what (action) is derived. In

cases of i-type components that do not have this syntax, the central part of the User Story for the

"what" is simply left to the information “want/need to have an interface”, and the title of the

component (the actions that will take place using that interface) used as part of the "why". For

data (d-type) components the process is similar, since they usually refer to the need of the

existence of repositories/storage locations or interfaces for communication with such storage

spaces. Thus, the construction of the User Story follows the same rule used in i-type

components.

Compared with the previous two types, control (c-type) components are disparate. They

support the logic behind a system, representing all actions that can be performed by

manipulating the data (represented by d-type components) and using interfaces for transmission

(represented by i-type components). As they can represent any action on the system, typically c-

type components have associated a verb that represents the action that it performs. In this case,

we are deriving information of a title for a sentence. Some kind of semantic correctness of words

may be required, allowing the sentence to make sense.

This approach allowed User Stories to fulfill their main purpose, which is to identify work to be

done.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

260

Deriving User stories and Product Backlog Items from Use Cases and

Components

In this section is proposed a systematic transformation of model-based requirements (UML

Use Cases and Component diagrams) into ASD-oriented requirements, according to the backlog

items. Leftingwell also describes software requirements approaches for agile teams (Leffingwell,

2010). Additionally, he includes a metamodel for a common understanding on requirements

information in agile product backlogs (Figure 127). The Agile Extension to the BABOK® Guide

lists a variety of requirements artifacts and activities present in known agile frameworks (IIBA,

2017) such as Scrum, XP, Behavior-driven Development (BDD), Kanban, and Agile Unified

Process (AUP).

It was based in these works that we defined the backlog structure that should result after

performing a set of derivation rules. These derivation rules aimed a backlog that followed the

path of Themes, then Epics, then User stories, then finally tasks. Each User story has associated

Acceptance criteria (which gives the “Definition of Done” (DoD), and may have details that

describe the requirements to implement the story in software. The backlog items are the

following:

Deriving Themes: A theme in a Backlog item relates to a generic concept. A theme in a

Backlog item relates to a generic concept, realized by a set of Epics (Leffingwell, 2010). For that

reason, a theme may be derived by the identified packages. In 4SRS, a package is identified for

logically grouping a set of components from the architecture.

Chapter 6 – Inter-team management within an LSA process based in logical architectures

261

Figure 127. Agile requirements metamodel (Leffingwell, 2010)

Figure 128. Rule for deriving Themes

Deriving Epics: An epic describes a requirement that further needs to be divided (in a User

Story). A User Story is considered to be smaller than a Use Case. Additionally, it is discussed that

a Use Case contains a set of interrelated User Stories (Cohn, 2004). For that reason, in our

approach, this rule suggests that an epic is directly derived from a Use Case. Although this

relationship is arguable, it is assured that this way the Epic item is stated in a Product Backlog,

referring to a required development work. In addition, it needs further refinement before inclusion

in a Sprint Backlog (which is basically what already happens, since an Epic is not able to be

included in a Sprint Backlog unless it is refined in User Stories).

Rule #1 – Themes

{P1]

Theme

Ref: {P1}

{P1]

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

262

Figure 129. Rule for deriving Epics

Deriving User Stories: this rule proposes that the story creation should be based by each

of the scenarios from a use case, which is in line with Cohn (Cohn, 2004) and Jacobson

(Jacobson, Spence, & Bittner, 2011), for instance. The scenarios are identified in the use case

description, namely as main flow and alternate flow (Cockburn, 2001). These flows in use case

descriptions provide the business value of a given scenario from a use case, thus it related the

requirements to the business value of the story.

In what composing the user story statement is concerned, it follows the same set of rules as

described in the previous section but, instead of including the component name, it includes a

part of the (use case) flow that indicates the flow purpose.

Rule #2 – Epics

Actor

System

{UC1}

{UC2}

{UC3}

{UC1}

{UC1.1}

{UC1.2}

{UC1.2}

{UC1.2.1}

{UC1.2.2}

{UC2}

{UC2.1}

{UC2.2}

Actor

Epic

Ref: {UC2.2}

User Stories:
- {UC2.2} Main Flow
- {UC2.2} Alternative Flow
- {UC2.2} Exception Flow
- ...

{UC2.2}

Chapter 6 – Inter-team management within an LSA process based in logical architectures

263

Figure 130. Rule for deriving User Stories

Deriving User Stories details: The inclusion of user stories in the backlog per se refers to

“promises for a conversation” and not as actual requirements specifications. These specifications

are commonly included separately within their ‘details’. The functional (and some of the non-

functional) behavior of the story is depicted by the software components responsible for executing

the given functionality. These software components are identified by the 4SRS method execution,

by tracing back to the use cases, which relate to user stories, as proposed in the previous rule.

Another important aspect of the detail may be the context of use, which is depicted by scenarios,

modeled in sequence diagrams as suggested during the modularization. This information can be

gathered and described in plain text in an informal way.

Rule #3 – User Stories

Actor

System

{UC1}

{UC2}

{UC3}

{UC1}

{UC1.1}

{UC1.2}

{UC1.2}

{UC1.2.1}

{UC1.2.2}

{UC2}

{UC2.1}

{UC2.2}

Actor

User Story

Ref: {UC1.2.2}, Main Flow

 As a

I want to ..

In order to ..

User Story

Ref: {UC1.2.2}, Alternative Flow

 As a

I want to ..

In order to ..

User Story

Ref: {U1.C2.2}, Exception Flow

 As a

I want to ..

In order to ..

Actor

 {UC1.2}

{UC1.2.2}

Actor

 {UC1.2}

{UC1.2.2}

Actor

 {UC1.2}

{UC1.2.2}

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

264

Figure 131. Rule for deriving user story details

Deriving Acceptance Criteria: The expected behavior after performing the use case

scenario is described in the use case description, namely the post condition, in the template

structure as suggested by Cockburn (Cockburn, 2001).

Figure 132. Rule for deriving Acceptance Criteria

The Definition of Ready checklist

It is assumed that, since the components have been refined, they are in an improved situation

to be now delivered for implementation. The combined view of user stories (along with their

related use cases), software components and sequence diagrams (if applicable) allow initiating

{C1.2.2.i] {C1.2.2.c] {C1.2.2.d}

User Story

Ref: {UC1.2.2}, Main Flow

Details:
- .
- .
- .

{P1]

{C1.2.2.d}

{C1.2.2.i}

{C2.1.i}

{C1.2.2.c}

Chapter 6 – Inter-team management within an LSA process based in logical architectures

265

the implementation, by its ‘definition of ready’ (DoR) (Power, 2014). DoR is a set of agreements

that define if an item is sufficiently prepared so that a team can start to work on it.

The combined view of the requirements models, in addition to the backlog derivation, must be

validated on its ‘readyness’ for initiating the development iterations (e.g., Sprints), which is to say

they meet DoR. Namely, the identification of the stories, acceptance criteria, dependencies and

the integrated use of the stories (Table 26), mainly because allows understanding the “who”,

“what” and the “why”.

Table 26. Checklist DoR for a User Story

DoR criteria Criteria Fulfillment

User Story defined The fields for writing the statement (“As a…, I want to…In order

to…”) are filled based on UML Use Case and Component

information.

User Story Acceptance Criteria defined The Component information includes acceptance criteria.

User Story dependencies identified The dependencies were identified within UML Use Case and

Component diagrams.

User Story sized by Delivery Team (independent from transformation rules output)

User Experience artifacts are Done and reviewed

by the Team

The combined view includes UX/UI artifacts for each user

story, or at least each Epic.

Architecture criteria (performance, security, etc.)

identified, where appropriate

The logical architecture and its components are discussed

during Grooming

Person who will accept the User Story is

identified

(independent from transformation rules output)

Team has reviewed the User Story (independent from transformation rules output)

Team knows what it will mean to demo the User

Story

The ‘overall picture’ of the User Story was modeled in UML

Sequence diagrams regarding the defined project core

processes.

6.4. Demonstration cases

The aforementioned LSA team management approaches (modularization, coordination,

communication and backlog item derivation – use cases, user stories from components, and

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

266

backlog items from use cases and components) are instantiated in this section within a

demonstration case. The team management approach based in a backlog with use cases is

demonstrated by the iFloW project. The team management approach based in a backlog built

from the derivation of user stories statements is demonstrated by the ISOFIN project. Finally, the

team management approach based in a backlog from the derivation of themes, epics, user

stories and acceptance criteria is demonstrated by the UH4SP project. Additionally, this section

includes demonstration of progress control, using a set of agile-oriented metrics, by a team from

the UH4SP project that used the derived backlog items in their software development process.

Team management approach based in a use case-driven backlog: the

iFloW case

Team settings

In the iFloW project, Bosch mainly performed as a software customer and UMinho as a

contracted software development entity. The team was co-located, but some integration support

was provided by a third-party remote team (cf. Section 6.5).

In this project, the core iFloW team was composed of nine collaborators with multidisciplinary

backgrounds:

 Bosch:

o one Product Owner, that was representing other eight elements from the Logistics

department, which formally dictated the requirements.

o one member of the IT department, responsible for validating that each developed

product increment could be easily integrated within Bosch information system;

 UMinho:

o three R&D coordinators, with the role of assuring that the scientific rigor (from both the

system and the software development process) and deadlines of the project are met;

o four software developers with methodological and technological competences (like

analysis, requirements, design, database modeling, programming, testing, deployment,

etc.).

The entire software development was performed within Bosch’s premises, where the iFloW

team elements (in exception of R&D Coordinators) were located on a daily basis. The elements

Chapter 6 – Inter-team management within an LSA process based in logical architectures

267

from UMinho had no previous knowledge of the domain (in this case, logistics), so the team

decided that the project kicked-off by gathering and documenting requirements in a waterfall-

based approach.

After the requirements engineering was performed, and since iFloW aimed developing a

software system for an industrial context, the team decided to follow the Scrum framework as the

iterative approach for the implementation phase. This phase was performed by development

iterative cycles in form of Scrum Sprints. Based in incremental software deliveries, both UMinho

and Bosch could manage their project’s expectations.

As a collaborative University-Industry R&D software project, the previously presented roles are

slightly different from the roles defined by the Scrum framework (namely, Product Owner, Scrum

Master and Development Team) (Schwaber & Beedle, 2001), however easily mapped, as

depicted in Table 27.

Table 27. Mapping between iFloW roles and typical Scrum roles

 Scrum Role
Product Owner Scrum Master Development Team

iFloW Role

Bosch

 Product Owner

 Bosch IT

UMinho

 R&D Coordinators

 Software Developers

Use Cases that compose the backlog

During the initialization phase of the hybrid method, the iFloW requirements gathering output

were modeled in a set of UML Use Cases, depicted in Figure 133. Each of the use cases were

functionally decomposed, which resulted in 90 lower level use cases.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

268

Figure 133. Use Case diagram of the iFloW project

Afterwards, within the implementation phase, the use cases from the ‘Product Backlog’ were

implemented iteratively and incrementally during eight four-week (Scrum) Sprints. In this phase,

typical Scrum iterations were performed, where each ‘Sprint Backlog’ is a selected subset from

the ‘Product Backlog’. In Figure 134 is depicted a ‘Sprint Backlog’ tracking sheet, composed by

the iFloW use cases and whose progress was monitored.

Chapter 6 – Inter-team management within an LSA process based in logical architectures

269

Figure 134. A Sprint Backlog based in Use Cases from the iFloW project

Team management approach based in a User stories-driven backlog

derivation: the ISOFIN case

Team settings

The ISOFIN project was composed by eight entities (private companies, public research

centers and universities). During the requirements stage, the consortium defined that the entire

ISOFIN solution would include a cloud platform and a set of local services. For the case of the

cloud platform, one entity formed a team specifically to model requirements in order to deliver

them to other three entities that would have Scrum teams to implement them. For the case of

the local services, another entity modeled requirements that the remaining two would implement.

This research focused in the team responsible for gathering requirements for the cloud platform.

Modularization

Previously in Section 4.4, the modeling process performed within the ISOFIN project has been

already described. By following a V-Model approach, models were derived in succession (Figure

53). This derivation path includes the solution’s business processes, A-type sequence diagrams,

use cases, logical architecture and B-type sequence diagrams. In its vertex, the 4SRS method

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

270

assures that user requirements models (in the left side) are aligned with system requirements

models (in the right side).

Figure 135. The result of the V-Model to be delivered to multiple Scrum teams

The ISOFIN logical architecture is composed by 105 components. The overall architecture

referred to software development functionalities that were to be delivered by three software

teams, each belonging to a different entity.

Having as basis the logical architecture and, additionally, B-type sequence diagrams and the

solution’s business processes, the analysts discussed, depicted and proposed a set of

application/modules to be developed. The proposed applications/modules are composed by

components from the logical architecture, and the composition of each application is depicted in

Figure 136 through a set of “spots” that traverse the logical architecture.

The components that are “covered” by the spot represent the expected functionalities for a

given application. However, it is not possible yet to depict sequences and flows for the application

execution (such is provided by B-type sequence diagrams) as well as the components that

interface with the application.

The logical diagram was partitioned in seven “spots” covering the components (Figure 136),

representing applications to be developed: Integrated Business Services (IBS) Management;

ISOFIN Applications Management; Alerts Management; Subscription Management; Security

Chapter 6 – Inter-team management within an LSA process based in logical architectures

271

Management; Policies Management; and Logs Management. An overview of the “spots” is

presented in Annex B.

Figure 136. ISOFIN architecture modularization

We present in this section one of the modules to illustrate the demonstration case: the IBS

Management module. By executing this module, An IBS Developer develops a new IBS by

modeling the IBS, selecting the available IBSs from the pallets. Besides modeling its structure,

the IBS Developer is also responsible for defining permissions, manually filling gaps in the IBS

code, publishing the information in the catalog and deploying the IBS in the ISOFIN Platform.

Communication

The filtering and collapsing technique that was applied within the logical architecture allowed

depicting the components that compose the module and their interfaces, and then depict its

W2ReqComm. The W2ReqComm for the IBS Management module is presented in Figure 137.

Repositories

Alert Editor

<<data>>
{AE4.1.d} Configured Alert

Information

<<interface>>
{AE4.1.i} Alert Configuration

Interface

Alert Installer

<<control>>
{AE4.2.1.c} Alert Code

Generator

<<control>>
{AE4.2.2.c1} Schedule Alert

<<control>>
{AE4.2.2.c2} Execute Alert

ISOFIN App
Communication

<<interface>>
{AE3.5.1.i} Send Information

From ISOFIN App

<<interface>>
{AE3.5.2.i} Receive

Information in ISOFIN App

<<interface>>
{AE3.6.1.i} Send Configuration
Commands From ISOFIN App

<<interface>>
{AE3.6.2.i} Receive

Configuration Commands to
ISOFIN App

<<interface>>
{AE3.6.3.i} Send Usage

Commands From ISOFIN App

<<interface>>
{AE3.6.4.i} Receive Usage
Commands to ISOFIN App

ISOFIN App Installer

<<interface>>
{AE3.3.1.i} ISOFIN Application

Publisher Interface

<<control>>
{AE3.3.2.c} ISOFIN App

Deployer

<<interface>>
{AE3.3.2.i} ISOFIN App
Deployment Interface

<<control>>
{AE3.3.3.c} Export ISOFIN App

Code

<<control>>
{AE3.3.4.c} ISOFIN App

Documentation Generator

<<interface>>
{AE3.3.4.i} ISOFIN App
Documentation Editor

<<control>>
{AE3.4.2.c} Test ISOFIN

Application Before
Deployment

Security Management

<<control>>
{AE1.6.c} Grant Access to

ISOFIN Platform

<<interface>>
{AE1.6.i} ISOFIN Platform

Access and Usage
Management

<<control>>
{AE2.2.6.c1} Selected Object

permissions

<<control>>
{AE2.4.1.c} IBS

Communication Validation

<<control>>
{AE3.5.1.c} ISOFIN App

Communication Validation

Logs Management

<<interface>>
{AE2.4.1.i1} IBS Log Manager

<<interface>>
{AE3.5.1.i1} ISOFIN App Log

Manager

<<interface>>
{AE4.3.i1} Alert Log Manager

<<interface>>
{AE1.3.5.i1} Subscription Log

Manager

Supplier Subscription
Management

<<control>>
{AE1.3.1.c} Evaluate Supplier

subscription

<<interface>>
{AE1.3.1.i} Supplier

subscription evaluation
interface

<<interface>>
{AE1.3.3.i} Supplier’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.1.i} Publish SBS

Subscsription in Catalog
Interface

Customer
Subscription
Management

<<control>>
{AE1.3.2.c} Evaluate Customer

subscription

<<interface>>
{AE1.3.2.i} Customer

subscription evaluation
interface

<<interface>>
{AE1.3.4.i} Customer’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.2.i} Publish Customer

Subscsription in Catalog
Interface

IBS Communication

<<interface>>
{AE2.4.1.i} Send Information

From IBS

<<interface>>
{AE2.4.2.i} Receive
Information in IBS

<<interface>>
{AE2.5.1.i} Send Configuration

Commands From IBS

<<interface>>
{AE2.5.2.i} Receive

Configuration Commands to
IBS

<<interface>>
{AE2.5.3.i} Send Usage
Commands From IBS

<<interface>>
{AE2.5.4.i} Receive Usage

Commands to IBS

IBS Installer

<<control>>
{AE2.2.7.c} IBS Interface

Generator

<<data>>
{AE2.2.7.d} IBS Interface

Repository

<<interface>>
{AE2.3.1.i} IBS Publisher

Interface

<<control>>
{AE2.3.2.c} IBS Deployer

<<interface>>
{AE2.3.2.i} IBS Deployer

Interface

<<control>>
{AE2.3.3.c} IBS Documentation

Generator

<<interface>>
{AE2.3.3.i} IBS Documentation

Editor

<<control>>
{AE2.7.2.c} Test IBS Before

Deployment

IBS Editor

<<control>>
{AE2.1.2.c1} Selected Object

configurations

<<data>>
{AE2.1.2.d} IBS Configuration

Repository

<<interface>>
{AE2.1.2.i} Low-level IBS
Configuration Interface

<<data>>
{AE2.1.3.d} IBS Structure

Repository

<<interface>>
{AE2.1.3.i} Update IBS

Structure Interface

<<control>>
{AE2.1.4.c} Compiles IBS

information

<<interface>>
{AE2.1.4.i} Update IBS

Interface

<<interface>>
{AE2.2.3.i} IBS Structure

interface

<<control>>
{AE2.2.4.c} Define IBS Code

Gaps

<<interface>>
{AE2.2.4.i} IBS Coding and

Compiling Interface

<<control>>
{AE2.2.5.c} Compile IBS code

<<data>>
{AE2.2.5.d} IBS Pre-
Deployment Storage

<<interface>>
{AE2.2.6.i} Permissions

Interface

<<control>>
{AE2.7.1.c} IBS Customization

Filter

<<interface>>
{AE2.7.1.i} IBS Customization

Interface

<<interface>>
{AE2.6.3.i} IBS

Interconnectivity interface

IBS Repository

<<data>>
{AE2.1.1.d} IBS Repository

<<interface>>
{AE2.6.1.i} IBS Repository

Interface

SBS Repository

<<data>>
{AE2.6.2.d} SBS Repository

<<interface>>
{AE2.6.2.i} SBS Repository

Interface

Alert Repository

<<data>>
{AE4.3.d} Alert Repository

<<interface>>
{AE4.3.i/c} Scheduled Alert

Dispatcher

Subscription
Repository

<<control>>
{AE1.3.5.c1} Subscription

Duplicity Verification

<<data>>
{AE1.3.5.d} ISOFIN Platform
Subscription Info Repository

<<interface>>
{AE1.3.5.i} Subscription

Repository Interface

<<data>>
{AE1.4.d} ISOFIN Platform
Subscription Assessment

Repository

<<interface>>
{AE1.8.1.i} Manage ISOFIN

Suppliers

<<interface>>
{AE1.8.2.i} Manage ISOFIN

Customers

Logs Repository

<<data>>
{AE2.4.1.d} IBS Logs

Repository

<<data>>
{AE3.5.1.d} ISOFIN App Logs

Repository

<<data>>
{AE4.3.d1} Alert Logs

Repository

<<interface>>
{AE4.3.i2} Log Repository

Interface

<<data>>
{AE1.3.5.d1} Subscription Logs

Repository

Security Repository

<<data>>
{AE1.2.1.d} ISOFIN Platform

Policies Repository

<<data>>
{AE1.6.d} ISOFIN Platform

Access Repository

ISOFIN App
Repository

<<data>>
{AE3.3.1.d} ISOFIN App

Repository

<<interface>>
{AE3.3.1.i1} ISOFIN App

Repository

Policies Management

<<interface>>
{AE1.2.1.i} Configure Supplier

Policies Interface

<<interface>>
{AE1.2.2.i} Configure

Customer Policies Interface

Subscription Management

<<interface>>
{AE1.1.1.i} Fulfillment

Subscription Requirements
Interface

<<control>>
{AE1.1.2.c1} Verifiy

Subscription data duplicity

<<control>>
{AE1.1.2.c} Validate

subscription requirement
fulfillment

<<interface>>
{AE1.1.2.i} Manual

Subscription Validation
Interface

<<interface>>
{AE1.4.i} Subscription Request

Interface

<<control>>
{AE1.7.c} Control Subscription

Requests

<<interface>>
{AE1.7.i} Suscription Request

Status Interface

ISOFIN App Editor

<<interface>>
{AE3.1.i} ISOFIN Application

Model Editor

<<interface>>
{AE3.2.1.i} IBS Information

Retrieval

<<control>>
{AE3.2.2.c} Generate ISOFIN

App Code

<<interface>>
{AE3.2.2.i} ISOFIN Application

Coding and Compiling
Interface

<<interface>>
{AE3.2.3.i} ISOFIN Application

Model Interface

<<control>>
{AE3.2.4.c} Associate Visual

Representation to
Functionality

<<interface>>
{AE3.4.1.i} ISOFIN Application

Customization Interface

««GENERATES»»

<<interface>>
{AE2.7.2.i} IBS Test Generator

<<interface>>
{AE2.6.2.i1} SBS Pallet

Retrieval Interface

<<interface>>
{AE2.6.1.i1} IBS Pallet

Retrieval Interface

2x

6x

6x

6x

6x

5x

6x

6x

2x

2x

2x

3x

3x

««GENERATES»»

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

272

Regarding the overlapped components in more than one module, one of the teams is nominated

to be responsible for implementation of the module and assure that the teams responsible for

modules with dependencies with that particular one have all required documentation and provide

updates on its implementation.

Figure 137. W2ReqComm for IBS Management module

User Story derivation

We present in Table 28 an example of the use of user story card, using the Test Before IBS

Deployment component example. Information regarding the name of the User Story presupposes

the execution of the next step of this method. The acceptance criteria and the story points fields

are not defined at the time of the User Story derivation. They are defined later during Sprints, so

these fields were not yet defined in the card in Table 28, thus defined as “not applicable” (N/A)

at this time.

IBS Management Module

Alert Editor

<<interface>>
{AE4.1.i} Alert Configuration

Interface

Alert Installer

Security
Management

<<control>>
{AE2.2.6.c1} Selected Object

permissions

Supplier
Subscription
Management

IBS Communication

IBS Installer

<<control>>
{AE2.2.7.c} IBS Interface

Generator

<<data>>
{AE2.2.7.d} IBS Interface

Repository

<<interface>>
{AE2.3.1.i} IBS Publisher

Interface
<<control>>

{AE2.3.2.c} IBS Deployer

<<interface>>
{AE2.3.2.i} IBS Deployer

Interface

<<control>>
{AE2.3.3.c} IBS Documentation

Generator

<<interface>>
{AE2.3.3.i} IBS Documentation

Editor

<<control>>
{AE2.7.2.c} Test IBS Before

Deployment

IBS Editor

<<control>>
{AE2.1.2.c1} Selected Object

configurations

<<data>>
{AE2.1.2.d} IBS Configuration

Repository

<<interface>>
{AE2.1.2.i} Low-level IBS
Configuration Interface

<<data>>
{AE2.1.3.d} IBS Structure

Repository

<<interface>>
{AE2.1.3.i} Update IBS

Structure Interface

<<control>>
{AE2.1.4.c} Compiles IBS

information

<<interface>>
{AE2.1.4.i} Update IBS

Interface

<<interface>>
{AE2.2.3.i} IBS Structure

interface

<<control>>
{AE2.2.4.c} Define IBS Code

Gaps

<<interface>>
{AE2.2.4.i} IBS Coding and

Compiling Interface

<<control>>
{AE2.2.5.c} Compile IBS code

<<data>>
{AE2.2.5.d} IBS Pre-
Deployment Storage

<<interface>>
{AE2.2.6.i} Permissions

Interface

<<control>>
{AE2.7.1.c} IBS Customization

Filter

<<interface>>
{AE2.7.1.i} IBS Customization

Interface

<<interface>>
{AE2.6.3.i} IBS

Interconnectivity interface

IBS Repository

<<data>>
{AE2.1.1.d} IBS Repository

<<interface>>
{AE2.6.1.i} IBS Repository

Interface

SBS Repository

<<data>>
{AE2.6.2.d} SBS Repository

<<interface>>
{AE2.6.2.i} SBS Repository

Interface

Subscription
RepositorySecurity

Repository

ISOFIN App Editor

««GENERATES»»

<<interface>>
{AE2.7.2.i} IBS Test Generator

<<interface>>
{AE2.6.2.i1} SBS Pallet

Retrieval Interface

<<interface>>
{AE2.6.1.i1} IBS Pallet

Retrieval Interface

3x

IBS Management Module

<<data>>
{AE4.1.d} Configured

Alert Information

<<data>>
{AE1.6.d} ISOFIN
Platform Access

Repository

<<interface>>
{AE1.6.i} ISOFIN Platform

Access and Usage

Management

<<interface>>
{AE1.3.5.i} Subscription

Repository Interface

<<control>>
{AE4.2.2.c2} Execute

Alert

<<control>>
{AE4.2.2.c1} Schedule

Alert

<<control>>
{AE4.2.1.c} Alert Code

Generator

<<interface>>
{AE2.4.2.i} Receive

Information in IBS

<<interface>>
{AE2.5.1.i} Send

Configuration Commands

From IBS

<<interface>>
{AE2.5.4.i} Receive Usage

Commands to IBS

<<interface>>
{AE2.5.3.i} Send Usage

Commands From IBS

<<interface>>
{AE2.4.1.i} Send

Information From IBS

<<interface>>
{AE2.5.2.i} Receive

Configuration Commands

to IBS

<<interface>>
{AE3.2.1.i} IBS

Information Retrieval

<<interface>>
{AE3.1.i} ISOFIN

Application Model Editor

<<control>>
{AE3.2.4.c} Associate

Visual Representation to

Functionality

<<interface>>
{AE1.5.1.i} Publish SBS

Subscsription in Catalog

Interface

An IBS Developer develops a new IBS by modeling the IBS, selecting the available IBSs from the

pallets. Besides modeling its structure, the IBS Developer is also responsible for defining permissions,
manually filling gaps in the IBS code, publishing the information in the catalog and deploying the IBS in
the ISOFIN Platform. If necessary, the IBS Developer performs test and fixes coding errors. The IBS to be
developed may require setting system alerts.

Chapter 6 – Inter-team management within an LSA process based in logical architectures

273

Table 28. User Story card for "Test IBS Before Deployment"

U
se

r
S

to
ry

US #1

As a Business User or a IBS Developer, I want to test IBS before

deployment, in order to render IBS in pre-runtime.

Acceptance

criteria
N/A

Story

Points

N/A

A
rc

hi
te

ct
ur

e

Component # 2.7.2.c Test IBS Before Deployment

Type Control Package IBS Installer

Specification

This component allows testing of the IBS before deployment.

This component will be required before the execution of {C2.3.2.c} IBS

Deployer to verify that no problems occur during the execution of the

IBS. All information need for the execution is provided by {C2.2.5.d} IBS

Pre-Deployment Storage

Multiple No Module IBS Management

Association

Direct

Association
2.7.2.i – IBS Test Generator

UC Association
2.3.2.c – IBS Deployer

2.2..5.d – Pre-Deployment Storage

U
se

 C
as

e

UC # 2.7.2 Render IBS Pre-Runtime

Description
Configure and defines the pre-runtime of the IBS. This use case allows

testing of the IBS before deployment.

UC Ass. 2.7 – Configure IBS

Actors
Business User

IBS Developer

O
th

er
s

The User Story must provide the "why" of a particular actor ("who") may need to perform a

certain action ("what"). This information, often induced by the very title of the corresponding

components, can be complemented with a description of the Use Case from which the

component was derived. As User Stories relate to a lower level than uses cases, the description

of the use case itself can justify the need for existence of a particular User Story. In cases where

the name of components is quite similar to use case from which the component was derived, the

significance of User Story can be found in the description of the use case. Using these rules,

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

274

remaining User Stories were derived that are listed in Table 16. In Figure 138 is represented a

User Story sentence based in the derivation from Table 16.

