

Universidade do Minho
Escola de Engenharia

Emanuel José Rodrigues da Silva

Safety-Critical Applications in a Multicore
Environment

Junho de 2021

Em
an

ue
l S

ilv
a

Sa
fe

ty
-C

rit
ica

l A
pp

lic
at

io
ns

 in
 a

 M
ul

tic
or

e
En

vir
on

m
en

t
U

M
in

h
o
 |

 2
0
2
1

Universidade do Minho
Escola de Engenharia

Emanuel José Rodrigues da Silva

Safety-Critical Applications in a Multicore
Environment

Dissertação de Mestrado

Mestrado em Engenharia Eletrónica Industrial e Computadores
Sistemas Embebidos e Computadores

Trabalho efetuado sob a orientação do
Professor Doutor Jorge Cabral

Junho de 2021

ii

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

 Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras

e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

 Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

 Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não

previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade

do Minho.

Licença concedida aos utilizadores deste trabalho

iii

Acknowledgements

First of all I would like to thanks my family, especially my parents and my brother Tiago. Without the

support and the understanding of my parents this road would be absolutely much more difficult. My

brother Tiago was always there setting the right path for me, calling me to reason a bunch of times even

when the times went darker. For sure, those were the pillars in which I have been relying all these years.

Secondly I would like to thanks Professor Jorge Cabral for all the technical support throughout this

year. It was an overwhelming year for both of us but even though we were able to work around and met

a few times in order to trade some knowledge.

Last but not least, I would like to give a huge thanks to Bosch team who make this project available

and give me the opportunity to work with an amazing team. It was a real pleasure to work with the Eng.

31 team.

iv

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

v

Resumo

 A indústria automóvel acompanha a evolução tecnológica exponencial a que estamos sujeitos nos

dias de hoje. As mais recentes novidades nos automóveis são resultado de melhorias eletrónicas

(hardware & software) levando a um aumento na complexidade dos sistemas Elétricos e Eletrónicos [1].

Toda esta complexidade está passível a falhas que podem surgir pelas mais diversas razões,

nomeadamente causas naturais ou deficiências de conceção/fabrico. Infelizmente é impossível eliminar

todas as falhas da equação, contudo um sistema altamente confiável deve ter em conta os mais diversos

cenários e reportar caso detete algo inesperado. Só assim podemos estabelecer um sistema seguro

(safe). Como é que se pode medir este tipo de segurança? Um sistema seguro é aquele que não

compromete a integridade física do seu utilizador ao colocá-lo em situações de risco. A industria

automóvel tem este parâmetro de segurança bem presente na conceção dos seus projetos assim como

nas tecnologias que usa, e o steer-by-wire não é exceção. O steer-by-wire é a inovação que vem

revolucionar a próxima geração de veículos [2]. O propósito desta tecnologia consiste na substituição de

componentes hidráulicos por componentes totalmente elétricos/eletrónicos no âmbito do sistema de

direção do automóvel [3].

Com esta dissertação pretende-se analisar os mecanismos de lockstep presentes nos

microcontroladores modernos e tirando partido deles, desenvolver uma arquitetura capaz de reagir a

falhas fazendo uso de uma abordagem de tolerância a falhas em ambientes de multiprocessador. Esta

arquitetura será usada no projeto SPA (Sensor de Posição Angular) e este projeto faz parte da tecnologia

steer-by-wire. Qualquer mecanismo de tolerância a falhas é baseado em redundância [4], e é em

redundância que se baseia o lockstep assim como se deve basear a arquitetura que se pretende

desenvolver. Toda a arquitetura desenvolvida deverá a assegurar os requisitos de segurança que são

característicos à tecnologia.

Keywords: Lockstep; Multicores; Segurança Critica; Sistemas Embebidos; Tolerância a Falhas.

vi

Abstract

The automotive industry has been following the exponential evolution in technology present in our

days. Most of the advances seen in vehicles are the result of better electronics (hardware and software),

which consequently increase the complexity of those systems [1]. No complexity is fault-free, which can

arise due to many reasons, from natural causes to a mistake in the assembly process. Eliminating all

the events that could lead a system to a failure state is at very least challenging if not impossible; however,

with the usage of fault-tolerant approaches, the system can be surprisingly compliant with safety

requirements. But how can safety be measured? A safe system is one that must not harm people, not

even put them in dangerous circumstances. The automotive industry takes this safety parameter very

seriously in the conception of its projects or technology that they use, and the steer-by-wire is no

exception. The steer-by-wire is the innovation coming to revolutionize the next generation of vehicles [2].

The technology consists of replacing the mechanical parts of a vehicle with systems totally

electric/electronic ones at the steering system of a car [3].

This dissertation aims to analyse the Lockstep mechanism present in recent microcontrollers and by

making use of it develop a fail-operational architecture using a fault-tolerant approach for automotive

applications in a multiprocessor environment. The architecture developed intends to be used within the

APS (Angular Position Sensor) project, which is part of steer-by-wire technology. Any fault-tolerant

mechanism is based on redundancy [4] and it is in redundancy that lockstep is based as must be the

architecture that intends to be developed. The fail-operational architecture to be developed must be

compliant with safety requirements.

Keywords: Fault-Tolerance; Fail-operational; Embedded Systems; Multicore; Lockstep;

vii

Table of Contents

Resumo ... v

Abstract .. vi

Table of Contents... vii

List of Figures ... ix

List of Tables .. xi

Acronyms List .. xii

Chapter 1 ... 1

Introduction .. 1

1.1 Contextualization ... 2

1.2 Motivation ... 3

1.3 Objectives ... 3

1.4 Dissertation Structure .. 4

Chapter 2 ... 5

State of the Art ... 5

2.1 Embedded Systems .. 5

2.2 Functional Safety ... 7

2.3 Dependability and Security .. 11

2.4 Redundancy in Fault tolerance ... 17

2.5 Lockstep ... 19

2.6 Conclusion .. 22

viii

Chapter 3 ... 23

System Specification ... 23

3.1 Use Case .. 23

3.2 System Requirements ... 24

3.3 System Architecture .. 26

3.4 Hardware Specification .. 27

3.5 Conclusion .. 33

Chapter 4 ... 34

Implementation .. 34

4.1 Hardware Configuration ... 34

4.2 Software Implementation ... 37

4.3 Conclusion .. 49

Chapter 5 ... 50

Tests and Results ... 50

5.1 Tests ... 50

5.2 Results .. 59

Chapter 6 ... 61

Conclusion and Future Work ... 61

6.1 Conclusion .. 61

6.2 Future Work .. 62

Chapter 7 ... 64

Annexes ... 64

References ... 81

ix

List of Figures

Figure 2-1: Process of the hazard analysis and risk assessment .. 9

Figure 2-2: Dependability and security taxonomy ... 12

Figure 2-3: Recursive definition of faults and failures ... 14

Figure 2-4: Dual Core Lockstep (DCLS or DMR) implementation .. 20

Figure 2-5: Triple modular redundancy (TMR or TCLS) implementation 21

Figure 3-1: Application use case ... 24

Figure 3-2: System Stack .. 26

Figure 3-3: S32K2TV Board .. 28

Figure 3-4: MCU's Lockstep .. 28

Figure 3-5: EIM module .. 32

Figure 4-1: Hardware Disposal.. 35

Figure 4-2: Hardware Setup .. 36

Figure 4-3: Software block diagram ... 38

Figure 4-4: Sequence diagram, fault free environment .. 39

Figure 4-5: Sequence diagram, fault at one subsystem ... 40

Figure 4-6: Sequence diagram, miscalculated data ... 40

Figure 4-7: Main Cycle flowchart ... 42

Figure 4-8: Initialization process flowchart ... 42

Figure 4-9: Arbitration flowchart .. 43

Figure 4-10: Check status flowchart .. 44

Figure 4-11: Error Injection Scenarios ... 45

Figure 4-12: Error Injection flowchart .. 45

Figure 4-13: Run process ... 46

Figure 4-14: System state machine .. 46

Figure 4-15: Subsystem state machine ... 47

Figure 4-16: Block diagram of Kalman filter .. 49

https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128467
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128468
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128469
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128470
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128471
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128472
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128473
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128474
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128475
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128476
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128477
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128478
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128479
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128480
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128481
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128482
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128483
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128484
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128485
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128486
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128487
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128488
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128489
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128490
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128491
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128492

x

Figure 5-1: External communication test, time windows .. 52

Figure 5-2: External communication, fail degraded test ... 52

Figure 5-3: Lockstep Error Injection .. 53

Figure 5-4: Memory Error Injection ... 54

Figure 5-5: State machine in normal state... 55

Figure 5-6: State machine in fail operational state ... 55

Figure 5-7: State machine in failure state .. 56

Figure 5-8: Kalman filter test, rotating in one direction .. 57

Figure 5-9: Kalman filter test, rotating in one direction zoom in ... 58

Figure 5-10: Kalman filter test, rotating in both directions .. 59

https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128493
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128494
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128495
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128496
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128497
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128498
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128499
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128500
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128501
https://synopsys-my.sharepoint.com/personal/esilva_synopsys_com/Documents/Desktop/Tese_desktop/72001_EmanuelSilva_SafetyCriticalApplicationsinaMulticoreEnvironment_PatentOFF.docx#_Toc71128502

xi

List of Tables

Table 2-1: ASIL determination .. 10

Table 2-2: Availability percentage for different system types .. 13

Table 2-3: Dependability Means and their use cases [25] ... 15

Table 3-1: System Requirements .. 25

Table 5-1: Test Table .. 51

xii

Acronyms List

ABS Anti-lock Braking System.

