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Resumo 

  A indústria automóvel acompanha a evolução tecnológica exponencial a que estamos sujeitos nos 

dias de hoje. As mais recentes novidades nos automóveis são resultado de melhorias eletrónicas 

(hardware & software) levando a um aumento na complexidade dos sistemas Elétricos e Eletrónicos [1]. 

Toda esta complexidade está passível a falhas que podem surgir pelas mais diversas razões, 

nomeadamente causas naturais ou deficiências de conceção/fabrico. Infelizmente é impossível eliminar 

todas as falhas da equação, contudo um sistema altamente confiável deve ter em conta os mais diversos 

cenários e reportar caso detete algo inesperado. Só assim podemos estabelecer um sistema seguro 

(safe). Como é que se pode medir este tipo de segurança? Um sistema seguro é aquele que não 

compromete a integridade física do seu utilizador ao colocá-lo em situações de risco. A industria 

automóvel tem este parâmetro de segurança bem presente na conceção dos seus projetos assim como 

nas tecnologias que usa, e o steer-by-wire não é exceção. O steer-by-wire é a inovação que vem 

revolucionar a próxima geração de veículos [2]. O propósito desta tecnologia consiste na substituição de 

componentes hidráulicos por componentes totalmente elétricos/eletrónicos no âmbito do sistema de 

direção do automóvel [3].  

Com esta dissertação pretende-se analisar os mecanismos de lockstep presentes nos 

microcontroladores modernos e tirando partido deles, desenvolver uma arquitetura capaz de reagir a 

falhas fazendo uso de uma abordagem de tolerância a falhas em ambientes de multiprocessador. Esta 

arquitetura será usada no projeto SPA (Sensor de Posição Angular) e este projeto faz parte da tecnologia 

steer-by-wire. Qualquer mecanismo de tolerância a falhas é baseado em redundância [4], e é em 

redundância que se baseia o lockstep assim como se deve basear a arquitetura que se pretende 

desenvolver. Toda a arquitetura desenvolvida deverá a assegurar os requisitos de segurança que são 

característicos à tecnologia. 

Keywords: Lockstep; Multicores; Segurança Critica; Sistemas Embebidos; Tolerância a Falhas. 
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Abstract 

The automotive industry has been following the exponential evolution in technology present in our 

days. Most of the advances seen in vehicles are the result of better electronics (hardware and software), 

which consequently increase the complexity of those systems [1]. No complexity is fault-free, which can 

arise due to many reasons, from natural causes to a mistake in the assembly process. Eliminating all 

the events that could lead a system to a failure state is at very least challenging if not impossible; however, 

with the usage of fault-tolerant approaches, the system can be surprisingly compliant with safety 

requirements. But how can safety be measured? A safe system is one that must not harm people, not 

even put them in dangerous circumstances. The automotive industry takes this safety parameter very 

seriously in the conception of its projects or technology that they use, and the steer-by-wire is no 

exception. The steer-by-wire is the innovation coming to revolutionize the next generation of vehicles [2]. 

The technology consists of replacing the mechanical parts of a vehicle with systems totally 

electric/electronic ones at the steering system of a car [3]. 

This dissertation aims to analyse the Lockstep mechanism present in recent microcontrollers and by 

making use of it develop a fail-operational architecture using a fault-tolerant approach for automotive 

applications in a multiprocessor environment. The architecture developed intends to be used within the 

APS (Angular Position Sensor) project, which is part of steer-by-wire technology. Any fault-tolerant 

mechanism is based on redundancy [4] and it is in redundancy that lockstep is based as must be the 

architecture that intends to be developed. The fail-operational architecture to be developed must be 

compliant with safety requirements. 

Keywords: Fault-Tolerance; Fail-operational; Embedded Systems; Multicore; Lockstep;  
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Chapter 1  

Introduction

The automotive industry has evolved, and as a result, the product that the industry delivers has been 

growing in complexity to provide a unique experience to the user. Every year the industry releases cars 

with a new set of specifications which consequently design a path for the incoming ones. In this context 

and focusing on the next vehicle, autonomous driving is the next step to achieve but until then there is a 

long way to go and a set of technologies/projects must first be developed. All those projects/technologies 

must be developed according to the safety and security requirements created by the International 

Organization of Standards (ISO), to provide a fully reliable system. 

Steer-by-wire is a technology that has been developed as long as autonomous driving has been 

innovating. Autonomous driving relies on the success of steer-by-wire (among many other technologies) 

as it is impossible to drive a car without any steering system. Besides, steer-by-wire technology has great 

advantages such as reducing weight, and with that being done, consumes and pollute gases will be 

reduced as well. For that, all the hydraulic parts at the steering system used nowadays must be replaced 

which is the core idea of the steer-by-wire technology. To be more precise, the technology consists of the 

elimination of the steering column that links the steering wheel to the front axles of the car and by 

replacing all the mechanical actuators with electric/electronics circuitry [3]. The source of this concept 

comes from the x-by-wire, with origin in 1972 by NASA [5]. The “x” in x-by-wire name stands for the 

system in which is intended to replace the hydraulic/mechanical parts for the electronic/electric ones. 

Since there is a replacement of those classic components, and normally they are the ones ensuring the 

well-functioning of the system, even when some undesirable scenario happens (e.g. assistance steering 

failure), these systems must guarantee that a system failure does not lead to a state in which human life 

or surrounding environment are endangered. Additionally, they must ensure that a single failure of one 

component does not lead to a failure of the whole system [6]. These systems must base their entire 

architecture in redundancy, with the purpose of mitigating possible faults that could outcome from the 
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lifecycle of it. For that reason, the concepts of safety and fail-operational must be enhanced in these 

types of systems.  

At the processor level, there are several mechanisms that could be used to improve the safety of a 

system. Lockstep is one of those mechanisms. It consists of replicated processors executing the same 

set of instructions and compare its outputs with the purpose of finding inconsistencies between them. If 

the output of an instruction is different between the locked processors, then it means that a fault has 

occurred and must be treated in such a way that the overall system is capable to tolerate the fault. 

Based on these fault-tolerant mechanisms and having in mind that the concepts of safety and fail-

operational must be enhanced, this dissertation aims to develop an architecture considering all the 

previously mentioned. The architecture developed is to be used in APS (Angular Position Sensor), which 

is a sensor integrating the steer-by-wire technology. The APS is the sensor placed in the steering 

wheel/steering column of a vehicle and is responsible to get the intention of the user when he is moving 

the wheel.   

1.1 Contextualization 

 In a world where changes are constant, technological advances are a certainty, new necessities are 

inevitable. The necessity that comes out of the technology advance in automotive industry is to provide 

a fully reliable system (vehicle) which must not cause any harm in their users or surrounding 

environment. As one can imagine, a vehicle (the system) relies on the proper functioning of other 

subsystems such as the steering subsystem, braking subsystem, traction subsystem, and many others. 

Most of the innovations in a vehicle raises many questions regarding safety and security that must be 

answered. In the scope of any subsystem, safety and security measures must be fulfilled in a way not to 

compromise the system. Safety and security are closely interrelated concepts that pertain to the 

protection of lives and assets. While safety is protection against hazards (accidents that are unintentional), 

security is a state of feeling protected against threats that are deliberate and intentional [7]. Regarding 

this matter, the International Standards Organization (ISO) is developing guidelines and demands to 

respect those measures in the automotive field [8] that any system engineer in the automotive industry 

must respect.  

 Within this dissertation scope, safety is of extreme importance since the goal is to develop an 

architecture to be applied in the automotive field. As stated above, safety refers to protection against 

potential hazards, in other words, faults, and errors that could be causing those threats should be 

eliminated from the system. With that in mind, this dissertation aims to achieve a fail-operational 
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architecture. The system in which the architecture is applied, when facing faults, still needs to provide 

its supposed function, mitigating/tolerating faults that could lead a system to an undesirable state. It is 

important to note that fault tolerance is unreachable without any type of redundancy [9]. Fault tolerance 

approaches at the processor level are widely used in industries such as automotive and avionics [10]. 

For instance, in avionics, there are plenty of configurations liable to be used from TMR(Triple Modular 

Redundancy) to DMR (Dual Modular Redundancy). Although, TMR is the most famous among them. The 

proposed architecture will be using redundant hardware and lockstep mechanism to be compliant with 

fault-tolerant requirements avoiding common mode failures and providing the proper function of the 

system (APS system) even when faults are induced at the system. The Lockstep mechanism is a 

configuration of multicore processors where two cores (DMR) or more (TMR) are working as one. In other 

words, cores execute the same set of instructions and compare their outputs identifying possible 

inconstancies between them and reporting the case if necessary. Usually, this report is made by triggering 

an ISR (Interrupt Service routine). The configuration used in this dissertation was DMR, so two processor 

cores were used in lockstep. 

1.2 Motivation 

 Increasingly safety is nowadays a requirement in most of the daily basis commercial systems. The 

requirement, leads to an increase in the demand for fail-operational systems, boosting the development 

of new architectures and new systems with fault-tolerant capability. It opens opportunities to research 

distinct techniques and approaches for implementing high reliability and safety systems, which was the 

main motivation to embrace this research journey. 

 Another interesting point is that we are in the golden age of processor architectures with the 

appearance of processors with built-in lockstep. Thus, new approaches must be thought of to use this 

fault tolerance mechanism. 

 All together with the high demands on the industry for these types of features give the necessary 

motivation to pursue and develop new architectures enabling the system to be fully fail-operational. 

1.3 Objectives 

After taking into consideration the motivation, this dissertation aims to develop a fail-operational 

architecture to be used within the APS project. This fail-operational architecture covers the acquisition 

and calculation of the angle of the steering wheel. Therefore, the main goals of this dissertation are as 

follows: 
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• Analysis of architectures and fault tolerant mechanisms in the case of study; 

• Analysis of software architectures; 

• State machine design in a way to react to possible faults; 

• Software implementations according with certification ASIL-D of standards ISO 26262; 

• Driver elaboration liable to be used in AUTOSAR software architecture; 

• Tests and validation of the architecture; 

1.4 Dissertation Structure 

 This document is structured in six chapters, and its structure follows a logical order according to the 

development process that occurred during this Master’s Thesis. 

 The first chapter introduces the current technological concepts, referring to the context and the 

motivation for the development of this project, as well as its objectives. 

 The second chapter explores the concepts which are the basis of this project, and thus gives a more 

in-depth overview of safety and dependability in systems. It is also mentioned in this chapter The State 

of the Art for the different kinds of lockstep mechanisms that exist and are considered for use in this 

project. 

 The third chapter gives an overview of the system and a further selection of which components were 

chosen and the reasoning for their choices. 

 The fourth chapter is divided into two sections corresponding to the hardware and software 

implementations. It focuses on how this project was developed and explains the path taken. 

 Chapter five describes the tests that were made, along with some considerations about the obtained 

results. 

 Chapter six presents the main conclusions relative to this project, as well as future improvements to 

the proposed architecture. 
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 To develop a fail-operational architecture, some technological concepts need to be understood. It is 

crucial to fully understand the relevance of safety, dependability concept, the redundancy, lockstep 

mechanisms, and the different existing implementations. 

 After knowing what a lockstep configuration is composed of and its architecture, it is then possible to 

make further studies on which type of configuration to use. 

 This chapter presents a technological overview and discussion on the topics previously mentioned. 

2.1 Embedded Systems 

 Embedded systems are usually everywhere executing several daily tasks, despite often being 

unnoticed. They can have different sizes and complexities, from a television or even a printer to a smart-

watch. Usually, interacting with the outside world through sensors (input), actuators (output), and in 

some cases, using an interface to the user like an LCD or even a LED, an embedded system characterizes 

for having hardware and software combined to accomplish a specific task. In many circumstances, it 

could have mechanical parts to help it with that particular job [11]. Due to their assignment, an embedded 

system must be application-oriented; this means that engineers that design them must project it with the 

strictly necessary resources for their application to optimize variables like cost, power efficiency, weight, 

and performance. However, as an embedded system has requirements and constraints that must be 

respected, it is necessary to have a trade-off between management and usage of resources. Examples 

of embedded systems with strong constraints are the ones that have time restrictions, classified as soft 

and hard real-time. The soft real-time embedded systems are the ones that, if missing a deadline, there 

is not much harm for the system in what it was incorporated it is somehow allowed to miss a deadline 

as it is in the case of video streaming.  However, in hard real-time, a missed deadline could lead to a 

catastrophic event as it happens in the Antilock Braking System (ABS) of a car. 
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 Despite everything mentioned, embedded systems must be reliable, assuring the well-functioning in 

all situations; resilient, backing to a safe state even after the occurrence of a fault; safety and secure, 

being fault-tolerant and having secure communications. The simple embedded systems usually are 

programmed without layers of abstraction, in other words, directly in their logic hardware (bare-metal 

programming). However, with the rising complexities in systems, the usage of an operating system has 

become fundamental. 

2.1.1 Elements of an Embedded System 

At the architectural level, an embedded system represents the interaction between hardware and 

software elements, whose details are hidden in a way to have only information about the behavioural and 

relational levels. These elements can be internally implemented in the embedded system device or 

externally implemented interacting with the internal elements as well as with the external environment 

[12]. 

 An embedded system is generally composed of basic elements necessary to the execution of code, 

internals peripherals, communication interfaces, and the respective software. In a generic form, an 

embedded system has the following elements: 

• Central Processing Unit: Responsible for the execution of code, making the logic and control 

operations as the entrance and exit of data; 

• Random Access Memory (RAM): It is a volatile memory of quick access used to store 

temporarily the variables needed for the execution flow of code; 

• Flash Memory: It is a non-volatile memory with access being slower than the access to RAM. 

Used to store data permanently like the code responsible for the boot of the system, operating 

system code, programs, and file system; 

• Communication Peripherals: An embedded system frequently uses communication protocols 

like the Universal Serial Bus (USB), RS232, and Ethernet for which there is peripheral 

existent; 

• Input & Output Devices: As referenced before, an embedded system interacts with the outside 

world and may or may not have an interface with the user. Some peripherals like Analog-to-

Digital-Converter (ADC), audio controllers, General Purpose Input Output controllers (GPIO), 

among many others, are also in an embedded system. 
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2.2 Functional Safety 

 The complexity of today’s systems is, for the most, due to electronic and electric (E/E) systems. E/E 

systems have a major role to play in our daily lives making our tasks easy to accomplish. However, those 

systems when badly designed could have a terrible effect, possibly causing harm and injuries to those 

who are using them. The vehicle of today is a product of that complexity and innovation in E/E systems. 