Table 29. User Stories derived from c-type components

Component As a(n)

<actor>

I want/need

<description>

In order to <outcome>

2.1.2.c1
Selected Object

Configurations

ISOFIN

Customer / IBS

Developer

select object

configurations

change (IBS Structure)

configurations

2.1.4.c
Compiles IBS

information
IBS Developer

compile IBS (changes

and) information
create a new IBS

2.2.4.c
Define IBS Code

Gaps
IBS Developer

(automatically generated

code) and define IBS

code gaps

create IBS code

2.2.5.c Compile IBS code IBS Developer
compile IBS code (and

create new IBS catalog)

(keep IBS catalog and store)

compile(d) IBS Code

2.2.6.c1
Selected Object

Permissions
IBS Developer select object permissions

set(/manage) permissions (and

create IBS)

2.2.7.c
IBS Interface

Generator
IBS Developer

(automatically) Generate

IBS Interface

(store the) generate(d) IBS

interface

2.3.2.c IBS Deployer IBS Developer deploy IBS execute IBS deployment

2.7.1.c

IBS

Customization

Filter

Business User
filter IBS (configuration

and) customization
customize IBS

2.7.2.c
Test IBS Before

deployment

Business User /

IBS Developer

test IBS before

deployment
render IBS Pre-Runtime

Figure 138. User Story from 2.1.4.c

Inter-team management

Now that the User Story derivation is complete, there are just some issues that are dealt in

the multiple teams’ management. In the case of the ISOFIN project, the teams were distributed

Chapter 6 – Inter-team management within an LSA process based in logical architectures

275

but belong to the same organization and were not geographically distributed. The quantity of

teams were not as many as the modules identified, but the total quantity of teams is not relevant,

since they belong to the same organization. Thus, the organization chose to nominate a single

Scrum Master to work closely with all teams. The Product Owner was responsible for the

decisions during the implementation, like detecting potential delays and decisions on critical

issues across the teams.

Regarding the overlapped components in more than one module, it is then the Product

Owner’s responsibility to nominate a team to be responsible for implementation of the derived

User Story and assure that the teams responsible for User Stories with dependencies with that

particular one have all required documentation and provide updates on its implementation.

Multi-team management and coordination: the UH4SP case

Team settings

The UH4SP project was composed by five teams from four different entities for software

development where each had specific expected contributes, from cloud architectures to industrial

software services and mobile applications. The entities are geographically distributed, but each

entity had a single located team. Figure 139 depicts the roles structuring between the involved

teams.

The business need relates to managing, communicating and coordinating software delivery.

Team #A is expertized in mobile and image recognition technologies, composed by three

Developers, a Quality Assurance (QA) engineer and a Scrum Master (SM) - which acts with Org

#1. The Chief Architect (CA) – that also takes the role of Product Owner (PO) – is responsible for

the architectural decisions of team #A’s Team Product Backlog (TPB) and part of the architecture

team of the project. Teams #C and #E has the same role structure, but expertized in web and

API applications. Team #B has a Scrum team expertized in web and microservices development,

composed by three Developers, a QA engineer, the SM, a CA and a Business Analyst (BA) – also

acting as a PO – responsible for managing team #B’s TPB. Team #D is responsible for the cloud

infrastructure, composed with a CA and DevOps engineers. Additionally, all teams also include

strategic roles such as Project Manager (PrjMmg), and a Business Owner (BO) that is responsible

for team’s products portfolio.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

276

Teams work internally within their delivery of increments, based in Scrum teams or not.

Alongside with the delivery, there are important decisions that require integration among teams,

relating to architecture, dependencies, and coordination. The management and communication

between these teams arise the need to define a process. Strategic decisions also require

communication between PrjMng and BO, however not addressed in this research.

Figure 139. Structure of UH4SP teams

Architecture modularization

Section 5.5 described how a candidate version of the UH4SP project logical architecture was

derived in an agile-oriented way using AMPLA. The UH4SP logical architecture had as input 37

use cases and, after executing 4SRS method (Annex C), was derived with 77 architectural

Scrum Team

Dev

QA

Dev

Dev

SM

BA / PO

ProjMngCA BO

Team #B

Scrum Team

Dev

QA

Dev

Dev

ProjMngCA / PO BO

Team #A

Org #1

Org #2

DevOpsDevOps

ProjMngCA BO

Team #D

Org #3

Scrum Team

Dev

QA

Dev

Dev

ProjMngCA / PO BO

Team #C

PODev

BO

Team #D

Org #4

Chapter 6 – Inter-team management within an LSA process based in logical architectures

277

components (Annex C) that compose it. This architecture was afterwards divided in a set of

modules to be assigned to each of the project’s teams (Figure 140).

The modularization depicted in Figure 140 originated five modules/subsystems, each

assigned for ‘Team #A’, ‘Team #B’, ‘Team #C’, ‘Team #D’ and ‘Team #E’. The bordering was

based in the contributions that each team brings to the consortium, namely IoT, cloud

infrastructure, cloud applications and sensors/embedded systems. Each domain was reflected in

the use case model and, by consulting the 4SRS method, the use case coverage was mapped to

the components, in order to the module be built. Figure 140 depicts the modules’ borders and

dependencies as a group of “spots”.

Figure 140. UH4SP logical architecture modularization

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

278

Backlog derivation

By the time of the refinement process, the total of Use cases after refinement was 96.

Relating to the total of logical architecture components after the refinement, only two modules

were measured, because the remaining teams decided to go for implementation without

performing the 4SRS method. These measures are presented in Table 30. When analyzing Team

B module, the subset more than doubled after the refinement, as presented in Table 31.

Table 30. Analysis on the product backlog

Candidate Arch Before refinement After refinement

Use cases 37 96

Components 77 94*

*only measured for two modules

Table 31. Analysis on the Team B backlog

Team B module Before refinement After refinement

Use cases 11 29

Components 15 39

The user stories were then derived and specified. A subset of the stories that compose Team

#B’s Team Backlog is presented in Table 32. The entire Product Backlog from Team #B may be

consulted in Annex C. The stories details are defined by input of the components from the 4SRS

method execution, depicted in Table 32.

Table 32. A subset of the team backlog

Epic: Account Management

 Use Case: {UC1.1} Configure users account

User

Story

As a SysAdmin, I want to create a user account in order to

configure user accounts.

Acceptance Criteria:

SysAdmin is able to create user

User

Story

As a SysAdmin, I want to change a user account in order to

configure user accounts.

Acceptance Criteria: changed

information is stored.

The application of the transformation rules resulted in a Team Backlog composed by 61 user

stories, which were implemented in six Sprints. Among them, only two stories were considered

incomplete, i.e., required additional knowledge acquisition from the developers besides the

Chapter 6 – Inter-team management within an LSA process based in logical architectures

279

components and sequence diagrams. All stories were foreseen and clear after the transformation

rules. Regarding dependencies, no user stories were identified out of order. It must be also

pointed out that, among the 61 user stories, 2 of

Table 33. Traceability between use cases / user stories and the components from the 4SRS

Epic: Account Management Use Case Component

 Use Case: {UC1.1} Configure users

account

 {U1.1.1}

Create user

account

{C1.1.1.d} User

data

User

Story

{US1.1.I.} As a System

Administrator, I want to create

a user account in order to

configure user accounts.

Acceptance Criteria:

{AC1.1.1.I.} System

Administrator is able to

create user

 {C1.1.1.i} Create

user interface

User

Story

{US1.1.II.} As a System

Administrator, I want to

change a user account in

order to configure user

accounts.

Acceptance Criteria:

{AC1.1.1.II.} System

Administrator changed

user information is stored.

 {U1.1.2} Edit

user account

{C1.1.1.d} User

data

 Use Case: {UC.1.2} Configure

users profile

 {C1.1.2.i} Edit user

interface

User

Story

{US1.2.I.} As a System

Administrator, I want to create

a user account in order to

configure user accounts.

Acceptance Criteria:

{AC1.1.1.I.} System

Administrator is able to

create user

 … …

 … … … …

Table 34. Analysis on Team B Sprints

Team B Sprints 4 Sprints

Nr. Success stories 59 Nr. New stories 2

Nr. Unforeseen stories 0 Nr. Incomplete stories 2

Nr. Unclear stories 0 Nr. Out of order stories 0

Nr. Interface stories 2

them relate to stories with interactions with other team’s stories, and were immediately identified

within the modularization.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

280

Requirements communication

Team #B’s module includes 15 components from the 77. They correspond to use cases

“branches” {UC1.1} Manage Accounts (from {UC.1} Manage business support), {UC2.1}

Configure cloud services (from {UC.2} Configure cloud service) and {UC7.1} Integrate business

information (from {UC.7} Performs business activities), which were considered that together whey

compose an MMF.

The remaining components after outbound collapsing are included in the W2ReqComm

package (Figure 141) and delivered to Team #B, which is responsible for delivering the

corresponding software. The associations between outbound components infer dependencies

and orchestration needs with other teams, in this case Team #A, and #C. They are reflected in

an A-type Sequence diagram, which is also part of the W2ReqComm package.

Access control to company data from Apps

Figure 141. W2ReqComm package for "Access company data" scenario

{P1} Configurations

{P2} Monitoring

{P1.1} Accounts

{P1.2} Services

{P1.3} Security

{P3} Business Mgmt
(Global)

{P5.1} DB

{C2.5.i} Define service
level agreement

interface

{C6.5.i} Generate
service templates

interface

{C7.1.2.c}
Information access

configuration
processor

{C6.5.c}
Services

templates
processor

{C1.1.1.i}
Create user

interface

{C1.1.2.i} Edit
user interface

{C1.1.3.i} Disable
user interface

{C1.2.i} Configure
users profile

interface

{C2.1.1.i}
Install service

interface

{C2.1.2.i} Edit
service

interface

{C2.1.3.i}
Disable service

interface

{C2.1.4.i}
Update service

interface

{C1.1.1.d}
User data

{C7.1.2.d}
Information access

configurations

{P1} Configurations

{P5.1} DB

Team #B

{C2.1.1.c}
Services

deployment
processor

{C4.2.i} Configure
data access

interface

{C1.3.i} Consult
users SLA data

interface

{C6.5.d} Services
templates data{C2.5.d} Service

level aggrement
data

{C7.1.1.i} Consults
Information

interface

{C7.1.3.i}
Perform business

notifications
interface

Remote Equipment Analysis sequence diagram

Factory
IT manager

Get_authen(user, password)

Team B backlogTeam A backlog Team C backlog

{C7.1.1.i} Consults
Information interface

{C7.1.2.c}
Information access

configuration
processor

{C1.2.i} Configure
users profile

interface

{C4.2.i} Configure data
access interface

AccessAndRetrieve()

A given stakeholder accesses to the platform, via

the web or mobile app and consults business

indicators. The visualized data depends on the

user permissions. This web app invokes the

authentication-related components, which

confirms the permissions and retrieves the data

related to a given unit’s instance representation in

the cloud.

Chapter 6 – Inter-team management within an LSA process based in logical architectures

281

Inter-team communication and management

Each team issuing a given set of components with connection points summons other team

representatives to a Scrum of Scrums meeting to discuss integration efforts. The example

illustrated in Figure 142 relates to the development efforts between three teams. In this case,

the scenario is the same as the one included in the W2ReqComm.

Figure 142. An example scenario including inter-team management

In UH4SP, each team is developing a set of independent and loose-coupled microservices,

exposed using a RESTful API. Team #B summons a Scrum of Scrums meeting before the end of

their Sprint, with representatives from teams #A and #C, where the API is presented so other

teams are informed on how to invoke the microservice. The API documentation is also available

in a Swagger web page, where the remaining teams design and build services that consume the

APIs. The coordination arenas regarding the coordination process are depicted in Table 35.

Remote Equipment Analysis sequence diagram

Factory
IT manager

Get_authen(user, password)

Team B backlogTeam A backlog Team C backlog

{C7.1.1.i} Consults
Information interface

{C7.1.2.c}
Information access

configuration
processor

{C1.2.i} Configure
users profile

interface

{C4.2.i} Configure data
access interface

AccessAndRetrieve()

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

282

Table 35. Coordination arenas

Coordination arenas Description

Scrum of scrums Before the end of a Sprint, these meetings occurred whenever a work item with

dependencies met a DoD condition, triggering a DoR to another team.

Wiki Use of a Consortium shared Microsoft Sharepoint platform.

API documentation Each team used a Swagger platform.

CoP meetings Occasional and unplanned meetups between directly involved developers to discuss

integration. Alternatively, the discussions were performed in chat groups using the

Skype tool.

Typically related to implementing a flow in the sequence diagram. The diagram was

the basis for the discussion.

Team progress controlling

So far, it has been described how a logical architecture should be modularized in order to

assign a team with a specific subsystem, how each team may derive their work items from the

architecture, how they can communicate and coordinate with other teams.

This section describes controlling tasks performed by a Scrum team, namely Team #B in the

UH4SP project, during the (Scrum) Sprints. In order to do so, a set of metrics were adopted,

where they fit under these categories:

- Earned Value Management (EVM),

- Planning/Management,

- Development,

- Quality,

- Stakeholders

These categories allow controlling team progress encompassing metrics suitable for project

managers, product owners, product managers, and the team members themselves. Additionally,

some metrics may have dependencies with other ones from different categories.

EVM is a widely adopted metric within Project Managers for measuring the team performance

based in their costs. EVM calculus precedes ASD approaches, which led to proposing some

changes when in ASD projects, called AgileEVM (Sulaiman, Barton, & Blackburn, 2006). For

planning/management, some metrics allow Product Owners having a clear understanding if the

project is following a proper path. Development metrics refer to the software delivery process.

Chapter 6 – Inter-team management within an LSA process based in logical architectures

283

Quality metrics is a category where metrics are mainly measured by the team themselves.

Finally, the Stakeholder metrics are more oriented for Product Managers as they are related to

customers.

This control was based in gathered literature around this topic, presented in Table 36, and

using such works in a setting where Team #B used the models from performing AMPLA.

The UH4SP project progress was monitored using the EVM system. Throughout Team #B’s

Sprints, the values for Actual Cost (AC), Earned Value (EV), Planned Value (PV), Cost Variance

(CV), Schedule Variance (SV), Schedule Performance Index (SPI), Cost Performance Index (CPI)

were monitored. The value for Budget Cost At Completion (BAC) was obviously previously defined

before project kick-off. Only AC and PV measuring was completely independent from using

AMPLA before Sprints.

Table 36. Agile metrics

EVM metrics (Sulaiman et al., 2006) Measurement

Budget Cost At Completion (BAC) Planned budget for the release

Actual Cost (AC) Spent budget for the release

Earned Value (EV) EV = APC × BAC

Planned Value (PV) PV = PPC × BAC

Cost Variance (CV) CV = EV – AC

Schedule Variance (SV) SV = EV – PV

Schedule Performance Index (SPI) SPI = EV / PV

Cost Performance Index (CPI) CPI = EV / AC

Planning/Management metrics Measurement

Business Value Delivered (BVD) (Hartmann & Dymond,

2006)

Business value provided by the delivered increment within the

Sprint

Release Burndown (Hayes, Miller, Lapham, Wrubel, &

Chick, 2014)

Which Product backlog items are ‘done’ and the remaining ones

Sprint Burndown (Hayes et al., 2014)

Which Sprint backlog items are ‘done’ and the remaining ones

Velocity (Hayes et al., 2014)

Story points delivered by Sprint

Planned Percentage Complete (PPC) (Sulaiman et al.,

2006)

Nr. of Sprints performed / Nr. of Sprints planned

Actual Percentage Complete (APC) Nr. of user stories ‘done’ / Nr. of user stories planned

Development metrics Measurement

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

284

Lead Time (Mujtaba, Feldt, & Petersen, 2010)

Time between the item inclusion in backlog and to be ‘done’

Queue Time (Mujtaba et al., 2010)

Time between the item inclusion in backlog and included in

Sprint backlog

Processing Time (Mujtaba et al., 2010)

Time between the item inclusion in Sprint backlog and to be

‘done’

Story Flow Percentage (Kupiainen, Mäntylä, & Itkonen,

2015)

% of completed story under development

Work in Progress (WIP) (Petersen & Wohlin, 2011)

Nr. of user stories under development

Quality metrics Measurement

Defect Backlog (Staron, Meding, & Söderqvist, 2010)

Nr. of known defects still unresolved

Build Status (Janus, Schmietendorf, Dumke, & Jäger,

2012)

Nr. of builds performed in a Sprint

Test Coverage (Janus et al., 2012)

Code Covered by testing / Completed Code

Test Growth Ratio (Janus et al., 2012)

growth of the Test in relation to the growth of the Source Code

Deferred defects (Green, 2011)

Nr. of defects identified after going ‘live’

Stakeholder metrics Measurement

Customer Satisfaction Survey filled by the customer about the experience

Feedback time Time between customer and team for feedbacks

Since Actual Percentage Complete (APC) uses the number of user stories planned, which

comes from the sum of derived user stories after performing the rules presented in section 6.4.

Consequently, EV uses the APC value. Afterwards, CV, SV, SPI and CPI, which use the EV value,

hence use the number of user stories derived within AMPLA.

Table 37 depicts the EVM controlling performed by Team #B’s Project Manager (from the

UH4SP team presented in section 6.2) throughout team’s six (Scrum) Sprints. The Project

Manager was able to compare EV evolution to AC and PV (Figure 143). Additionally, values of CPI

and SPI from Table 37 allowed depicting the project status at the time of a given Sprint based in

time and costs. In Figure 144, CPI and SPI values for each Sprint allow depicting whether in each

Sprint the project was: (i) behind in time and costs (0,5<SPI<1 and 0,5<CPI<1); (ii) bad times

Chapter 6 – Inter-team management within an LSA process based in logical architectures

285

but good costs (0,5<SPI<1 and 1<CPI<1,5); (iii) good times but bad costs (1<SPI<1,5 and

0,5<CPI<1), and, finally, (iv) good times and costs (1<SPI<1,5 and 1<CPI<1,5).

Table 37. EVM controlling

EVM S#0 S#1 S#2 S#3 S#4 S#5 S#6

Actual Cost (AC) 130 611,5 408 876 374 236 226

Earned Value (EV) 26,11 109,67 219,33 276,78 276,78 276,78 276,78

Planned Value (PV) 67,14286 134,2857 201,4286 268,5714 335,7143 402,8571 470

Cost Variance (CV) -103,89 -501,83 -188,67 -599,22 -97,22 40,78 50,78

Schedule Variance (SV) -41,03 -24,62 17,90 8,21 -58,94 -126,08 -193,22

Schedule performance

index (SPI)
0,388889 0,816667 1,088889 1,030556 0,824444 0,687037 0,588889

Cost performance

index (CPI)
0,200855 0,17934 0,537582 0,315956 0,740048 1,172787 1,22468

Figure 143. Evolution of AC, PV and EV

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

286

Figure 144. EVM monitoring

The progress of Sprints is monitored by the Product Owner (PO) using the

Planning/Management metrics. Within these metrics, PO was able to measure Business Value

Delivered (BVD), Release Burndown, Sprint Burndown, Velocity, Planned Percentage Complete

(PPC), and the already mentioned Actual Percentage Complete (APC).

Release Burndown, Sprint Burndown, Velocity, and PPC are measured without any input from

AMPLA. Figure 145 depicts these metrics measured by Team #B’s PO.

Figure 145. Sprint #3 burndown and team velocity measurement

As already used for EVM, APC uses the number of user stories planned, which are the sum of

user stories derived after performing AMPLA.

The BVD value is a very important measure in ASD, since it focuses in the added value for the

customers. As for its definition from the original publication from Hartmann and Dymond, BVD is

Chapter 6 – Inter-team management within an LSA process based in logical architectures

287

measured using values of Net Present Value (NPV), Internal Rate of Return (IRR), and

Return on Investment (ROI), by calculating Net cash flow per iteration (Hartmann & Dymond,

2006). In this research, the idea of measuring BVD is not by measuring the economic return of

the delivered software, but rather the importance of delivered functionalities from each increment

within the aimed product roadmap.

AMPLA provides the mechanism to measure BVD, by providing the linking between product

objectives, functional requirements and models, and the backlog items. Therefore, whenever an

increment was delivered at the end of a Sprint, as backlog items are marked as ‘done’, they are

traced back to the objectives.

The control of the BVD throughout the Sprints is performed by the sum of the ‘done’ user

stories. Such control is depicted in a Cumulative flow, like in Figure 146.

As previously described in section 4.4, the UH4SP project’s objectives that were stated

referred to:

(1) a unified view at the corporate (group of units) level;

(2) tools for third-party entities;

(3) in-plant optimization; and

(4) system reliability.

Figure 146. Cumulative flow

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

288

The previously derived backlog items from AMPLA, where the 61 user stories (available in

Annex C), were grouped within the following features:

1. Configure User profile

2. Configure User Account

3. Perform Authentication

4. Manage Stakeholders

5. Manage Trucks

6. Manage Applications

7. Collaborative tool

8. Manage Work Tokens

These features were the input for aiming the project objectives. They contributed (in %) for the

objectives, as depicted in Table 38. Each feature could contribute to more than one objective.

Then, in addition to identifying features contributions to objectives, weights for the contribution

were assigned (with an equal weight, e.g., if 3 features contributed to an objective, each one

weighed 33%, if 4 features, each one weighed 25%, etc.).

Thus, using these weights, the user stories marked as ‘done’ in each Sprint were used for

monitoring the evolution of the objective until it is achieved. The project’s objectives, together

with the gathered expectations elicited during requirements (section 4.4), are aligned with the

“Objectives and Key Results” (OKR) (Doerr, 2018), where expectations describe the key results

and how they are achieved. AMPLA provides the traceability mechanisms for linking the user

stories and features to the expectations (and, consequently, the key results).

Table 38. Feature's contributions to project's objectives

 view at the

corporate level

tools for third-party

entities

in-plant

optimization

system

reliability

Configure User profile 20% 16,67% 25% 33,3%

Configure User Account 20% 16,67% 25% 33,3%

Perform Authentication 20% 16,67% 25 33,3%

Manage Stakeholders 20% - - -

Manage Trucks - 16,67% - -

Manage Applications - 16,67% - -

Collaborative tool 20% - 25% -

Manage Work Tokens - 16,67% - -

Chapter 6 – Inter-team management within an LSA process based in logical architectures

289

Table 39 depicts the evolution of BVD throughout the Sprints, namely by controlling the

cumulative value (in %) of the project objective to be achieved. Namely, this way the PO

monitored OKR’s being met, as soon as the objective’s BVD was 100% ‘done’.

Table 39. Cumulative value of BVD

BVD (Cum) view at the

corporate level

tools for third-

party entities

in-plant

optimization

system

reliability

stories Sprint 0 0% 0% 0% 0%

stories Sprint 1 0% 0% 0% 0%

stories Sprint 2 57% 54% 54% 72%

stories Sprint 3 77% 70% 71% 83%

stories Sprint 4 93% 78% 92% 99%

Regarding the Development metrics, Team #B measured Lead Time, Processing Time, Queue

Time and the Work in Progress (WIP). The traceability provided by AMPLA allowed Team #B to

hold the data of each feature, from its specification (before Sprint # 0 or already within the

Sprints) until the respective user story is included in the Sprint Backlog and afterwards marked

as ‘done’. Table 40 depicts Lead Time, Processing Time, Queue Time. Table 41 depicts the WIP

control, although in this case the traceability from AMPLA does not have impact on such

measurement.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

290

Table 40. Lead Time, Processing Time, Queue Time

Features Specified
Implemented

Start

Implemented

Finish

Lead

Time

Queue

Time

Processing

Time

Configure User

profile
0 1 2 2 1 1

Configure User

Account
0 1 2 2 1 1

Perform

Authentication
0 1 2 2 1 1

Manage

Stakeholders
0 1 3 3 1 2

Manage Trucks 0 1 2 2 1 1

Manage

Applications
1 2 3 2 1 1

Collaborative tool 2 3 5 3 1 2

Manage Work

Tokens
4 5 5 1 1 0

Table 41. Work in Progress

 Sprint #0 Sprint #1 Sprint #2 Sprint #3 Sprint #4 Sprint #5

WIP 5 16 21 11 4 9

Regarding stakeholder metrics, in UH4SP this measurement was performed based in

customer satisfaction via a survey. Finally, regarding quality metrics, the measurement was

basically based in registering bugs and number of performed tests. These two categories of

metrics did not had any input from AMPLA.

Discussions

Use case-driven backlogs

Defining a hybrid approach (waterfall-based during initialization and Scrum-based during

implementation), with the inclusion of artifacts modeling and documentation, strengthened the

adoption of a Scrum process in a context as the one presented within the iFloW project. However,

the entire adoption was a learning process, with advantages and disadvantages, which are

detailed in this section.

Chapter 6 – Inter-team management within an LSA process based in logical architectures

291

This demonstration case showed the following advantages:

Requirements documentation waterfall-based – the fact that the Product Backlog was

composed of 90 use cases led to a shared perception of the system complexity that originated

the need to perform proper efforts in documenting the requirements. Thus, consuming efforts in

almost exclusively for requirements engineering typically performed in waterfall approaches, in

the initialization phase, allowed the project team to gain the required knowledge to properly

implement a system of such complexity.

Implementation Scrum-based – within a customer perspective, Bosch was always aware of

the system’s current state of development. The iterative development, in form of Scrum Sprints,

was crucial to manage Bosch’s expectations, due to the periodical meetings and the incremental

delivery of working software.

Use of a logical architecture – to enforce a proper organization on the set of components. The

relationships among components suggest dependencies that may affect the implementation of

functionalities and their inclusion in the Sprint Backlog.

On the other hand, it also showed the following disadvantages:

Effort estimation for use cases - the fact that it was a completely new development team

(thus team velocity was unknown) and the need to frequently perform research spikes in order to

overcome technological issues (for instance, related to GPS, EPCIS or SAP-OER) were the main

obstacles for the estimation. In Scrum, estimation is performed using techniques such as

planning poker, where user stories are estimated based in comparing efforts between other user

stories. Due to the inexperience of the team, estimating the required effort for implementing use

cases by comparing with other was itself a learning process. Such approach resulted in Sprint

backlogs where use cases had not been implemented due to error in estimating and required

conclusion in further Sprints, and where the effort estimating of the remaining use cases (as well

as rework, whenever was required, and the spikes that were performed within almost every

Sprints) required almost constant updates on every Sprint Closure and Planning meeting.

Dependence on negotiation for middleware use cases - collaborative coding among iFloW

team members and service provider team members was required to implement middleware-

related use cases. Most of the times the implementation required previous negotiation and

agreements and the implementation did not progress at the desired velocity. The team’s work

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

292

reached a point where they had to pause and wait for those agreements, which resulted in the

extension of use cases (and use cases with dependencies with them) through several Sprints.

Architecture modularization for inter-team management

Overall, in the ISOFIN project, there were clear advantages in using this approach:

(1) the teams experienced difficulties in interpreted the complete architecture, thus the

modularization was required;

(2) since the project consortium was composed by Scrum teams, they easily understood the

artifacts (i.e., User Stories);

(3) User Stories were derived having an already designed logical architecture as input, allowing

them to be properly aligned within reduced time.

Connection points between modules were identified and properly covered by User Stories but

there was not enough time during this research work to assess that the team’s efforts were in

fact synched. Besides the identification of connection points, the authors believe that there is a

vast area of progress in the topic of distributed Scrum teams.

Deriving work items

Although this case relates to the application of the method in Scrum teams, the authors

believe that it is generic for being applied in other ASD methods, like XP or Kanban. In addition, it

is perceived that such an approach is more helpful in LSA contexts, especially the sub-system

partitioning and its further refinement. This approach is planned to be experimented in the future

within LSA contexts.

By assigning a module of the architecture to a given team, we are basically defining a subset

of the backlog, i.e., a Team Backlog. Hence, it is assumed that each team is responsible for

developing a set of connected features. The predefinition of a subset (or a given feature) of the

backlog is also present in approaches like Scaled Agile Framework (SAFe), Disciplined Agile

Delivery (DAD), Enterprise Scrum, and Spotify model (or Squads/Tribes).

In the UH4SP project, the fact that it aimed to act within a complex ecosystem was taken in

consideration for applying the 4SRS method. The 4SRS is a tool for tracing components and

functional requirements models, moreover in large-scale contexts. We believe that the inclusion

Chapter 6 – Inter-team management within an LSA process based in logical architectures

293

of modeling tasks in parallel with Sprints strengthened the Scrum process in the project. The

entire research was a learning process, with advantages and disadvantages.

The advantages relate to the traceability between architecture and requirements, especially

when changes occurred during Sprints. Previous experiences in using 4SRS and delivery of work

items to Scrum teams were performed in BDUF contexts, which required around 9 months to

derive a logical architecture composed with 107 components, which then were used to derive

user stories. The emerging approach within this research allowed to first proposing a candidate

architecture after 2 months. The architectural model was used as a shared understanding and

provided a clear view of each entity’s role within the project. When incrementally modeling the

UML Use Cases in Sprints, the requirements package was also composed with wireframes, to

enrich the discussion and benefited of user feedback. The components supported the project’s

pilot scenarios. However, the candidate architecture encompasses next releases in order to follow

the product roadmap.