ADC Analog to Digital Converter.

ADAS Advanced Drivers Assistant Systems.

ADR Adaptive Data Rate.

AES Advanced Encryption Standard.

API Application Programming Interface.

APS Angular Position Sensor.

AUTOSAR Automotive Open System Architecture

BIST Built-In Self-Test.

CAN Controlled Area Network.

CAN-FD Controlled Area Network with Flexible Data.

CPU Central Processing Unit.

CRC Cyclic Redundancy Check.

DCLC Dual Core Lockstep.

DMR Dual Modular Redundancy.

DSP Digital Signal Processor

ECC Error Correction Code.

ECUAL Electronic Control Unit Abstraction Layer.

ECU Electronic Control Unit.

EIM Error Injection Module.

xiii

ERM Error Reporting Module.

ESP Electronic Stability Control.

FCCU Fault Collection and Control Unit.

FPGA Full Programmable Gate Array.

FPU Floating Point Unit

GND Ground.

GPIO General Purpose Input Output.

HAL Hardware Abstraction Layer.

IDE Integrated Development Environment.

ISO International Standards Organization.

ISR Interrupt Service Routine.

MCAL Microcontroller Abstraction Layer.

MCU Microcontroller Unit.

MMR Multiple Modular Redundancy.

MTTF Mean Time to Failure.

MTTR Mean Time to Repair.

PIT Programmable Interrupt Timer.

RTOS Real Time Operating System.

SoC System on Chip.

SWC Software Component.

SWD Serial Wire Debug.

TMR Triple Modular Redundancy.

TCLS Triple Core Lockstep.

USB Universal Serial Bus.

1

Chapter 1

Introduction

The automotive industry has evolved, and as a result, the product that the industry delivers has been

growing in complexity to provide a unique experience to the user. Every year the industry releases cars

with a new set of specifications which consequently design a path for the incoming ones. In this context

and focusing on the next vehicle, autonomous driving is the next step to achieve but until then there is a

long way to go and a set of technologies/projects must first be developed. All those projects/technologies

must be developed according to the safety and security requirements created by the International

Organization of Standards (ISO), to provide a fully reliable system.

Steer-by-wire is a technology that has been developed as long as autonomous driving has been

innovating. Autonomous driving relies on the success of steer-by-wire (among many other technologies)

as it is impossible to drive a car without any steering system. Besides, steer-by-wire technology has great

advantages such as reducing weight, and with that being done, consumes and pollute gases will be

reduced as well. For that, all the hydraulic parts at the steering system used nowadays must be replaced

which is the core idea of the steer-by-wire technology. To be more precise, the technology consists of the

elimination of the steering column that links the steering wheel to the front axles of the car and by

replacing all the mechanical actuators with electric/electronics circuitry [3]. The source of this concept

comes from the x-by-wire, with origin in 1972 by NASA [5]. The “x” in x-by-wire name stands for the

system in which is intended to replace the hydraulic/mechanical parts for the electronic/electric ones.

Since there is a replacement of those classic components, and normally they are the ones ensuring the

well-functioning of the system, even when some undesirable scenario happens (e.g. assistance steering

failure), these systems must guarantee that a system failure does not lead to a state in which human life

or surrounding environment are endangered. Additionally, they must ensure that a single failure of one

component does not lead to a failure of the whole system [6]. These systems must base their entire

architecture in redundancy, with the purpose of mitigating possible faults that could outcome from the

2

Chapter 1. Introduction

lifecycle of it. For that reason, the concepts of safety and fail-operational must be enhanced in these

types of systems.

At the processor level, there are several mechanisms that could be used to improve the safety of a

system. Lockstep is one of those mechanisms. It consists of replicated processors executing the same

set of instructions and compare its outputs with the purpose of finding inconsistencies between them. If

the output of an instruction is different between the locked processors, then it means that a fault has

occurred and must be treated in such a way that the overall system is capable to tolerate the fault.

Based on these fault-tolerant mechanisms and having in mind that the concepts of safety and fail-

operational must be enhanced, this dissertation aims to develop an architecture considering all the

previously mentioned. The architecture developed is to be used in APS (Angular Position Sensor), which

is a sensor integrating the steer-by-wire technology. The APS is the sensor placed in the steering

wheel/steering column of a vehicle and is responsible to get the intention of the user when he is moving

the wheel.

1.1 Contextualization

 In a world where changes are constant, technological advances are a certainty, new necessities are

inevitable. The necessity that comes out of the technology advance in automotive industry is to provide

a fully reliable system (vehicle) which must not cause any harm in their users or surrounding

environment. As one can imagine, a vehicle (the system) relies on the proper functioning of other

subsystems such as the steering subsystem, braking subsystem, traction subsystem, and many others.

Most of the innovations in a vehicle raises many questions regarding safety and security that must be

answered. In the scope of any subsystem, safety and security measures must be fulfilled in a way not to

compromise the system. Safety and security are closely interrelated concepts that pertain to the

protection of lives and assets. While safety is protection against hazards (accidents that are unintentional),

security is a state of feeling protected against threats that are deliberate and intentional [7]. Regarding

this matter, the International Standards Organization (ISO) is developing guidelines and demands to

respect those measures in the automotive field [8] that any system engineer in the automotive industry

must respect.

 Within this dissertation scope, safety is of extreme importance since the goal is to develop an

architecture to be applied in the automotive field. As stated above, safety refers to protection against

potential hazards, in other words, faults, and errors that could be causing those threats should be

eliminated from the system. With that in mind, this dissertation aims to achieve a fail-operational

3

Chapter1.Introduction

architecture. The system in which the architecture is applied, when facing faults, still needs to provide

its supposed function, mitigating/tolerating faults that could lead a system to an undesirable state. It is

important to note that fault tolerance is unreachable without any type of redundancy [9]. Fault tolerance

approaches at the processor level are widely used in industries such as automotive and avionics [10].

For instance, in avionics, there are plenty of configurations liable to be used from TMR(Triple Modular

Redundancy) to DMR (Dual Modular Redundancy). Although, TMR is the most famous among them. The

proposed architecture will be using redundant hardware and lockstep mechanism to be compliant with

fault-tolerant requirements avoiding common mode failures and providing the proper function of the

system (APS system) even when faults are induced at the system. The Lockstep mechanism is a

configuration of multicore processors where two cores (DMR) or more (TMR) are working as one. In other

words, cores execute the same set of instructions and compare their outputs identifying possible

inconstancies between them and reporting the case if necessary. Usually, this report is made by triggering

an ISR (Interrupt Service routine). The configuration used in this dissertation was DMR, so two processor

cores were used in lockstep.

1.2 Motivation

 Increasingly safety is nowadays a requirement in most of the daily basis commercial systems. The

requirement, leads to an increase in the demand for fail-operational systems, boosting the development

of new architectures and new systems with fault-tolerant capability. It opens opportunities to research

distinct techniques and approaches for implementing high reliability and safety systems, which was the

main motivation to embrace this research journey.

 Another interesting point is that we are in the golden age of processor architectures with the

appearance of processors with built-in lockstep. Thus, new approaches must be thought of to use this

fault tolerance mechanism.

 All together with the high demands on the industry for these types of features give the necessary

motivation to pursue and develop new architectures enabling the system to be fully fail-operational.

1.3 Objectives

After taking into consideration the motivation, this dissertation aims to develop a fail-operational

architecture to be used within the APS project. This fail-operational architecture covers the acquisition

and calculation of the angle of the steering wheel. Therefore, the main goals of this dissertation are as

follows:

4

Chapter 1. Introduction

• Analysis of architectures and fault tolerant mechanisms in the case of study;

• Analysis of software architectures;

• State machine design in a way to react to possible faults;

• Software implementations according with certification ASIL-D of standards ISO 26262;

• Driver elaboration liable to be used in AUTOSAR software architecture;

• Tests and validation of the architecture;

1.4 Dissertation Structure

 This document is structured in six chapters, and its structure follows a logical order according to the

development process that occurred during this Master’s Thesis.

 The first chapter introduces the current technological concepts, referring to the context and the

motivation for the development of this project, as well as its objectives.

 The second chapter explores the concepts which are the basis of this project, and thus gives a more

in-depth overview of safety and dependability in systems. It is also mentioned in this chapter The State

of the Art for the different kinds of lockstep mechanisms that exist and are considered for use in this

project.

 The third chapter gives an overview of the system and a further selection of which components were

chosen and the reasoning for their choices.

 The fourth chapter is divided into two sections corresponding to the hardware and software

implementations. It focuses on how this project was developed and explains the path taken.