It is believed that most of the innovation that we see in newer cars is based on the innovation experienced 

at ECUs that a car contains [13]. Nonetheless, it is important to highlight those electronic devices are 

not perfect and fault-proof. As addressed previously, when the system is made over a faulty design a high 

probability exists that it could cause serious damage, especially in a vehicle. With that in mind, the 

International Organization of Standards was in an inevitable necessity to create some standards regarding 

functional safety in E/E systems in the automotive domain, the ISO 26262 [8].  

2.2.1 Introduction to safety standards 

 As previously mentioned, the ISO26262 [8] is an international standard focusing on the safety of 

automotive electrical/electronic systems. Divided into 12 documents, covering the entire product 

development lifecycle, and designed to ensure that systems developed for road vehicles are composed 

with an appropriate level of rigor required for their intended application. The standard applies additional 

constraints to the process of development, focused on the system safety aspects. Safety means one 

must not harm others. A safe system is one that does not cause harm to people. Of course, no system 

can be made completely safe, so safety is about an attempt to reduce the potential for harm to an 

acceptable level. ISO26262 takes a risk-based approach to manage potential harm (often referred to as 

residual risk), based on three factors: 

• Severity: the potential harm; 

• Exposure: the probability of occurrence; 

• Controllability: the ability of the system to avoid the specified harm. 

In other words, risk, as defined in the standards is a combination of the probability of occurrence of harm 

and the severity of that harm. 

 Thus, the standards organize the risk into four Automotive Safety Integrity Levels (ASILs). ASIL A is 

the lowest level while level D is the highest one. For instance, a system classified as ASIL A is Cruise 

Control. This one may cause inconvenience or minor injury to the driver, which means that the severity 

is low. On the other extreme, on the ASIL D level, is the electric steering system. This system has the 

potential to cause significant harm by providing the wrong level of assistance, feedback, or even 



8  
 

 
 

Chapter 2. State of the Art 

completely incorrect output. Later in this document a detailed insight of the ASIL classification is 

approached. 

 For this dissertation, the author will just be considering 6 of those 12 parts that compose ISO26262, 

meaning that some of the subjects covered by the standards will not be addressed. For example, the 

conception of hardware is not a concern for this dissertation since all the hardware that will be used has 

already been developed and it is certified as a specific level of rigor for the task that is assigned. The only 

hardware that it is intended to develop is concerning the communication protocol and it is going to be 

addressed later in this document. With that said, the parts considered are [14], [15], [16], [17], [18], 

[19]: 

• Part 1:  defines the language of ISO262626; 

• Part 2: is an over-arching guide focusing on the management of safety requirements, both from 

a project and organizational point of view; 

• Part 3: focuses on what the standards call the concept phase. This phase is considered with 

initial project definition, establishing the safety requirements and criteria for the project and 

initiating the safety lifecycle;  

• Part 4: is concerned with system level development, that is, detailed requirements analysis, 

system synthesis, functional and logical allocation, and system evaluation, validation and 

verification; 

• Part 6: focuses on the software aspects of system design and implementation; 

• Part 9: gives requirements and guidance with respect to safety analyses. In particular with all 

aspects related to ASIL-oriented requirements. 

2.2.2 ASIL classification and decomposition 

 To have a better understanding of how the ASIL and safety goals are determined, Figure 2-1 and 

Table 2-1 can be used. As addressed in the previous chapter, in [8] the guidelines to develop a system 

in a way to decrease the residual risk of it are described. According to the standards, the residual risk 

(RR) is a product of the potential harm (C) with the probability of occurrence (E) with the severity (S). 

Residual Risk can be defined as RR = C*E*S.  This equation can be better understood by referring to 

Figure 2-1 since it depicts the process of hazard analysis and risk assessment. The letters used in the 

equation stands for the three parameters, in which the residual risk is calculated, Exposure, 

Controllability, and Severity. Regarding these parameters there are different levels that describe different 

situations that a system can face.  
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• Severity: describes the extent of the harm from S0 (no harm to any person) to S3 (severe injuries, 

survival uncertain); 

• Controllability: represent the probability that the driver, passengers or surrounding environment 

can avoid the specific harm, from C0 (no harm to any person) to C3 (difficult to control or 

uncontrollable); 

• Exposure: describes the probability of being in that particular situation from E0 (unlikely to be) 

to E4 (highly probable). 

Table 2-1 has all the combinations possible in a way to establish which are the best safety goals for a 

specific system. As it can be seen in the table ASIL has a classification from A to D describing the safety 

goals for a system but besides those four levels, there is also another unit described as QM (Quality 

Management). The level QM denotes that it is not required to cope with the requirements of the [8], 

quality management is sufficient. 

 

Severity Class Exposure Class Controllability class 

C1 C2 C3 

S1 E1 QM QM QM 

S1 E2 QM QM QM 

S1 E3 QM QM A 

Operational 
Situatuon

Failure Mode

Identify 
hazardous events

Analyse 
hazardous events

Determine the 
Exposure (E)

Determine the 
Controllability (C)

Determine the 
Severity (S)

Assess the risk = 
E*C*S
ASIL

Define safety 
goals

Figure 2-1: Process of the hazard analysis and risk assessment 
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S1 E4 QM A B 

S2 E1 QM QM QM 

S2 E2 QM QM A 

S2 E3 QM A B 

S2 E4 A B C 

S3 E1 QM QM A 

S3 E2 QM A B 

S3 E3 A B C 

S3 E4 B C D 

Table 2-1: ASIL determination 

 Despite specifying restrict rules, in [8] also exists a bit of flexibility in the ASIL classification. According 

to [19], the standards allow the designer to benefit from a sufficiently independent redundant 

architecture. ASIL decomposition is a measure to comply with systematic failures by decomposing a 

single safety requirement into two sufficiently independent requirements and by implementing those 

requirements in two independent architectural elements. The benefit is the resulting two requirements 

founded have lower ASIL classification than the initial one. The key principle is if two independent 

architectural elements are performing the same function then the probability of both failing 

simultaneously is lower even if their safety integrities are lower than that of the original requirement. 

 In [19],the following decomposition schemes: 

• ASIL D  

– ASIL D = ASIL B (D) + B (D) 

– ASIL D = ASIL C (D) + A (D) 

– ASIL D = ASIL D (D) + QM (D) 

• ASIL C 

– ASIL C = ASIL B (C) + A(C) 

– ASIL C = ASIL C (C) + QM (C) 

• ASIL B 

– ASIL B = ASIL A (B) + A (B) 

– ASIL B = ASIL A (B) + QM (B) 

• ASIL A 

– ASIL A = ASIL (A) + QM (A) 
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 This decomposition can be applied to any level of the system. Hardware components can have this 

procedure as well as the software components. This can even be used recursively. 

2.3 Dependability and Security 

 Dependability is the ability to deliver service that can justifiably be trusted. However, this definition 

leads to a problem related to the trust’s definition, and that is where the definition of security enters [20]. 

Security and dependability are highly correlated as is going to be addressed throughout this chapter. 

Therefore, those concepts must be understood before any development on a safety critical application 

due to the importance that they have. A dependable and secure system has attributes with which the 

system is measured, it has threats that compromise the functionality of the system and, finally, it has 

the means to eliminate these threats. In Figure 2-2, an overview of the taxonomy is depicted in a graph. 

Throughout this chapter, every element of the tree represented will be explained. 

2.3.1 Attributes 

 The dependability attributes define the properties that a system is expected to have [21]. According 

to [20], the attributes are composed by: (1) availability, readiness for correct service; (2) reliability, the 

ability of the system to deliver a correct service continuously; (3) safety, absence of catastrophic 

consequences to the system external environment, both for the user and the environment; (4) integrity: 

absence of improper system alterations; (5) maintainability, ability to undergo modifications and repairs. 

When addressing security, an additional attribute has a great prominence, confidentiality. Confidentiality 

is defined by the absence of unauthorized disclosure of information. It can be concluded that 

dependability attributes are a subset of abilities that a system must have to provide the correct service.  

In [22] is said that dependability attributes are a subset of the non-functional properties that must be 

specified, analysed, and verified during the system development process. For that reason and according 
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to [21] and [23], this subchapter is going to focus on the three main attributes, reliability, availability and 

safety. 

 Reliability 

 According to the literature, reliability describes the ability of a system to function under stated 

conditions for a specified period of time [21]. It can be described by a mathematical function given a 

period of time and given that at the initial the system was in working conditions. The function describes 

the probability of the system to operate without a failure in the interval. By expressing this attribute in a 

mathematical way is it possible then to express the Mean Time to Failure (MTTF). The MTTF is the 

expectation of the time at which the system will fail. If a system is highly reliable it means that MTTF is 

larger when compared to MTTR then availability is close to 100% [9].  

 Availability 

 Availability of a system, likewise reliability, can be expressed by a mathematical function. Similarly, it 

expresses a probabilistic function that attempts to guess whether the system is functioning or not at the 

instant of time specified [21]. As stated above for high values of availability, meaning that the system for 

the most of instants is working as it should, MTTF values should also be larger. Therefore, for smaller 

MTTF values, availability varies significantly with repair time, the MTTR. The Mean Time to Repair (MTTR), 

is the expectation of the time to restore a failed system to correct operation. [9] [24]. For that reason, 

there is another concept that it is important to have in mind, which is undoubtedly related with availability, 

it is the downtime per year. It represents the amount of time in a year where the system is inoperable. 

Dependability
and 

Security

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Figure 2-2: Dependability and security taxonomy 
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Said that, it can be deduced that a safety-critical must have a high availability and low downtime per year. 

Table 2-2 represents the availability and downtime per year for different systems ratings. 

 

System Rating Availability Downtime 

Routine 99% 3.65 days 

Essential 99.9% 8.77 hours 

Critical 99.999% 5.26 minutes 

Safety-Critical 99.99999% 3.16 seconds 

Table 2-2: Availability percentage for different system types 

 Safety 

 In [20]  is considered that safety refers to the absence of catastrophic consequences on the users 

and the environment. For that reason, systems where the functionalities have a critical safety variable 

this concept is very important. There is a great deal of systems that have safety critical ratings, such as, 

avionics, power plants and pacemakers. The reason why is mostly because of the definition made in 

[20]. These systems when facing a fault must not compromise the user that is why when they have these 

safety-critical ratings they must also have a definition of safe state. The definition of the term safe state 

leads to the different behavioural models a system can incorporate in the presence of failures. These 

terms are quite controversial since they have many interpretations. Here the terms according to [13] are 

going to be presented. 

• Fail-operational systems remain functional in case of a subsystem failure. 

• Fail-silent systems enter a state that does not interfere with other safety related systems in 

case of a failure. 

• Fail-safe is, if after one or several failures, the system is brought to an active or passive safe 

state. 

2.3.2 Threats 

 The threats represent in a system context, situations that could lead the system to an erroneous state. 

These threats are usually referred as errors, fails and, failures. They can come from the most various 

causes, from an error at the assembly process to an error happening at the run time 
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 Fault, Error, Failure 

 Regarding the definition of faults and failures, this thesis will focus on the definitions of the [14] and the 

recursive interpretation of the [19]: 

• Fault is an abnormal condition that can cause an element or an item to fail. 

• Error is discrepancy between a computed, observed or measured value or condition, and the 

true, specified or theoretically correct value or condition. 

• Failure represents termination of the ability of an element, to perform a function as required. 

 The recursive definition mentioned, that the terms fault and failure can be used recursively, is shown 

in Figure 2-3.  

Faults and failures can be categorized based on their origin as systematic- or random HW faults. 

Systematic faults and failures are deterministic. They can be eliminated only by improving the design or 

the production process. Typical causes for systematic failures are poor design (e.g. wrong SW 

specification) or manufacturing-related issues (e.g. contaminated soldering). Random HW failures on the 

other hand occur in an unpredictable manner. They are mainly caused by ageing or environmental 

factors. It is obvious that SW is prone to systematic failures only. 

Another classification of faults is based on their temporal behaviour. Permanent faults occur and remain 

until removed or repaired. Transient faults, on the other hand, occur and disappear subsequently. 

Transients can occur in HW elements for example due to cosmic radiation. Related to the terms of faults 

and failures are the often misunderstood, hazard and hazardous event. A hazard is defined in [8] as 

potential source of harm. Only those failures can be hazards, where there are operational situations, in 

which the failure can lead to an accident. A hazardous event is exactly this failure (= hazard) combined 

with this unfavourable operational situation. For example, unintended gear change from the 5th to the 

2nd is harmless when the vehicle is coasting at 60 km/h in a straight line. But the very same failure 

mode can lead to an accident when occurring during high speed cornering. 

Fault Error

Fault Error

Fault Error Failure

Failure

FailureSystem Level

Component Level

Part Level

Figure 2-3: Recursive definition of faults and failures 
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2.3.3 Means 

 Dependability means are the methods and techniques enabling the development of a dependable 

system. As it can be seen in Figure 2-2, there are four different means. During this chapter it is intended 

to address all of them but with more focus on fault tolerance since this dissertation will make use of that 

mean. It is important to note that the different means represented in Figure 2-2 take their role in different 

phases of the product lifetime. For that reason, before getting into the concepts, a table is presented 

where each mean makes sense to enter. In Table 2-3 the system lifetime is divided in two groups where 

pre-service consists in the development phase and the in-service represent the phase where the system 

is already commercialized and it is in operational conditions. Each mean has correspondent assignment 

in the table. If a “tickle” is presented in front of the mean, could be said that the appliance of that mean 

make sense at that phase of lifetime. On the other hand, if it has an “x” it means that the mean is not 

applicable on the phase. 

 

Means System Lifetime Phases 

Pre-Service In-Service 

Fault Preventing Design & Implementation   

Fault Removal Test & Debug Preventive Maintenance 

Fault Forecasting ✓  ✓  

Fault Tolerance   ✓  

Table 2-3:  Dependability Means and their use cases [25] 

 Fault Preventing 

 Fault prevention means to prevent the occurrence or introduction of faults [20]. It is achieved by 

quality control techniques during specification, implementation, and fabrication stages of the process. 