As a disadvantage, it is difficult to commit the entire consortium towards the approach. The

candidate architecture was proposed and the sub-systems delivered to all entities, however it was

not possible to compare the approach within all teams. Other teams used Scrum for their sub-

systems but did not follow the approach for implementing their backlog, or did not used an ASD

approach.

By applying the transformation rules, the team backlog was filled with themes, epics, use

cases, user stories and acceptance criteria. The authors believe that there may be additional

inputs to be included as transformation rules, like to foresee inclusion of backlog items that

define the need for technical work tasks, knowledge acquisition tasks, prototyping, architectural

spikes and development spikes.

6.5. Conclusions

Software development has been evolving towards an integrated MTS ecosystem, where a

software team cooperates with other teams from other entities. LSA approaches address

optimizing how scaled and distributed teams deliver software. However, it is still object of

research, where inter-team coordination and boundaries are recognized challenges.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

294

This chapter described a framework for distributed agile teams framework based in a logical

architectural artefact. It includes inputs from a set of artefacts (logical architecture, UML Use

Cases and A-type Sequence diagrams) to address architecture modularization and TPB

assignment, dependencies derivation, and inter-team communication and coordination.

AMPLA defined a process for eliciting and analyzing requirements, and deriving logical

architectures. The proposed framework (cf. Section 6.3) provided artefacts, roles and events for

addressing architecture modularization, requirements communication and distributed team

coordination.

This research’s limitation is that validation was based only by application from the method’s

designers. Without proper training in AMPLA process, the 4SRS method, etc., it would be difficult

for any project consortium to design the artefacts at this state of the theory’s maturity. Thus, the

research lacks a validation in observing “independent” teams.

Additionally, the distributed agile teams management framework is very dependent in prior

execution of AMPLA’s V-Model, since it uses the logical architecture artefact, but also, for

instance, A-type Sequence diagrams for inter-team coordination.

The theory was used in a project where an analysis team was responsible for performing

AMPLA, modularize the architecture and assign TPB. Then, each team was responsible to deliver

the software and manage coordination efforts. When each team starts defining requirements

from the beginning, it is required to propose new theories in inter-team cooperation, like

architecture co-design, for instance.

This chapter essentially described the thesis’ contribution to the process management at

large-scale topic. As key results for this topic, the following were proposed in this chapter:

- A framework for addressing modularization, communication and coordination of MTS in a

LSA setting;

- Concerns identification for modularization that traverses the logical architecture;

- Communication formats between teams using the component diagrams;

- Coordination dependencies depicting between teams from the interface components;

- Rules for writing User Stories statements;

- Rules for deriving required Product Backlog Items.

Chapter 6 – Inter-team management within an LSA process based in logical architectures

295

At this point, the models in an LSA setting started at the business-level and include the “just-

enough” information for deriving a logical architecture model able to be used for specifying

microservices and to define scope for a team in form of a product backlog. The model

abstraction-level decreased until a service-level (in case of microservices) for the product

specification, but also from a concrete work to be delivered (in form of a backlog item) for the

process management. Thus, Chapter 7 describes the findings and outputs of this research, by

discussing results regarding how AMPLA fully supports model derivation and abstraction-level

decreasing throughout the SDLC.

Further reading

For architecture modularization and team assignment, there should be a proper acquaintance

with concepts of Software-intensive systems of systems (SoS) (Maier, 1998), multiteams systems

(MTS) (Mathieu et al., 2001) or feature teams (Larman & Vodde, 2008). Techniques examples

for proposing modules are the Minimum Marketable Feature (MMF) (Denne & Cleland-Huang,

2003) and an elementary business process (EBP) (Larman, 2004) for a module minimum size.

For inter-team communication, Parnas' Principles (Parnas, 1972) suggests information format

requirements, Conway’s law suggests on the communication structure (Conway, 1968), and

knowledge sharing is promoted with Communities of Practice (CoP) (Paasivaara & Lassenius,

2014). (Paasivaara & Lassenius, 2014).

For inter-team coordination, Coordination arenas (Dingsøyr, Moe, Fægri, & Seim, 2018;

Dingsøyr, Rolland, Moe, & Seim, 2017) are tools for teams to expose their findings.

For understanding the different levels of approaches to compose a product backlog, Dean

Leffingwell presents the types of requirements information in product backlogs in the book “Agile

Software Requirements” (Leffingwell, 2010).

References

Ahmad, M. O., Lenarduzzi, V., Oivo, M., & Taibi, D. (2018). Lessons Learned on Communication

Channels and Practices in Agile Software Development. In 2nd International Conference on

Lean and Agile Software Development (LASD’18). Colocated with the Federated Conference

on Computer Science and Information Systems. Poznań, Poland.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

296

Ambler, S. (2007). Agile Model Driven Development (AMDD). XOOTIC MAGAZINE, February.

Bjørnson, F. O., Wijnmaalen, J., Stettina, C. J., & Dingsøyr, T. (2018). Inter-team Coordination in

Large-Scale Agile Development: A Case Study of Three Enabling Mechanisms. In Agile

Processes in Software Engineering and Extreme Programming. Proceedings of XP18 (pp.

216–231). Springer, Cham. https://doi.org/10.1007/978-3-319-91602-6_15

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2004). How extreme does extreme programming have

to be? Adapting XP practices to large-scale projects. In 37th Annual Hawaii International

Conference on System Sciences (p. 10 pp.). IEEE.

https://doi.org/10.1109/HICSS.2004.1265237

Cho, J. (2009). A hybrid software development method for large-scale projects: rational unified

process with scrum. Issues in Information Systems, 10(2).

Cockburn, A. (2001). Writing effective use cases, The crystal collection for software professionals.

Addison-Wesley Professional Reading.

Cohn, M. (2004). Advantages of user stories for requirements. InformIT Network.

Conway, M. E. (1968). How Do Committees Invent? Datamation, 28–31.

Denne, M., & Cleland-Huang, J. (2003). Software by Numbers: Low-Risk, High-Return

Development, 1st Edition. Sun Microsystems Press.

Díaz, J., Pérez, J., & Garbajosa, J. (2014). Agile product-line architecting in practice: A case study

in smart grids. Information and Software Technology, 56(7), 727–748.

https://doi.org/10.1016/j.infsof.2014.01.014

Dingsøyr, T., Bjørnson, F. O., Moe, N. B., Rolland, K., & Seim, E. A. (2018). Rethinking

coordination in large-scale software development. In Proceedings of the 11th International

Workshop on Cooperative and Human Aspects of Software Engineering - CHASE ’18 (pp.

91–92). New York, New York, USA: ACM Press.

https://doi.org/10.1145/3195836.3195850

Dingsøyr, T., & Moe, N. B. (2013). Research challenges in large-scale agile software

development. ACM SIGSOFT Software Engineering Notes, 38(5), 38–39.

Chapter 6 – Inter-team management within an LSA process based in logical architectures

297

Dingsøyr, T., & Moe, N. B. (2014). Towards Principles of Large-Scale Agile Development: A

Summary of the workshop at XP2014 and a revised research agenda. In Agile Methods.

Large-Scale Development, Refactoring, Testing, and Estimation. XP 2014. Springer Cham.

https://doi.org/10.1007/978-3-319-14358-3_1

Dingsøyr, T., Moe, N. B., Fægri, T. E., & Seim, E. A. (2018). Exploring software development at

the very large-scale: a revelatory case study and research agenda for agile method

adaptation. Empirical Software Engineering, 23(1), 490–520.

https://doi.org/10.1007/s10664-017-9524-2

Dingsøyr, T., Rolland, K., Moe, N. B., & Seim, E. A. (2017). Coordination in multi-team

programmes: An investigation of the group mode in large-scale agile software development.

In Procedia Computer Science (Vol. 121, pp. 123–128). Elsevier.

https://doi.org/10.1016/J.PROCS.2017.11.017

Doerr, J. (2018). Measure What Matters: How Google, Bono, and the Gates Foundation Rock the

World with OKRs. Portfolio/Penguin.

Green, P. (2011). Measuring the Impact of Scrum on Product Development at Adobe Systems. In

2011 44th Hawaii International Conference on System Sciences (pp. 1–10). IEEE.

https://doi.org/10.1109/HICSS.2011.306

Hartmann, D., & Dymond, R. (2006). Appropriate Agile Measurement: Using Metrics and

Diagnostics to Deliver Business Value. In AGILE 2006 (pp. 126–134). IEEE.

https://doi.org/10.1109/AGILE.2006.17

Hayes, W., Miller, S., Lapham, M. A., Wrubel, E., & Chick, T. (2014). Agile Metrics: Progress

Monitoring of Agile Contractors.

IIBA. (2017). Agile Extension to the BABOK Guide v2. International Institute of Business Analysis.

Jacobson, I., Spence, I., & Bittner, K. (2011). Use case 2.0: The Definite Guide. Ivar Jacobson

International.

Janus, A., Schmietendorf, A., Dumke, R., & Jäger, J. (2012). The 3C approach for agile quality

assurance. In Proceedings of the 3rd International Workshop on Emerging Trends in

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

298

Software Metrics (WETSoM) (pp. 9–13). IEEE.

https://doi.org/10.1109/WETSoM.2012.6226998

Jeon, S., Han, M., Lee, E., & Lee, K. (2011). Quality attribute driven agile development. In 9th

International Conference on Software Engineering Research, Management and Applications

(SERA) (pp. 203–210). IEEE. https://doi.org/10.1109/SERA.2011.24

Kniberg, H., & Ivarsson, A. (2012). Scaling agile@ spotify.

Kruchten, P. (1995). The 4+1 View Model of Architecture. IEEE Software, 12(6), 42–50.

https://doi.org/10.1109/52.469759

Kupiainen, E., Mäntylä, M. V., & Itkonen, J. (2015). Using metrics in Agile and Lean Software

Development – A systematic literature review of industrial studies. Information and Software

Technology, 62, 143–163. https://doi.org/10.1016/J.INFSOF.2015.02.005

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development, Third Edition. Addison Wesley Professional.

Larman, C., & Vodde, B. (2008). Scaling lean & agile development: thinking and organizational

tools for large-scale Scrum. Pearson Education.

Leffingwell, D. (2010). Agile software requirements: lean requirements practices for teams,

programs, and the enterprise. Addison Wesley Longman.

Maier, M. W. (1998). Architecting principles for systems-of-systems. Systems Engineering, 1(4),

267–284. https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-

D

Mathieu, J. E., Marks, M. A., & Zaccaro, S. J. (2001). Multiteam Systems. In Handbook of

Industrial, Work & Organizational Psychology - Volume 2: Organizational Psychology (pp.

289–313). 1 Oliver’s Yard, 55 City Road, London EC1Y 1SP United Kingdom: SAGE

Publications Ltd. https://doi.org/10.4135/9781848608368.n16

Moe, N. B., & Dingsøyr, T. (2017). Emerging Research Themes and updated Research Agenda

for Large-Scale Agile Development: A Summary of the 5th International Workshop at

XP2017. In Proceedings of the XP ’17 Workshops. ACM.

Chapter 6 – Inter-team management within an LSA process based in logical architectures

299

https://doi.org/10.1145/3120459.3120474

Moe, N. B., Olsson, H. H., & Dingsøyr, T. (2016). Trends in Large-Scale Agile Development: : A

Summary of the 4th Workshop at XP2016. In Proceedings of the Scientific Workshop

Proceedings of XP2016 on - XP ’16 Workshops (pp. 1–4). New York, New York, USA: ACM

Press. https://doi.org/10.1145/2962695.2962696

Mujtaba, S., Feldt, R., & Petersen, K. (2010). Waste and Lead Time Reduction in a Software

Product Customization Process with Value Stream Maps. In 2010 21st Australian Software

Engineering Conference (pp. 139–148). IEEE. https://doi.org/10.1109/ASWEC.2010.37

OMG. (2009). OMG Unified Modeling Language (OMG UML),Superstructure version 2.2. Object

Management Group.

Owen, J. (2016). Global Teams: How the best teams achieve high performance. FT Publishing

International.

Paasivaara, M., & Lassenius, C. (2014). Communities of practice in a large distributed agile

software development organization – Case Ericsson. Information and Software Technology,

56(12), 1556–1577. https://doi.org/10.1016/J.INFSOF.2014.06.008

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12), 1053–1058.

https://doi.org/10.1145/361598.361623

Petersen, K., & Wohlin, C. (2011). Measuring the flow in lean software development. Software:

Practice and Experience, 41(9), 975–996. https://doi.org/10.1002/spe.975

Power, K. (2014). Definition of ready: An experience report from teams at cisco. In Agile

Processes in Software Engineering and Extreme Programming. XP 2014. Springer Cham.

https://doi.org/10.1007/978-3-319-06862-6_25

Rolland, K., Fitzgerald, B., Dingsoyr, T., & Stol, K.-J. (2016). Problematizing Agile in the Large:

Alternative Assumptions for Large-Scale Agile Development. In 37th International

Conference on Information Systems (ICIS). Dublin: AIS.

Schwaber, K., & Beedle, M. (2001). Agile Software Development with Scrum. Upper Saddle

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

300

River: Prentice Hall.

Staron, M., Meding, W., & Söderqvist, B. (2010). A method for forecasting defect backlog in large

streamline software development projects and its industrial evaluation. Information and

Software Technology, 52(10), 1069–1079.

https://doi.org/10.1016/J.INFSOF.2010.05.005

Sulaiman, T., Barton, B., & Blackburn, T. (2006). AgileEVM - Earned Value Management in

Scrum Projects. In AGILE 2006 (pp. 7–16). IEEE. https://doi.org/10.1109/AGILE.2006.15

301

PART IV – CONCLUSIONS

Chapter 7 – Conclusions

302

Chapter 7 – Conclusions

Chapter 7 – Conclusions………………………………………………………………303

7.1. Focus of the Work……………………………………………………..303

7.2. Synthesis of the research efforts…………………………………....…311

7.3. Scientific Outputs……………………………………………………...313

7.4. Future work……………………………………………………………325

References………………………………………………………………………329

This chapter concludes this thesis. It describes the overall focus of the conducted

work. Additionally, it synthesizes the research efforts as well as the scientific

results of this thesis. Finally, this chapter ends with a set of proposed future work.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

303

Cap 7 – Conclusions

7.1. Focus of the Work

The use of models throughout the software development lifecycle (SDLC) – typically, starting

from identification of business needs or opportunity, then requirements, design, implementation,

testing and deployment – reflects the knowledge that stakeholders possess, at a given phase or

stage, about the solution under development. As the SDLC evolves, models typically include more

detail on software solution behavior rather than the business setting where the solution will

deploy. In model-driven development (MDD), this situation is stated as a decrease of model

abstraction.

With the adoption of agile software development (ASD) approaches, by promoting iterative and

incremental development and collecting feedback and learning for continuous adaptation,

modeled artifacts decrease in abstraction but evolve in an incremental and continually updated

way. Tracing such model evolution is needed so they are able to fulfill their purpose, which is to

help teams develop software.

While ASD have been increasingly adopted by organizations9, specifically at a team level, its

usage in wider contexts – e.g., multiple and distributed teams or global development – has led to

developing approaches for implementation at scale, which, as described in Chapter 2, are still

object of research, with some emphasis in planning and inter-team coordination. Although

acknowledging the importance of architecture in managing inter-team processes in an LSA

context, these approaches lack of a structured approach for using such information to manage

the software delivery process. Models are about presenting an abstraction of reality towards a

shared understanding of the problem, but a proper analysis allows depicting their input in

assigning work, derive dependencies, and manage inter-team communication and coordination.

Modeling a system includes multiple viewpoints regarding the architecture. A well-known

example is the “4+1 framework” which addresses Logical, Process, Development, Physical and

(“plus”) Scenarios viewpoints. The architectural lifecycle throughout a project encompasses these

viewpoints, thus all should be addressed during design. This research focuses in the logical one.

9 VersionOne, “Annual State of Agile Report”. https://www.stateofagile.com/

https://www.stateofagile.com/

Chapter 7 – Conclusions

304

The logical viewpoint regards designing software components and organizing them so the

software meets the business needs. Such organization allows depicting the scope of

functionalities that a team needs to develop and, in case of multiple or distributed teams, allows

depicting the scope of each team and respective interface needs. There is thus an opportunity for

research is supporting the model evolution, namely the logical architecture one, in order to

provide the mechanisms for ASD and LSA settings. Mechanisms include architecture emerging

and refinement, evolution traceability, relationships with other viewpoints, continuous architecting

promoted by “the power of small” (i.e., microservices) and baseline support for multiple teams

management (namely in LSA contexts).

Previously in Chapter 1, this PhD’s research question was presented, stating:

“How to adopt logical architectures in agile large-scale projects?”

This thesis presented the Agile Modeling Process for Logical Architectures (AMPLA), an Agile

Modeling (AM) oriented process composed by UML diagrams (Sequence, Use Cases and

Component). AMPLA uses agile practices in order to deliver small increments (of a requirements

package) and to promote continuous customer feedback. The proposed AM process also

includes a candidate architecture and further requirements refinement in parallel with a software

increment delivery. The refinement ranges from component design to a microservices

architecture. AMPLA supports that the model abstraction level decreases throughout the process,

providing traceability for easing changes that may occur.

AMPLA uses the techniques as well as its outputs in modeling AMPLA artifacts, like (1) Lean

Startup, Design Thinking, Domain-driven Design, BizDev and Kent Beck’s 3X in requirements

modeling; (2) Ambler’s Agile Modeling, Lean Inception for the candidate logical architecture

design; (3) Sprint zero for architecture modularization; (4) Use Cases 2.0, Scrum, XP and

Kanban backlog structures; (5) DevOps for the microservices architecture and its deployment.

This research aimed answering the research question by addressing three research

objectives. They are now revisited, as well as describing the results that resulted in their

achievement.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

305

O1: To develop an approach capable of deriving logical architectures in order to

establish the initial requirements that are passed on to agile development teams.

In chapter 6, two possible types of approaches using a logical architecture were presented:

(1) a use case-driven backlog, using UML Use Case models for defining the Product Backlog; and

(2) a user story-driven backlog, using a set of UML diagrams (Use Case, Sequence and

Components), described in Chapter 4, which can derive the “agile” backlog items. Related to the

later, firstly it was presented a set of rules for deriving user story statements (in form of “As a…I

want to…in order to…”). Then, the approach was revisited aiming deriving additional backlog

items. After performing AMPLA, the resulting logical architecture was used in order to derive

“agile” product backlog items, based in a widely adopted structure for backlogs (Leffingwell,

2010). Such derivation was enabled by a set of defined transformation rules, in short:

 A theme may be derived by the identified packages;

 an epic is directly derived from a Use Case;

 a user story creation should be based by each of the scenarios from a use case;

 User Stories Details are depicted by the software components responsible for executing the

given functionality, identified during the 4SRS method execution. Another important aspect

of the detail may be the context of use, which is depicted by scenarios, modeled in

sequence diagrams ;

 Acceptance Criteria is described in the use case description, namely the post condition.

O2: To adopt flexibility and agility mechanisms in the refinement of logical

architectures throughout the iterations of ASD teams.

In Chapter 5, AMPLA was described as a supporting mechanism for proposing a candidate

logical architecture, using a set of “just-enough” requirements. Then, supported by the 4SRS

method, the candidate logical architecture iteratively evolves as specific subsets of the

architecture are analyzed within Scrum Sprints and its components are refined.

Agile architecting is about continuous design and evolution of the solution, by acknowledging

the architecture’s evolution but assuring such evolution is not endangered by business decisions.

Included within the AMPLA method, Chapter 5 presented how continuous architecting (CA) is

supported by supporting change-impact analysis (CIA) practices for eventual changes proposals.

Due to the model traceability supported by AMPLA, CIA was able to depict impacts in concerns

as architecturally significant requirements (ASR), Quality characteristic, Business and customer

Chapter 7 – Conclusions

306

value of the requirement, Which components are affected, Compliance with standards,

Requirements emerge, and Managing architectural debt.

O3: To develop an approach oriented for continuous architecting, aiming to specify

microservices logical architectures (MSLA), identifying them and their interfaces.

As described in O2, design in ASD continuously evolves. In previous objectives the focus was

to propose an architecture from scratch and incrementally refine it. However, continuous

architecture includes assuring the architecture eases a proper maintenance. By making use of

the “power of small”, microservices architectures (MSA) style have been adopted in software

development, on one hand, in developing cloud applications, promoted by the service’s

independent deployment and maintenance and, on the other hand, using such independence

and “smallness” for promoting automation in a continuous integration, continuous delivery and

DevOps processes.

In Chapter 5, by using an adapted version of the 4SRS, a model for microservices logical

architectures (MSLA) was derived and presented using SoaML diagrams. The described approach

allows deriving the microservices’ internal behavior, their data models, and the existing

communications. The approach was described in opposite settings: (1) in an existing monolith

decomposition setting, with upfront information about legacy systems, demonstrated in IMP_4.0

and ISMPM projects; and (2) in greenfield settings, where requirements emerged (using AMPLA),

demonstrated in UH4SP project. Transiting from the logical architecture to SoaML diagrams was

systematized in modeling procedures, in short:

 Service Participants with boundary definition, communication needs (Requests/Services and

Ports)

 Service Architecture with boundary definition and communication (service requests that the

service performs)

 Service Capabilities with boundary definition and data model

 Service Interfaces with communication specifications

O4: To use logical architectures to manage assignment and orchestration process in

LSA projects

Software development settings composed with multi-teams, distributed or co-located, have an

additional concern in the SDLC to manage and coordinate work and the software delivered by

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

307

them. This process of delivering software, at large-scale – i.e., using more than one development

team, often geographically distributed - faces issues of dependencies, boundaries, coordination

and/or synchronization. In ASD settings, often referred as ‘large-scale agile development’ (LSA),

such task had to be rethought, where team collaboration heavily relies in a proper addressing of

communication, trust and alignment. A logical architecture model was able to provide important

insights for such concerns, by the organization of the components assigned for teams and the

component’s relationships that may relate with required interfaces between teams.

In Chapter 6, a framework for distributed agile teams was presented, addressing the

architecture modularization, team assignment, dependencies, requirements modelling towards

coordination and communication within distributed teams.

Modularization phase is composed by the following principles: Identify Modules of the

architecture; Assign Modules to Teams, which originates a subset of work items; Set Module

Boundaries; and Define Module Size. Derive Dependencies and Manage Communication using

predefined channels and periodicity, are present in Communication and Coordination phases.

Communication phase also includes Model W2ReqComm Package for a multiview requirements

package. Coordination phase also includes Manage Inter-team Coordination, composed by

unplanned and planned events.

AMPLA is a modeling approach covering the evolution of agile architecting, from grooming to

software delivery stages. Namely, AMPLA covers some modeling and design tasks, including

initial inputs, candidate architecture design, incremental refinement, continuous architecting and

change-impact analysis, microservice logical architecture design and deployment, and multi-

teams and multi-backlogs management. This thesis focused in the contribution of AMPLA to a set

of research topics necessary to support covering the SLDC, which are now described.

Agile modeling

AM, as the name states, is about modeling in ASD settings. While other settings, like

plan-driven (e.g., Waterfall) address the entire modeling in a specific stage of the SDLC, AM

advocates modeling throughout the SDLC, encompassing its evolution as further details of

software emerge. It relates to the opposite of “Big Design Upfront” (BDUF), aiming to prevent

modeling of “You Ain’t Gonna Need It” (YAGNI) features.

Chapter 7 – Conclusions

308

AMPLA contributes to AM by providing a stepwise model evolution, where different software

models (Sequence Diagrams, Use Cases, and Logical Architectures) are derived in succession

and properly aligned with each other in a V-Model manner.

AMPLA proposes the design of a candidate version of the logical architecture during grooming

stages of the ASD, afterwards providing mechanisms for the architecture refinement during

iteration cycles (e.g. Scrum Sprints). Additionally, AMPLA provides the traceability between the

models (Sequence Diagrams, Use Cases, Logical Architectures), as well as between the models

and the Product Backlog Items (Epics, User Stories, Acceptance Criteria, etc.).

Agile requirements engineering

Just like AM, “agile requirements engineering”10 differs from plan-driven by not being sticked

in a specific stage of the SDLC, but rather throughout the SDLC. In ASD contexts, requirements

engineering activities are still in a relatively early phase of development. However, there are

change in their timings and how they are used. In ASD frameworks, like Scrum, XP, Kanban,

SAFe, LeSS, Scrum@Scale, Nexus or Spotify Squad, the requirements are included in a product

backlog, which then drives the development process, thus most of the RE activities are

performed earlier.

For the scope of this thesis, requirements engineering outputs aim gathering the information

for enabling AMPLA at providing a candidate logical architecture. Towards such aim, this

research proposed an approach that addressed requirements elicitation, analysis and

documentation as they emerge in a stepwise and traceable way, called “Decomposing User Agile

Requirements ArTEfacts” (DUARTE).

DUARTE included inputs from ASD practices such as Lean Startup, Design Thinking, Domain-

driven Design, BizDev and Kent Beck’s 3X. By including inputs from these practices, DUARTE

aims at assuring that the gathered and modeled requirements have only the “just-enough” detail

for enabling AMPLA at deriving a candidate logical architecture.

AMPLA does not require that requirements engineering be based in DUARTE approach. In

fact, it only requires that an output is a UML Use Case model, in order to perform the Four Step

10 Requirements engineering performed in ASD settings is sometimes referred as “agile requirements engineering”, but this term is not consensual

since many authors state that “requirements engineering” techniques are the same whether in ASD or non-ASD settings. For the sake of this

thesis, we use the term “agile requirements engineering” whenever techniques are performed in ASD settings.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

309

Rule Set (4SRS) method. In chapter 4, AMPLA used both upfront and emerging requirements

activities.

Agile logical architecting

Discussing agile architecting encompasses design evolution regarding Logical, Process,

Development, Physical and Scenarios viewpoints, alongside with defining how the relationships

between viewpoints also evolve. This research proposed an Agile Architecting Lifecycle (AAL)

encompassing software design that evolves from architectural, mechanistic, and detailed design

to development and deployment. The AAL pathway goes through three stages: Grooming,

Backlog and Delivery. AAL pathway includes description of Context, Functionalities, a Candidate

Architecture and, then, a Refined Architecture.

AMPLA focuses in the evolution of the logical architecture. The agile logical architecting

approach is composed by firstly proposing a candidate version, which is later refined. The

evolution of the architectural models between the candidate and the refined one is supported by

the 4SRS method.

This thesis also included how AAL uses remaining viewpoints. In terms of the Context,

architecture viewpoints relate to domain, enterprise, business and information systems where the

project is scoped. The logical viewpoint is a central issue in Candidate Architecture and

afterwards a Refined Architecture. Finally, the Delivery relates to the deployment viewpoint. The

AAL pathway described in this thesis encompasses the inputs and outputs within each

relationship between viewpoints throughout the pathway.

Change-impact analysis

As AAL addresses design throughout the SDLC, the logical architecture model evolves as the

solution emerges. The architecture model evolution relating to Context, Candidate, Refined and

Delivery stages. This makes design as a continuous process.

AMPLA supports the continuous process by using the 4SRS method for refining the

architecture in an incremental way, allowing it to emerge as iterations occur. During these

iterations, when stakeholders review current software development status, AMPLA uses its

traceability capability, promoted by the 4SRS method, between requirements and architecture,

towards managing changes and/or new requirements, to analyze its impact on the solution

architecture, as well as manage any technical debts.

Chapter 7 – Conclusions

310

Microservices design

One of the principles for continuous architecting is to leverage the “power of small”. In that

sense, microservices architectures (MSA) is one of the most common situations when companies

adopt continuous architecting processes, characterized by small, interconnected and

independent services.

AMPLA was used in order to derive a microservices logical architecture from functional

requirements. In the refinement process, domains (DDD) were identified within the architecture

and afterwards iteratively refined, enabling deriving microservices specifications, afterwards

modeled in SoaML diagrams.

From models to (agile) backlog items

Within the Delivery stage of the SDLC, the software increment to be delivered in each iteration

is defined by a Product Backlog. This backlog is composed by a set of items that define the work

to be done during the iteration.

This research focused in defining backlogs, and its composing items, from requirements

models (namely UML Use Cases, Components and Sequence Diagrams) using rules that assure

the backlog items cover the gathered requirements. The derived backlog was filled with themes,

epics, use cases, user stories and acceptance criteria.

Agile multi-teams management

The process of delivering software using more than one development team, often distributed,

faces issues of dependencies, boundaries, coordination and/or synchronization. Architectures

are an artefact capable of supporting a set of coordination decisions.

In this research, the derived logical architecture from AMPLA’s V-Model is the foundational

artefact for a distributed agile team framework. The framework addresses the architecture

modularization, team assignment, dependencies, requirements modelling towards coordination

and communication within distributed teams.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

311

7.2. Synthesis of the research efforts

It was at somewhat in the mid of 2013, when the ISOFIN project was entering its

implementation stage, that we quickly identified that teams would have some difficulties in using

the design specifications and modeled artefacts – based in a logical architecture composed with

105 components after being derived from the 4SRS method – in their development processes.