 Chapter five describes the tests that were made, along with some considerations about the obtained

results.

 Chapter six presents the main conclusions relative to this project, as well as future improvements to

the proposed architecture.

5

Chapter 2

State of the Art

 To develop a fail-operational architecture, some technological concepts need to be understood. It is

crucial to fully understand the relevance of safety, dependability concept, the redundancy, lockstep

mechanisms, and the different existing implementations.

 After knowing what a lockstep configuration is composed of and its architecture, it is then possible to

make further studies on which type of configuration to use.

 This chapter presents a technological overview and discussion on the topics previously mentioned.

2.1 Embedded Systems

 Embedded systems are usually everywhere executing several daily tasks, despite often being

unnoticed. They can have different sizes and complexities, from a television or even a printer to a smart-

watch. Usually, interacting with the outside world through sensors (input), actuators (output), and in

some cases, using an interface to the user like an LCD or even a LED, an embedded system characterizes

for having hardware and software combined to accomplish a specific task. In many circumstances, it

could have mechanical parts to help it with that particular job [11]. Due to their assignment, an embedded

system must be application-oriented; this means that engineers that design them must project it with the

strictly necessary resources for their application to optimize variables like cost, power efficiency, weight,

and performance. However, as an embedded system has requirements and constraints that must be

respected, it is necessary to have a trade-off between management and usage of resources. Examples

of embedded systems with strong constraints are the ones that have time restrictions, classified as soft

and hard real-time. The soft real-time embedded systems are the ones that, if missing a deadline, there

is not much harm for the system in what it was incorporated it is somehow allowed to miss a deadline

as it is in the case of video streaming. However, in hard real-time, a missed deadline could lead to a

catastrophic event as it happens in the Antilock Braking System (ABS) of a car.

6

Chapter 2. State of the Art

 Despite everything mentioned, embedded systems must be reliable, assuring the well-functioning in

all situations; resilient, backing to a safe state even after the occurrence of a fault; safety and secure,

being fault-tolerant and having secure communications. The simple embedded systems usually are

programmed without layers of abstraction, in other words, directly in their logic hardware (bare-metal

programming). However, with the rising complexities in systems, the usage of an operating system has

become fundamental.

2.1.1 Elements of an Embedded System

At the architectural level, an embedded system represents the interaction between hardware and

software elements, whose details are hidden in a way to have only information about the behavioural and

relational levels. These elements can be internally implemented in the embedded system device or

externally implemented interacting with the internal elements as well as with the external environment

[12].

 An embedded system is generally composed of basic elements necessary to the execution of code,

internals peripherals, communication interfaces, and the respective software. In a generic form, an

embedded system has the following elements:

• Central Processing Unit: Responsible for the execution of code, making the logic and control

operations as the entrance and exit of data;

• Random Access Memory (RAM): It is a volatile memory of quick access used to store

temporarily the variables needed for the execution flow of code;

• Flash Memory: It is a non-volatile memory with access being slower than the access to RAM.

Used to store data permanently like the code responsible for the boot of the system, operating

system code, programs, and file system;

• Communication Peripherals: An embedded system frequently uses communication protocols

like the Universal Serial Bus (USB), RS232, and Ethernet for which there is peripheral

existent;

• Input & Output Devices: As referenced before, an embedded system interacts with the outside

world and may or may not have an interface with the user. Some peripherals like Analog-to-

Digital-Converter (ADC), audio controllers, General Purpose Input Output controllers (GPIO),

among many others, are also in an embedded system.

7

Chapter 2. State of the Art

2.2 Functional Safety

 The complexity of today’s systems is, for the most, due to electronic and electric (E/E) systems. E/E

systems have a major role to play in our daily lives making our tasks easy to accomplish. However, those

systems when badly designed could have a terrible effect, possibly causing harm and injuries to those

who are using them. The vehicle of today is a product of that complexity and innovation in E/E systems.

It is believed that most of the innovation that we see in newer cars is based on the innovation experienced

at ECUs that a car contains [13]. Nonetheless, it is important to highlight those electronic devices are

not perfect and fault-proof. As addressed previously, when the system is made over a faulty design a high

probability exists that it could cause serious damage, especially in a vehicle. With that in mind, the

International Organization of Standards was in an inevitable necessity to create some standards regarding

functional safety in E/E systems in the automotive domain, the ISO 26262 [8].

2.2.1 Introduction to safety standards

 As previously mentioned, the ISO26262 [8] is an international standard focusing on the safety of

automotive electrical/electronic systems. Divided into 12 documents, covering the entire product

development lifecycle, and designed to ensure that systems developed for road vehicles are composed

with an appropriate level of rigor required for their intended application. The standard applies additional

constraints to the process of development, focused on the system safety aspects. Safety means one

must not harm others. A safe system is one that does not cause harm to people. Of course, no system

can be made completely safe, so safety is about an attempt to reduce the potential for harm to an

acceptable level. ISO26262 takes a risk-based approach to manage potential harm (often referred to as

residual risk), based on three factors:

• Severity: the potential harm;

• Exposure: the probability of occurrence;

• Controllability: the ability of the system to avoid the specified harm.

In other words, risk, as defined in the standards is a combination of the probability of occurrence of harm

and the severity of that harm.

 Thus, the standards organize the risk into four Automotive Safety Integrity Levels (ASILs). ASIL A is

the lowest level while level D is the highest one. For instance, a system classified as ASIL A is Cruise

Control. This one may cause inconvenience or minor injury to the driver, which means that the severity

is low. On the other extreme, on the ASIL D level, is the electric steering system. This system has the

potential to cause significant harm by providing the wrong level of assistance, feedback, or even

8

Chapter 2. State of the Art

completely incorrect output. Later in this document a detailed insight of the ASIL classification is

approached.

 For this dissertation, the author will just be considering 6 of those 12 parts that compose ISO26262,

meaning that some of the subjects covered by the standards will not be addressed. For example, the

conception of hardware is not a concern for this dissertation since all the hardware that will be used has

already been developed and it is certified as a specific level of rigor for the task that is assigned. The only

hardware that it is intended to develop is concerning the communication protocol and it is going to be

addressed later in this document. With that said, the parts considered are [14], [15], [16], [17], [18],

[19]:

• Part 1: defines the language of ISO262626;

• Part 2: is an over-arching guide focusing on the management of safety requirements, both from

a project and organizational point of view;

• Part 3: focuses on what the standards call the concept phase. This phase is considered with

initial project definition, establishing the safety requirements and criteria for the project and

initiating the safety lifecycle;

• Part 4: is concerned with system level development, that is, detailed requirements analysis,

system synthesis, functional and logical allocation, and system evaluation, validation and

verification;

• Part 6: focuses on the software aspects of system design and implementation;

• Part 9: gives requirements and guidance with respect to safety analyses. In particular with all

aspects related to ASIL-oriented requirements.

2.2.2 ASIL classification and decomposition

 To have a better understanding of how the ASIL and safety goals are determined, Figure 2-1 and

Table 2-1 can be used. As addressed in the previous chapter, in [8] the guidelines to develop a system

in a way to decrease the residual risk of it are described. According to the standards, the residual risk

(RR) is a product of the potential harm (C) with the probability of occurrence (E) with the severity (S).

Residual Risk can be defined as RR = C*E*S. This equation can be better understood by referring to

Figure 2-1 since it depicts the process of hazard analysis and risk assessment. The letters used in the

equation stands for the three parameters, in which the residual risk is calculated, Exposure,

Controllability, and Severity. Regarding these parameters there are different levels that describe different

situations that a system can face.

9

Chapter 2. State of the Art

• Severity: describes the extent of the harm from S0 (no harm to any person) to S3 (severe injuries,

survival uncertain);

• Controllability: represent the probability that the driver, passengers or surrounding environment

can avoid the specific harm, from C0 (no harm to any person) to C3 (difficult to control or

uncontrollable);

• Exposure: describes the probability of being in that particular situation from E0 (unlikely to be)

to E4 (highly probable).

Table 2-1 has all the combinations possible in a way to establish which are the best safety goals for a

specific system. As it can be seen in the table ASIL has a classification from A to D describing the safety

goals for a system but besides those four levels, there is also another unit described as QM (Quality

Management). The level QM denotes that it is not required to cope with the requirements of the [8],

quality management is sufficient.

Severity Class Exposure Class Controllability class

C1 C2 C3

S1 E1 QM QM QM

S1 E2 QM QM QM

S1 E3 QM QM A

Operational
Situatuon

Failure Mode

Identify
hazardous events

Analyse
hazardous events

Determine the
Exposure (E)

Determine the
Controllability (C)

Determine the
Severity (S)

Assess the risk =
E*C*S
ASIL

Define safety
goals

Figure 2-1: Process of the hazard analysis and risk assessment

10

Chapter 2. State of the Art

S1 E4 QM A B

S2 E1 QM QM QM

S2 E2 QM QM A

S2 E3 QM A B

S2 E4 A B C

S3 E1 QM QM A

S3 E2 QM A B

S3 E3 A B C

S3 E4 B C D

Table 2-1: ASIL determination

 Despite specifying restrict rules, in [8] also exists a bit of flexibility in the ASIL classification. According

to [19], the standards allow the designer to benefit from a sufficiently independent redundant

architecture. ASIL decomposition is a measure to comply with systematic failures by decomposing a

single safety requirement into two sufficiently independent requirements and by implementing those

requirements in two independent architectural elements. The benefit is the resulting two requirements

founded have lower ASIL classification than the initial one. The key principle is if two independent

architectural elements are performing the same function then the probability of both failing

simultaneously is lower even if their safety integrities are lower than that of the original requirement.

