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Abstract 

Developing software solutions is about providing responses to a set of business needs in form of a 

working software. These business needs are the starting point for the development process, which 

states the required business support that the software will provide, in form of functional and non-

functional requirements. Then, every implementation decision aims satisfying those requirements. Of 

course, over time, the requirements change. In that sense, agile software development (ASD) 

approaches bring a set of practices towards embracing those changes as soon as possible. As the 

complexity of software increases, namely in terms of the quantity of the defined features, these 

approaches face some challenges, typically related in properly defining how different teams have to 

work together in order to deliver a unified solution. In complex solutions, the traceability between 

business (or stakeholder) and software (components) perspectives may not be properly assured. Using 

a logical architecture provides a view that organizes software components in order to meet functional 

requirements. In a large-scale agile (LSA) setting, the logical architecture provides a view in how 

different teams’ outputs fit together. Thus, this thesis presents a process for modeling logical 

architectures adequate for ASD settings (a.k.a., “Agile Modeling” – AM) with requirements elicitation 

and modeling techniques and, additionally, uses an architectural design method called “Four Step Rule 

Set” (4SRS) in order to trace the requirements models to the architectural components. An AM process 

should support evolutionary design, preventing the so-called “Big Design Up Front” (BDUF) with 

eventual efforts that are afterwards disregarded in “You Aren’t Going to Need It” (YAGNI) elements. The 

proposed process is called “Agile Modeling Process for Logical Architectures” (AMPLA). This research 

work aimed defining how AMPLA covers the model evolution and abstraction level from business to 

service-oriented logical architectures in LSA settings. Additionally, adopting an architectural style called 

“microservices”, eases the agility in developing (and deploying) the solutions, where its design 

principles promote continuous integration/delivery (CI/CD) and DevOps. Thus, AMPLA includes 

architecture modeling as well as maintenance and evolution during ASD iterations. 

 

Keywords: agile software development, agile modeling, large-scale agile, logical architectures,  

microservices architecture 
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Resumo 

Desenvolver soluções de software é fornecer respostas a um conjunto de necessidades de negócios 

na forma de um software executável. Essas necessidades de negócios são o ponto de partida para o 

processo de desenvolvimento, que define como o software suportará o negócio, na forma de requisitos 

funcionais e não funcionais. Então, qualquer decisão de implementação visa satisfazer esses requisitos. 

Obviamente, com o tempo, os requisitos mudam. Nesse sentido, as abordagens de desenvolvimento 

ágil de software (ASD) trazem um conjunto de práticas para abraçar essas mudanças o mais rápido 

possível. À medida que a complexidade do software aumenta, principalmente em termos da quantidade 

de recursos definidos, essas abordagens enfrentam alguns desafios, geralmente relacionados à 

definição correta de como equipas diferentes devem trabalhar em conjunto para fornecer uma solução 

unificada. Em soluções complexas, a rastreabilidade entre as perspetivas do negócio (ou dos 

stakeholders) e software (componentes) pode não estar adequadamente garantida. Usando uma 

arquitetura lógica, é fornecida uma visão que organiza os componentes de software para que os 

requisitos funcionais sejam suportados. Num contexto ágil de larga-escala (LSA), fornece uma visão de 

como os diferentes resultados se encaixam. Assim, esta tese apresenta um processo para modelar 

arquiteturas lógicas adequadas às configurações de ASD (também conhecido como “Agile Modeling” - 

AM), composto pelas técnicas de levantamento e modelação de requisitos e, adicionalmente, usa um 

método arquitetural chamado “Four Step Rule Set” (4SRS) para rastreabilidade entre os requisitos e os 

componentes arquiteturais. Um processo de AM deve oferecer suporte a uma conceção evolutiva, 

impedindo o chamado “Big Design Up Front” (BDUF), com eventuais esforços que serão 

posteriormente desconsiderados em elementos “You Aren’t Going to Need It” (YAGNI). O processo 

proposto é chamado de “Agile Modeling Process for Logical Architectures” (AMPLA). Este trabalho de 

investigação pretendeu definir como o AMPLA cobre a evolução dos modelos e nível de abstração 

desde o negócio até a arquiteturas lógicas orientadas a serviços em contextos de LSA. Além disso, a 

adoção de um estilo arquitetural chamado “micro-serviços” facilita a agilidade no desenvolvimento (e 

instalação) das soluções, onde suas bases da conceção promovem a integração / entrega contínua (CI 

/ CD) e cultura DevOps. Assim, o AMPLA inclui modelação da arquitetura, bem como manutenção e 

evolução durante ciclos ágeis. 

 

Palavras-chave: ágil em larga escala, arquitetura de micro-serviços, arquiteturas lógicas,   

desenvolvimento ágil de software, modelação ágil.  
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This chapter introduces the topic of the presented research for a proper understanding of 

this research. It describes the motivations for this thesis, the research question and 

objectives towards answering the question, and finally the research method. 
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Chapter 1 - Introduction 

 

“A problem well stated is a problem half solved.” 

Charles F. Kettering, inventor, engineer, businessman 

 

1.1 Motivations 

Software architecture design, when performed in context of agile software development (ASD), 

sometimes referred as “agile architecting”, promotes the emerging and incremental design of the 

architectural artifact, in a sense of avoiding “big design upfront” (BDUF). Performing “agile architecting” 

is not always straightforward, mainly because the architecture has a required life cycle and each stage 

responds to different needs. There is a lack of a roadmap that guides agile architecting in an end-to-end 

approach (from business requirements to deployment). 

The role of architecture and architects have been changing due to the adoption of agile software 

development (ASD) approaches. Although an initial misconception because popular ASD frameworks 

(Scrum, XP, Kanban, DSDM) did not explicitly include architectural artifacts or roles, this role has been 

emerging towards a balanced design and implementation as the architecture emerges throughout the 

process. The architect plays a role in upfront planning, storyboarding and backlogs, Sprints and working 

software stages of a project (Madison, 2010). More recently, agile scaling frameworks , like Disciplined 

Agile Delivery (DAD) (Scott Ambler & Lines, 2012), Large-Scale Scrum (LeSS) (Larman & Vodde, 2016), 

Scaled Agile Framework (SAFe) (Leffingwell, 2016), Scrum@Scale (Sutherland, 2018) and Nexus (K 

Schwaber, 2015), have been adopted in industry. The architect’s role have been specified by actively 

and passively support agile teams by driving architectural initiatives, participating in architectural 

runways, harmonizing governance requirements, and ensuring technical alignment in solution contexts 

(Uludag, Kleehaus, Xu, & Matthes, 2017). 

The plethora of agile practices relate to management (e.g., Sprints, Scrum ceremonies), 

development (e.g., pair programming, TDD, BDD, DevOps) or strategy (e.g., Lean Startup), but lack a 

comprehensive description on how its adoption influences requirements modeling. Agile software 

development (ASD) is currently the worldwide-adopted approach in software engineering. The mashup 

of agile practices and industry coins (e.g., Scrum, XP, MVP, DevOps, large-scale agile, Squads/Tribes, 

Management 3.0, and many others) cover all software and application lifecycle. Although none of this 
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practices relate to requirements engineering (RE) discipline, or specifically to Agile modeling (AM) (S 

Ambler, 2002), performing this practices into an ASD process has direct implications on how RE 

practices are performed and how artifacts are built. 

Stakeholders are crucial participants for eliciting requirements towards a new software solution. 

However, agreeing a common understanding among them is a complex task in a project’s initial phase 

when solution requirements and design need to be refined and/or are unknown. Companies often strive 

to properly perform requirements engineering (RE) tasks in software solutions for complex ecosystems 

(mainly those related to the emergence of new paradigms like Cloud Computing and more recently 

Industry 4.0, Internet of Things (IoT), machine-to-machine, cyber-physical systems, etc.). The elicitation 

for the required functionalities regarding the adoption of these recent technologies typically ends up 

without consensus when technical decisions are required. This trend does not have yet mature 

references and standards that companies may blindly follow, so the product development results in 

refactoring efforts towards new architectural patterns.  

Stakeholders must able to communicate in what way a future solution improves their business, by 

defining the product roadmap. A product roadmap is an initial high level project scope and direction 

(IIBA, 2017). Typically, a first release on a new product encompasses a product’s subset able to 

address priority scenarios, previously identified in order to respond to market needs. In fact, many of 

these product releases are market-driven, where the release is deployed into the market so it is possible 

to get feedback from it, i.e., a minimum viable product (MVP). 

In plan-driven approaches (e.g., Waterfall), tasks related to RE discipline are traditionally managed in 

a phase separated in time from design and development. In change-driven approaches, like ASD, RE 

discipline – also called “Agile RE” – activities remain the same but are executed continuously (Grau & 

Lauenroth, 2014), and  takes an iterative discovery approach (Cao & Ramesh, 2008). Elicitation, 

analysis, and validation are present in all ASD processes (Paetsch, Eberlein, & Maurer, 2003).  

ASD widely use User Stories (Cohn, 2004) as items in the backlog for “reminders of a conversation” 

about a functionality. However, using only User Stories, without attached requirements specifications or 

models, may be insufficient to assure a common understanding, or, in case of multi-teams, to clearly 

define inter-systems interactions. Additionally, requirements modeling should prevent unnecessary 

efforts in “You Aren’t Gonna Need It” (YAGNI) features, hence the need for an Agile Modeling (AM) (S 

Ambler, 2002) approach. 

Applying AM should start by enabling a first iteration of requirements modeling, which is then the 

basis for further refinements, and later support discovery when they emerges, as the software 
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increments are being delivered throughout the Sprints. The inception, like the pregame phase or Sprint 

zero in Scrum, aims providing a shared understanding of the project and the required information for 

the development phase. In the same line of reasoning, Ambler presents an evolution and emerge-

oriented approach for using models in ASD, called “Agile Model-Driven Development” (AMDD) (SW 

Ambler, 2003), where the starting point is “just-enough” requirements and architecture, which are 

updated alongside Delivery Cycles phase. 

The architecture should emerge gradually sprint after sprint, as a result of successive small 

refactoring (Abrahamsson, Babar, & Kruchten, 2010). However, adopting any ASD approach heavily 

depends on the project context (Philippe Kruchten, 2007). Typically contexts like size, large systems 

with a lack of architectural focus, novice teams, high constraint on some quality attribute, among 

others, have high risks in ASD projects (P Kruchten, 2013).   

In order to ease architectural management incrementally as it emerges, the “power of small” (Erder 

& Pureur, 2015) supports continuous architecting activities. In this sense, microservices architectures 

(MSA) propose small and interconnected services. Developing such solutions faces several challenges 

beyond typical architecture and service design concerns, including service exposition (API), inter-service 

communication, and infrastructure deployment, among others. Designing microservices for a given 

business capability or domain, typically uses patterns such as Domain-driven Design (DDD) (Evans, 

2004), single responsibility principle (SRP) or Conway’s Law (Conway, 1968). However, microservice 

design often faces challenges related to database partition, the proper size of the microservice, inter-

service communication and messaging, which are not addressed systematically by those patterns.  By 

applying a modeling method in the process of designing a MSA, one may foresee issues on bounded 

contexts for microservices, namely intra-service behavior, interfaces and data models separation, and 

inter-service communication and messaging requirements (Newman, 2015). 

 

This thesis presents Agile Modeling Process for Logical Architectures (AMPLA), an Agile Modeling 

(AM) oriented process composed by UML diagrams (Sequence, Use Cases and Component). AMPLA 

uses agile practices in order to deliver small increments (of a requirements package) and to promote 

continuous customer feedback. The proposed AM process also includes a candidate architecture and 

further requirements refinement in parallel with a software increment delivery. By eliciting a set of “just-

enough” UML Use Cases, i.e., that includes at least the core requirements information, it is proposed 

the use of a logical architecture derivation method, the Four Step Rule Set (4SRS). This approach is 

suitable in agile software development contexts, where the solution’s architecture is unknown upfront. 
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AMPLA is an approach for supporting the emergence of a candidate (logical) architecture, rather 

than BDUF the architecture in an early phase. AMPLA includes the core known features within the initial 

phase and designs a logical architecture using a stepwise method, without refining information. The 

emerging characteristics of AMPLA are supported in four stages, two performed before development 

cycles or Sprints and two in parallel with ASD cycles: (1) eliciting a small set of high-level requirements; 

(2) deriving a candidate logical architecture; (3) define subsystems for refinement; and (4) refine 

requirements and the architecture regarding the subsystem in small cycles or Sprints. 

Projects at large-scale have been adopting agile practices in order to optimize how a group of teams 

deliver software. Such adoption however has faced difficulties on how to assign work items, set 

boundaries, and address communication and coordination. Process management thus deals with work 

items that are dependent on each other, need for well-defined interfaces and shared understanding of 

the existing knowledge. We propose a framework, built upon a design theory, based on previously 

derived logical architectures to serve as the basis for the delivery of work items to distributed agile 

teams. The logical architecture derived from AMPLA, and other artefacts, support the identification of 

boundaries, dependencies and coordination needs. Although acknowledging the importance of 

architecture in managing inter-team processes in a ‘large-scale agile development’ context, these 

approaches lack of a structured approach for using such information to manage the software delivery 

process. The term ‘large-scale agile’ (LSA) has been used to describe agile development in everything 

from large teams to large multi-team projects to making use of principles of agile development in a 

whole organization (Dingsøyr & Moe, 2014). Models are about presenting an abstraction of reality 

towards  a shared understanding of the problem, but a proper analysis allows depicting their input in 

assigning work, derive dependencies, and manage inter-team communication and coordination. 

Accordingly, this research proposes an approach for designing a microservices-oriented logical 

architecture (MSLA), i.e., a logical view (Philippe Kruchten, 1995) on the behavior of microservices and 

relationships between microservices. This approach uses UML use cases diagrams for domain 

modeling, which are further used as an input for designing a MSLA in an automated way, by using an 

adaptation of the 4SRS method. Each of these functionally decomposed UML use cases give origin to 

one or more components, which will then compose the microservices. 

  



An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects 

 

7 
 

1.2 Key definitions 

Agility 

Agility is defined as the continuous readiness “to rapidly or inherently create change, proactively or 

reactively embrace change, and learn from change while contributing to perceived customer value 

(economy, quality, and simplicity), through its collective components and relationships with its 

environment” (Conboy, 2009). It is also “the ability of  an organization to both create and respond to 

change in order to profit in a turbulent business environment” (Highsmith, 2002). 

Agile Modeling 

Agile modeling is the task of developing emerging model-based artifacts, related to requirements 

and design, properly performed under agile software development. The models emerge as a “just-in-

time” need for further implementation. 

Large-scale agile 

The dimensions used to define a project as large-scale agile relate to number of involved teams, 

costs, code size and number of requirements. For scope definition of the work, large-scale agile is 

characterized by having more than one team, to have more team members than the numbers that are 

typically suggested, or when large quantities of user stories (or requirements) or lines of code are 

required. 

Logical Architectures 

A logical architecture is an abstraction view of functionality-based elements that support a system’s 

functional requirements, relations between them and with external systems, embodying design 

decisions. It is typically represented as objects or object classes, or as components. 

Evolutionary design 

Evolutionary design means that the design of the system grows as the system is implemented. As 

the software solution evolves, the design changes. 

 

1.3 Core Concepts and Definitions 

Software Architectures 

The concept of software architecture is regarded as a distinct discipline, however still tied closely to 

other disciplines and communities, such as software design (in general), software reuse, systems 

engineering and system architecture, enterprise architecture, reverse engineering, requirements 

engineering, and quality (Philippe Kruchten, Obbink, & Stafford, 2006). So, why is software architecture 
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so important in requirements engineering? Literature on software architecture encompasses a plethora 

of definitions. Most agree that an architecture concerns both structure and behavior (Philippe Kruchten 

et al., 2006), and is used for capturing key software system structural characteristics (Shaw & Garlan, 

1996). Thus, what is software architecture?  

The IEEE Recommended Practice for Architectural Description of Software Intensive Systems, IEEE 

1471 defines architecture as the “fundamental organization of a system embodied in its components, 

their relationships to each other, and to the environment, and the principles guiding its design and 

evolution” (IEEE Computer Society, 2000).  

The Software Engineering Institute (SEI), as a reference institute on software engineering and 

software architecture field, defines software architecture as “the blueprint for both the system and the 

project developing it, defining the work assignments that must be carried out by design and 

implementation teams” (SEI, n.d.). They position it as an artifact used in the early analysis, able to 

assess if the output of the design approach comprises the elicited requirements.  

The Rational Unified Process (RUP) defines software architecture as the “set of significant decisions 

about the organization of a software system, the selection of the structural elements and their interfaces 

by which the system is composed together with their behavior as specified in the collaboration among 

those elements, the composition of these elements into progressively larger subsystems, the 

architectural style that guides this organization, these elements and their interfaces, their collaborations, 

and their composition” (Philippe Kruchten, 2004). 

The view regarding the software architecture strongly depends on the desired goal and context. 

Kruchten uses five concurrent views for representing different concerns of a software architecture in its 

approach called “4+1 View Model” (Philippe Kruchten, 1995). For addresses a specific set of concerns 

of interest to different stakeholders in the system, Kruchten uses the logical view, the process view, the 

physical view, the development view and the scenarios.  

Software architectures are useful artifacts for development teams, especially for enterprise 

integration and interoperability, which gave origin to a plethora of frameworks and references (Chen, 

Doumeingts, & Vernadat, 2008), mainly address heterogeneous environments. 

Agile Software Development (ASD) 

ASD is not a framework or methodology, but rather a culture and a set of self-replicated ideas 

(Philippe Kruchten, 2007). 
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Agile development processes are based in self-organized teams for resolving their problems, 

dividing the implementation of complex software in small iterations periodically assessed, in order to 

solve eventual problems as soon as they emerge.  

Based in the agile manifesto, Cho states common characteristics on agile methodologies, as well 

as some common perception on this methodologies’ strengths and weaknesses, as follows (Cho, 2009) 

in Table 1. 

Table 1. Characteristics of agile methodologies (Cho, 2009)  

Characteristics Strengths Weaknesses 

Iterative and incremental 

development  

Customer collaboration  

Frequent delivery  

Light and fast development 

cycle  

Tacit knowledge within a 

team  

Light documentation 

Short development cycle  

High customer satisfaction  

Low bug rate  

Quick adaptation to rapidly 

changing business 

requirements 

Significant document reduction and heavy 

dependence on tacit knowledge  

Not sufficiently tested for mission/safety-critical 

projects  

Not adequate for highly stable projects  

Can be successful only with talented individuals who 

favor many degrees of freedom  

Not appropriate for large-scale projects 

 

Large-scale Agile Development 

The term ‘large-scale agile development’ (LSA) has been used to describe agile development in 

everything from large teams to large multi-team projects to making use of principles of agile 

development in a whole organization (Dingsøyr & Moe, 2014). For Eckstein, LSA development occurs 

when, for instance, a team in a XP-based project is composed by more than 12 members (Eckstein, 

2013), or when in Scrum projects is performed Scrum of Scrums (Cristal, Wildt, & Prikladnicki, 2008). 

For Dingsøyr and Moe, LSA development is characterized based on aspects of size such as number of 

people involved in the development, lines of code in the solution, number of development sites, number 

of teams, to definitions such as “agile in larger organizations” (Dingsøyr & Moe, 2014). Moreover, LSA 

is defined as “agile development efforts with more than two teams” (Dingsøyr, Fægri, & Itkonen, 2014), 

“projects are those with more than 100 people and are longer than 1 year duration” (Crocker, 2004). 

Additionally, “very large-scale agile development” occurs when ten or more teams are in the project 

(Dingsøyr et al., 2014). 
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1.4 Research question and objectives 

This PhD’s research question is as follows: 

“How to adopt logical architectures in agile large-scale projects?” 

Prause and Durdik argue that architectural design can be improved in agile methods by (Prause & 

Durdik, 2012): (1) agile architectural modelling using an incremental, customer-involved process; and 

(2) an initial vision of the system including initial design is created during the first iteration of the 

development, where architectural design is more a draft that is changed during later development; (3) 

more detailed design followed further on several iterations for designing the system; and (4) continuous 

iterative design where design is embedded into agile development and  architectural artifacts are 

updated regularly. 

The adoption of a logical architecture implies its usage as a complementary approach to agile in 

the development life cycle, in parallel with up-front planning, storyboarding, Sprint, and working 

software (Madison, 2010).  

It is expected that this research output a method for using logical architectures in a typical software 

agile development, as well as in agile large-scale contexts. 

This topic must be addressed in the very beginning of the agile process, and afterwards the 

research must aim at providing the architecture with the required flexibility during the iteration-cycles of 

the process. Thus, these two project phases require distinct approaches. One addressed by one 

objective, and the other one addressed by three objectives: 

 

O1: To develop an approach capable of deriving logical architectures in order to establish 

the initial requirements that are passed on to agile development teams. 

Using logical architectures for establishing initial requirements allows to combine requirements 

from backlogs (that focus only on functional features) with the quality attributes of the software (Jeon, 

Han, Lee, & Lee, 2011). This PhD research aims at including some upfront design in the set-up phase 

of the project (by some we do not mean BDUF, rather using existing research related to the sufficient 

amount of information for architecture design (Waterman, Noble, & Allan, 2012)) – like in a “waterfall” 

approach. Additionally, it aims using the architecture as input for an ASD approach (back to 

requirements again) to build almost the totality of the Product Backlog, with ongoing architectural 

refinement during the iterative development (Abrahamsson et al., 2010). This set-up phase of the 

project is called “pregame” (Ken Schwaber, 1997), or “Sprint 0”. 
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The 4SRS method allows deriving logical architectures aligned with the corresponding, and 

previously elicited and modeled, user requirements. In this PhD thesis, the 4SRS method will be 

adapted for adopting logical architectures in a typical software agile development. The conventional 

version of the 4SRS method is typically applied in large-scale projects, but demands high quantity of 

information (use cases, textual descriptions), which is often time consuming and, in every way, 

misaligned with the general paradigm adopted by ASD approaches (“Working software over 

comprehensive documentation”).  

 

Within this software development phase, some existing knowledge and concepts are considered, 

namely:  

 The architecture should emerge gradually Sprint after Sprint, as a result of successive small 

refactoring (Abrahamsson et al., 2010);  

 Performing lightweight amount of effort in up-front design, by using, for instance, a “predefined 

architecture” (Waterman et al., 2012), walking skeleton (Farhan, Tauseef, & Fahiem, 2009) and 

simple artifacts (informal box-and-line diagrams, descriptions of a system metaphor, a succinct 

document capturing the relevant decisions, etc.) (Erdogmus, 2009).  

This way, the architecture is able to handle all the known “big rocks”, i.e., requirements that are 

particularly hard to incorporate late in the project (Cockburn, 2006) and used as a starting point for the 

generation of User Stories to be incorporated in the Backlog artifact.  

 

O2: To adopt flexibility and agility mechanisms in the refinement of logical architectures 

throughout the iterations of ASD teams. 

The adoption of a logical architecture implies that it is used as a complementary approach to agile 

in the development life cycle (Madison, 2010). This objective relies in adding the 4SRS method with 

mechanisms to refine the requirements from pregame phase (addressed in O1) but also to respond to 

changes during the ASD iterations. This research will aim in using the 4SRS to trace every decision 

made during the development (“game” phase), from the stated user requirements (in O1) to the 

delivered software. 

Considering that changes in requirements are frequent (and embraced) in agile environments, the 

resulting artifact from the previous objective must imperatively be able to respond to those changes 

without losing information and not being subjected to unnecessary refactoring efforts. A research 

opportunity arises, where some existing knowledge and concepts will be taken in consideration, namely: 
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 Assessing the impact of changes in features within the architecture (Díaz, Pérez, & Garbajosa, 

2014) as well as evaluating the architecture at the end of every cycle (Kanwal, Junaid, & Fahiem, 

2010);  

 As the requirements are being developed and refined, the architect should identify architecturally 

significant requirements (ASR), feature- (or functionally-) oriented requirements, and the 

dependencies between them to ensure the necessary elements from the architecture are present 

in upcoming iterations (Nord, Ozkaya, & Kruchten, 2014); 

 It is, thus, required to provide the logical architecture with agility (that, for Farhan et al., relates to 

evaluate, discuss and correct quickly the architecture (Farhan et al., 2009)) during the small cycles 

of the process.  

 

The outputs from this research objective may be used in contexts where: substantial changes to the 

software architecture need to be explored (Farhan et al., 2009); given a change in features (adding, 

deleting or updating), it is possible to trace the changes to the stated requirements and assess the 

changes to the architecture (Díaz et al., 2014);  “small rocks” (in opposition to the “big rocks” stated 

within the previous research objective) are handled as they appear during the project (Cockburn, 2006).  

 

O3: To develop an approach oriented for continuous architecting, aiming to specify 

microservices logical architectures (MSLA), identifying them and their interfaces. 

Use domain-driven design for requirements engineering where, included in the proposed agile 

modeling logical architecture, uses the 4SRS method is used for proposing MSLA in: 

 Projects for breaking monoliths to microservices;  

 Greenfield projects of microservices-based solutions.  

 

O4: To use logical architectures to manage a team assignment and orchestration process  

Research regarding the use of a logical architecture artefact as a supporting basis for an LSA project 

that includes: 

 a modelling approach for identification of concerns within the architecture;  

 a set of issues for validating subsystems size;  

 a format to communicate subsystems specifications to teams;  

 steps for delivering dependencies, priorities, of subsystems to agile distributed teams. 
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Additionally, for this research objective to be fulfilled, the method must be able to be used in a 

typical ASD and in contexts of LSA projects. For scope definition of the work, LSA is characterized by 

having more than one team, when the number of team members is larger than the typically suggested 

limit (7 or 8 elements), or when large quantities of user stories (or requirements) or lines of code are 

required. For both contexts (but especially in LSA projects), some existing knowledge and concepts will 

be taken in consideration, among them: prioritizing requirements and depicting dependencies between 

features; coordinating and synchronizing distributed teams (Dingsøyr & Moe, 2014).  

 

1.5 Research method 

Within the research objectives, it is clear that the way to fulfill them is by designing a method that 

is able to derive logical architectures with the desired capabilities as the ones stated previously. In order 

to fulfill the research objectives, this PhD thesis is structured according the Design Science Research 

(DSR) methodology. The decision on using DSR relies mainly in the fact that the focus is to develop an 

artifact, namely an agile modeling process. The artifact is developed under the execution in 

demonstration cases. Due to the fact that these demonstration cases occur in different organizations 

and environments, this thesis uses DSR instead of, for instance, Action Research (Baskerville & Wood-

Harper, 1998; Coughlan & Coghlan, 2002) or Design Action Research (Sein, Henfridsson, Purao, Rossi, 

& Lindgren, 2011). 

In this section, the DSR method is overviewed and the research process to be conducted in the 

PhD thesis is described. 

DSR addresses important unsolved problems in unique or innovative ways or solved problems in 

more effective or efficient ways. The key differentiator between routine design and design research is 

the clear identification of a contribution to the archival knowledge base of foundations and 

methodologies. The design-science paradigm seeks to extend the boundaries of human and 

organizational capabilities by creating new and innovative artifacts (Hevner, March, Park, & Ram, 

2004), a body of knowledge about the design of artificial objects and phenomena (i.e., artifacts) 

designed to meet certain desired goals (Simon, 1996). It seeks to create innovations that define the 

ideas, practices, technical capabilities, and products (Denning, 1997) through which the analysis, 

design, implementation, management, and use of information systems can be effectively and efficiently 

accomplished. 
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This PhD thesis structures its phases using the proposal from Kuechler and Vaishnavi (Kuechler & 

Vaishnavi, 2008), as depicted in Figure 1.  

This proposal begins with the Awareness of a Problem, and then a solution is created, drawn 

abductively from existing knowledge. The rigor of DSR is derived from the effective use of prior research 

(existing knowledge base). Solution and respective Artifacts are evaluated through metrics that 

instantiate the research goals. These steps are repeated until a satisfactory solution to problem is 

found. 

 

 

Figure 1. Design Science Research Cycle (Kuechler & Vaishnavi, 2008)  

 

The performed research strategies throughout the research process will be as follows: 

1) Awareness of Problem 

Some literature review on the topics under the PhD thesis provides the foundations that are 

required to define the theory development (Webster & Watson, 2002) on agile, architectures, and 

agile architecting. This phase intents to analyze the existing knowledge and to identify a research 

opportunity that is not addressed by the analyzed literature. 

 

2) Suggestion 

The proposal of hypothesis is built based in the identification of the research opportunity. This 

hypothesis is formalized in four research objectives that together answer the research question. 
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3) Development 

By performing demonstration cases, the proposed method and process are applied in R&D 

funded research projects conducted within CCG\ZGDV institute. These projects are conducted 

with ASD teams, but in different organizations and contexts. It is thus necessary to identify for 

which research objectives each demonstration case will have contributions. 

 

4) Evaluation 

The evaluation used demonstration cases, aiming to experiment and evaluate of the method 

applicability (Yin, 2014). Kitchenham proposes steps for conducting a demonstration case, 

namely Context, Setting the Hypothesis, Planning, Validating and Analyzing the Results 

(Kitchenham, Pickard, & Pfleeger, 1995). For the purpose of the PhD thesis, five demonstration 

cases were performed within contexts of R&D funded research projects conducted within 

CCG\ZGDV institute, each one with specific contributes within the thesis.  

 

5) Conclusion 

The demonstration case’s contribution is added to the research objective (O1, O2, O3, O4 or all). 

Until all four objectives are validated, the research process is conducted by new DSR cycles. 

Additionally, work publications relating to the main findings are prepared for submission to 

journals and conferences. 

 

Every doctoral work intends to develop a new theory, however its research should (or must) be 

based in a supporting research theory. Design theory (DT) is about having in consideration the analysis 

and evaluation of design within research (Larsen, Allen, Vance, & Eargle, 2015). Within the case of IS 

research, DT focus on the design of IT artifacts. These artifacts are broadly defined as constructs 

(vocabulary and symbols), models (abstractions and representations), methods (algorithms and 

practices), and instantiations (implemented and prototype systems) (Hevner et al., 2004). It describes 

the world as acted upon (processes) and the world as sensed (artifacts) (Hevner et al., 2004). From the 

author’s point of view, DT is the theory in which the designed artifacts are the basis.  

Hevner et al. defined a framework for understanding, executing, and evaluating IS research, 

combining behavioral-science and design-science paradigms. It is composed by three spaces - 

environment, knowledge base and IS research – and is structured as represented in Figure 2. 
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Figure 2. Design Theory for IS research (from (Hevner et al., 2004)) 

 

The environment defines the problem space in which reside the phenomena of interest. For IS 

research, it is composed of people, (business) organizations, and their existing or planned technologies. 

Together these define the business need or problem as perceived by the researcher (Hevner et al., 

2004; Silver, Markus, & Beath, 1995; Simon, 1996). Framing research activities to address business 

needs assures research relevance. 

Given such an articulated business need, IS research is conducted in two complementary phases. 

Behavioral science addresses research through the development and justification of theories that 

explain or predict phenomena related to the identified business need. Design science addresses 

research through the building and evaluation of artifacts designed to meet the identified business need. 

The knowledge base provides the raw materials from and through which IS research is 

accomplished. It is composed of foundations and methodologies. Additionally, uses reference 

disciplines provide foundational theories, frameworks, instruments, constructs, models, methods, and 

instantiations used from prior IS research and results in the develop/build phase of a research study; 

and methodologies provide guidelines used in the justify/evaluate phase. Rigor is achieved by 

appropriately applying existing foundations and methodologies. 
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Regarding the use of DT, this thesis focus in developing an IT artifact, namely an agile architecting 

method, i.e., a method for logical architectures that fulfills requirements for use within agile projects. 

Agile teams are the surrounding environment of this thesis. Teams, their process and the 

development artifacts have faced some critics when in large-scale contexts. These issues regard the 

business need for this thesis’ underdevelopment DT. 

As for assuring rigor, this thesis uses, for a knowledge base: (1) frameworks that propose emerging 

architecture design - like Abrahamsson et al., Waterman et al. or Farhan et al. (Abrahamsson et al., 

2010; Farhan et al., 2009; Waterman et al., 2012); (2) as well as architectural design tasks within agile 

iterations – like Jeon et al., Díaz et al. or Kanwal et al. (Díaz et al., 2014; Jeon et al., 2011; Kanwal et 

al., 2010); (3) models related to the logical architecture artifacts; (4) constructs for the 4SRS method 

execution; and (5) methods - namely the Design Science Research – that enable organizing the study. 

All these concepts allow developing a rigorous research.  

Upon these concepts, the hypothesis about use of the 4SRS in an emerging, iterative and 

continuous approach is constructed, ultimately resulting in a research question and its research 

objectives. The assessment of the hypothesis will be based upon the performance of demonstration 

cases. 

After the execution of demonstration cases, that result as well in refinements of the hypothesis, later 

assessed in further demonstrated cases. As an output, the developed artifacts are applied in the 

environment where the business need arose, as well as the new theory is scientifically validated and 

able to be added to the knowledge base. 

 

The demonstration cases 

In this thesis, the research projects were used as demonstration cases, separately, within the scope 

of DSR cycles. Each project had a clearly defined input for the research. 

 

The ISOFIN Cloud (Interoperability in Financial Software) project 

ISOFIN Cloud is a Portuguese funded project in co-promotion (QREN 2010/013837, under Fundos 

FEDER through Programa Operacional Fatores de Competitividade – COMPETE and Fundos Nacionais 

through FCT – Fundação para a Ciência e Tecnologia, FCOMP-01-0124-FEDER-022674). This project is 

executed in a consortium comprising eight entities (private companies, public research centers and 

universities), namely CCG\ZGDV Institute, i2S Insurance Knowledge, University of Minho, Faculty of 
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Sciences and Technology (FCT NOVA) of Lisbon, Maisis - Information Systems, Knowledgebiz, and I-

Zone Knowledge Systems. 

This project aimed to deliver a set of coordinating services in a centralized infrastructure, enacting 

the coordination of independent services relying on separate infrastructures. The ISOFIN platform 

supports the semantic and application interoperability between enrolled financial institutions (Banks, 

Insurance Companies and others). The cloud solution is able to be deployed in an Infrastructure-as-a-

Service (IaaS) layer. That layer will support the execution of a set of services that will allow suppliers to 

specify the behavior of the services they intend on supplying, in a Platform-as-a-Service (PaaS) layer. 

This will allow customers, or third-parties, to use the platform’s services, in a Software-as-a-Service 

(SaaS) layer and billed accordingly. 

The project included a set of 52 deliverables. This thesis used the following project deliverables: 

- M/D207 – ISOFIN Logical Architecture; 

- M/D210 – Financial Domain Applications/Services Specifications 

 

The iFloW (Inbound Logistics Tracking System) project 

The iFloW project is an R&D project that is part of a consortium program, called Human-Machine 

Interface Excellence (HMIExcel), between University of Minho and Bosch Car Multimedia Portugal, 

sponsored in co-promotion nº 36265/2013 (Project HMIExcel - 2013-2015). iFloW is an R&D project 

that aims at developing an integrated logistics software system for inbound supply chain traceability. 

iFloW is a real-time tracking software system of freights in transit from the suppliers to the Bosch plant, 

located in Braga. The main goal of the project is to develop a tracking platform that allows to control the 

raw material flow from remote (Asian) and local (European) suppliers to the Bosch’s warehouse, alerts 

users in case of any deviation to the Estimated Time of Arrival (ETA) and anticipates deviations of the 

delivery time window. The iFloW project, as its name refers, relates to logistics domain, and was mainly 

focused in integration with third party logistics (3PL) service providers and integrating Radio Frequency 

Identification (RFID) technology, Global Positioning System (GPS) technologies, and an integrated web-

based RFID- Electronic Product Code (EPC) compliant logistics information system.   

The project included a set of four deliverables. This thesis used the following project deliverables: 

- D4.4.2 - Specification of the model for experimental development; 

- D5.3.8 – development of functionalities  

- D6.7.9 – verification and validation of functionalities developed 
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The IMP_4.0 (Integrated Management Platform 4.0) project 

The IMP_4.0 platform (POCI-01-0247-FEDER-009147, under Portuguese National Grants Program 

for R&D projects P2020 – SI IDT) enables a software-house, F3M – Information Systems, SA, located in 

Braga, Portugal, to optimize the development process of delivering solutions to their customers with 

tools to support all their decision-making processes. The solution is based on public and private clouds, 

which are interoperable with devices in an IoT and Cyber-Physical Systems (CPS) approach. 

The IMP_4.0 project is about an ERP system for the textile production domain, where the focus is to 

support milling, weaving and clothing processes, by providing a set of reusable and integrated software 

modules. Additionally, the platform’s development includes establishment of generic modules and 

variability management for enabling its extension to textile, footwear, cutlery, metal-mechanic, 

glassware and other sectors. The research is conducted within an F3M’s software team. The team was 

composed by one Product Manager that owned the business vision, four software architects, four 

analysts that modeled requirements and architecture design, and two development teams responsible 

for implementing the resulting architecture. The architects and analysts also performed the 

measurements within this research.  

The project included a set of 36 deliverables. This thesis used the following project deliverables: 

- D.1.4 – Functional requirements specifications – initial version; 

- D.1.5 – Functional requirements specifications – final version;  

- D1.8 – Traceability mechanisms for production management; 

- D1.9 – IMP_4.0 logical architecture – initial version; 

- D1.10 – IMP_4.0 logical architecture – final version; 

- D1.11 – IMP_4.0 platform services specification. 

 

The UH4SP (Unified Hub for Smart Plants) project 

UH4SP is a Portuguese funded project in co-promotion (Project ID 017871, under Portuguese 

National Grants Program for R&D projects P2020 – SI IDT, and under COMPETE: POCI-01-0145-

FEDER-007043). The UH4SP project aims developing a platform for integrating data from distributed 

industrial unit plants, allowing the use of the production data between plants, suppliers, forwarders and 

clients. The consortium was composed with five different entities for software development where each 

had specific expected contributes, from cloud architectures to industrial software services and mobile 

applications. The solution is based in the Industry 4.0 paradigm, and IoT and cloud computing 

technologies. The entities are geographically distributed, but each entity had a single located team. 
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The project included a set of 50 deliverables. This thesis used the following project deliverables: 

- D.3.1 – Functional and Technical Requirements Specification; 

- D.3.2 – Technical and logical architecture; 

- D3.3 – Service Specification For Material Reception And Shipment; 

- D3.5 – Interoperability Between Platform And Services Requirements; 

- D3.7 – Solution modelling; 

- D4.1.1 – UH4SP Management Platform – Initial Version; 

- D4.1.2 – UH4SP Management Platform – Final Version; 

- D5.4 - Integration Services and Platform. 

 

The Internal Management System of Project Management (IMSPM) project 

In this case, the IMSPM is not a funded R&D project, but rather an internal project for i2S. This 

project is an initiative from i2S for refactoring an existing platform for their internal project management 

procedures, migrating it from a monolith system to a microservices architecture system. 

Because it is an internal project, the existing documentation for this project is private. The only 

available documentation is in form of an MSc thesis, whose work was associated with this PhD thesis. 

This MSc thesis can be found in: Amaral, José Diogo Coelho, “The evolution of monolithic architectures 

to microservice-based architectures” (free translation of “A evolução das arquiteturas monolíticas para 

as arquiteturas baseadas em microserviços”), ISEP - DM – Engenharia Informática1.  

 

If some projects were used in same DSR cycles as complimentary validation with each other, other 

were used to validate as alternative approaches. Finally, some cases were used for specific stages of 

AMPLA, for instance UH4SP was used for entire AMPLA process.  

Throughout the thesis, the UH4SP is described as the main demonstration case in the contributions. 

Whenever it is justifiable, whether complimentary or alternative, the inputs from the remaining 

demonstration cases are described in the respective sections. 

 

1.6 Document Structure 

This document is structured in four parts: Part I – Introduction, refers to Awareness of the 

Problem phase of the DSR, as well as the stating the Business Need of the DT; Part II – State of the 

                                                 
1
 Available at: http://hdl.handle.net/10400.22/11920    

http://hdl.handle.net/10400.22/11920
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Art, refers to Suggestion phase of the DSR and the outputs of the Knowledge Base of the DT; Part III 

– Contributions, refers to the Development and Evaluation phases of the DSR and also the 

Develop/Build and Justify/Evaluate from the IS Research of the DT, including the results of the 

demonstration cases for each of the research contributions; and Part IV – Conclusions, refers to 

Conclusion phase of the DSR as well as the Application in the Appropriate Environment and the Addition 

to the Knowledge Base of the DT. 

 

Part I is composed by one chapter. In Chapter 1, Introduction, the thesis’ motivation and 

background is firstly introduced, including the research question and objectives, the research method 

and the contributions. 

Part II is composed by two chapters. Chapter 2, Requirements and Logical Architecture Design in 

Large-scale Agile, introduces the modeling approaches and techniques of requirements engineering and 

architecture design in ASD and LSA settings. Chapter 3, Continuous design as part of Agile Architecting, 

describes continuous software engineering and continuous architecting approaches, and includes 

discussions in architecture lifecycle, architecture management and microservices architectures. 

Part III is composed by three chapters. These chapters relate to the research results of the 

demonstration cases, towards the thesis’ research contributions. Chapter 4, Agile Modeling for 

Candidate Logical Architectures, describes the modeling approach within AMPLA for candidate logical 

architecture, namely upfront and emerging approaches for requirements engineering, which in the later 

proposes DUARTE: Decomposing User Agile Requirements ArTEfacts (Upfront modeling; and Emerging 

modeling) and “Just-Enough” Modeling. Chapter 5, Agile Logical Architecting using AMPLA, discusses 

the model-abstraction evolution of a logical architecture throughout the project lifecycle, from a 

candidate version to a refined one.  Chapter 6, A design theory for a LSA process based in logical 

architectures, the use of a design artifact, such as the logical architecture, in an agile-oriented multi-

teams process- and project-management. The chapters are structured this way because in chapters 4 

and 5 the discussion relates to the modeling discipline, namely the architecture evolution throughout 

the AMPLA process as well as a decrease of the abstraction, and in Chapter 6 the discussion relates to 

the use of models in process- and project-management disciplines.  

Finally, Part IV is composed by one chapter. Chapter 7, Conclusions, synthetizes how the research 

contributions in a set of addressed topics allowed addressing the research objectives - and, 

consequently, the research question – but also a synthesis of the research efforts in terms of the 
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methods (DSR and DT) and the research projects, the scientific outputs and the published papers, and, 

finally, future work.  
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This chapter presents existing research regarding architecture design and large-scale agile 

(LSA). Firstly, this chapter introduces agile software development (ASD) and the changes 

in the software development that arose from this paradigm. Then, the chapter discusses 

how the architectural design discipline suffered some changes within this paradigm as well 

as how they coexist with ASD. Afterwards, it includes a section with existing approaches 

oriented towards using architecture design methods in specific stages of ASD processes. 

Additionally, LSA approaches and all its specific impacts in development practices are also 

presented. This chapter ends with the conclusions of the previously presented works.  
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Chapter 2 - Requirements and Architecture Design in LSA 

 

“Agile architecture: a paradox,  

an oxymoron, two totally incompatible approaches?” 

    Pekka Abrahamsson, Muhammad Ali Babar  

and Philippe Kruchten, Software Engineering researchers 

 

2.1 Introduction 

Software development lifecycle (SDLC) methodologies commonly fit within the spectrum of 

plan-driven or change-driven (IIBA, 2015). Plan-driven approaches are used in stable contexts 

that allow projects to follow early planned activities. Activities are usually sequential. Known plan-

driven approaches are the waterfall model (Royce, 1970), the “Vee” model (or V-Model) (Ferreira, 

Santos, Machado, & Gasevic, 2013; Forsberg & Mooz, 1991) or the Rational Unified Process 

(RUP) (Kruchten, 2004). In a plan-driven approach, requirements are defined upfront almost in 

their totality before moving to implementation.  

In opposition, change-driven approaches focus on rapid delivery of business value in short 

iterations (IIBA, 2015). These approaches arose before ASD. In fact, ASD is seen as one of the 

possible change-driven approaches, and not as one project management approach. These 

approaches firstly appeared as prototyping in 1984 (BW Boehm, Gray, & Seewaldt, 1984), 

followed by Rapid Prototyping (Fischer & Schneider, 1984), Evolutionary Delivery model (Gilb, 

1985) and the spiral model (B. W. Boehm, 1988). Other frameworks like Rapid Application 

Development (RAD) (Martin, 1991), the Dynamic System Development Method (DSDM) 

(Stapleton, 1997) and Adaptive Software Development (Highsmith, 2000) were the first ones to 

be related to a specific type of change-driven approaches, called agile software development 

(ASD). All were prior to Scrum and eXtreme Programming (XP) (Beck & Andres, 2004) 

frameworks. 

The turning point for the term ‘agile’ (and ASD) relates to the signing of the ‘Agile Manifesto’ 

(Agile Alliance, 2001). The Manifesto does not define any methodologies or practices itself, but 

rather outlines a philosophy in the form of a set of values and principles that frameworks such as 

Scrum (Ken Schwaber, 1997) and eXtreme Programming (XP) adhere. There are also others, like 

Kanban (Anderson, 2010), Agile Unified Process (AUP) 2005 (SW Ambler, 2005), Crystal 
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Methodologies (Cockburn, 2004) and Feature-Driven Development (FDD) (Palmer & Felsing, 

2001). 

Lean software development (Poppendieck & Poppendieck, 2003) is another framework for 

change-driven approaches. It has been originated by lean production within Toyota (namely in 

Toyota Production System - TPS), as an outgrowth of the larger Lean movement. It embodies 

seven principles, originally described by Mary and Tom Poppendieck (Poppendieck & 

Poppendieck, 2003): 

1. Eliminate Waste 

2. Build Quality In 

3. Create Knowledge 

4. Defer Commitment 

5. Deliver Fast 

6. Respect People 

7. Optimize the Whole 

 

The agile manifesto values working software over comprehensive documentation, and 

emphasizes simplicity: maximizing the amount of work not done. This principle can be 

interpreted in many ways. Most are quite good, but some interpretations can cause problems. 

For example, XP advocates doing extra work to get rid of architectural features that do not 

support the system’s current version. This approach works fine when future requirements are 

largely unpredictable (Barry Boehm, 2002). Figure 3 depicts a comparison on best suited for 

different contexts for agile and plan-driven methods.  

 

 

Figure 3. Comparison of agile and plan-driven methods (Barry Boehm, 2002)  
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2.2 Views on Debating Architectures and Agile  

There has been some discussion related to the strengths and weaknesses of software 

architecture with regard of agility. Abrahamsson states key advantages of up-front architecting 

(also called “Big Design Up Front” – BDUF) ) (Abrahamsson, Babar, & Kruchten, 2010). Due to 

the mutual influence between requirements and software architecture (Avgeriou, Grundy, Hall, 

Lago, & Mistrík, 2011),  upfront design implies having consistent and (somehow) stable 

requirements across the project lifespan (Grundy, 2013). 

A major criticism of upfront architecting is the potential efforts in capacity that may never be 

used (Grundy, 2013), many times referred as “You Ain't Gonna Need It” (YAGNI). Non-agile 

methodologies are accused of not involving the customer properly during all phases of the 

project. Companies where architectural practices are well developed often tend to see agile 

practices as “amateurish, unproven, and limited to very small Web-based sociotechnical 

systems” (Kruchten, 2007).  

On the other hand, practitioners of agile methods think that architecture-centric methods are 

“too much work, equating them with high-ceremony processes emphasizing document 

production” (R. L. Nord & Tomayko, 2006), or that “architectural design has little value”, and 

that the architecture should emerge gradually Sprint after Sprint, as a result of successive small 

refactoring (Abrahamsson et al., 2010). 

In opposition to these stated accusations, Falessi et al. present a study where agile 

developers perceive software architecture as relevant on the basis of aspects such as 

communication among team members, inputs to subsequent design decisions, documenting 

design assumptions, and evaluating design alternatives (Falessi et al., 2010). Practitioners were 

also questioned about when they should focus on software architecture. The answers were 

“always” (45%), “never” (5%) and “when the project is complex” (50%), as depicted in Figure 4. 

Due to the reason of complexity is a broad term, the asked respondents who selected it to 

choose geographic distribution (19%), number of requirements or lines of code (33%), number of 

stakeholders (29%), and “other” (19%) as the leading cause of complexity. 
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Figure 4. Focus on software architecture by agile developers (Falessi et al., 2010)  

 

Other works also propose useful adoption of architecture design to complement ASD typical 

development. It is the case of the Zipper Model (Bellomo, Kruchten, Nord, & Ozkaya, 2014; R. 

Nord, Ozkaya, & Kruchten, 2014). Like in any project, as the requirements are being developed 

and refined, they are inputs for the architecture design, and allow identifying architecturally 

significant requirements (ASR). Alongside, more feature- or functional-oriented requirements are 

identified, as well as relationships between them and between the ASR’s. They are further 

implemented in iterations based in their relationships (Figure 5). This way, the sometimes-

disregarded software infrastructure is considered at the same time as the features/functionalities 

within the ASD iterations. 

 

 

Figure 5. The Zipper model (Bellomo et al., 2014; R. Nord et al., 2014) 

 

Additionally, some aspects must be considered for those interested in designing and 

deploying agile processes engrained with sound architectural principles and practices 

(Abrahamsson et al., 2010): 
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 Understand the context. There is a vast array of software development situations, and 

although “out of the box” agile practices address many of these, there are outliers that 

needs understanding: What is the system’s size, domain, and age? What is the business 

model and the degree of novelty and hence of risk? How critical is the system? How many 

parties will be involved? 

 Clearly define the architecture: its scope and the architect’s role and responsibility.  

 Define an architecture owner, Architects are part of the development group. 

 Exploit architecture to better communicate and coordinate among various parties, 

particularly multiple distributed teams, if any. Define how to represent the architecture, 

based on what various parties’ need to know. 

 Use important, critical, and valuable functionality to identify and assess architectural issues. 

Understand interdependencies between technical architectural issues and visible user 

functionality to weave them appropriately over time (the zipper metaphor). 

 

The issues of trying to understand the apparent conflict and reconcile the two sides are in 

multiple dimensions (Abrahamsson et al., 2010): 

1) Semantics: What do we mean in this project or organization by “architecture”? The 

concept of architecture often has fuzzy boundaries. In particular, not all design is architecture. 

Agreeing on a definition is a useful exercise, and a good starting point. 

2) Scope: How much architectural activity will you actually need? Most software projects 

have a de facto, implicit architecture when they start; they will not need much of an architectural 

effort. 

3) Lifecycle: When in the lifecycle should we focus on architecture? Well, early enough, as 

“architecture encompasses the set of significant decisions about the structure and behavior of 

the system” (Kruchten, 2004): these are the decisions that will be the hardest to undo, change, 

refactor. Which does not mean an only focus on architecture, but interleaving architecture 

“stories” (i.e., stories more focused in quality requirements) and functional “stories” (i.e., stories 

more focused in functional requirements) in early iterations. 

4) Role: Who are the architects? On large, challenging, novel system, you may need a good 

mix of experience, of “architectus reloadus”– maker and keeper of big decisions, focusing on 

external coordination– and “architectus oryzus”– mentor, prototyper, troubleshooter, more code-

facing and focused on internal coordination. 
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5) Documentation: How much of an explicit description of the architecture is needed? While 

in most cases, an architectural prototype, starting with a walking skeleton, for example, will 

suffice, and one or a small number of solid metaphors to convey the message, there are 

circumstances where more explicit software architecture documentation will be needed: to 

communicate to a large audience, to comply with external regulations, for example. 

6) Method: How are we identifying and resolving architectural issues? How to proceed to 

identify architecturally significant requirements, to perform incremental architectural design, to 

validate architectural features, etc. There are architectural methods for addressing such issues. 

7) Value and cost: All agile approaches strive to deliver business value early and often. The 

problem seems often that while the cost of architecture is somewhat visible, its value is hard to 

grasp, as it remains invisible. An approach such as the Incremental Funding Method may allow 

casting the right compromise between architecture and functionality, without falling into the trap 

of BDUF. 

 

According to Brown, Nord and Okzaya, ongoing sustainable achievement of Enhancement 

Agility is only possible when coupled with Architectural Agility (Brown, Nord, & Ozkaya, 2010). To 

achieve Architectural Agility, the agile community must first expand its focus on end user stories 

and address the broader topic of capabilities (see Figure 6), including quality attribute 

requirements and a diverse range of stakeholders.  

 

 

Figure 6. Informed anticipation in the context of agile release planning (Brown et al., 2010) 

 

The use of dependency analysis practices can be used to facilitate a “just-in-time” 

approach to building out the architectural infrastructure. Real options and technical debt 
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heuristics can be used to optimize architectural investment decisions by analyzing uncertainty 

and tradeoffs between incurred cost and anticipated value. 

Interest is growing in separating the facts from myths about the necessity, importance, 

advantages, and disadvantages of having agile and architectural approaches coexist. Like many 

others in software development research and practice, a healthy focus on architecture isn’t 

antithetic to any agile process, instead of agile practitioners jump directly to refactoring and 

ignoring architecture (Abrahamsson et al., 2010). 

Architectural design can be improved in agile methods by: (1) agile architectural modelling 

with lowering the overhead of architectural modelling by using an incremental, customer-involved 

process; and (2) an initial vision of the system including initial design is created during the first 

iteration of the development, where architectural design is more a draft that is changed during 

later development (Prause & Durdik, 2012); (3) there are several iterations for designing the 

system, thus a more detailed design followed further on is created (Prause & Durdik, 2012); and 

(4) continuous iterative design where design is embedded into agile development and  

architectural artifacts are updated regularly (Prause & Durdik, 2012). 

 

2.3 Using Architecture Approaches within Agile Software 

Development 

Although there is no explicit support for the concept of architecture in XP methodology, it 

leads to a software system that should have some specific structures, which we call it, implicit 

architecture.  

One of them is Spike Solutions, used within planning game and when preparing user stories. 

A Spike solution is a simple program from the potential solutions that could solve a specific 

problem. In the XP method, the process starts by architectural spikes that could form some kind 

of initial structure of system. Therefore, it could be mentioned as a kind of analysis and design 

activity. Spike solution however is created for solving only one problem and the rest of the system 

is ignored for the purposes of the spike solution for that problem.  

Metaphors, on the other hand, are the result of architectural spikes and are claimed to be as 

a resemblance of architecture in XP (Beck & Andres, 2004). Mainly, the metaphor has two 

purposes. It is assumed as an abstraction of a system functionality that will keep the team on the 
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same page. A second reason is that the metaphor is supposed to contribute to the team’s 

development of software architecture.  

The XP development process is composed of several iterations, each of which results to a set 

of integrated functionalities at the end. All new functionalities will be tested for their compatibility 

with other functionalities already developed in the continuous integration step. Although this 

process may be affective to the system architecture, even indirectly, still architectural smells 

might be left in the system. These smells represent inefficiencies that could gradually mislead the 

system`s architecture toward an unmanageable and unsuitable shape unless resolved as soon 

as possible.  

One of the proposals for performing design as concepts and requirements emerge,  included 

in the research of Abrahamsson (Abrahamsson et al., 2010) and Farhan (Farhan, Tauseef, & 

Fahiem, 2009) is the approach of a walking skeleton. Abrahamsson refers to it as an 

architectural prototype (Abrahamsson et al., 2010). Farhan refers to it as a tiny implementation 

of the system that performs minimum functionality. Kazman proposes the design of a candidate 

architecture (Kazman, 2013). He defines this design as: “If you are building a large, complex 

system with relatively stable and well-understood requirements and/or distributed development, 

doing a large amount of architecture work up-front will likely pay off. On larger projects with 

unstable requirements, start by quickly designing a candidate architecture even if it leaves out 

many details.” 

 

How can a team decide what is “just enough architecture documentation” for their work? Who 

is the audience for architecture documentation and models? What kinds of architecture 

documentation might be easier to keep up to date? A detailed architectural plan may be overkill, 

but an agile architecture model may contain descriptions of the system in several forms (Mancl, 

Fraser, Opdyke, Hadar, & Hadar, 2009):  

• architectural layers 

• classes and packages 

• interface agreements between internal system components (including internal 

performance contracts) 

• external interfaces 

• extension points 

• key end-to-end scenarios 
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When software architecture is expressed in the wrong format or documented excessively, or 

the representations are used poorly, the result is the illusion of architecting. Clements et al. state 

“If information isn't needed, don't document it” (Clements, Ivers, Little, Nord, & Stafford, 2003). 