Due to the complexity of the project, and hence the complexity of the logical architecture, the

consortium decided to divide work between three teams from different entities, but even so they

struggled to define each Product Backlog. At this point, the project lacked a systematic approach

to define the backlog items as well as pointing out interfaces between teams.

These obstacles quickly arose as a research opportunity for this work. By defining a research

method using the design science research (DSR), the objective was to base a research objective

(O1) in the described need for backlog structuring (from models) and interfaces identification and

address it using a DSR cycle from Kuechler and Vaishnavi’s framework (presented in Chapter 1).

Such results were achieved under transformation steps (in Chapter 6), however during the

research evaluation we identified that the problem facing was broader than just deriving backlog

items from logical architectures. Thus, this DSR cycles was not concluded for that time and

additional research objectives were defined (O2, O3 and O4).

For addressing each research objectives, one different DSR cycle was conducted. However,

since each DSR cycle was independent from another and thus a cycle did not rely in another

cycle’s results, they could be conducted in parallel.

As each DSR cycle was defined, their awareness was refined basing some literature review on

combining architectures and agile frameworks, as well as technical reports on previous

applications of the 4SRS method, among others, where the identified gaps were used to define

the research goal for each DSR cycle and the criteria to complete them.

The development of these cycles used designed artefacts resulting from different

demonstration cases, which relate to R&D projects. How demonstration case’s contributions were

organized towards the research objectives is synthetized in Table 42.

Chapter 7 – Conclusions

312

Table 42. Demonstration case's contributions towards the research objectives

Demonstration

case

O1 O2 O3 O4 Observations

iFloW X X Used use cases in backlogs (O1) and upfront modeling in ASD

(O2), in opposition to ISOFIN and UH4SP

ISOFIN X X Used user stories from models (O1) and modularization for

interfaces identification (O4)

UH4SP X X X X Derived a complete backlog structure (O1) in a complimentary way

as performed in ISOFIN, emerging modeling using AMPLA (O2),

modeling MSA in SoaML (O3) and defining inter-team coordination

and communication (O4) in a complimentary way as performed in

ISOFIN.

IMP_4.0 X Defined an MSA (O3), but from an existing monolith rather than

greenfield like the UH4SP

ISMPM X Defined an MSA (O3) from an existing monolith like IMP_4.0, but

allowed to address additional patterns and deployment

infrastructure, complimentary to UH4SP and IMP_4.0

As mentioned, the DSR cycles were performed in parallel, where a set of demonstration cases

contributed for the development and evaluation of the artefacts. In general, a demonstration case

was not specific to one DSR cycle (in exception from IMP_4.0 and ISMPM). The projects were

used within different contributions for each research objective, but they overlapped in time

between each other. The chronological order for the projects is the following:

• ISOFIN Cloud (2011-2014)

• iFloW (2014-2016)

• IMP_4.0 (2016-2017)

• UH4SP (2016-2018)

• ISMPM (2017-2018)

As depicted in the “Observations” column in Table 42, each project may contribute differently

in the research objective. Their outcomes may contribute for a practice (cf. Section 7.3 for

research contributes for details in the practices) but different perspectives in a given research

objective. Namely, there were cases of similar contribution for different project settings (e.g.,

IMP_4.0 for breaking existing monoliths and UH4SP for greenfield projects), additional

contributes as in a post iteration (e.g., ISOFIN defined inter-team management and backlog

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

313

derivation approaches, and afterwards UH4SP used those approaches as basis and improved

them, or ISMPM using approaches from UH4SP and IMP_4.0 as basis and additionally aligning

deployment viewpoints), and opposite approaches (e.g., iFloW using use case-driven backlogs

rather than user stories like ISOFIN and UH4SP).

These contributes – even the opposite ones – do not mean that one approach is best suited

than other. Each described case can be seen as a possible approach to be included in adopted

practices when teams are defining their development processes, as teams should define their

processes by adopting practices best suited for them rather than blindly follow a given framework

(Ambler & Lines, 2019; Jacobson, Ng, McMahon, Spence, & Lidman, 2013) – like Scrum, XP,

Kanban, SAFe, LeSS, Spotify.

It is also worth referring that this research had intermediate progress control checkpoints.

There is a “PhD Research Plan” report, dated 2015, that relates to the kick-off for the research.

The “PhD Proposal” report, dated 2017, relates to initial findings and a deep understanding of

the research process. Additionally, three doctoral consortiums allowed documenting the thesis

evolution. First, the participation in the “2016 Interoperability For Enterprise Systems And

Applications (i-ESA) Doctoral Symposium” documented some issues in adopting Scrum

framework in distributed and interoperable settings, with focus in the results from iFloW.

Afterwards, the participation in the “2016 Portuguese Software Engineering Doctoral Symposium

(SEDES)”, co-located with “International Conference on the Quality of Information and

Communications Technology (QUATIC)”, documented the research question as well as the

results from iFloW and ISOFIN. Finally, a final participation in “2017 European Conference on

Information Systems (ECIS) Doctoral Consortium)” updated the thesis progress, with equal focus

in iFloW and ISOFIN. Other participations, namely related to projects such as IMP_4.0 and

UH4SP, also allowed to discuss the research outcomes but are described in Section 7.3.

7.3. Scientific Outputs

In line with Hevner’s design theory framework (cf. Chapter 1), this thesis aimed at

contributing to both knowledge base space (i.e., added scientific theories and methods for

“science” knowledge) and environment space (i.e., practices for adoption from organizations with

software development teams). Due to the nature of the conducted research, namely by

developing design science research based in demonstration cases, the designed artefacts,

methods and processes were validated in both theoretical and practical way.

Chapter 7 – Conclusions

314

As for contributions to environment space, this thesis proposed the AMPLA process,

composed with modeling practices that software development teams may adopt. The proposed

design theory provided artefacts, roles and events for addressing architecture modularization,

requirements communication and distributed team coordination. Thus, software teams may

adopt AMPLA process for conducting software modeling throughout the SDLC – from a high-level,

business-oriented, abstraction to a lower-level, at a microservice-level, model abstraction – in an

aligned and traceable way. Additionally, it should be pointed out that, although this thesis

proposed the AMPLA process, the same AMPLA process is composed with a set of practices that

can be adopted in the SDLC independently, allowing flexibility in defining the best suitable

software development process for a given environment.

As for contributions to knowledge base space, this thesis outputs a new theory on design

artefacts for logical architecture’s usage in LSA settings. As stated in Section 7.1, developing the

theory regarding AMPLA included researching in topics such as modeling and design tasks,

including initial inputs, candidate architecture design, incremental refinement, continuous

architecting and change-impact analysis, microservice logical architecture design and

deployment, and multi-teams and multi-backlogs management. The theory contributions are (1)

an Agile Modeling Process for Logical Architectures, (2) a Process management at large-scale,

and (3) an Incremental model refinement until service level.

Contribution 1: Agile Modeling Process for Logical Architectures

The evolution of the modeled artefacts that is required for ASD settings has as main concern

to design what is “just enough” for addressing the problem, in opposition to BDUF. The proposed

AMPLA process proposed a theory for using such “just enough” information in requirements,

using DUARTE approach), in order to validate if all essential information for a candidate

architecture was gathered.

The DUARTE approach defined a theory on defining how product development mindsets like

Lean Startup, DDD, Design thinking, among others, affect requirements modeling. Before using

such information in performing the 4SRS method, AMPLA encompassed a verification checkpoint

to prevent any essential information was disregarded. This allowed preventing the candidate

version of the logical architecture to have any YAGNI features.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

315

Contribution 2: Incremental model refinement until service level

Microservices architectures (MSA) are an architectural style oriented towards modularization,

where the idea is to split the application into smaller, interconnected services, running as a

separate process that can be independently deployed, scaled and tested. Adopting microservices

include specific concerns on design, development and deployment. Assuring MSA design aligned

with business requirements needs to be supported by modeling methods that cover

microservices principles.

This thesis proposed defining a method for deriving a microservices logical architecture

(MSLA) from functional requirements. The method has as input an UML logical components

diagram, enabling deriving microservices specifications, afterwards modeled in SoaML diagrams.

Additionally, these diagrams were basis for discussing microservices principles.

This thesis included a method validation, both in greenfield settings (UH4SP project) and in

breaking existing monoliths settings (IMP_4.0 and ISMPM projects).

Contribution 3: Process management at large-scale

Research in large-scale software development projects, or, in the case of this thesis,

‘large-scale agile development’ (LSA), relates to ASD practices for scaled settings in team’s size,

number of teams, number of lines of code, among others. These practices have the concern

relating to business agility, role of architects, knowledge sharing and networks, inter-team

coordination, etc. Although it was acknowledged the potential role of models – like the

architecture – for promoting those concerns, there was a gap in a prescriptive approach for using

architectural models as input (like components and their interfaces) for supporting dependencies,

communication and coordination between teams.

The theory defines a logical architectural artefact as basis for managing the process of setting

delivery boundaries, communicating the requirements, coordinating and synchronizing inter-

teams work.

In an LSA setting, the candidate architecture is modularized and “presented” to multi-teams.

This research demonstrated how teams coordinate, communicate and synchronize during their

own model evolution, enabling the architecture model to refine incrementally in multi-modules in

parallel throughout the project.

Chapter 7 – Conclusions

316

The inputs from these research contributions result from different demonstration cases. How

demonstration case’s inputs were organized towards the research contributions is synthetized in

Table 43. As depicted in the “Observations” column in Table 43, each project may contribute

differently in the research contribution. For instance, iFloW and UH4SP projects provide opposite

inputs on modeling in ASD (or Agile Modeling), namely upfront modeling in ASD projects and

emerging modeling preventing BDUF. Also, post iterations of a contribution, which aimed at

revisiting, updating and improving the research contribution, like the case of ISOFIN in helping

define rules for deriving user story statements from UML models and the case of UH4SP that

improved these rules in order to derive additional product backlog items, such as themes, epics,

user story details and acceptance criteria.

Table 43. Demonstration case's inputs towards the research contributions

Demonstration

case

Contribution

1

Contribution

2

Contribution

3

Observations

iFloW X Use of models (upfront) in ASD projects

ISOFIN X X Use of models (upfront) in ASD projects,

Rules for deriving user story statements

and inter-team dependencies

UH4SP X X X Agile (emerging) modeling using DUARTE

and AMPLA, deriving agile backlog items

(complimentary to ISOFIN), and uses 4SRS-

MSLA in greenfield projects

IMP_4.0 X Uses 4SRS-MSLA in an existing monolith

project (with upfront requirements rather

than emerging like the UH4SP)

ISMPM X Uses 4SRS-MSLA in an existing monolith

project and discussed

In exception for ISMPM, each of the demonstration cases relate to a funded R&D project.

Which is to say that this thesis work includes scientific outputs from ISOFIN, iFloW, UH4SP and

IMP_4.0 projects.

In ISOFIN project, this research included developing and afterwards validating the applicability

of using the 4SRS method for deriving the logical architecture and afterwards delivering it to

distributed ASD teams in form of user stories and dependencies between them. Contributions

such as Contribution 1: Agile Modeling Process for Logical Architectures and

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

317

Contribution 2: Process management at large-scale, are included work of the following

project deliverables:

- M/D207 – ISOFIN Logical Architecture;

- M/D210 – Financial Domain Applications/Services Specifications

Namely, M/D207 – ISOFIN Logical Architecture documented the research work towards

upfront modeling for Contribution 1, and M/D210 – Financial Domain Applications/Services

Specifications regarding Contribution 2 that documented the research work in modularizing the

architecture, defining an approach to bound the modules scope, interfaces, and dependencies,

and presenting transition rules for user story statements (“As a… I want to… In order to…”) for

usage in ASD projects.

In iFloW project, this research included developing and afterwards validating the applicability

of using a requirements modeling in UML for use in an ASD project and backlog. Research work

towards Contribution 1: Agile Modeling Process for Logical Architectures is included

work of the following project deliverables:

- D4.4.2 - Specification of the model for experimental development;

- D5.3.8 – development of functionalities

- D6.7.9 – verification and validation of functionalities developed

Namely, report D4.4.2 - Specification of the model for experimental development documented

the requirements process and the UML models. Reports D5.3.8 – development of functionalities,

and D6.7.9 – verification and validation of functionalities developed documented the definition of

the backlog and the results of the performed iterations (Scrum Sprints) which allowed perceiving

how the iFloW project team used the derived backlog.

In UH4SP project, this research included developing the AMPLA, DUARTE and 4SRS-MSLA

approaches and afterwards validating the applicability of using emerging (agile) modeling of

requirements and candidate architecture, incremental refinement of the architecture following

microservices principles and continuous architecting, and the delivery of product backlog items

and multi-teams LSA process management. Contributions such as Contribution 1: Agile

Modeling Process for Logical Architectures, Contribution 2: Incremental model

refinement until service level and Contribution 3: Process management at large-

scale are included work of the following project deliverables:

Chapter 7 – Conclusions

318

- D.3.1 – Functional and Technical Requirements Specification;

- D.3.2 – Technical and logical architecture;

- D3.3 – Service Specification For Material Reception And Shipment;

- D3.5 – Interoperability Between Platform And Services Requirements;

- D3.7 – Solution modelling;

- D4.1.1 – UH4SP Management Platform – Initial Version;

- D4.1.2 – UH4SP Management Platform – Final Version;

- D5.4 - Integration Services and Platform.

Namely, D.3.1 – Functional and Technical Requirements Specification report documented the

results from applying the DUARTE approach, and D.3.2 – Technical and logical architecture

report documented the results of applying AMPLA for candidate logical architecture design, both

for Contribution 1. Reports D4.1.1 – UH4SP Management Platform – Initial Version, D4.1.2 –

UH4SP Management Platform – Final Version and D5.4 - Integration Services and Platform

documented, firstly, the architecture modularization, communication and coordination needs,

and afterwards, the performed iterations (Scrum Sprints) which allowed perceiving how one of

the UH4SP project team used the derived backlog, for Contribution 3. Finally, reports D3.3 –

Service Specification For Material Reception And Shipment, D3.5 – Interoperability Between

Platform And Services Requirements and D3.7 – Solution modelling regarding documented the

results from applying the 4SRS-MSLA and the microservices modeling in SoaML, for

Contribution 2.

In IMP_4.0 project, this research included developing 4SRS-MSLA and afterwards validating

the applicability of the MSLA in an existing monolith setting. Research work towards

Contribution 2: Incremental model refinement until service level, is included work of

the following project deliverables:

- D.1.4 – Functional requirements specifications – initial version;

- D.1.5 – Functional requirements specifications – final version;

- D1.8 – Traceability mechanisms for production management;

- D1.9 – IMP_4.0 logical architecture – initial version;

- D1.10 – IMP_4.0 logical architecture – final version;

- D1.11 – IMP_4.0 platform services specification.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

319

Namely, reports D.1.4 – Functional requirements specifications – initial version and D.1.5 –

Functional requirements specifications – final version documented the requirements engineering

task for the existing monoliths setting. The D1.8 – Traceability mechanisms for production

management report documented the development of the 4SRS-MSLA method. Finally, reports

D1.9 – IMP_4.0 logical architecture – initial version, D1.10 – IMP_4.0 logical architecture – final

version and D1.11 – IMP_4.0 platform services specification documented the resulting

MSLA, in form of different SoaML diagrams. All these reports documented research work towards

Contribution 2.

As mentioned in Chapter 1, in the case of the IMSPM, because it is an internal project, the

only available documentation is in form of a MSc thesis, that can be found in: Amaral, José Diogo

Coelho, “The evolution of monolithic architectures to microservice-based architectures” (free

translation of “A evolução das arquiteturas monolíticas para as arquiteturas baseadas em

microserviços”), ISEP - DM – Engenharia Informática11. This work documented the application of

4SRS-MSLA for an internal project at i2S company, allowing depicting how the existing monolith

was decomposed in an MSA, and additionally discussing deployment and infrastructure needs for

that MSA, providing complimentary insights for Contribution 2: Incremental model

refinement until service level.

A crucial part of the research work relates to communicating the results. For that aim, several

research papers were published, which are now listed.

Conference papers:

o Ferreira, N., Santos, N. & Machado, R.J., 2014. Modularization of Logical Software

Architectures for Implementation with Multiple Teams. In Proceedings of the 14th

International Conference on Computational Science and Its Applications. IEEE, pp. 1–11.

DOI: 10.1109/ICCSA.2014.14

o Costa, N., Santos, N., Ferreira, N., & Machado, R. J., 2014. Delivering user stories for

implementing logical software architectures by multiple scrum teams. In Computational

Science and Its Applications. Springer International Publishing, pp. 747-762. DOI:

10.1007/978-3-319-09150-1_55

11

 Available at: http://hdl.handle.net/10400.22/11920

http://hdl.handle.net/10400.22/11920

Chapter 7 – Conclusions

320

o Santos, N., Barbosa, D., Maia, P., Fernandes, F., Rebelo, M., Silva, P. V., Fernandes, J. M.,

Machado, R. J. (2016). iFloW: an integrated logistics software system for inbound supply

chain traceability. In E. Mendonça, J. P., Fensterbank, S.-A., Barthet (Ed.), “Enterprise

Interoperability VII”. Springer, Cham. DOI: 10.1007/978-3-319-30957-6_15

o Santos, N., Fernandes, J. M., Carvalho, S. M., Silva, P. V., Fernandes, F., Rebelo, M.,

Fernandes, J. M., Machado, R. J. (2016). Using Scrum together with UML models: A

collaborative University-Industry R&D software project. In Gervasi, O., Murgante, B., Misra, S.,

Rocha, A.M.A.C., Torre, C.M., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (Eds.)

Computational Science and Its Applications – Part III. Lecture Notes in Computer Science.

Springer. DOI: 10.1007/978-3-319-42089-9_34

o Santos, N., Pereira, J., Morais, F., Barros, J., Ferreira, N., & Machado, R. J. (2018). An agile

modeling oriented process for logical architecture design. In Gulden, J., Reinhartz-Berger, I.,

Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (Eds.) Enterprise, Business-Process and

Information Systems Modeling. Lecture Notes in Computer Science. Springer, Cham. DOI:

10.1007/978-3-319-91704-7_17

o Santos, N., Pereira, J., Morais, F., Barros, J., Ferreira, N., & Machado, R. J. (2018). An

experience report on using architectural models within distributed Scrum teams contexts. In

XP’18 Scientific Workshops. ACM. DOI: 10.1145/3234152.3234180

o Santos, N., Pereira, J., Morais, F., Barros, J., Ferreira, N., & Machado, R. J. (2018).

Incremental architectural requirements for agile modeling: a case study within a Scrum

project. In XP’18 Scientific Workshops. ACM. DOI: 10.1145/3234152.3234166

o Santos, N., Pereira, J., Morais, F., Barros, J., Ferreira, N., & Machado, R. J. (2018). Deriving

user stories for distributed Scrum teams from iterative refinement of architectural models. In

XP’18 Scientific Workshops. ACM. DOI: 10.1145/3234152.3234165

o Santos, N., Rodrigues, H., Pereira, J., Morais, F., Abreu, R., Fernandes, N., Martins, D.,

Machado, R. J. (2018). UH4SP: a software platform for integrated management of connected

smart plants. In: 9th IEEE International Conference on Intelligent Systems (IS). IEEE. DOI:

10.1109/IS.2018.8710468

o Santos, N., Pereira, J., Ferreira, N., & Machado, R. J. (2018). Modeling in agile software

development: decomposing use cases towards logical architecture design. In Product-

Focused Software Process Improvement. Lecture Notes in Computer Science. Springer. DOI:

10.1007/978-3-030-03673-7_31

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

321

o Santos, N., Ferreira, N., & Machado, R. J. (2019): “Towards agile architecting: Proposing an

architectural pathway within an Industry 4.0 project”, Information Systems: Research,

Development, Applications, Education. Springer, Cham. DOI: 10.1007/978-3-030-29608-

7_10

o Santos, N., Rodrigues, H., Ferreira, N., & Machado, R.J. (2019). “Inputs from a Model-based

Approach towards the Specification of Microservices Logical Architectures: an Experience

Report”. Product-Focused Software Process Improvement. Springer, Cham.

o Santos, N., Salgado, C. E., Rodrigues, H., Morais, F., Melo, M,, Silva, S., Martins, R., Pereira,

M., Ferreira, N., Pereira, M. & Machado, R. J. (2019). A logical architecture design method

for microservices architectures. Proceedings of 13th European Conference on Software

Architecture (ECSA 2019) - Vol.2. ACM. DOI: 10.1145/3344948.3344991

Book chapters

o Santos, N., Rodrigues, H., Pereira, J., Morais, F., Martins, R., Ferreira, N., Abreu, R.,

Machado, R.J. (2018): Specifying Software Services for Fog Computing Architectures Using

Recursive Model Transformations. In: Mahmood, Z. (ed.) Fog Computing: Concepts,

Frameworks and Technologies. pp. 153–181. Springer, Cham. DOI: 10.1007/978-3-319-

94890-4

o Santos, N., Morais, F., Rodrigues, H. & Machado, R.J. (2019). Systems Development for the

Industrial IoT: Challenges from Industry R&D Projects. In: Mahmood, Z. (Ed.), The Internet of

Things in the Industrial Sector, 1st ed. Springer Cham. DOI: 10.1007/978-3-030-24892-5

Doctoral Consortium papers:

o Santos, N., Fernandes, J. M., Carvalho, S. M., Silva, P. V., Fernandes, F., Rebelo, M.,

Fernandes, J. M., Machado, R. J. (2016). Industrial interoperability issues when adopting

Scrum in research projects: the case of the iFloW system. In “Enterprise Interoperability”,

International Conference on Interoperability for Enterprise Systems and Applications (I-ESA)

Doctoral Symposium.

o Santos, N., Machado, R. J., Ferreira, N. (2016). Adopting Logical Architectures within Agile

Projects. In 6th Portuguese Software Engineering Doctoral Symposium (SEDES) in

conjunction with the 10th International Conference on the Quality of Information and

Communications Technology (QUATIC’16). DOI: 10.1109/QUATIC.2016.059

Chapter 7 – Conclusions

322

o Santos, N., Machado, R. J., Ferreira, N. (2017). Adopting Logical Architectures within Agile

Projects. In Doctoral Consortium of the European Conference in Information Systems

(ECIS’17 DC).

Involved Master thesis:

o MSc #1: Martins, Raquel “Designing Architectures for Industrial Cloud Solutions: The UH4SP

Demonstration Case” (free translation of “Conceção de Arquiteturas de Soluções Cloud para

a Indústria: Caso de Demonstração UH4SP”), Integrated Masters in Engineering and

Management of Information Systems (MIEGSI), Department of Information Systems,

University of Minho, Portugal, 2018

(http://repositorium.sdum.uminho.pt/handle/1822/59343)

o MSc #2: Correia, Luis “Development of an Agile metrics Framework” (free translation of

“Desenvolvimento de um framework de métricas para projetos ágeis”), Integrated Masters in

Engineering and Management of Information Systems (MIEGSI), Department of Information

Systems, University of Minho, Portugal, 2018

(https://repositorium.sdum.uminho.pt/handle/1822/59138)

o MSc #3: Amaral, José Diogo Coelho, “The evolution of monohlithic architectures to

microservice-based architectures” (free translation of “A evolução das arquiteturas

monolíticas para as arquiteturas baseadas em microserviços”), ISEP - DM – Engenharia

Informática, 2018. http://hdl.handle.net/10400.22/11920

Presentations at scientific conferences:

o “Modularization of Logical Software Architectures for Implementation with Multiple Teams”,

“Tools and Techniques in Software Development Processes” session at the 14th

International Conference on Computational Science and Its Applications. Guimarães,

Portugal, July 1st 2014

o “Delivering user stories for implementing logical software architectures by multiple scrum

teams”, “Workshop of Agile Software Development Techniques” session at the 14th

International Conference on Computational Science and Its Applications. Guimarães,

Portugal, July 2nd 2014.

http://repositorium.sdum.uminho.pt/handle/1822/59343
https://repositorium.sdum.uminho.pt/handle/1822/59138
http://hdl.handle.net/10400.22/11920

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

323

o “Industrial interoperability issues when adopting Scrum in research projects: the case of the

iFloW system”, at the International Conference on Interoperability for Enterprise Systems and

Applications (I-ESA) Doctoral Symposium, Guimarães, Portugal a March 28th 2016

o “iFloW: an integrated logistics software system for inbound supply chain traceability”, 8th

International Conference on Interoperability for Enterprise Systems and Applications (I-ESA),

Guimarães, Portugal, March 31st 2016.

o “Adopting Logical Architectures within Agile Projects”, Doctoral Consortium of the European

Conference in Information Systems (ECIS DC), Guimarães, Portugal, June 5th 2017

o “An agile modeling oriented process for logical architecture design.”, 23rd International

Conference on Exploring Modeling Methods for Systems Analysis and development

(EMMSAD) in conjunction with 30th International Conference on Advanced Information

Systems (CAiSE), Tallin, Estonia, June 11th 2018.

o “An experience report on using architectural models within distributed Scrum teams

contexts”, 6th International Workshop on Large-Scale Agile Development

(LargeScaleAgile’18) in conjunction with the 19th International Conference on Agile Software

Development (XP’18), Porto, Portugal, May 28th 2018.

o “Incremental architectural requirements for agile modeling: a case study within a Scrum

project” and “Deriving user stories for distributed Scrum teams from iterative refinement of

architectural models”, at Poster Session and at “Poster Madness” session of International

Conference on Agile Software Development (XP’18), Porto, Portugal, May 22nd to 24th 2018.

 “A logical architecture design method for microservices architectures”. In 3rd Workshop on

Formal Approaches for Advanced Computing Systems (FAACS’19) in conjunction with the

13th European Conference on Software Architecture (ECSA 2019), Paris, France, September

10th 2019.

 “Towards agile architecting: Proposing an architectural pathway within an Industry 4.0

project”, at 12th EuroSymposium on Systems Analysis and Design, Gdansk, Poland,

September 19th 2019.

 “Inputs from a Model-based Approach towards the Specification of Microservices Logical

Architectures: an Experience Report”. International Conference on Product-Focused Software

Process Improvement (PROFES) 2019. Barcelona, Spain, November 27th to 29th 2019.

Presentations at other events:

Chapter 7 – Conclusions

324

 Poster session, presenting preliminar research results, at “Doctoral Programme in

Information Systems and Technology (PDTSI) Autumn Symposium 2016”, Guimarães,

Portugal, November 16th 2016

 Presentation of AMPLA process and the UH4SP architecture, included in the project’s

results, at the event “Solutions for Smart Factories in the Era of Industry 4.0 – OpenDay by

Cachapuz, Braga’s Municipality Economic Week”, Braga, Portugal, May 24th 2018

 Presentation of the IMP_4.0 architecture, included in the project’s results, at the event

“Industry 4.0 – Presentation of the IMP_4.0 Platform”, Braga, Portugal, November 27th 2017

 Presentation of the ASD approach adopted by the iFloW project, included in the project’s

results, at “HMIExcel Program Closing Conference”, Braga, Portugal, June 30th 2015

Table 44 summarizes the contribution and content of the published scientific outputs in

relation with the project/demonstration case the work was validated as well as the research

contribution.

Table 44. Published paper's relation with demonstration case and research contribution

 ISOFIN iFloW UH4SP IMP_4.0 ISMPM

TTSDP’14 RC2

WAGILE’14 RC2

I-ESA DS RC1

I-ESA’16 RC1

SEPA’16 RC1

SEDES’16 RC1 RC1

ECIS DC RC1 RC1

XP’18 WS RC2

EMMSAD’18 RC1/3

Fog book RC3

MSc #1 RC1/3

QuASD’18 RC1

IS’18 RC3

MSc #2 RC2

MSc #3 RC3

IIoT book RC3 RC3

FAACS’19 RC3

Eurosymposium’19 RC1

PROFES’19 RC3

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

325

7.4. Future work

This thesis addressed topics (cf. Section 7.1) such as agile modeling, agile requirements

engineering, agile logical architecting, Change-impact analysis, microservices design, (agile)

backlog items, and Agile multi-teams management. In addition, in all of them, there are

opportunities for improvement in future work.

Agile modeling

AMPLA proposes additional activities and artifacts in agile requirements engineering methods.

AMPLA has three established phases: (i) Requirements Elicitation; (ii) Requirements Analysis &

Modeling; (iii) Architecture Design; and (iv) Delivery Cycles. It is also composed by milestones

and artifacts - like the several derived models (sequence, use cases, components). Because the

process prescribes models derivation sequencing and dependencies, it may be perceived as

some threats for the process agility12. We acknowledge that these dependencies are mandatory

as it is, but it is planned to use AMPLA in future R&D projects at the CCG\ZGDV Institute and

depict how AMPLA process’ flexibility may be increased.

The initial three phases (Requirements Elicitation, Requirements Analysis & Modeling and

Architecture Design) required having dedicated teams for conducting these phases, with more

focus in modeling. Only when entering the fourth and final phase, the Delivery Cycles, project

teams were included in the process. In projects with more than one team, the dedicated team for

conducting the first three phases was composed by representatives from the involved teams, like

the cases of ISOFIN and UH4SP. However, in settings of more than one team, each team may

start defining requirements from the beginning, rather than start by a “shared” model, like our

proposed candidate architecture. There is a need for future research in a proper discussion on

the suitability of parallel requirements emerging rather than starting with a single architecture

proposal.