For hardware, this includes design reviews, component screening, and testing. For software, this includes 

structural programming, modularization, and formal verification techniques [26]. A rigorous design review 

and well elaborated set of tests may eliminate specification faults. If it is efficiently tested many of its 

faults and component defects are avoided.  

 Fault Removal 

 Fault removal means to reduce the number and severity of faults [20]. It is performed during the 

development phase as well as during the operational life of a system. During the development phase, 
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fault removal involves three steps: verification, diagnosis, and correction. Fault removal during the 

operational life of the system consists of corrective and preventive maintenance.  

Verification is the process of checking whether the system meets a set of given conditions. If it does not, 

the other two steps follow: the fault that prevents the conditions from being fulfilled is diagnosed and the 

necessary corrections are performed. In preventive maintenance, parts are replaced, or adjustments are 

made before failure occurs. The goal  is to increase the dependability of the system over the long term 

by staving off the ageing effects of wear-out. In contrast, corrective maintenance is performed after the 

failure has occurred in order to return the system to service as soon as possible [21]. 

 Fault Forecasting 

Fault Forecasting means to estimate the present number, the future incidence, and likely consequences 

of faults [20]. It is done by performing an evaluation of the system behaviour with respect to fault 

occurrences or activation. The evaluation can be qualitative which aims to rank the failure modes or 

event combinations that lead to system failure or quantitative, which aims to evaluate in terms of 

probabilities the extent to which some attributes of dependability are satisfied. Simplistic estimates 

merely measure redundancy by accounting for the number of redundant success paths in a system. 

More sophisticated estimates account for the fact that each fault potentially alters ability of the system 

to resist further faults [21].  

 Fault Tolerance 

 According to the threats approached in 2.3.2.1 a fault is a malfunction in one component. That 

malfunction can lead the affected component malfunctioning which may propagate to a failure. Fault 

tolerance means to avoid service failures in the presence of fault [20]. Fault tolerance is achieved by 

using some kind of redundancy. The redundancy allows a fault either to be masked or detected. This 

terms of detection and masking will be addressed in detail in this subchapter while the importance of 

redundancy in fault tolerance is approached on the next chapter. First, before getting to know what 

detection and masking are, it is important to highlight that redundancy alone does not make a system 

fault tolerant. For instance, two components duplicated and connected in parallel do not make a system 

fault tolerant, for that it is necessary to have monitoring and processing analysing the results and selecting 

the correct one. For that reason, masking and detection are important. 

Fault masking is the process of ensuring that only correct values get passed to the system output despite 

the presence of a fault. This is done by preventing the system from being affected by errors by either 

correcting the error, or compensating for it in some way [27]. Since the system does not show the impact 

of the fault, the existence of the fault is invisible to the user/operator. For example, a memory protected 
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by an error-correcting code (ECC) corrects the faulty bits before the system uses the data. Another 

example of fault masking is triple modular redundancy with the majority voting [28].  

Fault detection is the process of determining that a fault has occurred within a system. Examples of 

techniques for fault detection are acceptance tests and comparison. An acceptance test is a fault 

detecting mechanism that can be used for systems having no replicated components. Acceptance tests 

are common in software systems [29]. The result of a program is subjected to a test. If the result passes 

the test, the program continues execution. A failed acceptance test implies a fault [30]. Comparison is 

an alternative technique for detecting faults, used for systems with duplicated components. The output 

results of two components are compared. A disagreement in the results indicates a fault. 

Fault location is the process of determining where a fault has occurred. A failed acceptance test cannot 

generally be used to locate a fault. It can only tell that something has gone wrong. Similarly, when a 

disagreement occurs during the comparison of two modules, it is not possible to tell which of the two 

has failed. Fault containment is the process of isolating a fault and preventing the propagation of its effect 

throughout the system. This is typically achieved by frequent fault detection, by multiple 

request/confirmation protocols and by performing consistency checks between modules. 

Once a faulty component has been identified, a system recovers by reconfiguring itself to isolate the 

faulty component from the rest of the system and regain operational status. This might be accomplished 

by having the faulty component replaced by a redundant backup component. Alternatively, the system 

could switch the faulty component off and continue operation with a degraded capability. 

2.4 Redundancy in Fault tolerance 

There are various approaches to achieve fault tolerance. Common to all these approaches is a certain 

amount of redundancy. For our purposes, redundancy is the delivery of functional capabilities that would 

be unnecessary in a fault-free environment [31]. This can be a replicated hardware component, an 

additional check bit attached to a string of digital data, or a few lines of program code verifying the 

correctness of the program results. The idea of incorporating redundancy in order to improve the 

reliability of a system was pioneered by John von Neumann in [32]. Two kinds of redundancy are possible 

[33]: space redundancy and time redundancy. Space redundancy provides additional components, 

functions, or data items that are unnecessary for fault-free operation. Space redundancy is further 

classified into hardware, software, and information redundancy, depending on the type of redundant 

resources added to the system. In time redundancy the computation or data transmission is repeated 

and the result is compared to a stored copy of the previous result. The reason why this is called time 
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redundancy is due to the fact that this specific technique need significantly more time to have the outputs 

produced. In order to clarify those concepts, each one is going to be addressed in the next subchapters. 

Either way, it can be said beforehand that redundancy is not for free, it adds additional resources to 

systems to improve its reliability. Extending system about one more computer, or doubled available 

memory, may drastically complicate the system design. Performance, weight, size of the system may be 

affected, as well as the cost of design and implementation. Appropriate redundancy method must be 

selected to achieve the goals of the system [34]. 

2.4.1 Space Redundancy 

 As previously mentioned, this technique integrates the categories of hardware, software, and 

information redundancy. All of these categories are achieved by replicating or adding additional 

components that are unnecessary for the execution of a certain task. 

 In hardware redundancy the hardware components are replicated in order to cooperate among 

themselves. Both have the purpose of achieving the same task and they are only added to mitigate the 

fault scenarios. Taking the computer system example, the hardware redundancy is made through two or 

more independent computers with their own processor, memories and peripherals. The computers 

systems are able to cooperate in three ways, according to its implementation: Statically; dynamically or 

in a hybrid way. In a static implementation all the computers are working in parallel and comparing the 

results calculated. If inconsistencies appear it means that a fault occurred in one of the subsystems, and 

the correct output is chosen with a predefined algorithm [35]. In dynamic form only one computer 

subsystem is working and if it fails then another computer is started to continue the system task. The 

hybrid implementation uses a combination of both previously addressed implementation, static and 

dynamic approaches. 

 Software redundancy uses replicated code for the same function that is intended to deliver. This 

technique of software redundancy replicates the code to get a compiled redundant machine code that 

owns different instruction for the same purpose. This software redundancy technique is also known as 

instruction redundancy. This name is attributed due to the additional instructions that are added to the 

binary code whenever a spare code is added to the application code. In the spatial redundancy, one part 

of the code is replicated, e.g., variables or functions. After the replicated code is executed the replicas 

are compared and checked if they are all equals. If it is not the case, then an error has occurred.  

 Information redundancy consists of using additional information which is not required to perform the 

task in question. For instance, the Error Correction Code (ECC) is an additional value attached to the 
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information content of a memory and it is not required to execute the software task. Nevertheless, it 

allows to check data correctness and may also be used to correct corrupted data. Another great example 

of information redundancy is the data backup that everyone is familiar with by using the so famous cloud. 

The same information is duplicated to reduce the possibility of data loss. 

 As time redundancy, space redundancy is suitable to deal with transient faults since it is very unlikely 

to occur in the same memory region twice. For example, if a variable is replicated when it is affected by 

an error, it is possible to detect and correct it through comparison with the other redundant variables. 

2.4.2 Time Redundancy 

 This technique consumes additional time to get a correct and valid result. In the time redundancy, 

one specific part of the code is re-executed more than once. Execution results are stored and at the end 

of all program executions, the stored results are compared. The outputs are verified if they match the 

execution went as it should, if they do not, it is because an error has occurred. This kind of redundancy 

in software is suitable to deal with transient faults since they do not occur (or are very unlikely to occur) 

in the same location twice and cause the same error consecutively. So, the re-execution of the same 

code should not produce the same transient fault which will be mitigated. 

2.5 Lockstep 

 Lockstep is a fault tolerance technique that uses hardware redundancy at the processor level. Its 

implementation can differ by the number of replicated cores used as well as by the error recovery 

techniques that the cores employ. The configuration of redundancy used at this level is static, which 

means the working principle consists of, having each processor used running at the same time, or in 

some cases with a delay of one or few clock cycle in the same instruction, then the outputs produced 

are compared in order to identify possible inconsistencies between cores without even the possibility of 

changing the implementation. When the inconsistencies appear, it means that some error has occurred. 

Therefore, since a fault tolerance mechanism is being used, which is the lockstep the error must be 

treated in order not to propagate it to the whole system and not change the fault into a failure. 

 During this chapter the different implementations of lockstep that were found interesting are going to 

be presented for the understanding of this dissertation and after getting to know the implementations the 

error recover techniques will also be presented. 
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2.5.1 Lockstep Implementations 

 Regarding lockstep implementations they can be differed by the way the checker (the unit responsible 

for finding inconsistencies) is performed and by the number of cores that they use, as it was mentioned 

previously. Besides, it can have a loosely- or tightly coupled- implementation. In the tightly-coupled 

hardware lockstep, the processors are running synchronously and the outputs are compared instruction 

by instruction. The comparisons are continuously being made. An error is detected before it propagates 

to the outside of the system (causing a failure). This type of lockstep is more robust as the granularity is 

small. However, it is expensive to implement [36]. In a loosely-coupled implementation, the checker is 

made with less frequency when compared to the tightly implementation. This does not ensure that each 

instruction is executed properly, but errors are caught before they are allowed to leave the processors 

and propagate to other devices. This can also lead to performance boosts over tightly-coupled lockstep 

designs because fewer comparisons are performed [37]. Due to this, the error detection is weaker. In 

what concerns the way the checker is performed, the type of the lockstep should be chosen according 

to the type of application, its safety-critical requirements, and the hardware system constraints. 

 Now, when it comes to the number of CPU cores used in this technique, there is a great deal of 

possible implementations combining architectures of lockstep. For the purpose of this dissertation only 

the Triple Modular Redundancy (TMR) also known as Triple Core Lockstep (TCLS) and the dual modular 

redundancy (DMR), often called Dual Core Lockstep (DCLS), will be addressed. 

CPU-1

CPU-2

Memory Checker

Figure 2-4: Dual Core Lockstep (DCLS or DMR) implementation 
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 Triple Modular Redundancy 

In the TMR configuration (Figure 2-5) three identical CPUs execute the same code in lockstep and a 

majority vote of the outputs masks any possible single CPU fault. The memory and communication sub-

system faults can be masked employing ECC techniques. Its unique capability of masking any single 

fault, at the cost of an additional CPU, it offers a 100% error detection coverage within a single clock 

period. It is possible to “see” the TMR as operating in degraded mode when it is working with just two 

healthy CPUs [4]. 

  Dual Modular Redundancy 

 In dual modular redundancy the configuration is quite different from the previously addressed one. In 

this case there is no democracy, there is no majority, just the concept of right and wrong values. As it 

can be seen in Figure 2-4 the outputs produced by both cores are feeding a checker unit which is 

responsible for identifying the inconsistencies if they appear. If such a scenario occurs it means that the 

system is facing some kind of fault and if not treated as soon as possible it can propagate to an error 

and consequently to a failure as seen in section 2.3.2.1. The disadvantage of this implementation is that 

it does not permit to identify which was the erroneous CPU core so if one is under fault, the system is 

faulty and must recover. In this implementation there is no fail degraded mode.  

2.5.2 Error Recover Techniques 

 In this phase, depending on the outcome of BIST (Built in Self Test), some action for recovery or 

containing the error are taken. In the DMR, if a hard error has occurred, the processors are stopped, a 

fatal error is signalized, and recovering the system from it is impossible. So, the system stops working 

and switches to a safe state. When a hard error occurs in a system with Multiple Modular Redundancy 

(MMR), the erroneous processor is disabled, and the other health processors keep their execution as 

Figure 2-5: Triple modular redundancy (TMR or TCLS) implementation 

CPU-1

CPU-2
Memory

Voting

CPU-2CPU-3
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long as another error in the remain executing processors does not occur. After a error, if the MMR was 

composed of three redundant instances (TMR), the MMR starts working like a DMR redundant system. 

In the case the BIST does not detect any hard error, it means that a soft error has occurred. So, in the 

system with DMR technique, both processors are recovered to a state without any error, since it is 

unknown what the erroneous processor is. In the opposite side, in the MMR technique, the recovery is 

made to the erroneous processor only. The system keeps executing with the remaining health processors, 

and when the erroneous processors are recovered, the MMR changes to its fully functional state without 

having any execution interruption. 

2.6 Conclusion 

This chapter gave an overview of all the relevant topics that needed to be considered about safety and 

dependability. A particular emphasis was given to the fault-tolerance means definition and the importance 

of redundancy due to the fact that this project will take advantages of some fault-tolerance mechanisms 

such as lockstep.  

 The different types of lockstep configurations that currently exist and are relevant for this dissertations 

scope were also presented and may be addressed to better understand the concept. In addition to all 

that was mentioned the main advantages and disadvantages of each implementation were also shown. 
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Chapter 3  

System Specification 

 After having a theoretical insight about concepts and technologies that this dissertation will focus on 

and having an overview of the lockstep mechanism, it is possible to define the application that it is 

intended to develop as well as the components that will be part of the system. 

 Primarily, it is important to outline the application scenario that this dissertation covers which is the 

calculation of an angle and possible faults that could outcome from the hardware used for that matter. 

However, on the long run, it is intended to have a functional generic architecture that allows the use of 

different applications without significant changes in its structure. 

 This chapter presents the design and specification of the system and its architecture, as well as all 

the requirements and constraints for the architecture that is intended to develop. 

 A general overview of the whole architecture is given, taking into consideration the technological study 

made in Chapter 2.

3.1 Use Case 

  As mentioned in previous sections, the aim of this dissertation is to develop an architecture that could 

still perform its intended function even under faults, achieving in this way the fail-operational behaviour. 

The goal is to keep it generic, enabling it to use in a variety of application scenarios, despite the fact that 

the main use case for this architecture is to be applied in safety critical applications as it is the steer-by-

wire. Steer-by-wire must not allow faults to propagate into failures within the system since this could lead 

the car to cause serious harm for the people that are using it as well as for the surrounding environment. 