All documentation should have an intended use and audience in mind. Effective representation of 

software architecture is possible with simple artifacts. The artifacts could include specifications 

written in UML or an architecture description language if appropriate, but a few informal box-and-

line diagrams, descriptions of a system metaphor, a succinct document capturing the relevant 

decisions, and combinations thereof might do the job as well or better (Erdogmus, 2009).  

In general, the set-up phase of the project - often called ‘iteration 0’ (Abrahamsson et al., 

2010) - includes some upfront design, with ongoing architectural refinement during the iterative 

development. However, how can an architect or developer determine what the correct amount of 

“just enough up-front design” is, i.e., how can agile teams reduce the up-front effort without 

sacrificing the benefits of an up-front design (Waterman, Noble, & Allan, 2012)? This work states 

concepts for reducing the amount of effort in up-front decision making such as “using predefined 

architecture”, “intuitive architecture”, “having architectural experience simplifies decision 

making” and “being familiar with the architecture”. 

 

Coplien and Bjørnvig present the concept of “Lean Architecture” (Coplien & Bjørnvig, 2011), 

where some concerns enabling the architecture design are presented in order to facilitate agility. 

The Lean perspective focuses on how we develop the overall system form by drawing on 

experience and domain knowledge. Lean architecture and Agile feature development are much 

more about focus and discipline, supported by common-sense arguments that require no 

university degree or formal training.  These concerns are depicted in Figure 7. 
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Figure 7. Lean Architecture vs Classic Software Architecture (Coplien & Bjørnvig, 2011)  

 

Software Architecture Methods within Initialization 

In Attribute-driven sCRUM (ACRUM), three new activities performed in parallel with known 

Scrum activities. The main steps in the ACRUM progress side by side with the development 

process of Scrum, keeping its agility intact. This process is depicted in Figure 8. This approach 

uses a customized QAW and ADD used in Scrum projects (Jeon, Han, Lee, & Lee, 2011).  

 

 

Figure 8. ACRUM development process (Jeon et al., 2011)  
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In summary, it added three steps to effectively analyze and manage quality attributes. First 

is the analysis of quality attributes (AQUA). Second is the preparation of the correlation mapping 

table (RAM) between the requirements and its analysis at the upper part. Finally, the success or 

failure of the quality attributes is verified through the VAlidation of Quality attributes (VAQ) while 

demonstration of each final Sprint. Each Sprint was composed of the activities from the Sprint 

planning to the retrospective meeting. Such activities are repeated for each Sprint.  

 

Software Architecture Methods within Development Iterations 

Change-impact architectural knowledge as the main driver for agile architecting in order for 

documenting architectural knowledge and tracing architecturally significant features with their 

realization in the architecture (Díaz, Pérez, & Garbajosa, 2014). The models are traversed using 

a Change Impact Analysis technique to retrieve the architectural design decisions and 

architectural components and connections that are impacted as a consequence of changing 

features. The documentation of architectural knowledge supports the rationalization of 

architectural decisions taken during the solution design. The rationalization of early design 

decision may help to evolve the architecture while preserving its integrity. The main types of 

architectural knowledge are the design decisions driving the architecture solution, their 

dependencies and rationale. The knowledge of adding feature increments or changing features in 

each agile iteration can be captured in modeling primitives (rationale, constraints, assumptions, 

etc.) that can be closed, open, optional or alternative design decisions. These four types of design 

decisions offer a complete support for documenting the knowledge derived from the agile 

architecting process. 

Changes in features affect the system architecture and can lead to ripple effects that are not 

obvious to detect. The Change Impact Analysis technique (Díaz et al., 2014) consists of two main 

steps described below: 

1. Given a change in features (adding, deleting or updating), the traceability-based algorithm 

determines (1) the first-order design decisions that are involved with the feature to be 

changed, (2) the design decisions that depend on the first-order design decisions, and (3) 

the first-order architectural elements that are involved in each design decisions. 

2. Given a change in the working architecture that realizes the change in features, the rule-

based inference engine fires propagation rules to obtain the change propagation in the 

working architecture.  
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This approach for agile architecting is then deployed in Scrum processes. Figure 9 shows a 

tailored Scrum development process in which agile architecting is considered as a key activity to 

prepare the iteration (i.e., Sprint). 

The first step consists of capturing the requirements of the Product Owner from the product 

vision (features). Features may be decomposed into a list of user stories known as product 

backlog. Then, user stories are prioritized, based on business value, and assigned to Sprints. 

Scrum implements an iterative lifecycle based on these Sprints. Sprints start with Sprint planning 

meeting in which the Product Owner and Team plan together what has to be done. In this 

tailored Scrum, the agile architecting tasks are developed in conjunction with the Sprint planning 

meetings. Agile architects interact with the rest of the team in planning the features to be done 

by tracking architectural concerns —constraints, risks, viability, etc. — and balancing them with 

business priorities. At the end of each Sprint, a working product and a working architecture are 

delivered. In the Sprint review meeting, the Product Owner assesses the working product to 

validate that user stories were met, or to introduce changes into the user stories. 

 

 

Figure 9. A customization of Scrum for agile product-line architecting (Díaz et al., 2014)  

 

The lightweight ATAM (Farhan et al., 2009), i.e., without some of its activities (see Figure 10), 

validates architectures in a Crystal project and applying agility to ATAM. Crystal is a non-jealous 

model and allows integration with other models. Crystal’s main theme is that there may be 

slightly different policies and conventions for each project. It is based upon incremental 

development not exceeding more than four months. 
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Figure 10. Modified ATAM for Crystal Agile Model (Farhan et al., 2009)  

 

The adapted method is composed by the following activities: 

• Agile architect principles - is an overall umbrella activity that dictates the modifications in 

ATAM to introduce agility in it so that it would be compatible with crystal. 

• Reflective workshops - is a practice offered by crystal in which teams discuss closely the 

track, progress, modifications, strengths and weaknesses of the project. These workshops 

can also eliminate the need for step 1 and 2, and can aid in light weighting the steps 3 and 

4. 

• Osmotic communication - Crystal, background hearing of information can be provided. 

• Information radiators - is a display posted in a place, passage or hallway where people can 

see easily as they work or walk by. This enables more communication with fewer 

interruptions. So we can reduce the amount of heavy documentations thus phase 1 and 

step 9 can be light weighted. 

• Ambassador user - Crystal presents the concept of closely involved user, in the development 

process, called ambassador user. Therefore, teams can have quick feedbacks and can 

modify requirements as per user satisfaction. This way overall ATAM process can be light 

weighted. 

• Early victory - is the first piece of software in running condition. For that, small problems are 

solved initially and the underlying principle is that the team should go for easy tasks first. 

This practice adds a value to the overall ATAM process. 
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• Walking skeleton - is a tiny implementation of the system that performs minimum 

functionality. Such kind of skeleton can be evaluated, discussed and corrected quickly, so 

this adds agility to ATAM process. 

• Incremental re-architecture - Once we have walking skeleton of the system, there may be 

incremental re-architecting quickly. This also lightweight the overall ATAM process and 

makes it suitable for crystal agile model. 

• Daily stand ups - Daily Stand-ups of a few minutes can fix the problems on daily basis. 

Although this practice does not target any specific step of ATAM but it adds value to overall 

process. Practices from 4.5 through 4.9 can eliminate phase 3 of ATAM. 

 

Nord et al. explore the relationship and synergies between architecture-centric design and 

analysis methods and the Extreme Programming framework (R. L. Nord & Tomayko, 2006). 

Software Architecture Technology Initiative at Carnegie Mellon University’s Software Engineering 

Institute (SEI) has developed and promulgated a series of architecture-centric methods for 

architecture design and analysis.  

The Quality Attribute Workshop (QAW) can help the development team understand the 

problem by eliciting quality attribute requirements basing on business goals ensures that the 

developers address the right problems.  

The Attribute-Driven Design (ADD) method defines a software architecture by basing the 

design process on the prioritized quality attribute scenarios that the software must fulfill.  

The Architecture Trade-off Analysis Method (ATAM) and Cost-Benefit Analysis Method (CBAM) 

provide detailed guidance on analyzing the design and getting early feedback on risks. The 

development team can use incremental design practices to develop a detailed design and 

implementation from the architecture. Architectural conformance and reconstruction techniques 

ensure consistency between the architecture and implementation.  

These SEI methods can enhance XP practices. The method’s applications within the XP 

practices are presented in Figure 11. Using these methods results in an architecture-centric 

approach: architecture connects business goals to the implementation, quality attributes inform 

the design, and architecture-centric activities drive the software system life cycle. These methods 

make developing software easier and more consistent. Although designing the architecture is 

integral to the approach, the level of detail can be flexible. 
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Figure 11. Usage of architecture-centric to improve XP activities (R. L. Nord & Tomayko, 2006)  

 

Within the activities of “Planning and Stories” and “Designing”, this approach uses a 

customized QAW and ADD like in aCRUM (Jeon et al., 2011). Within the activities of “Analysis 

and Testing” (R. L. Nord & Tomayko, 2006) presented in Figure 11, the approach uses a 

lightweight ATAM (Farhan et al., 2009). 

However, Sharifloo et al. argue that this kind of integration presented by Nord et al. (R. L. 

Nord & Tomayko, 2006)  is not applicable into a real XP team because of the fact that they are 

not derived from XP values and practices and are not in the way of agile principles (Sharifloo, 

Saffarian, & Shams, 2008). In their paper, the primary goal in is to satisfy quality attributes when 

developing a system using XP method. They introduced two architectural practices Continuous 

Architectural Refactoring (CAR) that are applied in XP concurrently with other Real Architecture 

Qualification (RAQ) practices and a new role called Architect is created that performs new 

responsibilities raised from added practices. Truly, new practices are embedded into XP in order 

to be conformed to XP values and culture. The purpose is to introduce practices that are going to 

satisfy architectural needs of a system. In order to provide XP process model with architectural 

practices, there is a need to think about quality attributes and their characteristics. 

 

Kanwal et al. propose a hybrid software architecture evaluation method for FDD agile process 

model (Kanwal, Junaid, & Fahiem, 2010). The proposed method is hybrid of QAW, ATAM and 

Active Review for Intermediate Designs (ARID). Due to an emphasis of these models on rapid 

development, there is an ever-increasing need of architecture evaluation, and a single 



Chapter 2 – Requirements and Architecture Design in LSA 
 

 

44 
 

architecture evaluation method capable of preserving the agility does not exist now. FDD is most 

suitable for the projects with large team size and low iteration time. Moreover, FDD is very 

effective in business modeling of the projects. 

FDD consists of five major phases with each phase having a set of related activities: 

1. Develop an Overall Model 

2. Build a Features List 

3. Plan by Feature 

4. Design by Feature 

5. Build by Feature 

FDD agile methods are characterized by customer satisfaction, fast response to changes, 

and release in less time. This approach is hybrid of QAW, ATAM and ARID (see Figure 12). In 

FDD, architecture is developed in phases 1 and 2.  

For phase 1 of FDD, functional as well as non-functional requirements gathering activities 

should be executed in parallel to ensure the development of proper architecture without affecting 

the agility. For that, QAW is a very good choice as the major concentration of this architecture 

method is on determining the quality attributes which establish the non-functional requirements 

of the project. 

For phase 2 of FDD, there are two sub activities that need architecture evaluation. While 

building the features list, utility trees, sensitivity points and tradeoffs should also be determined to 

develop a proper architecture. Utility trees, sensitivity points and tradeoffs are the inherent 

features of ATAM. For the assessments (verifications) ARID is to be executed as it is primarily 

developed for review activities. 

 

Raatikainen et al. describe how software product family engineering and backlog management 

can be integrated in the light of two approaches called “Agilefant” and “Kumbang” (Raatikainen, 

Rautiainen, Myllärniemi, & Männistö, 2008). The main element of Kumbang is that it enables 

describing product family from feature point of view as a feature model (see Figure 13). A feature 

is loosely defined as an end-user visible characteristic of a system. As a means of expressing 

variability and creating dependencies among features, Kumbang features can be composed of 

other features. A feature can define any number of subfeature definitions, which state what kinds 

of features can exist under that feature. If a feature does not define any subfeature definitions, it 
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is termed as a leaf feature, otherwise as a composed feature. Further, a feature can define any 

number of constraints that create dependencies to other features. 

 

 

Figure 12. Mapping of QAW, ATAM and ARID on FDD (Kanwal et al., 2010)  

 

 

 

 

 

Consequently, the concept of feature backlog item in Agilefant corresponds with the concept 

of leaf feature in Kumbang feature model. Further, all leaf features of Kumbang model can have 

a corresponding feature backlog item in Agilefant, and vice-versa. This mapping, hence, provides 

integration between a software product family model and items in a backlog. 

Figure 13. Integrated conceptualisation of Kumbang (Raatikainen et al., 2008)  
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Madison advocates the coexistence of agile and architecture as complementary approaches 

and principles (Madison, 2010). He emphasizes the software architect’s vital role as a linchpin 

for combining the two. Madison’s approach (see Figure 14), called agile architecture, advocates 

using agile to get to a good architecture by appropriately applying suitable combinations of 

architectural functions (such as communication, quality attributes, and design patterns) and 

architectural skills at four points (up-front planning, storyboarding, Sprint, and working software) 

in the development life cycle. 

 

 

Figure 14. A hybrid framework for agile architecture work (Madison, 2010)  

 

2.4 Large-scale Agile Development (LSA) 

Characteristics of LSA   

The dimensions used to define a project as large-scale relate to costs, code size and number 

of requirements (Dingsøyr, Fægri, & Itkonen, 2014). The same work focus on the size of teams 

when characterizing scaling agile projects, mainly due the coordination and communication 

needs and practices between teams (Dingsøyr et al., 2014).  

There has been an increasing interest on research in this topic, which may include (Reifer, 

Maurer, & Erdogmus, 2003): (1) Scale agile methods to very large projects with barely sufficient 

up-front planning and architectural work; (2) Deploy a federation of coordinated teams (each 
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internally operating as an agile team) in scaling up agile ideas; (3) Use agile methods in teams 

larger than a typical XP team; (4) Characterize the agile continuum through different project 

caricatures, ranging from typical collocated XP projects to large, multiteam, multiyear ones.  

Additionally, LSA initiatives can be about (Uludag, Kleehaus, Caprano, & Matthes, 2018):  

Culture & Mindset; Communication & Coordination; Enterprise Architecture; Geographical 

Distribution; Knowledge Management; Methodology; Project Management; Quality Assurance; 

Requirements Engineering; Software Architecture; and Tooling. Main challenges relate to 

stakeholders and challenges, Uludag acknowledges that challenges also relate to methodology 

patterns, architecture principles, viewpoint patterns and anti-patterns. The challenge with more 

identified papers relates to “Coordinating multiple agile teams that work on the same product”, 

from the “Communication & Coordination” category. From the “Software Architecture” category 

(in which this thesis focuses on), the “Considering integration issues and dependencies with 

other subsystems and teams” challenge is the one present in more papers (and actually the 

second one in all categories), followed by “Managing technical debts”. From the “Requirements 

Engineering” category (in which this thesis also focuses on), the “Creating precise requirement 

specifications for the Development Team” challenge is the one present in more papers, followed 

by “Eliciting and refining requirements of end users”. 

Additionally, at recent events within the International Conference on Agile Software 

Development (“XP” conferences), there is a dedicated workshop for discussing research trends 

and challenges in LSA. By gathering the results from workshops during XP2013 (Dingsøyr & 

Moe, 2013), XP2014 (Dingsøyr & Moe, 2014), XP2016 (Moe, Olsson, & Dingsøyr, 2016), 

XP2017 (Moe & Dingsøyr, 2017) and XP2018 (Dingsøyr, Moe, & Olsson, 2018), Table 2 depicts 

the identified topics throughout the workshops, in an attempt of characterizing recognized 

challenges and topics within LSA.  

 

There are primarily five frameworks that address scaling agile practices: Disciplined Agile 

Delivery (DAD) (Scott Ambler & Lines, 2012), Large-Scale Scrum (LeSS) (Larman & Vodde, 

2016), Scaled Agile Framework (SAFe) (Leffingwell, 2016), Scrum@Scale (Sutherland, 2018) 

and Nexus (K Schwaber, 2015). Each of these frameworks draws from variety of agile and lean 

practices. Sometimes the “Spotify model” (Kniberg & Ivarsson, 2012) is included within these 

scaling frameworks, however it is not much as a framework with practices and events for 
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companies to adopt, but rather a cross-matrix structure adopted by Spotify company. These 

frameworks are now introduced. 

 

Table 2. Research challenges‘ priority at XP’s scientific workhops on LSA  

LSA workshop High Medium Low 

XP2018 • Agile in public/ IT 

government 

• Agile transformation 

• Business agility 

• Scaling agile 

• Patterns in large scale agile 

development  

• The role of architects and 

architecture in agile 

• Integrating non-software 

and software parts of the 

organization into agile 

(enterprise agile) 

• Knowledge sharing / 

networks 

• Inter-team coordination 

• How DevOps affects agile 

XP2017 •Inter-team coordination 

•Agile transformation 

•Agile transformation 

•Business agility 

•Knowledge sharing and 

knowledge networks 

XP2016 •Distributed Large-Scale 

•Inter-team Coordination 

•Knowledge Sharing 

•Large-scale Agile 

Transformations 

•Multidisciplinary Work 

•New Ways-of-Organizing 

XP2014 •Organisation of large 

development efforts 

•Variability factors in scaling 

•Inter-team coordination 

•Key performance indicators 

in large development efforts 

•Knowledge sharing and 

Improvement 

•Release planning and 

architecture 

•Customer collaboration 

•Scaling agile practices 

•Agile contracts 

•Agile transformation 

•UX design 

 

XP2013 •Inter-team coordination 

•Large project organization 

/ portfolio management 

•Release planning and 

Architecture 

•Scaling agile practices 

•Customer collaboration 

•Large-scale agile 

transformation 

•Knowledge sharing and 

Improvement 

•Agile contracts 
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DAD is a hybrid approach that extends Scrum with proven strategies from Agile Modeling 

(AM), XP, Unified Process (UP), Kanban, Lean Software Development, Outside In Development 

(OID) and several other methods. A full lifecycle goes from the initial idea for the product, through 

delivery, to operations and support and often has many iterations of the delivery lifecycle (Figure 

15).  Because it is not prescriptive and strives to reflect reality as best it can, DAD actually 

supports several versions of a delivery lifecycle: (1) An agile/basic version that extends the Scrum 

Construction lifecycle with proven ideas from RUP; (2) An advanced/lean lifecycle; (3) A lean 

continuous delivery lifecycle; and (4) An exploratory “Lean Startup” lifecycle. 

 

 

Figure 15. Disciplined Agile Delivery (DAD) 

 

LeSS is one-team oriented for scaled projects within Scrum practices (Larman & Vodde, 

2016). LeSS includes a single Product Backlog (because it’s for a product, not a team); one 

Definition of Done for all teams; one Potentially Shippable Product Increment at the end of each 

Sprint; one Product Owner; many complete cross-functional teams (with no single-specialist 

teams); and all Teams in a common Sprint to deliver a common shippable product, every Sprint. 

The roles, events and artifacts of LeSS are represented in Figure 16. 
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Figure 16. LeSS framework 

 

The Scaled Agile Framework (SAFe) was created by Dean Leffingwell. The framework 

articulates three levels of organization (Figure 17): Team, Program and Portfolio. Each level 

incorporates agile and lean practices, has its own activities and all levels are tied together. At the 

team level, SAFe specifies a blend of Scrum and XP practices. The code practices include Agile 

Architecture, Continuous Integration, Test-First, Code Refactoring, Pair Work, and Collective Code 

Ownership. SAFe does not expect teams to produce Potentially Shippable Increment (PSI) every 

Sprint, but rather over a quarterly cadence. At the program level, provides features, which the 

teams deconstruct and size to fit into iterations. 
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Figure 17. SAFe levels (Portfolio, Program and Team) 

 

The three scaling frameworks provide approaches that attempt to address some of the 

issues that an organization faces and offer solutions to address these gaps. However, each 

framework provides some benefits, but they have shortcomings as well. DAD creates four distinct 

lifecycles, each of which an organization can adapt to fit its context. However, it also specifies an 

overly complicated work items pool, which an organization can address in much simpler ways. 

LeSS starts where Scrum leaves off when it comes to scaling agile practices in large organization. 

However, in the process, it makes recommendations that are problematic, like having a single 

Product Owner for up to ten teams SAFe organizes its practices into three levels (team, program 

and portfolio), which is quite useful for larger organization.  

At a team level, it embraces certain XP practices, which standard Scrum does not. However, 

the framework has myriad of issues, including being overtly process heavy (Vaidya, 2014). 

 

Scrum@Scale (Sutherland, 2018) is a framework for scaling Scrum, developed by Jeff 

Sutherland – “one of the fathers” of Scrum – and Scrum Inc. It is defined as “A framework within 

which networks of Scrum teams operating consistently with the Scrum Guide can address 

complex adaptive problems, while creatively delivering products of the highest possible value”. In 
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short, it is a framework that uses Scrum for scaling Scrum, using approaches of “Scrum of 

Scrums” (oriented for a team of Scrum Masters) and “MetaScrums” (oriented for a team of 

Product Owners) for coordinating Scrum teams. 

 

 

Figure 18. Scrum@Scale 

 

Developed by Ken Schwaber – the “other father” of Scrum - and Scrum.org, the Nexus 

Framework (K Schwaber, 2015) is a framework for large-scale product or software development 

largely based on Scrum. By consisting in roles, events, and artifacts, Nexus is defined itself as an 

exoskeleton resting on top of three to nine Scrum teams. These Scrum teams are dedicated to 

the development of one integrated “done” product increment, and Nexus framework supports 

them to deal with dependencies and interoperation. 

In contrast to Scrum, Nexus is a quite new framework about which only a small amount of 

literature was published (Uludag, Kleehaus, Xu, & Matthes, 2017).  
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Figure 19. Nexus framework 

 

The “Spotify model” is a cross-matrix structure that promotes knowledge sharing among team 

members by defining team’s “Squads”, “Tribes”, “Chapters” and “Guilds”. In short, Squads are 

development teams oriented to feature development. Tribe manages a group of Squads. In order 

to do so, it is responsible for facilitating synchronization meetings for identifying and resolving 

dependencies between Squads (“Scrum of Scrums”-like meetings). Chapters gather within the 

same Squad. Guilds are a more organic and wide-reaching “community of interest”, that cut 

across the whole organization (in opposition to a Chapter, that is local to a Tribe). 

 

 

Figure 20. "Spotify model" cross-matrix structure 
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Agile Practices in Large-scale  

Literature encompasses many differences in agile practices when applied in large-scale 

contexts. Scaling up the projects affect all agile practices and, for that reason, the practices that 

do not have relations with the architectures are out of the scope of this chapter. In this section 

are presented agile practices in large-scale for requirements engineering and prioritization, 

coordination and risk management. From the challenges depicted in Table 2, “Organization of 

large development efforts” encompasses requirements engineering and prioritization, “Inter-team 

coordination” encompasses coordination, “Release planning and architecture” encompasses 

requirements engineering and prioritization, and “Agile contracts” encompasses risk 

management. 

 

Requirements Engineering & Prioritization 

Requirements Engineering (RE) for agile software is different from traditional Requirements 

Engineering. Traditional RE is managed by RE specialists, in a phase separated in time from 

design and development, and documented in specific requirements artefacts. In contrast, in agile 

RE the detailed requirements are defined gradually in interaction between the customer (or 

customer representative) and the development team. The International Institute of Business 

Analysis (IIBA) felt the need to develop an agile version of their Business Analysis Body of 

Knowledge (BABoK) called “The Agile Extension to the BABoK Guide” (IIBA, 2017). Also, the 

International Requirements Engineering Board (IREB) coins the adoption of RE in this contexts as 

“RE@Agile” (IREB, 2018). Also, IREB conducted a study that investigates how the discipline of 

RE can be adapted to better support an agile project approach (Grau & Lauenroth, 2014), where 

they state that RE activities remain the same but in agile projects they are executed continuously. 

Engineering and management of requirements include elicitation, negotiation, prioritization, and 

documentation (Fernandes & Machado, 2016), whether in an ASD or in a “traditional” setting. 

Five RE-related agile practices are introduced for large-scale software development, namely 

(Bjarnason, Wnuk, & Regnell, 2011): 

• One Continuous Scope Flow. The scope for all software releases is continuously planned 

and managed via one priority-based list (comparable to a product backlog). The business 

unit gathers and prioritizes features from a business perspective. The software unit 

estimates the cost and potential delivery date for each feature, based on priority and 

available software resource capacity. 
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• Cross-Functional Development Teams that include a customer representative assigned by 

the business unit (comparable to customer proxy.) These teams have the full responsibility 

for defining the detailed requirements, implementing and testing a feature (from the 

common priority-based list) within the given boundaries of time and resources. 

• Integrated RE. The RE tasks are integrated with the other development activities, i.e. the 

detailing and formal documentation of requirements is done at the same time as design and 

development of the feature and within the same (development) team together with its 

customer representative (proxy). 

• Gradual & Iterative Detailing of Requirements. The requirements are first defined at the high 

level (features in the priority-based list) and then iteratively refined, by the development 

team, into more detailed requirements as the design and implementation work progresses. 

• User Stories & Acceptance Criteria are used to formally document the requirements agreed 

for development. The acceptance criteria are then covered by test cases. 

 

IIBA presents principles that guide these activities (IIBA, 2017): 

• See the Whole (i.e., the context of the big picture); 

• Think as a Customer (i.e., incorporate a clear understanding of the expected user 

experience); 

• Analyze to Determine What is Valuable (i.e., continuously assess and prioritize work to be 

done in order to maximize the value being delivered at any point in time) 

• Get Real Using Examples (i.e., using examples or models to, to identify specific details of the 

need and the solution, towards setting context and identifying scope) 

• Understand What is Doable (continually analyzing the need and the solutions that can satisfy 

that need within the known constraints) 

• Stimulate Collaboration and Continuous Improvement (i.e., promote Continuous structured 

and unstructured feedback, like Retrospectives) 

• Avoid Waste (by removing activities that do not add value), e.g.: avoid producing 

documentation before it is needed, and when documentation is needed do just enough; 

ensure commitments are met and there are no incomplete work items that adversely impact 

downstream activities; avoid rework by making commitments at the last responsible 

moment; try to elicit, analyze, specify, and validate requirements with the same models; 

make analysis models as simple as possible to meet their intended purpose; ensure clear 



Chapter 2 – Requirements and Architecture Design in LSA 
 

 

56 
 

and effective communication, and pay continuous attention to technical excellence and 

accuracy. Quality defects (such as unclear requirements) result in rework and are waste. 

 

IREB states that performing RE in agile context must aim four goals (IREB, 2018): 

1. knowing the relevant requirements at an appropriate level of detail (at any time during 

system development), 

2. achieving sufficient agreement about the requirements among the relevant stakeholders, 

3. capturing (and documenting) the requirements according to the constraints of the 

organization, 

4. performing all requirements related activities according to the principles of the agile 

manifesto. 

 

Reifer et al. state that, on large projects, some architectural development was needed before 

pushing ahead with iterations (Reifer et al., 2003). This could be done quickly using an 

architecture team. Team members then could move on to seed a LSA project’s subteams. While 

the architecture will continue to evolve over the project’s life cycle, the tendency will be to 

stabilize it and discourage any significant changes. However, the same authors state that this 

approach poses a threat to agility because it might tip the scale in favor of up-front planning 

rather than letting the architecture emerge naturally.  

Requirements prioritization (and reprioritization) plays a crucial role in large-scale and 

distributed agile projects. Daneva et al. seek to understand the implications of these tasks in agile 

and distributed contexts (Daneva et al., 2013). They found the following: 

• Understanding requirements dependencies is of paramount importance for the successful 

deployment of agile approaches in large outsourced projects.  

• The most important prioritization criterion in the setting of outsourced large agile projects is 

risk. ) 

• The software organization has developed a new artefact that seems to be a worthwhile 

contribution to agile software development in the large: ‘delivery stories’, which complement 

user stories with technical implications, effort estimation and associated risk. The delivery 

stories play a pivotal role in requirements prioritization.  
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• The vendor’s domain knowledge is a key asset for setting up successful client-developer 

collaboration.  

• The use of agile prioritization practices depends on the type of project outsourcing 

arrangement 

 

Kirikova proposes a framework for continuous requirements engineering (CRE), FREEDOM 

(Kirikova, 2017). It was proposed based in former applications in mobile development, within 

Scrum setting and within IT startups. 

The FREEDOM framework consists of several functional units, namely (Figure 21): F – Future 

representation, R - Reality representation, E1 - requirements Engineering, E2 – fulfilment 

Engineering, D - Design and implementation, O - Operations, and M - Management. They are 

related by a number of links, which correspond to analysis, analytics, monitoring, feedback, and 

change request information. Requirements engineering (E1 in Figure 21) can be a sub-function of 

Reality representation (R), Future representation (F) and other functional units of the framework. 

 

 

Figure 21. Architecture of a CRE framework (Kirikova, 2017) 

 

In Figure 22 five generic RE functions are represented, namely: requirements acquisition, 

requirements analysis, requirements representation, and requirements management. These 

functions are similar to RE functions used in “traditional” settings (Fernandes & Machado, 2016; 

Pohl, 2010): elicitation, analysis, specification, validation, and management. However, for CRE, 

Kirikova uses “Requirements acquisition” rather than “Requirements elicitation”, because the 

term "elicitation" mainly refers to requirements acquisition using interviews, questionnaires, 

group sessions, or observation, but “acquisition” is more suitable since nowadays requirements 
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are also gained using model analysis, business intelligence and data analytics methods and tools 

(Kirikova, 2017). 

 

 

Figure 22. Generic functions of CRE (Kirikova, 2017) 

 

Coordination  

Most coordination practices proposed by agile methods emphasize an informal management 

style. When the project is small, close interactions among team members are effective and 

problems can be quickly spotted and corrected. However, as the size of the project increases, 

opportunities for close interactions among project team members drop (Van de Ven, Delbecq, & 

Koenig Jr, 1976). In large projects, it is difficult for developers to make important decisions only 

through informal conversations. Miscommunications and misunderstandings happen more often 

and are more difficult to solve. Large projects need to address unique challenges, such as the 

knowledge loss caused by turnover of team members and long project duration, complex 

requirements and interdependency of tasks, and limited resources (Xu & Ramesh, 2007). Relying 

only on informal strategies is no longer adequate. To summarize, the coordination challenges of 

using agile methods in large projects are (Xu, 2011): 

• Lack of interaction among participants  

• Communication difficulties  

• Loss of knowledge  

• Complex and unstable requirements  

• Complex interdependency tasks  

• Technical complexity    

 

The analysis of Hossain et al. has revealed that the temporal, geographical and socio-cultural 

distance of software development projects impact on using various Scrum practices in distributed 

settings (Hossain, Babar, & Paik, 2009). They found that communication issues are the major 

challenges when using Scrum in distributed settings; cultural differences among distributed team 

members may also impact on team collaboration and communication processes; managing a 
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large team can also be considered as one of the key challenges; and lack of dedicated meeting 

room for each site and Scrum team distribution at multiple sites also appear to be challenging 

factors that restrict the team communication and collaboration processes. 

In order to face these challenges, there are some archetypes and strategies for coordination 

issues. Archetypes for coordination strategies in multiteam systems are classified by their 

mechanistic, organic and cognitive coordination (Scheerer, Hildenbrand, & Kude, 2014). The 

“Perfect Plan” strategy type is characterized by high mechanistic, low organic and low cognitive 

coordination. While within teams, coordination may well be achieved through organic or cognitive 

mechanisms, the focus of multiteam coordination in this strategy lies solely on mechanistic 

coordination with little communication between individual actors. This type assumes that 

software development can be “programmed” from a coordination perspective, e.g. through 

complete upfront planning all dependencies as well as all contingencies can be resolved and 

accounted for. Since the coordination is programmed through upfront planning with little 

communication, one person or a very small set of people, needs to have a deep insight into the 

full technical details of the entire software system in order to specify all details necessary for 

individual work packages and correct integration. 

 

Risk Management 

Boehm and Turner describe a 5-step risk-based approach (see Figure 23) for benefiting of 

both agile and plan-driven methods (Barry Boehm & Turner, 2003). They define tasks to evaluate 

and determine Commercial Off-the-Shelf (COTS), reuse, and architecture choices during Systems 

definition and architecting.  

They include architectures in three distinctive agent-based system application projects within 

a case study. The three applications were classified as their scalability and criticality: 

• Small, relatively noncritical. This agent-based planning system for managing events such as 

conferences or conventions is based on risk patterns observed in small Web-services 

applications. 

• Intermediate. An agent-based planning system for supply-chain management across a 

network of producers and consumers, this application is based on risk patterns derived from 

the experience with scaling up XP techniques to a 50-person project in a lease-management 

application. 
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• Very large, highly critical. This agent-based planning system for national crisis management 

is based on risk patterns observed in the US Defense Advanced Research Project Agency 

and the US Army Future Combat Systems program—an agent-oriented, network-centric 

system of systems being developed by more than 2,000 people. 

 

 

Figure 23. Five-Step risk-based approach (Barry Boehm & Turner, 2003)  

 

Tailoring XP for large and complex projects 

Agile XP practices are suitable for large-scale, complex software development (Cao, Mohan, 

Xu, & Ramesh, 2004). Having as basis a set of agile practices, namely Accept multiple valid 

approaches, Accommodate requirements change, Engage the customer, Build on successful 

experience, Develop good teamwork, Effective software development conforms to project 

environment constraints, and Prepare for unexpected consequences from innovation in software 

processes, it presents a set of 7 XP practices suited for large-scale agile projects: 
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• Practice 1: Designing upfront. It combines designing upfront with agile practices such as 

short release, pair programming, and refactoring. 

• Practice 2: Short Release cycles with a layered approach. The system continuously 

accommodates requirements changes. The delivered functionalities suit the customer need 

rather than focusing on documenting detailed specifications. 

• Practice 3: Surrogate customer engagement. This practice is a modified version of XP 

practice “on site customer”.  

• Practice 4: Flexible pair programming. Contrary to “always paired” in XP, developers are 

paired in analysis, design and testing. Coding is performed by solo programming. The 

combination of solo programming and pair programming overcomes some shortfalls of pair 

programming (e.g., developer’s resistance), while still benefiting from it where feasible. 

• Practice 5: Identifying and managing developers. People factor is more important in agile 

development than in traditional development. It emphasizes choosing the right people for 

the team and creating a collaborative environment to support teamwork. Developers’ 

knowledge and experiences on different aspects of a project are greatly valued. 

• Practice 6: Reuse with forward refactoring. This practice maps to the principle of building on 

successful experience. Refactoring is used as a technique to enhance reuse. Developers 

usually focus only on their current need instead of building components for later reuse. 

However, for a large project, development of upfront architectural design and use of design 

patterns are critical. Functionalities of the system are developed based on design patterns. 

In addition, modules that have been developed to handle specific functionalities are 

refactored and made generic enough so that they can be tailored to handle different 

functionalities.  

• Practice 7: Flatter hierarchies with controlled empowerment. Developers are empowered to 

make their own decisions. On the other side, for a large and mission-critical application, the 

empowerment might cause unexpected consequences such as incompatibilities among the 

development process and products produced by different developers. 

 

Distributed Agile Teams: the Scrum of Scrums 

Besides the use of Scrum in small organizations or in small projects, some techniques for 

adapting events, actors and artifacts arise in order to geographical distributed teams or multiple 
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teams could work for the same product development (Eckstein, 2013). Distributed Scrum is 

classified in three distributed team models (Sutherland, Viktorov, & Blount, 2006): (1) Isolated 

Scrums – teams are isolated across geographies; (2) Scrum of Scrums – multiple Scrum teams 

working on the same product and in the same geographical space (Cristal, Wildt, & Prikladnicki, 

2008); and (3) Totally Integrated Scrum – where multiple teams are geographical distributed 

(Paasivaara, Durasiewicz, & Lassenius, 2008b). The Scrum methodology was also tested in 

projects involving different organizations trying to implement the same product (Dingsøyr, 

Hanssen, Dybå, Anker, & Nygaard, 2006).  

Additionally, another scaled framework from Scrum is Large-Scale Scrum (LeSS) (Larman & 

Vodde, 2016). This framework is one-team oriented for scaled projects within Scrum practices. 

LeSS includes a single Product Backlog; one Definition of Done for all teams; one Potentially 

Shippable Product Increment at the end of each Sprint; one Product Owner; many complete 

cross-functional teams (with no single-specialist teams); and a common Sprint for all Teams, 

every Sprint. The roles, events and artifacts of LeSS are represented in Figure 16 in Section 2.4. 

 

Scrum uses structured meetings such as the daily Scrum meeting, the daily Scrum of 

Scrums meeting, the Sprint planning meeting, and the Sprint review meeting. These meetings 

are key components of the Scrum method and they should be adjusted to the distributed working 

environment (Cho, 2007). Information and knowledge-sharing issues were the most important 

issues in the company due to its geographically distributed working environment, where also 

coordination, communication, control, training, and trust and confidence issues hinder 

developers from being efficient (Cho, 2007). Paasivaara describes adaptation to meetings as well 

(Paasivaara, Durasiewicz, & Lassenius, 2008a). 

Each team’s parallel work within the same product development must be coordinated, but 

breakthroughs and progress within the distributed Scrum teams are slow and hard to achieve 

(Begel, Nagappan, Poile, & Layman, 2009).  

Scrum roles and events can be easily adapted to such dependencies between teams since 

the agile methodologies provide this kind of flexibility. These adaptations allow distributed teams 

(geographical distributed or not) to work in parallel and at the same time, and are mandatory in 

order to prevent an increase of the time to market, that could endanger the project execution. 

The product backlog should be aligned by collaborating product owners (Leffingwell, 2007). 
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The role of a Scrum master should be adjusted. Since the Scrum master is the key person 

for the success of Scrum, the Scrum master should be engaged more actively in projects as a 

coordinator and a controller in distributed Scrum environment. As a coordinator/controller, the 

Scrum master needs to ensure share of information and knowledge well between the sites and 

that the tasks are divided and assigned well through the Sprint planning meeting. In addition, the 

Scrum master needs to have the authority to motivate developers to work hard and to take 

ownership of the projects. These tasks can be eased by using various tools such as Wiki, 

VersionOne, and JIRA (Cho, 2007). 

The various Scrum meetings should be adjusted due to the geographical distance. For 

example, in daily Scrum meetings which are held every day for less than 15 minutes, team 

members come to talk about what tasks have been done since the last meeting, what tasks will 

be done before the next meeting, and what the issues and challenges are imposed on the tasks. 

Scrum team members come to daily Scrum meetings to communicate with other team members 

to find out what is going on. However, the effectiveness of communication between the sites is 

severely limited compare to face-to-face conversation. To mitigate the problem, the daily Scrum 

meeting and other Scrum meetings should be held with good communication devices. Among 

many different multi-media devices, a video conferencing system between the sites is 

recommended as the best way to communicate. Other tools including remote desktop, an email 

system, an instant message system, and a phone system can mitigate the communication 

problems too (Cho, 2007). 

Regarding Sprints and events, it is normal that not all of team’s Sprints are synchronized 

relating its start date. The Scrum Master and the Product Owner should have total availability to 

work with all teams equitably. Besides, if problem reports arise from a team in a Sprint Review or 

a Sprint Retrospective, there is still enough time to re-schedule aspects in other teams or re-

allocate resources at the end of the other team’s Sprints. Additionally, another issue that can be 

considered is that one element of each team may participate in other team’s Sprint Review, and 

all elements should participate instead of always the same element participating in those Sprint 

Reviews, so all team elements have the opportunity to know other teams’ work.  
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A Hybrid Method using RUP with Scrum 

Scrum and RUP can be combined by embedding Scrum ceremonies (Daily Scrum meeting 

and Sprint meeting) and roles (Scrum Master, Team, Product Owner), and artifacts (product 

backlog, sprint backlog, and burndown chart) within RUP phases (Cho, 2009) (see Figure 24). In 

this work, the business modeling discipline is the main player in the inception phase. The 

analysis and the design disciplines are mostly utilized in the elaboration phase. The 

implementation and testing disciplines focus on the construction phase, whereas, the 

deployment and configuration disciplines are in the transition phase.  

 

 

Figure 24. Hybrid model combining RUP phases and Scrum ceremonies (Cho, 2009)  

 

The daily Scrum meeting, the daily Scrum of Scrums, the Sprint planning meeting, and the 

Sprint review meeting can be conducted iteratively in each RUP phase (Figure 25). The product 

owner can create the product log as a part of the business modeling discipline. The Scrum 

Master also can plays the usual role defined in the Scrum process. The tasks defined in the 

product backlog and the Sprint backlog can be accomplished and monitored through the daily 

Scrum meeting and the Sprint meeting. 
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Figure 25. A Typical Phase of Hybrid Model (Cho, 2009)  

 

2.5 Conclusions 

The reviewed literature encompass applicability of software architecture methods within any of 

the phases in an agile project, from sprint planning, user stories, backlogs, development, testing, 

etc. Additionally, the aforementioned approaches relate to a diversity of agile methodologies, from 

XP to Crystal, FDD or Scrum (as shown in Table 3). 

The aforementioned approaches showed that there is an opportunity to improve software 

development while maintaining a balance between agility and the architectural approach. 

Therefore, several approaches to integrate and embed software architecture and agile methods 

are proposed. These works all have in common the fact that architecture methods must perform 

in parallel with common agile methodologies, and the architecture itself must possess agility and 

flexibility enough to respond to changes rapidly. 
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Table 3. Applicability of the reviewed approaches 

Reference Phase Architecture-driven 

Method 

Agile 

Framework  

(R. L. Nord 

& Tomayko, 

2006) 

Planning and Stories, Designing, Analysis and 

Testing 

QAW, ADD, 

ATAM/CBAM 

XP 

(Jeon et al., 

2011) 

Planning and stories, and Designing QAW, ADD XP, Scrum 

(Farhan et 

al., 2009) 

Analysis and Testing ATAM XP, Crystal 

(Sharifloo et 

al., 2008) 

Planning and stories, before upcoming iteration  XP 

(Kanwal et 

al., 2010) 

All phases (Develop an Overall Model, Build a 

Features List, Plan by Feature, Design by Feature, 

Build by Feature) 

QAW, ATAM, ARID FDD 

(Madison, 

2010) 

up-front planning, storyboarding, Sprint, and 

working software 

communication, quality 

attributes, and design 

patterns 

N/A 

(Díaz et al., 

2014) 

Planning and stories, Sprints Change Impact Analysis Scrum 

 

These approaches do not include thorough requirements specification and a logical 

architecture able to be used as basis for the development like 4SRS does. Additionally, the initial 

backlog should include both functional and quality (non-functional) requirements (typically quality 

ones only emerge during development), where 4SRS supports their identification by using the 

Model/View/Controller (MVC) pattern. It is expected that the proposed approach uses these 

“strengths” of 4SRS and adapt them to agile context, but also to include concerns that the 

presented approaches provide (change impact analysis, architecture review and assessment, and 

others). 

This chapter essentially focused in presenting existing research regarding architecture design 

and large-scale agile (LSA). After a brief contextualization of how the architectural design 

discipline changed and coexisted with the adoption of ASD, it described existing approaches that 

used architecture design methods in specific stages of ASD processes and described how 

practices may require some change in scaled (i.e., LSA) settings. The presented works allowed 
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depicting that architecture has a specific role depending in the development stage where it is 

applied and, foremost, that the design is evolutionary and that the work is performed in a 

continuous way. The adoption of “continuous”-oriented approaches leads to specific concerns 

towards defining practices for modeling requirements and architecture. Such concerns are 

described in Chapter 3.  
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This chapter describes how the design is evolutionary and that the work addresses 

specific concerns towards defining practices for modeling requirements and 

architecture within the “continuous” paradigm. This chapter starts by presenting 

the software architecture lifecycle. Afterwards, it describes the “continuous” 

practices, starting with continuous software engineering approaches, then 

continuous architecting approaches and architecture management and debt. For 

easing the continuous architecting and management, this chapter also describes 

microservices architectures and their modeling. This chapter ends with the 

conclusions of the previously presented works. 
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Chapter 3 - Logical Architectures within Agile and 

“Continuous” Approaches 

 

“Meaningful architecture is a living, vibrant process of deliberation, 

 design, & decision, not just documentation.” 

Grady Booch, co-author of UML 

 

3.1. Introduction 

If, on one hand, the previous section focused on approaches for delivering products or 

services using agile practices supported by architectural methods, on the other hand this section 

points out that the product delivery is a continuous process. 

While there are frameworks for “delivering the product right” (e.g., Scrum, XP, etc.) in short 

cycles, ASD is about getting feedback, learning and adapting. It is also about “delivering the right 

product”. It is in this sense that approaches like “Lean Startup” (Ries, 2011) and “Lean Six 

Sigma” (George & George, 2003), by using tools like “Plan - Do - Check - Act or Adjust” (PDCA) 

and “Define, Measure, Analyze, Improve and Control” (DMAIC) cycles, suggest that product 

companies must get feedback and learn from customers after a product is deployed in the 

marketplace. Such feedback is conducted under controlled experiments, such as “A/B testing” 

(Kohavi & Longbotham, 2017). The GROWS method (Hunt, 2015) is another example of learning-

oriented ASD. 

Modern Agile2 framework was created by a community of practitioners that aim to modernize 

ASD practices. It also presents revised principles of the ones from the Agile Manifesto, namely 

(Figure 26) (Kerievsky, 2016): “Make people awesome” (i.e., “Customer Obsession” by figuring 

out what’s holding them back and making essential changes to help them achieve awesome 

results); “Make safety a prerequisite” (i.e., learn blamelessly from failures and quickly improve); 

“Experiment and learn rapidly” (fail fast and quickly move on to new experiments in order to 

achieve continuous improvement); and “Deliver value continuously” (a safe, continuous 

deployment pipeline lowers stress by making releasing an automated event).   

 

                                                 
2
 http://modernagile.org/  

http://modernagile.org/
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Figure 26. Modern Agile 

 

Heart of Agile3 was created by Alistair Cockburn, one of the authors of the Agile Manifesto, in 

an attempt to go back to the essence of the Agile Manifesto, based in four actions: Collaborate; 

Deliver; Reflect; Improve. 

 

 

Figure 27. Heart of agile 

 

The four actions can be further expanded using the Japanese concept “Shu-Ha-Ri” of skill 

progression in training and learning (Novack, 2016)., The diagram extends more specific actions 

to complement the four primary actions (Learning and Income extending Deliver, Insights and 

Improvements extending Reflect, Collaboration and Trust extending Collaborate, and Experiment 

                                                 
3
 http://heartofagile.com  

http://heartofagile.com/
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and Change extending Improve). In addition, it highlights the need to “return to center” where the 

heart of agile resides (the fourth stage “Kokoro”, meaning "heart" in Japanese). 

Heart of Agile and Modern Agile have some similarities, since both concepts (Ageling, 2018): 

 have a solid foundation in the original Agile Manifesto 

 are lightweight 

 are based on four principles 

 are easy to understand, with a lot behind them 

 are going back to the core 

 

There are differences though. While Heart of Agile is about returning to the essence of the 

Agile Manifesto, Modern Agile claims to be an evolved version of it. Additionally, Heart of Agile 

guides on doing and mastering things, while Modern Agile’s principles are primarily to reflect on 

the present and the future. 

Heart of Agile and Modern Agile both are inspirational concepts, bringing “Agile” back to a 

core. Both with a different perspective. And they are not mutually exclusive (Ageling, 2018). 

Modern Agile principles can help identifying topics to improve or enhance and Heart of Agile can 

guide this journey of improvement. 

 

This paradigm has required the software teams to adopt “continuous”-oriented approaches 

for delivering software products, i.e., “continuous software engineering” (CSE) (Bosch, 2014). 

This way of working originated from the adoption of continuous integration (CI) and continuous 

deployment (CD) practices. Performing both practices properly – CI and CD – allows companies 

to have a continuous delivery environment. Inside the CSE, a widely used approach towards 

continuous delivery is DevOps (Loukides, 2012), linking software “development” to “operations” 

(or maintenance) after deployment to the marketplace. Similar linkage between “development” 

and the “business analysis” is proposed by BizDev (Fitzgerald & Stol, 2017), and the three 

disciplines are linked in BizDevOps (Gruhn & Schäfer, 2015). 

Following the “continuous”-oriented paradigm, in order to define properly support CI and CD 

practices, practices such as continuous requirements engineering (CRE) (Kirikova, 2017) and 

continuous architecture (Erder & Pureur, 2015) arose. Together, they allow a “full-cycle” support 

of continuous practices. Fitzgerald and Stol called it “Continuous ∗” (i.e. Continuous Star ) 



Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches 

79 
 

(Fitzgerald & Stol, 2017). CRE and CA are discussed in this section, since the scope of this thesis 

focuses on these requirements and architecture discipline, rather than CI or CD, for instance. 

Regarding RE, Pohl identifies two perspectives on continuity of requirements engineering 

(Pohl, 2010): continuous changes in the business environment, and requirements engineering 

activities in each phase of the systems development lifecycle. Specifically within the second one, 

RE is performed as a sub-function of future representation, reality representation, fulfilment 

Engineering, design and implementation, operations, and management (Kirikova, 2017). Of 

course, it mainly relates to performing RE continuously rather than only in an initial upfront effort 

(Grau & Lauenroth, 2014). The effort of avoiding upfront RE, from practices and principles 

proposed by entities like International Institute of Business Analysis (IIBA, 2017) and 

International Requirements Engineering Board  (IREB, 2018), has been presented in chapter 2. 

In terms of architecture and design, the “continuous” paradigm is called Continuous 

architecture (CA) (Erder & Pureur, 2015). CA is an architectural approach that can encompass 

continuous delivery, providing it with a broader architectural perspective. The CA principle 

recommends delaying design decisions until they are absolutely necessary (Erder & Pureur, 

2015). The developed system should be architected to enable changes, leveraging “The Power of 

Small”. Moreover, the systems should be architected with a special focus on the build, test, and 

deploy phases. 

Finally, the CA principle also suggests following Conway’s law (Conway, 1968), modeling the 

organization of the development teams after the design of the system they are working on. 

Migration to microservices (Newman, 2015) is one of the most common situations when 

companies adopt continuous architecting processes (Davide Taibi, Lenarduzzi, & Pahl, 2017). In 

an era where software solutions are more and more cloud-based, microservices architectures 

provide many benefits in CA and CI/CD (and DevOps). Thus, continuously architect 

microservices is within the scope of this thesis. 

 

3.2. Architecture lifecycle and viewpoints 

Software architecture lifecycle overview 

Architecture design includes from conceptual level to more refined one (Fernandes & 

Machado, 2016). Such argument is in line with the design process proposed by Douglass: 

architectural, mechanistic, and detailed (Douglass, 1999). Architectural design defines the 
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strategic decisions that affect most or all the software components, such as concurrency model 

and the distribution of components across processor nodes. Mechanistic design elaborates 

individual collaborations by adding “glue” objects to bind the mechanism together and optimize 

its functionality. Such objects include containers, iterators, and smart pointers. Detailed design 

defines the internal structure and behavior of individual classes. This includes internal data 

structuring and algorithm details. These three levels of design are depicted in Figure 28. 

 

Figure 28. Three levels of architectural design (Douglass, 1999) 

 

During a SDLC, the architecture aims different inputs, target-users and viewpoints at each 

stage. Other authors, like Kazman, Nord and Klein explore the use of architecture during SDLC 

stages (Kazman, Nord, & Klein, 2003) - Business needs and constraints, Requirements, 

Architecture design, Detailed design, Implementation, Testing, Deployment, and Maintenance 

(Table 4). Within these stages, they described the different goals of architecture-based activity 

and how architecture-centric methods, namely the Architecture Tradeoff Analysis Method (ATAM), 

the Quality Attribute Workshop (QAW), the Cost-Benefit Analysis Method (CBAM), Active Reviews 

for Intermediate Designs (ARID), and the Attribute-Driven Design (ADD) method contribute to 

those stages (Table 5). 

An architecture has a particular scope. It may relate from software, hardware, organization or 

information, the overall system which encompasses all four, or the enterprise that hosts the 
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system (or will host a future system to be developed) (Eeles & Cripps, 2009). Within an 

organization or development project, many architectural viewpoints are defined, each more 

suitable for a given user but all related to each other. The “4+1” View Model (Kruchten, 1995) is 

one of the widely known architecture model, which presents the logical, process, physical, 

development and scenarios views. Other views like Siemens’ Five-view Model (Soni, Nord, & 

Hofmeister, 1995), Reference Model of Open Distributed Processing (RM-ODP) (ISO, 1998), NIST 

Enterprise Architecture Model (Fong & H., 1989), Department of Defense Architecture 

Framework (DoDAF) (DoD, 2009) or the Zachman Framework™ (Zachman, 2011) present 

relations between these viewpoints. Urbaczewski and Mrdalj compare some of these frameworks 

(Table 6) in order to provide context for their suitability (Urbaczewski & Mrdalj, 2006). 

 

Table 4. Architecture-based activities within a SDLC (Kazman et al., 2003) 

Life-Cycle Stage Architecture-Based Activity 

Business needs and 

constraints 

 Create a documented set of business goals: issues/environment, opportunities, 

rationale, and constraints using a business presentation template. 

Requirements  Elicit and document six-part quality attribute scenarios using general scenarios, 

utility trees, and scenario brainstorming. 

Architecture design  Design the architecture using ADD. 

 Document the architecture using multiple views. 

 Analyze the architecture using some combination of the ATAM, ARID, or CBAM. 

Detailed design  Validate the usability of high-risk parts of the detailed design using an ARID view. 

Implementation  

Testing  

Deployment  

Maintenance  Update the documented set of business goals using a business presentation 

template. 

 Collect use case, growth, and exploratory scenarios using general scenarios, utility 

trees, and scenario brainstorming. 

 Design the new architectural strategies using ADD. 

 Augment the collected scenarios with a range of response and associated utility 

values (creating a utility-response curve); determine the costs, expected benefits, 

and ROI of all architectural strategies using the CBAM. 