Another issue is that AMPLA was only applied in settings where the method’s designers were

included in the project’s teams. For that reason, there is a lack of information regarding the

project teams’ ability to adopt AMPLA. It is also planned for future work to apply AMPLA in other

projects at the CCG\ZGDV Institute without including the method’s designers in the project team.

This work intends to analyze if team members are able to interpret the process rules, measure

the learning curve, the willingness of teams to model all artefacts, among others.

12 Such claim is based on collected feedback, for instance, in presentations at conferences or in paper reviews.

Chapter 7 – Conclusions

326

The process lacks still of a formalization in order to ease its adoption without including the

method’s designers. Hence, as future work it is planned a formalization in a process-oriented

notation, like Software Process Engineering Metamodel (SPEM) (OMG, 2008), but mainly

Essence (Jacobson et al., 2013). Essence is a modular, method-agnostic progress control tool for

software engineering endeavors. Essence, or the SEMAT’s Essence Theory of Software

Engineering, consists of a kernel and a language. The kernel contains all the elements present in

every software engineering endeavor, while the language can be used to extend the kernel to be

tailored for specific contexts. The alphas of the kernel serve as a way of tracking project health.

Alpha states offer a way of tracking progress. In the future, AMPLA‘s model derivation and its

composing practices will be formalized using Essence’s Kernel alphas, activity spaces, and

competencies. The formalization includes describing AMPLA’s modeling practices, how

performing in parallel with other agile framework or practice, and how progressing may be

tracked.

Agile requirements engineering (RE)

The MVP requirements elicitation may be performed by gathering stakeholder’s individual

needs, also referred as “bespoke”, “custom” or “tailor-made” RE (Fernandes & Machado, 2016).

Alternatively, it may be oriented to a combination of a number of known customers, or to a mass-

market where customers cannot be clearly pinpointed, also referred as “market-driven RE”

(MDRE) (Regnell & Brinkkemper, 2005).

DUARTE is oriented for requirements elicitation together with a set of key stakeholders (e.g.,

business owner, product lead, etc.) that have clearly defined their business needs, based on a

previously defined market strategy. Hence, this phase is clearly based in Bespoke RE.

Alternatively, elicitation could be based in involving customers or other market entities (MDRE).

This context will be object of future research.

Agile logical architecting

Agile architecting is characterized for performing design activities in a way that architecture

and its requirements emerge throughout software development, where BDUF is avoided because

needs change and many features specified in BDUF are afterwards classified as YAGNI.

The AAL described in Section 5.2 showed that architecture evolves throughout the SDLC and

supports the viewpoints during such transition. However, there is space for approaches that

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

327

automate such transitions. This research presented logical architectures for the design phase

and deployment architectures for the delivery phase, like UH4SP and ISMPM. Although one may

depict relationships with both models and its inherent viewpoint transition, such transition was

not performed in a systematic and automatized way. For that reason, we acknowledge that

transition from design to technical and deployment (in Delivery stage) needs addressing in future

research for of a proper transition support.

The research works presented in Chapter 2 included architecture-centric approaches present

in ASD (Bellomo, Kruchten, Nord, & Ozkaya, 2014; Farhan, Tauseef, & Fahiem, 2009; Jeon,

Han, Lee, & Lee, 2011; Madison, 2010; R. L. Nord & Tomayko, 2006; R. Nord, Ozkaya, &

Kruchten, 2014), where architecture-centric methods such as Quality Attribute Workshop (QAW),

Attribute-Driven Design (ADD), Architecture Trade-off Analysis Method (ATAM) / Cost-Benefit

Analysis Method (CBAM) and Active Review for Intermediate Designs (ARID) are performed in

parallel with the development iterations. These approaches are based in quality requirements.

AMPLA, in the other hand, is based in functional requirements. Although not explored in this

thesis, AMPLA (more concretely, the 4SRS) is able to co-exist with these approaches – in fact, co-

existing the 4SRS with any of these approaches would certainly strengthen AMPLA.

Change-impact analysis (CIA)

Included within the AMPLA method, this thesis presented how to support CIA practices for

adjustments proposals to the product backlog, enabled by the model traceability. This thesis

proposed traceability paths for performing CIA practices that focuses in architecturally significant

requirements (ASR), quality characteristics, business and customer value of the requirement,

affected components, standards compliance, requirements emerge, and architectural debt.

The method was demonstrated by the applicability of the CIA practices within a software

team. This research focused in the use of models to support decision-making for business and

for architects, pointing where software is affected by changes and projecting the new behavior

after addressing those changes. However, the scope was not to provide guidelines or to promote

some metrics for an effective decision-making. In future research, we plan in properly analyzing

model information for providing inputs in such decision-making.

Chapter 7 – Conclusions

328

Microservices design

The traceability associated to 4SRS-MSLA method assures an alignment between the initial

Use Case model and the derived architecture proposed solution. Additionally, the method’s

outputs stand as inputs for several SoaML diagrams, which are complimentary for a proper

specification of microservices behavior and associations, such as Service Participants and

Contracts. The 4SRS-MSLA steps were adapted to meet widely known microservices

characteristics. Remaining diagrams such as Service Interface, Capabilities, Service Data, Service

Architecture, and Service Contracts, among others, are to be discussed in future works.

Moreover, the increasing adoption of microservices in industry led to defining other patterns

adopted when MSAs begin to scale, as the ones related to communications, database

architectures, data consistency, security, deployment, among many others. The discussion from

this research is an initial effort in designing the microservices architecture. It allowed defining the

bounded contexts, separation of data models, needs for API calls. However, many issues around

these concerns need to be addressed in microservices development but will be focused in future

research, like data consistency, security (tokens) needs, or messaging, brokerage or API

management. Although these have direct implications in the logical architecture derivation, and

hence relating to the present work, future work will address detailing the database-per-service

definition from the 4SRS-MSLA.

From models to (agile) backlog items

In this thesis is presented an approach for modeling in UML a set of “just-enough”

requirements and a candidate architecture, that afterwards originate ASD-oriented backlog items.

The complexity is addressed by scaling the development, namely by distributed Scrum teams.

The candidate architecture is designed by using the 4SRS method for deriving a logical

architecture, which is then modularized, refined, and used as input for a set of transformation

rules for backlog structure.

By applying the transformation rules, the team backlog was composed by themes, epics, use

cases, user stories. In future research we plan in defining additional inputs to be included as

transformation rules, like to foresee inclusion of backlog items that define the need for technical

work tasks, knowledge acquisition tasks, prototyping, architectural spikes and development

spikes.

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

329

Agile multi-teams management

AMPLA was used in a project where a dedicated team was responsible for performing

requirements modeling (by applying DUARTE) and the candidate architecture design (by

performing the 4SRS), modularize the architecture and assign those modules. Then, each team

was responsible to deliver the software and manage coordination efforts.

When each team starts defining requirements from the beginning (as already referred in future

work for “agile modeling”), it is required to propose new theories in inter-team cooperation, like

architecture co-design, for instance. As part of the future work for “agile modeling”, it is also

planned to include the development of inter-teams communication and coordination in such

settings.

For project management, AMPLA provides the traceability mechanisms for linking the user

stories and features to the expectations, which supported the control of the project progress

when at a delivery stage. At this stage, whenever an iteration occurs (e.g., Sprint), one of the

main concerns in controlling progress is by measuring the value delivered to customers. One

approach that has been increasingly adopted is the “Objectives and Key Results” (OKR) (Doerr,

2018), where expectations describe the key results and how they are achieved. AMPLA allowed

controlling the evolution of value delivered throughout the Sprints, namely by controlling the

cumulative value (in %) of the project objective to be achieved. Namely, OKR’s were being met, as

soon as the objective’s value delivered was 100% ‘done’. OKR is still an immature approach and,

for that reason, we plan to continue to use it in future projects but it is predictable that its use

within AMPLA will change.

References

Ambler, S., & Lines. (2019). Choose Your WoW!: A Disciplined Agile Delivery Handbook for

Optimizing Your Way of Working (WoW). Disciplined Agile.

Bellomo, S., Kruchten, P., Nord, R., & Ozkaya, I. (2014). How to Agilely Architect an Agile

Architecture. Cutter IT Journal.

Doerr, J. (2018). Measure What Matters: How Google, Bono, and the Gates Foundation Rock the

World with OKRs. Portfolio/Penguin.

Farhan, S., Tauseef, H., & Fahiem, M. A. (2009). Adding agility to architecture tradeoff analysis

Chapter 7 – Conclusions

330

method for mapping on crystal. In WRI World Congress on Software Engineering (WCSE’09)

- Volume 04 (Vol. 4, pp. 121–125). IEEE. https://doi.org/10.1109/WCSE.2009.405

Fernandes, J. M., & Machado, R. J. (2016). Requirements in Engineering Projects. Cham:

Springer International Publishing. https://doi.org/10.1007/978-3-319-18597-2

Jacobson, I., Ng, P., McMahon, P., Spence, I., & Lidman, S. (2013). The essence of software

Engineering: applying the SEMAT kernel. Addison-Wesley.

Jeon, S., Han, M., Lee, E., & Lee, K. (2011). Quality attribute driven agile development. In 9th

International Conference on Software Engineering Research, Management and Applications

(SERA) (pp. 203–210). IEEE. https://doi.org/10.1109/SERA.2011.24

Leffingwell, D. (2010). Agile software requirements: lean requirements practices for teams,

programs, and the enterprise. Addison Wesley Longman.

Madison, J. (2010). Agile architecture interactions. IEEE Software, 27(2), 41–48.

https://doi.org/10.1109/MS.2010.35

Nord, R. L., & Tomayko, J. E. (2006). Software architecture-centric methods and agile

development. IEEE Software, 23(2), 47–53. https://doi.org/10.1109/MS.2006.54

Nord, R., Ozkaya, I., & Kruchten, P. (2014). Agile in distress: architecture to the rescue. In T.

Dingsøyr & N. B. Moe (Eds.), International Conference on Agile Software Development

(XP’14) (pp. 43–57). Springer Verlag. https://doi.org/10.1007/978-3-319-14358-3_5

OMG. (2008). Software and Systems Process Engineering Meta-Model (SPEM).

Regnell, B., & Brinkkemper, S. (2005). Market-Driven Requirements Engineering for Software

Products. In Engineering and Managing Software Requirements (pp. 287–308).

Berlin/Heidelberg: Springer-Verlag. https://doi.org/10.1007/3-540-28244-0_13

331

APPENDIXES

Appendix A – iFloW models ... 332

Appendix B - ISOFIN models ... 339

Appendix C - UH4SP models ... 344

Appendix D – IMP_4.0 models ... 354

Appendix E - IMSPM models ... 357

Appendixes

332

Appendix A – iFloW models

Use Case model

Figure 147. iFloW use case model

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

333

Logical Architecture

Figure 148. iFloW architecture

Appendixes

334

Product Backlog

Table 45 - iFloW Backlog list

Task ID Task Description
Bosch

Priority

{U1.1.1} Obtain freight information from Kuehne Nagel related to transit from Algeciras Consolidation Center 1

{U1.1.2}
Obtain freight information from Kuehne Nagel related to transit from Hong-Kong Consolidation

Center
2

{U3.1} Show freight general information 3

{U10} Receive Freight 4

{U5.5} Edit freight ETA 5

{U6.1} Issue alerts for ETA changes 6

{U2} Search freight location 9

{U7.1} Export freight information to SAP 10

{U6.2} Issue alerts for updates in freight quantities 11

{U4} Trace freight 12

{U7.2} Export freight information to EWL 13

{U5.7} Cancel freight tracking 14

{U12} Publish freight information 15

{U13} Consult freight information 16

{U9.5} Configure delivery plan 17

{U14} Edit delivery plan 18

{U15} Validate delivery plan 19

{U1.1.3} Obtain freight information from Kuehne Nagel related to transit from Singapore Consolidation Center 20

{U1.1.4.2}
Obtain real-time freight location from Kuehne Nagel related to transit from Algeciras Consolidation

Center
21

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

335

{U1.1.4}
Obtain real-time freight location from Kuehne Nagel related to transit from Singapore Consolidation

Center
22

{U1.1.5} Obtain freight information from Kuehne Nagel related to transit from Penang Consolidation Center 23

{U1.1.6}
Obtain real-time freight location from Kuehne Nagel related to transit from Penang Consolidation

Center
24

{U1.1.7} Obtain freight information from Kuehne Nagel related to transit from Shangai Consolidation Center 25

{U1.1.8}
Obtain real-time freight location from Kuehne Nagel related to transit from Shangai Consolidation

Center
26

{U1.1.9} Obtain freight information from Kuehne Nagel related to transit from Taiwan Consolidation Center 27

{U1.1.10}
Obtain real-time freight location from Kuehne Nagel related to transit from Taiwan Consolidation

Center
28

{U1.1.11} Obtain freight information from Kuehne Nagel related to transit from Bangkok Consolidation Center 29

{U1.1.12}
Obtain real-time freight location from Kuehne Nagel related to transit from Bangkok Consolidation

Center
30

{U1.1.13}
Obtain freight information from NNR Global Logistics related to transit before Hong-Kong

Consolidation Center
31

{U1.1.14}
Obtain real-time freight location from NNR Global Logistics related to transit before Hong-Kong

Consolidation Center
32

{U9.3} Configure users 33

{U9.1} Configure routes 34

{U9.2} Configure raw materials 35

{U9.4.2} Configure interface layout 36

{U9.4.1} Configure alerts 37

{U5.1} Tag freight 38

{U8.2.6} Produce statistics of special freights requests 39

{U8.2.1} Produce OTD statistics per forwarder A

{U5.3} Indicate alternative special freight A

{U8.4} Export statistics A

Appendixes

336

{U11} Calculate BETA (ETA obtained by alghoritm calculation) A

{U5.6} Add comments A

{U6.3} Issue alerts for changes in transportation B

{U5.4} Indicate freight volume changes B

{U7.3} Export freight information to “Ficheiro de descargas” B

{U1.2.2} Obtain real-time freight location from UPS related to transit before Consolidation Centre C

{U1.2.3} Obtain real-time freight location from TNT related to transit before Consolidation Centre C

{U1.2.4} Obtain real-time freight location from Schenker related to transit before Consolidation Centre C

{U1.2.5} Obtain real-time freight location from Schenker related to transit after Consolidation Centre C

{U1.2.6} Obtain real-time freight location from LUSOCARGO related to transit after Consolidation Centre C

{U1.2.7} Obtain real-time freight location from FEDEX related to transit before Consolidation Centre C

{U1.2.8} Obtain real-time freight location from DHL related to transit before Consolidation Centre C

{U1.1.15} Obtain freight information from UPS related to transit before Schweinfurt Consolidation Centre C

{U1.1.16} Obtain freight information from TNT related to transit before Schweinfurt Consolidation Centre C

{U1.1.17} Obtain freight information from Schenker related to transit before Schweinfurt Consolidation Centre C

{U1.1.18} Obtain freight information from Schenker related to transit after Schweinfurt Consolidation Centre C

{U1.1.19} Obtain freight information from LUSOCARGO related to transit after Schweinfurt Consolidation Centre C

{U1.1.20} Obtain freight information from FEDEX related to transit before Schweinfurt Consolidation Centre C

{U1.1.21} Obtain freight information from DHL related to transit before Schweinfurt Consolidation Centre C

{U1.2.9}
Obtain real-time freight location from Vanquish China Ltd related to transit before Hong-Kong

Consolidation Center
D

{U1.2.10} Obtain real-time freight location from TLP related to transit before Hong-Kong Consolidation Center D

{U1.2.11}
Obtain real-time freight location from Supplier’s own transport related to transit before Hong-Kong

Consolidation Center
D

{U1.2.12}
Obtain real-time freight location from NNR Global Logistics related to transit before Singapure

Consolidation Center
D

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

337

{U1.2.13}
Obtain real-time freight location from Man Tak related to transit before Hong-Kong Consolidation

Center
D

{U1.2.14}
Obtain real-time freight location from Kamfu Logistics related to transit before Hong-Kong

Consolidation Center
D

{U1.2.15}
Obtain real-time freight location from Hotline International Transport (H.K.) LTD related to transit

before Hong-Kong Consolidation Center
D

{U1.2.16}
Obtain real-time freight location from Hankyu Hanshin Express related to transit before Penang

Consolidation Center
D

{U1.2.17}
Obtain real-time freight location from Good Start Transportation Company related to transit before

Hong-Kong Consolidation Center
D

{U1.2.18} Obtain real-time freight location from CWM related to transit before Penang Consolidation Center D

{U1.2.19} Obtain real-time freight location from CWB related to transit before Shangai Consolidation Center D

{U1.2.20}
Obtain real-time freight location from AEO Logistics related to transit before Penang Consolidation

Center
D

{U1.1.22}
Obtain freight information from Vanquish China Ltd related to transit before Hong-Kong Consolidation

Center
D

{U1.1.23} Obtain freight information from TLP related to transit before Hong-Kong Consolidation Center D

{U1.1.24}
Obtain freight information from Supplier’s own transport related to transit before Hong-Kong

Consolidation Center
D

{U1.1.25}
Obtain freight information from NNR Global Logistics related to transit before Singapure

Consolidation Center
D

{U1.1.26} Obtain freight information from Man Tak related to transit before Hong-Kong Consolidation Center D

{U1.1.27}
Obtain freight information from Kamfu Logistics related to transit before Hong-Kong Consolidation

Center
D

{U1.1.28}
Obtain freight information from Hotline International Transport (H.K.) LTD related to transit before

Hong-Kong Consolidation Center
D

{U1.1.29}
Obtain freight information from Hankyu Hanshin Express related to transit before Penang

Consolidation Center
D

{U1.1.30}
Obtain freight information from Good Start Transportation Company related to transit before Hong-

Kong Consolidation Center
D

{U1.1.31} Obtain freight information from CWM related to transit before Penang Consolidation Center D

{U1.1.32} Obtain freight information from CWB related to transit before Shangai Consolidation Center D

{U1.1.33} Obtain freight information from AEO Logistics related to transit before Penang Consolidation Center D

Appendixes

338

{U3.2} Show Invoice Document E

{U8.3.2} Produce transportation costs statistics E

{U8.2.5} Produce statistics of ETA variation by forwarder E

{U8.1.1} Produce quantity delivered statistics per supplier E

{U8.2.2} Produce OTD statistics related to the freights E

{U8.2.3} Produce OTD forwarders’ ranking E

{U8.3.1} Produce occupancy rate statistics by container E

{U8.1.2} Produce frequency of delivery statistics per supplier E

{U8.2.4} Produce forwarders’ deliveries frequency ranking E

{U5.2} Issue internal urgent note E

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

339

Appendix B - ISOFIN models

Logical Architecture

Figure 149: ISOFIN Product-level Logical Architecture

Repositories

Alert Editor

<<data>>
{AE4.1.d} Configured Alert

Information

<<interface>>
{AE4.1.i} Alert Configuration

Interface

Alert Installer

<<control>>
{AE4.2.1.c} Alert Code

Generator

<<control>>
{AE4.2.2.c1} Schedule Alert

<<control>>
{AE4.2.2.c2} Execute Alert

ISOFIN App
Communication

<<interface>>
{AE3.5.1.i} Send Information

From ISOFIN App

<<interface>>
{AE3.5.2.i} Receive

Information in ISOFIN App

<<interface>>
{AE3.6.1.i} Send Configuration
Commands From ISOFIN App

<<interface>>
{AE3.6.2.i} Receive

Configuration Commands to
ISOFIN App

<<interface>>
{AE3.6.3.i} Send Usage

Commands From ISOFIN App

<<interface>>
{AE3.6.4.i} Receive Usage
Commands to ISOFIN App

ISOFIN App Installer

<<interface>>
{AE3.3.1.i} ISOFIN Application

Publisher Interface

<<control>>
{AE3.3.2.c} ISOFIN App

Deployer

<<interface>>
{AE3.3.2.i} ISOFIN App
Deployment Interface

<<control>>
{AE3.3.3.c} Export ISOFIN App

Code

<<control>>
{AE3.3.4.c} ISOFIN App

Documentation Generator

<<interface>>
{AE3.3.4.i} ISOFIN App
Documentation Editor

<<control>>
{AE3.4.2.c} Test ISOFIN

Application Before
Deployment

Security Management

<<control>>
{AE1.6.c} Grant Access to

ISOFIN Platform

<<interface>>
{AE1.6.i} ISOFIN Platform

Access and Usage
Management

<<control>>
{AE2.2.6.c1} Selected Object

permissions

<<control>>
{AE2.4.1.c} IBS

Communication Validation

<<control>>
{AE3.5.1.c} ISOFIN App

Communication Validation

Logs Management

<<interface>>
{AE2.4.1.i1} IBS Log Manager

<<interface>>
{AE3.5.1.i1} ISOFIN App Log

Manager

<<interface>>
{AE4.3.i1} Alert Log Manager

<<interface>>
{AE1.3.5.i1} Subscription Log

Manager

Supplier Subscription
Management

<<control>>
{AE1.3.1.c} Evaluate Supplier

subscription

<<interface>>
{AE1.3.1.i} Supplier

subscription evaluation
interface

<<interface>>
{AE1.3.3.i} Supplier’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.1.i} Publish SBS

Subscsription in Catalog
Interface

Customer
Subscription
Management

<<control>>
{AE1.3.2.c} Evaluate Customer

subscription

<<interface>>
{AE1.3.2.i} Customer

subscription evaluation
interface

<<interface>>
{AE1.3.4.i} Customer’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.2.i} Publish Customer

Subscsription in Catalog
Interface

IBS Communication

<<interface>>
{AE2.4.1.i} Send Information

From IBS

<<interface>>
{AE2.4.2.i} Receive
Information in IBS

<<interface>>
{AE2.5.1.i} Send Configuration

Commands From IBS

<<interface>>
{AE2.5.2.i} Receive

Configuration Commands to
IBS

<<interface>>
{AE2.5.3.i} Send Usage
Commands From IBS

<<interface>>
{AE2.5.4.i} Receive Usage

Commands to IBS

IBS Installer

<<control>>
{AE2.2.7.c} IBS Interface

Generator

<<data>>
{AE2.2.7.d} IBS Interface

Repository

<<interface>>
{AE2.3.1.i} IBS Publisher

Interface

<<control>>
{AE2.3.2.c} IBS Deployer

<<interface>>
{AE2.3.2.i} IBS Deployer

Interface

<<control>>
{AE2.3.3.c} IBS Documentation

Generator

<<interface>>
{AE2.3.3.i} IBS Documentation

Editor

<<control>>
{AE2.7.2.c} Test IBS Before

Deployment

IBS Editor

<<control>>
{AE2.1.2.c1} Selected Object

configurations

<<data>>
{AE2.1.2.d} IBS Configuration

Repository

<<interface>>
{AE2.1.2.i} Low-level IBS
Configuration Interface

<<data>>
{AE2.1.3.d} IBS Structure

Repository

<<interface>>
{AE2.1.3.i} Update IBS

Structure Interface

<<control>>
{AE2.1.4.c} Compiles IBS

information

<<interface>>
{AE2.1.4.i} Update IBS

Interface

<<interface>>
{AE2.2.3.i} IBS Structure

interface

<<control>>
{AE2.2.4.c} Define IBS Code

Gaps

<<interface>>
{AE2.2.4.i} IBS Coding and

Compiling Interface

<<control>>
{AE2.2.5.c} Compile IBS code

<<data>>
{AE2.2.5.d} IBS Pre-
Deployment Storage

<<interface>>
{AE2.2.6.i} Permissions

Interface

<<control>>
{AE2.7.1.c} IBS Customization

Filter

<<interface>>
{AE2.7.1.i} IBS Customization

Interface

<<interface>>
{AE2.6.3.i} IBS

Interconnectivity interface

IBS Repository

<<data>>
{AE2.1.1.d} IBS Repository

<<interface>>
{AE2.6.1.i} IBS Repository

Interface

SBS Repository

<<data>>
{AE2.6.2.d} SBS Repository

<<interface>>
{AE2.6.2.i} SBS Repository

Interface

Alert Repository

<<data>>
{AE4.3.d} Alert Repository

<<interface>>
{AE4.3.i/c} Scheduled Alert

Dispatcher

Subscription
Repository

<<control>>
{AE1.3.5.c1} Subscription

Duplicity Verification

<<data>>
{AE1.3.5.d} ISOFIN Platform
Subscription Info Repository

<<interface>>
{AE1.3.5.i} Subscription

Repository Interface

<<data>>
{AE1.4.d} ISOFIN Platform
Subscription Assessment

Repository

<<interface>>
{AE1.8.1.i} Manage ISOFIN

Suppliers

<<interface>>
{AE1.8.2.i} Manage ISOFIN

Customers

Logs Repository

<<data>>
{AE2.4.1.d} IBS Logs

Repository

<<data>>
{AE3.5.1.d} ISOFIN App Logs

Repository

<<data>>
{AE4.3.d1} Alert Logs

Repository

<<interface>>
{AE4.3.i2} Log Repository

Interface

<<data>>
{AE1.3.5.d1} Subscription Logs

Repository

Security Repository

<<data>>
{AE1.2.1.d} ISOFIN Platform

Policies Repository

<<data>>
{AE1.6.d} ISOFIN Platform

Access Repository

ISOFIN App
Repository

<<data>>
{AE3.3.1.d} ISOFIN App

Repository

<<interface>>
{AE3.3.1.i1} ISOFIN App

Repository

Policies Management

<<interface>>
{AE1.2.1.i} Configure Supplier

Policies Interface

<<interface>>
{AE1.2.2.i} Configure

Customer Policies Interface

Subscription Management

<<interface>>
{AE1.1.1.i} Fulfillment

Subscription Requirements
Interface

<<control>>
{AE1.1.2.c1} Verifiy

Subscription data duplicity

<<control>>
{AE1.1.2.c} Validate

subscription requirement
fulfillment

<<interface>>
{AE1.1.2.i} Manual

Subscription Validation
Interface

<<interface>>
{AE1.4.i} Subscription Request

Interface

<<control>>
{AE1.7.c} Control Subscription

Requests

<<interface>>
{AE1.7.i} Suscription Request

Status Interface

ISOFIN App Editor

<<interface>>
{AE3.1.i} ISOFIN Application

Model Editor

<<interface>>
{AE3.2.1.i} IBS Information

Retrieval

<<control>>
{AE3.2.2.c} Generate ISOFIN

App Code

<<interface>>
{AE3.2.2.i} ISOFIN Application

Coding and Compiling
Interface

<<interface>>
{AE3.2.3.i} ISOFIN Application

Model Interface

<<control>>
{AE3.2.4.c} Associate Visual

Representation to
Functionality

<<interface>>
{AE3.4.1.i} ISOFIN Application

Customization Interface

««GENERATES»»

<<interface>>
{AE2.7.2.i} IBS Test Generator

<<interface>>
{AE2.6.2.i1} SBS Pallet

Retrieval Interface

<<interface>>
{AE2.6.1.i1} IBS Pallet

Retrieval Interface

2x

6x

6x

6x

6x

5x

6x

6x

2x

2x

2x

3x

3x

««GENERATES»»

Appendixes

340

Product Spots Overview

Figure 150: Logical Architecture Applications Spots

Repositories

Alert Editor

<<data>>
{AE4.1.d} Configured Alert

Information

<<interface>>
{AE4.1.i} Alert Configuration

Interface

Alert Installer

<<control>>
{AE4.2.1.c} Alert Code

Generator

<<control>>
{AE4.2.2.c1} Schedule Alert

<<control>>
{AE4.2.2.c2} Execute Alert

ISOFIN App
Communication

<<interface>>
{AE3.5.1.i} Send Information

From ISOFIN App

<<interface>>
{AE3.5.2.i} Receive

Information in ISOFIN App

<<interface>>
{AE3.6.1.i} Send Configuration
Commands From ISOFIN App

<<interface>>
{AE3.6.2.i} Receive

Configuration Commands to
ISOFIN App

<<interface>>
{AE3.6.3.i} Send Usage

Commands From ISOFIN App

<<interface>>
{AE3.6.4.i} Receive Usage
Commands to ISOFIN App

ISOFIN App Installer

<<interface>>
{AE3.3.1.i} ISOFIN Application

Publisher Interface

<<control>>
{AE3.3.2.c} ISOFIN App

Deployer

<<interface>>
{AE3.3.2.i} ISOFIN App
Deployment Interface

<<control>>
{AE3.3.3.c} Export ISOFIN App

Code

<<control>>
{AE3.3.4.c} ISOFIN App

Documentation Generator

<<interface>>
{AE3.3.4.i} ISOFIN App
Documentation Editor

<<control>>
{AE3.4.2.c} Test ISOFIN

Application Before
Deployment

Security Management

<<control>>
{AE1.6.c} Grant Access to

ISOFIN Platform

<<interface>>
{AE1.6.i} ISOFIN Platform

Access and Usage
Management

<<control>>
{AE2.2.6.c1} Selected Object

permissions

<<control>>
{AE2.4.1.c} IBS

Communication Validation

<<control>>
{AE3.5.1.c} ISOFIN App

Communication Validation

Logs Management

<<interface>>
{AE2.4.1.i1} IBS Log Manager

<<interface>>
{AE3.5.1.i1} ISOFIN App Log

Manager

<<interface>>
{AE4.3.i1} Alert Log Manager

<<interface>>
{AE1.3.5.i1} Subscription Log

Manager

Supplier Subscription
Management

<<control>>
{AE1.3.1.c} Evaluate Supplier

subscription

<<interface>>
{AE1.3.1.i} Supplier

subscription evaluation
interface

<<interface>>
{AE1.3.3.i} Supplier’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.1.i} Publish SBS