That is the reason why systems like this have the necessity to have its safety enhanced. Safety critical 

applications such as steer-by wire must have their subsystems in which they rely on (e.g. APS) with the 
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highest availability and reliability improving in that way the safety which is considered critical for that 

matter.  

The architecture that it is intended to develop has the aim to be used on APS covering the calculation 

of the angle of the steering wheel. This angle once calculated is sent to the electronic control unit (ECU) 

that is responsible for sending the right outputs to the actuators, the motor that controls the movement 

of car wheels. It can be imagined that if the subsystem responsible for calculating the angle fails, or even 

the actuator subsystem, all the steering system would consequently fail too. This, due to the fact that the 

entire steering system depends on its subsystems and there is no redundancy ensured, as it would be if 

the steering system was conventional (mechanic redundancy ensured by the steering column). In the 

conventional steering system, if APS would have failed the steering column would ensure the intention 

of the driver. Since this column links the steering wheel to the axis, the intention would still be transmitted 

to the car wheels, despite having some functionalities that would not be available anymore such as 

steering assistance. In order to solve the problem, which is the elimination of the steering column, the 

architecture that is going to be developed to perform the calculation of the angle of the steering wheel, 

is going to have the redundancy necessary to ensure the function even when faults occur. An overview 

of the architecture is shown in Figure 3-1. 

3.2 System Requirements 

 To properly design an architecture, first, all of its requirements and constraints must be defined 

beforehand, as it is crucial to fulfil them in the decision-making process as well as in the implementation 

process. With that being said, Table 3-1 is presented. It describes all the conditions that the architecture 

must comply with to have the system fail operational as it is intended. It is important to note that some 

concepts addressed at the table are extremely correlated with the theoretical background approached in 

Chapter 2. The table is divided into 5 sections. First, the requirements are addressed in a general view 

of the architecture. That being comprehended and having defined what the subsystem is, then the 

requirements related with the subsystem are pointed out. As addressed throughout this document, 

Sensing 
Element 1

Sensing 
Element 2

µC1

µC2

Output 
Bus

Input

Input

Output

Output

Galvanic Isolation

Figure 3-1: Application use case 
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redundancy is necessary thus, redundancy for the software and hardware were also described in the 

table. Finally, the requirements for the subsystem communication are shown.  

 

ID Description 

1. Architecture 

1.1.  The architecture in order to achieve a fail operational behaviour shall have 

redundancy, both at software and hardware level. 

1.2.  The redundant hardware used, which define a subsystem, shall have galvanic 

isolation between them. 

1.3.  The architecture shall be compliant with ASIL D classification. 

1.4.  Each subsystem shall be able to communicate to the outer system using 

CAN/CAN-FD. 

1.5.  A CAN message shall be sent within a fix period of 10 milliseconds. 

2. Subsystem 

2.1.  Each subsystem shall have fault-tolerant mechanisms. 

2.2.  Each subsystem shall have a communication protocol to exchange data 

between themselves. 

2.3.  The microcontrollers used in each subsystem shall have an ASIL D 

classification. 

3. Redundant Hardware  

3.1.  Two processing units defining the subsystems shall compose the architecture. 

3.2.  The signals acquired by both processing units shall have different sources. 

3.3.  Each subsystem shall have lockstep mechanism in it. 

4. Redundant Software  

4.1.  The software developed shall take advantageous of homogeneous redundancy.  

4.2.  The software developed should be able to fit in AUTOSAR architecture. 

4.3.  The software shall be developed according with V-model of ISO 26262 

5. Subsystem communication 

5.1.  The communication protocol that will be used for communication between 

subsystems shall be automotive certified 

5.2.  The communication protocol that will be used for communication between 

Microcontrollers shall work with Galvanic Isolation Scenarios 

5.3.  The communication protocol that will be used for communication between 

Microcontrollers shall have multi master 

5.4.  The communication protocol that will be used for communication between 

Microcontrollers shall have error correction codes implemented in order to 

identify faults 

Table 3-1: System Requirements 
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3.3 System Architecture 

 As mentioned in the previous sections, the aim of this dissertation is to develop a fail-operational 

architecture that still provides its supposed function, even when facing fault. Taking into account all the 

requirements described in 3.1 and the study presented in Chapter 2 it is possible, at this phase, to define 

the architecture as well as its components. For better understanding, Figure 3-2 can be referred. It depicts 

the full system stack containing all the different layers division between hardware and software as the 

elements that compose those layers. 

 The hardware layer contains the modules that are present in microcontroller unit (MCU) and were 

used for the purpose of the project and of course the MCU. Below this MCU layer the CAN physical layer 

needed to have the communication performed is presented. All the other modules present in hardware 

layer are used for both communication and diagnosis purposes. 

 The software layer contains the modules needed to be developed for the good functioning of this 

architecture. All the software that is developed followed the guidelines demanded by the AUTOSAR 

architecture. AUTOSAR architecture is a standard created in consortium of automotive companies to 

standardize the software developed by those companies. In the MCAL layer all the drivers responsible 

for managing directly over the hardware are presented. Some of those drivers, such as CAN-FD, were 

already developed and for this project were only used from an user point of view. At the ECUAL there is 

no module represented since no module that fits in this layer was developed. Either way, this layer 

Figure 3-2: System Stack  
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intended to act like an interface between the upper layers and the MCAL. In this project the 

communication between the upper layers and the MCAL are going to be made through Service Layer, 

with exception of CAN-FD module that uses the ECUAL as an interface. Most of the modules of this 

project are going to be used for diagnostic purposes so it makes more sense to organise the software in 

that way. At the service layer there is going to be placed the state machine that is intended to be designed 

to keep the system under control as the event handler. This last one will be the module responsible to 

react to faults when they occur. In the upper layer, there is all the software responsible for the application. 

This layer is composed mostly of configurations made at the higher level where the amount of channels 

that are going to be used to report the errors are defined; CAN-FD channels and initiating all the modules 

necessary for the project. It is also at this level that the software components are present for the use 

case application. Nevertheless, for the purpose of this dissertation they are not going to be developed 

despite being referenced later in implementation to depict how the software will interact. 

3.4 Hardware Specification 

 Having the system requirements and system architecture addressed is now time to go deep into the 

hardware level. This section intends to describe hardware components that this Master’s Thesis will focus 

on. Considering that at the hardware level is represented essentially by the MCU, and MCU’s peripherals, 

this section will have a top-down approach. First the microcontroller will be addressed followed by MCU’s 

peripherals. 

3.4.1 Microcontroller 

 As stated in 3.1, for each microcontroller used in this system’s scope lockstep must be included. With 

that constraint, the choice of a microcontroller turned out to be very limited. The market does not have 

a wide choice when it comes to a microcontroller that has lockstep mechanisms certified for the 

automotive. For that reason and after some negotiations with NXP semiconductors the chosen 

microcontroller is a S32K2TV. This microcontroller is an evaluation board that NXP provides for the 
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purpose of this dissertation. It is believed that this board will not be released in the market. However, 

some variants of it will. 

 The lockstep that this board has, is based in DMR.  Said that, and since it is needed to have two cores 

for fulfilling this feature, the cores that are being used with that purpose are two ARM Cortex M33. These 

processors are massively used in safety critical applications due to its security specifications and high-

performance modules that it has, such as, trust-zone memory, Digital Signal Processing (DSP) and, 

Floating Point Unit (FPU). Nevertheless, the M33 processors that this board has included in do does not 

have a trust-zone memory. In S32K2TV as it was said previously, there are two cores running in two-

cycle delayed lockstep, meaning, the operation that one core is performing will be executed on the second 

one with two clock cycles delay. 

 The CM33 core does not contain an inner cache, information about caching is only to signal these 

settings to any outer lever of cache which may be present in the memory system. This device implements 

two 8kb instances of outer L1 caches: Code cache and System cache. The code and system caches are 

accessible through the code and system buses of Cortex M33 core, respectively. The delayed lockstep is 

Figure 3-3: S32K2TV Board 
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Figure 3-4: MCU's Lockstep 
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due to the fact that the cores have access to this resource once at a time. In Figure 3-4: MCU's Lockstep 

a simplistic representation of the lockstep included in the microcontroller is shown. 

 This microcontroller besides lockstep feature additionally have a bunch of specification that are 

extremely important to highlight. Here, it is going to be detailed the ones that were found crucial to the 

implementation of this dissertation. Said that, the features that this board has and were extremely 

important are [38]: 

• ARM Cortex-M33/M7 core, 32-bit CPU 

–  M7 supports up to 320 MHz frequency with 

– 2.14DMIPS / MHz 

–  M33 supports up to 160 MHz frequency with 

– 1.5DMIPS / MHz 

–  ARM Core based on the ARMv7 and ARMv8 

– Architecture and ThumbR-2 ISA 

– Integrated Digital Signal Processor (DSP) 

– Configurable Nested Vectored Interrupt Controller (NVIC) 

– Single Precision Floating Point Unit (FPU) 

• Analog mixed signal  

–  Up to three 12-bit Analog-to-Digital Converters 

– (ADC) with up to 32 channel analogic inputs per 

– module 

– One Temperature Sensor  

– Up to three Analog Comparators (CMP), with each comparator having an internal 8-bit 

DAC 

– One 12-bit Digital to Analog Converter (DAC) 

• Communications interfaces 

– Up to 20 serial communication interface (LINFlexD) modules, with UART and DMA 

support 

–  Up to ten Low Power Serial Peripheral Interface (LPSPI) modules with DMA support 

and low power availability 

– Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and 

low power availability 

– Up to eight FlexCAN modules (with optional CAN-FD support) 
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– FlexIO module for flexible and high-performance serial interfaces 

– One Ethernet module 

– 2-ch FlexRay module 

– Up to three Serial Audio Interface (SAI) modules 

– One Secured Digital Host Controller (SDHC) 

• Reliability, safety, and security 

– Hardware Security Engine (HSE_B) 

– Up to three Internal Software Watchdog Timers (SWT) 

– Error-Correcting Code (ECC) on all memories 

– Error Detection Code (EDC) on data path 

– Cyclic Redundancy Check (CRC) module 

– 120-bit Unique Identification (ID) number 

– Extended Cross domain Controller (XRDC), providing protection for master core access 

rights 

 
 When it comes to the last pack of features related with safety and security most of them will be 
addressed more in detail in the next sub-section 3.4.2. 

3.4.2 MCU’s peripherals 

 This sub-section will present the main modules regarding safety that will be used in order to study 

and validate the lockstep implemented in evaluation board. It is important to note that despite the 

modules being used to validate the lockstep mechanism implemented, they are also useful to check the 

good functioning of modules such as memory and buses of the system.  

 Fault Collection and Control Unit (FCCU) 

 The FCCU offers a hardware channel to collect faults and to place the device into a safe state when 

a failure in the device is detected. No CPU intervention is requested for collection and control operation. 

The distinctive characteristics are: 

• Collection of fault information from safety relevant modules on the device. 

• Collection of tests results; 

• Configurable fault control 

• Configurable internal reactions for each NCF 

– No reaction 

– IRQ 
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– Short functional reset 

– Long functional reset 

– NMI 

• External reactions via configurable output pins 

• Watchdog timer for the configuration phase 

• Lockable configuration 

• One of the fault output signals is high to indicate operational state. The above is not true in 

case the error out protocol is configured to be a toggling protocol. 

• After power on the output signals have high impedance. They show operational state only after 

configuration by software 

• In case of a failure event or on software request for error pin indication, the pin are set to faulty 

state for a minimum time even if software tries to release it before 

• Management of noncritical faults 

• HW and SW fault recovery management 

• Fault Collection 

• Fault Injection 

The FCCU circuitry is checked at the start up by the self-checking procedure. The FCCU is operative with 

the default configuration immediately after the completion of the self-checking procedure. Internal and 

external reactions are statically defined or programmable. The default configuration can be modified in 

CONFIG state. The FCCU is designed to function when the clock system is faster than the clock safe. 

 Regarding the fault recovery management there are two definitions that must be clear: 

HW recoverable fault: The fault indication is an edge-triggered and level-sensitive signal that remains 

asserted until the fault cause is deasserted. That is, if logical 0 on the fault signal indicates fault, then 

the status flags are valid as long as the fault line stays at 0. The status is automatically cleared when the 

fault signal goes to 1. Typically, the fault signal is latched external to the FCCU in the module where the 

fault occurred. The FCCU state transitions are consequently executed on the state changes of the input 

fault signal. No SW intervention is required to recover the fault condition. 

SW recoverable fault: The fault indication is a signal asserted without a defined time duration. The fault 

signal is latched in the FCCU. The fault recovery is executed following a SW recovery procedure 

(status/flag register clearing).   

 HW recoverable is an option to exclude the handling of error sources by FCCU management SW, in 

case it is known that the fault is recoverable by itself when the fault condition gets corrected. 
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 Error Injection Module (EIM) 

EIM is integrated between the memory controller and memory array to enable a controlled way for error 

injection. Each memory controller has its own EIM channel. This module permits the error injection to 

be activated in a global way or just for a particular channel. It is used mainly for diagnostic purposes and 

it provides support for inducing single-bit or multi-bit inversions on read data when accessing peripheral 

RAMs. Injecting faults on memory can be used to exercise the Single Error Correct – Dual Error Correct 

(SEC-DEC) ECC function of the related system. This module supports 20 error injection channels and 

also protection against accidental enable reconfiguration error injection function via two-stage enable 

mechanism. Each of the error injection channels is assigned to a single memory array interface and 

intercept the assigned memory read data bus and check bit bus, then inject errors by inverting the value 

transmitted for selected bits on each bus line. 

 

 Error Reporting Module (ERM) 

The Error Reporting Module (ERM) provides information and optionally interrupt notification on memory 

error events associated with ECC (Error Correction Code) and parity. The module collects ECC events on 

memory accesses for platform local memory arrays, such as flash memory, system RAM or peripheral 

RAMs. It can also record the count value of the number of correctable error events. The diagnostic 

information is provided by ERM per logical memory: 

• For each memory, ERM has status register to detect if it is a single bit or a multi bit ECC 

• Faulty system address of the last recorded ECC event on memory n can be read through ERM 

memory Error address register (EARn) 

Figure 3-5: EIM module 
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• ERM configuration register (CR) configures the interrupt notification capability for each 

supported memory channel 

• ECC counter for correctable error count in ERM is resettable through functional reset and by 

writing all zeros to the COUNT field. 