 Make decisions among architectural strategies based on ROI, using the CBAM 

results. 
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Table 5. Use of architecture-centric methods within a SDLC (Kazman et al., 2003) 

Life-Cycle Stage QAW ADD ATAM CBAM ARID 

Business needs 

and constraints 

Input Input Input Input  

Requirements Input; Output Input Input; Output Input; Output  

Architecture design  Output Input; Output Input; Output Input 

Detailed design     Input; Output 

Implementation      

Testing      

Deployment      

Maintenance    Input; Output  

 

Table 6. A comparison of enterprise architecture frameworks (Urbaczewski & Mrdalj, 2006) 

SLDC Phase/ 

Framework 

Planning Analysis Design Implementation Maintenance 

Zachman Yes Yes Yes Yes No 

DoDAF Yes Yes Yes Describes final 

products 

No 

FEAF Yes Yes Yes Yes Detailed 

Subcontractor’s view 

TEAF Yes Owner’s 

Analysis 

Yes Yes No 

TOGAF  Principles that support decision making across 

enterprise; provide guidance of IT resources; support 

architecture principles for design and implementation 

 

 

A software architecture, just like a software project, has a lifecycle. The Software Architecture 

Development Life Cycle (SADLC) (Reddy, Govindarajulu, & Naidu, 2007) has inputs  from  the  

business  architecture  or  from  software  development  life  cycle for performing its architecture  

analysis  and  design. Then, the SADLC follows Software Architecture Analysis, Architecture 

design, Evaluation of design and ending in the Implementation of the Architecture (Figure 29). In 

the SADLC, the control moves from spiral model to the architectural issues area with design 

(SDLC) information and resolve all architectural issues (Figure 30). 
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Figure 29. The Software Architecture Development Life Cycle (SADLC) (Reddy et al., 2007) 

 

The OMG modeling infrastructure, or Four-Layer Architecture, comprises a hierarchy of model 

levels just in compliance with the foundations of MDD (Model-Driven Development) (Atkinson & 

Kuhne, 2003). Each model in the Four-Layer Architecture (except for the one at the highest level) 

is an instance of the one at the higher level, which range from M0 to M3. The first level (user 

data), i.e., M0, refers to the data manipulated by software. Models of user data - one level above - 

are called user concepts models, i.e., M1. Models of user concepts models are language 

concepts models, i.e., M2. These are models of models and so are called metamodels. A 

metamodel is a model of a modeling language. It is also a model whose elements are types in 

another model. It describes the structure of the different models that are part of it, the elements 

that are part of those models and their respective properties. The language concepts metamodels 

are at the highest level of the modeling infrastructure. The hierarchy of models is as follows: M3 

– Language concepts metamodels: M2 – Language concepts: M1 – User concepts: M0 – User 

data:  
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Figure 30. Proposing architectural issues within the Spiral-based SADLC (Reddy et al., 2007) 

 

In comparison, the Model-driven Architecture (MDA) (OMG, 2003) proposes a hierarchical 

structure for model abstraction, namely: 

 Computation-independent model (CIM) 

 Platform-independent model (PIM) 

 Platform-specific model (PSM) 

 

Figure 31. MDA-based model abstraction (Dodani, 2006) 

 



Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches 

85 
 

Software architecture methods 

There are approaches that support assure an alignment of the architecture with other relevant 

information. Some known approaches are Reuse-Driven Software Engineering Business (RSEB) 

(Jacobson, Griss, & Jonsson, 1997), Family-oriented Abstraction Specification and Translation 

(FAST) (Weiss, 1999), Feature-Oriented Reuse Method (FORM) (Kang et al., 1998), 

Komponentenbasierte Anwendungsentwicklung (KobrA – that is German for “component-based 

application development”) (Bayer, Muthig, & Göpfert, 2001), Quality-driven Architecture Design 

(QADA) (Matinlassi, Niemelä, & Dobrica, 2002), Product Line Software Engineering (PulSE) 

(Bayer, Flege, & Knauber, 1999). All the methods previously stated have the objective of 

supporting the design of a software architecture based in elicited information related to software 

requirements. 

 

Software architecture classification levels 

In this section, we propose a classification schema for architecture viewpoints, were the 

viewpoints are described under a set of proposed dimensions for the schema (Figure 32), namely 

the viewpoint framework, the software development phase and the level of abstraction. 

 

 

Figure 32. Classification schema 

 

For the viewpoint framework, the classification schema uses Kruchten’s 4+1 framework 

(Kruchten, 1995). The adoption of this framework over the remaining is due to its widely known. 
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However, for a better classification, the architecture levels are also fitted in other viewpoint 

frameworks: NIST EA Model (Fong & H., 1989), Siemens Five-view Model (Soni et al., 1995), 

SEI’s viewpoint and target audience framework (P. C. Clements & Northrop, 1996), ISO RM-ODP 

(ISO, 1998), Rozanski & Woods Viewpoint Catalog (Rozanski & Woods, 2005), DoDAF 2.0 (DoD, 

2009) and Zachman Enterprise Ontology (Zachman, 2011). 

The classification is proposed by analyzing its fitting within the schema dimensions based in 
found definitions in literature. We propose a set of architecture levels. These levels refer to the 
architecture’s scope, as well as context of use. The proposal was based in a comparison and 
likeness of the viewpoints from the presented frameworks, depicted in Table 7. Additionally, the 
levels were grouped in  

Table 8): Concepts, Information systems, Software systems, and Infrastructure. 

 

Table 7. Architecture viewpoints categories 

Concepts Inf. Systems Software Systems Infrastructure 

Conceptual architecture 

Reference architecture 

Enterprise architecture 

Process architecture 

Information system 

architecture 

Logical architecture 

Component architecture 

Data models / Classes 

Technical architecture 

Deployment architecture 

Physical architecture 

 

 

 

Table 8. Comparison and likeness of architecture viewpoints 

NIST EA 

Model  

Kruchten 

4+1 Model  

Siemens 

Five-view 

Model  

 

SEI’s 

viewpoint 

and target 

audience  

ISO RM-

ODP (ISO, 

1998)  

Viewpoint 

Catalog 

DoDAF 2.0  Zachman 

Enterprise 

Ontology  

Business Scenarios Conceptual Conceptual Enterprise Context All Scope 

Information  Module Module Information Functional Capability Concepts 

 Logical      Logic 

Information 

Systems 

Process  Process  Information Data and 

Information 

 

Data     Concurrency Operational Physics 

Delivery 

Systems 

   Engineering  Project Technology 

 Development Code  Computation Development Services  

  Execution   Deployment Standards Product 

 Physical Hardware Physical Technical Operational Systems  
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Level 1 – conceptual level 

The conceptual architecture is derived from business requirements and are understood and 

supported by senior management (D. Chen, Doumeingts, & Vernadat, 2008). With this definition 

in mind, the conceptual architecture can be classified as: 

Conceptual – Phase: Planning; 4+1: Logical; Abstraction: CIM. (Others: NIST EA Model: 

Business; Siemens Five-view Model: Conceptual; SEI’s viewpoint and target audience: 

Conceptual; ISO-RM ODP: Information; Viewpoint Catalog: Context; DoDAF 2.0: Capability; 

Zachman: Concepts.) 

A reference architecture is a framework in which system related concepts are organized 

(Zwegers, 1998). It is also defined as a set of coherent engineering and design principles used in 

a specific domain. It aims at structuring the design of a specific system architecture by defining a 

unified terminology, the structure of the system, responsibilities of system components, by 

providing standard (template) components, by giving examples, etc. (Brussel, Wyns, Valckenaers, 

Bongaerts, & Peeters, 1998). With this definition in mind, the reference architecture can be 

classified as:  

Reference – Phase: Planning; 4+1: Logical; Abstraction: CIM. (Others: NIST EA Model: 

N/A; Siemens Five-view Model: Conceptual; SEI’s viewpoint and target audience: 

Conceptual; ISO-RM ODP: Information; Viewpoint Catalog: Functional; DoDAF 2.0: 

Standards; Zachman: Scope.) 

 

 

Figure 33. Viewpoints classifications at Level 1 
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Level 2 – Information systems level 

An enterprise architecture tries to describe and control an organization’s structure, 

processes, applications, systems and techniques in an integrated way (Lankhorst, 2009). 

Enterprise architecture provides a way to enable cross-functional, cross-discipline collaboration 

essential to articulating and implementing strategic business requirements. A coherent 

description of enterprise architecture provides insight, enables communication among 

stakeholders and guides complicated change processes (H. Chen, 2008). With this definition in 

mind, the enterprise architecture can be classified as: 

Enterprise – Phase: Analysis; 4+1: Process; Abstraction: CIM. (Others: NIST EA Model: 

Business; Siemens Five-view Model: Conceptual; SEI’s viewpoint and target audience: 

Conceptual; ISO-RM ODP: Enterprise; Viewpoint Catalog: Context; DoDAF 2.0: Capability; 

Zachman: Scope.) 

 

The process architecture represents the fundamental organization of service development, 

service creation, and service distribution in the relevant enterprise context (Winter & Fischer, 

2006). A process architecture can also be defined as an arrangement of the activities and their 

interfaces in a process (Browning & Eppinger, 2002). Process architecture ensures that all the 

relevant information, which consists of the foundation and guidelines for the process review and 

improvement, are made explicit and can be referred to (Jeston & Nelis, 2008). With this 

definition in mind, the process architecture can be classified as: 

Process – Phase: Analysis; 4+1: Process; Abstraction: CIM. (Others: NIST EA Model: 

Information Systems; Siemens Five-view Model: N/A; SEI’s viewpoint and target 

audience: Process; ISO-RM ODP: N/A; Viewpoint Catalog: N/A; DoDAF 2.0: Capability; 

Zachman: Concepts.) 

 

An information system architecture is about the logical constructs for controlling and 

defining interfaces and for integrating the components that compose the system, which for 

information systems relates to an entire enterprise (Zachman, 1987). It must represent the 

concepts in the real world that are part of the information system and its development (Sowa & 

Zachman, 1992). Additionally, it must provide a linkage between information strategy and 

business strategy (Zachman, 1987). Ferreira et al. use an information system logical 

architecture, where its logical components relate to activities performed within the information 
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system (Ferreira, Santos, Machado, & Gašević, 2012). With this definition in mind, the 

information systems architecture can be classified as: 

Inf. System – Phase: Design; 4+1: Logical; Abstraction: PIM. (Others: NIST EA Model: 

Business; Siemens Five-view Model: N/A; SEI’s viewpoint and target audience: 

Process; ISO-RM ODP: Information; Viewpoint Catalog: Information; DoDAF 2.0: Data and 

Information; Zachman: N/A.) 

 

 

Figure 34. Viewpoints classifications at Level 2 

 

Level 3 – Software features 

A system logical architecture can be viewed as a constructed set of the system’s design 

decisions (Ferreira, Santos, Machado, Fernandes, & Gasević, 2014), a view of a system 

composed of a set of problem-specific abstractions supporting functional requirements and 

suiting the purpose of identifying common design elements across the different parts of a system 

(Kruchten, 1995), a module view representing the static structure of the software system (the 

system’s functional blocks) (P Clements, Garlan, Little, Nord, & Stafford, 2003). It  is a design 

artifact representing a functionality-based structure of the system being designed (Azevedo, 

2014), represented as objects or object classes (Kruchten, 1995) or as components (Azevedo, 

2014). With this definition in mind, the logical architecture can be classified as: 

Logical – Phase: Design; 4+1: Logical; Abstraction: PIM. (Others: NIST EA Model: N/A; 

Siemens Five-view Model: Module; SEI’s viewpoint and target audience: Module; ISO-

RM ODP: Information; Viewpoint Catalog: Functional; DoDAF 2.0: Operational; Zachman: 

Logic.) 
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Component is a modular unit with well-defined Interfaces that is replaceable within its 

environment (UML, 2011). With this definition in mind, the component architecture can be 

classified as: 

Component – Phase: Design; 4+1: Development; Abstraction: PIM. (Others: NIST EA 

Model: Data; Siemens Five-view Model: Development; SEI’s viewpoint and target 

audience: Code; ISO-RM ODP: Computation; Viewpoint Catalog: Development; DoDAF 

2.0: Services; Zachman: Technology.) 

 

A class architecture provides a classification of objects and to specify the Features that 

characterize the structure and behavior of those objects (UML, 2011). With this definition in 

mind, the class architecture can be classified as: 

Data / Class – Phase: Design; 4+1: Development; Abstraction: PIM. (Others: NIST EA 

Model: Data; Siemens Five-view Model: Development; SEI’s viewpoint and target 

audience: Code; ISO-RM ODP: Computation; Viewpoint Catalog: Concurrency; DoDAF 

2.0: Standards; Zachman: Technology.) 

 

 

Figure 35. Viewpoints classifications at Level 3 

 

Level 4 – IT infrastructures 

The technical architecture provides the technical components that enable the business 

strategies and functions (D. Chen et al., 2008). It describes the capabilities that are required to 

support the deployment of business, data, and application services, in terms of IT infrastructure, 

middleware, networks, communications, processing, standards, and so on (Booch, 2010). With 

this definition in mind, the technical architecture can be classified as: 
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Technical – Phase: Implementation; 4+1: Development; Abstraction: PSM. (Others: NIST EA 

Model: Delivery Systems; Siemens Five-view Model: Code; SEI’s viewpoint and target 

audience: N/A; ISO-RM ODP: Technical; Viewpoint Catalog: Development; DoDAF 2.0: 

Systems; Zachman: Technology.) 

 

A deployment architecture defines the execution architecture of systems and the assignment of 

software artifacts to system elements (UML, 2011). With this definition in mind, the deployment 

architecture can be classified as: 

Deployment – Phase: Deployment; 4+1: Physical; Abstraction: PSM. (Others: NIST EA 

Model: Delivery Systems; Siemens Five-view Model: Execution; SEI’s viewpoint and 

target audience: Physical; ISO-RM ODP: Computation; Viewpoint Catalog: Deployment; 

DoDAF 2.0: Product; Zachman: Concepts.) 

 

A physical architecture show a system's physical layout, revealing which pieces of software 

run an what pieces of hardware (Fowler, 2004). With this definition in mind, the physical 

architecture can be classified as: 

Physical – Phase: Deployment; 4+1: Physical; Abstraction: PSM. (Others: NIST EA Model: 

Delivery Systems; Siemens Five-view Model: Hardware; SEI’s viewpoint and target 

audience: Physical; ISO-RM ODP: Technical; Viewpoint Catalog: Operational; DoDAF 2.0: 

Systems; Zachman: Technology.) 

 

 

Figure 36. Viewpoints classifications at Level 4 
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3.3. Modeling approaches within the “continuous” paradigm 

Continuous software engineering 

While agile practices have succeeded in involving the customer in the development cycle, 

there is an urgent need to learn from customer usage of software also after delivering and 

deployment of the software product. Among the plethora of available practices that a company 

may use towards “being agile”, Olsson, Alahyari and Bosch propose a pathway for stages that a 

company should embrace, called “Stairway to Heaven” (Helena Holmstrom Olsson, Alahyari, & 

Bosch, 2012; Helena Holmström Olsson & Bosch, 2014). It is composed by five stages, as 

depicted in Figure 37: (i) Traditional development; (ii) Agile R&D organization; (iii) Continuous 

integration; (iv) Continuous deployment; and (v) R&D as an experiment system. 

 

 

Figure 37. "Stairway to Heaven" (Helena Holmstrom Olsson et al., 2012; Helena Holmström Olsson & 

Bosch, 2014) 

 

Traditional development 

Traditional development is typically the starting point for most companies. Traditional 

development is a software development approach characterized by slow development cycles, 

sequential phases (waterfall-style), and a rigorous planning phase in which requirements are 

frozen upfront (Sommerville, 2007). Projects adopting this development approach suffer from 

long feedback cycles and difficulties to integrate customer feedback into the product development 

process (Helena Holmstrom Olsson et al., 2012; Sommerville, 2007). Typically, software delivery 

takes place in the end of the project life cycle, and it is then that customers can provide 

feedback. 
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Agile R&D organization 

Adopting agile development practices is typically for overcoming the challenges from 

overcoming the customer’s long feedback cycles. Agile practices are characterized by small 

cross-functional development teams, short development Sprints resulting in working software, 

and continuous planning in which the customer is involved to allow for continuous customer 

feedback (Highsmith, 2002). In agile organizations, however, product management and system 

verification still work according to the traditional development approach (Helena Holmstrom 

Olsson et al., 2012). 

Continuous integration (CI) 

This step relates to the establishment of practices that allow for frequent integration of work, 

daily builds, and fast commit of changes (e.g., automated builds and automated testing). At this 

point, both product development organization and test and verification organization work 

according to agile practices with short feedback cycles and continuous integration of work. Work 

is integrated frequently, leading to multiple integrations per day (Humble & Farley, 2011). 

 

Continuous deployment (CD) 

CD implies the continuous push out of changes to the code instead of doing large builds and 

having planned releases of large chunks of functionality. This allows for continuous customer 

feedback, the ability to learn from customer usage data, and to eliminate work that does not 

produce value for the customer. At this point, R&D, product management, and customers are all 

involved in a rapid, agile development cycle in which response time is short (Helena Holmstrom 

Olsson et al., 2012). 

R&D as an experiment system 

The final step in the “Stairway to Heaven” model relates to the ability of the organization to 

respond based on instant customer feedback, where actual deployment of software functionality 

is seen as a way of validating functionality. Customers are exposed to partial implementation of a 

functionality and the organization uses their feedback for determining the value of that particular 

functionality (Bosch, 2012). 

 

Olsson and Bosch state the following when organizations evolve from one step to another 

(Helena Holmström Olsson & Bosch, 2014): 
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- From Traditional to Agile R&D: requires a careful introduction of agile practices into the 

organization, a shift to small development teams, and a focus on features rather than 

components 

- From Agile to Continuous Integration: requires an automated test suite, a main branch to 

which code is continually delivered, and a modularized architecture 

- From Continuous Integration to Continuous Deployment: requires internal and external 

stakeholders to be fully involved and a proactive customer with whom to explore the concept 

- From Continuous Deployment to R&D as an “Innovation System”: requires careful 

ecosystem management in order to align internal business strategies with the dynamics of a 

competitive business ecosystem. 

Finally, a characteristic for all transitions is the critical alignment of internal and external 

processes in order to maximize the benefits as provided by the business ecosystem of which a 

company is part. 

 

A research conducted by Fitzgerald and Stol showed that software engineering has evolved 

with the adoption of agile practices and CI, Lean Startup and Lean Thinking approaches 

(Fitzgerald & Stol, 2017). They also discuss the need for a holistic approach that also refers the 

adoption of agile approaches in other organizational functions, like Enterprise Agility (Overby, 

Bharadwaj, & Sambamurthy, 2005) and Beyond Budgeting (Bogsnes, 2008). Finally, the 

approach is complemented by integrating development and operations (DevOps) (Loukides, 

2012), and integrating business strategy and development (BizDev) (Fitzgerald & Stol, 2017). 

Hence, they propose a holistic approach encompassing all these concepts and emphasizing in 

CSE, called “Continuous ∗” (i.e. Continuous Star ) (Fitzgerald & Stol, 2017). Continuous ∗ 

considers the entire software life cycle, with three main sub- phases (Figure 38): Business 

Strategy & Planning, Development, and Operations. 

 



Chapter 3 – Logical Architectures within Agile and “Continuous” Approaches 

95 
 

 

Figure 38. Continuous* framework (Fitzgerald & Stol, 2017) 

 

 

Each activity from Continuous * is briefly explained: 

- Continuous planning: endeavor involving multiple stakeholders from business and 

software functions, where plans are dynamic open-ended artifacts that evolve in response to 

changes in the business environment; 

- Continuous budgeting: budgeting (organization’s investments, revenue and expense 

outlook) becomes a continuous activity to facilitate changes during the year; 

- Continuous integration: a typically automatically triggered process comprising inter-

connected steps such as compiling code, running unit and acceptance tests, validating code 

coverage, checking coding standard compliance and building deployment packages; 

- Continuous delivery: the practice of continuously deploying good software builds 

automatically to some environment, but not necessarily to actual users; 

- Continuous deployment: the practice of ensuring that the software is continuously ready 

for release and deployed to actual customers; 
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- Continuous verification: Adoption of verification activities including formal methods and 

inspections throughout the development process rather than relying on a testing phase 

towards the end of development; 

- Continuous testing: a process typically involving some automation of the testing process, 

or prioritization of test cases, to help reduce the time between the introduction of errors and 

their detection; 

- Continuous compliance: seeks to satisfy regulatory compliance standards on a 

continuous basis; 

- Continuous security: security being treated as a key concern throughout all phases of the 

development lifecycle and even post deployment, supported by a smart and lightweight 

approach to identifying security vulnerabilities; 

- Continuous evolution: technical debt is incurred when an architecture is unsuitable to 

facilitate new requirements; 

- Continuous use: Recognizes that the initial adoption versus continuous use of software 

decisions are based on different parameters, and that customer retention can be a more 

effective strategy than trying to attract new customers; 

- Continuous trust: Trust developed over time as a result of interactions based on the belief 

that a vendor will act cooperatively to fulfill customer expectations without exploiting their 

vulnerabilities; 

- Continuous run-time monitoring: run-time behaviors of all kinds must be monitored to 

enable early detection of quality-of-service problems, such as performance degradation, and 

also the fulfillment of service level agreements (SLAs); 

- Continuous improvement: Based on lean principles of data-driven decision-making and 

elimination of waste, which lead to small incremental quality improvements; 

- Continuous innovation: a sustainable process that is responsive to evolving market 

conditions and based on appropriate metrics across the entire lifecycle of planning, 

development and run-time operations; 

- Continuous experimentation: software development based on experiments with 

stakeholders consisting of repeated Build-Measure-Learn cycles. 
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Continuous Architecture 

Continuous Architecture (CA) is a set of principles and tools targeted at addressing the gap 

between the Agile delivery and architecture practices (Erder & Pureur, 2015). It brings together 

the work of the agile developer to start building and the enterprise architect that will look at a 5-

year plan. CA is the response required from the adoption of Continuous Delivery by software 

development teams. 

The main objective of Continuous Delivery is to respond quickly to business needs by 

frequently delivering high-quality software in rapid cycles. Unlike traditional software delivery 

approaches that emphasize the importance of delivering various documents such as 

requirements, architecture, and design specifications, the overall goal of Continuous Delivery is to 

produce production-quality software rapidly in an incremental manner. Instead of validating 

various artifacts produced as part of the Software Development Life Cycle (SDLC), quality is 

enforced by systematically testing the software components using automated tests (Erder & 

Pureur, 2015). 

Continuous architecting has a set of specific goals (Erder & Pureur, 2015): 

- To create an architecture that can evolve with applications, that is testable , that can respond 

to feedback and in fact is driven by feedback 

- To make Enterprise Architecture real 

- To make solution architecture sustainable 

- To create real world, actionable, useful strategies 

 

CA is characterized by the following principles (Erder & Pureur, 2015): 

1. Architect  Products – not solutions for  Projects 

2. Focus on Quality Attributes – not on Functional Requirements 

3. Delay Design Decisions Until They Are Absolutely Necessary To Keep The Architecture 

Manageable 

4. Leverage “The Power Of Small” To Architect For Change 

5. Architect for Build, Test and Deploy To Deliver Capabilities Continuously 

6. Model The Organization Of Your Teams After The Design Of The System To Promote 

Interoperability 
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As part of CA, especially within large-scale agile (LSA) settings, (Martini, Pareto, & Bosch, 

2014) identifies the following practices: 

- Risk Management; 

- architectural decisions and changes; 

- Pattern Distillation; 

- communication of architecture: 

o providing architectural knowledge (communication output), 

o monitor the current status of the system (communication input); 

- Inter-features Architecting; 

- Architecting for Testability; 

- Controlling Erosion. 

 

The CA practices require focus in the architecture role, as well as in architecting tasks within 

developing and maintaining software architecture. Martini and Bosch present Continuous 

Architecting Framework For Embedded software and Agile (CAFFEA) (Martini, Pareto, & Bosch, 

2015), an organizational framework oriented for architecture governance. The frameworks 

presents roles, challenges and tasks within architecture teams and governance teams viewpoints 

(Figure 39). Roles are described as belonging to the Architects and to the Team. The existing 

roles for Architects are Chief Architect, Governance Architect and Team Architect. Chief architects 

are responsible for the whole overall portfolio architecture, which might include more products 

and more than one system; Governance architects are responsible for areas of the architecture, 

related to single products or systems or sub-systems, but not related to only one team; and Team 

architects are usually most experienced developer in a team who have the most knowledge about 

the architecture and support/lead the team on such area (Martini et al., 2014). Within the 

Teams, within this framework they have roles responsible for coordination and cooperation 

practices, which are complementary to the typical agile (and feature-oriented) teams. Roles for 

Teams are Runway Team, Architecture Teams, Governances Teams.  
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Figure 39. The Continuous Architecting Framework For Embedded software and Agile (CAFFEA) 

(Martini et al., 2015) 

 

Architectural Management, Evolution, Change, and Debt 

The architecture is not static either during the project, after either the project ended (and the 

software is delivered and “in production”). Architectural changes as the architecture evolves, 

because of enhancement and maintenance requirements, are addressed as architecture 

management (Babar, 2013). Changes come in different flavours, such as redefining or adding 

requirements, changing infrastructure and technology, or causing changes by bugs and wrong 

decisions. to avoid design erosion, software architects need to embrace change by systematically 

alternating design activities with iterative architecture assessment and refactoring (Stal, 2014). 

Architecture maintenance is performed by architectural methods that support evaluation of 

developed features during cycles (Kanwal, Junaid, & Fahiem, 2010). At this point, the major 

concern is to accommodate the required changes without damaging the architectural integrity. 

Prior design decisions are reassessed for the potential impact of the required changes and new 

decisions are made (Babar, 2013).  

Any change that will influence the system’s safety requirements after we have finished the 

safety analysis and safety planning for development of safety-critical software will require a 

change impact analysis. Using agile development we may add new requirements, change existing 
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requirements and make current requirements more detailed both in the product backlog and in 

the Sprint backlogs (Stålhane, 2014). 

Change impact analysis (CIA) is important for software maintenance and is closely related to 

traceability in two ways (Stålhane, 2014):  

(1) From code to requirements – which requirements are affected if we change this code? 

This also gives us information on which tests that need to be re-run;  

(2) From requirements to code – what code must be changed if this requirement is 

changed? 

 

Steps in a typical impact analysis process are (Wiegers, 2014): 

 Identify the sequence in which the tasks must be performed and how they can be 

interleaved with currently planned tasks. 

 Determine whether the change is on the project’s critical path. If a task on the critical path 

slips, the project’s completion date will slip. Every change consumes resources, but if you 

can plan a change to avoid affecting tasks that are currently on the critical path, the change 

will not cause the entire project to slip. 

 Estimate the impact of the proposed change on the project’s schedule and cost. 

 Evaluate the change’s priority by estimating the relative benefit, penalty, cost, and technical 

risk compared to other discretionary requirements. 

 Report the impact analysis results to all stakeholders so that they can use the information to 

help them decide whether to approve or reject the change request. 

 

A change in a system may have effects that have to be determined, which leads to use CIA 

techniques (Arnold, 1996). In agile architecting, CIA is used in decision-making process of adding 

or changing features, focusing in affected dependencies with earlier design decisions, rationale, 

constraints, and risks (Pérez, Díaz, Garbajosa, & Yagüe, 2014). 

It is crucial to perform a CIA if the change affects an architecturally significant requirement 

(ASR) (L. Chen, Ali Babar, & Nuseibeh, 2013). ASRs are requirements that play an important role 

in determining the architecture of the system (Paul Clements & Bass, 2010). This concept mostly 

arose from the need to differentiate the quality requirements (i.e., non-functional requirements 
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(Sommerville, 2007), which are commonly related to the architecture of the system) that do not 

have great impact to the system design as the ones that actually do have importance in design 

decisions (L. Chen et al., 2013).  

These techniques may arise as a way of managing the technical debt (Kruchten, Nord, & 

Ozkaya, 2012; Tom, Aurum, & Vidgen, 2013). Technical debt may relate from architecture, 

source code, testing, among others (Martini, Besker, & Bosch, 2018). Architectural debt relates 

to a group of architecturally connected  files that incur high maintenance costs over time due to 

their flawed connections (L. Xiao, Cai, Kazman, Mo, & Feng, 2016).  

 

 

Figure 40. Types of Technical debt (Kruchten, Nord, & Ozkaya, 2012) 

 

Software architecture denotes a potential area for refactoring activities due to its continuous 

growth and evolution. Software architecture assessment and refactoring should happen regularly, 

in all iterations (Stal, 2014). 

Refactoring activities should be conducted iteratively in a systematic way, towards a process 

for continuous architecture improvement, which can include (Stal, 2014): 

 Architecture assessment: Identify architecture smells and design problems; 

 Prioritization: Prioritize all identified architectural issues by determining the priority of the 

affected requirements; 

 Select appropriate refactoring patterns; 

 Quality assurance: For each refactoring application, check whether it changes the semantics 

of the system. 
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3.4. Microservices architectures 

Microservices are an architectural style oriented towards modularization, where the idea is to 

split the application into smaller, interconnected services, running as a separate process (Figure 

41) that can be independently deployed, scaled and tested (Thönes, 2015).  

They also extend from the ’design-stage architecture’ into deployment and operations as a 

continuous development style (Pahl & Jamshidi, 2016). That is why, when working with 

microservices, considerations range from architecture to deployment (or DevOps) issues 

(Aderaldo, Mendonca, Pahl, & Jamshidi, 2017). 

 

 

Figure 41. A pictorial representation of a microservices architecture4 

 

The main difference when dealing with a monolithic application and a microservices 

architecture is that a monolithic application puts all its functionality into a single process and 

scales by replicating the monolith on multiple servers, while a microservices architectures puts 

                                                 
4
 https://www.nginx.com/blog/introduction-to-microservices/  

https://www.nginx.com/blog/introduction-to-microservices/
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each element of functionality into a separate service and scales by distributing these services 

across servers, replicating as needed (J. Lewis & Fowler, 2014). 

A microservices system encompasses all of the things about your organization that are related 

to the application it produces. For that reason, Nadareishvili, Mitra, McLarty, and Amundsen 

present a microservice design model comprised of five parts (Figure 42) (Nadareishvili, Mitra, 

McLarty, & Amundsen, 2016): Service, Solution, Process and Tools, Organization, and Culture. 

 

Figure 42. Microservices main characteristics 

 

The main characteristics of microservices are (J. Lewis & Fowler, 2014):  

 Componentization via Services: Software is broken up into multiple services that are 

independently replaceable and upgradeable and communicate by means of inter-process 

communication facilities using an explicit component-published-interface.  

 Organized Around Business Capabilities: Microservices are implemented around business 

areas, in which services include a user-interface, storage, and any external collaborations. 

 Products not Projects: Development teams own a product throughout its entire lifetime, 

taking full responsibility for the software in production.  

 Smart Endpoints and Dumb Pipes: Simple messaging or a lightweight messaging bus is 

used to provide communication among microservices. 
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 Decentralized Governance: teams use the right tool (or programming language) for a given 

situation, instead of a single tool for the entire solution. It is also referred as polyglot 

programming. 

 Decentralized Data Management: Microservices prefer letting each service manage its own 

database, either different instances of the same database technology, or entirely different 

database systems. It is also referred as polyglot persistence. 

 Infrastructure Automation: Many of the products or systems being built with 

microservices use infrastructure automation techniques, based in automated testing and 

deployment, towards continuous delivery. 

 Design for Failure: applications need to be designed so that they can tolerate the failure 

of services. 

 Evolutionary design. 

 

The development of microservices follow the following principles (Newman, 2015): 

1. “Model around business concepts”, to be represented as bounded contexts and domain 

models according to Domain-Driven Design (DDD) patterns (Evans, 2004).  

2. “Adopt a culture of automation” in testing and deployment; practice continuous delivery.  

3. “Hide internal implementation details” such as databases; define technology-agnostic 

Application Programming Interfaces (APIs).  

4. “Decentralize all the things”: e.g., apply shared governance, prefer service choreography 

over orchestration, and use dumb middleware but smart endpoints.  

5. Make services “independently deployable”, e.g., let versioned (service) endpoints co-exist; 

deploy only one service per (virtual) host.  

6. “Isolate failure”, e.g. introduce circuit breakers to make services robust.  

7. Be “highly observable”, e.g. via semantic monitoring with data aggregation.  
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Although these characteristics and principles overlap, they also differ substantially (Table 9) 

(Zimmermann, 2017): 

 

Table 9. Microservices characteristics and principles (Zimmermann, 2017) 

Characteristics by Lewis/Fowler (J. Lewis & 

Fowler, 2014) 

Relationship Newman’s Principles 

(Newman, 2015) 

Componentization via services (similar to) Hide internal implementation 

details 

Organized around business capabilities (matches) Model around business 

concepts 

Products not projects (no pendant)  

Smart endpoints and dumb pipes (included in) Decentralize all the things 

Decentralized governance (superset of) 

Decentralized data management (superset of) 

Infrastructure automation (superset of) Adopt a culture of automation 

Design for failure (subset of) Isolate failure 

Evolutionary design (no pendant)  

 (no pendant) Highly observable 

Independently deployable (not formally listed 

as a characteristic, but described as a 

definition 

(matches) Independently deployable 

 

Also, in the same work, Zimmerman summarizes common tenets on microservices 

(Zimmermann, 2017): 

1. Fine-grained interfaces to single-responsibility units that encapsulate data and processing 

logic are exposed remotely, typically via RESTful HTTP resources or asynchronous 

message queues. These remote units constitute services that can be deployed, changed, 

substituted, and scaled independently of each other. 

2. Business-driven development practices and pattern languages such as domain-driven 

design (DDD) (Evans, 2004) are employed to identify and conceptualize services. 

3. Cloud-native application design principles are followed, e.g., as summarized in IDEAL 

(isolated state, distribution, elasticity, automated management and loose coupling) 
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(Haberle, Charissis, Fehling, Nahm, & Leymann, 2015) or the twelve app factors in 

Heroku’s method (Wiggins, 2012). 

4. Multiple computing paradigms (such as functional and imperative) and storage 

paradigms (e.g., relational databases and several types of NoSQL stores) are leveraged 

in a polyglot programming and persistence strategy. Some of these polyglot services only 

guarantee eventual rather than strong consistency. 

5. Lightweight containers are used to deploy services. Docker and Dropwizard are 

frequently mentioned as two related options (although these two technologies do not 

reside on the same level of abstraction and have rather different scopes, operating 

system virtualization vs. code library assembly). 

6. Decentralized continuous delivery is practiced during service development (which 

requires/promotes a high degree of automation and autonomy). 

7. DevOps Lean, but holistic and largely automated approaches to configuration, 

performance and fault management are employed, which extend agile practices and 

include service monitoring. 

Finally, Zimmerman summarizes the analysis by positioning the seven tenets (T-x), the nine 

characteristics from Lewis and Fowler (LFy), and Newman’s seven principles (N-z) in Kruchten’s 

4+ 1 viewpoint scheme (Kruchten, 1995). Figure 43 shows consensus and/or complementary 

positions in three viewpoints (scenario, development, and process) and little focus on the 

remaining two (logical, physical); one tenet, five L/F characteristics and two N principles deal 

with cross-cutting concerns that span multiple viewpoints (e.g., decentralized governance). 
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Figure 43. Positioning the microservices tenets (Zimmermann, 2017) 

 

They enable companies to increase the deployment frequency of new releases as one crucial 

part within the Continuous Delivery (CD) pipeline (Armin Balalaie, Heydarnoori, & Jamshidi, 

2016a; L. Chen, 2018; O’Connor, Elger, & Clarke, 2017). They affect the way teams are 

structured, source code is organized and continuously built/packed, and software products are 

continuously deployed (Familiar, 2015). 

There is some discussion about similarities and differences to SOA. Microservices are not 

entirely new, but qualify as “SOA done right”, comprising an organic implementation approach to 

SOA (Zimmermann, 2017). Common characteristics include business orientation, polyglot 

programming in multiple paradigms and languages, and design for failure; decentralization and 

automation are emphasized specifically in the microservices implementation approach. An 

important microservices property is that services can be deployed independently of each other, 

which requires services to communicate with each other via remoting protocols such as HTTP 

and asynchronous message queues (Zimmermann, 2017). 

 

Typically there are two types of patterns to define the required microservices (Richardson, 

2018): decomposition by business capability or by domains. The second one is highly adopted 

(Newman, 2015; Pautasso, Zimmermann, Amundsen, Lewis, & Josuttis, 2017; Steinegger, 

Giessler, Hippchen, & Abeck, 2017), making use of DDD (Evans, 2004) approach. 
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Independent of whether an MSA-based system is designed greenfield, i.e., from scratch, or 

brownfield, i.e., by decomposing a monolith, microservices need to be identified (Newman, 

2015). There is not a common standard on modeling the architectures (Francesco, Malavolta, & 

Lago, 2017). In fact, ‘modeling’ is not highly considered in microservice-related research (Cerny, 

Donahoo, & Trnka, 2018), although its provided benefits in terms of abstraction, model 

transformation, code generation, modeling viewpoints and languages (Rademacher, Sorgalla, 

Wizenty, Sachweh, & Zündorf, 2018). There seems to be a tendency to use languages used to 

describe service-based architectures (Di Francesco, 2017) (SoaML, SOMA, SOADL, CAML, 

CloudML and StratusML), however UML is suitable to model services and operations as well 

(Alshuqayran, Ali, & Evans, 2016; Rademacher, Sachweh, & Zündorf, 2018a). Modeling 

approaches in SOA is more mature, namely for service design and interfaces, and their 

applicability in MSA have many similarities (Rademacher, Sachweh, & Zundorf, 2017). Modeling 

in MSA may be based in integrating API and SOA styles of service design and delivery, together 

with a service model that contains both styles of service and articulates their relationships (Z. 

Xiao, Wijegunaratne, & Qiang, 2016). 

 

Models may be used in different abstraction levels (OMG, 2003). In microservices, domain 

models are used when adopting DDD for identifying the services, where afterwards may be used 

additional models – intermediate and deployment – for specifying service interfaces, deployment, 

etc. (Rademacher, Sorgalla, & Sachweh, 2018). Additionally, these different models may be used 

within different languages, like UML for domains and SoaML for interfaces (Rademacher, 

Sorgalla, & Sachweh, 2018).  

 

Microservices modeling 

DDD is always the basis for defining a microservices architecture, allowing to decompose a 

problem in subdomains that a microservice may tackle, and also assuring the microservice 

complies with the Single Responsibility Principle (SRP) (Indrasiri & Siriwardena, 2018). 

Rademacher, Sachweh and Zündorf present a UML Profile for identifying microservices, namely 

when adopting DDD (Rademacher, Sachweh, & Zündorf, 2018b).  
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Figure 44. UML profile for microservices design (Rademacher, Sachweh, & Zündorf, 2018b) 

 

Kharbuja uses DDD for identifying bounded contexts within requirements modeled in Use 

Cases, defining steps to derive a domain model for a microservice, namely (Kharbuja, 2016):  

 Step 1: The initial analysis of the case study produces use case model 

 Step 2: For each use case, task trees are generated listing the functionalities needed to 

accomplish the desired goal of the respective use cases. 

 Step 3: The initial task trees created for each use case at Step 2 are analyzed. The tasks 

are categorized as are either functionally independent from their corresponding use cases or 

common in multiple use cases. 

 Step 4: The use case model obtained in Step 3 is analyzed again for further refactoring. 

 Step 5: The use cases obtained in step 4 are used to identify the service candidates. The 

final use cases obtained in Step 4 have appropriate level of granularity and cohesive 

functionalities. 

An example of a UML Use Case model usage for candidate service is depicted in Figure 45. 
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Figure 45. Use Case Model for identification of service candidates  (Kharbuja, 2016) 

 

 Rademacher et al. present some patterns on modeling microservices domains using DDD 

(Rademacher, Sorgalla, & Sachweh, 2018). Figure 46 depicts DDD modeling patterns for 

microservice design, using UML notation. 
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Figure 46. DDD patterns for domain-driven microservice design (Rademacher, Sorgalla, & Sachweh, 

2018) 

 

The Extended Increment Architecture approach (Zúñiga-Prieto, Insfran, & Abrahao, 2016) 

lengthens the SoaML metamodel in order to handle microservices architecture design. Within this 

approach, a Participant may refer to:  

(i) a microservice to be integrated;  

(ii) a microservice/component already existing in the current architecture with which the 

microservice(s) to be integrated will interoperate; and  

(iii) a microservice/component to be created in order to consume microservice services or 

provide it with services. In addition, the Services Architecture diagram allows depicting how 
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parts of a microservice work together to play the owning microservice role(s). Finally, a 

reference to a Service Contract that describes interoperation among Participants is 

described, as well as the integration logic. 

 

In order to allow these languages properly address microservice specific characteristics 

(mainly in comparison to SOA), some model-driven development (MDD) works propose 

metamodels that enable microservices architectures modeling (Düllmann & Van Hoorn, 2017; 

Rademacher, Sorgalla, Sachweh, & Zündorf, 2018), allowing to instantiate data, service and 

operations of microservices. The DDD application can be enriched by defining semantics in OWL 

(Diepenbrock, Rademacher, & Sachweh, 2017). 

 An agile approach for service design and service engineering relies on early understanding of 

user needs and service touchpoints for rapid adaptation to emerging user needs (Berre, 2012). 

Model-based development approaches, properly combined with agile practices, are useful for 

service design and engineering, relating value models, process models, user interface and 

interaction flow models, and service architectures and service contract models (Berre, 2012). 

 

Defining service boundaries 

Decomposing an existing monolith to microservices has many challenges (Di Francesco, 

2017; D Taibi, Lenarduzzi, Pahl, & Janes, 2017). Typically, the decomposition starts by 

developing services for a given business process (Lenarduzzi & Taibi, 2018), making use of 

simplified microservices  patterns (Davide Taibi et al., 2017; Davide Taibi, Lenarduzzi, & Pahl, 

2018). These patterns are used until the architectures emerges to a complexity that requires new 

decisions DDD approach, on data driven as the database-is-the-service pattern (Messina, Rizzo, 

Storniolo, Tripiciano, & Urso, 2016), on approaches as SMART (G. Lewis, Morris, Simanta, 

Smith, & Wrage, 2007) or ENTICE (Kecskemeti & Marosi, 2016), etc.  

Some works have researched on how to extract these services from monoliths (Gysel, 

Kölbener, Giersche, & Zimmermann, 2016; Mazlami, Cito, & Leitner, 2017; Quiroz, Kim, 

Parashar, Gnanasambandam, & Sharma, 2009). Decomposing into microservices have impact 

on the source code, but concerns like multi-tenancy, statefulness and data consistency must be 

taken in consideration (Furda, Fidge, Zimmermann, Kelly, & Barros, 2018), while a new 

infrastructure may be developed (Armin Balalaie et al., 2016a). 
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These works have followed the microservices architectures as they have evolved in 

complexity, starting by deploying the individual services in lightweight container technologies, 

then introducing discovery services and reusable fault-tolerant communication libraries, service 

proxies, or sidecars, and ultimately serverless architectures (Jamshidi, Pahl, Mendonca, Lewis, & 

Tilkov, 2018), usually guided by the reference proposal in (Yale Yu, Silveira, & Sundaram, 2016). 

 

Microservices patterns 

Although recent, developing microservices has had such good acceptance that some patterns 

have been already identified. Taibi, Lenarduzzi and Pahl described architectural patterns 

categorized by Orchestration and Coordination, Deployment, Data (Davide Taibi et al., 2018). 

Issues such as data consistency, security, communication, deployment, and other patterns 

(Krause, 2014; Namiot & Sneps-Sneppe, 2014; Richardson, 2018; Davide Taibi et al., 2018) 

have also been addressed.  

The patterns from these works often overlap, so for simplicity reasons, further it is presented 

a set of widely accepted microservices patterns, proposed by Richardson (Richardson, 2018) 

(Figure 47). The patterns are classified in: (1) Application patterns; (2) Application Infrastructure 

patterns; and (3) Infrastructure patterns. Additionally, the patterns are divided, following a 

division structure as listed in Table 10. This pattern catalogue prescribe a set of development 

approaches for MSA projects. Inside each category, patterns may be exclusive, complimentary or 

dependent between them. It is thus possible to depict how a MSA project development process 

may be organized. 

 

Any migration of an application’s architecture to microservices brings challenges that make 

this migration a non-trivial task. Balalaie, Herdarnoori and Jamshidi proposed migration steps, 

after analyzing the architecture before the migration and the target architecture (A Balalaie, 

Heydarnoori, Jamshidi, Tamburri, & Lynn, 2015). Migrating the system towards the target 

architecture should be done incrementally and in several steps without affecting the end-users of 

the system. Furthermore, as the number of services is growing, there is a need of a mechanism 

for automating the delivery process. 

By describing an experience report of their migration process, a set of migration steps may be 

generalized as follows (Armin Balalaie, Heydarnoori, & Jamshidi, 2016b): 
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 Preparing the Continuous Integration Pipeline; 

 Expose legacy functionalities as a REST API; 

 Introducing Continuous Delivery practices (e.g., separate the source code, the configuration, 

and the environment specification); 

 Introducing Edge Server (minimize the impact of internal changes on end-users); 

 Introducing Dynamic Service Collaboration (Service Discovery, Load Balancer and Circuit 

Breaker); 

 Introducing the Resource Manager; 

 Introducing additional services to complete the target architecture; 

 Clusterization. 

 

Figure 47. Microservices architecture patterns5 

Driven by the common “alliance” between DevOps culture and microservices architectures, 

these authors also include the following cross-cutting steps for these migrations (Armin Balalaie 

et al., 2016a): 

 Filling the Gap Between the Dev and Ops via Continuous Monitoring; 

 Changing Team Structures (small cross-functional teams for each new service constructed). 

                                                 
5
 List of patterns from http://microservices.io/patterns/index.html, accessed in 28/08/2017 

http://microservices.io/patterns/index.html
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Table 10. Microservices patterns and categories 

Core patterns Decomposition Security UI patterns 

 Monolithic architecture 

 Microservice 

architecture 

 Decompose by business 

capability 

 Decompose by 

subdomain 

 Access Token  Server-side page 

fragment composition 

 Client-side UI 

composition 

Cross cutting concerns Testing Observability Deployment 

patterns 

 Microservice chassis 

 Externalized 

configuration 

 Service Component 

Test 

 Consumer-driven 

contract test 

 Consumer-side 

contract test 

 Log aggregation 

 Application metrics 

 Audit logging 

 Distributed tracing 

 Exception tracking 

 Health check API 

 Log deployments and 

changes 

 Multiple service 

instances per host 

 Service instance per 

host 

 Service instance per VM 

 Service instance per 

Container 

 Serverless Deployment 

 Service Deployment 

platform 

Data management Communication 

Database 

architecture 

Maintaining data 

consistency 

Communication style Service discovery 

 Database per 

Service 

 Shared database 

 Saga 

 Event sourcing 

 Domain event 

 Agregate  

 Remote Procedure Invocation 

 Messaging 

 Domain-specific protocol 

 Client-side discovery 

 Server-side discovery 

 Service registry 

 Self registration 

 3rd party registration 

Querying  Reliability External API Transactional messaging 

 API Composition 

 CQRS 

  Circuit 

Breaker 

 API gateway 

 Backend for 

front-end 

 Transactional outbox 

 Transaction log tailing 

  Polling publisher 

These steps were afterwards introduced as migration patterns, as depicted in Table 11. 
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Table 11. Microservices migration patterns (Armin Balalaie et al., 2016a) 

Pattern name 

Enable the Continuous Integration Recover the Current Architecture Decompose the Monolith 

Decompose the Monolith Based on 

Data Ownership 

Change Code Dependency to 

Service Call 

Introduce Service Discovery 

Introduce Service Discovery Client Introduce Internal Load Balancer Introduce External Load Balancer 

Introduce Circuit Breaker Introduce Configuration Server Introduce Edge Server 

Containerize the Services Deploy into a Cluster and 

Orchestrate Containers 

Monitor the System and Provide 

Feedback 

 

Along with adopting patterns, also bad practices (architectural bad smells) are identified 

(Davide Taibi & Lenarduzzi, 2018). Splitting a monolith, including splitting the connected data 

and libraries, is the most critical issue, resulting in potential maintenance issues when the cuts 

are not done properly. Moreover, the conversion to a distributed system increases the system’s 

complexity, especially when dealing with connected services that need to be highly decoupled 

from any point of view, including communication and architecture (namely Hard-Coded 

Endpoints, Not Having an API Gateway, Inappropriate Service Intimacy, and Cyclic Dependency) 

(Davide Taibi & Lenarduzzi, 2018). The list of bad smells presented by Taibi and Lenarduzzi is 

depicted in Table 12. 

 

Table 12. List of microservices bad smells (Davide Taibi & Lenarduzzi, 2018) 

Microservices bad smells 

API Versioning Hard-Coded Endpoints Not Having an API 

Gateway 

Too Many Standards 

Cyclic Dependency Inappropriate Service 

Intimacy 

Shared Libraries Wrong Cuts 

ESB Usage Microservice Greedy Shared Persistency  

 

3.5. Conclusions 

This chapter addressed the architecture design discipline, in terms of its lifecycle, the 

evolutionary design and the architecting as a continuous practice.  

The works presented in Section 3.2 propose different inputs, target-users and viewpoints of 

architectures at each stage of the software development life cycle (SDLC). This has also led to 

proposals for proper usage of specific architecture methods depending on the stage of the SDLC. 
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Mainly because the stages of the SDLC initially require architectures that include information 

modeled at a higher-level of abstraction. As the SDLC evolves, typically the level of abstraction 

decreases. 

Software architecture design, when performed in context of ASD, sometimes referred as “agile 

architecting”, promotes the emerging and incremental design of the architectural artifact, in a 

sense of avoiding “big design upfront” (BDUF). There is a lack of a pathway that guides agile 

architecting in an end-to-end approach (from business requirements to deployment). This 

research proposes in Chapter 5 a pathway that includes architecture design from software 

development life-cycle (SDLC) stages of software development that use ASD approaches, where 

two main artifacts are considered: a candidate logical architecture and a refined logical 

architecture. 

 

If, in agile architecting, architecture evolves throughout the SDLC with the “just-enough” 

architecture for preventing BDUF and is oriented towards the “continuous” paradigm, the design 

must have as input only the “just-enough” requirements. Chapter 4 introduces processes for 

agile requirements, which later are used for the logical architecture design.  
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This chapter discusses requirements engineering (RE) in ASD processes, 

addressing the necessary information as stakeholders communicates their 

business needs or their “minimum viable product” (MVP). Thus, this chapter 

introduces both upfront and emerging approaches for RE. Regarding the latter, an 

approach called “Decomposing User Agile Requirements ArTEfacts” (DUARTE) is 

proposed. Both RE approaches are evaluated and discussed using three 

demonstration cases, two for upfront modeling and one applying DUARTE 

approach. This chapter ends with the conclusions. 
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Chapter 4 - A Requirements Modeling Approach for Agile 

Settings 

 

“Without requirements and design, programming is the art of  

adding bugs to an empty text file” 

Louis Srygley, Application Architect 

 

“The biggest enemy of agility (at the code level) is unnecessary complexity. ….  

… Don’t write code or future scenarios that may never occur.” 

Allen Holub, Agile Consultant 

4.1. Introduction 

At the time that the ‘Agile Manifesto’ (Agile Alliance, 2001) was proposed, there was a big 

shift on focusing in delivering software and less in technical documentation and specifications. 

Based in one of the values of the Manifesto, ‘Working software over comprehensive 

documentation’, specification of requirements have been reducing to as minimum as possible. 

Thus, the use of software models was also reduced, both in requirements and in design tasks, 

where only models that actually help teams develop software are used (K Schwaber & Beedle, 

2001).  

In plan-driven approaches (e.g., Waterfall), tasks related to Requirements Engineering (RE) 

discipline are traditionally managed in a phase separated in time from design and development. 

In change-driven approaches, like ASD, RE discipline – also called “Agile RE” – activities remain 

the same but are executed continuously (Grau & Lauenroth, 2014), and  takes an iterative 

discovery approach (Cao & Ramesh, 2008). Elicitation, analysis, and validation are present in all 

ASD processes (Paetsch, Eberlein, & Maurer, 2003). Additionally, requirements modeling require 

an agile approach in order to prevent unnecessary efforts in “You Aren’t Gonna Need It” (YAGNI) 

features, hence the need for an Agile Modeling (AM) (S Ambler, 2002) approach. 

In ASD frameworks, the requirements are included in a product backlog, which then drives 

the development process, thus most of the RE activities are always performed earlier. ASD widely 

use User Stories (Cohn, 2004b) as items in the backlog for “reminders of a conversation” about 

a functionality. However, using only User Stories, without attached requirements specifications or 
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models, may be insufficient to assure a common understanding or, in case of multi-teams, to 

clearly define inter-systems interaction. 

Stakeholders must able to communicate in what way a future solution improves their 

business, by defining the product roadmap. A product roadmap is an initial high level project 

scope and direction (IIBA, 2017). Typically, a first release on a new product encompasses a 

product’s subset able to address priority scenarios, previously identified in order to respond to 

market needs. In fact, many of these product releases are market-driven, where the release is 

deployed into the market so it is possible to get feedback from it, i.e., a minimum viable product 

(MVP). Alongside with these requirements concerns, projects struggle to design candidate 

architectures for the MVP, endangering development when they conclude that the architecture 

requires modifications and updates. In an era where software development is more and more 

agile-oriented, the upfront effort is replaced by the emergence of the design throughout iterative 

cycles. Such efforts are in opposition to “Big Design Upfront” (BDUF). In ASD contexts, BDUF 

approaches often result in features that are disregarded after some time (YAGNI features).  

 

From business needs to agile logical architecting, this chapter introduces requirements 

modeling activities and artifacts that are part of an integrated modeling roadmap (Figure 48). 

This roadmap is proposes a sequential order of artifacts that relate to the outputs that are used 

within the Agile Modeling Process for Logical Architectures (AMPLA), presented in Figure 49. In 

terms of the integrated modeling roadmap, this chapter encompasses stages 1 and 2. 

Requirements modeling, called “Decomposing User Agile Requirements ArTEfacts” (DUARTE) 

process uses ASD known techniques for deriving an UML use case diagram. Then, the candidate 

logical architecture will be derived (cf. Chapter 5) using as input the diagrams from DUARTE.  

 

 

Figure 48. Integrated modeling roadmap 
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Figure 49. Overview of AMPLA 

 

The research addressed in chapter is the result of applying RE approaches in ASD-based 

software research projects. Firstly, model-based approaches are hybrid – i.e., first performing 

requirements and design in waterfall and implementation in ASD. That was the case of ISOFIN 

and iFloW projects. Then, in order to address situations of unknown and need to be discovered 

requirements, the research addressed emerging requirements, which was applied in the UH4SP 

project. The contributions of the projects are summarized in Table 13. 

 

Table 13. Contributions of projects in candidate architectures 

Research contribution \ demonstration case UH4SP iFloW ISOFIN 

Upfront Requirements modeling  X X 

Emergent Requirements modeling X   

 

This chapter is is structured as follows:  

 Section 4.2 discusses upfront approaches for RE; 

 In opposition, Section 4.3 discusses upfront and emerging approaches for RE, where an 

approach called DUARTE is proposed; 

 Section 4.4 describes three demonstration cases, two for upfront modeling and one applying 

DUARTE approach, as well as the discussions from the three cases; 

 Section 4.5 presents the chapter’s conclusions; 

 The chapter ends with complimentary reading. 
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4.2. Upfront Modeling in ASD projects 

When requirements are known upfront and considered stable, plan-driven approaches may 

be used for RE, even if further phases use change-driven approaches like ASD frameworks. Such 

situation is seen like a “hybrid” approach. In this case, requirements are gathered upfront. 

A process that uses requirements modeling together with Scrum-based cycles (or “Sprints”) 

is depicted in Figure 50. The process is composed of three phases: Initialization, Implementation, 

and Deployment.  

 

 

Figure 50. Hybrid ASD process with upfront requirements modeling 

 

The initialization phase includes typical activities from domain engineering, RE and design. 

The implementation phase uses small iterations and incremental releases in the form of Scrum 

Sprints. Finally, the Deployment phase is similar to the Transition phase of RUP.  

Within the initialization phase, the objective was to develop a product backlog artifact in order 

to start the development phase in the form of Sprints that, due to the perceived complexity of the 

project, was delivered together with widely accepted forms of requirements documentation.  

 

Deriving a Use case-driven Product Backlogs 

The Business Modeling results - organization’s processes and current gaps - are documented 

in a report designated as ‘As-Is report’. Then, the requirements are elicited, formally specified in 

the form of UML use cases, quality (non-functional) requirements and the logical architecture 

(UML component diagram), documented in a report designated as ‘To-Be report’ (which was 
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constantly updated as the implementation went along). UML use cases and UML component 

diagram compose the ‘Solution Requirements Specification’ that result in the ‘To-Be Report’. The 

‘To-Be’ use case models then compose the ‘Product Backlog’.  

This differs from ASD frameworks. XP uses Themes, Epics and User Stories for addressing 

requirements. Scrum and Kanban only prescribe using work items in the Product Backlog 

regardless the form (however commonly these items are in form of User Stories). Test Driven 

Development (TDD), Acceptance Test Driven Development (ATDD), BDD and Specification by 

Example (SBE), use testable scenarios as input for the software development. However, 

approaches like the Agile Unified Process (AUP) (SW Ambler, 2005), Jacobson’s “Use Case 2.0” 

(Jacobson, Spence, & Bittner, 2011), or others like (Cho, 2009; Durdik, 2011) use UML and use 

case-driven Product Backlogs. 

 

More detail on these tasks, including the activities during the Sprint 0 event, are represented 

in a SPEM diagram in Figure 51.  In this diagram, roles are explicitly assigned to the activities 

and tasks. Each task outputs a work product or a deliverable. In the case of the ‘Sprint 0’, this 

ceremony includes specific tasks, namely prioritizing and estimating use cases, constructing the 

product backlog (that result in the ´Product Backlog’) and finally the planning of the following 

Sprints (that result in the ´Sprint Backlog’).  