Subscsription in Catalog
Interface

Customer
Subscription
Management

<<control>>
{AE1.3.2.c} Evaluate Customer

subscription

<<interface>>
{AE1.3.2.i} Customer

subscription evaluation
interface

<<interface>>
{AE1.3.4.i} Customer’s

Subscriptions Requirements
Interface

<<interface>>
{AE1.5.2.i} Publish Customer

Subscsription in Catalog
Interface

IBS Communication

<<interface>>
{AE2.4.1.i} Send Information

From IBS

<<interface>>
{AE2.4.2.i} Receive
Information in IBS

<<interface>>
{AE2.5.1.i} Send Configuration

Commands From IBS

<<interface>>
{AE2.5.2.i} Receive

Configuration Commands to
IBS

<<interface>>
{AE2.5.3.i} Send Usage
Commands From IBS

<<interface>>
{AE2.5.4.i} Receive Usage

Commands to IBS

IBS Installer

<<control>>
{AE2.2.7.c} IBS Interface

Generator

<<data>>
{AE2.2.7.d} IBS Interface

Repository

<<interface>>
{AE2.3.1.i} IBS Publisher

Interface

<<control>>
{AE2.3.2.c} IBS Deployer

<<interface>>
{AE2.3.2.i} IBS Deployer

Interface

<<control>>
{AE2.3.3.c} IBS Documentation

Generator

<<interface>>
{AE2.3.3.i} IBS Documentation

Editor

<<control>>
{AE2.7.2.c} Test IBS Before

Deployment

IBS Editor

<<control>>
{AE2.1.2.c1} Selected Object

configurations

<<data>>
{AE2.1.2.d} IBS Configuration

Repository

<<interface>>
{AE2.1.2.i} Low-level IBS
Configuration Interface

<<data>>
{AE2.1.3.d} IBS Structure

Repository

<<interface>>
{AE2.1.3.i} Update IBS

Structure Interface

<<control>>
{AE2.1.4.c} Compiles IBS

information

<<interface>>
{AE2.1.4.i} Update IBS

Interface

<<interface>>
{AE2.2.3.i} IBS Structure

interface

<<control>>
{AE2.2.4.c} Define IBS Code

Gaps

<<interface>>
{AE2.2.4.i} IBS Coding and

Compiling Interface

<<control>>
{AE2.2.5.c} Compile IBS code

<<data>>
{AE2.2.5.d} IBS Pre-
Deployment Storage

<<interface>>
{AE2.2.6.i} Permissions

Interface

<<control>>
{AE2.7.1.c} IBS Customization

Filter

<<interface>>
{AE2.7.1.i} IBS Customization

Interface

<<interface>>
{AE2.6.3.i} IBS

Interconnectivity interface

IBS Repository

<<data>>
{AE2.1.1.d} IBS Repository

<<interface>>
{AE2.6.1.i} IBS Repository

Interface

SBS Repository

<<data>>
{AE2.6.2.d} SBS Repository

<<interface>>
{AE2.6.2.i} SBS Repository

Interface

Alert Repository

<<data>>
{AE4.3.d} Alert Repository

<<interface>>
{AE4.3.i/c} Scheduled Alert

Dispatcher

Subscription
Repository

<<control>>
{AE1.3.5.c1} Subscription

Duplicity Verification

<<data>>
{AE1.3.5.d} ISOFIN Platform
Subscription Info Repository

<<interface>>
{AE1.3.5.i} Subscription

Repository Interface

<<data>>
{AE1.4.d} ISOFIN Platform
Subscription Assessment

Repository

<<interface>>
{AE1.8.1.i} Manage ISOFIN

Suppliers

<<interface>>
{AE1.8.2.i} Manage ISOFIN

Customers

Logs Repository

<<data>>
{AE2.4.1.d} IBS Logs

Repository

<<data>>
{AE3.5.1.d} ISOFIN App Logs

Repository

<<data>>
{AE4.3.d1} Alert Logs

Repository

<<interface>>
{AE4.3.i2} Log Repository

Interface

<<data>>
{AE1.3.5.d1} Subscription Logs

Repository

Security Repository

<<data>>
{AE1.2.1.d} ISOFIN Platform

Policies Repository

<<data>>
{AE1.6.d} ISOFIN Platform

Access Repository

ISOFIN App
Repository

<<data>>
{AE3.3.1.d} ISOFIN App

Repository

<<interface>>
{AE3.3.1.i1} ISOFIN App

Repository

Policies Management

<<interface>>
{AE1.2.1.i} Configure Supplier

Policies Interface

<<interface>>
{AE1.2.2.i} Configure

Customer Policies Interface

Subscription Management

<<interface>>
{AE1.1.1.i} Fulfillment

Subscription Requirements
Interface

<<control>>
{AE1.1.2.c1} Verifiy

Subscription data duplicity

<<control>>
{AE1.1.2.c} Validate

subscription requirement
fulfillment

<<interface>>
{AE1.1.2.i} Manual

Subscription Validation
Interface

<<interface>>
{AE1.4.i} Subscription Request

Interface

<<control>>
{AE1.7.c} Control Subscription

Requests

<<interface>>
{AE1.7.i} Suscription Request

Status Interface

ISOFIN App Editor

<<interface>>
{AE3.1.i} ISOFIN Application

Model Editor

<<interface>>
{AE3.2.1.i} IBS Information

Retrieval

<<control>>
{AE3.2.2.c} Generate ISOFIN

App Code

<<interface>>
{AE3.2.2.i} ISOFIN Application

Coding and Compiling
Interface

<<interface>>
{AE3.2.3.i} ISOFIN Application

Model Interface

<<control>>
{AE3.2.4.c} Associate Visual

Representation to
Functionality

<<interface>>
{AE3.4.1.i} ISOFIN Application

Customization Interface

««GENERATES»»

<<interface>>
{AE2.7.2.i} IBS Test Generator

<<interface>>
{AE2.6.2.i1} SBS Pallet

Retrieval Interface

<<interface>>
{AE2.6.1.i1} IBS Pallet

Retrieval Interface

2x

6x

6x

6x

6x

5x

6x

6x

2x

2x

2x

3x

3x

««GENERATES»»

ISOFIN Application Management

IBS Management

Alert Management

Subscription Management

Security Management

Policies Management

Logs Management

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

341

ISOFIN App module’s User Stories

Figure 151. ISOFIN App module

Table 46. User Stories for c-types from ISOFIN App Management module

Component Name As a(n)

<actor>

I want/need (to/be able to)

<description>

In order to

<outcome>

3.2.2.c
Generate ISOFIN App

Code
IBS Developer generate ISOFIN App code

generate ISOFIN App

3.2.4.c

Associate Visual

Representation to

Functionality

IBS Developer
associate visual representations to

functionalities
define interface fields

3.3.2.c
ISOFIN App Deployer

IBS Developer ISOFIN App deployer
execute ISOFIN App

deployment

3.3.3.c
Export ISOFIN App

Code
IBS Developer export ISOFIN App code

deploy ISOFIN

Application

3.3.4.c

ISOFIN App

Documentation

Generator

IBS Developer ISOFIN App Documentation Generator

automatically generate

ISOFIN app

documentation

Alert
Installer

ISOFIN App
Communication

ISOFIN App Installer

<<interface>>
{AE3.3.1.i} ISOFIN Application

Publisher Interface

<<control>>
{AE3.3.2.c} ISOFIN App

Deployer

<<interface>>
{AE3.3.2.i} ISOFIN App
Deployment Interface

<<control>>
{AE3.3.3.c} Export ISOFIN App

Code

<<control>>
{AE3.3.4.c} ISOFIN App

Documentation Generator

<<interface>>
{AE3.3.4.i} ISOFIN App
Documentation Editor

<<control>>
{AE3.4.2.c} Test ISOFIN

Application Before
Deployment

Security
Management

IBS Installer

IBS Editor

IBS Repository

<<interface>>
{AE2.6.1.i} IBS Repository

Interface

Alert
Repository

<<interface>>
{AE4.3.i/c} Scheduled Alert

Dispatcher

Logs
Repository

ISOFIN App
Repository

<<data>>
{AE3.3.1.d} ISOFIN App

Repository

<<interface>>
{AE3.3.1.i1} ISOFIN App

Repository

ISOFIN App Editor

<<interface>>
{AE3.1.i} ISOFIN Application

Model Editor

<<interface>>
{AE3.2.1.i} IBS Information

Retrieval

<<control>>
{AE3.2.2.c} Generate ISOFIN

App Code

<<interface>>
{AE3.2.2.i} ISOFIN Application

Coding and Compiling
Interface

<<interface>>
{AE3.2.3.i} ISOFIN Application

Model Interface

<<control>>
{AE3.2.4.c} Associate Visual

Representation to
Functionality

<<interface>>
{AE3.4.1.i} ISOFIN Application

Customization Interface

2x

2x
3x

««GENERATES»»

ISOFIN Application Management Module

<<interface>>
{AE1.6.i} ISOFIN Platform

Access and Usage

Management

<<control>>
{AE4.2.1.c} Alert Code

Generator

<<interface>>
{AE3.6.1.i} Send

Configuration Commands

From ISOFIN App

<<interface>>
{AE3.5.2.i} Receive

Information in ISOFIN

App

<<interface>>
{AE3.5.1.i} Send

Information From ISOFIN

App

<<interface>>
{AE3.6.3.i} Send Usage

Commands From ISOFIN

App

<<interface>>
{AE3.6.4.i} Receive Usage

Commands to ISOFIN

App

<<interface>>
{AE3.6.2.i} Receive

Configuration Commands

to ISOFIN App

<<interface>>
{AE2.3.1.i} IBS Publisher

Interface

<<interface>>
{AE2.3.3.i} IBS

Documentation Editor

<<control>>
{AE2.3.3.c} IBS
Documentation

Generator

<<data>>
{AE2.2.7.d} IBS Interface

Repository

<<control>>

{AE2.3.2.c} IBS Deployer

<<interface>>
{AE2.3.2.i} IBS Deployer

Interface <<interface>>
{AE2.6.1.i1} IBS Pallet

Retrieval Interface

<<interface>>
{AE2.1.3.i} Update IBS

Structure Interface

<<interface>>
{AE2.1.4.i} Update IBS

Interface

<<control>>
{AE2.2.4.c} Define IBS

Code Gaps

<<interface>>
{AE2.6.3.i} IBS

Interconnectivity

interface

<<control>>
{AE2.1.4.c} Compiles IBS

information

<<control>>
{AE2.1.2.c1} Selected

Object configurations

<<data>>
{AE2.2.5.d} IBS Pre-

Deployment Storage

<<control>>
{AE2.2.5.c} Compile IBS

code

<<interface>>
{AE2.1.2.i} Low-level IBS

Configuration Interface

<<interface>>
{AE2.2.4.i} IBS Coding

and Compiling Interface

<<interface>>
{AE2.2.3.i} IBS Structure

interface

<<control>>
{AE2.7.1.c} IBS

Customization Filter

<<interface>>
{AE2.7.1.i} IBS

Customization Interface

<<data>>
{AE2.1.1.d} IBS

Repository

<<data>>
{AE4.3.d} Alert

Repository

<<data>>
{AE4.3.d1} Alert Logs

Repository

<<interface>>
{AE4.3.i2} Log Repository

Interface

Appendixes

342

3.4.2.c

Test ISOFIN App

Before

Deployment

IBS Developer /

Business User
 test ISOFIN App Before Deployment

render and test ISOFIN

App in PreRuntime

Table 47. User Stories for d-types from ISOFIN App Management module

Component Name As a(n)

<actor>

I want/need

(to/be able to)

In order to

 <description>

 <outcome>

3.3.1.d
ISOFIN App

Repository
IBS Developer

ISOFIN App

repository

publish ISOFIN application in catalog

Table 48. User Stories for i-types from ISOFIN App Management module

Components Name As a(n)

<actor>

I want/need (to/be

able to)

<description>

In order to

<outcome>

3.1.i ISOFIN App Model Editor IBS Business Analyst
ISOFIN App model editor

interface

model the composition of an

ISOFIN application

3.2.1.i
IBS Information Retrieval

IBS Developer
IBS information retrieval

interface

provide access to IBS catalogs

3.2.2.i
ISOFIN App Coding and

Compiling Interface
IBS Developer

ISOFIN App coding and

compiling interface
create ISOFIN app code

3.2.3.i
ISOFIN App Model

Interface
IBS Developer ISOFIN App model interface

create ISOFIN app model and

generate ISOFIN app code

3.3.1.i
ISOFIN App Publisher

Interface
IBS Developer

ISOFIN App publisher

interface

publish ISOFIN application in

catalog

3.3.1.i1 ISOFIN App Repository IBS Developer
ISOFIN App repository

interface

access and publish ISOFIN

applications in catalogs

3.3.2.i
ISOFIN App Deployment

Interface
IBS Developer

ISOFIN App deployment

interface
execute ISOFIN App deployment

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

343

3.3.4.i
ISOFIN App Documentation

Editor
IBS Developer

ISOFIN App documentation

interface

provides an interface to allow to

get the automatically generated

documentation

Appendixes

344

Appendix C - UH4SP models

Use Cases decomposition

Figure 152. Use case model refinement

Le
ve

l 3

Le
ve

l 2

Le
ve

l 1

Le
ve

l 0

Cl
ou

d
M

an
ag

em
en

t

UH
4S

P

Sy
st

em

A
dm

in
is

tr
at

or

C
lo

ud
 c

on
su

m
er

s

{U
.C

.1
} M

an
ag

e
bu

sin
es

s s
up

po
rt

{U
.C

.3
} M

an
ag

e c
lo

ud

in
te

ro
pe

ra
bi

lit
y

an
d

po
rt

ab
ili

ty

{U
.C

.4
}

M
an

ag
e c

lo
ud

se

cu
rit

y a
nd

 p
riv

ac
y

{U
.C

.2
} C

on
fig

ur
e

clo
ud

 se
rv

ice

Se
rv

ic
e

M
an

ag
em

en
t

«u
se

s»

{U
.C

.7
} P

er
fo

rm
s

bu
sin

es
s a

ct
ivi

tie
s

{U
.C

.6
} M

an
ag

e
lo

ca
l P

la
tfo

rm

{U
.C

.5
} C

on
fig

ur
e

in
du

st
ria

l u
ni

ts
se

tti
ng

s

{U
.C

.1
} M

an
ag

e b
us

in
es

s s
up

po
rt

{U
.C

.1
.3

} C
on

su
lt

SL
A

{U
.C

.1
.1

} C
on

fig
ur

e
us

er
s a

cc
ou

nt

{U
.C

.1
.2

} C
on

fig
ur

e
us

er
s p

ro
fil

e

Sy
st

em

A
dm

in
is

tr
at

or

C
lo

ud
 C

on
su

m
er

{U
.C

.2
.2

} M
on

ito
r

pl
at

fo
rm

{U
.C

.2
} C

on
fig

ur
e

clo
ud

se

rv
ice

{U
.C

.2
.3

} M
ea

su
re

se

rv
ic

es
 u

til
iza

tio
n

{U
.C

.2
.1

} M
an

ag
e

se
rv

ic
es

{U
.C

.2
.4

} L
in

k
gl

ob
al

 a
nd

 lo
ca

l
en

tit
ie

s

Sy
st

em

A
dm

in
is

tr
at

or

{U
.C

.2
.5

} D
ef

in
e

SL
A

C
lo

ud
 C

on
su

m
er

s

{U
.C

.3
} M

an
ag

e c
lo

ud
 in

te
ro

pe
ra

bi
lit

y a
nd

po

rta
bi

lit
y

Sy
st

em

A
dm

in
is

tr
at

or

In
du

st
ria

l u
ni

t I
S

{U
.C

.4
} M

an
ag

e c
lo

ud
 se

cu
rit

y a
nd

 p
riv

ac
y

{U
.C

.4
.1

} M
an

ag
e

ba
ck

up
s

{U
.C

.4
.2

} C
on

fig
ur

e
da

ta
 a

cc
es

s c
on

tro
l

{U
.C

.4
.3

} M
on

ito
r

ac
tiv

iti
es

Sy
st

em
A

dm
in

is
tr

at
or

C
lo

ud
 c

on
su

m
er

s

{U
.C

.5
} C

on
fig

ur
e

in
du

st
ria

l u
ni

ts
 se

tti
ng

s

{U
.C

.5
.1

}
Ca

ta
lo

g e
nt

iti
es

Lo
ca

l m
an

ag
er

C
or

po
ra

te
 m

an
ag

er

{U
.C

.5
.2

}
Co

nf
ig

ur
e t

as
ks

{U
.C

.6
.6

} P
er

fo
rm

sim

ul
at

io
n

m
od

el
s

Sy
st

em

A
dm

in
is

tr
at

or

O
pe

ra
to

rs

{U
.C

.6
.4

}
Pr

ov
id

e u
se

rs
 tr

ai
ni

ng

D
riv

er
s

{U
.C

.6
.1

}
M

an
ag

e l
oc

al
 IT

re

so
ur

ce
s

{U
.C

.6
.2

} S
ch

ed
ul

e
in

te
rv

en
tio

ns

{U
.C

.6
} M

an
ag

e l
oc

al
pl

at
fo

rm

{U
.C

.6
.5

}
Ge

ne
ra

te
 te

m
pl

at
es

Lo
ca

l M
an

ag
er

{U
.C

.7
} P

er
fo

rm
 b

us
in

es
s

ac
tiv

iti
es

{U
.C

.7
.1

} A
cc

es
s

bu
sin

es
s i

nf
or

m
at

io
n

Lo
ca

l M
an

ag
er

{U
.C

.7
.2

} M
an

ag
e

op
er

at
io

ns

O
pe

ra
to

r

C
lie

nt
s

Su
pp

lie
rs

Fo
rw

ar
de

rs

C
or

po
ra

te
m

an
ag

er

{U
.C

.7
.3

}
Co

nf
ig

ur
e i

nd
us

tri
al

un
it

gu
id

an
ce

In
du

st
ria

l u
ni

t I
S

{U
.C

.7
.1

} A
cc

es
s

bu
sin

es
s i

nf
or

m
at

io
n

{U
.C

.7
.1

.1
} C

on
su

lts

in
fo

rm
at

io
n

{U
.C

.7
.1

.2
} C

on
fig

ur
e

in
fo

rm
at

io
n

ac
ce

ss

C
lie

nt
s

Su
pp

lie
rs

Fo
rw

ar
de

rs

Lo
ca

l M
an

ag
er

{U
.C

.7
.1

.3
}

Pe
rfo

rm
 b

us
in

es
s

no
tif

ica
tio

ns

C
or

po
ra

te
m

an
ag

er

{U
.C

.1
.1

} C
on

fig
ur

e
us

er
s a

cc
ou

nt

{U
.C

.1
.1

.1
} C

re
at

e
us

er
 a

cc
ou

nt

{U
.C

.1
.1

.2
} E

di
t

us
er

 a
cc

ou
nt

{U
.C

.1
.1

.3
} D

isa
bl

e
us

er
 a

cc
ou

nt

C
lo

ud
 C

on
su

m
er

Sy
st

em

A
dm

in
is

tr
at

or

{U
.C

.2
.1

} M
an

ag
e s

er
vic

es

{U
.C

.2
.1

.1
} I

ns
ta

ll
se

rv
ic

e

{U
.C

.2
.1

.2
} E

di
t

se
rv

ic
e

{U
.C

.2
.1

.3
} D

isa
bl

e
se

rv
ic

e

{U
.C

.2
.1

.4
} U

pd
at

e
se

rv
ic

e

Sy
st

em

A
dm

in
is

tr
at

or

C
lie

nt

Fo
rw

ar
de

r

Su
pp

lie
r

C
or

po
ra

te
 m

an
ag

er

Lo
ca

l M
an

ag
er

O
pe

ra
to

r

Pr
od

uc
tio

n
un

it
IS

{U
.C

.3
.2

}
Sy

nc
hr

on
ize

 d
at

a

{U
.C

.3
.1

} I
nt

eg
ra

te

sy
st

em
s

«i
nc

lu
de

»

{U
.C

.7
.2

.4
} I

nt
eg

ra
te

lo

ca
l in

fo
rm

at
io

n
sy

st
em

s d
at

a

{U
.C

.7
.2

.4
.1

} I
nt

eg
ra

te

w
ith

 se
ns

or
s

{U
.C

.7
.2

.4
.2

}
In

te
gr

at
e

w
ith

m

ob
ile

 d
ev

ice
s

In
du

st
ria

l u
ni

t I
S

{U
.C

.7
.2

.4
.3

}
In

te
gr

at
e

w
ith

sy

st
em

s

IT
 M

an
ag

er

C
or

po
ra

te
 M

an
ag

er

IT
 M

an
ag

er

D
riv

er

{U
.C

.6
.3

} P
er

fo
rm

in

te
rv

en
tio

ns

Sy
st

em

A
dm

in
is

tr
at

or

Sy
st

em

A
dm

in
is

tr
at

or

{U
.C

.7
.2

} M
an

ag
e

op
er

at
io

ns

{U
.C

.7
.2

.1
} A

bo
rt

op
er

at
io

ns

C
lie

nt
s

Su
pp

lie
rs

Fo
rw

ar
de

rs

Lo
ca

l M
an

ag
er

{U
.C

.7
.2

.2
}

Co
ns

ul
t

op
er

at
io

ns

O
pe

ra
to

r

In
du

st
ria

l u
ni

t I
S

{U
.C

.7
.2

.4
}

In
te

gr
at

e
lo

ca
l

in
fo

rm
at

io
n

sy
st

em
s d

at
a

{U
.C

.7
.2

.3
}

No
tif

y
op

er
at

io
ns

C
or

po
ra

te
m

an
ag

er

{U
.C

.7
.2

.5
}

Re
gi

st
er

op

er
at

io
ns

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

345

Figure. 153. Use case decomposition tree of UH4SP, the Use cases from MVP features and for

further releases (Lean Startup), and the domain's and sub-domain's bounded contexts (DDD)

Sy
st

em

S
y
s
te

m

A
d
m

in
is

tr
a
to

r

C
lo

u
d
 c

o
n
s
u

m
e
rs

{U
.C

.1
}

M
a

na
ge

b

us
in

es
s

su
p

p
o

rt

{U
.C

.3
}

M
a

na
ge

 c
lo

u
d

in

te
ro

p
er

ab
ili

ty
 a

n
d

p

or
ta

b
ili

ty

{U
.C

.4
}

M
a

na
ge

 c
lo

u
d

se

cu
ri

ty
 a

nd
 p

ri
va

cy

{U
.C

.2
}

C
on

fi
gu

re

cl
o

u
d

se
rv

ic
e

{U
.C

.7
}

P
er

fo
rm

s
b

us
in

es
s

a
ct

iv
it

ie
s

{U
.C

.6
}

M
a

na
ge

lo

ca
l P

la
tf

or
m

{U
.C

.5
}

C
on

fi
gu

re

in
d

u
st

ri
al

 u
n

it
s

se
tt

in
gs

{U
.C

.1
}

M
a

n
ag

e
b

u
si

n
e

ss
 s

u
p

p
o

rt

{U
.C

.1
.3

}
C

on
su

lt
 S

LA

{U
.C

.1
.1

}
C

on
fi

gu
re

u

se
rs

 a
cc

o
un

t

{U

.C
.1

.2
}

C
on

fi
gu

re

u
se

rs
 p

ro
fi

le

S
y
s
te

m

A
d
m

in
is

tr
a
to

r

C
lo

u
d
 C

o
n

s
u
m

e
r

{U
.C

.2
.2

}
M

o
n

it
o

r
p

la
tf

or
m

{U
.C

.2
}

C
o

n
fi

gu
re

 c
lo

u
d

se

rv
ic

e

{U
.C

.2
.3

}
M

e
as

u
re

se

rv
ic

es
 u

ti
liz

at
io

n

{U
.C

.2
.1

}
M

a
na

ge

se
rv

ic
es

{U
.C

.2
.4

}
Li

n
k

gl
ob

al
 a

nd
 lo

ca
l

en
ti

ti
es

S
y
s
te

m

A
d
m

in
is

tr
a
to

r

{U
.C

.2
.5

}
D

ef
in

e
SL

A

C
lo

u
d
 C

o
n

s
u
m

e
rs

{U
.C

.5
}

C
o

n
fi

gu
re

in

d
u

st
ri

al
 u

n
it

s
se

tt
in

gs

{U
.C

.5
.1

}
C

at
al

o
g

en
ti

ti
es

L
o
c
a
l
m

a
n

a
g
e
r

C
o
rp

o
ra

te
 m

a
n

a
g
e
r

{U
.C

.5
.2

}
C

on
fi

gu
re

 t
as

ks

{U
.C

.6
.6

}
P

er
fo

rm

si
m

ul
at

io
n

 m
o

de
ls

S
y
s
te

m

A
d
m

in
is

tr
a
to

r

O
p

e
ra

to
rs

{U
.C

.6
.4

}
P

ro
vi

d
e

u
se

rs
 t

ra
in

in
g

D
ri

v
e
rs

{U
.C

.6
.1

}
M

a
na

ge
 lo

ca
l I

T

re
so

u
rc

e
s

{U
.C

.6
.2

}
Sc

he
du

le

in
te

rv
e

nt
io

n
s

{U
.C

.6
}

M
a

n
ag

e
lo

ca
l

p
la

tf
o

rm

{U
.C

.6
.5

}
G

en
er

at
e

te
m

pl
at

es
L

o
c
a
l
M

a
n
a
g

e
r

{U
.C

.7
}

P
er

fo
rm

 b
u

si
n

es
s

ac
ti

vi
ti

es

{U
.C

.7
.1

}
A

cc
e

ss

b
us

in
es

s
in

fo
rm

a
ti

o
n

L
o
c
a
l
M

a
n
a
g

e
r

{U
.C

.7
.2

}
M

a
na

ge

o
pe

ra
ti

o
n

s

O
p

e
ra

to
r

C
li
e
n
ts

S
u

p
p

li
e
rs

F
o
rw

a
rd

e
rs

C
o
rp

o
ra

te
m

a
n

a
g
e
r

{U
.C

.7
.3

}
C

on
fi

gu
re

 in
d

us
tr

ia
l

u
ni

t
gu

id
a

nc
e

In
d

u
st

ri
a
l
u
n

it
 IS

{U
.C

.7
.1

}
A

cc
es

s
b

u
si

n
es

s
in

fo
rm

at
io

n

{U
.C

.7
.1

.1
}

C
on

su
lt

s
in

fo
rm

at
io

n

{U
.C

.7
.1

.2
}

C
on

fi
gu

re

in
fo

rm
at

io
n

 a
cc

es
s

C
li
e
n
ts

S
u

p
p

li
e
rs

F
o
rw

a
rd

e
rs

L
o
c
a
l
M

a
n
a
g

e
r

{U
.C

.7
.1

.3
}

P
er

fo
rm

 b
us

in
es

s
n

ot
if

ic
a

ti
o

ns

C
o
rp

o
ra

te
m

a
n

a
g
e
r

{U
.C

.1
.1

}
C

o
n

fi
gu

re
 u

se
rs

 a
cc

o
u

n
t

{U
.C

.1
.1

.1
}

C
re

at
e

u
se

r
ac

co
u

n
t

{U
.C

.1
.1

.2
}

Ed
it

u

se
r

ac
co

u
n

t

{U
.C

.1
.1

.3
}

D
is

ab
le

u

se
r

ac
co

u
n

t

C
lo

u
d
 C

o
n

s
u
m

e
r

S
y
s
te

m

A
d
m

in
is

tr
a
to

r

IT
 M

a
n

a
g
e
r

C
o
rp

o
ra

te
 M

a
n
a
g

e
r

{U
.C

.6
.3

}
P

er
fo

rm

in
te

rv
e

nt
io

n
s

S
y
s
te

m

A
d
m

in
is

tr
a
to

r

S
y
s
te

m

A
d
m

in
is

tr
a
to

r

B
o

u
n

d
ed

C

o
n

te
xt

B
o

u
n

d
ed

C

o
n

te
xt

B
o

u
n

d
ed

C

o
n

te
xt

B
o

u
n

d
ed

C

o
n

te
xt

B
o

u
n

d
ed

C

o
n

te
xt

M
V

P

Appendixes

346

4SRS

Figure 154. Subset of the 4SRS execution

St
ep

 3
 -

pa
ck

ag
in

g
&

ag
gr

eg
at

io
n

re
pr

es
en

te
d

by
re

pr
es

en
t

{U
1.