3.5 Conclusion 

 This chapter started by describing a general architecture capable to implement the angular position 

sensor following an AUTOSAR-like approach. After having the big picture it was then possible to establish 

the requirements for the project but take into account the purpose of the architecture as the study made 

in Chapter 2. Having the requirements defined it was further possible to analyse and build a system 

stack, which allowed to better decide on the components. As soon as the microcontroller was chosen 

and the modules necessary for the diagnosis purposes were defined, a brief overview of each was given. 

The configuration used as the metrics used for the diagnosis purposes can be referred in the annexes as 

in the next chapter. 

 When all the components were selected, it was then possible to proceed to the software development 

that would support them.
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Implementation 

 After having defined all the system specifications and components to be used according with 

requirements, it was then possible to proceed to the implementation to achieve fail operational 

architecture and fulfil the objectives of this dissertation. 

 This chapter aims to address the process of the implementation, explaining what was done both at 

hardware and software level. 

 The hardware was configured considering that the aim for the architecture is to achieve fail operational 

system as addressed in 2.4. Redundancy must be fulfilled in the hardware. The modules that were used 

were replicated and, since redundancy does not solve all the problems, other techniques must be 

developed as well. 

 Regarding software development various scenarios of fault injections were approached, arbitration 

processes in order to define which subsystem was “talking” to the outside bus by default and a state 

machine was designed in order to define the behaviour for each subsystem as it is going to be presented. 

Despite everything mentioned, a Kalman filter was also developed with the purpose of acting as tiebreaker 

when it came to a decision of which subsystem had the correct value when the values differed from each 

other  

4.1 Hardware Configuration 

 This subsection will describe how the hardware chosen was used during the project of this 

dissertation. As can be seen in Figure 3-2, the hardware used is mostly constituted by the MCU and its 

modules. For the purpose of this project the sensing elements and the acquisition of data is not a 

concern, what is the real interest to explore is the functioning of each board and its modules. With that 

done and well documented it is then possible to iterate the process and have the acquisition process. 

Nevertheless, for the study processes a dummy acquisition was performed to validate the software as it 

is going to be seen later. 
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4.1.1 Angle Position Sensor 

 In order to satisfy most of the requirements described in chapter 3.2 the hardware have disposal 

depicted in Figure 4-1. This disposition of hardware wish to solve the  requirements addressed in Table 

3-1, in particular the points concerning the architecture (1), the subsystem (2), and the hardware (3). In 

addition, as stated throughout this dissertation the architecture aims to cover the calculation of an angle 

which is later used in steer-by-wire. The angle position sensor would have an hardware architecture 

identical to the one depicted in Figure 4-1.  

As we can see in Figure 4-1, there are two entities clearly separated by the dash line. Those entities 

represent each redundant subsystem of the APS project. Each subsystem is composed by a MCU, and 

its modules necessary such as ADC, CAN-FD and others modules responsible for injection errors that 

were addressed in 3.4.2.1, 3.4.2.2, and in 3.4.2.3. Besides the MCU, each subsystem has its own 

sensing element and its own CAN transceiver. The reason why this was done this way, was to fulfil the 

requirements regarding the redundancy. 

Figure 4-1: Hardware Disposal 
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4.1.2 Subsystem 

 The subsystem as addressed previously is defined by its own MCU, modules of the MCU, sensing 

elements and by the transceiver. Nevertheless, this alone does not satisfy the requirements established 

in Table 3-1 regarding the subsystem. The fault tolerance mechanism that each subsystem must 

implement is ensured by the lockstep already approached in 3.4.1. The lockstep allows to identify 

possible faults that could happen during the processing time at hardware level enabling the possibility to 

mitigate them before those faults turn into system failures. With that mechanism the requirement with 

the number of 2.3 is fulfilled.  

 

4.1.3 Hardware Setup 

Figure 4-2 is showing the real hardware setup used for the purpose of the project. As stated in the 

previous sections the architecture is composed of two subsystems which are illustrated in the figure by 

the two boards. Between them there are galvanic isolation granted and with that there is an 

implementation of a protocol communication that must work with galvanic isolation as well. The circuit 

used for that purposed can be seen in Figure 4-2.  

Figure 4-2: Hardware Setup 
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The connections made in each board depicted in the figure by the wires are connections for the 

purpose of arbitration and reset processes. Those processes will be addressed more in detail in the next 

chapter. 

4.2 Software Implementation 

 The software implementation was made according to the existing hardware. The main goal for it was 

to achieve a fail operational behaviour enabling the system to still provide the output even when any 

undesired event occurs in it. To achieve that feature, some problems were in need to be taken care of. 

In a first stage a use case (APS) where the fail operational architecture could fit was designed, then a 

state machine was developed to define the behaviour for each redundant subsystem. After having all 

these software components developed it came out the biggest challenge that should be overtaken. Since 

two  redundant subsystems are being used and each one is sharing data with the other to identify possible 

inconsistencies, there is no easy way to identify the correct and the wrong value in the process. If it were 

being used three subsystems, then we could implement a voter and mask any possible fault that could 

outcome from the calculous of any subsystem. However since there are only two subsystems, the 

approach to solve this problem was to develop a predictive Kalman filter. It estimates the next value and 

compare with the real one calculated by both subsystems. 

 This subsection aims to explain the process of all this software implementation. First the use case is 

going to be presented in which the software developed can be applied, then the state machine and finally 

the developed Kalman filter. 

 The software developed for the purpose of this project aim to be fitted in an AUTOSAR architecture. 

For that reason, the modules that were developed during this master thesis were divided according to 

the standard demands. 

4.2.1 Software Components 

 As can be seen in Figure 4-3 the software is divided by blocks representing software components 

(SWC). To note that the diagram represents the software organized for the APS system. The dash line, 

once again, distinguishes the subsystem, just like presented in the hardware disposal. 
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 Since the subsystems are in fact mirrored from one another, only the subsystem 1 will be explained. 

Explaining each software component of the subsystem 1, which is the one represented above the dashed 

line, the SWC-Acquisition is the part of the software that is responsible for the acquisition of data. That 

data is acquired from the sensing elements, which in this specific case of the subsystem 1 are the 

magnetic resistive sensor. The SWC-pre-processing is the component responsible for the noise cleaning 

associated with the data acquired. At this point of execution is expected to have an exchange of data 

between subsystems just to check if there is some type of inconsistence among the data acquired. That 

being done, it is now time to calculate the angle. That is the role of the SWC-Calculation. During this time, 

if for some reason an error occurred triggered by hardware or even by an inconsistency between data, 

flags are exchanged in order to have either way an output to the outer system. So, the process is: if an 

error occurs, flags are exchanged, then the error is treated which is the role for the SWC-Error Detection. 

In the error detection the main goal is to identify the fault caused and inform the SWC-Recover what is 

the best reaction to have according to the fault triggered. On the other hand, if at the calculous phase 

there is no fault triggered the software is ready to enter the final stage of the program.  

In the last phase, the angle calculated is exchanged between subsystems with the purpose to have a 

match, if it does not, means that something along the process went wrong. But the challenge is to validate 

one of two different angles. That is why this system was in need to have the Kalman filter predicting the 

Figure 4-3: Software block diagram 
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next value of the angle. The one calculated that is closer to the value predicted is the one that is going to 

be chosen to transmit. All this process of comparing and deciding which is the correct angle is the aim 

of the SWC-Compare Unit. Finally, after the angle is chosen, the software is in condition to have the angle 

transmitted to the external bus. That is the responsibility of the SWC-Driver communication. 

It is important to note that for the sake of this project only the blocks highlighted will be covered. 

4.2.2 Sequence Diagrams 

To have a clear picture on how the software components would interact between themselves a group 

of sequence diagrams that depicts the various scenarios was elaborated. First, a scenario that depicted 

the fault free environment was approached, then the fault that occurred at the lockstep mechanism was 

depicted and finally a scenario where the data is miscalculated. 

 Fault free scenario 

In a fault free environment both subsystems are acquiring and calculating data, and the correct output 

is sent to the output driver, by default, through subsystem 1. During this process there are at least two 

exchanges of data between subsystems, in a first phase the raw data is exchanged and in a final phase 

the calculated angle is exchanged to make the identification of errors that could come from the calculation 

possible. In this particular scenario depicted in Figure 4-4 the process went as it should, no error was 

found. 

 Fault at one subsystem 

In this case it was emulated the scenario where a fault has occurred in subsystem 2. As addressed 

previously, throughout the well-functioning of the application it is intended to have two exchanges of data 

between the subsystems, the first one consisting in the raw data acquired by each subsystem and the 

second data traded is the angle already calculated. The scenario that Figure 4-5 has depicted, has indeed 

two types of data exchanged between subsystems but the last one is not the angle calculated.  
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In an initial phase both subsystems are acquiring data and trading the raw data but then a fault has 

been triggered at subsystem 2. The process that should outcome from that is to send a message through 

the internal bus to subsystem 1 informing that subsystem 2 is under a fault and that the fault free 

subsystem must ensure the communication to the output bus. 

 Miscalculated Data 

In this last scenario the case where an inconsistency at the calculous algorithm has been found will 

be addressed. Here, the error is only found in the last phase of the process. Once again, on the initial 

phases both subsystems are working properly, acquiring, exchanging and calculating data but in the last 

phase when the angles are compared and if by some reason the angles differ too much among 

themselves it means that the system is facing a fault. This decision is made at the SWC compare unit 

with the help of Kalman filter as it is going to be seen later. 

Figure 4-6 illustrates the scenario where the miscalculated angle is coming from the subsystem 1. 

Said that, and when identified by SWC-compare unit of subsystem 2 an extra message is sent to 

subsystem 1 through the internal bus to inform that the angle calculated is wrong. The next step is to 

ensure the communication through subsystem 2 which has the correct angle calculated. 
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4.2.3  Software Workflow 

 In this phase some flowcharts are presented to better understand the implementation achieved. There 

are some specific topics approached that were crucial to the implementation and validation of the system 

in cause. Since the major point of this dissertation is to study and present a solution when it comes to 

the error detection and error recovery, some errors were induced at the system to better validate it. 

 Main Cycle 

 Starting from the main cycle where the application is running cyclically in Figure 4-7 it is presented in 

what consists this main cycle. Figure 4-7 is quite explanatory, but in a brief description the main cycle 

starts by doing an initialization of all the modules and then it checks if there is a button pressed. That 

button is used for validating the system with errors. If the button is pressed then the function responsible 

for injecting the errors is called. Whether the button is pressed or not the application still needs to be in 

run mode, that is why the function Run is called cyclically. 
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 Initialization Process 

 The initialization process is called once during the well-functioning of this software as can be seen in 

the main cycle. Basically, this process is responsible for the initialization of all the modules needed for 

the application. Figure 4-8 represents the flow of execution when this function is called. To note that most 

of the functions called within this process will not be addressed since they consist in a configuration. On 

the other hand, the sub-processes such as arbitration and check_ status are going to be explained in 

detail later.  

 Arbitration Process 

 The arbitration process arises from the necessity to have a homogeneous software functioning, 

meaning that the software flashed into the two subsystems must be equal in both sides. Nevertheless, 

Figure 4-7: Main Cycle flowchart 
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when communicating internally the IDs for CAN message must be different for both subsystems. 

Therefore, the software, despite being homogeneous, has a condition defining the IDs for messages 

exchanged among subsystems.  

 That condition is no more than an arbitration process. This process consists of reading a value of a 

pin previously connected to 5V or GND depending on which subsystem. If that value is read as one (5V) 

then it defines the CAN_NODE_A. On the other hand, if that value is read as zero (GND) it does not 

define the CAN_NODE_A, as can be seen in Figure 4-9.  

 Check Status Process 

 The check status is a process made at the end of the initialization. This is mainly to understand the 

status of the other subsystem and synchronize both subsystems. The flow chart can be referred in Figure 

4-10. There are two different paths for the flow of execution, depending on which subsystem this process 

is running. If the CAN_NODE_A is defined then it means that this system will, by default, communicating 

to the outer system with a fix period of 10ms. Then a timer is enabled to define that period. In this case 

the timer used was the Programmable Interrupt Timer (PIT). After that the NODE_A sends a message 

internally to the other subsystem to understand the system state. If it is in fail-operational, it means that 

NODE_A is waking up from an error recovery (as it is going to be shown later), so the next step is to send 

a recovery command in order to inform the other subsystem that NODE_A is already fully functional. 

Being or not the other subsystem in fault state, this NODE_A subsystem is the one communicating by 

default, so a message to the outer system is ensured in either scenario. That is, if NODE_A is in normal 

state the message to outer bus is sent by it, if is in fault state is the NODE_B who do it. 
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Figure 4-9: Arbitration flowchart 
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The other path is for the subsystem in which the CAN_NODE_A is not defined. In this path where 

NODE_B is defined, the first step is quite similar to the other path, in which the NODE_A is defined. The 

main difference is that in this phase this subsystem does not need to ensure the communication with 

the external bus being NODE_A running properly. 

 Error Injection Process 

 The scenarios developed for the error injection as can be seen in the main cycle are asynchronous. 

Of course, the aim for this kind of implementation was done only to understand how the system would 

react in case of an error. In real application there is no need to trigger an error manually, the hope is that 

when an error has occurred the system knows what to do. With this implementation the purpose was to 

define what to do in such case. As addressed in 3.4.2.2., there are 17 channels available for error 

injection. In this phase is important to stress out the scenarios regarding memory and lockstep, error 1 

and error 2 respectively represented in Figure 4-11.  

 Error 1 is made by taking into account the address of memory that is going to be read in the next 

instruction and then with the help of EIM some bits are inverted in order to have inconsistencies between 

Figure 4-10: Check status flowchart 
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the data read and the CRC calculated. This type of error is reported by an ISR caused by the ECC. And 

the ISR is mapped into the ERM. 

 Error 2 is caused into the lockstep. The EIM intersects the bus shared by both cores and then invert 

some bits with the purpose of having an inconsistency in the outputs produced by both cores. This event, 

depending on how the FCCU module is configured, can trigger an ISR or a functional reset. For the 

purpose of this dissertation, the configuration of the FCCU was done to trigger an ISR if such fault occurs 

and then within the ISR the reset is activated by the developer. This implementation is much more 

attractive since it allows the trade of information with the other subsystem, having more control of the 

system as a whole. 