 

Then, this backlog is used to define a ‘Sprint Backlog’ for every Sprint, as typically occurs in, 

e.g., Scrum projects. In Figure 52 is depicted an example of a ‘Sprint Backlog’ tracking sheet, 

composed by use cases and whose progress was monitored. In these type of backlogs, each use 

case elicited during Initialization is a Product Backlog Item (PBI). The logical architecture model 

is used to support development of components, but it does not have direct impact in ‘Product 

Backlog Construction’. Within this task, the logical architecture may be consulted in order to 

include in ‘Sprint Backlog’ use cases where components have any kind of associations, but the 

construction of the backlog is a responsibility that relies uniquely the team. 
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Figure 51. SPEM diagram for Initialization phase 

 

 

Figure 52. Example of a Sprint Backlog based in Use Cases 
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Deriving a User story-driven Product Backlog 

In the previous section, the UML use cases and UML component diagram (that compose the 

‘Solution Requirements Specification’) were modeled upfront and used as input in a Sprint 0. As 

previously mentioned, ASD frameworks like Scrum, XP or Kanban flavor using User Stories as 

starting points for PBI’s (although only XP clearly states using User Stories). Using “INVEST” 

criteria (“Independent”, “Negotiable”, “Valuable”, “Estimable”, “Small”, “Testable”), these 

frameworks claim User Stories to be better suitable for defining work items within a timebox such 

as Sprints rather than Use Cases. 

Thus, this section presents a hybrid approach that includes an upfront requirements 

modeling (e.g., in UML) should use a User Story-driven Product Backlog. The use of Use Cases 

and User Stories regard a different context of use (Cohn, 2004a) and different granularity 

(Leffingwell, 2010). In order to deal with these differences, an approach that supports traceability 

between requirements and software is proposed. 

Figure 53 proposes a traceable path, using a V-Model, between requirements in UML Use 

Cases, a logical architecture in UML Components and delivery of User Stories. The process uses 

the V-Model proposed by Ferreira et al. for deriving a logical architecture aligned with 

requirement modeled in Use Cases (Nuno Ferreira, Santos, Machado, Fernandes, & Gasević, 

2014). The V-Model uses models in a successive way, where a previous model is input for a next 

one. Namely, the requirements elicitation included a definition of the solution’s executing 

business processes, sequential ordering of functionalities (afterwards modeled in A-type 

sequence diagrams (Nuno Ferreira et al., 2014)) and finally modeling in Use Case diagrams.  

The pathway to elicit business process needs (“Input from Business Processes”) required to 

derive software requirements (A-type sequence diagrams and UML Use Cases) is described in 

previous works (N. Ferreira, Santos, Machado, & Gašević, 2013; N Ferreira, Santos, Soares, 

Machado, & Gasevic, 2012; Nuno Ferreira et al., 2014; Nuno Ferreira, Santos, Machado, & 

Gasevic, 2012; Nuno Ferreira, Santos, Soares, Machado, & Gašević, 2013; Santos, Ferreira, & 

Machado, 2017). It is not the purpose of this section to address the derivation of the UML Use 

Cases. Rather, what it should be retained from this process is that requirements were elicited in 

UML Use Cases and afterwards the architecture was designed, both performed upfront before 

any kind of development tasks.  
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Figure 53. The result of the V-Model to be delivered to multiple Scrum teams 

 

Some software architectures are too complex to be directly used by agile teams as their 

requirements input artifact. Additionally, each agile team may be responsible for implementing 

only some parts of the whole architecture. The software logical architecture is the artifact typically 

delivered to implementation teams (Scrum or other), and it regards the architecture diagram that 

is modularized. The components (representing software functionalities) that compose it are 

classified as belonging to a given software module, and thus covered by the module (Figure 54).  

 

Figure 54. Architecture modularization example 

 

After the modularization, all entities not directly connected to the module must be removed 

from the resulting diagram. Inside the system border defined for the given module, through the 
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respective module coverage, the components are maintained as originally characterized. 

Additionally, it also allows depicting the interfaces that are outside the system border. 

Due to the fact that, in the 4SRS method, the components are derived through the 

decomposition of Use Cases in three different types (interface, data and control), one User Story 

is created for each component, as depicted in Figure 55, as it complies with the greater flexibility 

for the Product Owner to follow the team’s work. 

 

 

Figure 55. Relation between Use Cases, Components and User Stories 

 

In short, there are two model inputs for composing the Product Backlog: the architecture 

components and the Use cases. The derivation of User Stories for composing the backlog is 

based in the components, as depicted in Figure 55, to define the size of the backlog but also 

using inputs from architecture components and the Use cases for defining the information about 

the user story. This discussion is described in detail in Chapter 6. 

 

4.3. Agile logical architecting with the 4SRS method 

Chapter 1 introduced Agile Modeling Process for Logical Architectures (AMPLA), a process 

for model derivation applicable in an Agile RE and AM context. AMPLA is a process for candidate 

architecture design based on successive and specific artifacts generation, which starts by 

discovery and exploration of user needs, A-type sequence diagrams, use case models, a software 

logical architecture diagram, feedbacks from customers and issues identification, and the 

consequent software delivery.  

This section introduces the model derivation until the candidate architecture design (Figure 

56), relating to requirements elicitation and modeling. The generated artifacts and the alignment 
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between the explored needs and modeled software requirements can be represented by a 

V-Model (Figure 56). In our proposed V-Model, the artifacts are generated based on the rationale 

and in the information existing in previously defined artifacts, i.e., A-type sequence diagrams are 

based on discovered and explored scenarios, use case model is based on A-type sequence 

diagrams, the logical architecture is based on the use case model, and finally feedback from 

customers based in the logical architecture. After the feedback and consequent learning and 

adjustments (if needed), the approach ends with the candidate logical architecture, which is then 

used as input for defining the required backlog items for delivering the software. When software 

delivery begins, the process is performed in typical cycles, whether in Scrum, Kanban, or other 

frameworks.  

AMPLA is composed by artifacts, phases and milestones (Figure 56). AMPLA’s successive 

model derivation is performed in iterative cycles, easing the execution of agile feedback loops and 

hence contributing to the process’ agility. These loops encompass phases of (1) Do; (2) Learn; 

and (3) Adjust. Each loop may include all phases of AMPLA, or just a subset of them.  

The artifacts should be modeled incrementally, where the ideal is to have short cycles to 

have design prototypes ready for customer analysis and feedback. It is better to deliver small 

portions of models and quickly validate with customers that the right product is being developed, 

rather than deliver bigger portions of models and realize that they do not reflect customer needs. 

Hence, the path encompassing “Discovery / Explore”, “A-type sequence diagrams”, “use cases”, 

“4SRS” and “logical architecture” relate to (1) Do phase. “Feedback” from customers relate to 

the (2) Learn. Finally, the (3) Adjust is reflected in new, changed or eliminated artifacts output 

during the (1) Do phase.  

It has three established phases: (i) Requirements Elicitation; (ii) Requirements Analysis & 

Modeling; (iii) Architecture Design; and (iv) Delivery Cycles. For milestones, besides the 

checkpoints before passing from one phase to another, there are additional ones within phases 

that aim promoting agility. In Requirements Analysis & Modeling, the use cases refinement are 

validated for having “just-enough” detail before executing the 4SRS method. The execution of the 

4SRS outputs a candidate version of the logical architecture, which is the first system model 

prototype that is presented to stakeholders for feedback. The last milestone from this phase 

relates to the feedback gathered from the architecture, where issues and adjustments are 

identified before passing on to the Delivery Cycles phase. 
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Figure 56. Candidate architecture design of AMPLA 

 

The mashup of agile practices and industry coins (e.g., Scrum, XP, MVP, DevOps, large-

scale agile, Squads/Tribes, Management 3.0, and many others) cover all software and 

application lifecycle. Although none of this practices relate to RE discipline, or specifically to Agile 

modeling (AM) (S Ambler, 2002), performing this practices into an ASD process has direct 

implications on how RE practices are performed and how artifacts are built. 

Applying AM should start by enabling a first iteration of requirements modeling, which is 

then the basis for further refinements and emerges, as the software increments are being 

delivered throughout the Sprints. The inception, like the pregame phase or Sprint zero in Scrum, 

aims providing a shared understanding of the project and the required information for the 

development phase. In the same line of reasoning, Ambler presents an evolution and emerge-

oriented approach for using models in ASD, called “Agile Model-Driven Development” (AMDD) 

(SW Ambler, 2003), where the starting point is “just-enough” requirements and architecture, 

which are updated alongside Delivery Cycles phase. 

This section describes an AM process for modeling emergent user requirements towards a 

candidate logical architecture, called “Decomposing User Agile Requirements arTEfacts” 

(DUARTE) approach. It starts in eliciting user requirements, using ASD techniques like Lean 

Startup (Ries, 2011), Design Thinking (Brown, 2009), Domain-driven Design (DDD) (Evans, 

2004), Behavior-driven Development (BDD) (Smart, 2015), and others, which results in modeling 

UML Use Cases. Requirements are modeled until they are considered as “just-enough”, until 

used within the 4SRS method. The 4SRS allows deriving a candidate logical architecture, to be 

used within ASD delivery cycles. 
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The Decomposing User Agile Requirements arTEfacts (DUARTE) 

approach 

In opposition to upfront and stable requirements, “Agile RE” is executed continuously (Grau 

& Lauenroth, 2014), and  takes an iterative discovery approach (Cao & Ramesh, 2008). This 

section introduces DUARTE, a requirements-related approach performed within AMPLA, which 

aims at iteratively elicit and model emerging requirements that will later be used within the 4SRS 

method in order to derive the candidate logical architecture. 

DUARTE is about eliciting and modeling requirements, promoting agility (and hence Agile RE 

practices) by including practices and mindsets from approaches like Lean Startup, Design 

Thinking, DDD, BDD, Kent Beck’s 3X6 and BizDev (Fitzgerald & Stol, 2017). Additionally, uses 

agile practices in order to deliver small increments (of a requirements package) and to promote 

continuous customer feedback (Figure 57).  

Lean Startup is a hypothesis-driven approach, where a "Build-Measure-Learn" cycle is the 

basis for supporting product development adequate to the market. Design Thinking addresses 

understanding the customer need through systematic exploration, in order to understand the 

right product to develop. It is also worth referring that this cycle is inspired by the “Plan-Do-

Check-Act” (PDCA) from Lean Manufacturing. The agile scaling framework DAD also 

encompasses an “Exploratory lifecycle” that uses the "Build-Measure-Learn" cycle from Lean 

Startup. With Lean Startup, the following concepts arose: (i) Minimal Viable Product (MVP), (ii) 

Minimal Marketable Feature (MMF), (iii) Minimal Marketable Release (MMR), and (iv) Minimal 

Marketable Product (MMP). (i) An MVP is a version of a new product that is created with the least 

effort possible to be used for validated learning about customers. A development team typically 

deploys an MVP to the market to test a new idea, to collect data about it, and thereby learn from 

it. (ii) An MMF is the smallest piece of functionality that can be delivered that has value to both 

the organization delivering it and the people using it.  An MMF is a part of an MMR or MMP. (iii) 

An MMR is the release of a product that has the smallest possible feature set that addresses the 

customers’ current needs. (iv) An MMP is the first deployment of a MMR. 

Design Thinking addresses understanding the customer need through systematic 

exploration. The objective is to understand the right product to develop. This approach 

encompasses “Empathize”, “Define”, “Ideate”, “Prototype” and “Test” phases.  

                                                 
6 https://www.facebook.com/notes/kent-beck/the-product-development-triathlon/1215075478525314/    

https://www.facebook.com/notes/kent-beck/the-product-development-triathlon/1215075478525314/
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BDD is an agile practice that consists in defining increments of software behavior and their 

delivery. Similar to BDD, Test Driven Development (TDD), Acceptance Test Driven Development 

(ATDD) and Specification by Example (SBE) use testable scenarios as input for the software 

development. All these have in common to start by defining development based in scenarios and 

use the “Given, When, Then” (gherkin language). 

DDD is an approach that proposes the division of concepts by domains, or sub-domains, if 

applicable. BizDev is continuous linking Business Strategy & Planning and Development. 3X 

relates to Kent Beck’s vision of product development phases, explore, expand, extract. 

 

 

Figure 57. Overview of DUARTE approach 

 

The elicitation and discovery phase of DUARTE relates to eliciting customer needs, exploring 

alternatives, discover new requirements, all aligned with current agile practices from ASD 

frameworks, techniques and philosophies. In AMPLA, this phase outputs a set of scenarios, i.e., 

processes and activities performed using the solution under development. These scenarios are 

documented in A-type sequence diagrams, a stereotyped version of UML sequence diagrams that 

only include actors and use cases.  
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At this stage, the use cases included in these diagrams are not yet composing part of the 

Use Case model from the next stage. Rather, they are classified as candidate use cases, because 

they relate to specific activities and tasks that a given actor performs (in software or not) within a 

given scenario. The flows between actors and candidate use cases relate to the actions 

performed. The use of these diagrams, instead of UML Activity diagrams, BPMN, or any other 

process-oriented language, relates to the use of candidate use cases, which help to construct the 

model in the next stage, because the candidate use cases are input for the use case model. 

Applying agile practices in this phase influences: 

 In Lean Startup, stakeholders define scenarios with the experiment mindset in mind. At 

this point, stakeholders have decided which features to include/experiment in the MVP. The 

scenarios for such features are elicited with the knowledge to date, where is not the purpose 

to have detailed technical description of how the solution will support such scenarios, but 

rather to define the referring processes. The remaining features may be refined afterwards. 

It is not the purpose of AMPLA to define how to reach minimum features (typically using 

‘bespoke RE’ or ‘market-driven RE’ techniques), but rather to use the resulting business 

need as input for scenario modeling.   

 In Design Thinking and Kent Beck’s 3X, the customer’s desires and expectations are 

included in the scenarios, but the idea is also to discover and explore scenarios with 

different solutions and processes rather than only address what customers dictate. A-type 

sequence diagrams represent as many tasks as the scenarios are discovered and explored 

(Figure 58). 

 In BDD (or TDD, ATDD or SBE), the requirements discipline is addressed in the discovery 

and definition of scenarios (in gherkin language format). This format is mapped in A-type 

sequence diagrams, where “Given” contextualize each sequence diagram, “When” relates 

to a main sequence, or alternatively optional or exception sequence (if existing), and “Then” 

relate to the flows within the diagram.  
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Figure 58. Discovery and exploration of the scenarios 

 

These scenarios, right or wrong (have in mind this is an exploration phase) are modeled in 

A-type sequence diagrams. These diagrams are the first visual prototype where customers are 

able to provide feedback. 

 

The Requirements Analysis and Modeling phase of DUARTE aims modeling a UML Use 

Cases diagram. Using as input the elicited scenarios, namely the model artifacts relating to A-

type sequence diagrams, the Use Cases diagram is built and each Use Case refined. The 

gathering from the sequence diagrams are based in a set of decisions, which are aligned with 

agile practices as Design Thinking and DDD.  

In this phase, candidate use cases from A-type sequence diagrams will give origin to 

“typical” use cases, i.e., formal software functional requirements. The idea is to use the gathered 

information and use it to model Use Cases and their refinements. The gathered information 

allows identifying detailed information about a requirement, which correspond to a use case 

functionally decomposed in refined use cases. Cruz et al. (Cruz, Machado, & Santos, 2014) and 

Azevedo et al. (Azevedo, Machado, Braganca, & Ribeiro, 2010) present such refinement by sub-

domains that compose a domain or by splitting a process. They model use case refinement in 

decomposition trees, and so does this approach. The candidate use cases from A-type sequence 
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diagrams are grouped in a logical way, typically grouping them to the scenario from A-type 

sequence diagrams that originated them.  

Applying agile practices in this phase influences: 

 In Lean Startup, as customers define which scenarios to include in MVP/MMR/MMP, 

they are expressed in more detail rather than the scenarios that are left out at this phase. 

Thus, there is more context to define the models that will compose MMF, which result in 

more decomposition of those use cases. The remaining requirements that are not refined 

for the MMF are identified however not afterwards decomposed. 

 In Design Thinking, Use Cases are used as designed prototypes aiming firsts customer 

feedbacks 

 In BizDev, use case models trace back to the scenarios, which support the continuous 

linking Business Strategy & Planning and Development; 

 In BDD, the candidate use cases from A-type sequence diagrams are grouped in domains 

and sub-domains. The refinement “branches” of the decomposition tree hence relate to a 

single domain or sub-domain, which define bounded contexts for a (sub-)domain. This 

aspect assures a given team to work on a sub-domain and the independence is assured by 

the bounded context. 

 

“Just-Enough” modeling 

In this section, the objective is to describe the elicitation of the core requirements, and 

additionally to include techniques for deciding when the “just-enough” requirements model is 

complete. The elicitation of “just-enough” requirements, rather than promoting their elicitation all 

upfront, typically faces insufficient knowledge about using recent technologies. Not only there is 

an inclusion of a new technology, and their unpredictable adoption, but of new business models, 

processes, and the role of stakeholders within the supply chain. 

The business needs, project goals, vision document, and other information that act as inputs 

for requirements is gathered in the inception phase (or earlier) of the project. In this phase, and 

namely in agile context, where the requirements are not known upfront, it is very difficult to know 

in advance how much RE is “just-enough”. The vision document, for instance, reflects 

stakeholder’s intentions (i.e., features) towards the entire product, however the main purpose at 



An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects 

149 
 

this time is to assure that such features are included. At this point, stakeholders have decided 

which features to include in the MVP. The requirements that are object of “just-enough” 

refinement and modeling relate to such features, while the remaining features from the product 

roadmap may be refined afterwards.  

The DUARTE approach starts by eliciting high-level requirements for the MVP. Key 

stakeholders are interviewed in order to list a set of their expectations towards the solution (as in 

“I expect that the solution is able to do this, and that…”) and their perceived importance, namely 

to depict the scenarios with highest priority for this release. The interviewees may also identify 

features of the product roadmap to be included in further releases. The “just-enough” subset 

should include all identified features, however only the features related to the MVP are object of 

decomposition.  For instance, if a roadmap contains fifty features and only ten are to be 

implemented in the MVP, the high-level architecture should clearly support those ten, but also 

include initial support for the upcoming forty features. 

This section illustrates the elicitation process based on stakeholders’ expectations. However, 

every business requirements-related information or document that provide inputs for the software 

requirements elicitation are useful for validating if high-level requirements were considered. 

Techniques like interviews, questionnaires, workshops, etc., are additional and complemental 

approaches of the aforementioned document analysis for gathering inputs on requirements. The 

use of these techniques is a decision of the requirements engineers as they best fit in a given 

context.  

The elicitation process’ goal is to model functional requirements in UML Use Case diagrams, 

promoting the modeling of the product roadmap by functional decomposition, in compliance with 

a work-breakdown structure (WBS). Use cases are decomposed once or twice, instead of several 

times like in upfront contexts. Since the main idea is to model “just-enough” requirements, one 

decomposition may be sufficient, namely the ones that stakeholders are aware at this point. The 

use of UML Use Case diagrams is mandatory in this approach, since the 4SRS method for 

deriving the logical architecture requires Use Cases as input.  

 

To validate if the modeled use cases cover the requirements defined in the product scope, 

Table 14 exemplifies the crosschecking between the stakeholders’ expectations and the project 

goals. Since the expectations and goals list emphasizes the MVP features, there is a context for 

MVP features to be more decomposed than the remaining. The premises is that if all these 
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concerns are included in the Use Case model, with more emphasis in decomposition detail to 

MVP requirements, one may consider that we have “just-enough” requirements information for 

this stage. 

 

Table 14. Traceability matrix of requirements within the initial expectations 

Req.  Expec. 1 Expec. 2 Expec. 3 Expec. n 

UC.1 x    

UC.2  x   

UC.3   x  

UC.n x   x 

 

Like in any requirements process, one of the first critical tasks is to identify all projects 

stakeholders, as well as the solution’s interacting actors. By mapping stakeholders to the use 

cases (Table 15), one must assure that every stakeholder/actor has at least a requirement 

mapped to it, or is a symptom that critical requirements are missing.  

 

Table 15. Traceability matrix of requirements within the identified project stakeholders and solution 

actors 

Req.  Stkh A Stkh B Stkh C Stkh D 

UC.1 x    

UC.2  x x  

UC.3    x 

UC.n x    

 

The mappings from Table 14 and Table 15 validates that the UML Use Cases diagram 

includes the features for MVP but also the product roadmap, and that all stakeholders have 

related functionalities. Both tables provide the required traceability to the expectations and 

stakeholder/actor needs, which hence are the mechanism used to respond to changes. When 

applied to mid-and long term projects, the approach supports updates of expectations and 

stakeholder/actor needs over time, as well as the inclusion of new Use Cases, by tracing 

requirements in Table 14. Additionally, the approach is able to lead with organizational 

changes, by tracing the Use Cases to stakeholder/actor needs in Table 15. The approach 

differs from the segmentation of requirements into different priorities by setting an initial set of 
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Use Cases to the entire solution, refining subsets of the model (section 3.2) and prioritizing them 

before actually begin the implementation.  

Having all the “just-enough” requirements elicited, gathered, modeled and validated, these 

Use Cases are now able to be used as input for the candidate logical architecture derivation, 

composed with the “just-enough” architectural components. 

 

4.4. Demonstration cases 

Upfront RE for use case-driven product backlogs: the iFloW case 

iFloW is an R&D project sponsored by the consortium between University of Minho (UMinho) 

and Bosch Car Multimedia Portugal (Bosch), that aims at developing an integrated logistics 

software system for inbound supply chain traceability (cf. Chapter 1). iFloW is a real-time tracking 

software system of freights in transit from the suppliers to the Bosch plant, located in Braga. The 

main goal of the project is to develop a tracking platform that by integrating information from 

freight forwarders and on-vehicle GPS devices allows to control the raw material flow from remote 

(Asian) and local (European) suppliers to the Bosch’s warehouse, alerts users in case of any 

deviation to the Estimated Time of Arrival (ETA) and anticipates deviations of the delivery time 

window.  

 

The organization’s logistics-related processes and current gaps were documented in a report 

designated as ‘As-Is report’. Then, the requirements were elicited, formally specified in the form 

of UML use cases, a list of quality (non-functional) requirements and in a first version of the 

logical architecture (UML component diagram). This set of requirements was documented in a 

report designated as ‘To-Be report’ (which was constantly updated as the implementation went 

along). Both use case models (especially the ‘To-Be’) were used as basis to define a ‘Product 

Backlog’. This differs from other agile frameworks where, for instance, in Scrum (Ken Schwaber, 

1997), backlogs are composed of user stories. A user story is a customer-centric characterization 

of a requirement. It contains only the information needed for the project developers to see clearly 

what is required to implement (Scott Ambler & Lines, 2012). However, use cases are also used 

in agile frameworks (Jacobson et al., 2011; Kroll & MacIsaac, 2006). 
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The use case diagram illustrated in Figure 59 shows the overall use case model of the iFloW 

project. Each of the use cases were functionally decomposed, which resulted in 90 lower level 

use cases. The use case model is presented in Annex A. 

The Initialization phase ends with a Sprint 0 ceremony. Most of the technological research was 

performed during this ceremony, prior to the implementation in the following Sprints. Like in a 

typical Sprint 0, each item (use case) was prioritized by its perceived value from stakeholders, in 

this case by using MoSCoW (“Must”, “Should”, “Could”, “Won’t”) prioritization technique 

(Waters, 2009). In addition, each use case was estimated related to a quantitative effort for its 

implementation. A commonly used technique is use case points (Anda, Dreiem, Sjøberg, & 

Jørgensen, 2001; Karner, 1993; Nageswaran, 2001), however in this project this technique was 

not used. Rather, the team of the iFloW project defined that for each Sprint corresponds a total 

effort of 20 points (which resulted in approximately five points per week) as basis for distribution 

of these points per use case and following a comparative technique similar to a planning poker 

(Grenning, 2002). Additionally, each use case was prioritized, and the work was estimated so 

‘Sprint Backlogs’ (which use cases from the ‘Product Backlog’ to implement during the Sprint) 

could be defined. 

 

 

Figure 59. Use Case diagram of iFloW project 
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Within the implementation phase, the use cases from the ‘Product Backlog’ were 

implemented iteratively and incrementally during eight four-week Scrum Sprints. In this phase, 

typical Scrum iterations were performed, where each ‘Sprint Backlog’ is a selected subset from 

the ‘Product Backlog’. In Figure 60 is depicted an example of a ‘Sprint Backlog’ tracking sheet, 

composed by the iFloW use cases and whose progress was monitored. 

 

 

Figure 60. Example of a Sprint Backlog based in Use Cases 

 

Each Sprint has a standard planning and structure consisting of several milestones, previously 

negotiated by the project members: 

 Sprint development: lasts four weeks, and is allocated to the development of the items from 

the ‘Sprint Backlog’; 

 Sprint Monitoring meeting takes place in second week to show Sprint progress and 

monitor Sprint tasks. The attendees are the Product Owner, R&D coordination and 

development team; 

 Sprint Verification and Validation (V+V) meeting takes place in the fourth (i.e., last) 

week and the goal is to test and validate the requirements implemented by the development 
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team. The attendees are the Product Owner, the development team, a member of the Bosch 

IT department, and an assigned Product User from Bosch. In each Sprint V+V meeting, the 

Product User was assigned a different user from Logistics department so the performed tests 

could encompass different insights from the organization. During the Sprint, if any requirement 

(use case) is moved to a next Sprint due to a given constraint and will not be presented in this 

meeting, the team is notified; 

 Sprint Closure and Planning meeting takes place at most two days after the Sprint V+V 

meeting, and the attendees are the Product Owner, the R&D coordination, a member of the 

Bosch IT department and the development team. It is similar to a Sprint Retrospective and a 

Sprint Planning meeting from typical Scrum, performed within the same meeting. The main 

goal is to analyze the progress of the implementation phase, by assessing the percentage and 

completion of the use case implementation and thus updating the burndown chart.  If 

applicable, short rework actions (depicted from the Sprint V+V) are approved to perform until 

the end of the Sprint. Additionally, the next Sprint is planned, resulting in the construction of 

the ‘Sprint Backlog’ artifact; 

 Sprint Rework meeting takes place the day after the Sprint Closure meeting. After Sprint 

V+V, some rework actions can arise due to a suggestion by the verification and validation 

team. If applicable, the development team has to implement these rework actions until the end 

of the Sprint. The Sprint Rework meetings are used to validate the rework actions performed. 

The attendees are the assigned Product Users, Product Owner, a member of the Bosch IT 

department and the development team. 

 

Upfront RE for user stories-driven product backlogs: the ISOFIN Cloud 

case 

The ISOFIN (Interoperability in Financial Software) Cloud was a project where the 

architecture aimed enacting the coordination of independent services allowing the semantic and 

application interoperability between enrolled financial institutions (Banks, Insurance Companies 

and others) (cf. Chapter 1). The global ISOFIN architecture relies on two main service types: 

Interconnected Business Service (IBS) and Supplier Business Service (SBS). IBSs concern a set 

of functionalities that are exposed from the ISOFIN core platform to ISOFIN Customers. An IBS 

interconnects one or more SBS’s and/or IBS’s exposing functionalities that relate directly to 



An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects 

155 
 

business needs. SBS’s are a set of functionalities that are exposed from the ISOFIN Suppliers 

production infrastructure. Finally, users may also use ISOFIN Applications, which are software 

applications that result of joining an interface to a single IBS. 

Just like in the previous demonstration case, the requirements were identified and modeled 

upfront. Figure 61 depicts the resulting use case model. All these use cases were refined using 

functional decomposition, until 80 use cases were modeled. These refined use cases were then 

used within the 4SRS method towards the logical architecture design. 

 

Figure 61. ISOFIN Use Case Model 

 

The ISOFIN logical architecture diagram from performing the 4SRS method is depicted in 

Figure 62. In the “middle” of the logical architecture diagram is the “Repository” package, 

containing the several information repositories used in the ISOFIN Platform execution. The rest of 

the packages reflect the ISOFIN Platform usage, i.e., ISOFIN Applications, IBSs, Subscriptions, 

Alerts, Logs, Policies and Security Management. All these packages are associated to 
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components regarding the “Repository” package. Finally, also depict the «generates» association, 

that assures a relation between the developed IBSs and ISOFIN Applications and the components 

that relate to their interface with users (ISOFIN Customer). 

 

 

Figure 62. ISOFIN Logical Architecture 

 

Then, the logical diagram was modularized and partitioned in a set of “spots” that traverse 

the logical architecture, covering the components. These spots represent applications to be 

developed and that depict independent applications that may be implemented by different teams, 

due to the complexity presented during the project. Seven applications were identified, which 

relate to the spots within the modularized architecture in Figure 63, which are: IBS Management 

Module; ISOFIN App Management Module; Alert Management Module; Subscription Management 

Module; Security Management Module; Policies Management Module; and Logs Management 

Module. 
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Figure 63. ISOFIN architecture modularization 

 

Using these rules, remaining User Stories were derived that are listed in Table 16. In Figure 

64 is represented a User Story sentence based in the derivation from Table 16. 

 

Emerging RE using DUARTE: the UH4SP case 

The UH4SP project aims developing a platform for integrating data from distributed 

industrial unit plants, allowing the use of the production data between plants, suppliers, 

forwarders and clients (cf. chapter 1). The consortium was composed with five different entities 

for software development where each had specific expected contributes, from cloud architectures 

to industrial software services and mobile applications. The entities are geographically 

distributed, but each entity had a single located team. An analysis team composed with elements 

from each entities, aiming to define the initial requirements, conducted the requirements phase. 

Since they belong to different entities, they had to schedule on-site meetings to perform 

requirements workshops. Only when beginning the software delivery cycles, after boundaries 

were clear, each team was responsible for refining their requirements.  
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Duplicity Verification

<<data>>
{AE1.3.5.d} ISOFIN Platform 
Subscription Info Repository

<<interface>>
{AE1.3.5.i} Subscription 

Repository Interface

<<data>>
{AE1.4.d} ISOFIN Platform 
Subscription Assessment 

Repository

<<interface>>
{AE1.8.1.i} Manage ISOFIN 

Suppliers

<<interface>>
{AE1.8.2.i} Manage ISOFIN 

Customers

Logs Repository

<<data>>
{AE2.4.1.d} IBS Logs 

Repository

<<data>>
{AE3.5.1.d} ISOFIN App Logs 

Repository

<<data>>
{AE4.3.d1} Alert Logs 

Repository

<<interface>>
{AE4.3.i2} Log Repository 

Interface

<<data>>
{AE1.3.5.d1} Subscription Logs 

Repository

Security Repository

<<data>>
{AE1.2.1.d} ISOFIN Platform 

Policies Repository

<<data>>
{AE1.6.d} ISOFIN Platform 

Access Repository

ISOFIN App 
Repository

<<data>>
{AE3.3.1.d} ISOFIN App 

Repository

<<interface>>
{AE3.3.1.i1} ISOFIN App 

Repository

Policies Management

<<interface>>
{AE1.2.1.i} Configure Supplier 

Policies Interface

<<interface>>
{AE1.2.2.i} Configure 

Customer Policies Interface

Subscription Management

<<interface>>
{AE1.1.1.i} Fulfillment 

Subscription Requirements 
Interface

<<control>>
{AE1.1.2.c1} Verifiy 

Subscription data duplicity

<<control>>
{AE1.1.2.c} Validate 

subscription requirement 
fulfillment

<<interface>>
{AE1.1.2.i} Manual 

Subscription Validation 
Interface

<<interface>>
{AE1.4.i} Subscription Request 

Interface

<<control>>
{AE1.7.c} Control Subscription 

Requests

<<interface>>
{AE1.7.i} Suscription Request 

Status Interface

ISOFIN App Editor

<<interface>>
{AE3.1.i} ISOFIN Application 

Model Editor

<<interface>>
{AE3.2.1.i} IBS Information 

Retrieval

<<control>>
{AE3.2.2.c} Generate ISOFIN 

App Code

<<interface>>
{AE3.2.2.i} ISOFIN Application 

Coding and Compiling 
Interface

<<interface>>
{AE3.2.3.i} ISOFIN Application 

Model Interface

<<control>>
{AE3.2.4.c} Associate Visual 

Representation to 
Functionality

<<interface>>
{AE3.4.1.i} ISOFIN Application 

Customization Interface

««GENERATES»»

<<interface>>
{AE2.7.2.i} IBS Test Generator

<<interface>>
{AE2.6.2.i1} SBS Pallet 

Retrieval Interface

<<interface>>
{AE2.6.1.i1} IBS Pallet 

Retrieval Interface

2x

6x

6x

6x

6x

5x

6x

6x

2x

2x

2x

3x

3x
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The requirements elicitation started by listing a set of stakeholder expectations towards the 

product roadmap, encompassing the entire product but only MVP features were detailed. The 

expectations list of the project included 25 expectations (Figure 65),  

Table 16. User Stories derived from c-type components 

# Component As a(n) 

<actor> 

I want/need 

<description> 

In order to 

<outcome> 

2.1.2.c1 
Selected Object 

Configurations 

ISOFIN 

Customer / 

IBS Developer 

select object 

configurations 

change (IBS 

Structure) 

configurations 

2.1.4.c 
Compiles IBS 

information 
IBS Developer 

compile IBS 

(changes and) 

information 

create a new IBS 

2.2.4.c 
Define IBS Code 

Gaps 
IBS Developer 

(automatically 

generated code) 

and define IBS 

code gaps 

create IBS code 

2.2.5.c 
Compile IBS 

code 
IBS Developer 

compile IBS code 

(and create new 

IBS catalog) 

(keep IBS catalog 

and store) 

compile(d) IBS 

Code 

2.2.6.c1 
Selected Object 

Permissions 
IBS Developer 

select object 

permissions 

set(/manage) 

permissions (and 

create IBS) 

2.2.7.c 
IBS Interface 

Generator 
IBS Developer 

(automatically) 

Generate IBS 

Interface 

(store the) 

generate(d) IBS 

interface 

2.3.2.c IBS Deployer IBS Developer deploy IBS 
execute IBS 

deployment 

2.7.1.c 

IBS 

Customization 

Filter 

Business User 

filter IBS 

(configuration 

and) 

customization 

customize IBS 

2.7.2.c 
Test IBS Before 

deployment 

Business User 

/ IBS 

Developer 

test IBS before 

deployment 

render IBS Pre-

Runtime 
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Figure 64. User Story from 2.1.4.c 

 

categorized by environment, architecture, functional and integration issues, which relate to 

business needs that afterwards promoted the discussion of scenarios (Figure 66). These 

scenarios were elicited with the customer, but this work additionally aimed exploring and 

discovering alternatives. The project’s objectives that were stated referred to: (1) to define an 

approach for a unified view at the corporate (group of units) level; (2) to develop tools for third-

party entities; (3) in-plant optimization; and (4) system reliability. This task output 15 A-type 

sequence diagrams, divided in four groups of scenarios. These groups relate directly to the 

project’s four objectives.  
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Figure 65 . Subset of project initial expectations 

 

Afterwards, the requirements analysis included gathering the candidate use cases and 

defining the decomposition tree. The Use Case model was composed by 37 use cases after the 

refinement. They relate to business needs that afterwards allowed depicting functional 

requirements, modeled in use cases (Figure 67). 
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Figure 66. Scenarios elicited 

 

 

Figure 67. UH4SP first-level Use Cases 

 

The Use Case model was globally composed by 37 use cases after the decomposition (Annex 

C): Use case {UC.1} Manage business support was decomposed in five use cases, use case 

{UC.2} Configure cloud service was decomposed in eight use cases, use case {UC.3} Manage 

cloud interoperability and portability was decomposed in five use cases, use case {UC.4} Manage 

cloud security and privacy was decomposed in three use cases, use case {UC.5} Manage 

industrial units was decomposed in two use cases, use case {UC.6} Manage local Platform was 
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decomposed in five use cases, and use case {UC.7} Performs business activities was 

decomposed in ten use cases.  

 

Almost the entire model was detailed in one lower-level (e.g., {UC5.1}, {UC5.2}, etc.). Only the 

cases of {UC.1} Manage business support, {UC.2} Configure cloud service and {UC.7} Performs 

business activities included an additional decomposition, composed with three use cases each, 

and are examples of bigger sized features of the MVP (based in the quantity of low-level use 

cases). Use cases {UC.3} Manage cloud interoperability and portability and {UC.4} Manage cloud 

security and privacy relate to features not addressed in the MVP, hence were not object of further 

decomposition.  

The total of 37 use cases perceive the low effort in decomposing at this phase, taking into 

account the large-scale nature of the project, namely the number of expectations (25) and that it 

is to be implemented by five separate teams. 

The impacts of these agile techniques in modeling the use cases: 

 By applying DDD, Use Cases are grouped by the domains and sub-domains. This means 

that each of the tree’s “branches” relate only to a given domain, which also assures that the 

contexts are properly bounded. The identified domains relate directly to the four scenario 

groups. Two of them, “tools for third-party entities” and “system reliability”, was afterwards 

divided in two and three domains, respectively, hence making a total of seven. Two of the 

“system reliability” bounded context are not even depicted due to MVP decisions.  

 By applying Lean Startup, the features defined to be included in the MVP are identified in 

the model by having refined use cases, while the remaining were just identified in the first-

level. Use cases {UC.3} and {UC.4} relate to features not addressed in the MVP, hence were 

not object of further decomposition. The remaining use cases were included in the MVP, 

where, namely, {UC.1} was decomposed in five use cases, {UC.2} was decomposed in eight 

use cases, {UC.5} was decomposed in two use cases, {UC.6} was decomposed in five use 

cases, and {UC.7} was decomposed in ten use cases.  

 

The UH4SP logical architecture had as input 37 use cases and, after executing 4SRS 

method (Annex C), was derived with 77 architectural components (Annex C) that compose it. The 

logical architecture is discussed in Chapter 5.  
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Discussion 

Use case-driven Product Backlog from upfront requirements modeling 

Defining a hybrid approach (waterfall-based during initialization and Scrum-based during 

implementation), with the inclusion of artifacts modeling and documentation, strengthened the 

adoption of a Scrum process in a context as the one presented within the iFloW project. However, 

the entire adoption was a learning process, with advantages and disadvantages, which are 

detailed in this section. 

This demonstration case showed the following advantages: 

Requirements documentation waterfall-based – the fact that the Product Backlog was 

composed of 90 use cases led to a shared perception of the system complexity that originated 

the need to perform proper efforts in documenting the requirements. Thus, consuming efforts in 

almost exclusively for requirements engineering typically performed in waterfall approaches, in 

the initialization phase, allowed the project team to gain the required knowledge to implement a 

system of such complexity. 

Implementation Scrum-based – within a customer perspective, Bosch was always aware of the 

system’s current state of development. The iterative development, in form of Scrum Sprints, was 

crucial to manage Bosch’s expectations, due to the periodical meetings and the incremental 

delivery of working software.   

Use of a logical architecture – to enforce a proper organization on the set of components. The 

relationships among components suggest dependencies that may affect the implementation (see 

Section 6.5). 

 

On the other hand, it also showed the following disadvantages: 

Effort estimation for use cases - the fact that it was a completely new development team, 

estimating the required effort for implementing use cases by comparing with other was itself a 

learning process. In many Sprints there were use cases not implemented due to error in 

estimating and required almost constant updates on effort estimating (see Section 6.5). 

 

User story-driven Product Backlog from upfront requirements modeling 

The upfront requirements modeling and logical architecture design, by using an architectural 

method like the 4SRS, provided information regarding the ‘who?’, ‘what?’, and ‘why?’ on 

modules’ software requirements, which is the required information to be delivered to Scrum 
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teams, for instance. The purpose is to provide information regarding software functionalities, 

regardless of the implementation techniques and technologies (e.g., programming languages) the 

team uses. This means that functional requirements were elicited, but technical decisions have 

to be made by implementation teams. 

Modularizing the architecture provides information about software functionalities of the 

module, interfaces with other modules, and the context of the module’s usage. Decisions 

regarding messaging, protocols, amongst others, are made by the implementation team (or by 

the person responsible, like a project manager or a product owner). Nevertheless, the models 

provide functional and behavioral information of the module in design that will later support the 

technical specifications of the modules. 

These models allow deriving software requirements compliant with Scrum teams, in the form 

of User Stories. The information from the 4SRS method execution regarding the components 

specification and the original use case model is gathered in order to derive the User Stories. The 

approach also allow identifying some contact points where there is a need for synchronizing 

efforts within distributed Scrums and effort dependencies. User Stories also properly cover these 

points. Since User Stories are not exclusive for the Scrum framework, this approach can be used 

in other ASD contexts besides Scrum. 

Overall, in the ISOFIN project, there were clear advantages in using this approach:  

(1) since the project consortium was composed by Scrum teams, they easily understood the 

artifacts (i.e., User Stories);  

(2) User Stories were derived having an already designed logical architecture as input, allowing 

them to be properly aligned within reduced time.  

Connection points between modules were identified and properly covered by User Stories but 

there was not enough time during this research work to assess that the team’s efforts were in 

fact synched. Besides the identification of connection points, the authors believe that there is a 

vast area of progress in the topic of distributed Scrum teams. 

 

DUARTE approach within AMPLA 

Applying DUARTE affected use case modeling with the following advantages: 

 Overall, the use of agile practices per se did not make the process agile, but allowed specifying 

agilely the right product for the customer’s needs. Delivering the product right is promoted by 

using Scrum, Kanban, XP, SAFe or LeSS, for instance, which is also present in AMPLA.  
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 Promoting scenarios discovery and exploration allowed defining 15 scenarios from four groups 

(from the project’s objectives). Without the exploring, each groups would probably include one 

or two scenarios.  

 Defining bounded contexts using DDD allowed to clearly understanding boundaries between 

what requirements different teams could address. The use of the Lean Startup strategy 

allowed to refine only the use cases from the MVP hypothesis that the project aim validating, 

rather than refining all use cases, even those that would not been included in the MVP.  

 These practices ease customer feedback, which is fundamental in any ASD process. 

However, AMPLA proposes additional activities and artifacts in agile RE methods and may 

require having dedicated teams for modeling, which may be perceived as a disadvantage. The 

main threat to validity is that AMPLA was only applied by the method’s designers. 

AMPLA provides a method for deriving a candidate logical architecture based in UML Use 

Cases, the 4SRS method. The approach also validated the coverage of the elicited “just-enough” 

model, gathered together with identified key stakeholders. The “just-enough” UML Use Case 

model allows to early identify main features, which provides an overview of the project and its 

scope. We acknowledge the impact of features’ characteristics (size, complexity, 

interconnections, dependencies between subsystems etc.) to management issues, as tasks 

planning, budget proposals, and resource and skills allocation, which will be addressed further.  

The design of “just-enough” architecture used an architectural method, the 4SRS, to derive 

the candidate architecture based in the small set of (“just-enough”) UML Use Cases. There is not 

any difference within the steps of the method, in comparison with the original method, to derive a 

candidate architecture. Rather, as the input are high-level requirements in opposition to more 

refined ones, one may experience difficulties in identifying a proper classification of the use case 

in order to decide the components to be maintained within the second step, since a more refined 

information helps in better define the component’s nature. However, as in AMPLA the 

requirements will be later refined and will emerge, the 4SRS method is used as in a “living table” 

that is opened alongside the development Sprints, rather than a waterfall-based and one-time-

execution approach, providing traceability between the requirements and the components in 

order to agilely respond to changes. 
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4.5. Conclusions  

This chapter discusses requirements modeling approaches in ASD settings, where research 

addressed initial artifact proposal regarding processes of upfront requirements elicitation and 

modeling, and a later artifact proposal for emerging requirements (DUARTE). Upfront 

requirements was used towards use case-driven and user story-driven Product Backlogs. DUARTE 

was used towards user story-driven Product Backlogs based in AMPLA. 

While use case-driven Product Backlogs used directly the UML Use Cases from the 

requirements modeling as backlog items, the inputs for being able to define user story-driven 

Product Backlogs required a set of models, namely UML Use Cases and logical architecture 

(UML Components), supported by architectural method 4SRS and V-Model for traceability 

purposes. 

 

AMPLA is a process for model derivation applicable in an Agile RE and AM context. Firstly, 

more specifically regarding Agile RE, this section presented the DUARTE approach, which is 

inspired by a V-Model approach (Nuno Ferreira et al., 2014) based in successive model 

derivation, namely referring to sequence, use case and components diagrams, this process aims 

modeling the same artifacts however using agile practices such as Lean Startup, Design 

Thinking, DDD, BDD, and others. The model derivation follows typical agile feedback loops, 

encompassing discovery and exploration, learning from feedbacks and adjusting posterior loops. 

It also addresses AM so requirements emerge from these loops, by including only core and high-

level requirements in early phase of projects, use them for deriving a UML components diagram 

using the 4SRS method, and further incremental refinements within development cycles (e.g., 

Scrum Sprints). 

 

This chapter essentially described the: 

- A hybrid process with upfront modeling and use case-driven Product Backlog, when 

requirements are known upfront and are stable, followed by ASD cycles (Sprints); 

- The DUARTE approach for requirements modeling, which demonstrated how requirements 

models like Sequence and Use Cases diagrams are affected when using agile practices such 

as Lean Startup, Design Thinking, Domain-driven Design (DDD), Behavior-driven 

Development (BDD), and others; 
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- A framework for assessing “just-enough” modeled requirements in order to design a 

candidate architecture. 

The resulting UML use case model is now ready for use in the logical architecture design. In 

Chapter 5, the architecture evolves by performing “just-enough” design, which is derived by 

using the “just-enough” requirements within an execution of the 4SRS method. 

 

Further Reading 

About RE in agile, or “Agile RE”, “The Agile Extension to the BABoK Guide” (IIBA, 2017), 

“RE@Agile” (IREB, 2018) and “Beyond Requirements” (McDonald, 2015) focus on performing 

RE techniques in ASD settings. These techniques are particularly helpful when balancing between 

product discovery and delivery, as in performing “Dual-track agile”7 or a “Mobius Loop”8. 

Dean Leffingwell presents the associations between the types of requirements information in 

product backlogs in the book “Agile Software Requirements” (Leffingwell, 2010). 

The process of developing models in a iterative, incremental and evolutionary fashion is 

presented in “Agile Modeling” (S Ambler, 2002). 

The traceability of requirements to software delivery is presented by “User Story Mapping” 

technique (Patton & Economy, 2014) 
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This chapter relates to agile architecting approaches within AMPLA, using the 

requirements models from the previous chapter.  It starts by proposing an agile 

architecting lifecycle, from business to deployment, supported by a pathway 

composed by multiple architecture viewpoints. As part of the pathway, the chapter 

firstly derives a candidate logical architecture using the 4SRS method. Afterwards, 

the models are incrementally refined throughout agile iterations. This chapter also 

includes a continuous architecture management by embracing changes using a 

change-impact analysis approach. The models are refined until they are at a 

service-level, in form of a microservices logical architecture, whose derivation was 

supported by the 4SRS-MSLA method. Architectural design during Sprints is 

demonstrated in the iFloW case. The AMPLA entire lifecycle is demonstrated in the 

UH4SP project. Finally, the IMP_4.0 and the ISMPM cases relate to the usage of 

the 4SRS-MSLA in brownfield projects.  This chapter ends with the conclusions. 
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Chapter 5 – Agile Logical Architecting using AMPLA 

 

“You should use iterative development only  

on projects that you want to succeed.” 

Martin Fowler, Author of the book “Refactoring” 

 

5.1. Introduction 

In previous section, a logical architecture derived from requirements was used in ASD 

methods so an agile architecting approach (AMPLA) was followed. This approach proposed 

modeling firstly a candidate version of the logical architecture, followed by incremental 

refinement as software emerged during delivery cycles. This section discusses architectural 

methods within delivery cycles phase of AMPLA.  

ASD approaches are characterized from their frequent customer involvement, and well-known 

frameworks, such as Scrum and XP have specific events where incremental prototypes are 

shown and validated by the customer. It is during these events that eventual changes are 

proposed. However, changes in features and/or architecture may lead to unexpected 

consequences if not properly and previously analyzed. Thus, architecting includes analyzing 

dependencies, constraints, risks, etc. which are impacted by the changes (Pérez, Díaz, 

Garbajosa, & Yagüe, 2014). Changes in the software, often called refactoring (Fowler, 2018), are 

adopted in ASD as a way to continuous improve the structure and understandability of the source 

code during development (Moser, Abrahamsson, Pedrycz, Sillitti, & Succi, 2008).   

In order to manage such changes, changes – or refactoring – are able to be traced to 

architectural models as well as requirements and business needs. Models are then a way to 

provide stakeholders with affected changes before the code is refactored. AMPLA supports the 

required traceability, where the 4SRS method support mapping between the requirements 

models (using UML use cases) and architectural model composed by UML components.  

This chapter discusses the agile logical architecting topic addressed within the AMPLA 

process (Figure 49). In terms of the integrated modeling roadmap, this chapter encompasses 

stages 3, 4, 6 and 7. 
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Figure 68. Overview of AMPLA 

 

 

Figure 69. Integrated modeling roadmap 

 

Previous works about agile architecting show that architecture emerges throughout the 

project. This chapter proposes the design of a candidate version of the architecture. The 

candidate version is a result of performing the 4SRS method with the requirements models 

resulting from applying DUARTE approach within AMPLA. Alongside with DUARTE, some design 

decisions are made focusing in concerns more related to domain and information systems 

context. 

These delivery cycles then start with the scope refinement of each area, performed 

continuously within the iterations as needed. The architecture is thus refined in an incremental 

way, allowing it to emerge as iterations occur. During these iterations, when stakeholders review 

current software development status, e.g., at a Sprint Review event, they analyze the delivered 

increment, accept it as it stands, or propose changes and/or new requirements. Before moving 

on towards these changes, there is a need to analyze its impact on the solution architecture. For 

this reason, there was a need to propose within AMPLA a need for using its traceability capability, 
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promoted by the 4SRS method, between requirements and architecture, towards managing this 

impact as well as manage any technical debts. 

However, agile architecting, as any architecting, includes multiple viewpoints. This research 

focuses in the logical one. Logical architecting is about addressing how components are 

organized so the software meets the business needs. The 4SRS method, historically, uses UML 

use case models to derive logical architectures. For agile settings, there must be a concern of 

supporting the logical architecture to emerge throughout Sprints but, in order to support the 

continuous flow, the relationship with other viewpoints and how they emerge is also a research 

point. 

The software product delivery is a continuous process. The need advocated by ASD 

approaches on getting feedback, learning and adapting - towards “delivering the right product”, 

supported by approaches like “Lean Startup” (Ries, 2011) and “Lean Six Sigma” (George & 

George, 2003) – has put software companies adopting a “continuous” agenda (Fitzgerald & Stol, 

2017). Within this agenda, practices as continuous integration, continuous delivery and 

continuous deployment play an important role. Also, the DevOps (Loukides, 2012) culture has 

brought the “Ops” concern early within the software process, rather than only in pre-production 

stage.  

As a result, the architecting discipline must also encompass “dev” and “ops” concerns, which 

are overlapped rather than in separated stages. The multiple viewpoints are thus an aspect to 

consider continuously. Erder and Pureur propose some principles for continuous architecting, 

including leveraging the “power of small” which eases an incremental architecture management 

(Erder & Pureur, 2015).   

In this sense, microservices architectures (MSA) (Newman, 2015) is one of the most common 

situations when companies adopt continuous architecting processes (Taibi, Lenarduzzi, & Pahl, 

2017), based in patterns such as Domain-driven Design (DDD) (Evans, 2004), single 

responsibility principle (SRP) or Conway’s Law (Conway, 1968), which assure they are bounded 

so that they can scale independently.  

MSA  are an architectural style oriented towards modularization, where the idea is to split the 

application into smaller, interconnected services, running as a separate process that can be 

independently deployed, scaled and tested (Thönes, 2015). MSA are currently getting widespread 

attention as they extend the ‘design-stage architecture’ into deployment and operations as a 

continuous development style (Pahl & Jamshidi, 2016).   



Chapter 5 – Agile Logical Architecting using AMPLA 

 

176 
 

However, projects often struggle to properly bound them, resulting in insufficient knowledge 

for decisions related to database partition, the proper size of the microservice, inter-service 

communication and messaging, which are not addressed systematically by those patterns.  By 

applying a modeling method in the process of designing a MSA, one may foresee issues on 

bounded contexts for microservices, namely intra-service behavior, interfaces and data models 

separation, and inter-service communication and messaging requirements (Newman, 2015). 

This chapter describes an approach for designing a microservices-oriented logical architecture 

(MSLA), i.e., a logical view (Kruchten, 1995) on the behavior of microservices and relationships 

between microservices. This approach uses UML use cases diagrams for domain modeling, 

which are further used as an input for designing a MSLA using a set of rule-based decisions, by 

using an adaptation of the 4SRS method. Each of these functionally decomposed UML use cases 

give origin to one or more components, which will then compose the microservices. 

The research addressed in this chapter is the result of a set of agile architecting practices 

applied throughout different stages of software development, with emphasis to logical 

architecting. The evolution of agile architecting from grooming to software delivery stages – 

including initial inputs, candidate architecture design, incremental refinement, continuous 

architecting and change-impact analysis, and microservice logical architecture design (using 

4SRS-MSLA method) and deployment - is presented within the UH4SP project. The specific 

practice of architecture spikes during Scrum Sprints is discussed within the iFloW project. Finally, 

regarding microservices logical architectures, aside from the UH4SP project, two research 

projects are used as complimentary demonstration cases. The IMP_4.0 project used the 4SRS-

MSLA method for proposing a MSLA from a requirements modeling of a monolithic solution. The 

IMSPM used the 4SRS-MSLA but also discussed usage of other microservices patterns. The 

contributions of the projects are summarized in Table 17. 
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Table 17. Contribution of projects in continuous architecting 

Research contribution \ demonstration case UH4SP IMP_4.0 iFloW IMSPM 

Agile logical architecting X    

Candidate architecture design X    

Recursive Subsystem design X    

Architectural Spikes   X  

Change impact analysis X    

Microservices design X X  X 

Microservices deployment process    X 

 

This chapter is structured as follows:  

 Section 5.2 presents an approach for agile logical architecting; 

 Section 5.3 presents logical architecting, through candidate design, incremental 

refinement and Change-impact analysis techniques within iterations, and the 

microservices logical architecture design; 

 Section 5.4 describes the demonstration cases, applying the aforementioned 

approaches, and main discussions around agile architecting; 

 Section 5.5 presents the chapter’s conclusions; 

 The chapter ends with complimentary reading 

 

5.2. Agile architecting lifecycle (AAL) 

ASD frameworks typically are structured in three phases within the lifecycle: Stories (or 

Requirements), Planning (of the cycles) and Delivery (of a working software increment). Note that 

(continuous) integration sometimes fall inside Delivery phase (when continuous integration, 

continuous delivery and DevOps practices are adopted), otherwise the process includes a 

Maintenance or Operations phase. For instance, well-known ASD framework as Scrum includes 

the Stories definition within the Pregame phase (Schwaber, 1997), whereas XP lifecycle includes 

User Stories definition within the Exploration phase (Beck & Andres, 2004). Planning – namely, 

the definition of the Product Backlog and its items – is also performed in the Pregame phase of 

Scrum (Schwaber, 1997) but in XP it is performed in the Planning phase (Beck & Andres, 2004). 

Delivery of software is performed in the Development phase of Scrum (Schwaber, 1997) and 

Iterations to Release phase of XP (Beck & Andres, 2004). The Postgame phase of Scrum and 
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Productionizing phase of Scrum may be included in the Delivery phase of the development 

lifecycle, or in an afterwards Operations phase.  

With that in mind, an agile architecting lifecycle (AAL) should be oriented to these three 

phases. We propose architecting tasks, artefacts, possible inputs and outputs, for each of the 

three phases: Grooming, Backlog and Delivery.  

AAL should first propose a high-level architecture, composed by main functional 

requirements and that allowed defining a separation of concerns. This separation is input for 

planning of each concern implementation, which each relate to a subsystem of the architecture. 