1.
1}

Cr
ea

te
 u

se
r a

cc
ou

nt
di

{C
1.

1.
1.

c}
Ge

ne
ra

te
d

C
F

{C
1.

1.
1.

d}
Ge

ne
ra

te
d

C
T

Us
er

 d
ata

Th
is

C
sto

re
s t

he
 d

ata
 o

f t
he

 u
se

r.
By

 "d
ata

" w
e

int
er

pr
et

tha
t is

 a
ll t

he
 in

fo
rm

ati
on

 re
lev

an
t f

or
 th

is
ob

jec
t,

su
ch

 a
s:

Na
me

, p
er

so
na

l in
fo

rm
ati

on
 ,e

ma
il,

pr
of

ile
 se

ttin
gs

, d
ata

ac
ce

ss
, e

tc.

{C
1.

1.
1.

d}

{C
1.

1.
2.

d}

{C
1.

1.
3.

d}

{C
1.

2.
d}

{C
4.

2.
d}

T
 U

se
r d

at
a

Th
is

C
sto

re
s t

he
 d

ata
 o

f t
he

 u
se

r.
By

 "d
ata

" w
e

int
er

pr
et

tha
t is

 a
ll t

he
 in

fo
rm

ati
on

 re
lev

an
t f

or
 th

is

ob
jec

t,
su

ch
 a

s:
Na

me
, p

er
so

na
l in

fo
rm

ati
on

 ,e
ma

il,

pr
of

ile
 se

ttin
gs

, d
ata

 a
cc

es
s,

etc
.

SP
5.

1
Gl

ob
al

Hu
b

Da
tab

as
e

{C
1.

1.
1.

i}

{C
1.

1.
2.

i}

{C
1.

1.
3.

i}

{C
1.

2.
i}

{C
4.

2.
i}

{C
1.

1.
1.

i}
Ge

ne
ra

te
d

C
T

Cr
ea

te
us

er
 in

ter
fa

ce

Th
is

C
de

fin
es

 th
e

int
er

fa
ce

 w
ith

 th
e

clo
ud

 c
on

su
me

rs
 to

cr
ea

te
a

ne
w

us
er

. A
fte

r t
his

, t
his

 c
re

ate
d

ac
co

un
t n

ee
d

to
be

 va
lid

ate
d

by
 S

ys
tem

 A
dm

ini
str

ato
r t

ha
t v

er
ify

 a
nd

att
rib

ute
 th

e
co

rre
ctl

y
pe

rm
iss

ion
s {

C1
.2

.i}
 to

 a
 g

ive
n

ne
w

UH
4S

P
us

er
.

{C
1.

1.
1.

i}
T

Cr
ea

te
 u

se
r

in
te

rfa
ce

Th
is

C
de

fin
es

 th
e

int
er

fa
ce

 w
ith

 th
e

clo
ud

 c
on

su
me

rs

to
cr

ea
te

a
ne

w
us

er
. A

fte
r t

his
, t

his
 c

re
ate

d
ac

co
un

t

ne
ed

 to
 b

e
va

lid
ate

d
by

 S
ys

tem
 A

dm
ini

str
ato

r t
ha

t v
er

ify

an
d

att
rib

ute
 th

e
co

rre
ctl

y
pe

rm
iss

ion
s {

C1
.2

.i}
 to

 a

giv
en

 n
ew

 U
H4

SP
 u

se
r.

SP
1.

1
Ac

co
un

ts
co

nf
igu

ra
tio

ns
{C

1.
1.

1.
d}

{C
1.

2.
i}

{U
1.

1.
2}

Ed
it

us
er

 a
cc

ou
nt

di

{C
1.

1.
2.

c}
Ge

ne
ra

te
d

C
F

{C
1.

1.
2.

d}
Ge

ne
ra

te
d

C
T

St
or

e
us

er
 d

ata
sa

me
 a

s {
C1

.1
.1

.d
}

{C
1.

1.
1.

d}
F

{C
1.

1.
2.

i}
Ge

ne
ra

te
d

C
T

Ed
it u

se
r i

nte
rfa

ce

Th
is

C
de

fin
es

 th
e

int
er

fa
ce

 w
ith

 th
e

clo
ud

 c
on

su
me

rs
 to

ed
it y

ou
r u

se
r a

cc
ou

nt.
 A

fte
r t

his
, t

his
 a

cc
ou

nt
ed

itio
ns

ne
ed

 to
 b

e
va

lid
ate

d
by

 S
ys

tem
 A

dm
ini

str
ato

r t
ha

t v
er

ify

an
d

att
rib

ute
 th

e
co

rre
ctl

y
pe

rm
iss

ion
s {

C1
.2

.i}
 to

 a
 g

ive
n

ed
ite

d
UH

4S
P

us
er

.

{C
1.

1.
2.

i}
T

Ed
it

us
er

 in
te

rfa
ce

Th
is

C
de

fin
es

 th
e

int
er

fa
ce

 w
ith

 th
e

clo
ud

 c
on

su
me

rs

to
ed

it y
ou

r u
se

r a
cc

ou
nt.

 A
fte

r t
his

, t
his

 a
cc

ou
nt

ed
itio

ns
 n

ee
d

to
be

 va
lid

ate
d

by
 S

ys
tem

 A
dm

ini
str

ato
r

tha
t v

er
ify

 a
nd

 a
ttr

ibu
te

the
 c

or
re

ctl
y

pe
rm

iss
ion

s

{C
1.

2.
i}

to
a

giv
en

 e
dit

ed
 U

H4
SP

 u
se

r.

SP
1.

1
Ac

co
un

ts
co

nf
igu

ra
tio

ns
{C

1.
1.

1.
d}

{C
1.

2.
i}

{U
1.

1.
3}

Di
sa

bl
e

us
er

 a
cc

ou
nt

di

{C
1.

1.
3.

c}
Ge

ne
ra

te
d

C
F

{C
1.

1.
3.

d}
Ge

ne
ra

te
d

C
T

St
or

e
us

er
 d

ata
sa

me
 a

s {
C1

.1
.1

.d
}

{C
1.

1.
1.

d}
F

{C
1.

1.
3.

i}
Ge

ne
ra

te
d

C
T

Di
sa

ble
 u

se
r i

nte
rfa

ce

Th
is

C
de

fin
es

 th
e

int
er

fa
ce

 w
ith

 th
e

clo
ud

 c
on

su
me

rs
 to

dis
ab

le
yo

ur
 u

se
r a

cc
ou

nt.
 A

fte
r t

his
, t

his
 o

pe
ra

tio
n

ne
ed

to
be

 va
lid

ate
d

by
 S

ys
tem

 A
dm

ini
str

ato
r.

A
giv

en
 a

cc
ou

nt

ca
n

be
 d

isa
ble

 b
y

Sy
ste

m
Ad

mi
nis

tra
tor

 if
 to

 b
e

ne
ce

ss
ar

y
an

d
jus

tifi
ed

.

{C
1.

1.
3.

i}
T

Di
sa

bl
e

us
er

in
te

rfa
ce

Th
is

C
de

fin
es

 th
e

int
er

fa
ce

 w
ith

 th
e

clo
ud

 c
on

su
me

rs

to
dis

ab
le

yo
ur

 u
se

r a
cc

ou
nt.

 A
fte

r t
his

, t
his

 o
pe

ra
tio

n

ne
ed

 to
 b

e
va

lid
ate

d
by

 S
ys

tem
 A

dm
ini

str
ato

r.
A

giv
en

ac
co

un
t c

an
 b

e
dis

ab
le

by
 S

ys
tem

 A
dm

ini
str

ato
r i

f t
o

be
 n

ec
es

sa
ry

 a
nd

 ju
sti

fie
d.

SP
1.

1
Ac

co
un

ts
co

nf
igu

ra
tio

ns
{C

1.
1.

1.
d}

{U
.1

.2
}

Co
nf

ig
ur

e
us

er
s

pr
of

ile
di

{C
1.

2.
c}

Ge
ne

ra
te

d
C

F

{C
1.

2.
d}

Ge
ne

ra
te

d
C

T
St

or
e

us
er

 d
ata

sa
me

 a
s {

C1
.1

.1
.d

}
{C

1.
1.

1.
d}

F

{C
1.

2.
i}

Ge
ne

ra
te

d
C

T
Co

nf
igu

re
 u

se
rs

 p
ro

file
 in

ter
fa

ce

Th
is

C
de

fin
es

 th
e

int
er

fa
ce

 w
ith

 th
e

clo
ud

 c
on

su
me

rs
 to

co
nf

igu
re

 y
ou

r p
ro

file
. T

his
 c

on
fig

ur
ati

on
 n

ee
d

to
be

va
lid

ate
d

by
 S

ys
tem

 A
dm

ini
str

ato
r t

ha
t c

on
fig

ur
e

us
er

s

pr
of

ile
/p

er
mi

ss
ion

s f
or

 e
ac

h
sy

ste
m

us
er

. T
he

 S
ys

tem

Ad
mi

nis
tra

tor
 c

an
 a

ss
ign

 a
 u

se
r m

or
e

tha
n

on
e

pr
of

ile
.

Yo
u

ca
n

de
fin

e
ac

ce
ss

 p
ro

file
s,

su
ch

 a
s,

cli
en

ts,

su
pp

lie
rs

, f
or

wa
rd

er
s,

loc
al

ma
na

ge
rs

, o
pe

ra
tor

s a
nd

co
rp

or
ate

 m
an

ag
er

s e
ac

h
on

e
wi

th
dif

fe
re

nt
pe

rm
iss

ion
s.

Ea
ch

 p
ro

file
 m

ay
 b

e
as

so
cia

ted
 w

ith
 a

cc
es

s t
o

on
e

or

mo
re

 a
pp

lic
ati

on
s/s

er
vic

es
 (t

his
 a

cc
es

s i
s c

on
fig

ur
ed

 in

{C
4.

2.
i}

Co
nf

igu
re

 d
ata

 a
cc

es
s c

on
tro

l).

{C
1.

2.
i}

T
Co

nf
ig

ur
e

us
er

s

pr
of

ile
 in

te
rfa

ce

Th
is

C
de

fin
es

 th
e

int
er

fa
ce

 w
ith

 th
e

clo
ud

 c
on

su
me

rs

to
co

nf
igu

re
 y

ou
r p

ro
file

. T
his

 c
on

fig
ur

ati
on

 n
ee

d
to

be

va
lid

ate
d

by
 S

ys
tem

 A
dm

ini
str

ato
r t

ha
t c

on
fig

ur
e

us
er

s

pr
of

ile
/p

er
mi

ss
ion

s f
or

 e
ac

h
sy

ste
m

us
er

. T
he

 S
ys

tem

Ad
mi

nis
tra

tor
 c

an
 a

ss
ign

 a
 u

se
r m

or
e

tha
n

on
e

pr
of

ile
.

Yo
u

ca
n

de
fin

e
ac

ce
ss

 p
ro

file
s,

su
ch

 a
s,

cli
en

ts,

su
pp

lie
rs

, f
or

wa
rd

er
s,

loc
al

ma
na

ge
rs

, o
pe

ra
tor

s a
nd

co
rp

or
ate

 m
an

ag
er

s e
ac

h
on

e
wi

th
dif

fe
re

nt

pe
rm

iss
ion

s.
Ea

ch
 p

ro
file

 m
ay

 b
e

as
so

cia
ted

 w
ith

ac
ce

ss
 to

 o
ne

 o
r m

or
e

ap
pli

ca
tio

ns
/se

rvi
ce

s (
thi

s

ac
ce

ss
 is

 c
on

fig
ur

ed
 in

 {C
4.

2.
i}

Co
nf

igu
re

 d
ata

 a
cc

es
s

co
ntr

ol)
.

SP
1.

1
Ac

co
un

ts
co

nf
igu

ra
tio

ns
{C

1.
1.

1.
d}

{C
4.

2.
i}

{U
.1

.3
}

Co
ns

ul
t S

LA
i

{C
1.

3.
c}

Ge
ne

ra
te

d
C

F

{C
1.

3.
d}

Ge
ne

ra
te

d
C

F

{C
1.

3.
i}

Ge
ne

ra
te

d
C

T
Co

ns
ult

 u
se

rs
 S

LA
 in

ter
fa

ce

Th
is

C
de

fin
es

 th
e

int
er

fa
ce

 w
ith

 th
e

Sy
ste

m

Ad
mi

nis
tra

tor
 to

 c
on

su
lt u

se
rs

 S
LA

, t
ha

t is
 in

fo
rm

ati
on

ab
ou

t th
e

us
e

of
 U

H4
SP

 se
rvi

ce
s,

na
me

ly
co

ns
ult

ing
 th

e

co
ntr

ac
ted

 se
rvi

ce
s,

co
ns

ult
 th

e
tra

ffi
c

an
d

am
ou

nt
bil

led

so
 fa

r,
am

on
g

oth
er

s.
Th

e
Cl

ou
d

co
ns

um
er

s u
se

s t
his

int
er

fa
ce

 ju
st

to
co

ns
ult

 th
e

co
ntr

ac
ted

 se
rvi

ce
s,

co
ns

ult

the
 tr

af
fic

 a
nd

 a
mo

un
t b

ille
d

so
 fa

r (
the

 tr
af

fic
 a

nd

se
rvi

ce
s u

tili
za

tio
n

ca
n

be
 m

ea
su

re
d

at
{C

2.
3.

i}
Me

as
ur

e

se
rvi

ce
s u

tili
za

tio
n)

. T
he

 in
fo

rm
ati

on
 c

om
es

 fr
om

{C
2.

5.
d}

 D
ef

ine
 S

LA

{C
1.

3.
i}

T
Co

ns
ul

t u
se

rs
 S

LA

da
ta

 in
te

rfa
ce

Th
is

C
de

fin
es

 th
e

int
er

fa
ce

 w
ith

 th
e

Sy
ste

m

Ad
mi

nis
tra

tor
 to

 c
on

su
lt u

se
rs

 lic
en

se
 d

ata
, t

ha
t is

inf
or

ma
tio

n
ab

ou
t th

e
us

e
of

 U
H4

SP
 se

rvi
ce

s,
na

me
ly

co
ns

ult
ing

 th
e

co
ntr

ac
ted

 se
rvi

ce
s,

co
ns

ult
 th

e
tra

ffi
c

an
d

am
ou

nt
bil

led
 so

 fa
r,

am
on

g
oth

er
s.

Th
e

Cl
ou

d

co
ns

um
er

s u
se

s t
his

 in
ter

fa
ce

 ju
st

to
co

ns
ult

 th
e

co
ntr

ac
ted

 se
rvi

ce
s,

co
ns

ult
 th

e
tra

ffi
c

an
d

am
ou

nt

bil
led

 so
 fa

r (
the

 tr
af

fic
 a

nd
 se

rvi
ce

s u
tili

za
tio

n
ca

n
be

me
as

ur
ed

 a
t {

C2
.3

.i}
 M

ea
su

re
 se

rvi
ce

s u
tili

za
tio

n)
. T

he

inf
or

ma
tio

n
co

me
s f

ro
m

 {C
2.

5.
d}

 D
ef

ine
 S

LA

P2
 M

on
ito

rin
g

{C
2.

5.
d}

4ii
 -

UC
 A

ss
oc

iat
io

ns

St
ep

 1
 -a

rc
hi

te
ct

ur
al

ele
m

en
t c

re
at

io
n

St
ep

 2
 -

ar
ch

ite
ct

ur
al

ele
m

en
t e

lim
in

at
io

n

Us
e

Ca
se

De
sc

rip
tio

n
2i

- u
se

 c
as

e

cla
ss

ific
at

io
n

2ii
 -

lo
ca

l

eli
m

in
at

io
n

2ii
i -

 a
rc

hi
te

ct
ur

al
ele

m
en

t

na
m

in
g

2iv
 -

ar
ch

ite
ct

ur
al

ele
m

en
t d

es
cr

ip
tio

n

2v
 -

ar
ch

ite
ct

ur
al

ele
m

en
t

St
ep

 4
 -

ar
ch

ite
ct

ur
al

ele
m

en
t a

ss
oc

iat
io

n

4i
- D

ire
ct

 A
ss

oc
iat

io
ns

2v
i

-
gl

ob
al

eli
m

in
at

io
n

2v
ii -

 a
rc

hi
te

ct
ur

al

ele
m

en
t r

en
am

in
g

2v
iii

- a
rc

hi
te

ct
ur

al
ele

m
en

t s
pe

cif
ica

tio
n

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

347

Logical Architecture

Figure 155. UH4SP logical architecture

Appendixes

348

Product Backlog

Features list:

 Configure User profile
 Configure User Account
 Perform Authentication
 Manage Stakeholders
 Manage Trucks
 Manage Applications
 Collaborative tool
 Manage Work Tokens

{C7.2.4.1.d}
Sensors

integration data

{C7.2.4.2.d}
Mobile devices

integration data
{C7.2.4.3.d}

Systems
integration data

{C5.2.d}
Configured tasks

data

{C6.3.d}
Interventions and
maintenance data {C6.4.d} Users

training data

{C7.1.3.d} Business
notifications data

{C7.2.5d} In-plant
operations data

{C7.2.3.d}
Notifications data

{C7.3.d} Driver
guidance

configurations
data

{C6.5.d} Services
templates data

{C6.6.d}
Simulation models

data

{C2.4.d} Entities
mapping data

{C3.1.d} Global
integration data

{C3.2.d}
Synchronized data

{C1.1.1.d} User
data

{C2.3.d} Measured
values data

{C4.1.d} Backups
data

{C4.3.d}
Monitoring and

audits data

{C7.1.2.d}
Information access

configurations

{C2.1.1.d} Services
data {C2.2.d} Reports

data

{C2.5.d} Service
level aggrement

data

{C1.1.1.i} Create
user interface

{C1.1.2.i} Edit user
interface

{C1.1.3.i} Disable
user interface

{C1.2.i} Configure
users profile

interface

{C2.1.1.i} Install
service interface

{C2.1.2.i} Edit
service interface

{C2.1.3.i} Disable
service interface

{C2.1.4.i} Update
service interface

{C2.5.i} Define service
level agreement

interface

{C4.1.i} Backups
interface

{C4.2.i} Configure
data access

interface

{C7.1.2.i}
Configure

information access
interface

{C1.3.i} Consult
users SLA data

interface

{C2.3.i} Measured
values interface

{C2.2.i} Generate
cloud services

reports interface

{C.5.1.i} Catalog
entities interface

{C4.3.i} Monitor
activities interface

{C6.1.i} Verify
intervention or

maintenance needs
interface

{C6.5.i} Generate
service templates

interface

{C7.2.7.i}
Register remote

operations

{C6.2.i} Schedule
interventions

interface

{C6.3.i} Perform
interventions

interface

{C6.4.i} Users
training interface

{C6.6.i} Update
simulation models

data interface

{C7.1.1.i} Consults
Information interface

{C7.1.3.i} Perform business
notifications interface

{C7.2.1.i} Abort
operations
interface

{C7.2.2.i} Consult
operations
interface

{C7.2.3.i}
Notifications

interface

{C7.3.i} Configure Driver
guidance interface

{C3.1.i} Information
systems integration

interface

{C2.4.c} Entities
mapping processor

{C3.1.c} Information
systems integration

{C3.2.c}
Synchronize data

processor

{C7.2.4.1.c}
Sensors integrator

{C7.2.4.2.c} Mobile
devices integrator

{C7.2.4.3.c}
Systems integrator

{C7.2.5.c} In-plant
operations processor

{C2.3.c} Measure
services utilization

{C2.2.c} Reports
generator

{C2.1.1.c} Services
deployment

processor

{C4.1.c} Backups
generator

{C4.3.c} Monitor
activities

{C7.1.2.c} Information
access configuration

processor

{C6.5.c} Services
templates
processor

{C7.1.3.c} Business
notifications

processor

{C7.2.1.c} Abort
operations
processor

{C7.2.3.c}
Notifications

processor

{C5.2.i} Configure
tasks interface

Global UH4SP

{P1} Configurations

{P2} Monitoring

{P1.1} Accounts

{P1.2} Services

{P1.3} Security

{P3} Business Mgmt (Global)

{P4.1} Integrator (Hub/Bus/Gateway)

{P5.1} DB

Local UH4SP

{P3} Business Mgmt (Local)

{P4.2} Integrator (Gateway)

{P5.2} DB

Driver Guidance

Route Simulation /
Optimization

SLV

IoT

{C7.2.5.i} Register in-
plant operations

interface

{C7.2.7.d} Remote
operations data

{C7.1.2.i} Consults
driver guidance

{C7.3.c} Driver
guidance
processor

Cloud Provider IaaS

Remote Check-in
Remote Assistance

Cachapuz

EPMQ

Eurotux

CVIG

UMINHO

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

349

Table 49. UH4SP Product Backlog

Feature Configure users account

Backlog

Item
Name Acceptance Criteria Use Case

User Story

As a System Administrator, Corporate manager,

company manager, factory manager, forwarders,

client and supplier, I want to CRUD a user

account, to configure user account.

User is able to CRUD a

user account

{UC1.1.1},

{UC1.1.2},

{UC1.1.3},

{UC1.1.4}

Feature Configure users profile

Backlog

Item
Name Acceptance Criteria Use Case

User Story

As a System Administrator, Corporate manager,

Company manager, Factory manager,

Forwarders, Client and Supplier, I want to CRUD

a user profile to configure user profile.

User is able to CRUD a

profile
{UC.1.2.1}

User Story

As a System Administrator, Corporate manager,

Company manager, Factory manager,

Forwarders, Client and Supplier, I want to assign

permissions to a user profile.

User profile has

permissions associated
{UC.1.2.2}

Epic Consult SLA - -

User Story

As a Corporate manager, Company manager,

Factory manager, Client, Supplier and

Forwarders, I want to consult a contract

information in order to consult SLAs.

SLA contract information

is consulted.
{U.1.3}

Feature Perform Authentication

Backlog

Item
Name Acceptance Criteria Use Case

User Story

As a System administrator and user, I want to

Insert username and password to perform

authentication

1. login successful

2. account creation

successful

3. login successfully

{U1.4.1}

Appendixes

350

after password

recovering

4. login successfully

after username

recovering

5. login unsuccessful

message after wrong

inputs

User Story

As a System administrator and user, I want to

recover account username or password to

perform authentication

User gets password or

username
{U1.4.2}

Feature Manage Skateholders

Backlog

Item
Name Acceptance Criteria Use Case

User Story

As a System Administrator, I want to CRUD an

industrial group in order to manage business

groups.

User is able to CRUD a

group
{U1.5.1}

User Story

As a System Administrator or a corporate

manager, I want to CRUD a group company in

order to manage group companies.

User is able to CRUD a

group company
{U1.5.2.1}

User Story

As a System Administrator or a forwarder, I want

to CRUD a forwarder company in order to

manage forwarder companies.

User is able to CRUD a

forwarder company
{U1.5.2.2}

User Story

As a System Administrator or a client admin, I

want to CRUD a client companies in order to

manage client companies, and last manage

companies.

User is able to CRUD a

client company
{U1.5.2.3}

User Story

As a System Administrator or a supplier, I want to

CRUD a supplier company in order to manage

supplier companies.

User is able to CRUD a

supplier company
{U1.5.2.4}

User Story

As a System administrator, Corporate manager,

Company manager or Factory manager, I want to

CRUD factories in order to manage factories

User is able to CRUD a

factory
{U1.5.3}

Feature Manage Trucks

Backlog Name Acceptance Criteria Use Case

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

351

Item

User Story
 As a Forwarder admin or systems admin, I want

to CRUD trucks in order to manage trucks.

1. User is able to CRUD a

truck

2. Truck successfully

created

{UC.1.7}

User Story
 As a Forwarder admin or systems admin, I want

to associate trailers to a given trucks.

Truck successfully

created
{UC.1.7}

Feature Manage Trailers

Backlog

Item
Name Acceptance Criteria Use Case

User Story
 As a Forwarder admin or systems admin, I want

to CRUD trailers in order to manage trailers.

1. User is able to CRUD a

trailer

2. Trailer successfully

created

{UC.1.8}

Feature Manage Applications

Backlog

Item
Name Acceptance Criteria Use Case

User Story As a System Administrator, I want to CRUD an

application account, to configure application

account.

1. User is able to CRUD

an application

2. Application

successfully created

{UC.1.9.1}

User Story As an application, I want to send an app_gid and

a GPS location to perform authentication, in order

to access the UH4SP WebAPIs.

Authenticated application

{UC.1.9.2}

User Story As a System Administrator, I want to assign or

refresh a token to an application.

1. Token assigned

2. Token refreshed

{UC.1.9.3}

Feature Collaborative Tool

Backlog

Item
Name Acceptance Criteria Use Case

User Story As a System administrator, Corporate manager, User is able to consult {U.C.5.3.1}

Appendixes

352

Company manager, and Factory manager,

Forwarder, Client or Supplier, I want to visualize

graphical indicators about my group, companies,

factories or to resources or data that I am

associated.

dashboards

User Story As a System administrator, Corporate manager,

Company manager, and Factory manager,

Forwarder, Client or Supplier, I want to visualize

system operations about my groups, companies,

factories or to resources or data that I am

associated.

User is able to consult

dashboards

{U.C.5.3.2}

User Story As a web application, I want to receive a JSON

file in order to develop dashboards.

Dashboard developed
{U.C.5.3.4}

User Story As a System administrator, Corporate manager,

Company manager, and Factory manager,

Forwarder, Client or Supplier, I want to configure

dashboards settings in order to configure

dashboards.

Dashboard successful

configured

{U.C.5.3.7}

User Story As a service, I want to get users permissions to

access to a particular data source.

The user has access to

the requested data source

{U.C.5.3.1}

{U.C.5.3.2}

User Story As a user I want to perform login, in order to

access collaborative web app.

The user has access to

the requested application
{U.C.5.3.5}

User Story As a user I want to recover login credentials, in

order to access collaborative web app.

The user has access to

the requested application
{U.C.5.3.6}

Feature Manage work tokens

Backlog

Item

Name Acceptance Criteria Use Case

User Story As a System Administrator I want to CRUD work

tokens in order to manage work tokens.

Work token successful

created
{U.C.1.6.4}

User Story As a System Administrator I want to validate work

tokens that was requested by managers in order

to manage work tokens

Work token successful

validated {U.C.1.6.1}

User Story As a Corporate manager I want to request, read,

update and disable work tokens in order to

manage work tokens to my group companies and

Work token successful

requested

{U.C.1.6.4}

{U.C.1.6.3}

{U.C.1.6.2}

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

353

factories

User Story As a Company manager I want to request, read,

update and disable work tokens in order to

manage work tokens to my Company factories.

Work token successful

requested

{U.C.1.6.4}

{U.C.1.6.3}

{U.C.1.6.2}

User Story As a Factory manager I want to request, read,

update and disable work tokens in order to

manage work tokens to my factory.

Work token successful

requested

{U.C.1.6.4}

{U.C.1.6.3}

{U.C.1.6.2}

User Story As an Entity (forwarder, client or supplier)

manager I want to request, read, update and

disable work tokens in order to manage work

tokens to my entity.

Work token successful

requested
{U.C.1.6.4}

{U.C.1.6.3}

{U.C.1.6.5}

User Story As a Stakeholder/Entity manager I want to

receive a notification when a given work tokens

were associated to my entity in order to manage

work tokens.

Notification was delivered

{U.C.1.6.2}

User Story As an Entity (forwarder, client or supplier)

manager I want to assign drivers and trucks to

work tokens that were associated to my entity in

order to manage work tokens.

Work token successful

assigned
{U.C.1.6.5}

User Story As a System admin I want to receive a notification

when a stakeholder/entity managers request

work tokens in order to validate work tokens.