 In [19],the following decomposition schemes:

• ASIL D

– ASIL D = ASIL B (D) + B (D)

– ASIL D = ASIL C (D) + A (D)

– ASIL D = ASIL D (D) + QM (D)

• ASIL C

– ASIL C = ASIL B (C) + A(C)

– ASIL C = ASIL C (C) + QM (C)

• ASIL B

– ASIL B = ASIL A (B) + A (B)

– ASIL B = ASIL A (B) + QM (B)

• ASIL A

– ASIL A = ASIL (A) + QM (A)

11

Chapter 2. State of the Art

 This decomposition can be applied to any level of the system. Hardware components can have this

procedure as well as the software components. This can even be used recursively.

2.3 Dependability and Security

 Dependability is the ability to deliver service that can justifiably be trusted. However, this definition

leads to a problem related to the trust’s definition, and that is where the definition of security enters [20].

Security and dependability are highly correlated as is going to be addressed throughout this chapter.

Therefore, those concepts must be understood before any development on a safety critical application

due to the importance that they have. A dependable and secure system has attributes with which the

system is measured, it has threats that compromise the functionality of the system and, finally, it has

the means to eliminate these threats. In Figure 2-2, an overview of the taxonomy is depicted in a graph.

Throughout this chapter, every element of the tree represented will be explained.

2.3.1 Attributes

 The dependability attributes define the properties that a system is expected to have [21]. According

to [20], the attributes are composed by: (1) availability, readiness for correct service; (2) reliability, the

ability of the system to deliver a correct service continuously; (3) safety, absence of catastrophic

consequences to the system external environment, both for the user and the environment; (4) integrity:

absence of improper system alterations; (5) maintainability, ability to undergo modifications and repairs.

When addressing security, an additional attribute has a great prominence, confidentiality. Confidentiality

is defined by the absence of unauthorized disclosure of information. It can be concluded that

dependability attributes are a subset of abilities that a system must have to provide the correct service.

In [22] is said that dependability attributes are a subset of the non-functional properties that must be

specified, analysed, and verified during the system development process. For that reason and according

12

Chapter 2. State of the Art

to [21] and [23], this subchapter is going to focus on the three main attributes, reliability, availability and

safety.

 Reliability

 According to the literature, reliability describes the ability of a system to function under stated

conditions for a specified period of time [21]. It can be described by a mathematical function given a

period of time and given that at the initial the system was in working conditions. The function describes

the probability of the system to operate without a failure in the interval. By expressing this attribute in a

mathematical way is it possible then to express the Mean Time to Failure (MTTF). The MTTF is the

expectation of the time at which the system will fail. If a system is highly reliable it means that MTTF is

larger when compared to MTTR then availability is close to 100% [9].

 Availability

 Availability of a system, likewise reliability, can be expressed by a mathematical function. Similarly, it

expresses a probabilistic function that attempts to guess whether the system is functioning or not at the

instant of time specified [21]. As stated above for high values of availability, meaning that the system for

the most of instants is working as it should, MTTF values should also be larger. Therefore, for smaller

MTTF values, availability varies significantly with repair time, the MTTR. The Mean Time to Repair (MTTR),

is the expectation of the time to restore a failed system to correct operation. [9] [24]. For that reason,

there is another concept that it is important to have in mind, which is undoubtedly related with availability,

it is the downtime per year. It represents the amount of time in a year where the system is inoperable.

Dependability
and

Security

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Figure 2-2: Dependability and security taxonomy

13

Chapter 2. State of the Art

Said that, it can be deduced that a safety-critical must have a high availability and low downtime per year.

Table 2-2 represents the availability and downtime per year for different systems ratings.

System Rating Availability Downtime

Routine 99% 3.65 days

Essential 99.9% 8.77 hours

Critical 99.999% 5.26 minutes

Safety-Critical 99.99999% 3.16 seconds

Table 2-2: Availability percentage for different system types

 Safety

 In [20] is considered that safety refers to the absence of catastrophic consequences on the users

and the environment. For that reason, systems where the functionalities have a critical safety variable

this concept is very important. There is a great deal of systems that have safety critical ratings, such as,

avionics, power plants and pacemakers. The reason why is mostly because of the definition made in

[20]. These systems when facing a fault must not compromise the user that is why when they have these

safety-critical ratings they must also have a definition of safe state. The definition of the term safe state

leads to the different behavioural models a system can incorporate in the presence of failures. These

terms are quite controversial since they have many interpretations. Here the terms according to [13] are

going to be presented.

• Fail-operational systems remain functional in case of a subsystem failure.

• Fail-silent systems enter a state that does not interfere with other safety related systems in

case of a failure.

• Fail-safe is, if after one or several failures, the system is brought to an active or passive safe

state.

2.3.2 Threats

 The threats represent in a system context, situations that could lead the system to an erroneous state.

These threats are usually referred as errors, fails and, failures. They can come from the most various

causes, from an error at the assembly process to an error happening at the run time

14

Chapter 2. State of the Art

 Fault, Error, Failure

 Regarding the definition of faults and failures, this thesis will focus on the definitions of the [14] and the

recursive interpretation of the [19]:

• Fault is an abnormal condition that can cause an element or an item to fail.

• Error is discrepancy between a computed, observed or measured value or condition, and the

true, specified or theoretically correct value or condition.

• Failure represents termination of the ability of an element, to perform a function as required.

 The recursive definition mentioned, that the terms fault and failure can be used recursively, is shown

in Figure 2-3.

Faults and failures can be categorized based on their origin as systematic- or random HW faults.

Systematic faults and failures are deterministic. They can be eliminated only by improving the design or

the production process. Typical causes for systematic failures are poor design (e.g. wrong SW

specification) or manufacturing-related issues (e.g. contaminated soldering). Random HW failures on the

other hand occur in an unpredictable manner. They are mainly caused by ageing or environmental

factors. It is obvious that SW is prone to systematic failures only.

Another classification of faults is based on their temporal behaviour. Permanent faults occur and remain

until removed or repaired. Transient faults, on the other hand, occur and disappear subsequently.

Transients can occur in HW elements for example due to cosmic radiation. Related to the terms of faults

and failures are the often misunderstood, hazard and hazardous event. A hazard is defined in [8] as

potential source of harm. Only those failures can be hazards, where there are operational situations, in

which the failure can lead to an accident. A hazardous event is exactly this failure (= hazard) combined

with this unfavourable operational situation. For example, unintended gear change from the 5th to the

2nd is harmless when the vehicle is coasting at 60 km/h in a straight line. But the very same failure

mode can lead to an accident when occurring during high speed cornering.

Fault Error

Fault Error

Fault Error Failure

Failure

FailureSystem Level

Component Level

Part Level

Figure 2-3: Recursive definition of faults and failures

15

Chapter 2. State of the Art

2.3.3 Means

 Dependability means are the methods and techniques enabling the development of a dependable

system. As it can be seen in Figure 2-2, there are four different means. During this chapter it is intended

to address all of them but with more focus on fault tolerance since this dissertation will make use of that

mean. It is important to note that the different means represented in Figure 2-2 take their role in different

phases of the product lifetime. For that reason, before getting into the concepts, a table is presented

where each mean makes sense to enter. In Table 2-3 the system lifetime is divided in two groups where

pre-service consists in the development phase and the in-service represent the phase where the system

is already commercialized and it is in operational conditions. Each mean has correspondent assignment

in the table. If a “tickle” is presented in front of the mean, could be said that the appliance of that mean

make sense at that phase of lifetime. On the other hand, if it has an “x” it means that the mean is not

applicable on the phase.

Means System Lifetime Phases

Pre-Service In-Service

Fault Preventing Design & Implementation 

Fault Removal Test & Debug Preventive Maintenance

Fault Forecasting ✓ ✓

Fault Tolerance  ✓

Table 2-3: Dependability Means and their use cases [25]

 Fault Preventing

 Fault prevention means to prevent the occurrence or introduction of faults [20]. It is achieved by

quality control techniques during specification, implementation, and fabrication stages of the process.

For hardware, this includes design reviews, component screening, and testing. For software, this includes

structural programming, modularization, and formal verification techniques [26]. A rigorous design review

and well elaborated set of tests may eliminate specification faults. If it is efficiently tested many of its

faults and component defects are avoided.

 Fault Removal

 Fault removal means to reduce the number and severity of faults [20]. It is performed during the

development phase as well as during the operational life of a system. During the development phase,

16

Chapter 2. State of the Art

fault removal involves three steps: verification, diagnosis, and correction. Fault removal during the

operational life of the system consists of corrective and preventive maintenance.