During delivery cycles (e.g., Scrum Sprints), each subsystem is refined into a more detailed 

architecture, composed with logical components that at this phase have more detail for being 

passed on to implementation teams. 

Approaches differ from using a predefined artifact to using simplified versions initially, but 

the approaches in (Abrahamsson, Babar, & Kruchten, 2010; Cockburn, 2006; Coplien & 

Bjørnvig, 2011; Erdogmus, 2009; Farhan, Tauseef, & Fahiem, 2009; Harvick, 2012; Mancl, 

Fraser, Opdyke, Hadar, & Hadar, 2009; Rick Kazman, 2013; Waterman, Noble, & Allan, 2012; 

Zhang, Hu, Lu, & Gu, 2011) all advocate an initial  model that afterwards is refined. Table 18 

compares the research works presented in section 2.2, within the proposed AAL phases. 

In any SDLC, whether waterfall, ASD, or other, the performed software engineering 

disciplines typically fall under the scope of business modeling, requirements, design, 

implementation, testing and deployment. The difference between these SDLC relies in the time 

where they are performed, but inputs from all disciplines are required.  
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Table 18. Comparison of agile architecting approaches and their contextualization within the 

architecting lifecycle 

Agile architecting 

approaches 

Grooming Backlog Delivery 

(Nord & Tomayko, 2006) Planning and stories Designing Analysis and Testing 

(Jeon, Han, Lee, & Lee, 

2011) 

Planning and stories Designing - 

(Farhan et al., 2009) - - Analysis and Testing 

(Sharifloo, Saffarian, & 

Shams, 2008) 

Planning and stories - - 

(Kanwal, Junaid, & Fahiem, 

2010) 

Develop an Overall 

Model, Build a Features 

List, Plan by Feature 

Design by Feature Build by Feature 

(Madison, 2010) up-front planning, 

storyboarding 

Sprints working software 

(Díaz, Pérez, & Garbajosa, 

2014) 

Software Product Line 

(SPL) Backlog, Agile 

Product Line 

Architecting (APLA) 

Sprints Working Product-Line 

Architecture (PLA), 

Working Products (SPL) 

 

Based in this premise, AAL pathway includes all disciplines, with the goal of incrementally 

evolving an architecture and reducing BDUF. Figure 70 proposes including in an AAL pathway 

description of Context, Functionalities, a Candidate Architecture and, then, a Refined 

Architecture.  

In terms of Context, it relates to the knowledge acquisition of domain and enterprise settings 

where software solutions will execute. The understanding of such knowledge is the starting point. 

Functionalities relate to the definition of software needs (in opposition to a more process and 

business orientation of the previous stage), e.g., the definition of a “minimum viable product” 

(MVP). Then, a first candidate version is proposed and refined afterwards in order to emerge 

during delivery cycles. Proposing a candidate version relates to defining a high-level architecture, 

composed by main functional requirements and that allow defining a separation of concerns. 

This separation is input for planning of each concern implementation, which each relate to a 

subsystem of the architecture. During delivery cycles (e.g., Scrum Sprints), each subsystem is 

refined into a more detailed architecture, composed with logical components that at this phase 

have more detail for being passed on to implementation teams. 
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Figure 70. Steps proposal for agile architecting 

 

As referred, Context relates to knowledge acquisition of the domain, enterprise, business 

and information system where the project is scoped. It is composed in its majority with Business 

Modeling tasks. Typical examples of this exercise may be the modeling of the enterprise’s 

business processes (e.g., using Business Process Modeling Notation – BPMN), identification of 

technical and/or product glossary, relationships between main domain concepts, specification of 

the structure of the involved systems (like the name, the exchanged data, the data location – 

e.g., which table from the database, etc.) and how to access that data. This is typically performed 

under an “as-is” analysis, however, even when the aim is to perform the characterization of the 

“to-be” situation, it is advisable that the SDLC firstly includes a proper domain characterization, 

by analyzing the business processes, the information (data), and the systems 

(hardware/software) that compose the ecosystem. 

Additionally, in Functionalities, process reference models have an interesting role in 

requirements elicitation. For instance, it is common that manufacturing sector follows Supply 

Chain Operations Reference (SCOR). These reference models are composed with processes, sub-

processes, roles, tasks, operations, that easily may be mapped in a business process notation 

language (Santos, Duarte, Machado, & Fernandes, 2013). It is not expected that an enterprise 

follows only one reference model. For instance, the GS1 global standard for traceability is widely 

adopted for carrying out tasks for product traceability (Neiva, Santos, Martins, & Machado, 

2015), and may be adopted complementary.   

Now that the solution needs are identified – and properly specified – the next step typically 

relates to designing the system. System design is typically performed using a model, e.g., an 

architecture. However, architecture design should be addressed as an iterative process, as 

design should start in a conceptual level and refined until it is detailed enough, which is to say 

the abstraction level goes from high to low during this process. For that reason, the pathway 

proposes designing a Candidate Architecture and afterwards a Refined Architecture. 
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Architecture design includes from conceptual level to more refined one (Fernandes & 

Machado, 2016). Such argument is in line with the design process proposed by Douglass: 

architectural, mechanistic, and detailed (Douglass, 1999). The evolution of architecture was 

already discusses in Section 3.4. 

Figure 71 presents the results from classifying Candidate and Refined architectures using 

the proposed framework. The presented classification is as follows:  

Candidate Logical – Phase: Analysis/Design; 4+1: Logical; Abstraction: CIM/PIM. 

Refined Logical – Phase: Design; 4+1: Logical; Abstraction: PIM/PSM. 

 

 

Figure 71. Classification of Candidate and Refined logical architectures 

 

The AAL is thus composed by three phases: Stories, Planning and Delivery. Figure 72 

depicts the pathway between phases under the eleven viewpoints. Additionally, Table 19 inputs 

and outputs between viewpoints throughout the AAL. 
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Figure 72. Architectural views and abstraction within AAL phases 

 

Table 19. The inputs and outputs of AAL artefacts 

View Input Output Relation SA 

Conceptual e.g., Product Vision, 

Product Roadmap, 

Domain model 

e.g., Concepts, 

vocabulary, ontology 

Information System 

Reference Process Reference Models Domain’s best practices Process 

Enterprise Structure of Enterprise  Enterprise processes Process 

Process Business processes, 

Process reference models 

Process requirements Information Systems 

Information System   Logical 

Logical   Components, Data/Class 

Components   Technical 

Data/Class   Technical 

Technical   Deployment 

Deployment   Physical 

Physical    

 

Conceptual

ABSTRACTION

CIM
Grooming Backlog Delivery

PIM

PSM

CODE

TIME

Reference Enterprise

Process

Information 
System

Logical

Components Data / Class

Technical Deployment Physical
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5.3. Architecture evolution and management 

Candidate architecture design using the 4SRS method  

This research uses the 4SRS method, by taking advantage from the method’s ability to use 

a functionally decomposed UML Use Case model – so, requirements have been elicited and split 

in smaller pieces as possible - as input to derive in a stepwise manner a component-based logical 

architecture (i.e., the software product version of the 4SRS). For this reason, the method 

evolution is presented and its steps are detailed in this section. 

The 4SRS method takes as input a set of use cases in the problem space, describing the 

requirements for the processes that tackle the initial problem. They are then refined trough 

successive 4SRS iterations (by recurring to tabular transformations), producing progressively 

more detailed requirements and a design specification, in the form of a logical architecture 

representation of the system, representing the intended concerns of the involved business and 

technological stakeholders. These tabular transformations are supported by a spreadsheet where 

each column has its own meaning and rules. Some of the steps have micro-steps, of which some 

can be completely automated. A correct application of the tabular transformations assures 

alignment and traceability, between the derived logical architecture diagram and the initial use 

cases representations, and at the same time allows adjusting the results of the transformation to 

any changing requirements. 

 

The 4SRS method has proven successful in differentiated contexts, for instance: 

 Process architectures (Nuno Ferreira, Santos, Machado, Fernandes, & Gasević, 2014; Nuno 

Ferreira et al., 2012; Machado, 2002),  

 Software product architectures (Fernandes, Machado, Monteiro, & Rodrigues, 2006; 

Machado, Fernandes, Monteiro, & Rodrigues, 2005; Machado et al., 2006),  

 Software product lines (A Bragança & Machado, 2007, 2005; Alexandre Bragança & 

Machado, 2009),  

 Software product lines with variability (Azevedo, Machado, Muthig, & Ribeiro, 2009; 

Azevedo, Machado, & Maciel, 2012),  

 Class diagrams (Cruz, Machado, & Santos, 2014; Santos & Machado, 2010) and  

 Service-oriented (Salgado, Teixeira, Santos, Machado, & Maciel, 2015) - namely, SoaML 

(OMG, 2012) -  logical architectures. 
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The usage context of the proposed 4SRS, with “just-enough requirements and deriving the 

logical architecture with “just-enough” components is depicted in Figure 73. Previous 

experiences with the 4SRS method relate do BDUF contexts, where a larger number of 

requirements were known upfront, rather than executing the method with smaller number of 

requirements. However, since in AMPLA the requirements will be later refined and will emerge, 

the 4SRS method is regularly revisited alongside the development Sprints. 

 

 

Figure 73. Method for designing the candidate architecture with 4SRS 

 

The 4SRS method is composed by four steps: Component Creation; Component Elimination; 

Packaging and Aggregation; and Component Associations.  

The first step regards the creation of software architectural components. The 4SRS method 

associates, to each component found in analysis, a given category: interface, data, and control. 

Interface components refer to interfaces with users, software or other entities (e.g., devices, etc.); 

data components refer to generic repositories, typically containing the type of information to be 

stored in a database; and control components refer to the business logic and programmatic 

processing.  This categorization makes the architectures derived by the 4SRS to be compliant 

with architectures from object-oriented programming, or by Model-View-Controller (MVC) patterns. 

In the second step, components are submitted to elimination according to pre-defined rules. 

At this moment, the system architect decides which of the original three components (i, c, d) are 

maintained or eliminated, firstly taking into account the context of a use case from Step 1, and 

 Just-enough  UML Use Cases 
Diagram

 

 
 

 Just-enough  4SRS

U2.1 AE2.1i

U2.2

AE2.1d

AE2.2d

AE2.2c
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later compared for redundancy within the entire system. Additionally, each component is named 

and textually described relating to its behavior. 

In the third step, the remaining components (those that were maintained after executing 

step 2), where there is an advantage in treating them in a unified process, should give the origin 

to aggregations or packages of semantically consistent components. 

The final step refers to the associations between components. The method provides steps 

for identifying such associations based in descriptions from use cases, as well as from the own 

components during the components creation. 

The execution of the 4SRS transformation steps can be supported in tabular 

representations. These representations enables partial automation of the transformations steps 

and constitute the main mechanism to automate a set of decision assisted model transformation 

steps. A small part of the 4SRS method execution table is represented in Figure 74. The table is 

not zoomed due to size limitations. The cells are filled with the set of decisions that were taken 

and made possible the derivation of a logical architecture.  Each column of the table concerns a 

step/micro-step of the method execution.  

 

 

Figure 74. 4SRS method execution using tabular transformations 

 

The output is a logical architectural diagram, composed by a set of software components 

and relations/flows between them. The architectural diagram is modeled in UML Components, 

as depicted in a simple example in Figure 75. 
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Figure 75. Simple example of a candidate UML components architecture 

 

It must be pointed out that AMPLA and the 4SRS supports the logical view (Kruchten, 1995) 

of the architecture, namely the identification and design of software components referring to 

functional requirements. Architecture design should also address quality requirements. 

Addressing quality requirements is out of the scope of AMPLA, but is able to coexist with other 

architecture-centric methods such as QAW or ADD. 

The use of 4SRS throughout the process, first in the scope of the candidate architecture, and 

afterwards in the scope of each refinement, provides the traceability between components and 

the functional requirements, allowing an agile response to changing requirements. The number 

of components or the number of associations between components are possible indicators to 

determine the architecture’s riskiest components. 

 

Incremental design for refining the logical architecture 

As referred in the previous section, the output of performing the 4SRS method during 

requirements is a candidate logical architectural diagram, composed by a set of software 

components and relations/flows between them.  

The idea is to refine the architecture incrementally, in parallel with the implementation 

efforts regarding the architectural components that already were refined. Like in most cases, the 

best approach to issue complex problems is to divide them into smaller ones and address them 

one by one, ultimately allowing to address the big solution.  

With the purpose of modularizing the architecture, the candidate logical architecture is 

partitioned into sub-systems. AMPLA is able to be performed in parallel within a typical ASD 

context, however the subsystem bordering is helpful in complex ecosystems contexts. This 
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bordering is likely to reflect the ecosystem, e.g., IoT, cloud, infrastructure, embedded systems, 

etc., and the dependencies between the subsystems. The sub-system border provides context for 

modeling more refined Use Cases, as well as context for making technical design decisions that 

in the initial phase were very difficult to make. The Use Cases may then be used for a new 

execution of the 4SRS (Figure 76), since they relate to “new” Use Cases that emerged and hence 

did not exist before the definition of the sub-systems. Within these “new” Use Cases, they may 

relate to refined use cases from the previous model, as well as relating to new use cases within 

the same level of refinement. E.g., a sub-system related to a use case {UC1.5} may result in 

refinements like {UC1.5.1} and {UC1.5.2}, as well as new use cases in the same level of 

refinement like {UC1.6} and {UC1.7}. 

 

  

Figure 76. Recursive execution of 4SRS for refining a given example module 

 

By performing the 4SRS method within this new use case model, the resulting software 

components relate to refined components for that sub-system that can be “replaced” in the initial 

candidate architecture, resulting in a more refined version. In order to assure that the defined 

sub-system, even though composed by more components, is still able to fit in the overall logical 

architecture, its interfaces must be maintained (system of systems theory). It must be pointed 

out that the execution of the 4SRS for the new and emerged use cases in Figure 76 are an 

increment to the previous execution, rather than performing a new 4SRS execution with only the 

new use cases.  

The sub-system requirements are object of analysis within each iterative cycle. In this 

section is described the refinement process aligned with iterative cycles, e.g., Scrum Sprints. 

Figure 77 depicts the distribution of the module requirements for refinement and respective 

 UML Use Cases Diagram

 

 
 

4SRS

U2.1 AE2.1i

U2.2

AE2.1d

AE2.2d

AE2.2c

(Just-in-time) Logical Architecture 

2x

4x

2x

4x



Chapter 5 – Agile Logical Architecting using AMPLA 

 

188 
 

implementation tasks to be included as Product Backlog Items (PBI), distributed within the cycles 

(Sprints). 

After each subsystem is defined, the process is then structured as an iterative approach 

(e.g., Scrum Sprints). Within every iteration, the team performs tasks involving several software 

engineering disciplines. The terminology from RUP’s and AUP’s disciplines is used (only for 

demonstration purposes) to depict the type of effort involved within the Sprints. These efforts are 

illustrated in Figure 77 by the colored bars within each cycle, where each bar is a software 

engineering disciplines, and with more or less effort during the cycle, similar to RUP and AUP. 

The main difference is that, in parallel with carrying out typical disciplines within the Sprints 

(Implementation, Testing and Deploy) that result in the delivery of a software increment, other 

team members are responsible for refining requirements regarding the features not yet included 

in the team’s Sprint Backlog, and that are planned to be implemented in further Sprints. These 

requirements are modeled, hence the Requirements discipline, and then an incremental 

execution of the 4SRS method, hence the Analysis & Design (A&D) discipline. 

 

 

Figure 77. Distributed implementation of each architecture module 

 

The Requirements and A&D tasks are performed in iterative cycles and incrementally, 

synchronized with the development and deployment during the Sprints, in a sense that what is 

modeled during a cycle is then ready to be implemented in next cycles (Figure 78). While the 

implementation is being performed, requirements from the original logical architecture, not yet 

refined in previous cycles, are modeled in use cases. They originate a new increment of the 4SRS 

method, deriving additional components. These models require validation from customer before 

being ready to be included in the Team Backlog. The first time this requirements cycle is being 
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performed, the development Sprint is not yet performed (or a Sprint 0 cycle is performed where 

no software is delivered, but rather the development infrastructure is built). Then, requirements 

and the 4SRS address the functionalities to be implemented in the next Sprint or even more 

ahead Sprints. It is assumed that, since the components have been refined, they are in an 

improved situation to be now passed for implementation. 

 

 

Figure 78. Incremental requirements and 4SRS execution throughout the Sprints 

 

While this refined information is implemented, coded, tested and deployed, ending in a 

delivery of a software increment to customer, in parallel other model is refined within the same 

approach (i.e., use cases, 4SRS and architecture). This process is depicted in Figure 79 as a 

Software Process Engineering Metamodel (SPEM) diagram. This way, when a cycle is finished, it 

is expectable that new sub-systems were refined and able for implementation.  

 

 

Figure 79. Parallel tasks within Sprints in SPEM diagram 
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Continuous Architecture and change-impact analysis 

After the feedback and consequent learning and adjustments (if needed), the approach ends 

with the candidate logical architecture, which is then used as input for defining the required 

backlog items for delivering the software (please consult Chapter 6 for more details).  

 

 

Figure 80. Traceability between models and product backlog 

 

The derivation of models described so far is performed before the Sprints cycles. Only then, 

there is context for deriving backlog items. The transformation of the artifacts in backlog items 

may be performed before or during a Sprint 0 cycle, where no software was delivered. When 

software delivery begins, the process is performed in typical cycles, whether in Scrum, Kanban, 

or other frameworks. Figure 81 depicts a process structured in Scrum Sprints.  

The main difference is that, in parallel with delivering a software increment, other team 

members are responsible for refining requirements not yet included in the backlog, and that are 

planned to be implemented in further Sprints. 

In all Sprints, the requirements refining for further Sprints justifies the inclusion of the 

Requirements discipline in the each Sprint, as shown in Figure 82. Other example of 

Requirements discipline are spikes (originally defined within XP), a technique used for activities 

such as research, innovation, design, investigation and prototyping. With spikes, one can properly 

estimate the development effort associated with a requirement or even a better understanding a 

requirement.  

Some design-oriented spikes (similar to architectural spikes from XP) like monitoring the 

current status of the system, controlling the technical debt, compliance with regulatory 

requirements, among others, result in a focus in Analysis & Design. These are some of the 
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continuous architecting (CA) tasks (Martini, Pareto, & Bosch, 2014). Afterwards, the typical 

disciplines are carried out within the Sprints: Implementation, Testing and Deploy. We use the 

terminology from RUP’s disciplines (only for demonstration purposes) to depict the type of effort 

involved. 

 

 

Figure 81. AMPLA during Sprints 

 

 

Figure 82. The performed disciplines within the Sprints 
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It is during these delivery cycles (in Figure 83 the cycles are represented as Scrum Sprints) 

that the software supervision (of what is delivered) is performed. As ASD promote rapid 

feedbacks and adaptation, many events (or ceremonies) are performed whether for customer 

feedback on the delivered software increment, or for team review. In the later, many design and 

implementation decisions are made, whether related to the team’s perception of the delivered 

quality, the development process, the adopted technologies or concerning the way the 

architecture is emerging. Moreover, it is based within the customer feedback or team review that 

changes are proposed during the cycles. For both cases, a proper in-depth analysis (especially 

for safety-critical systems) related to the proposed changes should be performed.  

 

 

Figure 83. Parallel traceability within Sprints using the 4SRS 

 

Just like during the refinement process, the remaining Sprints the teams perform tasks 

related to several disciplines, as previously depicted in Figure 82. In this section, the “Analysis & 

Design” discipline is focused. 

The architecture should be present at all moments of the development. Whenever new 

requirements emerge, or a need for change/refactoring of a given component is identified, the 

architect should carefully analyze the impact before accepting such occurrences. 
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As described in the previous section, AMPLA provides traceability between requirements 

models (UML Use Cases), architectural components (UML Components) and the product backlog 

items. Thus, it is within these three artifacts that impact analysis is based in.  

The architect may analyze the architectural artifact (arrow (a) in Figure 84) for a component 

candidate for refactoring, which remaining components are affected by any change to that 

component, or depicting which quality characteristic is affected. Alternatively, the architect may 

trace back to the requirements model for depicting the business value of the requirements that 

relates to the component affected by the refactoring (arrow (b) in Figure 84). Finally, when a new 

requirement emerges, it is added to the UML Use Cases model and afterwards “is followed” the 

AMPLA process flow towards the architecture and product backlog (arrow (a) in Figure 84). Arrow 

(c) may also relate to address technical and architectural debt, as a requirement typically is 

refined which ultimately gives origin to a product backlog item (User Story and backlog task) in 

order to tackle the debt. 

    

 

Figure 84. Possible targets of CIA within AMPLA 
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Martini, Pareto and Bosch describe context, scope and within which agile ceremony was 

more appropriate for a set of given CA practices (Martini et al., 2014). In AMPLA it is also agreed 

that CA, as the name implies, is a continuous process, thus the proposed CIA practices should 

not be limited to a moment in time within cycles (or Sprints), like, e.g., Retrospectives, but rather 

at any time of the delivery. Of course, CIA practice could not be performed right after a given 

change proposal, although evidently the quickest response to that proposal is adequate. 

It is not the purpose of this research to provide inputs for architects to accept or deny any 

change proposal, but rather to provide CIA practices insights and where the architectural 

information (derived within AMPLA) is located in order for providing the required inputs for an 

appropriate decision, as listed in Table 20. 

 

Table 20. List of CIA practices and their targeted models 

Type of practice Target  Analyzed model 

Architecture significant requirement 

(ASR) 

The goal which derived the ASR UML Component 

Quality characteristic Capability of assuring SLAs UML Component 

Business and customer value of the 

requirement 

Priority of the requirement UML Use Cases 

Which components are affected Dependencies between 

components 

UML Components, 4SRS 

Compliance with standards Legal and regulation assurance UML Components 

Requirements emerge Add new requirements UML Use Case 

Managing architectural debt Refine requirements and update 

architecture and product backlog 

UML Use Case, UML Components 

and Product Backlog items 

 

Thus, the proposed CIA practices allow analysing, monitoring and assessing the 

architectures in many ways. If analysed all, or just some of them, the architect is able to provide 

an appropriate acceptance or denial of a change proposal. 
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Figure 85. CA-related practices within “Analysis & Design” discipline 
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domains with the DDD pattern. By applying reverse engineering to requirements modeling, the 

output is again an UML Use Case model.  

 

 

 

Figure 86. Inferring Domain's and sub-domain's bounded contexts from UML Use Cases 

 

Each use case is functionally decomposed based on specific tasks that the current solution 

supports. Additionally, this elicitation requirements process may be used to analyze current 

limitations on the business domain and hence stakeholders may elicit new requirements, which 

are added to the use case model. 

Functional decomposition relates to dividing functionalities in smaller pieces. Within UML use 

cases, this requirements technique is used for enabling a software functionality to be divided into 

refined use cases. Such technique allows for providing detail in describing a given requirement. 

This tree-like organization results in a structure for specifying lower-level details on each 

requirement, where low-level requirements are a specialization of the higher-level requirements. 

The requirements analyst then decides when decomposition may end. Often, the tendency is to 

perform scaffolding, where low-level requirements end up in Create, Read, Update and Delete 

(CRUD) operations. This is just an example, since decomposing aiming for CRUD operations is a 

decision that the requirements analyst has to make.  
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Greenfield settings 

The requirements engineering process follows the DUARTE approach within the AMPLA 

process (cf. Section 4.3) that, based in successive model derivation, namely referring to 

sequence, use case and components diagrams, allows deriving just enough requirements/use 

cases into a candidate logical architecture. Requirements emerge in a continuous way, as the 

4SRS method is regularly revisited alongside the development Sprints (cf. Section 5.3). Although 

not mandatory that the requirements engineering process (necessary for the proposed 

microservices design approach) follows either DUARTE or AMPLA, for the purpose of this 

research this section describes how this approach for microservices uses the resulting models 

from DUARTA/AMPLA. However, it is only necessary that the requirements engineering process 

outputs a UML use cases diagram. 

Designing microservices for a given business capability or domain, typically uses patterns 

such as Domain-driven Design (DDD) (Evans, 2004), single responsibility principle (SRP) or 

Conway’s Law (Conway, 1968). However, microservice design often faces challenges related to 

database partition, the proper size of the microservice, inter-service communication and 

messaging, which are not addressed systematically by those patterns.  By applying a modeling 

method in the process of designing a MSA, one may foresee issues on bounded contexts for 

microservices, namely intra-service behavior, interfaces and data models separation, and inter-

service communication and messaging requirements (Newman, 2015). 

The requirements elicitation started by listing a set of stakeholder expectations towards the 

product roadmap, encompassing the entire product but only MVP features were detailed. They 

relate to business needs that afterwards allowed depicting functional requirements, modeled in 

use cases. After executing the 4SRS, the logical architecture is derived. This architecture was 

afterwards divided in a set of modules to be assigned to each of the project’s teams (Figure 87). 

The modularization exercise followed the DDD rationale. 
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Figure 87. Architecture modularization example 

 

By identifying the domains present in the architecture (DDD) we propose to refine sub-

systems (regarding each domain) of the architecture iteratively, in order to identify, model and 

specify a set of software services in SoaML diagrams, such as Service Participants, Service 

Interface, Capabilities, Service Data, Service Architecture, Service Contracts, among others, until 

all logical components are supported by software services. 

The 4SRS method takes as input a set of UML Use Cases describing the user requirements 

and derives a software logical architecture using UML Components. The logical architecture is 

then refined trough successive 4SRS iterations (by recurring to tabular transformations), 

producing progressively more detailed requirements and design specifications. An overview of the 

approach is depicted in Figure 88. 
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Figure 88. Recursive architectural model transformations for service design 

  

Each module could have sub-domains, which was responsibility of the assigned team to 

identify them. At this point, it was also important to identify dependencies and flows between 

domains for performing aimed business processes. The modeling support for this exercise can 

be, e.g., sequence diagrams as in Figure 89, where microservices regarding the sub-system were 

identified within the scope of a given business process. In fact, these diagrams are powerful tools 

for bordering the modules, as well as validating (not just the modules but as well the whole) 

architecture. Additionally, defining the sequence flows also supported eliciting communication 

specification between microservices. 

 

Designing microservices logical architectures in SoaML using the 4SRS-MSLA 

Resulting from the modularization, now each sub-system is refined independently. For that 

purpose, new UML Use Cases are identified, regarding only the sub-system, in order to refine the 

existing information. This section describes the steps that comprise the 4SRS-MSLA method 

(Figure 90), from where each UML component is initially specified. Next, these components are 

identified and their behavior derived in microservices (SoaML’s Service Participants), as also the 

channels and contracts between them. 
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Figure 89. Dependency between different teams 

 

 

Figure 90. Specifying microservices using 4SRS-MSLA 

 

The aim for using the 4SRS-MSLA is to have a logical view of the microservices’ internal 

behavior and communications, so that all the elicited functional requirements are met in the 

derived solution. The four steps of the 4SRS-MSLA are the following: 
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Step 1. Components Creation 

The first step regards the creation of three components, where the 4SRS-MSLA method 

associates, for each use case, a component for interface with users or systems (i-type), a 

component for the data model (d-type), and a component for logic/control of the microservice 

domain (c-type).  

Step 2. Components Elimination 

In the second step, components are submitted to elimination tasks. In previous versions of 

the method, the redundancy identification often includes components that are (functionally) 

similar but with different usage, which result in eliminating redundant components but defining a 

wider representation for the retained component. This often occurs within c- or i-types 

components. Nevertheless, the microservices principles suggest that the microservice has only 

one specific purpose, hence one may suggest that a component should be eliminated only if its 

purpose is exactly the same as of another one, and thus not eliminating any of them if their 

purpose is just similar.  

 

Step 3. Component Packaging / Microservice Identification 

The third step consists in grouping a set of components in packages, which further compose 

higher-level microservices. In 4SRS-MSLA, packaging is based in the use cases model obtained in 

the first-level refinement. Components, regardless of their category (i-, d-, or c-type), are assigned 

to one package (higher-level microservice) based in the process they relate to, or based in the 

non-leaf use case (that includes the leaf) originally derived from. Such packaging assures that the 

DDD pattern is followed.  

Step 4. Microservices Associations 

The associations between components are then generalized in order for depicting the 

associations between microservices. In a microservices context, these associations relate to 

service channels that exist in order to allow communication between microservices to support a 

given business process or information flow. This view is intended for identifying the need for such 

channels, regardless of the communication Pattern adopted, i.e., messaging between services or 

use of middleware such as API Gateways or lightweight message bus. Identifying such 

associations is based in descriptions from use cases (dependencies between functionalities at 
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user requirements level), as well as from the components themselves, during the execution of 

step 2.  

In this section, the inputs from the derived UML models by performing AMPLA and the 

4SRS-MSLA are used to model the SoaML diagrams and their components. The modeling so far 

allows deriving the microservices’ internal behavior, their data models, and the existing 

communications. These different concerns are included in different SoaML diagrams, in form of 

transition rules. These rules are grouped in ‘Boundary’, ‘Data’ and ‘communication’, as depicted 

in Table 21. 

 

Table 21. Transition from UML (within AMPLA) to SoaML 

Rule Input from UML Output in SoaML 

1. Boundary UML Packages Service Participants 

2. Boundary UML Packages Service Architecture diagram 

3. Boundary UML Components (within 

Packages) 

Service Capabilities (methods) 

4. Boundary i-types Separate web apps from Service Participants 

1. Data d-types Service Capabilities 

1. Communication 4SRS (associations) Service Participants (Requests/Services and Ports) 

Service Interfaces 

2. Communication UML Sequences Service Interfaces 

 

Each microservice identified within the 4SRS-MSLA method execution is represented as a 

Service Participant. Thus, the set of Service Participants compose the microservices architecture. 

The required invocations for the Participant (Figure 91) were identified based in the use case 

description, where the interactions with other use cases were previously described. Additionally, 

the same interactions allowed identifying the need for methods that call those services and the 

properties (data) within the Capabilities. 

It is during Step 2 of the 4SRS-MSLA that it is defined the expected behavior of the 

microservice. In order to align with typical composing layers of a microservice (UI, API, Logic and 

database), this approach proposes maintaining a general purpose description, but also the 

inclusion of HTTP verbs under which that component is called (used for defining «request» 

ports), the invocation of HTTP verbs required to consume services that are necessary in order to 
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fulfill its purpose (used for defining «service» ports), and the properties that compose the 

dedicated database of the microservice (input for Service Data).  

 

 

Figure 91. Participant with ports, interfaces and capabilities (methods/properties) 

 

In Step 3 of the 4SRS-MSLA, it is common that i-type components that relate to user 

interface (UI) actions are grouped together into one or more i-type components. This occurs 

because these components are typically part of a web application rather than a given consumed 

service. 

Data management 

In Step 3 of the 4SRS-MSLA, d-types may also be grouped if the goal is to centralize the data, 

as in the "shared database" pattern. Alternatively, they may be included in the package from the 

higher-level microservice they relate. This decision results in including within the microservice 

d-type components that are responsible for the related data access, which reflects an application 

of a "database per service". 

If the solution uses the shared database pattern, the MSLA is likely to have a dedicated 

package for d-type components, which must be assured when performing Step 3 of 4SRS, i.e., 

assigning a package to d-type components. This package is not transformed into a microservice, 

but rather is remained as a dedicated package (just like the UI package for web apps). If the 

solution uses the database per service pattern, d-types are assigned in Step 3 to a given service, 

i.e., any package except for the UI. Additional patterns are then followed, like “API Composition”, 

“Command Query Responsibility Segregation” (CQRS) and Saga. These patterns are out of the 

scope, but will be discussed in future research. 

Inter-service communication 

Defining inter-service communication is very complex during specifications, as some 
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clear during specification tasks. This section proposes defining such communication needs, by 

using inputs that may come from the 4SRS-MSLA method execution as from the sequence 

diagrams exercise (Figure 89). In terms of modeling, SoaML diagrams able to be used are the 

ones such as Service Architecture, Service Interface and Service Channels. 

From the 4SRS-MSLA, in Step 4 defining microservices associations should follow some 

constraints in order to prevent ineffective communication”. Figure 92 represents the associations 

and rules that this step has to follow for proper component association. On the left side, are 

represented direct associations between components within the same sub-domain (i.e., i-, c- and 

d-type components derived from the same use case), and, on the right side, the associations 

derived from use case dependencies. In terms of the required association rules, five rules are 

mainly applied. On the left side, if the three components are maintained, i-type should associate 

with c-type, and c-type associate with d-type(s) (Figure 92a). Next, associations with the ones 

exemplified on the right side should be assigned only to c-types (Figure 92a, b and c). Use case-

related associations between i- or d-types should only occur if any c-types were not maintained 

(Figure 92d). Finally, by applying these rules, there may be a case where only d-types were 

maintained. In this case, an analysis by the architect is required, since d-types usually respond 

(in CRUD actions towards data) to another component’s call. 

 

 

Figure 92. Defining associations between components 
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Participant’s service ports. Additionally, identifying needs for implementing CQRS refers to the 

dependencies between microservices, using the Service Architecture (Figure 93). It should be 

referred that both patterns are typically used only in “database per service” settings. 

 

 

Figure 93. Service Architecture 

 

The approach for a given communication pattern (API gateways, remote procedure 

invocation, messaging or a domain-specific protocol, etc.) is not yet defined in MSLA, rather it 

only defines the necessity of existence of a flow between microservices. However, any design 

decisions on adopting a given pattern may be directly included in the components specification, 

the ServiceChannels, or in Service Interface diagram (Figure 94). For these interfaces, besides 

defining the parameters of the exchanged data,  
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Figure 94. Service Interface 

 

the design decisions rely in whether the communication is synchronous or asynchronous. This 

decision will then support the protocol for brokerage to be used (e.g., REST and gRPC for 

synchronous, or MQTT, AMQP, OPC-UA or Kafka for asynchronous).  

 

Automatization 

The agility provided by a microservices architecture mainly provides from having an 

infrastructure that supports a proper continuous integration/deployment (CI/CD) pipeline of the 

microservices to a production environment. 

For this particular goal, obstacles refer to maximizing as possible CI/CD of the 

microservices, namely by performing a set of tests to the microservice. For this purpose, 

modeling may only provide some guidance on the expected behavior of the microservice.  

Components and associations are the required input for performing several types of testing, 

from unit to acceptance testing. Additionally, component testing is enabled by validating the 

microservice behavior as described its composing components. Service integration contract 

testing is enabled by validating the scenarios where services invoke other services. These invokes 

are represented as ServiceChannels by the associations described in Step 4. Diagrams such as 

Service Contracts or even UML Sequence diagrams enable the contract validation. 

 

5.4. Demonstration Cases 

Architecture Spikes: the iFloW case 

By revisiting what was discussed in the previous chapter about the iFloW project, it should 

be pointed out that iFloW is an R&D project between a University of Minho (UMinho) and Bosch 
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Car Multimedia Portugal (Bosch) consortium, that aims at developing an integrated logistics 

software system for inbound supply chain traceability (cf. Chapter 1). The main goal of the 

project is to develop a tracking platform that is backed by integrating information from freight 

forwarders and on-vehicle GPS devices. Main functionalities regard the control of raw material 

flow from Asian and European suppliers, and deviation of Estimated Time of Arrival (ETA) value.  

The elements from UMinho had no previous knowledge of the domain (in this case, logistics) 

or of the involved technologies, such as third-party service providers, GPS, EPCIS or SAP-OER. 

Thud, besides performing upfront gathering and documentation of organization’s 

(logistics-related) activities, to define terms, and to analyze flows, legacy software and data, 

Scrum Sprints often included performing spikes. Spikes, originally defined within XP, are a 

technique used for activities such as research, innovation, design, investigation and prototyping. 

Additionally, the team also performed architectural spikes, whenever required a deeper 

understanding of a design decision. 

 

Within the project, there was a concern of analyzing the performed software engineering 

disciplines throughout the Sprints. In this research, we use the terminology from RUP’s 

disciplines (only for demonstration purposes) to depicts the type of effort involved.  

In all Sprints, the need for updates to the logical architecture was assessed (within the Analysis 

& Design). Afterwards, the typical disciplines were carried out within the Sprints: Implementation, 

Testing and Deploy.  

The use of spikes in the iFloW project justifies the inclusion of the Requirements discipline in 

the each Sprint, as shown in Figure 95. These spikes were, in their majority, originated from 

middleware-based use cases (for instance, related to integration with third-party service 

providers, GPS, EPCIS or SAP-OER). 

Within the remaining use cases, the Requirements discipline was not required. Thus, in 

comparison with the disciplines included in Figure 95, the Sprint performed the remaining 

disciplines like illustrated with exception of Requirements. In fact, it is what indeed occurs in 

typical Scrum process (where almost every requirements-related effort is performed before Sprint 

cycles, like Sprint 0 or similar).  

 



Chapter 5 – Agile Logical Architecting using AMPLA 

 

208 
 

 

Figure 95. The performed disciplines within the Sprints 

 

At a given point in time, both Bosch and UMinho identified the need for refactoring the code 

and the architecture of the system, namely to cope with security and standardization issues. 

Such refactoring led to a pause in the implementation tasks. The software logical architecture 

was revisited and the impacts were analyzed. Some design-oriented spikes (similar to 

architectural spikes from XP) were conducted, which then followed the re-design of the 

architecture. In this case, there was a focus in Analysis & Design instead of Implementation (see 

Figure 96, where it is detailed the sixth Sprint. Similarly to the other Sprints, this effort also lasted 

four weeks. This effort was required in this case but it may occur, or not, in any project. 

 

 

Figure 96. The performed disciplines within the architectural spike Sprint 
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Agile logical architecting: the UH4SP case 

The UH4SP project is the demonstration case that encompasses the modeling result of the 

agile architecting lifecycle (AAL) presented in Section 5.2, which analyzes the evolution of an 

architecture for a software initiative throughout SDLC stages, from an enterprise level to the 

deployment of software components. The UH4SP artifacts presented in this section relate to the 

three main stages of AAL: Grooming, Backlog and Delivery. During these stages, the architecture 

evolves within different viewpoints, which are directly related between them (Concepts, 

Information Systems, Software Systems and Infrastructure).  

The Conceptual architecture, due to the I4.0 nature of the project, relied in identifying 

concerns aligned with Industrial reference models like Industrial Internet Reference Architecture 

(IIRA) and Industrie 4.0 Reference Architecture Model (RAMI 4.0). By analyzing its layers, for 

instance within IIRA, the management of corporate-level production, tools for collaborative 

processes within the supply chain and the microservices architecture refer to the Business layer, 

and the production data at the industrial unit level are acquired from a Manufacturing Execution 

System (MES), at the Operations layer.  

This separation reflected the intended adoption of layers relating to business management, 

intermediate management at a cloud layer, and industrial local management at an edge layer. 

Such adoption was reflected in terms of the reference models for the Reference Architecture, by 

adopting NIST Cloud Computing Reference Architecture (NIST-CCRA) for the cloud layer and 

OpenFog Reference Architecture for the edge layer. 

The information system architecture (Figure 97) is thus based in the same separation. At 

the industrial physical space level (D), operations take place and the interaction between the 

various actors and the system is verified through the various interface devices. It is at this level 

that operational information is generated to support the services to be made available by the 

system. At an intermediate level (C), typically located at the edges for each industrial unit, 

distributed capabilities, namely related to computation, networking, and storage and offered. At 

the cloud level (B), a service-oriented architecture is deployed to support horizontal functionality 

integration. Finally, at the top-level (A), business apps, either desktop web apps or mobile web 

apps, are the main interfaces with human actors. They use the cloud services to execute their 

processes. 
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For the logical architecture design, the functional requirements for supporting the business 

processes under the information system were elicited, since a logical architecture is an 

abstracted view of a system supporting functional requirements. The requirements analysis in the 

UH4SP project included gathering the requirements from a set of “to-be” scenarios and modeling 

a set of functional decomposed UML use cases. The Use Case model was composed by 37 use 

cases. This modeling work was based in the DUARTE approach, previously discussed in Chapter 

4. 

After executing the 4SRS method (Annex C), the logical architecture components 

(exemplified in Figure 98 and zoomed in Annex C) was derived with 77 architectural components. 

The components were grouped into five major packages, namely: P1 Configurations; P2 

Monitoring; P3 Business management; P4 UH4SP integration; P5 UH4SP fog data. The logical 

architecture diagram was then used to specify microservices, responsible for retrieving 

production data from local industrial units. The  

 

Figure 97. UH4SP information systems architecture 
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logical architecture is discussed in Chapter 5. This architecture was afterwards divided in a set of 

modules to be assigned to each of the project’s teams (Figure 99). 

 

 

Figure 98. UH4SP logical architecture derived after 4SRS execution 

 

The modularization depicted in Figure 99 originated five modules/subsystems, each 

assigned for ‘Team A’, ‘Team B’, ‘Team C’, ‘Team D’ and ‘Team E’. The bordering was based in 

the contributions that each team brings to the consortium, namely IoT, cloud infrastructure, 

cloud applications and sensors/embedded systems. Each border is thus a part of a complex 

ecosystem and the dependencies are depicted in Figure 99.  

‘Team B’ was the focus of this research. During the first “Just-enough” modeling, there were 

37 use cases and 77 architectural components after performing the 4SRS method. After 

modularizing, 11 use cases from the 37, and the 15 components from the 77, compose the 

module under analysis. Finally, the requirements refinement output 29 use cases, i.e., 18 refined 

functionalities, which then derived 37 architectural components from the 4SRS method. Having 

in mind the large-scale and complex ecosystem context of the project, these values may be 

perceived as acceptable. It is an increase of almost three times as the original models.  

The refinement was performed incrementally and in parallel with team’s Sprints (using 

Scrum). The requirements were refined, modeled and validated with the consortium, and only 

afterwards were input for the 4SRS method. The requirements validation was thus iterative as 

well. In UH4SP, after modeling in UML Use Cases, the requirements package was also 

composed with wireframes, to enrich the discussion. Additionally, in Scrum’s Sprint Retrospective 

ceremonies, these models were object of feedback, and, if applicable, missing requirements were 

included. These validations were crucial in the project to enable a complete team buy-in.  
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After the 4SRS method, those five use cases derived 11 components. The MVP was 

implemented at the end of these Sprints, which was composed by 94 components. These 

components supported the project’s pilot scenarios. However, next releases in order to follow the 

product roadmap are to be developed. 

 

Each modularization may be refined. Flow between components (including components 

from different modules) are validated by modeling some processes. Dependencies can be 

depicted using, e.g., A-type sequence diagrams, namely some functionalities that must be 

implemented and executable in order for other functionalities to proper execute. In fact, this 

variant sequence diagrams pare powerful tools for bordering the modules, as well as validating 

(not just the modules but as well the whole) architecture. 

 

Figure 99. The modularization of the logical architecture 
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It must be assured that a module has composing software components that, together, 

deliver working software. Only if the set of components are able to deliver working software, it is 

also possible to perform acceptance testing and, afterwards, integration testing within the code 

deployment.  

We applied filtering and collapsing techniques to the border that relates to the components 

within the module. These techniques redefine the system boundaries, which now regards only 

the given module as a subsystem to be designed. During the filtering process, all entities not 

directly connected to the module must be removed from the resulting filtered diagram. 

Inside the system border defined for the given module through the respective coverage, the 

components were maintained as originally characterized. The components with direct 

connections to the module are maintained, and the ones without direct connection are removed. 

Figure 100 depicts one of the UH4SP sub-systems, namely the one composed with fog related 

functionalities. 

 

 

Figure 100. UH4SP sub-system 

 

The transition from the software system logical architectural diagram to the service use case 

diagram is performed by applying defined rules (Machado, Fernandes, Monteiro, & Rodrigues, 

2006). An inbound (software) component is transformed into a (service) use case of the same 

type. By inbound we mean that the element belongs to the partition under analysis. On the other 

hand, an outbound (software) component is transformed into an actor, representing an external 
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software component that interacts with the (service) use case, for instance, through messaging or 

APIs. The service use case diagram are depicted in Figure 101. 

 

 

Figure 101. Refined use cases resulting from the model transformation 

 

The use cases are then used as input for a recursive execution of the 4SRS (Machado et al., 

2006). The recursive execution of the 4SRS method is composed with the same steps as the 

previous execution, with the difference that at this point the addressed requirements relate to 

refined functionalities. This section describes how to use the 4SRS within the design of the 

microservices architecture. With that purpose, the 4SRS is used to derive services based in use 

cases. The front-end apps used within the monitor and configuration of the fog infrastructure, 

namely its computation and storage, is not described since it is out of the presented partition. In 

this case, the 4SRS must derive typical software components rather than software services. 

Each microservice identified within the 4SRS method execution is represented as a Service 

Participant. Thus, the set of Service Participants compose the microservices architecture. The 

required invocations for the Participant (Figure 102) were identified based in the use case 

description, where the interactions with other use cases were previously described. Additionally, 

the same interactions allowed identifying the need for methods that call those services and the 

properties (data) within the Capabilities. 
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Figure 102. Participant with ports, interfaces and capabilities (methods/properties) 

 

The Capabilities of a given service are applicable for a Database per service scenario. On the 

other hand, Capabilities of services that include representation (micro-step 2.v) as well as the 

services with association (further in Step 4) are applicable for a Shared database scenario.  

A given ServiceChannel is related to a service associations from the 4SRS (step 4). They 

allow that services can consume or provide other services. Within SoaML diagrams, these 

associations provide input for the Service Interface or Contracts between services, and a Service 

Architecture with the definition of provided and consumed services (Figure 103). 

 

 

Figure 103. Service Architecture 
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The Service Architecture includes the other services that are consumed. Additionally, 

microservices are consumed by exposing an API. Hence, it is not specified in this diagram any 

particular service but rather the «Microservice API» stereotype of service interface (the 

specification of such extension to the metamodel is out of the scope of this thesis).  

This API is also referred in the Participant diagram, which supports the service ports Get 

Plant Data API and Put Plant Data API. The remaining consumed services are represented in the 

request port.  

The Service Interface diagram (Figure 104) refers to one of the interfaces included in the 

Service Architecture. It shall be noted that the use of tools such as API Gateway or Enterprise 

Service Bus and the representation of the associations between services in such scenarios are 

out of the scope of this thesis. 

 

 

Figure 104. Service Interface 

 

Finally, the deployment of the functionalities were also addressed. For that reason, the 

Deployment Architecture depicts the deployment location of the applications. The deployment 

architecture for the UH4SP project is depicted in Figure 105: (a) UH4SP business apps layer, 

either desktop web apps or mobile web apps, are the main interfaces with human actors; (b) 

UH4SP integration layer, located at the edges for each industrial unit, distributed capabilities, 

namely related to computation, networking, and storage; (c) UH4SP cloud services layer, a 

microservice-oriented architecture; and (d) local industrial unit system layer, where operational 

information is generated.  
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Figure 105. UH4SP deployment diagram 

 

A cloud infrastructure is responsible for supporting the deployment of UH4SP services, the 

required computing, virtualization and storage needs. Developing the infrastructure required for 

meeting the deployment needs included infrastructure tools for assuring communication between 

industrial units and cloud services  and between bussiness apps and the cloud services layer, but 

also for promoting the continuous integration and delivery of the microservices architecture. Such 

infrastructure is composed by a set of software tools, depicted in Table 22. 
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Table 22. Deployment setting for UH4SP 

Infrastructure/deployment  Used software tool 

Deployment Virtual machines 

Monitoring Kibana 

Factory gateway Node-Red + Mosquitto 

Cloud gateway Mosquitto 

Service discovery Fluentd 

Load balancer Elasticsearch  

Cloud resource management Terraform 

Cloud provider Microsoft Azure 

Configurations management  Ansible 

API documentation Swagger 

The 4SRS-MSLA in brownfield projects: the IMP_4.0 case 

The IMP_4.0 platform enables a software-house, F3M – Information Systems, SA, to optimize 

the development process for delivering solutions to their customers with tools to support all their 

decision-making processes. The solution is based on public and private clouds, which are 

interoperable with devices in an IoT and Cyber-Physical Systems (CPS) approach. 

The IMP_4.0 project is about an Enterprise Resource Planning (ERP) system for the textile 

production domain, where the focus is to support milling, weaving and clothing processes, by 

providing a set of reusable and integrated modules. Additionally, the platform’s development 

includes establishment of generic modules and variability management for enabling its extension 

to textile, footwear, cutlery, metal-mechanic, glassware and other sectors.  

In terms of development, the IMP_4.0 project included developing: 

 a set of management ERP-based features for the manufacturing sector to be delivered to 

customers cloud-based; 

 microservices for process execution; 

 shopfloor software services for manufacturing processes, e.g., the control of the production 

lines, instructions for cutting machines. 

 

The research is conducted within an F3M’s software team. The team was composed by one 

Product Manager, which owned the business vision, a team of four software architects and four 

analysts, that modeled requirements and executed the 4SRS-MSLA method, and two 
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development teams, responsible for implementing the resulting microservice architecture. The 

architects and analysts also performed the measurements within this research. 

 

Within the IMP_4.0 project, all software product management, from the identification of 

market needs, asset identification and releases management, was based on an initial domain 

engineering, where it was intended to characterize the processes of the spinning, textile and 

garment domains, in terms of commonalities and domain variabilities. 

The software requirements for the identified processes resulted in a specification of UML Use 

Cases. The Use Case model was composed by the following use cases, related to the ERP’s 

modules (Figure 106), namely Stocks; Sales; Purchases; Production; Planning; Outsourcing; 

Quality Control; Packing list; Finances; and Stakeholder Management. Additional use cases 

related to integration with cloud infrastructures were also included.  

Each use case was refined in functional decomposed use cases, resulting in 86 low-level (also 

called leaf) use cases, i.e., the ones that could not be further divided. The decomposition process 

ended when leaf use cases represented basic CRUD operations. The functional decomposition 

shows that the 10 bounded contexts were structured within the tree’s “branches” (Annex D). For 

representative purposes, Figure 107 depicts the functional decomposition related to Stocks.  
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Figure 106. Use Case model of IMP_4.0 project 

 

The next phase related to the execution of the 4SRS method.  The 86 leaf-use cases were 

used as input, which allowed deriving 140 components after creating (Step 1) and 

eliminating/maintaining the components (Step 2). Next, component packaging (Step 3) 

formalized the identification of the microservices within the architecture, as well as their interface 

between web applications (ERP modules) and the MSA.  
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Figure 107. Use case refinement of {UC1} Stocks 

 

Based in the first-level of use cases, the MSLA is composed by the following microservices: 

Stocks; Sales; Purchases; Production Orders; Bills of Materials; Planning; Outsourcing; Quality 

Control; Packing list; Checking Accounts; Banking; and Stakeholder Management. Step 4 allowed 

identifying the required flows between the derived microservices. The general microservice 

identification and inter-service communication result, by collapsing the components, is depicted 

in Figure 108, while Figure 109 depicts the specific component behavior for the particular Stocks 

microservice. 

From the initial 86 use cases, the application of the 4SRS-MSLA allowed to specify 140 

components, from where the IMP_4.0 project MSLA derived to 12 microservices. It would be 

very difficult to design an architecture composed with such detail on components without the 

support of an architectural method such as the 4SRS.  

 

In terms of MSLA implementation, at the time of this research, two parallel teams already had 

developed 6 microservices, of the 12 resulting from the 4SRS-MSLA, and their corresponding 
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web applications. Namely, the deployed microservices are Stocks ({P1}), Purchases ({P2}), Sales 

({P3}); Production Orders ({P4.1}), Bills of Materials  

 

Figure 108. IMP_4.0 MSLA overview (with collapsed components) 

 

({P4.2}), and Checking Accounts ({P9.1}). As teams were developing each bounded context 

(microservice and web app), the domains were iteratively validated and, whenever a domain was 

implemented, their communication was also validated so the business processes were 

incrementally supported. 

 

 

Figure 109. The IMP_4.0 Stocks microservice 
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Microservices deployment using the 4SRS-MSLA: the IMSPM case 

The last demonstration case is different from the remaining, whereas it is an internal project 

at a software company called i2S Insurance Knowledge, S.A., located in Porto, Portugal. One of 

the applications used in i2S, called Internal Management System of Project Management 

(IMSPM), in recent years has had to increase new functionalities, which has led to the application 

to grow from two modules (customer management and proposal management) to six. This 

increase in functionality was accompanied by an increase in the load on the system, number of 

users and number of accesses. 

 

In project management it has been found that there are several tasks during the execution 

of this process that are performed by different people in the organization. For this representation 

a use-case diagram was used, identifying the different actors that intervene in the process. The 

use case of Figure 110 represents an external view of the system and graphically the actors 

associated with the use of the application. 

Additionally, as part of the artifacts included in the AMPLA process, an A-type sequence 

diagram was modeled, referring to the business processes and the dependencies among them 

that compose the ISMPM problem domain. In addition, the diagrams depicted in Figure 111 

allowed an upfront understanding of how the microservices were going to communicate. 

 

 

Figure 110. IMSPM Use cases diagram 
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Figure 111. IMSPM Sequence diagram 

 

After performing the 4SRS-MSLA (Figure 112) to the modeled use cases, the MSLA was 

derived. A zoomed version of the 4SRS table is depicted in Annex E. Each use case relates to a 

business domain, thus each one resulted in a microservice. Then, the 4SRS-MSLA was used to 

model the components included within the microservices. Thus, the microservices are Project 

Opening, Billing, PPR, Service Request, Change Request, Project Forecast, Sage Invoice 

Integration, Budgets, Resource Forecast, Customer Billing, and Project Closure. A simplified view 

of the microservices, without providing component information from each microservices, is 

depicted in Figure 113. Annex E also includes a zoomed version of the MSLA. 

 

 

Figure 112. 4SRS method execution within ISMPM project 

 

As described in Section 5.2, the logical viewpoint should be complemented with additional 

architectural views. In this project, the logical viewpoint was design together with the deployment 
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viewpoint, which allowed specifying the infrastructure that would support the microservices 

architecture execution and deployment. 

 

Figure 113. IMSPM MSLA model 

 

The deployment viewpoint is typically adopted in these kinds of projects, as mainly 

contributing to specify how the infrastructure will promote the automatization that the 

microservices architectures paradigm ease and that contribute to the “continuous” agenda of 

software development, which includes continuous testing, integration, deployment and delivery as 

well as DevOps. 

Figure 114 depicts the deployment diagram for the IMSPM project. Since each microservice 

will be executed in one different (Docker) container, that layer refers to the designed components 

from the logical viewpoint, i.e., the MSLA. Remaining layers refer to applying other widely 

adopted microservices patterns – application patterns (namely, database per service, client-side 

UI composition), application infrastructure patterns (namely, messaging, circuit breaker) and 

infrastructure patterns (namely, service per container, service registry and API gateway). Such 

design was afterwards operationalized under a set of software tools, which compose the 

continuous delivery setting. This setting is depicted in Table 23. 
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Table 23. Deployment setting for IMSPM 

Infrastructure/deployment  Used software tool 

Deployment Docker containers 

Monitoring Portainer tool 

Version control Gitlab 

Continuous delivery Jenkins 

Inter-service communication HTTP 

API documentation Swagger 

API Gateway Ocelot 

 

 

Figure 114. IMSPM Deployment diagram 
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Finally, it is worth referring that the MSLA is able to define the scope of development work 

for each microservice. Figure 115 depicts the scope of eight microservices (the remaining four 

were not defined as priority for now), referring that, for implementing a given microservice, the 

scope of the work refers to the components covered by a spot within Figure 115. Namely, the 

spot not only may cover the components from the microservice, but also, if applicable, cover 

work to be done related to service communication necessary for the microservice proper 

execution. Thus, if it is identified that a microservice needs to invoke another microservice for its 

own purpose, one or more components from another microservice (typically, the ones related to 

interfaces or APIs) must be covered by the spot. Only when all the components from the spot are 

implemented, it is possible to properly test the microservice and deploy it. 

 

 

Figure 115. Spots representation of the ISMPM MSLA model 

 

Discussion 

Candidate architecture design using the 4SRS method  

Especially when new technological paradigms arise, stakeholders have many difficulties in 

eliciting technical design decisions. In opposition to waterfall-based frameworks, where all the 

requirements and design tasks are performed only upfront, within ASD projects these tasks 

should be performed continuously.  