The implementation regarding the memory injection is made according to Figure 4-12. 

 To better understand how the modules were configured and in order to inject and to listen the errors 

injected the annexes can be referred as well as chapters 3.4.2.1, 3.4.2.2 and, 3.4.2.3. 

 Run Process 

 The run process is made according to the necessities of the application. Since there is a great deal of 

messages being traded at the internal bus, the first action to take in this process is to check if, in fact, 

there are any messages to be read. Therefore, when the software checks that there exist messages on 

the bus, actions must be taken. If it has received an ‘S’, which is basically a request, it must reply with 

the status of the system. If the message is different from the mentioned ‘S’, then it means that the one 

receiving a message must update the system state machine. And these are the scenarios in which there 

are internal messages on the bus.  

Since software is redundant there is a extreme necessity to understand in which system it is running. 

Thus, it verifies if CAN_NODE_A is defined. If it is, the software checks whether the subsystem is in a 
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normal state or not and if the system is normal or in fail operational state. It also verifies if there is any 

message to be sent over the external bus. The reason why the system sends messages in fail operational 

sate is due to the fact that the system state machine is only updated to the fail operational state when it 

receives a message indicating that the other subsystem is facing a fault. Since the CAN_NODE_A assures 

by default the external communication, it communicates with the outer system both in normal state and 

in fail operational state of the system. On the other hand, if the CAN_NODE_A is not defined, then the 

software checks only if the system is in fail operational state and whether the B subsystem is in normal 

state as well as the need to send any messages over the external bus. As it was said previously in the 

normal state of the system, the subsystem ensuring the communication with the “external” world is the 

one where the CAN_NODE_A is defined. If, for some reason in B subsystem the state machine is in fail 

operational state is, undoubtedly, due to the fact that the A subsystem is facing a fault, so it is the time 

for B to ensure the communication.  

Figure 4-13: Run process 

_RUN

Is there any 
message on the 

internal bus?

End

yes Is it a  S ?

CAN_NODE_A?

Send statusYes

UpdateStateMachine

NoNo

 A_normal AND     
(Normal OR  FailOp) AND 

message to send?

Yes
Send CAN 
message

Yes

 B_normal AND 
FailOp AND 

message to send?

No

Send CAN 
message

yes

No

No



47 
 

 

Chapter 4. Implementation 

4.2.4 State Machine 

 The state machine developed for the purpose of this project aims to track the system state. The state 

machine in question is composed of three different states. The normal state fail operational state and 

the failure state. Each state represents an action to take during the flow of the program. For instance, 

the normal state represents the good functioning of the system where no fault has occurred nor 

inconsistencies at the acquisition or at calculous level. The fail operational state means that a fault might 

have occurred at the hardware and possibly leading to some inconsistencies while the system is still 

operational due to the use of redundancy. So the process is: a subsystem that is facing a fault transmits 

to the other one suggestive data that indicates that the previous one is under a fault. The receiving one 

updates the state machine while the faulty one is trying to recover from that fault by a system reset or 

even within an ISR defined. The other very unlikely and undesirable scenario is the failure scenario. In 

this case, the system as a whole is facing a fault without even the possibility to exchange data between 

subsystems. In other words, both subsystems at this state are facing a fault. The proper reaction to have 

in these types of situations is undoubtedly the power cycles or even the system reset.  

Figure 4-14: System state machine 
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 Besides the state machine already mentioned and depicted in Figure 4-14, there is another that 

emulates the behaviour of each subsystem. That one is represented in Figure 4-15. In a brief description 

of the state machine it is necessary just to highlight that the arrows that are coming in at the normal and 

at the failure state represent the internal communication where both subsystems are trading data among 

themselves. Once again, the normal state is where the application is running in the proper way, acquiring 

data, sending data and calculating the angles based on data acquired. If for some reason the redundant 

subsystem detects a fault then it sends that information to the other subsystem and transit to the failure 

state where the fault is trying to be mitigated or recovered. If that occurs the subsystem is in conditions 

to go back to the normal state, if not, it means that the fault is unrecoverable therefore the best reaction 

to have is resetting the subsystem. 

4.2.5 Kalman Filter 

 Kalman Filter is one of the most important and common estimation algorithms. The Kalman Filter 

produces estimates of hidden variables based on inaccurate and uncertain measurements. The Kalman 

Filter also provides a prediction of the future system state, based on the past estimations [39]. With that 

stated, the Kalman filter developed was used on the SWC-Compare-Unit. This filter aims to calculate the 

next value that is going to be considered in order to identify possible inconsistencies between calculated 

angles. If the reader imagines a scenario where there are two entities that supposedly produce the same 
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output, in case of one differing from the other, there is no easy way to identify the erroneous one. The 

Kalman filter aims to solve that problem. The goal is to use this Kalman filter in each subsystem meaning 

that each subsystem should be tuning their own filter parameters according to the values in their 

calculation block. At every calculous performed the filter is being feed with that result. If the values 

calculated for each subsystem differ from each other, then the decision of which subsystem should 

transmit the angle to the outer bus is made according to the estimations of the Kalman filter. But it is 

important to mention that this decision is only valid if the estimated values from the filter are accurate 

enough. Taking the scenario where the values calculated differ from each other the Kalman filter aims to 

act as a tiebreaker and the value of the angle closer to the valid estimation is sent through CAN. If the 

Kalman filter is not tuned to a point where is possible to trust its predictions and if the angle values at 

that specific point in time differ a more rudimentary way of making a decision is used. A threshold value 

for the angle is used. That is, from one sample to another the angle should not overtake the value defined 

and if it does it means the value is the wrong one. 

 The filter was developed in the third order, in other words, the angle value was predicted based on 

the variation of speed and acceleration of it. The problem associated with this filter is that most of its 

estimations are created based on their previous value meaning that the initial estimations are not as 

accurate as their older ones. The parameters of the Kalman filter are being tuned at real time. Despite 

this step back, the implementation can work around the problem since the data acquired are made at a 

so high speed that for each 10ms of a message being sent to the outer bus there are at least five samples 

acquired which gives the Kalman filter the inputs necessary for it to tune its values for a valid estimation. 

Figure 4-16 gives a good overview of the Kalman filter used. The Kalman filter is shown in the shaded 

part of the diagram and the system where the filter is collecting its values for a proper estimation is also 

represented but in the outer part of the diagram. 

Figure 4-16: Block diagram of Kalman filter 
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4.3 Conclusion 

 This chapter gave an overview of the implementation achieved during this project. The implementation 

was made according to the chapter of system specification since most of the requirements were 

respected and were taken into consideration during the implementation. The errors induced were 

performed only to validate the architecture developed as well as to validate the fault tolerant mechanism 

which is lockstep. Those scenarios induced also allow the possibility to validate the state machines 

designed to track the states of both: system and subsystem. The Kalman filter is developed to validate 

the calculation algorithm.
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Tests and Results 

 This chapter contains the tests made to the architecture. As it was intended to develop a fail-

operational architecture the tests were performed to validate it. Tests were divided in a way to validate 

each specification crucial for the architecture. In other words, a subset of functionalities which were 

needed for the system were tested distinctly. With that being done, then make sense to evaluate the 

system as a whole and check if the requirements were respected. It can be said beforehand that in order 

to have a fully functional fail-operational architecture the costs are much higher due to the amount of 

redundant resources needed. But when a system is designed there should be always a trade-off between 

the costs and the functionality. Since the system is rated as safety critical, the functionality is the priority. 

5.1 Tests 

 This chapter will describe each test performed and later evaluate its results. To each subchapter 

created within this chapter corresponds to a test performed.  Table 5-1 shows the tests that were in need 

to be performed as well as the results that were expected to have from each one. 

Test Expected Result Real Result 

Send flags through the 

internal communication bus, 

from both subsystems 

Have an ISR for each internal 

message received 

 

Have a CAN-FD message in 

the external bus within a fix 

period of 10ms 

Validate the message and 

the timing of the message in 

the CANoe software 
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Make use of module EIM in 

order to induce faults at the 

subsystem 

An ISR triggered for each 

error induced and flags 

exchanged between 

subsystems 

 

For each fault detected at 

the system, the state 

machine must transit from 

its state 

Signalize the event of 

transition, through a CAN-FD 

message and through a LED 

interface 

 

Use Kalman Filter to predict 

the value of the angle 

calculated 

Measure the error associated 

with the prediction having 

error values lower than 3%  

 

Table 5-1: Test Table 

5.1.1 External Communication test 

 The external communication was made with the help of CANoe tool. CANoe is the comprehensive 

software tool for development, test and analysis of individual ECUs and entire ECU networks. It supports 

network designers, development and test engineers throughout the entire development process – from 

planning to system-level test. [40] For the scope of this project the software tool was used to validate the 

messages sent to the external bus from both subsystems. For that there was a necessity to emulate an 

external bus which was later interpreted by the CANoe software. The tool used for that matter, was a 

VN1610 which consist of a CAN interface with the possibility to emulate a CAN/CAN-FD bus. 

 With all the tools needed to test this communication, two test scenarios were elaborated. The first one 

was made in order to verify the time window in which the messages were being received at the CANoe. 

The other test is to check if the external communication is ensured even when the whole system is in fail 

degraded. 

 Time Window 

 In this scenario what must be taken care of is that the messages must appear in the external bus 

within a 10ms time window. Therefore, with the help of CANoe which has a possibility to see ∆t of the 

messages that are being received was possible to check if the time constraints were being respected. 

Figure 5-1 shows the messages sent by one of subsystems and in the time column we can see the 

amount of time that pass since the last message received. As can be concluded the time slots were being 

respected. It was taken two print screens two see that there is an error associated, which is roundly to 

1ns. 



53 
 

 

Chapter 5. Tests and Results 

 

 

 Fail degraded 

 With this particular test what was expected to verify is that during a fault induced and correspondent 

recovery, the system ensure the communication with the external bus. In other words, the system still 

communicates even in fail-degraded mode. Fail-degraded due to the fact that one of the redundant 

subsystems is facing a fault and for that reason the system has lost some of its features. This means 

that the system state machine is on fail-operational state. 

Once again, using the CANoe software was possible to see the messages sent from different channels 

which consist of messages being sent from both subsystems. This test has also a particularity to have 

messages received at different CAN-FD IDs. This is to inform the entity that is external to the system that 

the system is facing a fault. Despite the system still being operational, as it should, it will inform the 

external “world” that is operating under fail degraded mode. As it can be seen the angle message which 

is the message sent with ID of 600 was sent both by channel 1 and 2. This message ID represent the 

angle was being sent only in channel 2 but with a fault induced at the system the angle still need to be 

transmitted so that is why the channel 1 which is the channel of the other subsystem. Between changes 

of channels, an error message is sent to signalize the fail-degraded mode of the system since during this 

process of fault and fault recovery there is only one subsystem operational.  

 

5.1.2 Error Injection Test 

 This test was performed with the help of the existing modules available in the microprocessor to 

induce faults at the different peripherals of the microprocessor. To be more detailed the modules used 

are the ones already approached in 3.4.2.1; 3.4.2.2; 3.4.2.3. These modules turn out to be very useful 

not only to induce faults at subsystems but also to study what the possible reactions are to be taken 

Figure 5-1: External communication test, time windows 

Figure 5-2: External communication, fail degraded test 
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when a fault occurs. Furthermore, these modules are also used for detecting the faults through ISRs 

mapped into the memory region.  

 At this point it is important to highlight that these tests are not as visual as the others already 

addressed, so this test will mainly be explained over text since there is no image that could depict a fault 

induced at the microcontroller. In brief reasons, two different tests will be explained: the ones induced at 

the lockstep mechanism and the ones induced at the memory region. 

 Lockstep 

 This test was performed with the help of modules such as EIM and FCCU as addressed in 4.2.3.5. 

Nevertheless, at this point the two possible scenarios that FCCU allows for it to have were exploited, the 

ISR reaction and the functional reset. 

 With a functional reset, as mentioned in 4.2.3.5, there is a lack of control of the application. That is, 

when the error occurs the functional reset is performed without any possibility to track the problem or to 

understand what happened. For that reason, this implementation is less attractive for the purpose of this 

project. 

 In the ISR scenario, as soon as the error is injected, the ISR is triggered. Inside it, there are plenty of 

paths to be taken. The error techniques that this lockstep architecture uses so much could be applied, 

but according to the documentation of the microcontroller when this type of error occurs the 

recommended reaction to have is a functional reset. Nevertheless, the author explores other solutions 

with this reaction. A scenario taken was trying to clean all the flags that were causing the ISR but in that 

scenario the program counter (PC) was still tied in the ISR. So, the solution was to trigger an ISR and 

within it, trigger a reset. Between processes the subsystem must inform the other one that a fault has 

occurred in order to have more control of the application.  
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 Memory 

 The error related with memory was injected through EIM module once again, and the module that 

was responsible to “listen” to the errors was the ERM with the help of ECC mechanisms.  In a first phase 

it was induced at the memory errors composed by more than one bit flip, which is not compliant with 

the ECC mechanism. According to the documentation the ECC can correct up to 1 bit flip detected at the 

memory buses but more than that trigger an undefined behaviour, possibly causing hard faults. For this 

type of errors a channel at the ERM was also configured to trigger an ISR if such error has occurred. 

Within the ISR the author thought of reconstructing the signal by reverse engineering the value of CRC. 

Nevertheless, there is nothing published indicating the CRC algorithm, thus making it almost impossible 

to be done. Within ISR the possibility to clean the flags asserted at the error injection time was also tested 

in order to verify if the PC was able to move forward. In this case two scenarios occur depending on how 

many bits were flipped with the error injection. If it was just one, cleaning the flags that were causing the 

error injection were enough to keep the program flowing. If it was more than one bit flipped, as mentioned 

above, it causes undefined behaviour which the developer cannot control, and cleaning the flags does 

not make it better.  

 It is important to highlight that memory errors are critical since all the application depends on it, being 

by code memory or data memory. Once corrupted, if it is not possible to restore its content then it is 

impossible to trust it again. For that reason the best reaction to have when these events occur is to trigger 

a reset such as the reaction to have when a lockstep error occurs. 