Verification is the process of checking whether the system meets a set of given conditions. If it does not,

the other two steps follow: the fault that prevents the conditions from being fulfilled is diagnosed and the

necessary corrections are performed. In preventive maintenance, parts are replaced, or adjustments are

made before failure occurs. The goal is to increase the dependability of the system over the long term

by staving off the ageing effects of wear-out. In contrast, corrective maintenance is performed after the

failure has occurred in order to return the system to service as soon as possible [21].

 Fault Forecasting

Fault Forecasting means to estimate the present number, the future incidence, and likely consequences

of faults [20]. It is done by performing an evaluation of the system behaviour with respect to fault

occurrences or activation. The evaluation can be qualitative which aims to rank the failure modes or

event combinations that lead to system failure or quantitative, which aims to evaluate in terms of

probabilities the extent to which some attributes of dependability are satisfied. Simplistic estimates

merely measure redundancy by accounting for the number of redundant success paths in a system.

More sophisticated estimates account for the fact that each fault potentially alters ability of the system

to resist further faults [21].

 Fault Tolerance

 According to the threats approached in 2.3.2.1 a fault is a malfunction in one component. That

malfunction can lead the affected component malfunctioning which may propagate to a failure. Fault

tolerance means to avoid service failures in the presence of fault [20]. Fault tolerance is achieved by

using some kind of redundancy. The redundancy allows a fault either to be masked or detected. This

terms of detection and masking will be addressed in detail in this subchapter while the importance of

redundancy in fault tolerance is approached on the next chapter. First, before getting to know what

detection and masking are, it is important to highlight that redundancy alone does not make a system

fault tolerant. For instance, two components duplicated and connected in parallel do not make a system

fault tolerant, for that it is necessary to have monitoring and processing analysing the results and selecting

the correct one. For that reason, masking and detection are important.

Fault masking is the process of ensuring that only correct values get passed to the system output despite

the presence of a fault. This is done by preventing the system from being affected by errors by either

correcting the error, or compensating for it in some way [27]. Since the system does not show the impact

of the fault, the existence of the fault is invisible to the user/operator. For example, a memory protected

17

Chapter 2. State of the Art

by an error-correcting code (ECC) corrects the faulty bits before the system uses the data. Another

example of fault masking is triple modular redundancy with the majority voting [28].

Fault detection is the process of determining that a fault has occurred within a system. Examples of

techniques for fault detection are acceptance tests and comparison. An acceptance test is a fault

detecting mechanism that can be used for systems having no replicated components. Acceptance tests

are common in software systems [29]. The result of a program is subjected to a test. If the result passes

the test, the program continues execution. A failed acceptance test implies a fault [30]. Comparison is

an alternative technique for detecting faults, used for systems with duplicated components. The output

results of two components are compared. A disagreement in the results indicates a fault.

Fault location is the process of determining where a fault has occurred. A failed acceptance test cannot

generally be used to locate a fault. It can only tell that something has gone wrong. Similarly, when a

disagreement occurs during the comparison of two modules, it is not possible to tell which of the two

has failed. Fault containment is the process of isolating a fault and preventing the propagation of its effect

throughout the system. This is typically achieved by frequent fault detection, by multiple

request/confirmation protocols and by performing consistency checks between modules.

Once a faulty component has been identified, a system recovers by reconfiguring itself to isolate the

faulty component from the rest of the system and regain operational status. This might be accomplished

by having the faulty component replaced by a redundant backup component. Alternatively, the system

could switch the faulty component off and continue operation with a degraded capability.

2.4 Redundancy in Fault tolerance

There are various approaches to achieve fault tolerance. Common to all these approaches is a certain

amount of redundancy. For our purposes, redundancy is the delivery of functional capabilities that would

be unnecessary in a fault-free environment [31]. This can be a replicated hardware component, an

additional check bit attached to a string of digital data, or a few lines of program code verifying the

correctness of the program results. The idea of incorporating redundancy in order to improve the

reliability of a system was pioneered by John von Neumann in [32]. Two kinds of redundancy are possible

[33]: space redundancy and time redundancy. Space redundancy provides additional components,

functions, or data items that are unnecessary for fault-free operation. Space redundancy is further

classified into hardware, software, and information redundancy, depending on the type of redundant

resources added to the system. In time redundancy the computation or data transmission is repeated

and the result is compared to a stored copy of the previous result. The reason why this is called time

18

Chapter 2. State of the Art

redundancy is due to the fact that this specific technique need significantly more time to have the outputs

produced. In order to clarify those concepts, each one is going to be addressed in the next subchapters.

Either way, it can be said beforehand that redundancy is not for free, it adds additional resources to

systems to improve its reliability. Extending system about one more computer, or doubled available

memory, may drastically complicate the system design. Performance, weight, size of the system may be

affected, as well as the cost of design and implementation. Appropriate redundancy method must be

selected to achieve the goals of the system [34].

2.4.1 Space Redundancy

 As previously mentioned, this technique integrates the categories of hardware, software, and

information redundancy. All of these categories are achieved by replicating or adding additional

components that are unnecessary for the execution of a certain task.

 In hardware redundancy the hardware components are replicated in order to cooperate among

themselves. Both have the purpose of achieving the same task and they are only added to mitigate the

fault scenarios. Taking the computer system example, the hardware redundancy is made through two or

more independent computers with their own processor, memories and peripherals. The computers

systems are able to cooperate in three ways, according to its implementation: Statically; dynamically or

in a hybrid way. In a static implementation all the computers are working in parallel and comparing the

results calculated. If inconsistencies appear it means that a fault occurred in one of the subsystems, and

the correct output is chosen with a predefined algorithm [35]. In dynamic form only one computer

subsystem is working and if it fails then another computer is started to continue the system task. The

hybrid implementation uses a combination of both previously addressed implementation, static and

dynamic approaches.

 Software redundancy uses replicated code for the same function that is intended to deliver. This

technique of software redundancy replicates the code to get a compiled redundant machine code that

owns different instruction for the same purpose. This software redundancy technique is also known as

instruction redundancy. This name is attributed due to the additional instructions that are added to the

binary code whenever a spare code is added to the application code. In the spatial redundancy, one part

of the code is replicated, e.g., variables or functions. After the replicated code is executed the replicas

are compared and checked if they are all equals. If it is not the case, then an error has occurred.

 Information redundancy consists of using additional information which is not required to perform the

task in question. For instance, the Error Correction Code (ECC) is an additional value attached to the

19

Chapter 2. State of the Art

information content of a memory and it is not required to execute the software task. Nevertheless, it

allows to check data correctness and may also be used to correct corrupted data. Another great example

of information redundancy is the data backup that everyone is familiar with by using the so famous cloud.

The same information is duplicated to reduce the possibility of data loss.

 As time redundancy, space redundancy is suitable to deal with transient faults since it is very unlikely

to occur in the same memory region twice. For example, if a variable is replicated when it is affected by

an error, it is possible to detect and correct it through comparison with the other redundant variables.

2.4.2 Time Redundancy

 This technique consumes additional time to get a correct and valid result. In the time redundancy,

one specific part of the code is re-executed more than once. Execution results are stored and at the end

of all program executions, the stored results are compared. The outputs are verified if they match the

execution went as it should, if they do not, it is because an error has occurred. This kind of redundancy

in software is suitable to deal with transient faults since they do not occur (or are very unlikely to occur)

in the same location twice and cause the same error consecutively. So, the re-execution of the same

code should not produce the same transient fault which will be mitigated.

2.5 Lockstep

 Lockstep is a fault tolerance technique that uses hardware redundancy at the processor level. Its

implementation can differ by the number of replicated cores used as well as by the error recovery

techniques that the cores employ. The configuration of redundancy used at this level is static, which

means the working principle consists of, having each processor used running at the same time, or in

some cases with a delay of one or few clock cycle in the same instruction, then the outputs produced

are compared in order to identify possible inconsistencies between cores without even the possibility of

changing the implementation. When the inconsistencies appear, it means that some error has occurred.

Therefore, since a fault tolerance mechanism is being used, which is the lockstep the error must be

treated in order not to propagate it to the whole system and not change the fault into a failure.

 During this chapter the different implementations of lockstep that were found interesting are going to

be presented for the understanding of this dissertation and after getting to know the implementations the

error recover techniques will also be presented.

20

Chapter 2. State of the Art

2.5.1 Lockstep Implementations

 Regarding lockstep implementations they can be differed by the way the checker (the unit responsible

for finding inconsistencies) is performed and by the number of cores that they use, as it was mentioned

previously. Besides, it can have a loosely- or tightly coupled- implementation. In the tightly-coupled

hardware lockstep, the processors are running synchronously and the outputs are compared instruction

by instruction. The comparisons are continuously being made. An error is detected before it propagates

to the outside of the system (causing a failure). This type of lockstep is more robust as the granularity is

small. However, it is expensive to implement [36]. In a loosely-coupled implementation, the checker is

made with less frequency when compared to the tightly implementation. This does not ensure that each

instruction is executed properly, but errors are caught before they are allowed to leave the processors

and propagate to other devices. This can also lead to performance boosts over tightly-coupled lockstep

designs because fewer comparisons are performed [37]. Due to this, the error detection is weaker. In

what concerns the way the checker is performed, the type of the lockstep should be chosen according

to the type of application, its safety-critical requirements, and the hardware system constraints.