Starting from understanding the problem domain and existing references, the architect is 

able to specify functionalities and design a logical architecture. This logical architecture then 

allows defining a Backlog that scopes the software development in an ASD manner.  
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AMPLA provides a method for deriving a candidate logical architecture based in UML Use 

Cases, the 4SRS method. There is not any difference within the steps of the method, in 

comparison with the original method, to derive a candidate architecture. Rather, as the input are 

high-level requirements in opposition to more refined ones, one may experience difficulties in 

identifying a proper classification of the use case in order to decide the components to be 

maintained within the second step, since a more refined information helps in better define the 

component’s nature. However, as in AMPLA the requirements will be later refined and will 

emerge, the 4SRS method is used as in a “living table” that is opened alongside the development 

Sprints, rather than a waterfall-based and one-time-execution approach, providing traceability 

between the requirements and the components in order to agilely respond to changes. 

 

Incremental design for refining the logical architecture 

In the UH4SP project, architecture design followed an incremental approach. Five teams 

composed the project. However, this research focused in only one team. After modularizing, 11 

use cases from the 37, and the 15 components from the 77, compose the module under 

analysis. Finally, the requirements refinement output 29 use cases, i.e., 18 refined 

functionalities, which then derived 37 architectural components from the 4SRS method. Having 

in mind the large-scale and complex ecosystem context of the project, these values may be 

perceived as acceptable. It is an increase of almost three times as the original models.  

The refinement was performed incrementally and in parallel with team’s Sprints (using 

Scrum). The requirements were refined, modeled and validated with the consortium, and only 

afterwards were input for the 4SRS method. The requirements validation was thus iterative as 

well.  

After modeling in UML Use Cases, the requirements package was also composed with 

wireframes, to enrich the discussion. Additionally, in Scrum’s Sprint Retrospective events, these 

models were object of feedback, and, if applicable, missing requirements were included. These 

validations were crucial in the project to enable a complete team buy-in.  

 

Architecture evolution and management 

The hybrid ASD performed in the iFloW project included a joint use of models within (Scrum) 

Sprints, combining UML Use Cases for requirements and UML Components for the logical 

architectural design. Besides providing an organization on the set of components, the logical 
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architectural model was additionally used for depicting the relationships among components 

suggest dependencies that affect the implementation of functionalities and their inclusion in the 

further Sprint Backlogs (cf. Section 4.5). 

During Sprints, the software logical architecture was revisited and the impacts were analyzed at 

the end of each iteration, in order to predict refactoring efforts. Additionally, when a change was 

identified, the logical architecture representation allowed analyzing which components are 

targeted with impacts from those changes.  

 

Later, within the UH4SP project, the method for logical architecture assessing was revisited, 

namely with a focus in component traceability. 

Defining a traceability method for supporting CIA for architectural decision-making from 

feature adding and changing arose many challenges. We believe that the model traceability 

between architecture and requirements strengthened AMPLA in a sense of architecture 

maintenance during ASD. However, implementing the method was a learning process, with 

advantages and disadvantages, which are detailed in this section. 

Applying CIA within AMPLA allowed supporting architectural decision-making with the 

following advantages: 

Identify architecture value proposed for change: is a feature is proposed for change, 

traceability to architectural models allows identifying if that change affects components that are 

ASR’s, if the requirements relates to a high customer value feature or if it relates to an imposition 

from standards and policies compliance. 

Depicting dependencies: revisiting the 4SRS method execution allows identifying 

dependencies with other components from architecture, which are affected by a given change  

Adding and refining requirements: the decision to add or refine requirements - either derived 

from new needs from stakeholders or from technical debts - is eased by modeling the new 

requirements and derive the resulting new components by performing the 4SRS method. 

CIA practices validation: in this research, the presented scenarios included using all the CIA 

practices proposed in section 5.3 (ASR, Quality characteristic, Business and customer value of 

the requirement, which components are affected, Compliance with standards, Requirements 

emerge, and Managing architectural debt). 

 

However, applying the method faces some obstacles/disadvantages, namely: 
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Quantity of models for Sprint 0 and refinements: AMPLA proposes activities and artifacts for 

modeling (sequence, use cases, 4SRS and components diagrams) that are additional to typical 

work in Sprints, which may be perceived as a disadvantage. However, the method provides 

traceability between models, which eases agility of analyzing changes.  

Need for revisiting a set of models within each change: whenever a change is proposed, CIA 

may result considering changes in more than one model (e.g., change use cases, then perform 

4SRS and derive new logical architecture), which can be time consuming.  

 

It also needs to be pointed out some threats to validity of this research, namely: 

Method’s learning curve: AMPLA was only applied by the method’s designers, thus it was 

not possible to depict in the UH4SP project any possible data regarding the adoption of the 

method by other teams.  

Team’s involvement: it was difficult to commit the entire UH4SP consortium towards the 

approach. The candidate architecture was proposed and the sub-systems delivered to all entities, 

however it was not possible to assess CIA and possibly identify new change scenarios besides 

the one’s our team addressed. Other teams used Scrum for their sub-systems but did not follow 

a refinement approach like AMPLA, thus the traceability was not assured.  

Newly-formed team: the fact that it was a completely new development team and, mainly, 

first time implementing microservices architectures, may have led to situations that the team was 

unable to identify a need for changing in how a microservice should have been implemented and 

hence reporting such change during Sprint Reviews.  

Identified practices: Although the scenarios refer to three different change needs - in fact 

other changes were proposed during the UH4SP project, but they fell under the scope of these 

three scenarios, thus for demonstration purposes they were already represented - it is impossible 

to assure that additional scenarios may occur in the future that require other CIA practices than 

the ones here proposed. The proposed CIA practices were based in the scenarios, and the 

literature review did not perceived the need for additional practices, however missing practices 

cannot be ruled out. 
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Microservice modeling in SoaML 

The research in microservices architecture design using AMPLA encompassed the settings 

where projects from such nature, namely breaking legacy and monolith systems (brownfield) and 

greenfield projects. IMP_4.0 and IMSPM for brownfield and UH4SP for greenfield 

 

The proposed 4SRS-MSLA method was used in a project setting where a software team from 

F3M aimed to break an existing monolith application to microservices, but struggling to define a 

proper strategy. Although the application was structured in modules, its processes were deeply 

dependent and data models between the modules were shared. 

The application of the presented method had as main contributions to the F3M team in: 

 Identifying the required domains for decomposing the existing F3M’s monolith application 

into a set of microservices;  

 Providing a modeling support for specifying the intra-service behavior, after identifying 

required i-, c- and d-type components required for the microservices; 

 Depicting required separations with the web app interfaces and the data models, when 

packaging i- and d-type components; and 

 Identifying inter-service communication and messaging that a microservice requires to 

perform its mission. 

Additionally, it is also worth referring some additional advantages of the method reported 

during the IMP_4.0 project. Although not included explicitly in the method, the models were 

origin of some discussions about MSA development and deployment, as following. 

 Database architecture: the decisions regarding d-type components after performing 

Steps 3 and 4 of 4SRS-MSLA originated discussions about if the service had shared 

database with another service rather than a dedicated one. Deciding which package in Step 

3 for a given d-type, or use case flow-related associations to d-types, were the main reasons 

for starting those discussions.  

 Querying (API Composition and CQRS): The dependencies between microservices from 

the associations in Step 4 and depicted in Service Channels or service ports were input for 

discussions of patterns like API Composition, Command Query Responsibility Segregation 

(CQRS) and Saga. 

 Testing: Component testing is enabled by validating the microservice behavior as described 

its composing components. Service integration contract testing is enabled by validating the 
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scenarios where services invoke other services. These invocations are represented as 

ServiceChannels by the associations described in Step 4. This testing and valuable for a 

proper continuous integration/deployment (CI/CD) pipeline.  

 Communication style: The MSLA only defines the necessity of existence for a flow 

between microservices. However, any design decisions on adopting a given pattern (API 

gateways, remote procedure invocation, messaging or a domain-specific protocol, etc.) may 

be directly included in the components specification. 

Nevertheless, the method still has its limitations. In terms of database partition, the derived 

model was still far from the required specifications on implementing distributed relational and 

non-relational databases, mainly regarding consistency problems. 

 

In the UH4SP project, stakeholders elicit requirements regarding front-end functionalities, 

since they are more aware of the business and not so much of the technology. Hence, starting in 

modeling a logical architecture based in business requirements allowed using stakeholder inputs 

for an initial stage and afterwards refine the information necessary to specify the MSLA. 

The UH4SP was composed by five teams, where each one was assigned to a module from 

the architecture. Since a module could have one or more microservices, this research allowed 

validating loosed development from different teams. Sequence diagrams were also useful for 

discussing and developing microservice communications that were developed by different teams. 

As a disadvantage, the diagrams were only the starting point for developing and deploying 

the microservices. In terms of data management, inter-service communication, 

messaging/brokers, deployment and infrastructure, the diagrams do not provide still the 

necessary detail for implementing application, infrastructure application and infrastructure 

patterns (Richardson, 2018). 

 

5.5. Conclusions 

Agile Architecting Lifecycle (AAL) encompasses software design that evolves from 

architectural, mechanistic, and detailed design to development and deployment. The AAL 

pathway goes through three stages: Grooming, Backlog and Delivery. Throughout the stages, the 

architecture is designed under eleven viewpoints, grouped in categories of Concepts, Information 

Systems, Software Systems and Infrastructure. The viewpoints are more suited depending on the 

stage they are performed. 
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Grooming encompasses most architecture design. Starting from understanding the problem 

domain and existing references, the architect is able to specify functionalities and design a logical 

architecture. This logical architecture then allows defining a Backlog that scopes the software 

development in an ASD manner. As software increments are developed and the architecture 

emerges, the Delivery stage encompasses design at the deployment level.  

Microservices architectures are seen with great advantages in software development, and 

especially for cloud applications. Although its advantages, teams struggle with properly designing, 

developing, and deploying this technology. Performing traditional techniques in software 

engineering, in terms of requirements modeling, is still far from providing a proper level of detail 

for developing microservices. However, there is room for specifying services based in the elicited 

requirements.  

This research proposed defining a method for deriving a microservices logical architecture 

from functional requirements. The method has as input an UML logical components diagram, 

where domains (DDD) were identified within the architecture. That information was used for 

iterative refinement of the architecture, enabling deriving microservices specifications, afterwards 

modeled in SoaML diagrams, which are complementary for a proper specification of 

microservices behavior and associations, such as Service Participants and Contracts. The 

traceability associated to 4SRS-MSLA method assures an alignment between the initial Use Case 

model and the derived architecture proposed solution. The 4SRS-MSLA steps were adapted to 

meet widely known microservices characteristics.  

 

This chapter discussed the agile logical architecting topic addressed within the AMPLA 

process. This research also included a discussion on describing agile logical architecting by 

proposing an architecture classification framework. With inputs from business needs and 

software requirements – using “Decomposing User Agile Requirements ArTEfacts” (DUARTE) - 

the candidate logical architecture is derived from the 4SRS, in form of a V-model-based model 

derivation. As key results for this topic, this chapter proposed: 

 AAL pathway with three stages: Grooming, Backlog and Delivery. 

 Adaptations of the 4SRS method for candidate logical architecture design contexts. 

 

This chapter also addressed Backlog and Delivery stages of the AAL pathway, namely how 

the candidate architecture is incrementally refined throughout (Scrum) Sprints, aiming to provide 
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required component specifications for software addressing from development teams. Such 

addressing during Sprints was also continuously managed, where this research proposed 

traceability mechanism for allowing an impact-analysis in aspects such as ASR, Quality 

characteristic, Business and customer value of the requirement, Which components are affected, 

Compliance with standards, Requirements emerge, and Managing architectural debt. The 

iterative refinement of the architecture is used for deriving microservices specifications, by 

proposing the 4SRS-MSLA, allowing to model SoaML diagrams. As key results for this topic, this 

chapter proposed: 

 Architecture refinement within Sprints 

 Architecture evolution and management, with techniques of change-impact analysis 

 Modeling of microservices logical architectures (4SRS-MSLA) 

For multiteam projects, in LSA settings, the candidate architecture derived from the first 

execution of the 4SRS is used for modularization. Chapter 6 discusses how architectural modules 

from AMPLA are used to assign work to multiteams and support the evolution of models and of 

the developed software through inter-team management and communication. 

 

Further reading 

The “Agile Software Architecture” from Muhammad Ali Babar, Alan W. Brown and Ivan 

Mistrik includes several contributions in the topic of agile architecting, ranging from architecture 

design, combination with agile methods and change-impact analysis (Ali Babar, Brown, & Mistrík, 

2014). 

Designing microservices architecture includes addressing the services’ scope, database, 

inter-service communication, security, observability, among others.  Kasun Indrasiri and Prabath 

Siriwardena discuss a plethora of concerns and technologies for different approaches on 

designing, developing and deploying microservices architectures (Indrasiri & Siriwardena, 2018). 

Additionally, Richardson presents patterns and anti-patterns on developing microservices 

(Richardson, 2018). 
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This chapter discusses how the logical architecture model from the previous 

chapter is able to support teams’ management in an LSA setting. The approach 

proposes an architecture modularization, where the modules encompass the work 

scope of different teams. Afterwards, the chapter describes how the models 

regarding the module are basis for inter-team management and communication. 

The same models are the starting point for deriving product backlogs, whether 

based in use cases, user stories, or other items. The chapter includes three 

demonstration cases, one regarding the use case-driven backlog case, and two 

regarding the user stories-driven backlog cases, as well as a discussion of the 

results. This chapter ends with the conclusions.  
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Chapter 6 – Inter-team management within an LSA process 

based in logical architectures 

 

“Depending on where you’re looking,  

one person’s system is another’s subsystem” 

Grady Booch, co-author of UML 

 

6.1. Introduction 

Digital transformation of businesses has increased the rate of creation of new software 

ecosystems. Additionally, software solutions allow third-party integration (e.g., using Application 

Programming Interfaces – APIs) towards full support of the supply chain. Many times this means 

that software development teams are no longer developing software “alone”, rather cooperating 

with distributed teams belonging to other companies. While agile software development (ASD) 

has been adopted to optimize how a team delivers software, its use in scaled and distributed 

(i.e., not co-located) contexts is still object of research, with some emphasis in planning and inter-

team coordination (Moe & Dingsøyr, 2017). 

Software development processes in these contexts need to address how software delivered by 

a team fits in the overall solution, but also how teams must define their boundaries, interfaces, 

dependences and priorities. Only then, it is possible to apply ASD practices at scaled context, i.e., 

the concept of “large-scale agile” (LSA) (Dingsøyr & Moe, 2014). 

Managing projects that include multiple teams is a complex task in large-scale software 

projects. The process of delivering software using more than one development team, often 

distributed, faces issues of dependencies, boundaries, coordination and/or synchronization. The 

challenges of making decisions, setting goals, communicating, building trust and managing the 

team are far harder (Owen, 2016). With ASD, such task had to be rethought (Dingsøyr, Bjørnson, 

Moe, Rolland, & Seim, 2018).  

In process management, architectures are an artefact capable of supporting a set of 

coordination decisions. Additionally, architecture is a central artefact when scaling up agile 

methods, as it is explicitly present in popular “commercial” LSA frameworks, like Scaled Agile 

Framework (SAFe), Large-Scale Scrum (LeSS), Disciplined Agile Delivery (DAD), Scrum@Scale, 

Nexus or Enterprise Scrum. Communities such as Industrial XP include “Evolutionary Design” 
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practices, and “Spotify model” have specific architecting roles. “Scientific” LSA proposals like 

Agile Product Line Architecting (APLA) (Díaz, Pérez, & Garbajosa, 2014), a tailored XP for large-

scale projects (Cao, Mohan, Xu, & Ramesh, 2004), or a hybrid RUP+Scrum (Cho, 2009) also 

include explicit architecture practices.  

Although acknowledging the importance of architecture in managing inter-team processes in 

an LSA context, these approaches lack of a structured approach for using such information to 

manage the software delivery process. Models are about presenting an abstraction of reality 

towards  a shared understanding of the problem, but a proper analysis allows depicting their 

input in assigning work, derive dependencies, and manage inter-team communication and 

coordination. 

This chapter describes how a logical architectural artefact is used as basis for managing the 

process of setting delivery boundaries, communicating the requirements, coordinating and 

synchronizing multiple teams. The approach presented in further sections is an integrating part of 

AMPLA, after the candidate version of the logical architecture is derived (cf. Section 5.3). 

 

The research addressed in chapter is the result of using a logical architecture diagram as 

basis for managing work of multi-teams in ASD and LSA settings, from architecture 

modularization, requirements communication and inter-team coordination. This study was first 

applied in ISOFIN and afterwards in UH4SP project. Then, this research addressed defining work 

instructions for these teams by deriving backlogs. First, using a use case-driven backlog in the 

iFloW project. Then, deriving user stories statements (in the ISOFIN project) and afterwards 

deriving other agile product backlog items (in the UH4SP project). In addition, in the UH4SP 

project, the derived product backlog progress was monitored using a set of agile metrics. The 

contributions of the projects are summarized in Table 13. 
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Table 24. Contributions of projects in candidate architectures 

Research contribution \ demonstration case UH4SP ISOFIN iFloW 

Modularization, coordination and communication 

from separation of concerns 

 X  

Modularization, coordination and communication 

from DDD bounded contexts 

X   

Use case-driven backlogs   X 

Deriving user story statements  X  

Deriving product backlog items X   

ASD metrics monitoring X   

 

This chapter is structured as follows:  

 Section 6.2 discusses architecture modularization, inter-team communication and 

coordination; 

 Section 6.3 describes approaches for backlog definition; 

 Section 6.4 describes the demonstration cases and main discussions around use case-

driven backlogs, LSA process based in logical architecture, and agile product backlog 

items derivation; 

 Section 6.5 presents the chapter’s conclusions;  

 The chapter ends with complimentary reading. 

 

6.2. On modularization, communication and coordination 

As described in previous chapters, the AMPLA approach is the process for architecture 

design, based on successive and specific artefacts generation. AMPLA is composed by discovery 

of user needs, A-type sequence diagrams, use case models, a logical architecture, feedbacks and 

issues, and the consequent software delivery. The artefacts are generated based in the 

information existing in previously defined artefacts. When software delivery begins, the process is 

performed in typical cycles, whether in Scrum, Kanban, or other frameworks.  

AMPLA has four established phases: (i) Requirements Elicitation (ii) Requirements Analysis & 

Modelling, (iii) Architecture Design, and (iv) Delivery Cycles. Chapter 4 covered phases (i) and (ii), 

while Chapter 5 covered phases (iii) and (iv). This section also describes team management-

driven work that is performed within phases (iii) and (iv).  
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The derived logical architecture from AMPLA’s V-Model is then the foundational artefact for a 

distributed agile team framework. The framework, depicted in Figure 116, addresses the 

architecture modularization, team assignment, dependencies, requirements modelling towards 

coordination and communication within distributed teams.  

 

Figure 116. Logical architecture-based distributed agile teams management framework 

Modularization 

Like in most cases, the best approach to issue complex problems is to divide them into 

smaller ones and address them one by one, ultimately addressing the big solution. With the 

purpose of modularizing the architecture, the logical architecture is partitioned into sub-systems. 

Properly addressing the boundaries across teams is crucial (Rolland, Fitzgerald, Dingsoyr, & Stol, 

2016). This is applicable for multiteams systems (MTS) (Mathieu, Marks, & Zaccaro, 2001). It is 

aligned with the feature teams concept (Larman & Vodde, 2008). A feature team works 

independently by being given the responsibility for a whole feature. One well-known case of 

assigning a subset of the architecture is the definition of Tribes in the “Spotify model” (Kniberg & 

Ivarsson, 2012). The framework in modularization is depicted in Figure 117. 

 The first concern in modularizing the architecture is in identifying architecture modules by the 

entities’ core competencies. Then, each team is assigned with a part of the solution (e.g., 
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repositories, etc.), “branch” from high-level Use Cases, or scenarios. In this research, use cases 

are grouped by the (sub-)domains (DDD). This means that each of the tree’s “branches” relate 

only to a given domain, which also assures that the contexts are properly bounded (Figure 118), 

allowing teams to work independently. Mapping the use cases to the components enables the 

identification of the module’s component coverage. 

 

 

Figure 117. Decision framework within Modularization 

 

 

Figure 118. Domain's and sub-domain's bounded contexts (DDD) 
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In Scrum of Scrums (SoS) literature, the distribution of work between teams shows that each 

team can self-assign them to any stories from the product backlog. The difference for this 

approach is that a team product backlog (TPB) is proposed, i.e., a subset of product backlog, at 

the outset. The predefinition of a subset (or a given feature) of the backlog is also present in 

approaches like SAFe, DAD, Enterprise Scrum, and Spotify model. In opposition, the team 

assignment of items from the backlog in LeSS, APLA, Scrum@Scale and Nexus do not follow any 

grouped stories or features. 

Hence, architecture modularization within this research aims at partitioning the logical 

architecture to define architectural subsets or a group of components will be assigned for a team 

to implement. It must be assured that a module has composing software components that, 

together, deliver working software. Only if the set of components are able to deliver working 

software, it is also possible to perform acceptance testing and, afterwards, integration testing 

within the code deployment. 

However, a module should be bounded not only by representing working software but by also 

assuring business value delivery. In this research, modularization applies the concepts of a 

Minimum Marketable Feature (MMF) (Denne & Cleland-Huang, 2003) and an Elementary 

Business Process (EBP) (Larman, 2004). An MMF is defined as a small, self-contained feature 

that can be developed quickly and delivered significant value to the user. EBP refers to a single 

task that adds measurable business value. A module should also be able to support at least one 

of the scenarios previously modelled in A-Type Sequence diagrams during the V-Model execution 

(including interfaces for components referring to inputs and outputs of the scenario). These 

decisions in mind output a selection for inbound components. The logical architecture is now a 

group of architectural modules, like a SoS. 

Then, with these decisions in mind, the components to be included in the module are 

selected. The logical architecture is now a group of architectural modules, as depicted in Figure 

119 as a group of “spots”. 
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Figure 119. Architecture modularization example 

 

The application of filtering and collapsing techniques (cf. Section 5.3) redefine the system 

borders. During the filtering process, all components not directly connected to the module must 

be removed. The inbound components are maintained. The components with direct connections 

to the module are maintained (as outbound), and the ones without direct connection are 

removed. The spot represents the sub-system borders, where the software components from the 

module, as well as the components that directly interact with the model. 

Inside the system border defined for the given module, through the respective coverage, the 

components were maintained as originally characterized. The components with direct 

connections to the module are maintained, and the ones without direct connection are removed. 

On the other hand, for representing the interfaces that are outside the system border, we 

adopted the UML notation for components, to represent inputs and outputs of the functionality. 

The component-based diagram uses a typical representation of UML component graphic nodes 

(OMG, 2009). A connector may be notated by a “ball-and-socket” connection between a provided 

interface and a required interface. 
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Figure 120. The module representation 

 

The outbound components relate to interface and communication (e.g., APIs) needs. 

Additionally, they derive dependencies between teams. The dependency is identified within A-type 

Sequence diagrams (see Inter-team management section). A given scenario is only feasible if the 

constituent components, inbound and outbound are implemented and integrated. Hence, only 

when the component or story meets its “Definition of Done” (DoD) / “Acceptance Criteria” (AC), 

the TPB item meets its “Definition of Ready” (DoR) to start the implementation. 

 

Communicating the requirements 

While a given team is responsible for delivering working software related to the assigned 

module, the associations between outbound components require that the team work together 

with other teams when the integration is needed. Along with managing the dependencies (see 

next section), a proper communication of “what” is being delivered by the team and required 

integration is also advisable.  

In MTS, global or co-located, the knowledge possessed by each other must be properly 

communicated with other team in interest. It is not an easy task, since many issues arise due to 

geographic, temporal, or sociocultural distance.  

Knowledge can be shared in Communities of Practice (CoP) - groups of experts who share a 

common interest or topic and gather to promote discussions (Paasivaara & Lassenius, 2014) – 

and other gatherings, meetings and informal meetups. 

 

2x

Example
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Shared Mental Models or mini demos (Bjørnson, Wijnmaalen, Stettina, & Dingsøyr, 2018; 

Dingsøyr, Bjørnson, et al., 2018), as well as Video and Audio conferences, online chat, 

documentation and email (Ahmad, Lenarduzzi, Oivo, & Taibi, 2018) are the most common used 

tools for communicating knowledge between teams. 

AMPLA seeks addressing knowledge sharing using models, where the main purpose is to 

design the artefacts related to implementing features, to be incorporated in the presented events 

and tools. The outbound components derived from the filtering and collapsing exercise in Figure 

120 allows identifying the dependencies. 

 

 

Figure 121. Requirements communication theory 

 

We propose an organization of the information, namely a multi-view perspective of the 

module to be delivered to implementation teams, the “What? and Why? Requirements 

Communication” (W2ReqComm) package. The W2ReqComm provides the development teams 

not only the information regarding the functionalities of the module but also to describe how, and 

in which scenarios, their future users will use them. This artefact is composed by the software 
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components from the logical architecture that compose the module and their interfaces with 

external modules.  

Additionally, the W2ReqComm includes information regarding the modules usage in the real 

world. Such information may be described though one or more scenarios, or by including a 

scenario representation through an A-type sequence diagram previously modelled. The scenario 

should include the functionalities that the module relates to, but also include the functionality 

belonging to another team module, in order to provide the implementation team with much 

context information as possible. An example of a W2ReqComm is depicted in Figure 122. 

 

 

Figure 122. W2ReqComm example 

 

Inter-team management 

The process for managing inter-teams development from this research aims identifying 

coordination needs for addressing dependencies between components, as well as structuring of 

roles and events. The coordination and management events involve team representatives – 

architects, PO’s, BO’s – instead of the entire team.  
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The identified dependencies trigger the discussions between the representatives, which base 

in the artefacts from Communication. Discussions take place in planned or unplanned events, 

using the available communication channels.  

It is also worth referring that dependency does not only relate to synchronizing a component’s 

DoD/AC to another component’s DoR. They are also used to define team interfaces, where, for 

instance, if one team has some doubts in implementing a component from a module boundary, 

practices such as CoP between the predefined representatives promote discussions in 

overcoming the given doubts. These associations for this phase are depicted in Figure 123. 

 

 

Figure 123. Inter-team management theory 

 

By modelling some processes to validate the flow between components (including 

components from different modules), e.g., using A-type sequence diagrams, dependencies can 

be depicted, namely some functionalities that must be implemented and executable in order for 

other functionalities to proper execute. In fact, A-type sequence diagrams are powerful tools for 

bordering the modules, as well as validating (not just the modules but as well the whole) 

architecture. 
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Coordination arenas, inspired by Dingsøyr et al. (Dingsøyr, Moe, Fægri, & Seim, 2018; 

Dingsøyr, Rolland, Moe, & Seim, 2017), structure how teams involve with each other, from 

collaborative tools, communication, chats, but also events (or ceremonies). These arenas are 

enablers for team cooperation, where the models are the core artefact within the discussion. 

 

6.3. Delivering work items 

As the presented framework addressed mechanisms for modularization, communication and 

coordination of multi-teams, this section rather addresses how a team under analysis manages 

and controls the work items that they have to deliver. 

In ASD approaches, these work items are a composing part of a backlog that the team uses to 

define the work to be done within the overall project/product and within a given iteration (e.g., a 

Scrum Sprint). 

This section introduces defining backlogs, and its composing items, from requirements 

models (namely UML Use Cases, Components and Sequence Diagrams) using rules that assure 

the backlog items cover the gathered requirements. 

This research addressed three possible ways to define a backlog from the requirements 

models: using a backlog composed by use cases directly from those models, deriving user stories 

statements from use cases and architectural components, and deriving additional backlog items 

(themes, epics, user stories, details and acceptance criteria). Each one is further described. 

 

Approach for using Use cases as basis for Scrum backlogs  

As already proposed in Section 4.2, one approach for delivering work items in a backlog is by 

composing it directly with the Use Cases modeled during Requirements stage (i.e., Initialization 

phase of the hybrid approach in section 4.2). 

These tasks are represented in a SPEM diagram in Figure 51, depicting tasks that output 

work products (Use Case Prioritization and Use Case Estimation) and deliverables, namely 

‘Project Scope’, ‘As-Is report’, ‘To-Be Report’ and the ‘Product Backlog’.  The Business Modeling 

results are documented in a report designated as ‘As-Is report’. Requirements results are 

modeled in the form of UML use cases. Design results regard the proposal of the logical 

architecture (UML component diagram). UML use cases (output of Requirements) and UML 

component (output of Design) diagrams compose the ‘Solution Requirements Specification’ that 
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result in the ‘To-Be Report’. Use case models are used as basis to define a ‘Product Backlog’. 

This kind of backlog is demonstrated further in Section 6.5. 

 

 

Figure 124. SPEM diagram for Initialization phase 

 

Deriving User stories from components  

Using logical architectures for establishing initial requirements allows to combine 

requirements from backlogs (that focus only on functional features) with the quality attributes of 

the software (Jeon, Han, Lee, & Lee, 2011). This research proposes including some upfront 

design in the set-up phase (e.g., Sprint 0, for Scrum projects) of the project - by some we do not 

mean BDUF, rather “just-enough” (Ambler, 2007) for a candidate architecture - and to use the 

architecture as input for an ASD approach (back to requirements again) to build almost the 

totality of the Product Backlog (illustrated in Figure 125). The 4SRS method allows deriving 

logical architectures aligned with the corresponding, and previously elicited and modeled, user 

requirements. A logical architecture is a view that primarily supports the functional requirements, 

taken mainly from the problem domain (Kruchten, 1995). The conventional version of the 4SRS 

method is typically applied in large-scale projects, but demands high quantity of information (use 

cases, textual descriptions), which is often time consuming and, in every way, misaligned with 

the general paradigm adopted by ASD. 
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Figure 125. Approach for delivering backlog items requirements 

 

The starting point for the User Stories derivation is the logical architecture diagram that 

results from the 4SRS method execution. In some cases regarding very large products, it is easy 

to see that these models can be extremely large and heavy to be analyzed as a whole, because 

these diagrams represent all the modules needed to run all desired functional requirements. 

Moreover, it is unlikely that, for large systems, only one Scrum team will perform all the work. In 

a model where there may be hundreds of modules, a Scrum team could take an amount of time 

not feasible with the needs of a dynamic market. 

Thus, deriving User Stories from the modules presented in the previous section allows that 

several Scrum teams can work in parallel, reducing the time required to implement and deliver 

the solution to the customer. 

The first critical decision related to the development of our approach was to understand what 

should be the relation between the components and the User Stories. In the 4SRS method, the 

components are derived through the decomposition of Use Cases in three different types 

(interface, data and control).  

In a first hypothesis, we decided to create one User Story for each components, as depicted in 

Figure 126. This decision intends to maintain the core principles for writing User Stories (i.e., the 

INVEST characteristics – Independent, Negotiable, Valuable, Estimable, Small and Testable). 

Additionally, it complies with the greater flexibility for the Product Owner to follow the team’s 

work. If the User Stories are always complex and require great effort to implement, there is the 

risk of diluting one of the main advantages recognized of agile methodologies: the ease of 

changing the direction of the team and the ability to see, in real time, which is state of 

commitment of the team to a Sprint. When implementing User Stories of great complexity, which 
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may occupy the entire Sprint, only one can draw conclusions about the speed and commitment 

of the team at the end of the Sprint, when work (supposedly) must be completed. These 

arguments all meet the characteristic of having small User Stories (Small) and, thus, simplifying 

the implementation effort estimation (estimable). 

 

 

Figure 126.Relation between Use Cases, Components and User Stories 

 

The information from the 4SRS method execution, mainly micro-steps 2i - "Use Case 

Specification", 2iii - "Component naming" and 2viii - "Component specification", together with 

the actors associated with each use case (where each component was derived) are key elements 

in the generation of User Stories, since in them are encapsulated information required to write 

User Stories respecting the INVEST principles. The proposed technique for deriving user stories is 

composed by three steps, as follows: 

Step 1 – Group Components. 

The first step is to group components and analyze their functionality and their interfaces. This 

step has as input the components from the logical architecture or, in case of an architecture 

modularization as the one presented in the previous section, from a given module. 

Step 2 – Analyze component specification and use case description 

In this step, we gather the information from micro-steps 2i - "Use Case Specification", 2iii - 

"Component naming" and 2viii - "Component specification" and the involved actor (by reversing 

to the use cases that derived the component). This step uses the traceability characteristic that 

the 4SRS method provides, by allowing to easily depicting the original use case. 

All these details of each component should be stored with the same structure to give input to 

create a “card” for each User Story, containing all the information needed to carry out its 

estimation and subsequent implementation. Thus, for each component is important to obtain the 
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following information: Name; Code; Type; Description; Package; Associations ; Direct 

Associations; UC Associations; Original Use Case; the Actors Involved; and the UC from the 

functional decomposition. 

Alongside this information, it is also important to depict if the component is part of more than 

one module. Regarding the teams that have habits to keep information always visible from User 

Stories (placing its features in physical format, often in the form of cards), it was created a User 

Story template that includes all information collected and previously listed, as well as some 

information that the implementation team will generate in grooming, as the number of Story 

Points, acceptance criteria, or any other comment that the team find relevant register and save.  

Table 25 depicts a template including the information needed for any stakeholder (from the 

customer / Product Owner to implementation teams). The completion of the card is also 

intended to be basic and quick as all information regarding the component and the Use Case is 

available from the execution of the 4SRS method, while information on the User Story is 

mandatory and is defined by the implementation team during grooming.  
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Table 25. User story card template 
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O
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s 

(Comments) 

 

Step 3 – Write the User Story  

This is the final step and where the effecting output of the process is generated. The 4SRS 

method execution, followed by an analysis on the derived diagrams and documentation, allows 

triggering the procedure for mapping a logical architecture to output a set of User Stories that 

comply with the INVEST principles. 

One of the great advantages of applying the 4SRS method to derive the component is that it 

quickly allows realizing the ultimate goal of the component: data manipulation, communication or 

logic operations, by reading the type of component. This standardization of component types 

simplifies the management of User Stories because, after all, they are centered on three very 

specific types of tasks. 

The "who", the actors involved and who will perform tasks on the User Story to implement, 

are easily identified by analyzing their User Story Card and looking for those involved in the Use 
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Case that derived the component (by executing the 4SRS method). As the logic surrounding the 

need to represent properties of systems in Use Case and  User Story is similar (to capture 

specific requirements in terms of interaction between users and system), it is easy to validate 

that those involved in the Use Cases will be benefited by the implementation actors Story of a 

particular User. 

Regarding the "what," you can also find a direct relationship between this component and the 

name of component. Firstly, it is necessary to find an action, represented by a verb, to identify 

what you want to implement. The division between components of control, and data interface 

simplifies this demand, since the component interface always refer to the creation of a specific 

interface and is therefore an action which is fixed and constant need for the existence of a 

communication interface for between component and / or actors. In most cases, the name of 

component only indicates what kind of interface is required. Thus, in cases of interface (i-type) 

components, the actors involved just need their existence in order to use them in their workflows. 

By using the name of the corresponding components, and using connections want/need to have 

(want/need to have), the connection between the "who" (actor) and what (action) is derived. In 

cases of i-type components that do not have this syntax, the central part of the User Story for the 

"what" is simply left to the information “want/need to have an interface”, and the title of the 

component (the actions that will take place using that interface) used as part of the "why". For 

data (d-type) components the process is similar, since they usually refer to the need of the 

existence of repositories/storage locations or interfaces for communication with such storage 

spaces. Thus, the construction of the User Story follows the same rule used in i-type 

components. 

Compared with the previous two types, control (c-type) components are disparate. They 

support the logic behind a system, representing all actions that can be performed by 

manipulating the data (represented by d-type components) and using interfaces for transmission 

(represented by i-type components). As they can represent any action on the system, typically c-

type components have associated a verb that represents the action that it performs. In this case, 

we are deriving information of a title for a sentence. Some kind of semantic correctness of words 

may be required, allowing the sentence to make sense. 

This approach allowed User Stories to fulfill their main purpose, which is to identify work to be 

done. 
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Deriving User stories and Product Backlog Items from Use Cases and 

Components 

In this section is proposed a systematic transformation of model-based requirements (UML 

Use Cases and Component diagrams) into ASD-oriented requirements, according to the backlog 

items. Leftingwell also describes software requirements approaches for agile teams (Leffingwell, 

2010). Additionally, he includes a metamodel for a common understanding on requirements 

information in agile product backlogs (Figure 127). The Agile Extension to the BABOK® Guide 

lists a variety of requirements artifacts and activities present in known agile frameworks (IIBA, 

2017) such as Scrum, XP, Behavior-driven Development (BDD), Kanban, and Agile Unified 

Process (AUP).  

It was based in these works that we defined the backlog structure that should result after 

performing a set of derivation rules. These derivation rules aimed a backlog that followed the 

path of Themes, then Epics, then User stories, then finally tasks. Each User story has associated 

Acceptance criteria (which gives the “Definition of Done” (DoD), and may have details that 

describe the requirements to implement the story in software. The backlog items are the 

following: 

Deriving Themes: A theme in a Backlog item relates to a generic concept. A theme in a 

Backlog item relates to a generic concept, realized by a set of Epics (Leffingwell, 2010). For that 

reason, a theme may be derived by the identified packages. In 4SRS, a package is identified for 

logically grouping a set of components from the architecture. 
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Figure 127. Agile requirements metamodel (Leffingwell, 2010) 

 

 

Figure 128. Rule for deriving Themes 

 

Deriving Epics: An epic describes a requirement that further needs to be divided (in a User 

Story). A User Story is considered to be smaller than a Use Case. Additionally, it is discussed that 

a Use Case contains a set of interrelated User Stories (Cohn, 2004).  For that reason, in our 

approach, this rule suggests that an epic is directly derived from a Use Case. Although this 

relationship is arguable, it is assured that this way the Epic item is stated in a Product Backlog, 

referring to a required development work. In addition, it needs further refinement before inclusion 

in a Sprint Backlog (which is basically what already happens, since an Epic is not able to be 

included in a Sprint Backlog unless it is refined in User Stories).  

 

Rule #1 – Themes

{P1]

Theme

Ref: {P1} 

{P1]
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Figure 129. Rule for deriving Epics 

 

Deriving User Stories: this rule proposes that the story creation should be based by each 

of the scenarios from a use case, which is in line with Cohn (Cohn, 2004) and Jacobson 

(Jacobson, Spence, & Bittner, 2011), for instance. The scenarios are identified in the use case 

description, namely as main flow and alternate flow (Cockburn, 2001). These flows in use case 

descriptions provide the business value of a given scenario from a use case, thus it related the 

requirements to the business value of the story. 

In what composing the user story statement is concerned, it follows the same set of rules as 

described in the previous section but, instead of including the component name, it includes a 

part of the (use case) flow that indicates the flow purpose. 
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Figure 130. Rule for deriving User Stories 

 

Deriving User Stories details: The inclusion of user stories in the backlog per se refers to 

“promises for a conversation” and not as actual requirements specifications. These specifications 

are commonly included separately within their ‘details’. The functional (and some of the non-

functional) behavior of the story is depicted by the software components responsible for executing 

the given functionality. These software components are identified by the 4SRS method execution, 

by tracing back to the use cases, which relate to user stories, as proposed in the previous rule. 

Another important aspect of the detail may be the context of use, which is depicted by scenarios, 

modeled in sequence diagrams as suggested during the modularization. This information can be 

gathered and described in plain text in an informal way. 
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Figure 131. Rule for deriving user story details 

 

Deriving Acceptance Criteria: The expected behavior after performing the use case 

scenario is described in the use case description, namely the post condition, in the template 

structure as suggested by Cockburn (Cockburn, 2001). 

 

 

Figure 132. Rule for deriving Acceptance Criteria 

 

The Definition of Ready checklist 

It is assumed that, since the components have been refined, they are in an improved situation 

to be now delivered for implementation. The combined view of user stories (along with their 

related use cases), software components and sequence diagrams (if applicable) allow initiating 
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the implementation, by its ‘definition of ready’ (DoR) (Power, 2014). DoR is a set of agreements 

that define if an item is sufficiently prepared so that a team can start to work on it.  

The combined view of the requirements models, in addition to the backlog derivation, must be 

validated on its ‘readyness’ for initiating the development iterations (e.g., Sprints), which is to say 

they meet DoR. Namely, the identification of the stories, acceptance criteria, dependencies and 

the integrated use of the stories (Table 26), mainly because allows understanding the “who”, 

“what” and the “why”. 

 

Table 26. Checklist DoR for a User Story 

DoR criteria Criteria Fulfillment 

User Story defined The fields for writing the statement (“As a…, I want to…In order 

to…”) are filled based on UML Use Case and Component 

information. 

User Story Acceptance Criteria defined   The Component information includes acceptance criteria. 

User Story dependencies identified The dependencies were identified within UML Use Case and 

Component diagrams. 

User Story sized by Delivery Team (independent from transformation rules output) 

User Experience artifacts are Done and reviewed 

by the Team 

The combined view includes UX/UI artifacts for each user 

story, or at least each Epic. 

Architecture criteria (performance, security, etc.) 

identified, where appropriate 

The logical architecture and its components are discussed 

during Grooming 

Person who will accept the User Story is 

identified 

(independent from transformation rules output) 

Team has reviewed the User Story (independent from transformation rules output) 

Team knows what it will mean to demo the User 

Story  

The ‘overall picture’ of the User Story was modeled in UML 

Sequence diagrams regarding the defined project core 

processes. 

 

6.4. Demonstration cases 

The aforementioned LSA team management approaches (modularization, coordination, 

communication and backlog item derivation – use cases, user stories from components, and 
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backlog items from use cases and components) are instantiated in this section within a 

demonstration case. The team management approach based in a backlog with use cases is 

demonstrated by the iFloW project. The team management approach based in a backlog built 

from the derivation of user stories statements is demonstrated by the ISOFIN project. Finally, the 

team management approach based in a backlog from the derivation of themes, epics, user 

stories and acceptance criteria is demonstrated by the UH4SP project. Additionally, this section 

includes demonstration of progress control, using a set of agile-oriented metrics, by a team from 

the UH4SP project that used the derived backlog items in their software development process. 

 

Team management approach based in a use case-driven backlog: the 

iFloW case 

Team settings 

In the iFloW project, Bosch mainly performed as a software customer and UMinho as a 

contracted software development entity. The team was co-located, but some integration support 

was provided by a third-party remote team (cf. Section 6.5). 

In this project, the core iFloW team was composed of nine collaborators with multidisciplinary 

backgrounds: 

 Bosch:  

o one Product Owner, that was representing other eight elements from the Logistics 

department, which formally dictated the requirements.  

o one member of the IT department, responsible for validating that each developed 

product increment could be easily integrated within Bosch information system; 

 UMinho:  

o three R&D coordinators, with the role of assuring that the scientific rigor (from both the 

system and the software development process) and deadlines of the project are met;  

o four software developers with methodological and technological competences (like 

analysis, requirements, design, database modeling, programming, testing, deployment, 

etc.). 

 

The entire software development was performed within Bosch’s premises, where the iFloW 

team elements (in exception of R&D Coordinators) were located on a daily basis. The elements 
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from UMinho had no previous knowledge of the domain (in this case, logistics), so the team 

decided that the project kicked-off by gathering and documenting requirements in a waterfall-

based approach. 

After the requirements engineering was performed, and since iFloW aimed developing a 

software system for an industrial context, the team decided to follow the Scrum framework as the 

iterative approach for the implementation phase. This phase was performed by development 

iterative cycles in form of Scrum Sprints. Based in incremental software deliveries, both UMinho 

and Bosch could manage their project’s expectations.  

As a collaborative University-Industry R&D software project, the previously presented roles are 

slightly different from the roles defined by the Scrum framework (namely, Product Owner, Scrum 

Master and Development Team) (Schwaber & Beedle, 2001), however easily mapped, as 

depicted in Table 27. 

 

Table 27. Mapping between iFloW roles and typical Scrum roles 

 Scrum Role 
Product Owner Scrum Master Development Team 

iFloW Role  

Bosch     

 Product Owner    

 Bosch IT    

UMinho     

 R&D Coordinators    

 Software Developers    

 

Use Cases that compose the backlog 

During the initialization phase of the hybrid method, the iFloW requirements gathering output 

were modeled in a set of UML Use Cases, depicted in Figure 133. Each of the use cases were 

functionally decomposed, which resulted in 90 lower level use cases. 
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Figure 133. Use Case diagram of the iFloW project 

 

Afterwards, within the implementation phase, the use cases from the ‘Product Backlog’ were 

implemented iteratively and incrementally during eight four-week (Scrum) Sprints. In this phase, 

typical Scrum iterations were performed, where each ‘Sprint Backlog’ is a selected subset from 

the ‘Product Backlog’. In Figure 134 is depicted a ‘Sprint Backlog’ tracking sheet, composed by 

the iFloW use cases and whose progress was monitored. 
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Figure 134. A Sprint Backlog based in Use Cases from the iFloW project 

 

Team management approach based in a User stories-driven backlog 

derivation: the ISOFIN case 

Team settings 

The ISOFIN project was composed by eight entities (private companies, public research 

centers and universities). During the requirements stage, the consortium defined that the entire 

ISOFIN solution would include a cloud platform and a set of local services. For the case of the 

cloud platform, one entity formed a team specifically to model requirements in order to deliver 

them to other three entities that would have Scrum teams to implement them. For the case of 

the local services, another entity modeled requirements that the remaining two would implement. 

This research focused in the team responsible for gathering requirements for the cloud platform. 

Modularization 

Previously in Section 4.4, the modeling process performed within the ISOFIN project has been 

already described. By following a V-Model approach, models were derived in succession (Figure 

53). This derivation path includes the solution’s business processes, A-type sequence diagrams, 

use cases, logical architecture and B-type sequence diagrams. In its vertex, the 4SRS method 
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assures that user requirements models (in the left side) are aligned with system requirements 

models (in the right side).  

 

 

Figure 135. The result of the V-Model to be delivered to multiple Scrum teams 

 

The ISOFIN logical architecture is composed by 105 components. The overall architecture 

referred to software development functionalities that were to be delivered by three software 

teams, each belonging to a different entity.  

 

Having as basis the logical architecture and, additionally, B-type sequence diagrams and the 

solution’s business processes, the analysts discussed, depicted and proposed a set of 

application/modules to be developed. The proposed applications/modules are composed by 

components from the logical architecture, and the composition of each application is depicted in 

Figure 136 through a set of “spots” that traverse the logical architecture.  

The components that are “covered” by the spot represent the expected functionalities for a 

given application. However, it is not possible yet to depict sequences and flows for the application 

execution (such is provided by B-type sequence diagrams) as well as the components that 

interface with the application. 

The logical diagram was partitioned in seven “spots” covering the components (Figure 136), 

representing applications to be developed: Integrated Business Services (IBS) Management; 

ISOFIN Applications Management; Alerts Management; Subscription Management; Security 
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Management; Policies Management; and Logs Management. An overview of the “spots” is 

presented in Annex B. 

 

 

Figure 136. ISOFIN architecture modularization 

 

We present in this section one of the modules to illustrate the demonstration case: the IBS 

Management module. By executing this module, An IBS Developer develops a new IBS by 

modeling the IBS, selecting the available IBSs from the pallets. Besides modeling its structure, 

the IBS Developer is also responsible for defining permissions, manually filling gaps in the IBS 

code, publishing the information in the catalog and deploying the IBS in the ISOFIN Platform.  

 

Communication 

The filtering and collapsing technique that was applied within the logical architecture allowed 

depicting the components that compose the module and their interfaces, and then depict its 

W2ReqComm. The W2ReqComm for the IBS Management module is presented in Figure 137. 

Repositories

Alert Editor

<<data>>
{AE4.1.d} Configured Alert 

Information

<<interface>>
{AE4.1.i} Alert Configuration 

Interface

Alert Installer

<<control>>
{AE4.2.1.c} Alert Code 

Generator

<<control>>
{AE4.2.2.c1} Schedule Alert

<<control>>
{AE4.2.2.c2} Execute Alert

ISOFIN App 
Communication

<<interface>>
{AE3.5.1.i} Send Information 

From ISOFIN App

<<interface>>
{AE3.5.2.i} Receive 

Information in ISOFIN App

<<interface>>
{AE3.6.1.i} Send Configuration 
Commands From ISOFIN App

<<interface>>
{AE3.6.2.i} Receive 

Configuration Commands to 
ISOFIN App

<<interface>>
{AE3.6.3.i} Send Usage 

Commands From ISOFIN App

<<interface>>
{AE3.6.4.i} Receive Usage 
Commands to ISOFIN App

ISOFIN App Installer

<<interface>>
{AE3.3.1.i} ISOFIN Application 

Publisher Interface

<<control>>
{AE3.3.2.c} ISOFIN App 

Deployer

<<interface>>
{AE3.3.2.i} ISOFIN App 
Deployment Interface

<<control>>
{AE3.3.3.c} Export ISOFIN App 

Code

<<control>>
{AE3.3.4.c} ISOFIN App 

Documentation Generator

<<interface>>
{AE3.3.4.i} ISOFIN App 
Documentation Editor

<<control>>
{AE3.4.2.c} Test ISOFIN 

Application Before 
Deployment

Security Management

<<control>>
{AE1.6.c} Grant Access to 

ISOFIN Platform

<<interface>>
{AE1.6.i} ISOFIN Platform 

Access and Usage 
Management

<<control>>
{AE2.2.6.c1} Selected Object 

permissions

<<control>>
{AE2.4.1.c} IBS 

Communication Validation

<<control>>
{AE3.5.1.c} ISOFIN App 

Communication Validation

Logs Management

<<interface>>
{AE2.4.1.i1} IBS Log Manager

<<interface>>
{AE3.5.1.i1} ISOFIN App Log 

Manager

<<interface>>
{AE4.3.i1} Alert Log Manager

<<interface>>
{AE1.3.5.i1} Subscription Log 

Manager

Supplier Subscription 
Management

<<control>>
{AE1.3.1.c} Evaluate Supplier 

subscription

<<interface>>
{AE1.3.1.i} Supplier 

subscription evaluation 
interface

<<interface>>
{AE1.3.3.i} Supplier’s 

Subscriptions Requirements 
Interface

<<interface>>
{AE1.5.1.i} Publish SBS 

Subscsription in Catalog 
Interface

Customer 
Subscription 
Management

<<control>>
{AE1.3.2.c} Evaluate Customer 

subscription

<<interface>>
{AE1.3.2.i} Customer 

subscription evaluation 
interface

<<interface>>
{AE1.3.4.i} Customer’s 

Subscriptions Requirements 
Interface

<<interface>>
{AE1.5.2.i} Publish Customer 

Subscsription in Catalog 
Interface

IBS Communication

<<interface>>
{AE2.4.1.i} Send Information 

From IBS

<<interface>>
{AE2.4.2.i} Receive 
Information in IBS

<<interface>>
{AE2.5.1.i} Send Configuration 

Commands From IBS

<<interface>>
{AE2.5.2.i} Receive 

Configuration Commands to 
IBS

<<interface>>
{AE2.5.3.i} Send Usage 
Commands From IBS

<<interface>>
{AE2.5.4.i} Receive Usage 

Commands to IBS

IBS Installer

<<control>>
{AE2.2.7.c} IBS Interface 

Generator

<<data>>
{AE2.2.7.d} IBS Interface 

Repository

<<interface>>
{AE2.3.1.i} IBS Publisher 

Interface

<<control>>
{AE2.3.2.c} IBS Deployer

<<interface>>
{AE2.3.2.i} IBS Deployer 

Interface

<<control>>
{AE2.3.3.c} IBS Documentation 

Generator

<<interface>>
{AE2.3.3.i} IBS Documentation 

Editor

<<control>>
{AE2.7.2.c} Test IBS Before 

Deployment

IBS Editor

<<control>>
{AE2.1.2.c1} Selected Object 

configurations

<<data>>
{AE2.1.2.d} IBS Configuration 

Repository

<<interface>>
{AE2.1.2.i} Low-level IBS 
Configuration Interface

<<data>>
{AE2.1.3.d} IBS Structure 

Repository

<<interface>>
{AE2.1.3.i} Update IBS 

Structure Interface

<<control>>
{AE2.1.4.c} Compiles IBS 

information

<<interface>>
{AE2.1.4.i} Update IBS 

Interface

<<interface>>
{AE2.2.3.i} IBS Structure 

interface

<<control>>
{AE2.2.4.c} Define IBS Code 

Gaps

<<interface>>
{AE2.2.4.i} IBS Coding and 

Compiling Interface

<<control>>
{AE2.2.5.c} Compile IBS code

<<data>>
{AE2.2.5.d} IBS Pre-
Deployment Storage

<<interface>>
{AE2.2.6.i} Permissions 

Interface

<<control>>
{AE2.7.1.c} IBS Customization 

Filter

<<interface>>
{AE2.7.1.i} IBS Customization 

Interface

<<interface>>
{AE2.6.3.i} IBS 

Interconnectivity interface

IBS Repository

<<data>>
{AE2.1.1.d} IBS Repository

<<interface>>
{AE2.6.1.i} IBS Repository 

Interface

SBS Repository

<<data>>
{AE2.6.2.d} SBS Repository

<<interface>>
{AE2.6.2.i} SBS Repository 

Interface

Alert Repository

<<data>>
{AE4.3.d} Alert Repository

<<interface>>
{AE4.3.i/c} Scheduled Alert  

Dispatcher

Subscription 
Repository

<<control>>
{AE1.3.5.c1} Subscription 

Duplicity Verification

<<data>>
{AE1.3.5.d} ISOFIN Platform 
Subscription Info Repository

<<interface>>
{AE1.3.5.i} Subscription 

Repository Interface

<<data>>
{AE1.4.d} ISOFIN Platform 
Subscription Assessment 

Repository

<<interface>>
{AE1.8.1.i} Manage ISOFIN 

Suppliers

<<interface>>
{AE1.8.2.i} Manage ISOFIN 

Customers

Logs Repository

<<data>>
{AE2.4.1.d} IBS Logs 

Repository

<<data>>
{AE3.5.1.d} ISOFIN App Logs 

Repository

<<data>>
{AE4.3.d1} Alert Logs 

Repository

<<interface>>
{AE4.3.i2} Log Repository 

Interface

<<data>>
{AE1.3.5.d1} Subscription Logs 

Repository

Security Repository

<<data>>
{AE1.2.1.d} ISOFIN Platform 

Policies Repository

<<data>>
{AE1.6.d} ISOFIN Platform 

Access Repository

ISOFIN App 
Repository

<<data>>
{AE3.3.1.d} ISOFIN App 

Repository

<<interface>>
{AE3.3.1.i1} ISOFIN App 

Repository

Policies Management

<<interface>>
{AE1.2.1.i} Configure Supplier 

Policies Interface

<<interface>>
{AE1.2.2.i} Configure 

Customer Policies Interface

Subscription Management

<<interface>>
{AE1.1.1.i} Fulfillment 

Subscription Requirements 
Interface

<<control>>
{AE1.1.2.c1} Verifiy 

Subscription data duplicity

<<control>>
{AE1.1.2.c} Validate 

subscription requirement 
fulfillment

<<interface>>
{AE1.1.2.i} Manual 

Subscription Validation 
Interface

<<interface>>
{AE1.4.i} Subscription Request 

Interface

<<control>>
{AE1.7.c} Control Subscription 

Requests

<<interface>>
{AE1.7.i} Suscription Request 

Status Interface

ISOFIN App Editor

<<interface>>
{AE3.1.i} ISOFIN Application 

Model Editor

<<interface>>
{AE3.2.1.i} IBS Information 

Retrieval

<<control>>
{AE3.2.2.c} Generate ISOFIN 

App Code

<<interface>>
{AE3.2.2.i} ISOFIN Application 

Coding and Compiling 
Interface

<<interface>>
{AE3.2.3.i} ISOFIN Application 

Model Interface

<<control>>
{AE3.2.4.c} Associate Visual 

Representation to 
Functionality

<<interface>>
{AE3.4.1.i} ISOFIN Application 

Customization Interface

««GENERATES»»

<<interface>>
{AE2.7.2.i} IBS Test Generator

<<interface>>
{AE2.6.2.i1} SBS Pallet 

Retrieval Interface

<<interface>>
{AE2.6.1.i1} IBS Pallet 

Retrieval Interface

2x

6x

6x

6x

6x

5x

6x

6x

2x

2x

2x

3x

3x

««GENERATES»»



An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects 

272 
 

Regarding the overlapped components in more than one module, one of the teams is nominated 

to be responsible for implementation of the module and assure that the teams responsible for 

modules with dependencies with that particular one have all required documentation and provide 

updates on its implementation. 