 

 

5.1.3 State Machine Test 

 In this test it is intended to test the transitions of the state machine according to the scenario in which 

the system is facing. As addressed in 4.2.4, two state machines were designed, where one emulates the 
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Figure 5-4: Memory Error Injection 
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behaviour of each subsystem and the other is used to discover in which state the entire system is. With 

that in mind, the test will take into consideration the state machine of the system and it is going to be 

explained with the help of the state machines designed for describing the behaviour of each subsystem.  

 Normal state 

 The normal state of the state machine is where the application is running as it should. Each subsystem 

is able to exchange data between them, there is no error injected, the outputs are being sent by the 

subsystem in which CAN_NODE_A is defined, and both subsystems are at normal state as can be seen 

in Figure 5-5.  

On the left side of the equal signal the state machines are defining the behaviour of each subsystem, 

both at normal state. On the right side of the signal there is the result, the state machine that defines the 

behaviour for the entire system. For this specific scenario, the only thing that was done was to run the 

application. As it can be seen, the transition from INIT to Normal is unconditional.  

 Fail Operational State 

 For this test, a fault was induced at one subsystem in order to trigger in it a transition from the normal 

to the failure state. With that scenario the entire system transits from normal to fail operational state as 

it can be seen in Figure 5-6.  

Figure 5-6: State machine in fail operational state 
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 The scenario has two possible outcomes for the system. The first one is: the faulty subsystem is able 

to recover from the fault, by a recover or a reset, and then the system goes to normal state again. The 

other scenario, extremely undesirable, is where both subsystems are under faults. Nevertheless, 

throughout this chapter, after inducing the fault, the subsystem was able to recover from it making the 

system to transit to normal state again.  

 Failure State 

This is the most critical scenario of this system. The scenario where a fault at one subsystem occurs 

and followed by it there is another fault at the other subsystem. In this particular scenario there is not 

much to do other than to perform a system reset.  

 The subsystems in this particular scenario ensure the reset at each one, but before that the outside 

“world” will be informed that a power on reset is necessary due to errors at the same time in the 

subsystems. This is done by a repeated CAN-FD message informing the error. 

5.1.4 Kalman Filter Test 

 As already stated in this document the Kalman filter was developed with the purpose of being a 

tiebreaker. As two subsystems are running in parallel with the same purpose and with the goal to compare 

its outputs if they differ it is extremely difficult to identify which is the best value to transmit to the external 

CAN bus being compliant with a fail operational architecture. For that reason Kalman filter is believed to 

be a suitable solution.  

 In these tests what was intended to have as a result was the best tuned model of the filter. For that, 

the filter was studied with a set of datasets and the parameters were tuned to have a better response 

from the Kalman filter. The datasets that were used are angles already calculated as it should be in the 

real life application. Nevertheless, the data used in this purpose are not the best possible ones since it 

is a little bit noisy. Throughout these tests data acquired from magnetic resistive sensors sensing 

Figure 5-7: State machine in failure state 
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elements were used and then the various scenarios that emulate the real life application were taken into 

account. The values can differ by rotating to right and left directions. 

 Rotating wheel in one direction 

 In both tests the Kalman filter has two purposes, the first is to clean the signal from all its noisy 

acquisitions since the data with which the angle is calculated is not treated as it should and the second 

one is to predict the next value that is going to be calculated. For each iteration the prediction that came 

from the filter is compared to the real value and it is evaluated how accurate the prediction is. Taking 

that scenario, the filter is tuning its parameters in order to fit the data the best as it could. 

 This test takes the scenario where the wheel is rotating in one direction only. The angle can vary its 

values between -2800deg and 2800deg and the discontinuity point that the signal has is due to the fact 

that the angle calculated has reached its negative limit and then it should continue from a positive value 

and decrease once again. Figure 5-8 also depicts the cleaning and prediction of the Kalman filter. On the 

right top corner of the image is the legend of each signal represented in the image. The real signal 

appears to be the only signal represented in the image but by taking a closer look it is going to be seen 

that this image has much more to say. 

  The signal and the Kalman response are overlapped as it was expected since the filter response aims 

to follow the real signal. There might be small deviations from the real signal and the Kalman response 

but that is due to the cleaning that the filter is doing. In the last points of the signal the prediction value 

is represented and the real value where the error associated with this is going to be evaluated.  

Figure 5-8: Kalman filter test, rotating in one direction 
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 In Figure 5-9 the last points of the signal are depicted but with zoom in in order to take a closer look. 

 Here the existent deviations of the filter and the real signal are clearer. As it can be seen the filter 

response takes the signal in a much more linear form when compared to the real signal. In the last 

points, represented by an ‘*’ and an ‘x’ there is the prediction and the next value calculated respectively. 

As it can be seen the points are very close from one to another and in a signal where the acquisition is 

made in a more careful way the points would be even closer.  

 Quantifying the error between these two signals the average of the error associated with the prediction 

is about 0.08% (Error= [RealValue-PredictedValue]/RealValue*100).  

 Rotating wheel in both directions 

 In this test what was intended to verify was if the Kalman filter was able to follow the signal when 

suddenly the wheel rotated in another direction. In order to perform this test and due to the lack of 

datasets where the wheel rotating in the two senses is depicted, the data is simulated. In other words, 

the data present and represented in Figure 5-10 was manipulated in order to have emulated that scenario 

depicted. Said that, it was expected that the response of the filter was totally overlapped by the signal 

but, as there is a gross change of the signal due to the change of direction in the wheel that is why in 

Figure 5-10 the blue line, which represents the Kalman filter response, is seen more clearly when 

compared to the previous test. In addition, in this test less samples were used when compared to the 

previous ones which also have impact on how the signals are depicted. 

 Either way the results coming from this test were also quite satisfactory. The filter was not only able 

to follow the signal as well as it also had more acceptable error values very. The average of the error 

associated in this test was about 0.07%. 

Figure 5-9: Kalman filter test, rotating in one direction zoom in 
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Despite the great challenge that it was to develop this Kalman filter it is believed the filter has extremely 

satisfactory results and this implementation can be used, without a doubt, in future implementations to 

act as a prediction algorithm. 

5.2 Results 

 This subchapter aims to evaluate the real result of each test that was intended to perform in order to 

validate the project developed.  
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Figure 5-10: Kalman filter test, rotating in both directions 
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Conclusion and Future Work

 After the whole implementation, conclusions can be drawn from the developed work and the results 

obtained. This chapter aims to make an overview of the results obtained and what can be concluded 

from them, as well as suggest further improvements that can be made in future implementations. 

6.1 Conclusion 

 With this project it was possible to explore fault-tolerant techniques and get a deep knowledge of fail 

operational architectures while having in mind the norms that ISO 26262 have designed for these types 

of systems. It is important to highlight that this project was developed under the V model. For each part 

developed a set of tests was designed in order to avoid systematic failures in the future. This is of extreme 

importance since the aim of the architecture developed is to avoid faults, which consequently lead to 

failures. So, the processes that come before the implementation such as the analysis and design must 

be performed with the purpose of avoiding faults as well. It is important that these processes be revised 

by other people besides the one responsible for doing it. This is to ensure redundancy in the process of 

revising, analysing and designing thus being compliant with V model mentioned. 

 There are three concepts that could summarize the architecture developed. Those concepts were 

already approached in the state of the art chapter as background knowledge. Nonetheless, as a 

conclusion, they are going to be referred once again since the architecture developed does not make 

sense without having them in context. Redundancy, Fail Operational and Functional safety are the crucial 

terms for the understanding of this project. As can be concluded, and as stressed throughout the 

document, the terms are extremely correlated between themselves especially in safety critical 

applications. It is impossible to have a fail operational architecture without having redundancy satisfied 

at some level. On the other hand, the purpose for having a fail operational architecture is to be compliant 

with the functional safety classification imposed by the ISO 26262.  
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 The built-in lockstep mechanism that each subsystem has, among others, was a great challenge in 

this project. To note that these mechanisms are gaining the interest of the industry mostly due to its 

safety achievements. In this project it was no different. It was the intention to study how the mechanism 

in question would react in case of fault. That was possible to achieve with the help of modules that the 

microcontroller has. With that being done, the design of the best reaction to have when such fault occurs 

was done in order to still have a valid output in the outer bus, being compliant with the fail operational 

requirements. 

 It is believed, in what concerns the requirements, that this project fulfilled them all. In what regards 

the tests, it is safe to conclude that most of them had the expected result as can be seen and regarding 

Kalman filter the values of error were even better than was expected. 

 Obviously, that in order to have a full fail operational architecture there is still a long way to go but the 

first step has, undoubtedly, already been taken. 

6.2 Future Work 

 Despite the development achieved during this project, it is assuredly possible to improve some points 

or even follow another path of implementation. During this subchapter those points in which the system 

developed could improve are going to be presented. 

Integrate the calculous algorithm 

 As stated in previous chapters the use case of this architecture is the calculous of an angle. During 

the implementation the goal was to keep the architecture the most generic possible enabling it to be 

used in different types of applications. Nevertheless, it is important to have the application for which the 

architecture was designed implemented in order to study performances of the application. With that, it 

is possible to take more reasoned decisions. 

Acquisition block 

 The acquisition block is highly correlated with the previous point. In order to have the calculous 

implemented it is necessary to have the data in which that calculous will rely on. To have valid data, the 

acquisition block implemented, and all block related with it, such as the pre-processing one is needed. 

Once again this is of extreme importance since it allows a performance study of the application. With 

that done it is possible to analyse how many acquisitions and calculations are possible to have within a 

10ms window which is the time that the system possesses to put a CAN message in the external bus. 
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Communication redundancy 

 All the design of the architecture was made to avoid common mode failures and for that redundancy 

at both hardware and software levels were used. However, in what concerns communication there is no 

total redundancy ensured. In the external communication, the entity that could be transmitting to the 

external bus is replicated but the bus is not redundant so if any problem occurs with the external bus 

there is no possibility to transmit a message. In this undesirable scenario, despite the fact that the system 

works as it should, this problem is interpreted as fault by other systems that will be dependent on this 

one. Another common mode failure that this architecture has is the internal communication since it has 

not redundancy ensured. There is only one bus between the subsystems so the same scenario addressed 

for the external bus could also happen in here. A possible solution is to implement another protocol 

between subsystems. In that way, if the internal communication bus used was under a fail the 

subsystems could use the other protocol. 

Heterogeneous redundancy 

 Throughout the implementation of this project the use of homogeneous redundancy for software was 

highlighted in order to be compliant with the requirements established. Despite the software developed 

it was made according to the V model imposed by ISO26262 which ensures the redundancy necessary 

for the processes that came before the implementation. This type of redundancy could lead to permanent 

faults of the system due to a possible fault in design or even in the implementation phase. 

 For that reason, the author finds it relevant to study the possibility to use heterogeneous redundancy. 

With this, the software working at both subsystems would be different from each other but with the same 

goal which, in this case, is the calculation of the angle. This implementation also must be made according 

to the V model to ensure the redundancy necessary for revising and implementing the software in 

question.  
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Annexes

/* 

 * Err_Cfg.h 

 * 

 *  Created on: 10/07/2020 

 *      Author: EMS1BRG 

 */ 

 

#ifndef ERR_CFG_H_ 

#define ERR_CFG_H_ 

 

#include "S32K2TV.h" 

#include "NVIC.h" 

 

 

 

 

/*Enable/Disable channels for error injection*/ 

#define  ERM_CHANNEL_NOT_INIT 0 

#define  ERM_CHANNEL_INIT  1 

 

/*Channels for ERM*/ 
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#define  ERM_CH0     ERM_CHANNEL_NOT_INIT /*Error injection in SRAM0

        Error Collected in ERM */ 

#define  ERM_CH1     ERM_CHANNEL_NOT_INIT /*Error injection in SRAM1

        Error Collected in ERM*/ 

#define  ERM_CH2     ERM_CHANNEL_NOT_INIT /*Error injection in SRAM2  

       Error Collected in ERM*/ 

#define  ERM_CH3     ERM_CHANNEL_NOT_INIT /*Error injection in DMA 

TCD       Error Collected in ERM*/ 

#define  ERM_CH4     ERM_CHANNEL_NOT_INIT /*Error injection in CM33_0 

instruction cache tag  Error Collected in ERM*/ 

#define  ERM_CH5     ERM_CHANNEL_NOT_INIT /*Error injection in CM33_0 

instruction cache data  Error Collected in ERM*/ 

#define  ERM_CH6     ERM_CHANNEL_NOT_INIT /*Error injection in CM33_0 

data cache tag    Error Collected in ERM*/ 

#define  ERM_CH7     ERM_CHANNEL_NOT_INIT /*Error injection in CM33_0 

data cache tag    Error Collected in ERM*/ 

#define  ERM_CH8     ERM_CHANNEL_NOT_INIT /*Error injection in CM33_1 

instruction cache tag  Error Collected in ERM*/ 

#define  ERM_CH9     ERM_CHANNEL_NOT_INIT /*Error injection in CM33_1 

instruction cache data  Error Collected in ERM*/ 

#define  ERM_CH10    ERM_CHANNEL_NOT_INIT /*Error injection in CM33_1 

data cache tag    Error Collected in ERM*/ 

#define  ERM_CH11    ERM_CHANNEL_NOT_INIT /*Error injection in CM33_1 

data cache data    Error Collected in ERM*/ 

#define  ERM_CH12    ERM_CHANNEL_NOT_INIT /*Error injection in CM7 

instruction cache tag   Error Collected in ERM*/ 

#define  ERM_CH13    ERM_CHANNEL_NOT_INIT /*Error injection in CM7 

instruction cache data   Error Collected in ERM*/ 

#define  ERM_CH14    ERM_CHANNEL_NOT_INIT /*Error injection in CM7 data 

cache tag     Error Collected in ERM*/ 

#define  ERM_CH15    ERM_CHANNEL_NOT_INIT /*Error injection in CM7 data 

cache data0    Error Collected in ERM*/ 
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#define  ERM_CH16    ERM_CHANNEL_NOT_INIT /*Error injection in CM7 data 

cache data1    Error Collected in ERM*/ 

#define  ERM_CH17    ERM_CHANNEL_INIT  /*Error injection in CM33 Lockstep

      Error Collected in FCCU*/ 

#define  ERM_CH18    ERM_CHANNEL_NOT_INIT /*Error injection in DMA 

Lockstep      Error Collected in FCCU*/ 

#define  ERM_CH19    ERM_CHANNEL_NOT_INIT /*Error injection in EDC 

checking      Error Collected in FCCU*/ 

 