 Now, when it comes to the number of CPU cores used in this technique, there is a great deal of

possible implementations combining architectures of lockstep. For the purpose of this dissertation only

the Triple Modular Redundancy (TMR) also known as Triple Core Lockstep (TCLS) and the dual modular

redundancy (DMR), often called Dual Core Lockstep (DCLS), will be addressed.

CPU-1

CPU-2

Memory Checker

Figure 2-4: Dual Core Lockstep (DCLS or DMR) implementation

21

Chapter 2. State of the Art

 Triple Modular Redundancy

In the TMR configuration (Figure 2-5) three identical CPUs execute the same code in lockstep and a

majority vote of the outputs masks any possible single CPU fault. The memory and communication sub-

system faults can be masked employing ECC techniques. Its unique capability of masking any single

fault, at the cost of an additional CPU, it offers a 100% error detection coverage within a single clock

period. It is possible to “see” the TMR as operating in degraded mode when it is working with just two

healthy CPUs [4].

 Dual Modular Redundancy

 In dual modular redundancy the configuration is quite different from the previously addressed one. In

this case there is no democracy, there is no majority, just the concept of right and wrong values. As it

can be seen in Figure 2-4 the outputs produced by both cores are feeding a checker unit which is

responsible for identifying the inconsistencies if they appear. If such a scenario occurs it means that the

system is facing some kind of fault and if not treated as soon as possible it can propagate to an error

and consequently to a failure as seen in section 2.3.2.1. The disadvantage of this implementation is that

it does not permit to identify which was the erroneous CPU core so if one is under fault, the system is

faulty and must recover. In this implementation there is no fail degraded mode.

2.5.2 Error Recover Techniques

 In this phase, depending on the outcome of BIST (Built in Self Test), some action for recovery or

containing the error are taken. In the DMR, if a hard error has occurred, the processors are stopped, a

fatal error is signalized, and recovering the system from it is impossible. So, the system stops working

and switches to a safe state. When a hard error occurs in a system with Multiple Modular Redundancy

(MMR), the erroneous processor is disabled, and the other health processors keep their execution as

Figure 2-5: Triple modular redundancy (TMR or TCLS) implementation

CPU-1

CPU-2
Memory

Voting

CPU-2CPU-3

22

Chapter 2. State of the Art

long as another error in the remain executing processors does not occur. After a error, if the MMR was

composed of three redundant instances (TMR), the MMR starts working like a DMR redundant system.

In the case the BIST does not detect any hard error, it means that a soft error has occurred. So, in the

system with DMR technique, both processors are recovered to a state without any error, since it is

unknown what the erroneous processor is. In the opposite side, in the MMR technique, the recovery is

made to the erroneous processor only. The system keeps executing with the remaining health processors,

and when the erroneous processors are recovered, the MMR changes to its fully functional state without

having any execution interruption.

2.6 Conclusion

This chapter gave an overview of all the relevant topics that needed to be considered about safety and

dependability. A particular emphasis was given to the fault-tolerance means definition and the importance

of redundancy due to the fact that this project will take advantages of some fault-tolerance mechanisms

such as lockstep.

 The different types of lockstep configurations that currently exist and are relevant for this dissertations

scope were also presented and may be addressed to better understand the concept. In addition to all

that was mentioned the main advantages and disadvantages of each implementation were also shown.

23

Chapter 3

System Specification

 After having a theoretical insight about concepts and technologies that this dissertation will focus on

and having an overview of the lockstep mechanism, it is possible to define the application that it is

intended to develop as well as the components that will be part of the system.

 Primarily, it is important to outline the application scenario that this dissertation covers which is the

calculation of an angle and possible faults that could outcome from the hardware used for that matter.

However, on the long run, it is intended to have a functional generic architecture that allows the use of

different applications without significant changes in its structure.

 This chapter presents the design and specification of the system and its architecture, as well as all

the requirements and constraints for the architecture that is intended to develop.

 A general overview of the whole architecture is given, taking into consideration the technological study

made in Chapter 2.

3.1 Use Case

 As mentioned in previous sections, the aim of this dissertation is to develop an architecture that could

still perform its intended function even under faults, achieving in this way the fail-operational behaviour.

The goal is to keep it generic, enabling it to use in a variety of application scenarios, despite the fact that

the main use case for this architecture is to be applied in safety critical applications as it is the steer-by-

wire. Steer-by-wire must not allow faults to propagate into failures within the system since this could lead

the car to cause serious harm for the people that are using it as well as for the surrounding environment.

That is the reason why systems like this have the necessity to have its safety enhanced. Safety critical

applications such as steer-by wire must have their subsystems in which they rely on (e.g. APS) with the

24

Chapter 3. System Specification

highest availability and reliability improving in that way the safety which is considered critical for that

matter.

The architecture that it is intended to develop has the aim to be used on APS covering the calculation

of the angle of the steering wheel. This angle once calculated is sent to the electronic control unit (ECU)

that is responsible for sending the right outputs to the actuators, the motor that controls the movement

of car wheels. It can be imagined that if the subsystem responsible for calculating the angle fails, or even

the actuator subsystem, all the steering system would consequently fail too. This, due to the fact that the

entire steering system depends on its subsystems and there is no redundancy ensured, as it would be if

the steering system was conventional (mechanic redundancy ensured by the steering column). In the

conventional steering system, if APS would have failed the steering column would ensure the intention

of the driver. Since this column links the steering wheel to the axis, the intention would still be transmitted

to the car wheels, despite having some functionalities that would not be available anymore such as

steering assistance. In order to solve the problem, which is the elimination of the steering column, the

architecture that is going to be developed to perform the calculation of the angle of the steering wheel,

is going to have the redundancy necessary to ensure the function even when faults occur. An overview

of the architecture is shown in Figure 3-1.

3.2 System Requirements

 To properly design an architecture, first, all of its requirements and constraints must be defined

beforehand, as it is crucial to fulfil them in the decision-making process as well as in the implementation

process. With that being said, Table 3-1 is presented. It describes all the conditions that the architecture

must comply with to have the system fail operational as it is intended. It is important to note that some

concepts addressed at the table are extremely correlated with the theoretical background approached in

Chapter 2. The table is divided into 5 sections. First, the requirements are addressed in a general view

of the architecture. That being comprehended and having defined what the subsystem is, then the

requirements related with the subsystem are pointed out. As addressed throughout this document,

Sensing
Element 1

Sensing
Element 2

µC1

µC2

Output
Bus

Input

Input

Output

Output

Galvanic Isolation

Figure 3-1: Application use case

25

Chapter 3. System Specification

redundancy is necessary thus, redundancy for the software and hardware were also described in the

table. Finally, the requirements for the subsystem communication are shown.

ID Description

1. Architecture

1.1. The architecture in order to achieve a fail operational behaviour shall have

redundancy, both at software and hardware level.

1.2. The redundant hardware used, which define a subsystem, shall have galvanic

isolation between them.

1.3. The architecture shall be compliant with ASIL D classification.

1.4. Each subsystem shall be able to communicate to the outer system using

CAN/CAN-FD.

1.5. A CAN message shall be sent within a fix period of 10 milliseconds.

2. Subsystem

2.1. Each subsystem shall have fault-tolerant mechanisms.

2.2. Each subsystem shall have a communication protocol to exchange data

between themselves.

2.3. The microcontrollers used in each subsystem shall have an ASIL D

classification.

3. Redundant Hardware

3.1. Two processing units defining the subsystems shall compose the architecture.

3.2. The signals acquired by both processing units shall have different sources.

3.3. Each subsystem shall have lockstep mechanism in it.

4. Redundant Software

4.1. The software developed shall take advantageous of homogeneous redundancy.

4.2. The software developed should be able to fit in AUTOSAR architecture.

4.3. The software shall be developed according with V-model of ISO 26262

5. Subsystem communication

5.1. The communication protocol that will be used for communication between

subsystems shall be automotive certified

5.2. The communication protocol that will be used for communication between

Microcontrollers shall work with Galvanic Isolation Scenarios

5.3. The communication protocol that will be used for communication between

Microcontrollers shall have multi master

5.4. The communication protocol that will be used for communication between

Microcontrollers shall have error correction codes implemented in order to

identify faults

Table 3-1: System Requirements

26

Chapter 3. System Specification

3.3 System Architecture

 As mentioned in the previous sections, the aim of this dissertation is to develop a fail-operational

architecture that still provides its supposed function, even when facing fault. Taking into account all the

requirements described in 3.1 and the study presented in Chapter 2 it is possible, at this phase, to define

the architecture as well as its components. For better understanding, Figure 3-2 can be referred. It depicts

the full system stack containing all the different layers division between hardware and software as the

elements that compose those layers.