 

 

Figure 137. W2ReqComm for IBS Management module 

 

User Story derivation 

We present in Table 28 an example of the use of user story card, using the Test Before IBS 

Deployment component example. Information regarding the name of the User Story presupposes 

the execution of the next step of this method. The acceptance criteria and the story points fields 

are not defined at the time of the User Story derivation. They are defined later during Sprints, so 

these fields were not yet defined in the card in Table 28, thus defined as “not applicable” (N/A) 

at this time.  
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An IBS Developer develops a new IBS by modeling the IBS, selecting the available IBSs from the 

pallets. Besides modeling its structure, the IBS Developer is also responsible for defining permissions, 
manually filling gaps in the IBS code, publishing the information in the catalog and deploying the IBS in 
the ISOFIN Platform. If necessary, the IBS Developer performs test and fixes coding errors. The IBS to be 
developed may require setting system alerts. 
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Table 28. User Story card for "Test IBS Before Deployment" 

U
se

r 
S

to
ry

 
US #1 

As a Business User or a IBS Developer, I want to test IBS before 

deployment, in order to render IBS in pre-runtime. 

Acceptance 

criteria 
N/A 

Story 

Points 

N/A 

A
rc

hi
te

ct
ur

e 

Component # 2.7.2.c Test IBS Before Deployment 

Type Control Package IBS Installer 

Specification 

This component allows testing of the IBS before deployment. 

This component will be required before the execution of {C2.3.2.c} IBS 

Deployer to verify that no problems occur during the execution of the 

IBS. All information need for the execution is provided by {C2.2.5.d} IBS 

Pre-Deployment Storage 

Multiple No Module IBS Management 

Association 

Direct 

Association 
2.7.2.i – IBS Test Generator 

UC Association 
2.3.2.c – IBS Deployer 

2.2..5.d – Pre-Deployment Storage 

U
se

 C
as

e 

UC # 2.7.2 Render IBS Pre-Runtime 

Description 
Configure and defines the pre-runtime of the IBS. This use case allows 

testing of the IBS before deployment. 

UC Ass. 2.7 – Configure IBS 

Actors 
Business User 

IBS Developer 

O
th

er
s 

 

 

The User Story must provide the "why" of a particular actor ("who") may need to perform a 

certain action ("what"). This information, often induced by the very title of the corresponding 

components, can be complemented with a description of the Use Case from which the 

component was derived. As User Stories relate to a lower level than uses cases, the description 

of the use case itself can justify the need for existence of a particular User Story. In cases where 

the name of components is quite similar to use case from which the component was derived, the 

significance of User Story can be found in the description of the use case. Using these rules, 
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remaining User Stories were derived that are listed in Table 16. In Figure 138 is represented a 

User Story sentence based in the derivation from Table 16. 

 

Table 29. User Stories derived from c-type components 

# Component As a(n) 

<actor> 

I want/need 

<description> 

In order to <outcome> 

2.1.2.c1 
Selected Object 

Configurations 

ISOFIN 

Customer / IBS 

Developer 

select object 

configurations 

change (IBS Structure) 

configurations 

2.1.4.c 
Compiles IBS 

information 
IBS Developer 

compile IBS (changes 

and) information 
create a new IBS 

2.2.4.c 
Define IBS Code 

Gaps 
IBS Developer 

(automatically generated 

code) and define IBS 

code gaps 

create IBS code 

2.2.5.c Compile IBS code IBS Developer 
compile IBS code (and 

create new IBS catalog) 

(keep IBS catalog and store) 

compile(d) IBS Code 

2.2.6.c1 
Selected Object 

Permissions 
IBS Developer select object permissions 

set(/manage) permissions (and 

create IBS) 

2.2.7.c 
IBS Interface 

Generator 
IBS Developer 

(automatically) Generate 

IBS Interface 

(store the) generate(d) IBS 

interface 

2.3.2.c IBS Deployer IBS Developer deploy IBS execute IBS deployment 

2.7.1.c 

IBS 

Customization 

Filter 

Business User 
filter IBS (configuration 

and) customization 
customize IBS 

2.7.2.c 
Test IBS Before 

deployment 

Business User / 

IBS Developer 

test IBS before 

deployment 
render IBS Pre-Runtime 

 

 

Figure 138. User Story from 2.1.4.c 

 

Inter-team management 

Now that the User Story derivation is complete, there are just some issues that are dealt in 

the multiple teams’ management. In the case of the ISOFIN project, the teams were distributed 
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but belong to the same organization and were not geographically distributed. The quantity of 

teams were not as many as the modules identified, but the total quantity of teams is not relevant, 

since they belong to the same organization. Thus, the organization chose to nominate a single 

Scrum Master to work closely with all teams. The Product Owner was responsible for the 

decisions during the implementation, like detecting potential delays and decisions on critical 

issues across the teams.  

Regarding the overlapped components in more than one module, it is then the Product 

Owner’s responsibility to nominate a team to be responsible for implementation of the derived 

User Story and assure that the teams responsible for User Stories with dependencies with that 

particular one have all required documentation and provide updates on its implementation. 

 

Multi-team management and coordination: the UH4SP case 

Team settings 

The UH4SP project was composed by five teams from four different entities for software 

development where each had specific expected contributes, from cloud architectures to industrial 

software services and mobile applications. The entities are geographically distributed, but each 

entity had a single located team. Figure 139 depicts the roles structuring between the involved 

teams.  

 

The business need relates to managing, communicating and coordinating software delivery. 

Team #A is expertized in mobile and image recognition technologies, composed by three 

Developers, a Quality Assurance (QA) engineer and a Scrum Master (SM) - which acts with Org 

#1. The Chief Architect (CA) – that also takes the role of Product Owner (PO) – is responsible for 

the architectural decisions of team #A’s Team Product Backlog (TPB) and part of the architecture 

team of the project. Teams #C and #E has the same role structure, but expertized in web and 

API applications. Team #B has a Scrum team expertized in web and microservices development, 

composed by three Developers, a QA engineer, the SM, a CA and a Business Analyst (BA) – also 

acting as a PO – responsible for managing team #B’s TPB. Team #D is responsible for the cloud 

infrastructure, composed with a CA and DevOps engineers. Additionally, all teams also include 

strategic roles such as Project Manager (PrjMmg), and a Business Owner (BO) that is responsible 

for team’s products portfolio. 
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Teams work internally within their delivery of increments, based in Scrum teams or not. 

Alongside with the delivery, there are important decisions that require integration among teams, 

relating to architecture, dependencies, and coordination. The management and communication 

between these teams arise the need to define a process. Strategic decisions also require 

communication between PrjMng and BO, however not addressed in this research. 

 

 

Figure 139. Structure of UH4SP teams 

  

Architecture modularization 

Section 5.5 described how a candidate version of the UH4SP project logical architecture was 

derived in an agile-oriented way using AMPLA. The UH4SP logical architecture had as input 37 

use cases and, after executing 4SRS method (Annex C), was derived with 77 architectural 
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components (Annex C) that compose it. This architecture was afterwards divided in a set of 

modules to be assigned to each of the project’s teams (Figure 140). 

The modularization depicted in Figure 140 originated five modules/subsystems, each 

assigned for ‘Team #A’, ‘Team #B’, ‘Team #C’, ‘Team #D’ and ‘Team #E’. The bordering was 

based in the contributions that each team brings to the consortium, namely IoT, cloud 

infrastructure, cloud applications and sensors/embedded systems. Each domain was reflected in 

the use case model and, by consulting the 4SRS method, the use case coverage was mapped to 

the components, in order to the module be built. Figure 140 depicts the modules’ borders and 

dependencies as a group of “spots”.  

 

 

Figure 140. UH4SP logical architecture modularization 
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Backlog derivation 

By the time of the refinement process, the total of Use cases after refinement was 96. 

Relating to the total of logical architecture components after the refinement, only two modules 

were measured, because the remaining teams decided to go for implementation without 

performing the 4SRS method. These measures are presented in Table 30. When analyzing Team 

B module, the subset more than doubled after the refinement, as presented in Table 31. 

 

Table 30. Analysis on the product backlog 

Candidate Arch Before refinement After refinement 

Use cases 37 96 

Components 77 94* 

*only measured for two modules 

 

Table 31. Analysis on the Team B backlog 

Team B module Before refinement After refinement 

Use cases 11 29 

Components 15 39 

 

The user stories were then derived and specified. A subset of the stories that compose Team 

#B’s Team Backlog is presented in Table 32. The entire Product Backlog from Team #B may be 

consulted in Annex C. The stories details are defined by input of the components from the 4SRS 

method execution, depicted in Table 32.  

 

Table 32. A subset of the team backlog 

Epic: Account Management  

 Use Case: {UC1.1} Configure users account 

User 

Story 

As a SysAdmin, I want to create a user account in order to 

configure user accounts. 

Acceptance Criteria: 

SysAdmin is able to create user 

User 

Story 

As a SysAdmin, I want to change a user account in order to 

configure user accounts. 

Acceptance Criteria:  changed 

information is stored. 

 

The application of the transformation rules resulted in a Team Backlog composed by 61 user 

stories, which were implemented in six Sprints. Among them, only two stories were considered 

incomplete, i.e., required additional knowledge acquisition from the developers besides the 
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components and sequence diagrams. All stories were foreseen and clear after the transformation 

rules. Regarding dependencies, no user stories were identified out of order. It must be also 

pointed out that, among the 61 user stories, 2 of  

Table 33. Traceability between use cases / user stories and the components from the 4SRS 

Epic: Account Management   Use Case Component 

 Use Case: {UC1.1} Configure users 

account 

  {U1.1.1} 

Create user 

account 

{C1.1.1.d} User 

data 

User 

Story 

{US1.1.I.} As a System 

Administrator, I want to create 

a user account in order to 

configure user accounts. 

Acceptance Criteria: 

{AC1.1.1.I.} System 

Administrator is able to 

create user 

 {C1.1.1.i} Create 

user interface 

User 

Story 

{US1.1.II.} As a System 

Administrator, I want to 

change a user account in 

order to configure user 

accounts. 

Acceptance Criteria: 

{AC1.1.1.II.} System 

Administrator changed 

user information is stored. 

 {U1.1.2} Edit 

user account 

{C1.1.1.d} User 

data 

 Use Case: {UC.1.2} Configure 

users profile 

  {C1.1.2.i} Edit user 

interface 

User 

Story 

{US1.2.I.} As a System 

Administrator, I want to create 

a user account in order to 

configure user accounts. 

Acceptance Criteria: 

{AC1.1.1.I.} System 

Administrator is able to 

create user 

 … … 

  …  …  … … 

 

Table 34. Analysis on Team B Sprints 

Team B Sprints 4 Sprints 

Nr. Success stories 59 Nr. New stories 2 

Nr. Unforeseen stories  0 Nr. Incomplete stories 2 

Nr. Unclear stories 0 Nr. Out of order stories 0 

Nr. Interface stories 2   

 

them relate to stories with interactions with other team’s stories, and were immediately identified 

within the modularization. 
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Requirements communication 

Team #B’s module includes 15 components from the 77. They correspond to use cases 

“branches” {UC1.1} Manage Accounts (from {UC.1} Manage business support), {UC2.1} 

Configure cloud services (from {UC.2} Configure cloud service) and {UC7.1} Integrate business 

information (from {UC.7} Performs business activities), which were considered that together whey 

compose an MMF.  

The remaining components after outbound collapsing are included in the W2ReqComm 

package (Figure 141) and delivered to Team #B, which is responsible for delivering the 

corresponding software. The associations between outbound components infer dependencies 

and orchestration needs with other teams, in this case Team #A, and #C. They are reflected in 

an A-type Sequence diagram, which is also part of the W2ReqComm package. 

 

Access control to company data from Apps 

 

 

 

Figure 141. W2ReqComm package for "Access company data" scenario 
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the web or mobile app and consults business 

indicators. The visualized data depends on the 

user permissions. This web app invokes the 

authentication-related components, which 

confirms the permissions and retrieves the data 

related to a given unit’s instance representation in 

the cloud. 
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Inter-team communication and management 

Each team issuing a given set of components with connection points summons other team 

representatives to a Scrum of Scrums meeting to discuss integration efforts.  The example 

illustrated in Figure 142 relates to the development efforts between three teams. In this case, 

the scenario is the same as the one included in the W2ReqComm. 

 

 

Figure 142. An example scenario including inter-team management 
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Table 35. Coordination arenas 

Coordination arenas Description 

Scrum of scrums Before the end of a Sprint, these meetings occurred whenever a work item with 

dependencies met a DoD condition, triggering a DoR to another team. 

Wiki Use of a Consortium shared Microsoft Sharepoint platform. 

API documentation Each team used a Swagger platform. 

CoP meetings Occasional and unplanned meetups between directly involved developers to discuss 

integration. Alternatively, the discussions were performed in chat groups using the 

Skype tool. 

Typically related to implementing a flow in the sequence diagram. The diagram was 

the basis for the discussion. 

 

Team progress controlling 

So far, it has been described how a logical architecture should be modularized in order to 

assign a team with a specific subsystem, how each team may derive their work items from the 

architecture, how they can communicate and coordinate with other teams.  

This section describes controlling tasks performed by a Scrum team, namely Team #B in the 

UH4SP project, during the (Scrum) Sprints. In order to do so, a set of metrics were adopted, 

where they fit under these categories: 

- Earned Value Management (EVM),  

- Planning/Management,  

- Development,  

- Quality, 

- Stakeholders 

 

These categories allow controlling team progress encompassing metrics suitable for project 

managers, product owners, product managers, and the team members themselves. Additionally, 

some metrics may have dependencies with other ones from different categories. 

EVM is a widely adopted metric within Project Managers for measuring the team performance 

based in their costs. EVM calculus precedes ASD approaches, which led to proposing some 

changes when in ASD projects, called AgileEVM (Sulaiman, Barton, & Blackburn, 2006). For 

planning/management, some metrics allow Product Owners having a clear understanding if the 

project is following a proper path. Development metrics refer to the software delivery process.  
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Quality metrics is a category where metrics are mainly measured by the team themselves. 

Finally, the Stakeholder metrics are more oriented for Product Managers as they are related to 

customers. 

This control was based in gathered literature around this topic, presented in Table 36, and 

using such works in a setting where Team #B used the models from performing AMPLA. 

The UH4SP project progress was monitored using the EVM system. Throughout Team #B’s 

Sprints, the values for Actual Cost (AC), Earned Value (EV), Planned Value (PV), Cost Variance 

(CV), Schedule Variance (SV), Schedule Performance Index (SPI), Cost Performance Index (CPI) 

were monitored. The value for Budget Cost At Completion (BAC) was obviously previously defined 

before project kick-off. Only AC and PV measuring was completely independent from using 

AMPLA before Sprints. 

Table 36. Agile metrics 

EVM metrics (Sulaiman et al., 2006) Measurement 

Budget Cost At Completion (BAC)  Planned budget for the release 

Actual Cost (AC)  Spent budget for the release 

Earned Value (EV)  EV = APC × BAC 

Planned Value (PV) PV = PPC × BAC 

Cost Variance (CV)  CV = EV – AC 

Schedule Variance (SV) SV = EV – PV 

Schedule Performance Index (SPI)  SPI = EV / PV 

Cost Performance Index (CPI)  CPI = EV / AC 

Planning/Management metrics Measurement 

Business Value Delivered (BVD) (Hartmann & Dymond, 

2006)  

 

Business value provided by the delivered increment within the 

Sprint 

Release Burndown (Hayes, Miller, Lapham, Wrubel, & 

Chick, 2014)  

 

Which Product backlog items are ‘done’ and the remaining ones 

Sprint Burndown  (Hayes et al., 2014)  

 

Which Sprint backlog items are ‘done’ and the remaining ones 

Velocity (Hayes et al., 2014)  

 

Story points delivered by Sprint 

Planned Percentage Complete (PPC) (Sulaiman et al., 

2006) 

Nr. of Sprints performed / Nr. of Sprints planned 

Actual Percentage Complete (APC)  Nr. of user stories ‘done’ / Nr. of user stories planned 

Development metrics Measurement 
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Lead Time (Mujtaba, Feldt, & Petersen, 2010)   

 

Time between the item inclusion in backlog and to be ‘done’ 

Queue Time (Mujtaba et al., 2010)   

 

Time between the item inclusion in backlog and included in 

Sprint backlog 

Processing Time (Mujtaba et al., 2010)  

  

Time between the item inclusion in Sprint backlog and to be 

‘done’ 

Story Flow Percentage (Kupiainen, Mäntylä, & Itkonen, 

2015)  

 

% of completed story under development 

Work in Progress (WIP) (Petersen & Wohlin, 2011)  

 

Nr. of user stories under development 

Quality metrics Measurement 

Defect Backlog (Staron, Meding, & Söderqvist, 2010)  

 

Nr. of known defects still unresolved 

Build Status (Janus, Schmietendorf, Dumke, & Jäger, 

2012)  

 

Nr. of builds performed in a Sprint 

Test Coverage (Janus et al., 2012)  

  

Code Covered by testing / Completed Code 

Test Growth Ratio  (Janus et al., 2012)  

 

growth of the Test in relation to the growth of the Source Code 

Deferred defects (Green, 2011)  

 

Nr. of defects identified after going ‘live’ 

Stakeholder metrics Measurement 

Customer Satisfaction Survey filled by the customer about the experience 

Feedback time Time between customer and team for feedbacks 

Since Actual Percentage Complete (APC) uses the number of user stories planned, which 

comes from the sum of derived user stories after performing the rules presented in section 6.4. 

Consequently, EV uses the APC value. Afterwards, CV, SV, SPI and CPI, which use the EV value, 

hence use the number of user stories derived within AMPLA.   

Table 37 depicts the EVM controlling performed by Team #B’s Project Manager (from the 

UH4SP team presented in section 6.2) throughout team’s six (Scrum) Sprints. The Project 

Manager was able to compare EV evolution to AC and PV (Figure 143). Additionally, values of CPI 

and SPI from Table 37 allowed depicting the project status at the time of a given Sprint based in 

time and costs. In Figure 144, CPI and SPI values for each Sprint allow depicting whether in each 

Sprint the project was: (i) behind in time and costs (0,5<SPI<1 and 0,5<CPI<1); (ii) bad times 
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but good costs (0,5<SPI<1 and 1<CPI<1,5); (iii) good times but bad costs (1<SPI<1,5 and 

0,5<CPI<1), and, finally, (iv) good times and costs (1<SPI<1,5 and 1<CPI<1,5). 

 

Table 37. EVM controlling 

EVM S#0 S#1 S#2 S#3 S#4 S#5 S#6 

Actual Cost (AC) 130 611,5 408 876 374 236 226 

Earned Value (EV) 26,11 109,67 219,33 276,78 276,78 276,78 276,78 

Planned Value (PV) 67,14286 134,2857 201,4286 268,5714 335,7143 402,8571 470 

Cost Variance (CV) -103,89 -501,83 -188,67 -599,22 -97,22 40,78 50,78 

Schedule Variance (SV) -41,03 -24,62 17,90 8,21 -58,94 -126,08 -193,22 

Schedule performance 

index (SPI) 
0,388889 0,816667 1,088889 1,030556 0,824444 0,687037 0,588889 

Cost performance 

index (CPI) 
0,200855 0,17934 0,537582 0,315956 0,740048 1,172787 1,22468 

 

 

Figure 143. Evolution of AC, PV and EV 
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Figure 144. EVM monitoring 

 

The progress of Sprints is monitored by the Product Owner (PO) using the 

Planning/Management metrics. Within these metrics, PO was able to measure Business Value 

Delivered (BVD), Release Burndown, Sprint Burndown, Velocity, Planned Percentage Complete 

(PPC), and the already mentioned Actual Percentage Complete (APC). 

Release Burndown, Sprint Burndown, Velocity, and PPC are measured without any input from 

AMPLA. Figure 145 depicts these metrics measured by Team #B’s PO.  

 

 

Figure 145. Sprint #3 burndown and team velocity measurement 

 

As already used for EVM, APC uses the number of user stories planned, which are the sum of 

user stories derived after performing AMPLA. 

The BVD value is a very important measure in ASD, since it focuses in the added value for the 

customers. As for its definition from the original publication from Hartmann and Dymond, BVD is 
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measured using values of  Net  Present  Value  (NPV),  Internal  Rate  of Return  (IRR),  and  

Return  on  Investment  (ROI), by calculating Net cash flow per iteration (Hartmann & Dymond, 

2006). In this research, the idea of measuring BVD is not by measuring the economic return of 

the delivered software, but rather the importance of delivered functionalities from each increment 

within the aimed product roadmap. 

AMPLA provides the mechanism to measure BVD, by providing the linking between product 

objectives, functional requirements and models, and the backlog items. Therefore, whenever an 

increment was delivered at the end of a Sprint, as backlog items are marked as ‘done’, they are 

traced back to the objectives.   

The control of the BVD throughout the Sprints is performed by the sum of the ‘done’ user 

stories. Such control is depicted in a Cumulative flow, like in Figure 146. 

 

As previously described in section 4.4, the UH4SP project’s objectives that were stated 

referred to:  

(1) a unified view at the corporate (group of units) level;  

(2) tools for third-party entities;  

(3) in-plant optimization; and  

(4) system reliability. 

 

 

Figure 146. Cumulative flow 
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The previously derived backlog items from AMPLA, where the 61 user stories (available in 

Annex C), were grouped within the following features: 

1.       Configure User profile 

2.       Configure User Account 

3.       Perform Authentication 

4.       Manage Stakeholders 

5.       Manage Trucks 

6.       Manage Applications 

7.       Collaborative tool 

8.       Manage Work Tokens 

 

These features were the input for aiming the project objectives. They contributed (in %) for the 

objectives, as depicted in Table 38. Each feature could contribute to more than one objective. 

Then, in addition to identifying features contributions to objectives, weights for the contribution 

were assigned (with an equal weight, e.g., if 3 features contributed to an objective, each one 

weighed 33%, if 4 features, each one weighed 25%, etc.). 

Thus, using these weights, the user stories marked as ‘done’ in each Sprint were used for 

monitoring the evolution of the objective until it is achieved. The project’s objectives, together 

with the gathered expectations elicited during requirements (section 4.4), are aligned with the 

“Objectives and Key Results” (OKR) (Doerr, 2018), where expectations describe the key results 

and how they are achieved. AMPLA provides the traceability mechanisms for linking the user 

stories and features to the expectations (and, consequently, the key results). 

 

Table 38. Feature's contributions to project's objectives 

 view at the 

corporate level 

tools for third-party 

entities 

in-plant 

optimization 

system 

reliability 

Configure User profile 20% 16,67% 25% 33,3% 

Configure User Account 20% 16,67% 25% 33,3% 

Perform Authentication 20% 16,67% 25 33,3% 

Manage Stakeholders 20% - - - 

Manage Trucks - 16,67% - - 

Manage Applications - 16,67% - - 

Collaborative tool 20% - 25% - 

Manage Work Tokens - 16,67% - - 
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Table 39 depicts the evolution of BVD throughout the Sprints, namely by controlling the 

cumulative value (in %) of the project objective to be achieved. Namely, this way the PO 

monitored OKR’s being met, as soon as the objective’s BVD was 100% ‘done’. 

 

Table 39. Cumulative value of BVD 

BVD (Cum) view at the 

corporate level 

tools for third-

party entities 

in-plant 

optimization 

system 

reliability 

stories Sprint 0 0% 0% 0% 0% 

stories Sprint 1 0% 0% 0% 0% 

stories Sprint 2 57% 54% 54% 72% 

stories Sprint 3 77% 70% 71% 83% 

stories Sprint 4 93% 78% 92% 99% 

 

Regarding the Development metrics, Team #B measured Lead Time, Processing Time, Queue 

Time and the Work in Progress (WIP). The traceability provided by AMPLA allowed Team #B to 

hold the data of each feature, from its specification (before Sprint # 0 or already within the 

Sprints) until the respective user story is included in the Sprint Backlog and afterwards marked 

as ‘done’. Table 40 depicts Lead Time, Processing Time, Queue Time. Table 41 depicts the WIP 

control, although in this case the traceability from AMPLA does not have impact on such 

measurement. 
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Table 40. Lead Time, Processing Time, Queue Time 

Features Specified 
Implemented 

Start 

Implemented 

Finish 

Lead 

Time 

Queue 

Time 

Processing 

Time 

Configure User 

profile 
0 1 2 2 1 1 

Configure User 

Account 
0 1 2 2 1 1 

Perform 

Authentication 
0 1 2 2 1 1 

Manage 

Stakeholders 
0 1 3 3 1 2 

Manage Trucks 0 1 2 2 1 1 

Manage 

Applications 
1 2 3 2 1 1 

Collaborative tool 2 3 5 3 1 2 

Manage Work 

Tokens 
4 5 5 1 1 0 

  

Table 41. Work in Progress 

 Sprint #0 Sprint #1 Sprint #2 Sprint #3 Sprint #4 Sprint #5 

WIP 5 16 21 11 4 9 

 

Regarding stakeholder metrics, in UH4SP this measurement was performed based in 

customer satisfaction via a survey. Finally, regarding quality metrics, the measurement was 

basically based in registering bugs and number of performed tests. These two categories of 

metrics did not had any input from AMPLA. 

 

Discussions 

Use case-driven backlogs 

Defining a hybrid approach (waterfall-based during initialization and Scrum-based during 

implementation), with the inclusion of artifacts modeling and documentation, strengthened the 

adoption of a Scrum process in a context as the one presented within the iFloW project. However, 

the entire adoption was a learning process, with advantages and disadvantages, which are 

detailed in this section. 
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This demonstration case showed the following advantages: 

Requirements documentation waterfall-based – the fact that the Product Backlog was 

composed of 90 use cases led to a shared perception of the system complexity that originated 

the need to perform proper efforts in documenting the requirements. Thus, consuming efforts in 

almost exclusively for requirements engineering typically performed in waterfall approaches, in 

the initialization phase, allowed the project team to gain the required knowledge to properly 

implement a system of such complexity. 

Implementation Scrum-based – within a customer perspective, Bosch was always aware of 

the system’s current state of development. The iterative development, in form of Scrum Sprints, 

was crucial to manage Bosch’s expectations, due to the periodical meetings and the incremental 

delivery of working software.   

Use of a logical architecture – to enforce a proper organization on the set of components. The 

relationships among components suggest dependencies that may affect the implementation of 

functionalities and their inclusion in the Sprint Backlog. 

 

On the other hand, it also showed the following disadvantages: 

Effort estimation for use cases -  the fact that it was a completely new development team 

(thus team velocity was unknown) and the need to frequently perform research spikes in order to 

overcome technological issues (for instance, related to GPS, EPCIS or SAP-OER) were the main 

obstacles for the estimation. In Scrum, estimation is performed using techniques such as 

planning poker, where user stories are estimated based in comparing efforts between other user 

stories. Due to the inexperience of the team, estimating the required effort for implementing use 

cases by comparing with other was itself a learning process. Such approach resulted in Sprint 

backlogs where use cases had not been implemented due to error in estimating and required 

conclusion in further Sprints, and where the effort estimating of the remaining use cases (as well 

as rework, whenever was required, and the spikes that were performed within almost every 

Sprints) required almost constant updates on every Sprint Closure and Planning meeting. 

Dependence on negotiation for middleware use cases - collaborative coding among iFloW 

team members and service provider team members was required to implement middleware-

related use cases. Most of the times the implementation required previous negotiation and 

agreements and the implementation did not progress at the desired velocity. The team’s work 
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reached a point where they had to pause and wait for those agreements, which resulted in the 

extension of use cases (and use cases with dependencies with them) through several Sprints. 

 

Architecture modularization for inter-team management 

Overall, in the ISOFIN project, there were clear advantages in using this approach: 

(1) the teams experienced difficulties in interpreted the complete architecture, thus the 

modularization was required;  

(2) since the project consortium was composed by Scrum teams, they easily understood the 

artifacts (i.e., User Stories);  

(3) User Stories were derived having an already designed logical architecture as input, allowing 

them to be properly aligned within reduced time. 

 

Connection points between modules were identified and properly covered by User Stories but 

there was not enough time during this research work to assess that the team’s efforts were in 

fact synched. Besides the identification of connection points, the authors believe that there is a 

vast area of progress in the topic of distributed Scrum teams. 

 

Deriving work items 

Although this case relates to the application of the method in Scrum teams, the authors 

believe that it is generic for being applied in other ASD methods, like XP or Kanban. In addition, it 

is perceived that such an approach is more helpful in LSA contexts, especially the sub-system 

partitioning and its further refinement. This approach is planned to be experimented in the future 

within LSA contexts. 

By assigning a module of the architecture to a given team, we are basically defining a subset 

of the backlog, i.e., a Team Backlog. Hence, it is assumed that each team is responsible for 

developing a set of connected features. The predefinition of a subset (or a given feature) of the 

backlog is also present in approaches like Scaled Agile Framework (SAFe), Disciplined Agile 

Delivery (DAD), Enterprise Scrum, and Spotify model (or Squads/Tribes). 

In the UH4SP project, the fact that it aimed to act within a complex ecosystem was taken in 

consideration for applying the 4SRS method. The 4SRS is a tool for tracing components and 

functional requirements models, moreover in large-scale contexts. We believe that the inclusion 
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of modeling tasks in parallel with Sprints strengthened the Scrum process in the project. The 

entire research was a learning process, with advantages and disadvantages. 

The advantages relate to the traceability between architecture and requirements, especially 

when changes occurred during Sprints. Previous experiences in using 4SRS and delivery of work 

items to Scrum teams were performed in BDUF contexts, which required around 9 months to 

derive a logical architecture composed with 107 components, which then were used to derive 

user stories. The emerging approach within this research allowed to first proposing a candidate 

architecture after 2 months. The architectural model was used as a shared understanding and 

provided a clear view of each entity’s role within the project. When incrementally modeling the 

UML Use Cases in Sprints, the requirements package was also composed with wireframes, to 

enrich the discussion and benefited of user feedback. The components supported the project’s 

pilot scenarios. However, the candidate architecture encompasses next releases in order to follow 

the product roadmap.  

As a disadvantage, it is difficult to commit the entire consortium towards the approach. The 

candidate architecture was proposed and the sub-systems delivered to all entities, however it was 

not possible to compare the approach within all teams. Other teams used Scrum for their sub-

systems but did not follow the approach for implementing their backlog, or did not used an ASD 

approach. 

 

By applying the transformation rules, the team backlog was filled with themes, epics, use 

cases, user stories and acceptance criteria. The authors believe that there may be additional 

inputs to be included as transformation rules, like to foresee inclusion of backlog items that 

define the need for technical work tasks, knowledge acquisition tasks, prototyping, architectural 

spikes and development spikes. 

 

6.5. Conclusions 

Software development has been evolving towards an integrated MTS ecosystem, where a 

software team cooperates with other teams from other entities. LSA approaches address 

optimizing how scaled and distributed teams deliver software. However, it is still object of 

research, where inter-team coordination and boundaries are recognized challenges.  
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This chapter described a framework for distributed agile teams framework based in a logical 

architectural artefact. It includes inputs from a set of artefacts (logical architecture, UML Use 

Cases and A-type Sequence diagrams) to address architecture modularization and TPB 

assignment, dependencies derivation, and inter-team communication and coordination. 

AMPLA defined a process for eliciting and analyzing requirements, and deriving logical 

architectures. The proposed framework (cf. Section 6.3) provided artefacts, roles and events for 

addressing architecture modularization, requirements communication and distributed team 

coordination. 

This research’s limitation is that validation was based only by application from the method’s 

designers. Without proper training in AMPLA process, the 4SRS method, etc., it would be difficult 

for any project consortium to design the artefacts at this state of the theory’s maturity. Thus, the 

research lacks a validation in observing “independent” teams. 

Additionally, the distributed agile teams management framework is very dependent in prior 

execution of AMPLA’s V-Model, since it uses the logical architecture artefact, but also, for 

instance, A-type Sequence diagrams for inter-team coordination. 

The theory was used in a project where an analysis team was responsible for performing 

AMPLA, modularize the architecture and assign TPB. Then, each team was responsible to deliver 

the software and manage coordination efforts. When each team starts defining requirements 

from the beginning, it is required to propose new theories in inter-team cooperation, like 

architecture co-design, for instance. 

 

This chapter essentially described the thesis’ contribution to the process management at 

large-scale topic. As key results for this topic, the following were proposed in this chapter: 

- A framework for addressing modularization, communication and coordination of MTS in a 

LSA setting; 

- Concerns identification for modularization that traverses the logical architecture; 

- Communication formats between teams using the component diagrams; 

- Coordination dependencies depicting between teams from the interface components; 

- Rules for writing User Stories statements; 

- Rules for deriving required Product Backlog Items. 
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At this point, the models in an LSA setting started at the business-level and include the “just-

enough” information for deriving a logical architecture model able to be used for specifying 

microservices and to define scope for a team in form of a product backlog. The model 

abstraction-level decreased until a service-level (in case of microservices) for the product 

specification, but also from a concrete work to be delivered (in form of a backlog item) for the 

process management. Thus, Chapter 7 describes the findings and outputs of this research, by 

discussing results regarding how AMPLA fully supports model derivation and abstraction-level 

decreasing throughout the SDLC.  

 

Further reading 

For architecture modularization and team assignment, there should be a proper acquaintance 

with concepts of Software-intensive systems of systems (SoS) (Maier, 1998), multiteams systems 

(MTS) (Mathieu et al., 2001) or feature teams (Larman & Vodde, 2008). Techniques examples 

for proposing modules are the Minimum Marketable Feature (MMF) (Denne & Cleland-Huang, 

2003) and an elementary business process (EBP) (Larman, 2004) for a module minimum size.  

For inter-team communication, Parnas' Principles (Parnas, 1972) suggests information format 

requirements, Conway’s law suggests on the communication structure (Conway, 1968), and 

knowledge sharing is promoted with Communities of Practice (CoP) (Paasivaara & Lassenius, 

2014). (Paasivaara & Lassenius, 2014). 

For inter-team coordination, Coordination arenas (Dingsøyr, Moe, Fægri, & Seim, 2018; 

Dingsøyr, Rolland, Moe, & Seim, 2017) are tools for teams to expose their findings.  

For understanding the different levels of approaches to compose a product backlog, Dean 

Leffingwell presents the types of requirements information in product backlogs in the book “Agile 

Software Requirements” (Leffingwell, 2010). 
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This chapter concludes this thesis. It describes the overall focus of the conducted 

work. Additionally, it synthesizes the research efforts as well as the scientific 

results of this thesis. Finally, this chapter ends with a set of proposed future work. 
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Cap 7 – Conclusions 

 

7.1. Focus of the Work 

The use of models throughout the software development lifecycle (SDLC) – typically, starting 

from identification of business needs or opportunity, then requirements, design, implementation, 

testing and deployment – reflects the knowledge that stakeholders possess, at a given phase or 

stage, about the solution under development. As the SDLC evolves, models typically include more 

detail on software solution behavior rather than the business setting where the solution will 

deploy. In model-driven development (MDD), this situation is stated as a decrease of model 

abstraction. 

With the adoption of agile software development (ASD) approaches, by promoting iterative and 

incremental development and collecting feedback and learning for continuous adaptation, 

modeled artifacts decrease in abstraction but evolve in an incremental and continually updated 

way. Tracing such model evolution is needed so they are able to fulfill their purpose, which is to 

help teams develop software.  

 

While ASD have been increasingly adopted by organizations9, specifically at a team level, its 

usage in wider contexts – e.g., multiple and distributed teams or global development – has led to 

developing approaches for implementation at scale, which, as described in Chapter 2, are still 

object of research, with some emphasis in planning and inter-team coordination. Although 

acknowledging the importance of architecture in managing inter-team processes in an LSA 

context, these approaches lack of a structured approach for using such information to manage 

the software delivery process. Models are about presenting an abstraction of reality towards  a 

shared understanding of the problem, but a proper analysis allows depicting their input in 

assigning work, derive dependencies, and manage inter-team communication and coordination. 

Modeling a system includes multiple viewpoints regarding the architecture. A well-known 

example is the “4+1 framework” which addresses Logical, Process, Development, Physical and 

(“plus”) Scenarios viewpoints. The architectural lifecycle throughout a project encompasses these 

viewpoints, thus all should be addressed during design. This research focuses in the logical one. 

                                                 
9 VersionOne, “Annual State of Agile Report”. https://www.stateofagile.com/  

https://www.stateofagile.com/
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The logical viewpoint regards designing software components and organizing them so the 

software meets the business needs. Such organization allows depicting the scope of 

functionalities that a team needs to develop and, in case of multiple or distributed teams, allows 

depicting the scope of each team and respective interface needs. There is thus an opportunity for 

research is supporting the model evolution, namely the logical architecture one, in order to 

provide the mechanisms for ASD and LSA settings. Mechanisms include architecture emerging 

and refinement, evolution traceability, relationships with other viewpoints, continuous architecting 

promoted by “the power of small” (i.e., microservices) and baseline support for multiple teams 

management (namely in LSA contexts). 

Previously in Chapter 1, this PhD’s research question was presented, stating: 

“How to adopt logical architectures in agile large-scale projects?” 

This thesis presented the Agile Modeling Process for Logical Architectures (AMPLA), an Agile 

Modeling (AM) oriented process composed by UML diagrams (Sequence, Use Cases and 

Component). AMPLA uses agile practices in order to deliver small increments (of a requirements 

package) and to promote continuous customer feedback. The proposed AM process also 

includes a candidate architecture and further requirements refinement in parallel with a software 

increment delivery. The refinement ranges from component design to a microservices 

architecture. AMPLA supports that the model abstraction level decreases throughout the process, 

providing traceability for easing changes that may occur. 

AMPLA uses the techniques as well as its outputs in modeling AMPLA artifacts, like (1) Lean 

Startup, Design Thinking, Domain-driven Design, BizDev and Kent Beck’s 3X in requirements 

modeling; (2) Ambler’s Agile Modeling, Lean Inception for the candidate logical architecture 

design; (3) Sprint zero for architecture modularization; (4) Use Cases 2.0, Scrum, XP and 

Kanban backlog structures; (5) DevOps for the microservices architecture and its deployment.  

This research aimed answering the research question by addressing three research 

objectives. They are now revisited, as well as describing the results that resulted in their 

achievement.  
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O1: To develop an approach capable of deriving logical architectures in order to 

establish the initial requirements that are passed on to agile development teams. 

In chapter 6, two possible types of approaches using a logical architecture were presented: 

(1) a use case-driven backlog, using UML Use Case models for defining the Product Backlog; and 

(2) a user story-driven backlog, using a set of UML diagrams (Use Case, Sequence and 

Components), described in Chapter 4, which can derive the “agile” backlog items. Related to the 

later, firstly it was presented a set of rules for deriving user story statements (in form of “As a…I 

want to…in order to…”). Then, the approach was revisited aiming deriving additional backlog 

items. After performing AMPLA, the resulting logical architecture was used in order to derive 

“agile” product backlog items, based in a widely adopted structure for backlogs (Leffingwell, 

2010). Such derivation was enabled by a set of defined transformation rules, in short: 

 A theme may be derived by the identified packages; 

 an epic is directly derived from a Use Case; 

 a user story creation should be based by each of the scenarios from a use case; 

 User Stories Details are depicted by the software components responsible for executing the 

given functionality, identified during the 4SRS method execution. Another important aspect 

of the detail may be the context of use, which is depicted by scenarios, modeled in 

sequence diagrams ; 

 Acceptance Criteria is described in the use case description, namely the post condition. 

 

O2: To adopt flexibility and agility mechanisms in the refinement of logical 

architectures throughout the iterations of ASD teams. 

In Chapter 5, AMPLA was described as a supporting mechanism for proposing a candidate 

logical architecture, using a set of “just-enough” requirements. Then, supported by the 4SRS 

method, the candidate logical architecture iteratively evolves as specific subsets of the 

architecture are analyzed within Scrum Sprints and its components are refined. 

Agile architecting is about continuous design and evolution of the solution, by acknowledging 

the architecture’s evolution but assuring such evolution is not endangered by business decisions. 

Included within the AMPLA method, Chapter 5 presented how continuous architecting (CA) is 

supported by supporting change-impact analysis (CIA) practices for eventual changes proposals. 

Due to the model traceability supported by AMPLA, CIA was able to depict impacts in concerns 

as architecturally significant requirements (ASR), Quality characteristic, Business and customer 
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value of the requirement, Which components are affected, Compliance with standards, 

Requirements emerge, and Managing architectural debt. 

 

O3: To develop an approach oriented for continuous architecting, aiming to specify 

microservices logical architectures (MSLA), identifying them and their interfaces. 

As described in O2, design in ASD continuously evolves. In previous objectives the focus was 

to propose an architecture from scratch and incrementally refine it. However, continuous 

architecture includes assuring the architecture eases a proper maintenance.  By making use of 

the “power of small”, microservices architectures (MSA) style have been adopted in software 

development, on one hand, in developing cloud applications, promoted by the service’s 

independent deployment and maintenance and, on the other hand, using such independence 

and “smallness” for promoting automation in a continuous integration, continuous delivery and 

DevOps processes. 

In Chapter 5, by using an adapted version of the 4SRS, a model for microservices logical 

architectures (MSLA) was derived and presented using SoaML diagrams. The described approach 

allows deriving the microservices’ internal behavior, their data models, and the existing 

communications. The approach was described in opposite settings: (1) in an existing monolith 

decomposition setting, with upfront information about legacy systems, demonstrated in IMP_4.0 

and ISMPM projects; and (2) in greenfield settings, where requirements emerged (using AMPLA), 

demonstrated in UH4SP project. Transiting from the logical architecture to SoaML diagrams was 

systematized in modeling procedures, in short: 

 Service Participants with boundary definition, communication needs (Requests/Services and 

Ports) 

 Service Architecture with boundary definition and communication (service requests that the 

service performs) 

 Service Capabilities with boundary definition and data model 

 Service Interfaces with communication specifications 

 

O4: To use logical architectures to manage assignment and orchestration process in 

LSA projects 

Software development settings composed with multi-teams, distributed or co-located, have an 

additional concern in the SDLC to manage and coordinate work and the software delivered by 
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them. This process of delivering software, at large-scale – i.e., using more than one development 

team, often geographically distributed - faces issues of dependencies, boundaries, coordination 

and/or synchronization. In ASD settings, often referred as ‘large-scale agile development’ (LSA), 

such task had to be rethought, where team collaboration heavily relies in a proper addressing of 

communication, trust and alignment. A logical architecture model was able to provide important 

insights for such concerns, by the organization of the components assigned for teams and the 

component’s relationships that may relate with required interfaces between teams. 

In Chapter 6, a framework for distributed agile teams was presented, addressing the 

architecture modularization, team assignment, dependencies, requirements modelling towards 

coordination and communication within distributed teams.   

Modularization phase is composed by the following principles: Identify Modules of the 

architecture; Assign Modules to Teams, which originates a subset of work items; Set Module 

Boundaries; and Define Module Size. Derive Dependencies and Manage Communication using 

predefined channels and periodicity, are present in Communication and Coordination phases. 

Communication phase also includes Model W2ReqComm Package for a multiview requirements 

package. Coordination phase also includes Manage Inter-team Coordination, composed by 

unplanned and planned events. 

 

AMPLA is a modeling approach covering the evolution of agile architecting, from grooming to 

software delivery stages. Namely, AMPLA covers some modeling and design tasks, including 

initial inputs, candidate architecture design, incremental refinement, continuous architecting and 

change-impact analysis, microservice logical architecture design and deployment, and multi-

teams and multi-backlogs management. This thesis focused in the contribution of AMPLA to a set 

of research topics necessary to support covering the SLDC, which are now described. 

Agile modeling 

AM, as the name states, is about modeling in ASD settings. While other settings, like 

plan-driven (e.g., Waterfall) address the entire modeling in a specific stage of the SDLC, AM 

advocates modeling throughout the SDLC, encompassing its evolution as further details of 

software emerge. It relates to the opposite of “Big Design Upfront” (BDUF), aiming to prevent 

modeling of “You Ain’t Gonna Need It” (YAGNI) features. 
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AMPLA contributes to AM by providing a stepwise model evolution, where different software 

models (Sequence Diagrams, Use Cases, and Logical Architectures) are derived in succession 

and properly aligned with each other in a V-Model manner. 

AMPLA proposes the design of a candidate version of the logical architecture during grooming 

stages of the ASD, afterwards providing mechanisms for the architecture refinement during 

iteration cycles (e.g. Scrum Sprints). Additionally, AMPLA provides the traceability between the 

models (Sequence Diagrams, Use Cases, Logical Architectures), as well as between the models 

and the Product Backlog Items (Epics, User Stories, Acceptance Criteria, etc.). 

Agile requirements engineering 

Just like AM, “agile requirements engineering”10 differs from plan-driven by not being sticked 

in a specific stage of the SDLC, but rather throughout the SDLC. In ASD contexts, requirements 

engineering activities are still in a relatively early phase of development. However, there are 

change in their timings and how they are used. In ASD frameworks, like Scrum, XP, Kanban, 

SAFe, LeSS, Scrum@Scale, Nexus or Spotify Squad, the requirements are included in a product 

backlog, which then drives the development process, thus most of the RE activities are 

performed earlier.  

For the scope of this thesis, requirements engineering outputs aim gathering the information 

for enabling AMPLA at providing a candidate logical architecture. Towards such aim, this 

research proposed an approach that addressed requirements elicitation, analysis and 

documentation as they emerge in a stepwise and traceable way, called “Decomposing User Agile 

Requirements ArTEfacts” (DUARTE). 

DUARTE included inputs from ASD practices such as Lean Startup, Design Thinking, Domain-

driven Design, BizDev and Kent Beck’s 3X. By including inputs from these practices, DUARTE 

aims at assuring that the gathered and modeled requirements have only the “just-enough” detail 

for enabling AMPLA at deriving a candidate logical architecture.  

AMPLA does not require that requirements engineering be based in DUARTE approach. In 

fact, it only requires that an output is a UML Use Case model, in order to perform the Four Step 

                                                 

10 Requirements engineering performed in ASD settings is sometimes referred as “agile requirements engineering”, but this term is not consensual 

since many authors state that “requirements engineering” techniques are the same whether in ASD or non-ASD settings. For the sake of this 

thesis, we use the term “agile requirements engineering” whenever techniques are performed in ASD settings. 
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Rule Set (4SRS) method. In chapter 4, AMPLA used both upfront and emerging requirements 

activities. 

Agile logical architecting 

Discussing agile architecting encompasses design evolution regarding Logical, Process, 

Development, Physical and Scenarios viewpoints, alongside with defining how the relationships 

between viewpoints also evolve. This research proposed an Agile Architecting Lifecycle (AAL) 

encompassing software design that evolves from architectural, mechanistic, and detailed design 

to development and deployment. The AAL pathway goes through three stages: Grooming, 

Backlog and Delivery. AAL pathway includes description of Context, Functionalities, a Candidate 

Architecture and, then, a Refined Architecture. 

AMPLA focuses in the evolution of the logical architecture. The agile logical architecting 

approach is composed by firstly proposing a candidate version, which is later refined. The 

evolution of the architectural models between the candidate and the refined one is supported by 

the 4SRS method. 

This thesis also included how AAL uses remaining viewpoints. In terms of the Context, 

architecture viewpoints relate to domain, enterprise, business and information systems where the 

project is scoped. The logical viewpoint is a central issue in Candidate Architecture and 

afterwards a Refined Architecture. Finally, the Delivery relates to the deployment viewpoint. The 

AAL pathway described in this thesis encompasses the inputs and outputs within each 

relationship between viewpoints throughout the pathway. 

Change-impact analysis 

As AAL addresses design throughout the SDLC, the logical architecture model evolves as the 

solution emerges. The architecture model evolution relating to Context, Candidate, Refined and 

Delivery stages. This makes design as a continuous process. 

AMPLA supports the continuous process by using the 4SRS method for refining the 

architecture in an incremental way, allowing it to emerge as iterations occur. During these 

iterations, when stakeholders review current software development status, AMPLA uses its 

traceability capability, promoted by the 4SRS method, between requirements and architecture, 

towards managing changes and/or new requirements, to analyze its impact on the solution 

architecture, as well as manage any technical debts.  
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Microservices design 

One of the principles for continuous architecting is to leverage the “power of small”. In that 

sense, microservices architectures (MSA) is one of the most common situations when companies 

adopt continuous architecting processes, characterized by small, interconnected and 

independent services. 

AMPLA was used in order to derive a microservices logical architecture from functional 

requirements. In the refinement process, domains (DDD) were identified within the architecture 

and afterwards iteratively refined, enabling deriving microservices specifications, afterwards 

modeled in SoaML diagrams. 

From models to (agile) backlog items 

Within the Delivery stage of the SDLC, the software increment to be delivered in each iteration 

is defined by a Product Backlog. This backlog is composed by a set of items that define the work 

to be done during the iteration. 

This research focused in defining backlogs, and its composing items, from requirements 

models (namely UML Use Cases, Components and Sequence Diagrams) using rules that assure 

the backlog items cover the gathered requirements. The derived backlog was filled with themes, 

epics, use cases, user stories and acceptance criteria. 

Agile multi-teams management 

The process of delivering software using more than one development team, often distributed, 

faces issues of dependencies, boundaries, coordination and/or synchronization. Architectures 

are an artefact capable of supporting a set of coordination decisions. 

In this research, the derived logical architecture from AMPLA’s V-Model is the foundational 

artefact for a distributed agile team framework. The framework addresses the architecture 

modularization, team assignment, dependencies, requirements modelling towards coordination 

and communication within distributed teams. 
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7.2. Synthesis of the research efforts 

It was at somewhat in the mid of 2013, when the ISOFIN project was entering its 

implementation stage, that we quickly identified that teams would have some difficulties in using 

the design specifications and modeled artefacts – based in a logical architecture composed with 

105 components after being derived from the 4SRS method – in their development processes. 

Due to the complexity of the project, and hence the complexity of the logical architecture, the 

consortium decided to divide work between three teams from different entities, but even so they 

struggled to define each Product Backlog. At this point, the project lacked a systematic approach 

to define the backlog items as well as pointing out interfaces between teams. 

These obstacles quickly arose as a research opportunity for this work. By defining a research 

method using the design science research (DSR), the objective was to base a research objective 

(O1) in the described need for backlog structuring (from models) and interfaces identification and 

address it using a DSR cycle from Kuechler and Vaishnavi’s framework (presented in Chapter 1). 

Such results were achieved under transformation steps (in Chapter 6), however during the 

research evaluation we identified that the problem facing was broader than just deriving backlog 

items from logical architectures. Thus, this DSR cycles was not concluded for that time and 

additional research objectives were defined (O2, O3 and O4). 

For addressing each research objectives, one different DSR cycle was conducted. However, 

since each DSR cycle was independent from another and thus a cycle did not rely in another 

cycle’s results, they could be conducted in parallel. 

As each DSR cycle was defined, their awareness was refined basing some literature review on 

combining architectures and agile frameworks, as well as technical reports on previous 

applications of the 4SRS method, among others, where the identified gaps were used to define 

the research goal for each DSR cycle and the criteria to complete them.  

The development of these cycles used designed artefacts resulting from different 

demonstration cases, which relate to R&D projects. How demonstration case’s contributions were 

organized towards the research objectives is synthetized in Table 42. 
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Table 42. Demonstration case's contributions towards the research objectives 

Demonstration 

case 

O1 O2 O3 O4 Observations 

iFloW X X   Used use cases in backlogs (O1) and upfront modeling in ASD 

(O2), in opposition to ISOFIN and UH4SP 

ISOFIN X   X Used user stories from models (O1) and modularization for 

interfaces identification (O4) 

UH4SP X X X X Derived a complete backlog structure (O1) in a complimentary way 

as performed in ISOFIN, emerging modeling using AMPLA (O2), 

modeling MSA in SoaML (O3) and defining inter-team coordination 

and communication (O4) in a complimentary way as performed in 

ISOFIN. 

IMP_4.0   X  Defined an MSA (O3), but from an existing monolith rather than 

greenfield like the UH4SP 

ISMPM   X  Defined an MSA (O3) from an existing monolith like IMP_4.0, but 

allowed to address additional patterns and deployment 

infrastructure, complimentary to UH4SP and IMP_4.0 

 

As mentioned, the DSR cycles were performed in parallel, where a set of demonstration cases 

contributed for the development and evaluation of the artefacts. In general, a demonstration case 

was not specific to one DSR cycle (in exception from IMP_4.0 and ISMPM). The projects were 

used within different contributions for each research objective, but they overlapped in time 

between each other. The chronological order for the projects is the following: 

• ISOFIN Cloud (2011-2014) 

• iFloW (2014-2016) 

• IMP_4.0 (2016-2017) 

• UH4SP (2016-2018) 

• ISMPM (2017-2018) 

 

As depicted in the “Observations” column in Table 42, each project may contribute differently 

in the research objective. Their outcomes may contribute for a practice (cf. Section 7.3 for 

research contributes for details in the practices) but different perspectives in a given research 

objective. Namely, there were cases of similar contribution for different project settings (e.g., 

IMP_4.0 for breaking existing monoliths and UH4SP for greenfield projects), additional 

contributes as in a post iteration (e.g., ISOFIN defined inter-team management and backlog 
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derivation approaches, and afterwards UH4SP used those approaches as basis and improved 

them, or ISMPM using approaches from UH4SP and IMP_4.0 as basis and additionally aligning 

deployment viewpoints), and opposite approaches (e.g., iFloW using use case-driven backlogs 

rather than user stories like ISOFIN and UH4SP).  

These contributes – even the opposite ones – do not mean that one approach is best suited 

than other. Each described case can be seen as a possible approach to be included in adopted 

practices when teams are defining their development processes, as teams should define their 

processes by adopting practices best suited for them rather than blindly follow a given framework 

(Ambler & Lines, 2019; Jacobson, Ng, McMahon, Spence, & Lidman, 2013) – like Scrum, XP, 

Kanban, SAFe, LeSS, Spotify. 

It is also worth referring that this research had intermediate progress control checkpoints. 

There is a “PhD Research Plan” report, dated 2015, that relates to the kick-off for the research. 

The “PhD Proposal” report, dated 2017, relates to initial findings and a deep understanding of 

the research process. Additionally, three doctoral consortiums allowed documenting the thesis 

evolution. First, the participation in the “2016 Interoperability For Enterprise Systems And 

Applications (i-ESA) Doctoral Symposium” documented some issues in adopting Scrum 

framework in distributed and interoperable settings, with focus in the results from iFloW. 

Afterwards, the participation in the “2016 Portuguese Software Engineering Doctoral Symposium 

(SEDES)”, co-located with “International Conference on the Quality of Information and 

Communications Technology (QUATIC)”, documented the research question as well as the 

results from iFloW and ISOFIN. Finally, a final participation in “2017 European Conference on 

Information Systems (ECIS) Doctoral Consortium)” updated the thesis progress, with equal focus 

in iFloW and ISOFIN. Other participations, namely related to projects such as IMP_4.0 and 

UH4SP, also allowed to discuss the research outcomes but are described in Section 7.3.     

 

7.3. Scientific Outputs 

In line with Hevner’s design theory framework (cf. Chapter 1), this thesis aimed at 

contributing to both knowledge base space (i.e., added scientific theories and methods for 

“science” knowledge) and environment space (i.e., practices for adoption from organizations with 

software development teams). Due to the nature of the conducted research, namely by 

developing design science research based in demonstration cases, the designed artefacts, 

methods and processes were validated in both theoretical and practical way.  
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As for contributions to environment space, this thesis proposed the AMPLA process, 

composed with modeling practices that software development teams may adopt. The proposed 

design theory provided artefacts, roles and events for addressing architecture modularization, 

requirements communication and distributed team coordination. Thus, software teams may 

adopt AMPLA process for conducting software modeling throughout the SDLC – from a high-level, 

business-oriented, abstraction to a lower-level, at a microservice-level, model abstraction – in an 

aligned and traceable way. Additionally, it should be pointed out that, although this thesis 

proposed the AMPLA process, the same AMPLA process is composed with a set of practices that 

can be adopted in the SDLC independently, allowing flexibility in defining the best suitable 

software development process for a given environment. 