 

/** 

 * Function to enable and inject errors at modules enabled 

 */ 

extern void Err_SetEIM(void); 

 

/** 

 * Function to initialize ERM(Error Reporting Module) 

 */ 

extern void Err_InitERM(void); 

 

/** 

 * Function to initialize FCCU(Fault Collection and Control Unit) to report errors 

 */ 

extern void Err_InitFCCU(void); 

 

#endif /* ERR_CFG_H_ */ 

 

 

 

 

 

/* 
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 * Err_Cfg.c 

 * 

 *  Created on: 10/07/2020 

 *      Author: EMS1BRG 

 */ 

 

#include "Err_Cfg.h" 

 

 

void Err_SetEIM(void) 

{ 

  /* Check if there if ERM_CH0 is wanted - SRAM0 Error Injection*/ 

  #if ERM_CH0 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD0_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD0_WORD1.B.B0_3DATA_MASK |= 1;   /*Bits exchanged at Read 

Time*/ 

   //EIM.EICHD0_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH0EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

   Err_InitERM(); 

  #endif 

 

  /* Check if there if ERM_CH1 is wanted - SRAM1 Error Injection*/ 

  #if ERM_CH1 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD1_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD1_WORD1.B.B0_3DATA_MASK |= 1;   /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD1_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH1EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 



 

69 

  #endif 

 

  /* Check if there if ERM_CH2 is wanted - SRAM2 Error Injection*/ 

  #if ERM_CH2 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD2_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD2_WORD1.B.B0_3DATA_MASK |= 1;   /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD2_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH2EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH3 is wanted*/ 

  #if ERM_CH3 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD3_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD3_WORD1.B.B0_3DATA_MASK |= 1;   /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD3_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH3EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH4 is wanted*/ 

  #if ERM_CH4 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD4_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD4_WORD1.B.B0_3DATA_MASK |= 1;   /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD4_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH4EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 
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  /* Check if there if ERM_CH5 is wanted*/ 

  #if ERM_CH5 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD5_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD5_WORD1.B.B0_3DATA_MASK |= 1;   /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD5_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD5_WORD3.B.B8_11DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH5EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH6 is wanted*/ 

  #if ERM_CH6 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD6_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD6_WORD1.B.B0_3DATA_MASK |= 1;   /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD6_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH6EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH07 is wanted*/ 

  #if ERM_CH7 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD7_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD7_WORD1.B.B0_3DATA_MASK |= 1;   /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD7_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD7_WORD3.B.B8_11DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD9_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read Time*/ 
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   EIM.EICHEN.B.EICH7EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH8 is wanted*/ 

  #if ERM_CH8 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD8_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD8_WORD1.B.B0_3DATA_MASK |= 1;   /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD8_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH8EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH9 is wanted*/ 

  #if ERM_CH9 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD9_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD9_WORD1.B.B0_3DATA_MASK |= 1;   /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD9_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD9_WORD3.B.B8_11DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD9_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read Time*/ 

   EIM.EICHEN.B.EICH9EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH10 is wanted*/ 

  #if ERM_CH10 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD10_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD10_WORD1.B.B0_3DATA_MASK |= 1;  /*Bits exchanged at Read Time*/ 

   EIM.EICHD10_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 
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   EIM.EICHEN.B.EICH10EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH11 is wanted*/ 

  #if ERM_CH11 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD11_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD11_WORD1.B.B0_3DATA_MASK |= 1;  /*Bits exchanged at Read Time*/ 

   EIM.EICHD11_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD11_WORD3.B.B8_11DATA_MASK |= 1; /*Bits exchanged at Read Time*/ 

   EIM.EICHD11_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH11EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH12 is wanted*/ 

  #if ERM_CH12 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD12_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD12_WORD1.B.B0_3DATA_MASK |= 1;  /*Bits exchanged at Read Time*/ 

   EIM.EICHD12_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH12EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH13 is wanted*/ 

  #if ERM_CH13 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD13_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD13_WORD1.B.B0_3DATA_MASK |= 1;  /*Bits exchanged at Read Time*/ 

   EIM.EICHD13_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD13_WORD3.B.B8_11DATA_MASK |= 1; /*Bits exchanged at Read Time*/ 
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   EIM.EICHD13_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH13EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH14 is wanted*/ 

  #if ERM_CH14 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD14_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD14_WORD1.B.B0_3DATA_MASK |= 1;  /*Bits exchanged at Read Time*/ 

   EIM.EICHD14_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD14_WORD3.B.B8_11DATA_MASK |= 1; /*Bits exchanged at Read Time*/ 

   EIM.EICHD14_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH14EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH15 is wanted*/ 

  #if ERM_CH15 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD15_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 

   EIM.EICHD15_WORD1.B.B0_3DATA_MASK |= 1;  /*Bits exchanged at Read Time*/ 

   EIM.EICHD15_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD15_WORD3.B.B8_11DATA_MASK |= 1; /*Bits exchanged at Read Time*/ 

   EIM.EICHD15_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH15EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH16 is wanted*/ 

  #if ERM_CH16 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD15_WORD0.B.CHKBIT_MASK |= 1;   /*Bits exchanged at Read Time*/ 
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   EIM.EICHD15_WORD1.B.B0_3DATA_MASK |= 1;  /*Bits exchanged at Read Time*/ 

   EIM.EICHD15_WORD2.B.B4_7DATA_MASK |= 1;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHD15_WORD3.B.B8_11DATA_MASK |= 1; /*Bits exchanged at Read Time*/ 

   EIM.EICHD15_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH15EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH17 is wanted*/ 

  #if ERM_CH17 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD17_WORD1.B.B0_3DATA_MASK |= 0b1111111111111111111; 

 /*Bits exchanged at Read Time*/ 

   EIM.EICHEN.B.EICH17EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

 

  #endif 

  /* Check if there if ERM_CH18 is wanted*/ 

  #if ERM_CH18 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD18_WORD1.B.B0_3DATA_MASK |= 1111;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH18EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

  /* Check if there if ERM_CH19 is wanted*/ 

  #if ERM_CH19 !=ERM_CHANNEL_NOT_INIT 

   EIM.EICHD18_WORD1.B.B0_3DATA_MASK |= 1111;  /*Bits exchanged at Read 

Time*/ 

   EIM.EICHEN.B.EICH18EN |= 1;     /*Enable Channel to induce errors*/ 

   EIM.EIMCR.B.GEIEN |= 1;      /*Enable Module*/ 

  #endif 

} 
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void Err_InitERM(void) 

{ 

 /* Check if there if ERM_CH0 is enabled - SRAM0 Error Injection*/ 

   #if ERM_CH0 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR0.B.ENCIE0=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR0.B.ESCIE0=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

    ERM.CR0.B.ENCIE1=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR0.B.ESCIE1=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

 

   /* Check if there if ERM_CH1 is enabled - SRAM1 Error Injection*/ 

   #if ERM_CH1 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR0.B.ENCIE2=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR0.B.ESCIE2=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

 

   /* Check if there if ERM_CH2 is enabled - SRAM2 Error Injection*/ 

   #if ERM_CH2 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR0.B.ENCIE3=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR0.B.ESCIE3=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

   /* Check if there if ERM_CH3 is enabled*/ 

   #if ERM_CH3 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR2.B.ENCIE16=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR2.B.ESCIE16=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 
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   #endif 

   /* Check if there if ERM_CH4 is enabled*/ 

   #if ERM_CH4 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR0.B.ENCIE4=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR0.B.ESCIE4=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

   /* Check if there if ERM_CH5 is enabled*/ 

   #if ERM_CH5 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR0.B.ENCIE5=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR0.B.ESCIE5=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

   /* Check if there if ERM_CH6 is enabled*/ 

   #if ERM_CH6 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR0.B.ENCIE6=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR0.B.ESCIE6=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

   /* Check if there if ERM_CH07 is enabled*/ 

   #if ERM_CH7 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR0.B.ENCIE7=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR0.B.ESCIE7=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

   /* Check if there if ERM_CH8 is enabled*/ 

   #if ERM_CH8 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR1.B.ENCIE8=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR1.B.ESCIE8=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

   /* Check if there if ERM_CH9 is enabled*/ 
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   #if ERM_CH9 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR1.B.ENCIE9=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR1.B.ESCIE9=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

   /* Check if there if ERM_CH10 is enabled*/ 

   #if ERM_CH10 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR1.B.ENCIE10=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR1.B.ESCIE10=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

   /* Check if there if ERM_CH11 is enabled*/ 

   #if ERM_CH11 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR1.B.ENCIE11=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR1.B.ESCIE11=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

   /* Check if there if ERM_CH12 is enabled*/ 

   #if ERM_CH12 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR2.B.ENCIE12=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR2.B.ESCIE12=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

   /* Check if there if ERM_CH13 is enabled*/ 

   #if ERM_CH13 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR1.B.ENCIE13=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR1.B.ESCIE13=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

   /* Check if there if ERM_CH14 is enabled*/ 

   #if ERM_CH14 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR1.B.ENCIE14=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 
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    ERM.CR1.B.ESCIE14=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

   /* Check if there if ERM_CH15 is enabled*/ 

   #if ERM_CH15 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR1.B.ENCIE15=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR1.B.ESCIE15=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

   /* Check if there if ERM_CH16 is enabled*/ 

   #if ERM_CH16 !=ERM_CHANNEL_NOT_INIT 

    ERM.CR1.B.ENCIE15=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/ 

    ERM.CR1.B.ESCIE15=1; /*Trigger an interrupt if channel 0 has more than one bit 

exchanged*/ 

   #endif 

 

   /*TODO: Investigate how to inject errors in flash*/ 

   /*Trigger interrupt if some error is found on the different blocks of FLASH memory**/ 

   ERM.CR2.B.ENCIE17=1; 

   ERM.CR2.B.ESCIE17=1; 

 

   ERM.CR2.B.ENCIE18=1; 

   ERM.CR2.B.ESCIE18=1; 

 

   ERM.CR2.B.ENCIE19=1; 

   ERM.CR2.B.ESCIE19=1; 

 

   ERM.CR2.B.ENCIE20=1; 

   ERM.CR2.B.ESCIE20=1; 

 

   Enable_Interrupt(ERM0_IRQn); 

   Enable_Interrupt(ERM1_IRQn); 



 

79 

} 

 

 

 

 

void FCCU_clear_faults(void) 

{ 

 /* 1. Write the proper key into the FCCU_NCFK register */ 

 //Non-critical fault key = AB34_98FEh 

 FCCU.NCFK.R = 0xAB3498FE; 

 /* 2. Clear the status (flag) bit NCFSx => the opcode OP12 is automatically 

 /* Read all NCFS registers to clear all faults.*/ 

 /* For details which faults can be cleared see Table 7-36. FCCU Non-Critical Faults Mapping 

in RM */ 

 FCCU.NCF_S[0].R = 0xFFFFFFFF; // read FCCU.NCF_S0 register 

 /* Verify if state change was successful */ 

 while (FCCU.CTRL.B.OPS != 0x3); //Operation status successful 

 /* NCFS_1 register clear */ 

 FCCU.NCFK.R = 0xAB3498FE; //Non-critical fault key = AB34_98FEh 

 FCCU.NCF_S[1].R = 0xFFFFFFFF; // clear FCCU.NCF_S1 register 

 /* Verify if state change was successful */ 

 while (FCCU.CTRL.B.OPS != 0x3); //Operation status successful 

 /* NCFS_2 register clear */ 

 FCCU.NCFK.R = 0xAB3498FE; //Non-critical fault key = AB34_98FEh 

 FCCU.NCF_S[2].R = 0xFFFFFFFF; // clear FCCU.NCF_S2 register 

 /* Verify if state change was sucessful */ 

 while (FCCU.CTRL.B.OPS != 0x3); //Operation status succesfull 

}//FCCU_clear_faults 

 

 

 

void Err_InitFCCU(void) 
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{ 

  FCCU_clear_faults(); 

  FCCU.CFG_TO.B.TO = 7;    /*Timeout for Congig state*//*Later review this 

value*/ 

  __asm__("svc #0x00"); // System Call to enable Supervisor Mode 

  /* Unlock configuration */ 

   FCCU.TRANS_LOCK.R = 0xBC; 

  /* provide Config state key */ 

   FCCU.CTRLK.R = 0x913756AF;           //key for OP1 

   /* enter config state - OP1 */ 

   FCCU.CTRL.R = 0x1;                  //set OP1 - set up FCCU into the CONFIG mode 

   /* wait for successful state transition */ 

   while (FCCU.CTRL.B.OPS != 0x3); //operation status successful 

 

   /***************************************************************** 

    * 

    *    Lockstep error channel Configuration 

    *    Functional RESET/ISR 

    * ***************************************************************/ 

 

   /*Configure NCF channel*/ 

   FCCU.NCF_CFG[0].B.NCFC1 = 1;/*Lockstep channel enable*/ 

   /* 1-Enable Functional Reset// 0-Enable ISR*/ 

   FCCU.NCFS_CFG[0].B.NCFSC1 = 0; 

   /*Enable Timeout signal for any channel*/ 

   FCCU.NCF_TO.B.TO = 5;         /*Review this value*/ 

   /*Enable alarm-state*/ 

   FCCU.NCF_TOE[0].B.NCFTOE1 = 1; 

   /*Enable Alarm state reaction*/ 

   FCCU.IRQ_ALARM_EN[0].B.IRQEN1 = 1; 

   /*Enable Channel*/ 

   FCCU.NCF_E[0].B.NCFE1 = 1; 
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Snippet 1: Err_Cfg.c 

   

/*******************************************************************************************/ 

   /* set up the NORMAL mode of FCCU */ 

   FCCU.CTRLK.R = 0x825A132B;           //key for OP2 

   FCCU.CTRL.R = 0x2;                  //set the OP2 - set up FCCU into the NORMAL mode 

   while (FCCU.CTRL.B.OPS != 0x3); //operational status successful 

 

   Enable_Interrupt(FCCU0_IRQn); 

   Enable_Interrupt(FCCU1_IRQn); 

 

} 
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