 The hardware layer contains the modules that are present in microcontroller unit (MCU) and were

used for the purpose of the project and of course the MCU. Below this MCU layer the CAN physical layer

needed to have the communication performed is presented. All the other modules present in hardware

layer are used for both communication and diagnosis purposes.

 The software layer contains the modules needed to be developed for the good functioning of this

architecture. All the software that is developed followed the guidelines demanded by the AUTOSAR

architecture. AUTOSAR architecture is a standard created in consortium of automotive companies to

standardize the software developed by those companies. In the MCAL layer all the drivers responsible

for managing directly over the hardware are presented. Some of those drivers, such as CAN-FD, were

already developed and for this project were only used from an user point of view. At the ECUAL there is

no module represented since no module that fits in this layer was developed. Either way, this layer

Figure 3-2: System Stack

27

Chapter 3. System Specification

intended to act like an interface between the upper layers and the MCAL. In this project the

communication between the upper layers and the MCAL are going to be made through Service Layer,

with exception of CAN-FD module that uses the ECUAL as an interface. Most of the modules of this

project are going to be used for diagnostic purposes so it makes more sense to organise the software in

that way. At the service layer there is going to be placed the state machine that is intended to be designed

to keep the system under control as the event handler. This last one will be the module responsible to

react to faults when they occur. In the upper layer, there is all the software responsible for the application.

This layer is composed mostly of configurations made at the higher level where the amount of channels

that are going to be used to report the errors are defined; CAN-FD channels and initiating all the modules

necessary for the project. It is also at this level that the software components are present for the use

case application. Nevertheless, for the purpose of this dissertation they are not going to be developed

despite being referenced later in implementation to depict how the software will interact.

3.4 Hardware Specification

 Having the system requirements and system architecture addressed is now time to go deep into the

hardware level. This section intends to describe hardware components that this Master’s Thesis will focus

on. Considering that at the hardware level is represented essentially by the MCU, and MCU’s peripherals,

this section will have a top-down approach. First the microcontroller will be addressed followed by MCU’s

peripherals.

3.4.1 Microcontroller

 As stated in 3.1, for each microcontroller used in this system’s scope lockstep must be included. With

that constraint, the choice of a microcontroller turned out to be very limited. The market does not have

a wide choice when it comes to a microcontroller that has lockstep mechanisms certified for the

automotive. For that reason and after some negotiations with NXP semiconductors the chosen

microcontroller is a S32K2TV. This microcontroller is an evaluation board that NXP provides for the

28

Chapter 3. System Specification

purpose of this dissertation. It is believed that this board will not be released in the market. However,

some variants of it will.

 The lockstep that this board has, is based in DMR. Said that, and since it is needed to have two cores

for fulfilling this feature, the cores that are being used with that purpose are two ARM Cortex M33. These

processors are massively used in safety critical applications due to its security specifications and high-

performance modules that it has, such as, trust-zone memory, Digital Signal Processing (DSP) and,

Floating Point Unit (FPU). Nevertheless, the M33 processors that this board has included in do does not

have a trust-zone memory. In S32K2TV as it was said previously, there are two cores running in two-

cycle delayed lockstep, meaning, the operation that one core is performing will be executed on the second

one with two clock cycles delay.

 The CM33 core does not contain an inner cache, information about caching is only to signal these

settings to any outer lever of cache which may be present in the memory system. This device implements

two 8kb instances of outer L1 caches: Code cache and System cache. The code and system caches are

accessible through the code and system buses of Cortex M33 core, respectively. The delayed lockstep is

Figure 3-3: S32K2TV Board

Cortex
M33

 Shadow
Cortex
M33

FLASH

RAM

BusCacheChecker
Unit

Figure 3-4: MCU's Lockstep

29

Chapter 3. System Specification

due to the fact that the cores have access to this resource once at a time. In Figure 3-4: MCU's Lockstep

a simplistic representation of the lockstep included in the microcontroller is shown.

 This microcontroller besides lockstep feature additionally have a bunch of specification that are

extremely important to highlight. Here, it is going to be detailed the ones that were found crucial to the

implementation of this dissertation. Said that, the features that this board has and were extremely

important are [38]:

• ARM Cortex-M33/M7 core, 32-bit CPU

– M7 supports up to 320 MHz frequency with

– 2.14DMIPS / MHz

– M33 supports up to 160 MHz frequency with

– 1.5DMIPS / MHz

– ARM Core based on the ARMv7 and ARMv8

– Architecture and ThumbR-2 ISA

– Integrated Digital Signal Processor (DSP)

– Configurable Nested Vectored Interrupt Controller (NVIC)

– Single Precision Floating Point Unit (FPU)

• Analog mixed signal

– Up to three 12-bit Analog-to-Digital Converters

– (ADC) with up to 32 channel analogic inputs per

– module

– One Temperature Sensor

– Up to three Analog Comparators (CMP), with each comparator having an internal 8-bit

DAC

– One 12-bit Digital to Analog Converter (DAC)

• Communications interfaces

– Up to 20 serial communication interface (LINFlexD) modules, with UART and DMA

support

– Up to ten Low Power Serial Peripheral Interface (LPSPI) modules with DMA support

and low power availability

– Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and

low power availability

– Up to eight FlexCAN modules (with optional CAN-FD support)

30

Chapter 3. System Specification

– FlexIO module for flexible and high-performance serial interfaces

– One Ethernet module

– 2-ch FlexRay module

– Up to three Serial Audio Interface (SAI) modules

– One Secured Digital Host Controller (SDHC)

• Reliability, safety, and security

– Hardware Security Engine (HSE_B)

– Up to three Internal Software Watchdog Timers (SWT)

– Error-Correcting Code (ECC) on all memories

– Error Detection Code (EDC) on data path

– Cyclic Redundancy Check (CRC) module

– 120-bit Unique Identification (ID) number

– Extended Cross domain Controller (XRDC), providing protection for master core access

rights

 When it comes to the last pack of features related with safety and security most of them will be
addressed more in detail in the next sub-section 3.4.2.

3.4.2 MCU’s peripherals

 This sub-section will present the main modules regarding safety that will be used in order to study

and validate the lockstep implemented in evaluation board. It is important to note that despite the

modules being used to validate the lockstep mechanism implemented, they are also useful to check the

good functioning of modules such as memory and buses of the system.

 Fault Collection and Control Unit (FCCU)

 The FCCU offers a hardware channel to collect faults and to place the device into a safe state when

a failure in the device is detected. No CPU intervention is requested for collection and control operation.

The distinctive characteristics are:

• Collection of fault information from safety relevant modules on the device.

• Collection of tests results;

• Configurable fault control

• Configurable internal reactions for each NCF

– No reaction

– IRQ

31

Chapter 3. System Specification

– Short functional reset

– Long functional reset

– NMI

• External reactions via configurable output pins

• Watchdog timer for the configuration phase

• Lockable configuration

• One of the fault output signals is high to indicate operational state. The above is not true in

case the error out protocol is configured to be a toggling protocol.

• After power on the output signals have high impedance. They show operational state only after

configuration by software

• In case of a failure event or on software request for error pin indication, the pin are set to faulty

state for a minimum time even if software tries to release it before

• Management of noncritical faults

• HW and SW fault recovery management

• Fault Collection

• Fault Injection

The FCCU circuitry is checked at the start up by the self-checking procedure. The FCCU is operative with

the default configuration immediately after the completion of the self-checking procedure. Internal and

external reactions are statically defined or programmable. The default configuration can be modified in

CONFIG state. The FCCU is designed to function when the clock system is faster than the clock safe.

 Regarding the fault recovery management there are two definitions that must be clear:

HW recoverable fault: The fault indication is an edge-triggered and level-sensitive signal that remains

asserted until the fault cause is deasserted. That is, if logical 0 on the fault signal indicates fault, then

the status flags are valid as long as the fault line stays at 0. The status is automatically cleared when the

fault signal goes to 1. Typically, the fault signal is latched external to the FCCU in the module where the

fault occurred. The FCCU state transitions are consequently executed on the state changes of the input

fault signal. No SW intervention is required to recover the fault condition.

SW recoverable fault: The fault indication is a signal asserted without a defined time duration. The fault

signal is latched in the FCCU. The fault recovery is executed following a SW recovery procedure

(status/flag register clearing).

 HW recoverable is an option to exclude the handling of error sources by FCCU management SW, in

case it is known that the fault is recoverable by itself when the fault condition gets corrected.

32

Chapter 3. System Specification

 Error Injection Module (EIM)

EIM is integrated between the memory controller and memory array to enable a controlled way for error

injection. Each memory controller has its own EIM channel. This module permits the error injection to

be activated in a global way or just for a particular channel. It is used mainly for diagnostic purposes and

it provides support for inducing single-bit or multi-bit inversions on read data when accessing peripheral

RAMs. Injecting faults on memory can be used to exercise the Single Error Correct – Dual Error Correct

(SEC-DEC) ECC function of the related system. This module supports 20 error injection channels and

also protection against accidental enable reconfiguration error injection function via two-stage enable

mechanism. Each of the error injection channels is assigned to a single memory array interface and

intercept the assigned memory read data bus and check bit bus, then inject errors by inverting the value

transmitted for selected bits on each bus line.