Notification was delivered

{U.C.1.6.4}

Appendixes

354

Appendix D – IMP_4.0 models

Use Case model

Figure 156. The decomposition of IMP_4.0 use cases

{U
C1

} R
ea

liz
ar

 ge
stã

o d
e

pr
od

uç
ão

{U
C1

.1}
 G

er
ir

St
oc

ks

{U
C1

.2}
 G

er
ir

Co
m

pr
as

{U
C1

.3}
 G

er
ir

Ve
nd

as

{U
C1

.4}
 G

er
ir

Pr
od

uç
ão

C
he

fe
 d

e

A
rm

az
ém

Fo
rn

ec
ed

or

{U
C1

.7}
 G

er
ir

Pla
ne

am
en

to

{U
C1

.5}
 G

er
ir

Su
bc

on
tra

ta
çã

o

{U
C1

.6}
 G

er
ir

Co
nt

ro
lo

qu

ali
da

de

{U
C1

.8}
 G

er
ir

Pa
ck

ing
 Li

st

{U
C1

.9}

Op
er

aç
õe

s
Fin

an
ce

ira
s

G
es

to
r C

om
er

ci
al

G
es

to
r d

e

Pr
od

uç
ão

G
es

to
r d

e

Q
ua

lid
ad

e

G
es

to
r

Fi
na

nc
ei

ro

C
he

fe
 d

e

Ex
pe

di
çã

o

{U
C1

.10
} E

nv
iar

SM

S

Se
rv

id
or

SM
S

Eq
ui

pa
m

en
to

s
/ M

aq
ui

na
çã

o
C

RM

O
ut

lo
ok

{U
C1

.1}
 St

oc
ks

{U
C1

.1.
1}

 Co
nt

ro
lar

In

fo
rm

aç
ão

 so
br

e
St

oc
k d

e A
rti

go
s

{U
C1

.1.
3}

An

ali
sa

r o
s

Es
ta

do
s d

os

St
oc

ks

{U
C1

.1.
2}

 Co
nt

ro
lar

In

fo
rm

aç
ão

 so
br

e
St

oc
ks

 em
 A

rm
az

én
s

Ch
ef

e
de

A
rm

az
ém

{U
C1

.1.
5}

Co

nt
ro

lar

En
co

m
en

da
s d

e
Ar

tig
os

{U
C1

.1.
6}

An

ali
sa

r
Hi

stó
ric

o

{U
C1

.1.
7}

 Co
nt

ar

In
ve

nt
ár

io

{U
C1

.1.
4}

Re

se
rv

ar
 St

oc
k

{U
C1

.1.
8}

Re

gis
ta

r
En

tra
da

s /

Sa
ída

s

G
es

to
r C

om
er

ci
al

G
es

to
r d

e

Pr
od

uç
ão

O
pe

ra
do

r L
og

ís
tic

o

{U
C1

.1.
9}

Re

gis
ta

r P
ick

in
g

{U
C1

.2}
 Co

mp
ra

s

{U
C1

.2.
3}

 Cr
iar

re

qu
isi

çã
o d

e
Co

m
pr

a

{U
C1

.2.
2}

Pe

sq
uis

ar

fo
rn

ec
ed

or
es

C
he

fe
 d

e

A
rm

az
ém

G
es

to
r C

om
er

ci
al

{U
C1

.2.
4}

En

co
m

en
da

r
m

at
ér

ia-
pr

im
a

{U
C1

.2.
5}

Co

ns
ult

ar

en
tre

ga

{U
C1

.2.
1}

 Cr
iar

fo

rn
ec

ed
or

es

{U
C1

.2.
6}

 D
efi

ni
r

pr
eç

os
 de

co

m
pr

a

{U
C1

.2.
7}

Co

ns
ult

ar

lis
ta

ge
ns

{U
C1

.2.
8}

 A
na

lis
ar

co

m
pr

as
 po

r
en

co
m

en
da

«in
clu

de
»

{U
C1

.2.
9}

Vi

su
ali

za
r a

ná
lis

es

es
ta

tís
tic

as

{U
C1

.3}
 V

en
da

s

{U
C1

.3.
1}

 Cr
iar

cli

en
te

s

{U
C1

.3.
3}

 G
er

ar

co
m

iss
õe

s

{U
C1

.3.
2}

 Cr
iar

do

cu
m

en
to

s d
e

ve
nd

a

G
es

to
r C

om
er

ci
al

{U
C1

.3.
4}

 Co
ns

ult
ar

pe

nd
en

te
s d

e
fa

tu
ra

çã
o

{U
C1

.3.
6}

Pe

sq
uis

ar

cli
en

te
s

{U
C1

.3.
7}

 D
efi

ni
r e

ge

rir
 pr

eç
os

 ve
nd

as

{U
C1

.3.
8}

 Co
ns

ult
ar

lis

ta
ge

ns

{U
C1

.3.
9}

 Li
ga

r a

sis
te

ma
 CR

M

{U
C1

.3.
5}

Vi

su
ali

za
r a

ná
lis

es

es
ta

tís
tic

as

{U
C1

.4}
 Pr

od
uç

ão

C
he

fe
 d

e

Pl
an

ea
m

en
to

G
es

to
r d

e

Pr
od

uç
ão

{U
C1

.4.
4}

Co

ns
ult

ar

en
co

m
en

da
s

G
es

to
r

Fi
na

nc
ei

ro

G
es

to
r

C
om

er
ci

al

{U
C1

.4.
9}

 G
er

ir
co

ns
um

os

{U
C1

.4.
5}

Co

nt
ro

lar

ex
ec

uç
ão

{U
C1

.4.
6}

 G
er

ir
pr

oc
es

so
 de

cu

ste
io

s

{U
C1

.4.
7}

Re

gis
ta

r e
 ge

rir
 ex

ec
uç

ão

{U
C1

.4.
8}

Co

nt
ro

lar

pr
od

uç
ão

{U
C1

.4.
1}

Or

de
ns

 de

Fa
br

ico

{U
C1

.4.
2}

 Fi
ch

as

Té
cn

ica
s

{U
C1

.4.
3}

Re

ce
be

r
en

co
m

en
da

s

{U
C1

.4.
1.2

}
Re

ab
rir

 or
de

ns

de
 fa

br
ico

{U
C1

.4.
1.4

}
Co

ns
ult

ar
 or

de
ns

de

 fa
br

ico

{U
C1

.4.
1.3

}
Al

te
ra

r o
rd

em

de
 fa

br
ico

{U
C1

.4.
1.1

} C
ria

r
no

va
 o

rd
em

 de

fa
br

ico{U
C1

.4.
1}

 O
rd

en
s d

e
Fa

br
ico

C
he

fe
 d

e

Pl
an

ea
m

en
to

G
es

to
r d

e

Pr
od

uç
ão

{U
C1

.4.
2.1

} C
ria

r
fic

ha
s t

éc
nic

as

{U
C1

.4.
2.2

}
Co

ns
ult

ar
 fi

ch
as

té

cn
ica

s

{U
C1

.4.
2.3

}
At

ua
liz

ar
 fic

ha
s

té
cn

ica
s

{U
C1

.4.
2}

 Fi
ch

as

Té
cn

ica
s

G
es

to
r d

e

Pr
od

uç
ão

{U
C1

.4.
2.1

.1}
 Cr

iar

fic
ha

 té
cn

ica
 p

ar
a

co
nf

eç
ão

tra

di
cio

na
l

{U
C1

.4.
2.1

} C
ria

r
fic

ha
s t

éc
nic

as

G
es

to
r d

e

Pr
od

uç
ão

{U
C1

.4.
2.1

.2}
 Cr

iar

fic
ha

 té
cn

ica
 p

ar
a

te
ce

lag
em

 –
te

ar
es

cir

cu
lar

es

{U
C1

.4.
2.1

.3}
 Cr

iar
 fic

ha

té
cn

ica
 pa

ra
 te

ce
lag

em

– t
ea

re
s r

et
os

{U
C1

.4.
2.1

.4}
 Cr

iar

fic
ha

 té
cn

ica
 p

ar
a

se
am

les
s

{U
C1

.4.
2.1

.5}
 Cr

iar

fic
ha

 té
cn

ica
 p

ar
a

pe
úg

as

{U
C1

.5}
 Su

bc
on

tra
ta

çã
o

{U
C1

.5.
1}

Ve

rif
ica

r
ne

ce
ssi

da
de

 de

su
bc

on
tra

ta
r

{U
C1

.5.
4}

Ac

om
pa

nh
ar

pr

od
uç

ão

{U
C1

.5.
2}

 Em
iti

r
su

bc
on

tra
to

C
he

fe
 d

e

ar
m

az
ém

Fo
rn

ec
ed

or

{U
C1

.5.
6}

Re

gis
ta

r
ins

pe
çã

o
G

es
to

r d
e

Q
ua

lid
ad

e

G
es

to
r

C
om

er
ci

al

{U
C1

.5.
7}

An

ali
sa

r
re

su
lta

do
s

{U
C1

.5.
3}

 Em
iti

r
or

de
m

ex

pe
diç

ão

{U
C1

.5.
5}

Re

ce
cio

na
r

en
co

m
en

da

{U
C1

.6}
 Co

nt
ro

lo
de

 Q
ua

lid
ad

e

{U
C1

.6.
1}

 R
eg

ist
ar

ins

pe
çã

o

{U
C1

.6.
3}

 Co
ns

ult
ar

ins

pe
çõ

es

{U
C1

.6.
2}

 Cl
as

sif
ica

r
sto

ck

C
he

fe
 d

e

ar
m

az
ém

G
es

to
r d

e

Q
ua

lid
ad

e

{U
C1

.6.
5}

 R
eg

ist
ar

inc

id
en

te
s

O
pe

ra
do

r

{U
C1

.6.
4}

 R
eg

ist
ar

lab

-d
ip

{U
C1

.7}
 Pl

an
ea

m
en

to

{U
C1

.7.
1}

 Em
iti

r
OP

{U
C1

.7.
3}

Co

m
un

ica
r

pr
az

os
 ao

co

m
er

cia
l

{U
C1

.7.
2}

At

rib
uir

 ce
nt

ro

de
 tr

ab
alh

o

C
he

fe
 d

e

Pl
an

ea
m

en
to

G
es

to
r d

e

Pr
od

uç
ão

{U
C1

.7.
5}

Co

nf
irm

ar
 fi

na
l

pr
od

uç
ão

{U
C1

.7.
6}

 Fe
ch

ar

OP

G
es

to
r

Fi
na

nc
ei

ro

{U
C1

.7.
7}

Co

nt
ro

lar
 cu

sto
s

G
es

to
r

C
om

er
ci

al

{U
C1

.7.
8}

 R
eg

ist
ar

Ne
ce

ss
ida

de
s d

e
pr

od
uç

ão

{U
C1

.7.
4}

 D
efi

ni
r

ce
nt

ro
s d

e
tra

ba
lho

{U
C1

.7.
9}

 Su
ge

rir

ce
nt

ro
s d

e t
ra

ba
lho

pa

ra
 O

P

{U
C1

.8}
 Pa

ck
ing

 Li
st

{U
C1

.8.
1}

 Cr
iar

pa

ck
in

g l
ist

{U
C1

.8.
5}

 Em
iti

r
ró

tu
lo

s

{U
C1

.8.
2}

 G
er

ir
pa

ck
in

g l
ist

C
he

fe
 d

e

ar
m

az
ém

{U
C1

.8.
4}

Do

cu
m

en
ta

r
ex

pe
diç

ão

{U
C1

.8.
3}

Co

ns
ult

as
 ge

ra
is

{U
C1

.9}
 O

pe
ra

çõ
es

Fin

an
ce

ira
s

{U
C1

.9.
1}

Re

gis
ta

r C
on

ta
s

co
rre

nt
es

{U
C1

.9.
3}

Ex

po
rta

r f
ich

eir
o

Co
nt

ab
ilid

ad
e

{U
C1

.9.
2}

 G
er

ir
Ca

ixa
 e

Ba
nc

os

G
es

to
r

Fi
na

nc
ei

ra

{U
C1

.9}
 Te

so
ur

ar
ia

– C
on

ta
s

Co
rre

nt
es

{U
C1

.9.
1}

 Em
iti

r
ch

eq
ue

s

{U
C1

.9.
3}

Co

ns
ult

ar

ex
tra

to
s

{U
C1

.9.
2}

Co

ns
ult

ar
 sa

ld
os

G
es

to
r F

in
an

ce
iro

{U
C1

.9.
4}

 A
na

lis
ar

pa

ga
m

en
to

s/
re

ce
bi

m
en

to
s

{U
C1

.9.
2}

 G
er

ir
co

nt
as

 co
rre

nt
es

cli

en
te

s

{U
C1

.9.
2}

 G
er

ir
co

nt
as

 co
rre

nt
es

fo

rn
ec

ed
or

es

{U
C1

.10
} T

es
ou

ra
ria

 –
Ca

ixa
 e

Ba
nc

os

{U
C1

.10
.1}

M

ov
im

en
ta

r
ca

ixa
 e

ba
nc

os

{U
C1

.10
.3}

Co

ns
ult

a d
e

ch
eq

ue
s

{U
C1

.10
.2}

Co

nc
ilia

çã
o

ba
nc

ár
ia

G
es

to
r F

in
an

ce
iro

{U
C1

.10
.4}

 Em
iss

ão

de
 ch

eq
ue

s

{U
C1

.10
.4}

Co

ns
ult

as
 de

ex

tra
to

s e
 sa

ld
os

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

355

Logical Architecture

Figure 157. IMP_4.0 Component Architecture

Appendixes

356

Microservices Architecture

Figure 158. IMP_4.0 Microservices Architecture

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

357

Appendix E - IMSPM models

Use cases model

Figure 159. IMSPM Use Case model

Appendixes

358

Sequence diagram

Figure 160. IMSPM Sequence diagram

An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects

359

4SRS

Figure 161. IMSPM 4SRS-MSLA execution

Appendixes

360

Logical Architecture

Figure 162. IMSPM Microservices Architecture

«
M

ic
ro

se
rv

ic
e»

{M
S1

}
P

ro
je

ct
 O

p
e

n
in

g
«

M
ic

ro
se

rv
ic

e»

{M
S2

}
B

il
in

g
«

M
ic

ro
se

rv
ic

e»
{M

S3
}

P
P

R

«
M

ic
ro

se
rv

ic
e»

{M
S4

}
Se

rv
ic

e
 R

e
q

u
e

st
«

M
ic

ro
se

rv
ic

e»

{M
S5

}
C

h
an

ge
 R

e
q

u
e

st
s

«
M

ic
ro

se
rv

ic
e»

{M
S6

}
P

ro
je

ct
 F

o
re

ca
st

s

«
M

ic
ro

se
rv

ic
e»

{M
S7

}
Sa

ge
 In

vo
ic

e
In

te
gr

at
io

n

«
M

ic
ro

se
rv

ic
e»

{M
S8

}
B

u
d

ge
ts

«
M

ic
ro

se
rv

ic
e»

{M
S9

}
R

e
so

u
rc

e
 F

o
re

ca
st

«
M

ic
ro

se
rv

ic
e»

{M
S1

0
}

Cu
st

o
m

er
 B

ili
ng

«
M

ic
ro

se
rv

ic
e»

{M
S1

1
}

P
ro

je
ct

 R
ev

en
u

es

«
M

ic
ro

se
rv

ic
e»

{M
S1

2
}

P
ro

je
ct

 C
lo

su
re

«
d

at
a»

{P
1.

1.
d

}
O

p
en

ed

P
ro

je
ct

s
In

fo

«
in

te
rf

ac
e

»

{P
1.

1.
i1

}
R

ec
ei

ve

P
ro

je
ct

 O
p

en
in

g
D

at
a

fr
om

 U
se

r

«
d

at
a»

{P
2.

2.
1.

d
}

B
ili

n
g

In
fo

 in
 d

at
ab

as
e

«i
n

te
rf

ac
e»

{P
2.

2.
1.

i1
}

R
ec

ei
ve

B

ili
n

g
P

la
n

A
d

d

fr
o

m
 U

se
r

«
co

n
tr

o
l»

{P
2.

2.
1.

c}

G
en

er
at

e
B

ili
ng

Em

ai
l

«
d

at
a»

{P
2.

2.
2.

d
2}

 P
PR

In

fo

«
in

te
rf

ac
e

»

{P
2.

2.
2.

i}
 R

ec
ei

ve

P
PR

 C
re

at
io

n
 fr

o
m

U

se
r

«
co

n
tr

o
l»

{P
2.

2.
2.

c1
}

P
PR

C

al
cu

lu
s

«d
at

a»

{P
2.

2.
3.

d
}

Se
rv

ic
e

R

eq
u

es
t

In
fo

«
in

te
rf

ac
e

»

{P
2.

2.
3.

i1
}

R
ec

ei
ve

N

ew
 S

er
vi

ce

R
eq

u
es

t
fr

om
 U

se
r

«c
on

tr
ol

»

{P
2.

2.
3.

c}

G
en

er
at

e
Se

rv
ic

e
R

eq
u

es
t

Em
a

il

«d
at

a»

{P
2.

2.
4.

d
}

C
ha

ng
e

R

eq
u

es
t

In
fo

«
co

n
tr

o
l»

{P
2.

2.
4.

c}

G
en

er
at

e
Ch

an
ge

R

eq
u

es
t

Em
a

il

«
d

at
a»

{P
2.

2.
5.

d
}

P
ro

je
ct

Fo

re
ca

st
s

In
fo

«
in

te
rf

ac
e

»

{P
2.

2.
5.

i1
}

R
ec

ei
ve

 N
ew

P

ro
je

ct
 F

o
re

ca
st

s
fr

o
m

U

se
r

«
co

n
tr

o
l»

{P
2.

2.
5.

c}
 P

ro
je

ct

Fo
re

ca
st

s
C

al
cu

lu
s

«i
n

te
rf

ac
e»

{P
2.

3.
5.

i1
}

In
vo

ic
e

V

is
u

al
iz

at
io

n

«
co

n
tr

o
l»

{P
2.

3.
5.

c}
 S

ag
e

 In
vo

ic
es

In

te
gr

a
ti

o
n

 w
eb

 s
er

vi
ce

«
d

at
a»

{P
4.

3.
d

}
B

u
dg

e
t

In
fo

«
in

te
rf

ac
e

»

{P
4.

3.
i1

}
R

ec
ei

ve

N
ew

 B
ud

ge
t

fr
o

m

U
se

r

«
d

at
a»

{P
4.

6.
d

}
R

es
ou

rc
e

Fo

re
ca

st
 I

nf
o

«i
n

te
rf

ac
e»

{P
4.

6.
i}

 R
es

ou
rc

e

Fo
re

ca
st

 C
re

at
io

n

fr
o

m
 U

se
r

«
d

at
a»

{P
4.

7.
d

}
C

us
to

m
er

B

ili
n

g
In

fo

«
in

te
rf

ac
e

»

{P
4.

7.
i1

}
R

ec
ei

ve

N
ew

 C
u

st
o

m
e

r
B

ili
n

g
fo

m
 U

se
r

«c
on

tr
ol

»

{P
4.

7.
c}

 G
en

er
at

e
C

us
to

m
er

 B
il

in
g

Em
ai

l

«
d

at
a»

{P
4.

9.
d

}
R

ev
e

n
ue

s
In

fo

«
in

te
rf

ac
e

»

{P
4.

9.
i}

 R
ev

e
n

ue
s

R
ep

o
rt

V

is
u

al
iz

at
io

n

«
co

n
tr

o
l»

{P
4.

9.
c}

 G
en

er
at

e
R

ev
e

n
ue

 R
ep

o
rt

«
co

n
tr

o
l»

{P
4.

12
.c

1}
 C

O
M

EX

A
p

p
ro

va
l

V
a

lid
at

io
n

«
d

at
a»

{P
4.

13
.d

}
P

ro
je

ct

C
lo

su
re

 In
fo

«
in

te
rf

ac
e

»

{P
4.

13
.i1

}
R

ec
ei

ve

P
ro

je
ct

 C
lo

su
re

In

fo
 fr

o
m

 U
se

r

«
co

n
tr

o
l»

{P
1.

1.
c2

}
C

re
at

e
N

ew
 P

ro
je

ct
 f

ro
m

R

eq
u

es
t

«
co

n
tr

o
l»

{P
1.

1.
c1

}
V

a
lid

at
e

R
eq

u
es

t
C

on
fo

rm
an

ce

«
in

te
rf

ac
e

»

{P
1.

1.
i2

}
P

ro
vi

d
e

A
cc

e
ss

 t
o

 P
ro

je
ct

O

p
en

in
g

R
eq

u
es

ts
 A

P
I

«
in

te
rf

ac
e

»

{P
2.

2.
1.

i2
}

R
ec

ei
ve

B

ili
n

g
P

la
n

Ch
an

ge

fr
o

m
 U

se
r

«
in

te
rf

ac
e

»

{P
2.

2.
1.

i3
}

P
ro

vi
d

e
A

cc
e

ss
 t

o
 B

ili
n

g
P

la
ns

 A
P

I

«
co

n
tr

o
l»

{P
2.

2.
2.

c2
}

C
re

at
e

B
ili

n
g

O
rd

er

«
d

at
a»

{P
2.

2.
2.

d
1}

 S
to

re

Ef
fo

rt

«i
n

te
rf

ac
e»

{P
2.

2.
1.

i3
}

P
ro

vi
d

e
A

cc
e

ss
 t

o
 P

P
R

 A
PI

«
in

te
rf

ac
e

»

{P
2.

2.
3.

i2
}

R
ec

ei
ve

Se

rv
ic

e
 R

eq
u

es
t

C
ha

ng
e

 f
ro

m
 U

se
r

«
in

te
rf

ac
e

»

{P
2.

2.
3.

i3
}

P
ro

vi
d

e
A

cc
e

ss
 t

o
 S

er
vi

ce

R
eq

u
es

t
A

P
I

«
in

te
rf

ac
e

»

{P
2.

2.
4.

i3
}

P
ro

vi
d

e
A

cc
e

ss
 t

o
 C

h
an

ge

R
eq

u
es

t
A

P
I

«i
n

te
rf

ac
e»

{P
2.

2.
4.

i1
}

R
ec

ei
ve

N

ew
 C

h
an

ge

R
eq

u
es

t
fr

om
 U

se
r

«i
n

te
rf

ac
e»

{P
2.

2.
4.

i2
}

R
ec

ei
ve

C

ha
ng

e
 R

e
qu

es
t

C
ha

ng
e

 f
ro

m
 U

se
r

«
in

te
rf

ac
e

»

{P
2.

2.
3.

i4
}

Se
n

d

Se
rv

ic
e

 R
eq

u
es

t
Em

ai
l

«
in

te
rf

ac
e

»

{P
2.

2.
4.

i4
}

Se
n

d

C
ha

ng
e

 R
e

qu
es

t
Em

ai
l

«i
n

te
rf

ac
e»

{P
4.

7.
i3

}
R

ec
o

nh
ec

im
e

nt
o

d

e
R

ec
e

it
as

«i
n

te
rf

ac
e»

{P
4.

7.
i4

}
Se

n
d

C

us
to

m
er

 B
il

in
g

Em
ai

l

«i
n

te
rf

ac
e»

{P
4.

7.
i2

}
R

ec
ei

ve

C
us

to
m

er
 B

il
in

g
C

ha
ng

e
 f

om
 U

se
r

«
in

te
rf

ac
e

»

{P
4.

7.
i5

}
P

ro
vi

ce
 A

cc
es

s
to

 C
u

st
o

m
er

 B
ili

n
g

A
PI

«
in

te
rf

ac
e

»

{P
2.

2.
5.

i2
}

R
ec

ei
ve

P

ro
je

ct
 F

o
re

ca
st

s
C

ha
ng

e
s

fr
om

 U
se

r

«
in

te
rf

ac
e

»

{P
2.

2.
5.

i3
}

P
ro

vi
d

e
A

cc
e

ss
 t

o
 P

ro
je

ct

Fo
re

ca
st

s
A

PI

«i
n

te
rf

ac
e»

{P
4.

13
.i2

}
P

ro
vi

ce

A
cc

e
ss

 t
o

 P
ro

je
ct

C

lo
su

re
 A

P
I

«
in

te
rf

ac
e

»

{P
4.

9.
i2

}
P

ro
vi

d
e

A
cc

es
s

to
 P

ro
je

ct
 R

ev
e

nu
es

 A
P

I

«
in

te
rf

ac
e

»

{P
4.

6.
i2

}
P

ro
vi

d
e

A
cc

es
s

to
 R

es
o

u
rc

e
 F

o
re

ca
st

A

P
I

«
in

te
rf

ac
e

»

{P
4.

3.
i3

}
P

ro
vi

d
e

A
cc

es
s

to
 B

u
dg

e
ts

 A
PI

«
in

te
rf

ac
e

»

{P
4.

13
.i2

}
P

ro
vi

d
e

A
cc

e
ss

 t
o

 S
ag

e
In

vo
ic

e
A

P
I

«
in

te
rf

ac
e

»

{P
4.

3.
i2

}
R

ec
ei

ve

B
u

dg
e

t
C

ha
ng

e

fr
o

m
 U

se
r

«
d

at
a»

{P
2.

3.
5.

d
}

In
vo

ic
e

In

fo

«
in

te
rf

ac
e

»

{P
2.

3.
5.

i3
}

Sa
ge

 A
PI

A
P

I

U
I

Lo
gi

c

D
B

A
P

I
U

I

D
B

Lo
gi

c

A
P

I

Lo
gi

c

D
B

U
I

A
P

I

D
B

U
I

Lo
gi

c
A

P
I

D
B

U
I

Lo
gi

c

«
co

n
tr

o
l»

{P
4.

13
.c

}
P

ro
je

ct

C
lo

su
re

 C
o

n
tr

o
l

A
P

I

Lo
gi

c

D
B U
I

A
P

I
D

B

U
I

Lo
gi

c

A
P

I
D

B

Lo
gi

c
U

I

D
B

A
P

I

U
I

A
P

I

U
I

D
B

A
P

I

Lo
gi

c

A
P

I

U
I

D
B

Lo
gi

c

	Página 1
	Página 2
	Página 3
	Página 4
	DocFinal-NunoSantosPhD_v3-1.pdf
	Licença concedida aos utilizadores deste trabalho
	Chapter 1 - Introduction
	1.1 Motivations
	1.2 Key definitions
	1.3 Core Concepts and Definitions
	Software Architectures
	Agile Software Development (ASD)
	Large-scale Agile Development

	1.4 Research question and objectives
	1.5 Research method
	The demonstration cases

	1.6 Document Structure
	References

	Chapter 2 - Requirements and Architecture Design in LSA
	2.
	2.1 Introduction
	2.2 Views on Debating Architectures and Agile
	2.3 Using Architecture Approaches within Agile Software Development
	Software Architecture Methods within Initialization
	Software Architecture Methods within Development Iterations

	2.4 Large-scale Agile Development (LSA)
	Characteristics of LSA
	Agile Practices in Large-scale
	Tailoring XP for large and complex projects
	Distributed Agile Teams: the Scrum of Scrums
	A Hybrid Method using RUP with Scrum

	2.5 Conclusions
	References

	Chapter 3 - Logical Architectures within Agile and “Continuous” Approaches
	3.1. Introduction
	3.2. Architecture lifecycle and viewpoints
	Software architecture lifecycle overview
	Software architecture methods
	Software architecture classification levels

	3.3. Modeling approaches within the “continuous” paradigm
	Continuous software engineering
	Continuous Architecture
	Architectural Management, Evolution, Change, and Debt

	3.4. Microservices architectures
	Microservices modeling
	Defining service boundaries
	Microservices patterns

	3.5. Conclusions
	References

	Chapter 4 - A Requirements Modeling Approach for Agile Settings
	4.1. Introduction
	4.2. Upfront Modeling in ASD projects
	Deriving a Use case-driven Product Backlogs
	Deriving a User story-driven Product Backlog

	4.3. Agile logical architecting with the 4SRS method
	The Decomposing User Agile Requirements arTEfacts (DUARTE) approach
	“Just-Enough” modeling

	4.4. Demonstration cases
	Upfront RE for use case-driven product backlogs: the iFloW case
	Upfront RE for user stories-driven product backlogs: the ISOFIN Cloud case
	Emerging RE using DUARTE: the UH4SP case
	Discussion

	4.5. Conclusions
	Further Reading
	References

	Chapter 5 – Agile Logical Architecting using AMPLA
	5.1. Introduction
	5.2. Agile architecting lifecycle (AAL)
	5.3. Architecture evolution and management
	Candidate architecture design using the 4SRS method
	Incremental design for refining the logical architecture
	Continuous Architecture and change-impact analysis
	Microservices design towards Continuous Architecting

	5.4. Demonstration Cases
	Architecture Spikes: the iFloW case
	Agile logical architecting: the UH4SP case
	The 4SRS-MSLA in brownfield projects: the IMP_4.0 case
	Microservices deployment using the 4SRS-MSLA: the IMSPM case
	Discussion

	5.5. Conclusions
	Further reading
	References

	Chapter 6 – Inter-team management within an LSA process based in logical architectures
	6.1. Introduction
	6.2. On modularization, communication and coordination
	Modularization
	Communicating the requirements
	Inter-team management

	6.3. Delivering work items
	Approach for using Use cases as basis for Scrum backlogs
	Deriving User stories from components
	Deriving User stories and Product Backlog Items from Use Cases and Components

	6.4. Demonstration cases
	Team management approach based in a use case-driven backlog: the iFloW case
	Team management approach based in a User stories-driven backlog derivation: the ISOFIN case
	Multi-team management and coordination: the UH4SP case
	Discussions

	6.5. Conclusions
	Further reading
	References

	Chapter 7 – Conclusions
	7.1. Focus of the Work
	7.2. Synthesis of the research efforts
	7.3. Scientific Outputs
	7.4. Future work
	References

	Appendix A – iFloW models
	Use Case model
	Logical Architecture
	Product Backlog

	Appendix B - ISOFIN models
	Logical Architecture
	Product Spots Overview
	ISOFIN App module’s User Stories

	Appendix C - UH4SP models
	Use Cases decomposition
	4SRS
	Logical Architecture
	Product Backlog
	Features list:
	 Configure User profile
	 Configure User Account
	 Perform Authentication
	 Manage Stakeholders
	 Manage Trucks
	 Manage Applications
	 Collaborative tool
	 Manage Work Tokens

	Appendix D – IMP_4.0 models
	Use Case model
	Logical Architecture
	Microservices Architecture

	Appendix E - IMSPM models
	Use cases model
	Sequence diagram
	4SRS
	Logical Architecture