As for contributions to knowledge base space, this thesis outputs a new theory on design 

artefacts for logical architecture’s usage in LSA settings. As stated in Section 7.1, developing the 

theory regarding AMPLA included researching in topics such as modeling and design tasks, 

including initial inputs, candidate architecture design, incremental refinement, continuous 

architecting and change-impact analysis, microservice logical architecture design and 

deployment, and multi-teams and multi-backlogs management. The theory contributions are (1) 

an Agile Modeling Process for Logical Architectures, (2) a Process management at large-scale, 

and (3) an Incremental model refinement until service level. 

 

Contribution 1: Agile Modeling Process for Logical Architectures 

The evolution of the modeled artefacts that is required for ASD settings has as main concern 

to design what is “just enough” for addressing the problem, in opposition to BDUF. The proposed 

AMPLA process proposed a theory for using such “just enough” information in requirements, 

using DUARTE approach), in order to validate if all essential information for a candidate 

architecture was gathered. 

The DUARTE approach defined a theory on defining how product development mindsets like 

Lean Startup, DDD, Design thinking, among others, affect requirements modeling. Before using 

such information in performing the 4SRS method, AMPLA encompassed a verification checkpoint 

to prevent any essential information was disregarded. This allowed preventing the candidate 

version of the logical architecture to have any YAGNI features. 
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Contribution 2: Incremental model refinement until service level 

Microservices architectures (MSA) are an architectural style oriented towards modularization, 

where the idea is to split the application into smaller, interconnected services, running as a 

separate process that can be independently deployed, scaled and tested. Adopting microservices 

include specific concerns on design, development and deployment. Assuring MSA design aligned 

with business requirements needs to be supported by modeling methods that cover 

microservices principles. 

This thesis proposed defining a method for deriving a microservices logical architecture 

(MSLA) from functional requirements. The method has as input an UML logical components 

diagram, enabling deriving microservices specifications, afterwards modeled in SoaML diagrams. 

Additionally, these diagrams were basis for discussing microservices principles. 

This thesis included a method validation, both in greenfield settings (UH4SP project) and in 

breaking existing monoliths settings (IMP_4.0 and ISMPM projects).  

 

Contribution 3: Process management at large-scale 

Research in large-scale software development projects, or, in the case of this thesis, 

‘large-scale agile development’ (LSA), relates to ASD practices for scaled settings in team’s size, 

number of teams, number of lines of code, among others. These practices have the concern 

relating to business agility, role of architects, knowledge sharing and networks, inter-team 

coordination, etc. Although it was acknowledged the potential role of models – like the 

architecture – for promoting those concerns, there was a gap in a prescriptive approach for using 

architectural models as input (like components and their interfaces) for supporting dependencies, 

communication and coordination between teams.  

The theory defines a logical architectural artefact as basis for managing the process of setting 

delivery boundaries, communicating the requirements, coordinating and synchronizing inter-

teams work. 

In an LSA setting, the candidate architecture is modularized and “presented” to multi-teams. 

This research demonstrated how teams coordinate, communicate and synchronize during their 

own model evolution, enabling the architecture model to refine incrementally in multi-modules in 

parallel throughout the project. 
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The inputs from these research contributions result from different demonstration cases. How 

demonstration case’s inputs were organized towards the research contributions is synthetized in 

Table 43. As depicted in the “Observations” column in Table 43, each project may contribute 

differently in the research contribution. For instance, iFloW and UH4SP projects provide opposite 

inputs on modeling in ASD (or Agile Modeling), namely upfront modeling in ASD projects and 

emerging modeling preventing BDUF. Also, post iterations of a contribution, which aimed at 

revisiting, updating and improving the research contribution, like the case of ISOFIN in helping 

define rules for deriving user story statements from UML models and the case of UH4SP that 

improved these rules in order to derive additional product backlog items, such as themes, epics, 

user story details and acceptance criteria. 

 

Table 43. Demonstration case's inputs towards the research contributions 

Demonstration 

case 

Contribution 

1 

Contribution 

2 

Contribution 

3 

Observations 

iFloW X   Use of models (upfront) in ASD projects 

ISOFIN X X  Use of models (upfront) in ASD projects, 

Rules for deriving user story statements 

and inter-team dependencies 

UH4SP X X X Agile (emerging) modeling using DUARTE 

and AMPLA, deriving agile backlog items 

(complimentary to ISOFIN), and uses 4SRS-

MSLA in greenfield projects 

IMP_4.0   X Uses 4SRS-MSLA in an existing monolith 

project (with upfront requirements rather 

than emerging like the UH4SP) 

ISMPM   X Uses 4SRS-MSLA in an existing monolith 

project and discussed  

 

In exception for ISMPM, each of the demonstration cases relate to a funded R&D project. 

Which is to say that this thesis work includes scientific outputs from ISOFIN, iFloW, UH4SP and 

IMP_4.0 projects. 

In ISOFIN project, this research included developing and afterwards validating the applicability 

of using the 4SRS method for deriving the logical architecture and afterwards delivering it to 

distributed ASD teams in form of user stories and dependencies between them. Contributions 

such as Contribution 1: Agile Modeling Process for Logical Architectures and 
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Contribution 2: Process management at large-scale, are included work of the following 

project deliverables: 

- M/D207 – ISOFIN Logical Architecture; 

- M/D210 – Financial Domain Applications/Services Specifications 

Namely, M/D207 – ISOFIN Logical Architecture documented the research work towards 

upfront modeling for Contribution 1, and M/D210 – Financial Domain Applications/Services 

Specifications regarding Contribution 2 that documented the research work in modularizing the 

architecture, defining an approach to bound the modules scope, interfaces, and dependencies, 

and presenting transition rules for user story statements (“As a… I want to… In order to…”) for 

usage in ASD projects.   

 

In iFloW project, this research included developing and afterwards validating the applicability 

of using a requirements modeling in UML for use in an ASD project and backlog. Research work 

towards Contribution 1: Agile Modeling Process for Logical Architectures is included 

work of the following project deliverables: 

- D4.4.2 - Specification of the model for experimental development; 

- D5.3.8 – development of functionalities  

- D6.7.9 – verification and validation of functionalities developed 

Namely, report D4.4.2 - Specification of the model for experimental development documented 

the requirements process and the UML models. Reports D5.3.8 – development of functionalities, 

and D6.7.9 – verification and validation of functionalities developed documented the definition of 

the backlog and the results of the performed iterations (Scrum Sprints) which allowed perceiving 

how the iFloW project team used the derived backlog. 

 

In UH4SP project, this research included developing the AMPLA, DUARTE and 4SRS-MSLA 

approaches and afterwards validating the applicability of using emerging (agile) modeling of 

requirements and candidate architecture, incremental refinement of the architecture following 

microservices principles and continuous architecting, and the delivery of product backlog items 

and multi-teams LSA process management. Contributions such as Contribution 1: Agile 

Modeling Process for Logical Architectures, Contribution 2: Incremental model 

refinement until service level and Contribution 3: Process management at large-

scale are included work of the following project deliverables: 
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- D.3.1 – Functional and Technical Requirements Specification; 

- D.3.2 – Technical and logical architecture; 

- D3.3 – Service Specification For Material Reception And Shipment; 

- D3.5 – Interoperability Between Platform And Services Requirements; 

- D3.7 – Solution modelling; 

- D4.1.1 – UH4SP Management Platform – Initial Version; 

- D4.1.2 – UH4SP Management Platform – Final Version; 

- D5.4 - Integration Services and Platform. 

Namely, D.3.1 – Functional and Technical Requirements Specification report documented the 

results from applying the DUARTE approach, and D.3.2 – Technical and logical architecture 

report documented the results of applying AMPLA for candidate logical architecture design, both 

for Contribution 1. Reports D4.1.1 – UH4SP Management Platform – Initial Version, D4.1.2 – 

UH4SP Management Platform – Final Version and D5.4 - Integration Services and Platform 

documented, firstly, the architecture modularization, communication and coordination needs, 

and afterwards, the performed iterations (Scrum Sprints) which allowed perceiving how one of 

the UH4SP project team used the derived backlog, for Contribution 3.  Finally, reports D3.3 – 

Service Specification For Material Reception And Shipment, D3.5 – Interoperability Between 

Platform And Services Requirements and D3.7 – Solution modelling regarding documented the 

results from applying the 4SRS-MSLA and the microservices modeling in SoaML, for 

Contribution 2. 

 

In IMP_4.0 project, this research included developing 4SRS-MSLA and afterwards validating 

the applicability of the MSLA in an existing monolith setting. Research work towards 

Contribution 2: Incremental model refinement until service level, is included work of 

the following project deliverables: 

- D.1.4 – Functional requirements specifications – initial version; 

- D.1.5 – Functional requirements specifications – final version;  

- D1.8 – Traceability mechanisms for production management; 

- D1.9 – IMP_4.0 logical architecture – initial version; 

- D1.10 – IMP_4.0 logical architecture – final version; 

- D1.11 – IMP_4.0 platform services specification. 
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Namely, reports D.1.4 – Functional requirements specifications – initial version and D.1.5 – 

Functional requirements specifications – final version documented the requirements engineering 

task for the existing monoliths setting.  The D1.8 – Traceability mechanisms for production 

management report documented the development of the 4SRS-MSLA method. Finally, reports 

D1.9 – IMP_4.0 logical architecture – initial version, D1.10 – IMP_4.0 logical architecture – final 

version and  D1.11 – IMP_4.0 platform services specification documented the resulting 

MSLA, in form of different SoaML diagrams. All these reports documented research work towards 

Contribution 2.   

 

As mentioned in Chapter 1, in the case of the IMSPM, because it is an internal project, the 

only available documentation is in form of a MSc thesis, that can be found in: Amaral, José Diogo 

Coelho, “The evolution of monolithic architectures to microservice-based architectures” (free 

translation of “A evolução das arquiteturas monolíticas para as arquiteturas baseadas em 

microserviços”), ISEP - DM – Engenharia Informática11. This work documented the application of 

4SRS-MSLA for an internal project at i2S company, allowing depicting how the existing monolith 

was decomposed in an MSA, and additionally discussing deployment and infrastructure needs for 

that MSA, providing complimentary insights for Contribution 2: Incremental model 

refinement until service level. 

 

 

A crucial part of the research work relates to communicating the results. For that aim, several 

research papers were published, which are now listed.  

Conference papers: 

o Ferreira, N., Santos, N. & Machado, R.J., 2014. Modularization of Logical Software 

Architectures for Implementation with Multiple Teams. In Proceedings of the 14th 

International Conference on Computational Science and Its Applications. IEEE, pp. 1–11. 

DOI: 10.1109/ICCSA.2014.14  

o Costa, N., Santos, N., Ferreira, N., & Machado, R. J., 2014. Delivering user stories for 

implementing logical software architectures by multiple scrum teams. In Computational 

Science and Its Applications. Springer International Publishing, pp. 747-762. DOI: 

10.1007/978-3-319-09150-1_55 

                                                 
11

 Available at: http://hdl.handle.net/10400.22/11920  

http://hdl.handle.net/10400.22/11920
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o Santos, N., Barbosa, D., Maia, P., Fernandes, F., Rebelo, M., Silva, P. V., Fernandes, J. M., 

Machado, R. J. (2016). iFloW: an integrated logistics software system for inbound supply 

chain traceability. In E. Mendonça, J. P., Fensterbank, S.-A., Barthet (Ed.), “Enterprise 

Interoperability VII”. Springer, Cham. DOI: 10.1007/978-3-319-30957-6_15 

o Santos, N., Fernandes, J. M., Carvalho, S. M., Silva, P. V., Fernandes, F., Rebelo, M., 

Fernandes, J. M., Machado, R. J. (2016). Using Scrum together with UML models: A 

collaborative University-Industry R&D software project. In Gervasi, O., Murgante, B., Misra, S., 

Rocha, A.M.A.C., Torre, C.M., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (Eds.) 

Computational Science and Its Applications – Part III. Lecture Notes in Computer Science. 

Springer. DOI: 10.1007/978-3-319-42089-9_34 

o Santos, N., Pereira, J., Morais, F., Barros, J., Ferreira, N., & Machado, R. J. (2018). An agile 

modeling oriented process for logical architecture design. In Gulden, J., Reinhartz-Berger, I., 

Schmidt, R., Guerreiro, S., Guédria, W., Bera, P. (Eds.) Enterprise, Business-Process and 

Information Systems Modeling. Lecture Notes in Computer Science. Springer, Cham. DOI: 

10.1007/978-3-319-91704-7_17 

o Santos, N., Pereira, J., Morais, F., Barros, J., Ferreira, N., & Machado, R. J. (2018). An 

experience report on using architectural models within distributed Scrum teams contexts. In 

XP’18 Scientific Workshops. ACM. DOI: 10.1145/3234152.3234180 

o Santos, N., Pereira, J., Morais, F., Barros, J., Ferreira, N., & Machado, R. J. (2018). 

Incremental architectural requirements for agile modeling: a case study within a Scrum 

project. In XP’18 Scientific Workshops. ACM. DOI: 10.1145/3234152.3234166 

o Santos, N., Pereira, J., Morais, F., Barros, J., Ferreira, N., & Machado, R. J. (2018). Deriving 

user stories for distributed Scrum teams from iterative refinement of architectural models. In 

XP’18 Scientific Workshops. ACM. DOI: 10.1145/3234152.3234165 

o Santos, N., Rodrigues, H., Pereira, J., Morais, F., Abreu, R., Fernandes, N., Martins, D., 

Machado, R. J. (2018). UH4SP: a software platform for integrated management of connected 

smart plants. In: 9th IEEE International Conference on Intelligent Systems (IS). IEEE. DOI: 

10.1109/IS.2018.8710468 

o Santos, N., Pereira, J., Ferreira, N., & Machado, R. J. (2018). Modeling in agile software 

development: decomposing use cases towards logical architecture design. In Product-

Focused Software Process Improvement. Lecture Notes in Computer Science. Springer. DOI: 

10.1007/978-3-030-03673-7_31 
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o Santos, N., Ferreira, N., & Machado, R. J. (2019): “Towards agile architecting: Proposing an 

architectural pathway within an Industry 4.0 project”, Information Systems: Research, 

Development, Applications, Education. Springer, Cham. DOI: 10.1007/978-3-030-29608-

7_10 

o Santos, N., Rodrigues, H., Ferreira, N., & Machado, R.J. (2019). “Inputs from a Model-based 

Approach towards the Specification of Microservices Logical Architectures: an Experience 

Report”. Product-Focused Software Process Improvement. Springer, Cham. 

o Santos, N., Salgado, C. E., Rodrigues, H., Morais, F., Melo, M,, Silva, S., Martins, R., Pereira, 

M., Ferreira, N., Pereira, M. & Machado, R. J. (2019). A logical architecture design method 

for microservices architectures. Proceedings of 13th European Conference on Software 

Architecture (ECSA 2019) - Vol.2. ACM. DOI: 10.1145/3344948.3344991  

 

Book chapters 

o Santos, N., Rodrigues, H., Pereira, J., Morais, F., Martins, R., Ferreira, N., Abreu, R., 

Machado, R.J. (2018): Specifying Software Services for Fog Computing Architectures Using 

Recursive Model Transformations. In: Mahmood, Z. (ed.) Fog Computing: Concepts, 

Frameworks and Technologies. pp. 153–181. Springer, Cham. DOI: 10.1007/978-3-319-

94890-4 

o Santos, N., Morais, F., Rodrigues, H. & Machado, R.J. (2019). Systems Development for the 

Industrial IoT: Challenges from Industry R&D Projects. In: Mahmood, Z. (Ed.), The Internet of 

Things in the Industrial Sector, 1st ed. Springer Cham. DOI: 10.1007/978-3-030-24892-5 

 

Doctoral Consortium papers: 

o Santos, N., Fernandes, J. M., Carvalho, S. M., Silva, P. V., Fernandes, F., Rebelo, M., 

Fernandes, J. M., Machado, R. J. (2016). Industrial interoperability issues when adopting 

Scrum in research projects: the case of the iFloW system. In “Enterprise Interoperability”, 

International Conference on Interoperability for Enterprise Systems and Applications (I-ESA) 

Doctoral Symposium.  

o Santos, N., Machado, R. J., Ferreira, N. (2016). Adopting Logical Architectures within Agile 

Projects. In 6th Portuguese Software Engineering Doctoral Symposium (SEDES) in 

conjunction with the 10th International Conference on the Quality of Information and 

Communications Technology (QUATIC’16). DOI: 10.1109/QUATIC.2016.059 
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o Santos, N., Machado, R. J., Ferreira, N. (2017). Adopting Logical Architectures within Agile 

Projects. In Doctoral Consortium of the European Conference in Information Systems 

(ECIS’17 DC). 

 

Involved Master thesis: 

o MSc #1: Martins, Raquel “Designing Architectures for Industrial Cloud Solutions: The UH4SP 

Demonstration Case” (free translation of “Conceção de Arquiteturas de Soluções Cloud para 

a Indústria: Caso de Demonstração UH4SP”), Integrated Masters in Engineering and 

Management of Information Systems (MIEGSI), Department of Information Systems, 

University of Minho, Portugal, 2018 

(http://repositorium.sdum.uminho.pt/handle/1822/59343)  

o MSc #2: Correia, Luis “Development of an Agile metrics Framework” (free translation of 

“Desenvolvimento de um framework de métricas para projetos ágeis”), Integrated Masters in 

Engineering and Management of Information Systems (MIEGSI), Department of Information 

Systems, University of Minho, Portugal, 2018 

(https://repositorium.sdum.uminho.pt/handle/1822/59138) 

o MSc #3: Amaral, José Diogo Coelho, “The evolution of monohlithic architectures to 

microservice-based architectures” (free translation of “A evolução das arquiteturas 

monolíticas para as arquiteturas baseadas em microserviços”), ISEP - DM – Engenharia 

Informática, 2018. http://hdl.handle.net/10400.22/11920 

 

Presentations at scientific conferences: 

o “Modularization of Logical Software Architectures for Implementation with Multiple Teams”, 

“Tools and Techniques in Software Development Processes” session at the 14th 

International Conference on Computational Science and Its Applications. Guimarães, 

Portugal, July 1st 2014 

o  “Delivering user stories for implementing logical software architectures by multiple scrum 

teams”, “Workshop of Agile Software Development Techniques” session at the 14th 

International Conference on Computational Science and Its Applications. Guimarães, 

Portugal, July 2nd 2014. 

http://repositorium.sdum.uminho.pt/handle/1822/59343
https://repositorium.sdum.uminho.pt/handle/1822/59138
http://hdl.handle.net/10400.22/11920


An Agile Process for Modeling Logical Architectures: Demonstration Cases from Large-scale Software Projects 

 

323 
 

o “Industrial interoperability issues when adopting Scrum in research projects: the case of the 

iFloW system”, at the International Conference on Interoperability for Enterprise Systems and 

Applications (I-ESA) Doctoral Symposium, Guimarães, Portugal a March 28th 2016 

o “iFloW: an integrated logistics software system for inbound supply chain traceability”, 8th 

International Conference on Interoperability for Enterprise Systems and Applications (I-ESA), 

Guimarães, Portugal, March 31st 2016. 

o “Adopting Logical Architectures within Agile Projects”, Doctoral Consortium of the European 

Conference in Information Systems (ECIS DC), Guimarães, Portugal, June 5th 2017 

o “An agile modeling oriented process for logical architecture design.”, 23rd International 

Conference on Exploring Modeling Methods for Systems Analysis and development 

(EMMSAD) in conjunction with 30th International Conference on Advanced Information 

Systems (CAiSE), Tallin, Estonia, June 11th 2018. 

o “An experience report on using architectural models within distributed Scrum teams 

contexts”, 6th International Workshop on Large-Scale Agile Development 

(LargeScaleAgile’18) in conjunction with the 19th International Conference on Agile Software 

Development (XP’18), Porto, Portugal, May 28th 2018. 

o “Incremental architectural requirements for agile modeling: a case study within a Scrum 

project” and “Deriving user stories for distributed Scrum teams from iterative refinement of 

architectural models”, at Poster Session and at “Poster Madness” session of International 

Conference on Agile Software Development (XP’18), Porto, Portugal, May 22nd to 24th 2018.  

 “A logical architecture design method for microservices architectures”. In 3rd Workshop on 

Formal Approaches for Advanced Computing Systems (FAACS’19) in conjunction with the 

13th European Conference on Software Architecture (ECSA 2019), Paris, France, September 

10th 2019.  

 “Towards agile architecting: Proposing an architectural pathway within an Industry 4.0 

project”, at 12th EuroSymposium on Systems Analysis and Design, Gdansk, Poland, 

September 19th 2019. 

  “Inputs from a Model-based Approach towards the Specification of Microservices Logical 

Architectures: an Experience Report”. International Conference on Product-Focused Software 

Process Improvement (PROFES) 2019. Barcelona, Spain, November 27th to 29th 2019. 

 

Presentations at other events: 
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 Poster session, presenting preliminar research results, at “Doctoral Programme in 

Information Systems and Technology (PDTSI) Autumn Symposium 2016”, Guimarães, 

Portugal, November 16th 2016 

 Presentation of AMPLA process and the UH4SP architecture, included in the project’s 

results, at the event “Solutions for Smart Factories in the Era of Industry 4.0 – OpenDay by 

Cachapuz, Braga’s Municipality Economic Week”, Braga, Portugal, May 24th 2018  

 Presentation of the IMP_4.0 architecture, included in the project’s results, at the event 

“Industry 4.0 – Presentation of the IMP_4.0 Platform”, Braga, Portugal, November 27th 2017  

 Presentation of the ASD approach adopted by the iFloW project, included in the project’s 

results, at “HMIExcel Program Closing Conference”, Braga, Portugal, June 30th 2015 

 

Table 44 summarizes the contribution and content of the published scientific outputs in 

relation with the project/demonstration case the work was validated as well as the research 

contribution. 

Table 44. Published paper's relation with demonstration case and research contribution 

 ISOFIN iFloW UH4SP IMP_4.0 ISMPM 

TTSDP’14 RC2     

WAGILE’14 RC2     

I-ESA DS  RC1    

I-ESA’16  RC1    

SEPA’16  RC1    

SEDES’16  RC1 RC1   

ECIS DC  RC1 RC1   

XP’18 WS   RC2   

EMMSAD’18   RC1/3   

Fog book   RC3   

MSc #1   RC1/3   

QuASD’18   RC1   

IS’18   RC3   

MSc #2   RC2   

MSc #3     RC3 

IIoT book   RC3 RC3  

FAACS’19    RC3  

Eurosymposium’19   RC1   

PROFES’19   RC3   
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7.4. Future work 

This thesis addressed topics (cf. Section 7.1) such as agile modeling, agile requirements 

engineering, agile logical architecting, Change-impact analysis, microservices design, (agile) 

backlog items, and Agile multi-teams management. In addition, in all of them, there are 

opportunities for improvement in future work.  

 

Agile modeling 

AMPLA proposes additional activities and artifacts in agile requirements engineering methods. 

AMPLA has three established phases: (i) Requirements Elicitation; (ii) Requirements Analysis & 

Modeling; (iii) Architecture Design; and (iv) Delivery Cycles. It is also composed by milestones 

and artifacts - like the several derived models (sequence, use cases, components). Because the 

process prescribes models derivation sequencing and dependencies, it may be perceived as 

some threats for the process agility12. We acknowledge that these dependencies are mandatory 

as it is, but it is planned to use AMPLA in future R&D projects at the CCG\ZGDV Institute and 

depict how AMPLA process’ flexibility may be increased. 

The initial three phases (Requirements Elicitation, Requirements Analysis & Modeling and 

Architecture Design) required having dedicated teams for conducting these phases, with more 

focus in modeling. Only when entering the fourth and final phase, the Delivery Cycles, project 

teams were included in the process. In projects with more than one team, the dedicated team for 

conducting the first three phases was composed by representatives from the involved teams, like 

the cases of ISOFIN and UH4SP. However, in settings of more than one team, each team may 

start defining requirements from the beginning, rather than start by a “shared” model, like our 

proposed candidate architecture. There is a need for future research in a proper discussion on 

the suitability of parallel requirements emerging rather than starting with a single architecture 

proposal. 

Another issue is that AMPLA was only applied in settings where the method’s designers were 

included in the project’s teams. For that reason, there is a lack of information regarding the 

project teams’ ability to adopt AMPLA. It is also planned for future work to apply AMPLA in other 

projects at the CCG\ZGDV Institute without including the method’s designers in the project team. 

This work intends to analyze if team members are able to interpret the process rules, measure 

the learning curve, the willingness of teams to model all artefacts, among others. 

                                                 
12 Such claim is based on collected feedback, for instance, in presentations at conferences or in paper reviews. 
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The process lacks still of a formalization in order to ease its adoption without including the 

method’s designers. Hence, as future work it is planned a formalization in a process-oriented 

notation, like  Software Process Engineering Metamodel (SPEM) (OMG, 2008), but mainly 

Essence (Jacobson et al., 2013). Essence is a modular, method-agnostic progress control tool for 

software engineering endeavors. Essence, or the SEMAT’s Essence Theory of Software 

Engineering, consists of a kernel and a language. The kernel contains all the elements present in 

every software engineering endeavor, while the language can be used to extend the kernel to be 

tailored for specific contexts. The alphas of the kernel serve as a way of tracking project health. 

Alpha states offer a way of tracking progress. In the future, AMPLA‘s model derivation and its 

composing practices will be formalized using Essence’s Kernel alphas, activity spaces, and 

competencies. The formalization includes describing AMPLA’s modeling practices, how 

performing in parallel with other agile framework or practice, and how progressing may be 

tracked. 

 

Agile requirements engineering (RE) 

The MVP requirements elicitation may be performed by gathering stakeholder’s individual 

needs, also referred as “bespoke”, “custom” or “tailor-made” RE (Fernandes & Machado, 2016). 

Alternatively, it may be oriented to a combination of a number of known customers, or to a mass-

market where customers cannot be clearly pinpointed, also referred as “market-driven RE” 

(MDRE) (Regnell & Brinkkemper, 2005).  

DUARTE is oriented for requirements elicitation together with a set of key stakeholders (e.g., 

business owner, product lead, etc.) that have clearly defined their business needs, based on a 

previously defined market strategy. Hence, this phase is clearly based in Bespoke RE. 

Alternatively, elicitation could be based in involving customers or other market entities (MDRE). 

This context will be object of future research. 

 

Agile logical architecting  

Agile architecting is characterized for performing design activities in a way that architecture 

and its requirements emerge throughout software development, where BDUF is avoided because 

needs change and many features specified in BDUF are afterwards classified as YAGNI. 

The AAL described in Section 5.2 showed that architecture evolves throughout the SDLC and 

supports the viewpoints during such transition. However, there is space for approaches that 
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automate such transitions. This research presented logical architectures for the design phase 

and deployment architectures for the delivery phase, like UH4SP and ISMPM. Although one may 

depict relationships with both models and its inherent viewpoint transition, such transition was 

not performed in a systematic and automatized way. For that reason, we acknowledge that 

transition from design to technical and deployment (in Delivery stage) needs addressing in future 

research for of a proper transition support. 

 

The research works presented in Chapter 2 included architecture-centric approaches present 

in ASD (Bellomo, Kruchten, Nord, & Ozkaya, 2014; Farhan, Tauseef, & Fahiem, 2009; Jeon, 

Han, Lee, & Lee, 2011; Madison, 2010; R. L. Nord & Tomayko, 2006; R. Nord, Ozkaya, & 

Kruchten, 2014), where architecture-centric methods such as Quality Attribute Workshop (QAW), 

Attribute-Driven Design (ADD), Architecture Trade-off Analysis Method (ATAM) / Cost-Benefit 

Analysis Method (CBAM) and Active Review for Intermediate Designs (ARID) are performed in 

parallel with the development iterations. These approaches are based in quality requirements. 

AMPLA, in the other hand, is based in functional requirements. Although not explored in this 

thesis, AMPLA (more concretely, the 4SRS) is able to co-exist with these approaches – in fact, co-

existing the 4SRS with any of these approaches would certainly strengthen AMPLA.  

 

Change-impact analysis (CIA) 

Included within the AMPLA method, this thesis presented how to support CIA practices for 

adjustments proposals to the product backlog, enabled by the model traceability. This thesis 

proposed traceability paths for performing CIA practices that focuses in architecturally significant 

requirements (ASR), quality characteristics, business and customer value of the requirement, 

affected components, standards compliance, requirements emerge, and architectural debt.  

The method was demonstrated by the applicability of the CIA practices within a software 

team. This research focused in the use of models to support decision-making for business and 

for architects, pointing where software is affected by changes and projecting the new behavior 

after addressing those changes. However, the scope was not to provide guidelines or to promote 

some metrics for an effective decision-making. In future research, we plan in properly analyzing 

model information for providing inputs in such decision-making. 
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Microservices design  

The traceability associated to 4SRS-MSLA method assures an alignment between the initial 

Use Case model and the derived architecture proposed solution. Additionally, the method’s 

outputs stand as inputs for several SoaML diagrams, which are complimentary for a proper 

specification of microservices behavior and associations, such as Service Participants and 

Contracts. The 4SRS-MSLA steps were adapted to meet widely known microservices 

characteristics. Remaining diagrams such as Service Interface, Capabilities, Service Data, Service 

Architecture, and Service Contracts, among others, are to be discussed in future works.  

Moreover, the increasing adoption of microservices in industry led to defining other patterns 

adopted when MSAs begin to scale, as the ones related to communications, database 

architectures, data consistency, security, deployment, among many others. The discussion from 

this research is an initial effort in designing the microservices architecture. It allowed defining the 

bounded contexts, separation of data models, needs for API calls. However, many issues around 

these concerns need to be addressed in microservices development but will be focused in future 

research, like data consistency, security (tokens) needs, or messaging, brokerage or API 

management. Although these have direct implications in the logical architecture derivation, and 

hence relating to the present work, future work will address detailing the database-per-service 

definition from the 4SRS-MSLA. 

 

From models to (agile) backlog items  

In this thesis is presented an approach for modeling in UML a set of “just-enough” 

requirements and a candidate architecture, that afterwards originate ASD-oriented backlog items. 

The complexity is addressed by scaling the development, namely by distributed Scrum teams. 

The candidate architecture is designed by using the 4SRS method for deriving a logical 

architecture, which is then modularized, refined, and used as input for a set of transformation 

rules for backlog structure. 

By applying the transformation rules, the team backlog was composed by themes, epics, use 

cases, user stories. In future research we plan in defining additional inputs to be included as 

transformation rules, like to foresee inclusion of backlog items that define the need for technical 

work tasks, knowledge acquisition tasks, prototyping, architectural spikes and development 

spikes. 
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Agile multi-teams management  

AMPLA was used in a project where a dedicated team was responsible for performing 

requirements modeling (by applying DUARTE) and the candidate architecture design (by 

performing the 4SRS), modularize the architecture and assign those modules. Then, each team 

was responsible to deliver the software and manage coordination efforts.  

When each team starts defining requirements from the beginning (as already referred in future 

work for “agile modeling”), it is required to propose new theories in inter-team cooperation, like 

architecture co-design, for instance. As part of the future work for “agile modeling”, it is also 

planned to include the development of inter-teams communication and coordination in such 

settings. 

For project management, AMPLA provides the traceability mechanisms for linking the user 

stories and features to the expectations, which supported the control of the project progress 

when at a delivery stage. At this stage, whenever an iteration occurs (e.g., Sprint), one of the 

main concerns in controlling progress is by measuring the value delivered to customers. One 

approach that has been increasingly adopted is the “Objectives and Key Results” (OKR) (Doerr, 

2018), where expectations describe the key results and how they are achieved. AMPLA allowed 

controlling the evolution of value delivered throughout the Sprints, namely by controlling the 

cumulative value (in %) of the project objective to be achieved. Namely, OKR’s were being met, as 

soon as the objective’s value delivered was 100% ‘done’. OKR is still an immature approach and, 

for that reason, we plan to continue to use it in future projects but it is predictable that its use 

within AMPLA will change. 
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Appendix A – iFloW models 

Use Case model 

 

 

Figure 147. iFloW use case model
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Logical Architecture 

 

 

Figure 148. iFloW architecture
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Product Backlog  

Table 45 - iFloW Backlog list 

Task ID Task Description 
Bosch 

Priority 

   

{U1.1.1} Obtain freight information from Kuehne Nagel related to transit from Algeciras Consolidation Center 1 

{U1.1.2} 
Obtain freight information from Kuehne Nagel related to transit from Hong-Kong Consolidation 

Center 
2 

{U3.1} Show freight general information 3 

{U10} Receive Freight 4 

{U5.5} Edit freight ETA 5 

{U6.1} Issue alerts for ETA changes  6 

{U2} Search freight location 9 

{U7.1} Export freight information to SAP 10 

{U6.2} Issue alerts for updates in freight quantities 11 

{U4} Trace freight 12 

{U7.2} Export freight information to EWL 13 

{U5.7} Cancel freight tracking 14 

{U12} Publish freight information 15 

{U13} Consult freight information 16 

{U9.5} Configure delivery plan 17 

{U14} Edit delivery plan 18 

{U15} Validate delivery plan 19 

{U1.1.3} Obtain freight information from Kuehne Nagel related to transit from Singapore Consolidation Center 20 

{U1.1.4.2} 
Obtain real-time freight location from Kuehne Nagel related to transit from Algeciras Consolidation 

Center 
21 
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{U1.1.4} 
Obtain real-time freight location from Kuehne Nagel related to transit from Singapore Consolidation 

Center 
22 

{U1.1.5} Obtain freight information from Kuehne Nagel related to transit from Penang Consolidation Center 23 

{U1.1.6} 
Obtain real-time freight location from Kuehne Nagel related to transit from Penang Consolidation 

Center 
24 

{U1.1.7} Obtain freight information from Kuehne Nagel related to transit from Shangai Consolidation Center 25 

{U1.1.8} 
Obtain real-time freight location from Kuehne Nagel related to transit from Shangai Consolidation 

Center 
26 

{U1.1.9} Obtain freight information from Kuehne Nagel related to transit from Taiwan Consolidation Center 27 

{U1.1.10} 
Obtain real-time freight location from Kuehne Nagel related to transit from Taiwan Consolidation 

Center 
28 

{U1.1.11} Obtain freight information from Kuehne Nagel related to transit from Bangkok Consolidation Center 29 

{U1.1.12} 
Obtain real-time freight location from Kuehne Nagel related to transit from Bangkok Consolidation 

Center 
30 

{U1.1.13} 
Obtain freight information from NNR Global Logistics related to transit before Hong-Kong 

Consolidation Center 
31 

{U1.1.14} 
Obtain real-time freight location from NNR Global Logistics related to transit before Hong-Kong 

Consolidation Center 
32 

{U9.3} Configure users 33 

{U9.1} Configure routes 34 

{U9.2} Configure raw materials 35 

{U9.4.2} Configure interface layout 36 

{U9.4.1} Configure alerts 37 

{U5.1} Tag freight 38 

{U8.2.6} Produce statistics of special freights requests 39 

{U8.2.1} Produce OTD statistics per forwarder A 

{U5.3} Indicate alternative special freight A 

{U8.4} Export statistics  A 
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{U11} Calculate BETA (ETA obtained by alghoritm calculation) A 

{U5.6}  Add comments A 

{U6.3} Issue alerts for changes in transportation B 

{U5.4} Indicate freight volume changes B 

{U7.3} Export freight information to “Ficheiro de descargas” B 

{U1.2.2} Obtain real-time freight location from UPS related to transit before Consolidation Centre C 

{U1.2.3} Obtain real-time freight location from TNT related to transit before Consolidation Centre C 

{U1.2.4} Obtain real-time freight location from Schenker related to transit before Consolidation Centre C 

{U1.2.5} Obtain real-time freight location from Schenker related to transit after Consolidation Centre C 

{U1.2.6} Obtain real-time freight location from LUSOCARGO related to transit after Consolidation Centre C 

{U1.2.7} Obtain real-time freight location from FEDEX related to transit before Consolidation Centre C 

{U1.2.8} Obtain real-time freight location from DHL related to transit before Consolidation Centre C 

{U1.1.15} Obtain freight information from UPS related to transit before Schweinfurt Consolidation Centre C 

{U1.1.16} Obtain freight information from TNT related to transit before Schweinfurt Consolidation Centre C 

{U1.1.17} Obtain freight information from Schenker related to transit before Schweinfurt Consolidation Centre C 

{U1.1.18} Obtain freight information from Schenker related to transit after Schweinfurt Consolidation Centre C 

{U1.1.19} Obtain freight information from LUSOCARGO related to transit after Schweinfurt Consolidation Centre C 

{U1.1.20} Obtain freight information from FEDEX related to transit before Schweinfurt Consolidation Centre C 

{U1.1.21} Obtain freight information from DHL related to transit before Schweinfurt Consolidation Centre C 

{U1.2.9} 
Obtain real-time freight location from Vanquish China Ltd related to transit before Hong-Kong 

Consolidation Center 
D 

{U1.2.10} Obtain real-time freight location from TLP related to transit before Hong-Kong Consolidation Center D 

{U1.2.11} 
Obtain real-time freight location from Supplier’s own transport related to transit before Hong-Kong 

Consolidation Center 
D 

{U1.2.12} 
Obtain real-time freight location from NNR Global Logistics related to transit before Singapure 

Consolidation Center 
D 
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{U1.2.13} 
Obtain real-time freight location from Man Tak related to transit before Hong-Kong Consolidation 

Center 
D 

{U1.2.14} 
Obtain real-time freight location from Kamfu Logistics related to transit before Hong-Kong 

Consolidation Center 
D 

{U1.2.15} 
Obtain real-time freight location from Hotline International Transport (H.K.) LTD related to transit 

before Hong-Kong Consolidation Center 
D 

{U1.2.16} 
Obtain real-time freight location from Hankyu Hanshin Express related to transit before Penang 

Consolidation Center 
D 

{U1.2.17} 
Obtain real-time freight location from Good Start Transportation Company related to transit before 

Hong-Kong Consolidation Center 
D 

{U1.2.18} Obtain real-time freight location from CWM related to transit before Penang Consolidation Center D 

{U1.2.19} Obtain real-time freight location from CWB related to transit before Shangai Consolidation Center D 

{U1.2.20} 
Obtain real-time freight location from AEO Logistics related to transit before Penang Consolidation 

Center 
D 

{U1.1.22} 
Obtain freight information from Vanquish China Ltd related to transit before Hong-Kong Consolidation 

Center 
D 

{U1.1.23} Obtain freight information from TLP related to transit before Hong-Kong Consolidation Center D 

{U1.1.24} 
Obtain freight information from Supplier’s own transport related to transit before Hong-Kong 

Consolidation Center 
D 

{U1.1.25} 
Obtain freight information from NNR Global Logistics related to transit before Singapure 

Consolidation Center 
D 

{U1.1.26} Obtain freight information from Man Tak related to transit before Hong-Kong Consolidation Center D 

{U1.1.27} 
Obtain freight information from Kamfu Logistics related to transit before Hong-Kong Consolidation 

Center 
D 

{U1.1.28} 
Obtain freight information from Hotline International Transport (H.K.) LTD related to transit before 

Hong-Kong Consolidation Center 
D 

{U1.1.29} 
Obtain freight information from Hankyu Hanshin Express related to transit before Penang 

Consolidation Center 
D 

{U1.1.30} 
Obtain freight information from Good Start Transportation Company related to transit before Hong-

Kong Consolidation Center 
D 

{U1.1.31} Obtain freight information from CWM related to transit before Penang Consolidation Center D 

{U1.1.32} Obtain freight information from CWB related to transit before Shangai Consolidation Center D 

{U1.1.33} Obtain freight information from AEO Logistics related to transit before Penang Consolidation Center D 
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{U3.2} Show Invoice Document E 

{U8.3.2} Produce transportation costs statistics E 

{U8.2.5}  Produce statistics of ETA variation by forwarder E 

{U8.1.1} Produce quantity delivered statistics per supplier E 

{U8.2.2} Produce OTD statistics related to the freights E 

{U8.2.3} Produce OTD forwarders’ ranking E 

{U8.3.1} Produce occupancy rate statistics by container E 

{U8.1.2} Produce frequency of delivery statistics per supplier E 

{U8.2.4} Produce forwarders’ deliveries frequency ranking E 

{U5.2} Issue internal urgent note E 
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Appendix B - ISOFIN models 

Logical Architecture 

 

Figure 149: ISOFIN Product-level Logical Architecture 
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Product Spots Overview 

 

  

Figure 150: Logical Architecture Applications Spots 
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ISOFIN App module’s User Stories  

 

Figure 151. ISOFIN App module 

  

Table 46. User Stories for c-types from ISOFIN App Management module 
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3.4.2.c  

Test ISOFIN App  

Before  

Deployment  

IBS Developer /  

Business User  
 test ISOFIN App Before Deployment  

render and test ISOFIN 

App in PreRuntime  

 

 

Table 47. User Stories for d-types from ISOFIN App Management module 

Component Name  As a(n)  

<actor>  

I want/need  

(to/be able to)  

In order to  

 <description> 

 <outcome>  

3.3.1.d  
ISOFIN App 

Repository  
IBS Developer  

ISOFIN App 

repository  

publish ISOFIN application in catalog 

   

 

Table 48. User Stories for i-types from ISOFIN App Management module 

Components Name  As a(n)  

<actor>  

I want/need  (to/be 

able to)   

<description>  

In order to  

<outcome>  

3.1.i  ISOFIN App Model Editor  IBS Business Analyst  
ISOFIN App model editor 

interface  

model the composition of an 

ISOFIN application  

3.2.1.i  
IBS Information Retrieval  

IBS Developer  
IBS information retrieval 

interface  

provide access to IBS catalogs  

3.2.2.i  
ISOFIN App Coding and 

Compiling  Interface  
IBS Developer  

ISOFIN App coding and 

compiling interface  
create ISOFIN app code  

3.2.3.i  
ISOFIN App  Model 

Interface  
IBS Developer  ISOFIN App model interface  

create ISOFIN app model and 

generate ISOFIN app code  

3.3.1.i  
ISOFIN App Publisher  

Interface  
IBS Developer  

ISOFIN App publisher 

interface  

publish ISOFIN application in 

catalog  

3.3.1.i1  ISOFIN App Repository  IBS Developer  
ISOFIN App repository 

interface  

access and publish ISOFIN 

applications in catalogs  

3.3.2.i  
ISOFIN App Deployment  

Interface  
IBS Developer  

ISOFIN App deployment 

interface  
execute ISOFIN App deployment  
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3.3.4.i  
ISOFIN App  Documentation  

Editor  
IBS Developer  

ISOFIN App documentation 

interface  

provides an interface to allow to 

get the automatically generated 

documentation  
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Appendix C - UH4SP models 

Use Cases decomposition

 

Figure 152. Use case model refinement 
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Figure. 153. Use case decomposition tree of UH4SP, the Use cases from MVP features and for 

further releases (Lean Startup), and the domain's and sub-domain's bounded contexts (DDD)
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Figure 154. Subset of the 4SRS execution 
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Logical Architecture 

 

Figure 155. UH4SP logical architecture 
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Product Backlog 
 
Features list: 

 Configure User profile 
 Configure User Account 
 Perform Authentication 
 Manage Stakeholders 
 Manage Trucks 
 Manage Applications 
 Collaborative tool 
 Manage Work Tokens 

 

 

  

{C7.2.4.1.d} 
Sensors 

integration data

{C7.2.4.2.d} 
Mobile devices 

integration data
{C7.2.4.3.d} 

Systems 
integration data

{C5.2.d} 
Configured tasks 

data

{C6.3.d} 
Interventions and 
maintenance data {C6.4.d} Users 

training data

{C7.1.3.d} Business 
notifications data

{C7.2.5d} In-plant 
operations data

{C7.2.3.d} 
Notifications data

{C7.3.d} Driver 
guidance 

configurations 
data

{C6.5.d} Services 
templates data

{C6.6.d} 
Simulation models 

data

{C2.4.d} Entities 
mapping data

{C3.1.d} Global 
integration data 

{C3.2.d} 
Synchronized data

{C1.1.1.d} User 
data

{C2.3.d} Measured 
values data

{C4.1.d} Backups 
data

{C4.3.d} 
Monitoring and 

audits data

{C7.1.2.d} 
Information access 

configurations

{C2.1.1.d} Services 
data {C2.2.d} Reports 

data

{C2.5.d} Service 
level aggrement 

data

{C1.1.1.i} Create 
user interface 

{C1.1.2.i} Edit user 
interface

{C1.1.3.i} Disable 
user interface 

{C1.2.i} Configure 
users profile 

interface

{C2.1.1.i} Install 
service interface

{C2.1.2.i} Edit 
service interface

{C2.1.3.i} Disable 
service interface

{C2.1.4.i} Update 
service interface

{C2.5.i} Define service 
level agreement 

interface

{C4.1.i} Backups 
interface

{C4.2.i} Configure 
data access 

interface

{C7.1.2.i} 
Configure 

information access 
interface

{C1.3.i} Consult 
users SLA data 

interface

{C2.3.i} Measured 
values interface

{C2.2.i} Generate 
cloud services 

reports interface

{C.5.1.i} Catalog 
entities interface

{C4.3.i} Monitor 
activities interface

{C6.1.i} Verify 
intervention or 

maintenance needs 
interface

{C6.5.i} Generate 
service templates 

interface

{C7.2.7.i} 
Register remote 

operations

{C6.2.i} Schedule 
interventions 

interface

{C6.3.i} Perform 
interventions 

interface

{C6.4.i} Users 
training interface

{C6.6.i} Update 
simulation models 

data interface

{C7.1.1.i} Consults 
Information interface 

{C7.1.3.i} Perform business 
notifications interface

{C7.2.1.i} Abort 
operations 
interface

{C7.2.2.i} Consult 
operations 
interface

{C7.2.3.i} 
Notifications 

interface

{C7.3.i} Configure Driver 
guidance interface

{C3.1.i} Information 
systems integration 

interface

{C2.4.c} Entities 
mapping processor

{C3.1.c} Information 
systems integration

{C3.2.c} 
Synchronize data 

processor

{C7.2.4.1.c} 
Sensors integrator

{C7.2.4.2.c} Mobile 
devices integrator

{C7.2.4.3.c} 
Systems integrator

{C7.2.5.c} In-plant 
operations processor

{C2.3.c} Measure 
services utilization

{C2.2.c} Reports 
generator

{C2.1.1.c} Services 
deployment 

processor 

{C4.1.c} Backups 
generator

{C4.3.c} Monitor 
activities

{C7.1.2.c} Information 
access configuration 

processor

{C6.5.c} Services 
templates 
processor

{C7.1.3.c} Business 
notifications 

processor

{C7.2.1.c} Abort 
operations 
processor

{C7.2.3.c} 
Notifications 

processor

{C5.2.i} Configure 
tasks interface

Global UH4SP

{P1} Configurations

{P2} Monitoring

{P1.1} Accounts 

{P1.2} Services

{P1.3} Security

{P3} Business Mgmt (Global)

{P4.1} Integrator (Hub/Bus/Gateway)

{P5.1} DB

Local UH4SP

{P3} Business Mgmt (Local)

{P4.2} Integrator (Gateway)

{P5.2} DB

Driver Guidance

Route Simulation / 
Optimization

SLV

IoT

{C7.2.5.i} Register in-
plant operations 

interface

{C7.2.7.d} Remote 
operations data

{C7.1.2.i} Consults 
driver guidance

{C7.3.c} Driver 
guidance 
processor

Cloud Provider IaaS

Remote Check-in
Remote Assistance

Cachapuz

EPMQ

Eurotux

CVIG

UMINHO
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Table 49. UH4SP Product Backlog 

 

Feature Configure users account 

Backlog 

Item 
Name Acceptance Criteria Use Case 

User Story 

As a System Administrator, Corporate manager, 

company manager, factory manager, forwarders, 

client and supplier, I want to CRUD a user 

account, to configure user account. 

User is able to CRUD a 

user account 

{UC1.1.1}, 

{UC1.1.2}, 

{UC1.1.3}, 

{UC1.1.4} 

Feature Configure users profile 

Backlog 

Item 
Name Acceptance Criteria Use Case 

User Story 

As a System Administrator, Corporate manager, 

Company manager, Factory manager, 

Forwarders, Client and Supplier, I want to CRUD 

a user profile to configure user profile. 

User is able to CRUD a 

profile 
{UC.1.2.1} 

User Story 

As a System Administrator, Corporate manager, 

Company manager, Factory manager, 

Forwarders, Client and Supplier, I want to assign 

permissions to a user profile.  

User profile has 

permissions associated 
{UC.1.2.2} 

Epic Consult SLA - - 

User Story 

As a Corporate manager, Company manager, 

Factory manager, Client, Supplier and 

Forwarders, I want to consult a contract 

information in order to consult SLAs. 

SLA contract information 

is consulted. 
{U.1.3} 

Feature Perform Authentication 

Backlog 

Item 
Name Acceptance Criteria Use Case 

User Story 

As a System administrator and user, I want to 

Insert username and password to perform 

authentication 

1. login successful 

2. account creation 

successful 

3. login successfully 

{U1.4.1} 
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after password 

recovering 

4. login successfully 

after username 

recovering 

5. login unsuccessful 

message after wrong 

inputs 

User Story 

As a System administrator and user, I want to 

recover account username or password to 

perform authentication 

User gets password or 

username 
{U1.4.2} 

Feature Manage Skateholders 

Backlog 

Item 
Name Acceptance Criteria Use Case 

User Story 

As a System Administrator, I want to CRUD an 

industrial group in order to manage business 

groups. 

User is able to CRUD a 

group 
{U1.5.1} 

User Story 

As a System Administrator or a corporate 

manager, I want to CRUD a group company in 

order to manage group companies. 

User is able to CRUD a 

group company 
{U1.5.2.1} 

User Story 

As a System Administrator or a forwarder, I want 

to CRUD a forwarder company in order to 

manage forwarder companies. 

User is able to CRUD a 

forwarder company 
{U1.5.2.2} 

User Story 

As a System Administrator or a client admin, I 

want to CRUD a client companies in order to 

manage client companies, and last manage 

companies. 

User is able to CRUD a 

client company 
{U1.5.2.3} 

User Story 

As a System Administrator or a supplier, I want to 

CRUD a supplier company in order to manage 

supplier companies. 

User is able to CRUD a 

supplier company 
{U1.5.2.4} 

User Story 

As a System administrator, Corporate manager, 

Company manager or Factory manager, I want to 

CRUD factories in order to manage factories  

User is able to CRUD a 

factory 
{U1.5.3} 

Feature Manage Trucks 

Backlog Name Acceptance Criteria Use Case 
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Item 

User Story 
 As a Forwarder admin or systems admin, I want 

to CRUD trucks in order to manage trucks. 

1. User is able to CRUD a 

truck 

2. Truck successfully 

created 

{UC.1.7}  

User Story 
 As a Forwarder admin or systems admin, I want 

to associate trailers to a given trucks. 

Truck successfully 

created 
{UC.1.7} 

Feature Manage Trailers 

Backlog 

Item 
Name Acceptance Criteria Use Case 

User Story 
 As a Forwarder admin or systems admin, I want 

to CRUD trailers in order to manage trailers. 

1. User is able to CRUD a 

trailer 

2. Trailer successfully 

created 

{UC.1.8} 

Feature Manage Applications 

Backlog 

Item 
Name Acceptance Criteria Use Case 

User Story As a System Administrator, I want to CRUD an 

application account, to configure application 

account. 

1. User is able to CRUD 

an application 

2. Application 

successfully created 

{UC.1.9.1} 

User Story As an application, I want to send an app_gid and 

a GPS location to perform authentication, in order 

to access the UH4SP WebAPIs. 

Authenticated application 

{UC.1.9.2} 

User Story As a System Administrator, I want to assign or 

refresh a token to an application.  

1. Token assigned 

2. Token refreshed 

{UC.1.9.3} 

Feature Collaborative Tool 

Backlog 

Item 
Name Acceptance Criteria Use Case 

User Story As a System administrator, Corporate manager, User is able to consult {U.C.5.3.1} 
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Company manager, and Factory manager, 

Forwarder, Client or Supplier, I want to visualize 

graphical indicators about my group, companies, 

factories or to resources or data that I am 

associated. 

dashboards 

User Story As a System administrator, Corporate manager, 

Company manager, and Factory manager, 

Forwarder, Client or Supplier, I want to visualize 

system operations about my groups, companies, 

factories or to resources or data that I am 

associated. 

User is able to consult 

dashboards 

{U.C.5.3.2} 

User Story As a web application, I want to receive a JSON 

file in order to develop dashboards. 

Dashboard developed 
{U.C.5.3.4} 

User Story As a System administrator, Corporate manager, 

Company manager, and Factory manager, 

Forwarder, Client or Supplier, I want to configure 

dashboards settings in order to configure 

dashboards. 

Dashboard successful 

configured 

{U.C.5.3.7} 

User Story As a service, I want to get users permissions to 

access to a particular data source. 

The user has access to 

the requested data source 

{U.C.5.3.1} 

{U.C.5.3.2} 

User Story As a user I want to perform login, in order to 

access collaborative web app. 

The user has access to 

the requested application 
{U.C.5.3.5}  

User Story As a user I want to recover login credentials, in 

order to access collaborative web app. 

The user has access to 

the requested application 
{U.C.5.3.6} 

Feature Manage work tokens 

Backlog 

Item 

Name  Acceptance Criteria Use Case 

User Story As a System Administrator I want to CRUD work 

tokens in order to manage work tokens. 

Work token successful 

created 
{U.C.1.6.4}  

User Story As a System Administrator I want to validate work 

tokens that was requested by managers in order 

to manage work tokens 

Work token successful 

validated {U.C.1.6.1}  

User Story As a Corporate manager I want to request, read, 

update and disable work tokens in order to 

manage work tokens to my group companies and 

Work token successful 

requested 

{U.C.1.6.4} 

{U.C.1.6.3} 

{U.C.1.6.2} 
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factories 

User Story As a Company manager I want to request, read, 

update and disable work tokens in order to 

manage work tokens to my Company factories. 

Work token successful 

requested 

{U.C.1.6.4} 

{U.C.1.6.3} 

{U.C.1.6.2} 

User Story As a Factory manager I want to request, read, 

update and disable work tokens in order to 

manage work tokens to my factory. 

Work token successful 

requested 

{U.C.1.6.4} 

{U.C.1.6.3} 

{U.C.1.6.2} 

User Story As an Entity (forwarder, client or supplier) 

manager I want to request, read, update and 

disable work tokens in order to manage work 

tokens to my entity. 

Work token successful 

requested 
{U.C.1.6.4} 

{U.C.1.6.3} 

{U.C.1.6.5} 

User Story As a Stakeholder/Entity manager I want to 

receive a notification when a given work tokens 

were associated to my entity in order to manage 

work tokens. 

Notification was delivered 

{U.C.1.6.2} 

User Story As an Entity (forwarder, client or supplier) 

manager I want to assign drivers and trucks to 

work tokens that were associated to my entity in 

order to manage work tokens. 

Work token successful 

assigned 
{U.C.1.6.5} 

User Story As a System admin I want to receive a notification 

when a stakeholder/entity managers request 

work tokens in order to validate work tokens. 

Notification was delivered 

{U.C.1.6.4}  
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Appendix D – IMP_4.0 models 

Use Case model 

 

Figure 156. The decomposition of IMP_4.0 use cases 
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Logical Architecture 

 

Figure 157. IMP_4.0 Component Architecture
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Microservices Architecture 

 

Figure 158. IMP_4.0 Microservices Architecture 
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Appendix E - IMSPM models 

Use cases model 

 

Figure 159. IMSPM Use Case model 
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Sequence diagram 

 

Figure 160. IMSPM Sequence diagram 
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4SRS 

 

Figure 161. IMSPM 4SRS-MSLA execution 
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Logical Architecture 

 

Figure 162. IMSPM Microservices Architecture 
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