 Error Reporting Module (ERM)

The Error Reporting Module (ERM) provides information and optionally interrupt notification on memory

error events associated with ECC (Error Correction Code) and parity. The module collects ECC events on

memory accesses for platform local memory arrays, such as flash memory, system RAM or peripheral

RAMs. It can also record the count value of the number of correctable error events. The diagnostic

information is provided by ERM per logical memory:

• For each memory, ERM has status register to detect if it is a single bit or a multi bit ECC

• Faulty system address of the last recorded ECC event on memory n can be read through ERM

memory Error address register (EARn)

Figure 3-5: EIM module

33

Chapter 3. System Specification

• ERM configuration register (CR) configures the interrupt notification capability for each

supported memory channel

• ECC counter for correctable error count in ERM is resettable through functional reset and by

writing all zeros to the COUNT field.

3.5 Conclusion

 This chapter started by describing a general architecture capable to implement the angular position

sensor following an AUTOSAR-like approach. After having the big picture it was then possible to establish

the requirements for the project but take into account the purpose of the architecture as the study made

in Chapter 2. Having the requirements defined it was further possible to analyse and build a system

stack, which allowed to better decide on the components. As soon as the microcontroller was chosen

and the modules necessary for the diagnosis purposes were defined, a brief overview of each was given.

The configuration used as the metrics used for the diagnosis purposes can be referred in the annexes as

in the next chapter.

 When all the components were selected, it was then possible to proceed to the software development

that would support them.

34

Chapter 4

Implementation

 After having defined all the system specifications and components to be used according with

requirements, it was then possible to proceed to the implementation to achieve fail operational

architecture and fulfil the objectives of this dissertation.

 This chapter aims to address the process of the implementation, explaining what was done both at

hardware and software level.

 The hardware was configured considering that the aim for the architecture is to achieve fail operational

system as addressed in 2.4. Redundancy must be fulfilled in the hardware. The modules that were used

were replicated and, since redundancy does not solve all the problems, other techniques must be

developed as well.

 Regarding software development various scenarios of fault injections were approached, arbitration

processes in order to define which subsystem was “talking” to the outside bus by default and a state

machine was designed in order to define the behaviour for each subsystem as it is going to be presented.

Despite everything mentioned, a Kalman filter was also developed with the purpose of acting as tiebreaker

when it came to a decision of which subsystem had the correct value when the values differed from each

other

4.1 Hardware Configuration

 This subsection will describe how the hardware chosen was used during the project of this

dissertation. As can be seen in Figure 3-2, the hardware used is mostly constituted by the MCU and its

modules. For the purpose of this project the sensing elements and the acquisition of data is not a

concern, what is the real interest to explore is the functioning of each board and its modules. With that

done and well documented it is then possible to iterate the process and have the acquisition process.

Nevertheless, for the study processes a dummy acquisition was performed to validate the software as it

is going to be seen later.

35

Chapter 4. Implementation

4.1.1 Angle Position Sensor

 In order to satisfy most of the requirements described in chapter 3.2 the hardware have disposal

depicted in Figure 4-1. This disposition of hardware wish to solve the requirements addressed in Table

3-1, in particular the points concerning the architecture (1), the subsystem (2), and the hardware (3). In

addition, as stated throughout this dissertation the architecture aims to cover the calculation of an angle

which is later used in steer-by-wire. The angle position sensor would have an hardware architecture

identical to the one depicted in Figure 4-1.

As we can see in Figure 4-1, there are two entities clearly separated by the dash line. Those entities

represent each redundant subsystem of the APS project. Each subsystem is composed by a MCU, and

its modules necessary such as ADC, CAN-FD and others modules responsible for injection errors that

were addressed in 3.4.2.1, 3.4.2.2, and in 3.4.2.3. Besides the MCU, each subsystem has its own

sensing element and its own CAN transceiver. The reason why this was done this way, was to fulfil the

requirements regarding the redundancy.

Figure 4-1: Hardware Disposal

36

Chapter 4. Implementation

4.1.2 Subsystem

 The subsystem as addressed previously is defined by its own MCU, modules of the MCU, sensing

elements and by the transceiver. Nevertheless, this alone does not satisfy the requirements established

in Table 3-1 regarding the subsystem. The fault tolerance mechanism that each subsystem must

implement is ensured by the lockstep already approached in 3.4.1. The lockstep allows to identify

possible faults that could happen during the processing time at hardware level enabling the possibility to

mitigate them before those faults turn into system failures. With that mechanism the requirement with

the number of 2.3 is fulfilled.

4.1.3 Hardware Setup

Figure 4-2 is showing the real hardware setup used for the purpose of the project. As stated in the

previous sections the architecture is composed of two subsystems which are illustrated in the figure by

the two boards. Between them there are galvanic isolation granted and with that there is an

implementation of a protocol communication that must work with galvanic isolation as well. The circuit

used for that purposed can be seen in Figure 4-2.

Figure 4-2: Hardware Setup

37

Chapter 4. Implementation

The connections made in each board depicted in the figure by the wires are connections for the

purpose of arbitration and reset processes. Those processes will be addressed more in detail in the next

chapter.

4.2 Software Implementation

 The software implementation was made according to the existing hardware. The main goal for it was

to achieve a fail operational behaviour enabling the system to still provide the output even when any

undesired event occurs in it. To achieve that feature, some problems were in need to be taken care of.

In a first stage a use case (APS) where the fail operational architecture could fit was designed, then a

state machine was developed to define the behaviour for each redundant subsystem. After having all

these software components developed it came out the biggest challenge that should be overtaken. Since

two redundant subsystems are being used and each one is sharing data with the other to identify possible

inconsistencies, there is no easy way to identify the correct and the wrong value in the process. If it were

being used three subsystems, then we could implement a voter and mask any possible fault that could

outcome from the calculous of any subsystem. However since there are only two subsystems, the

approach to solve this problem was to develop a predictive Kalman filter. It estimates the next value and

compare with the real one calculated by both subsystems.

 This subsection aims to explain the process of all this software implementation. First the use case is

going to be presented in which the software developed can be applied, then the state machine and finally

the developed Kalman filter.

 The software developed for the purpose of this project aim to be fitted in an AUTOSAR architecture.

For that reason, the modules that were developed during this master thesis were divided according to

the standard demands.

4.2.1 Software Components

 As can be seen in Figure 4-3 the software is divided by blocks representing software components

(SWC). To note that the diagram represents the software organized for the APS system. The dash line,

once again, distinguishes the subsystem, just like presented in the hardware disposal.

38

Chapter 4. Implementation

 Since the subsystems are in fact mirrored from one another, only the subsystem 1 will be explained.

Explaining each software component of the subsystem 1, which is the one represented above the dashed

line, the SWC-Acquisition is the part of the software that is responsible for the acquisition of data. That

data is acquired from the sensing elements, which in this specific case of the subsystem 1 are the

magnetic resistive sensor. The SWC-pre-processing is the component responsible for the noise cleaning

associated with the data acquired. At this point of execution is expected to have an exchange of data

between subsystems just to check if there is some type of inconsistence among the data acquired. That

being done, it is now time to calculate the angle. That is the role of the SWC-Calculation. During this time,

if for some reason an error occurred triggered by hardware or even by an inconsistency between data,

flags are exchanged in order to have either way an output to the outer system. So, the process is: if an

error occurs, flags are exchanged, then the error is treated which is the role for the SWC-Error Detection.

In the error detection the main goal is to identify the fault caused and inform the SWC-Recover what is

the best reaction to have according to the fault triggered. On the other hand, if at the calculous phase

there is no fault triggered the software is ready to enter the final stage of the program.

In the last phase, the angle calculated is exchanged between subsystems with the purpose to have a

match, if it does not, means that something along the process went wrong. But the challenge is to validate

one of two different angles. That is why this system was in need to have the Kalman filter predicting the

Figure 4-3: Software block diagram

Incorrect Data
from 1

Incorrect Data
from 2

Angle 2
 &

 (!Fail Indicator 1)

Angle 1
 &

(!Fail Indicator 2)

Fail Inidicator
2

Fail Inidicator
1

Incorrect Data
from 1

Incorrect Data
from 2Angle 2

 &
 (!Fail Indicator 1)

Angle 1
 &

(!Fail Indicator 2)Fail Inidicator
2

Fail Inidicator
1

Raw
Data 2

Raw
Data 1

SWC-Aquisition 1
SWC-

Preprocessing 1
SWC-Compare Unit 1

SWC-Recover/
Reset 1

Recover/Reset

Input
SWC- Calculation

1
 Data

Fail Inidicator

SWC- Error
Detection 1

Relaod Flag

Angle

Reset Flag

SWC-Aquisition 2
SWC-

Preprocessing 2
SWC-Compare Unit 2

SWC-Recover/
Reset 2

Recover/Reset

Input
SWC- Calculation

2
 Data

SWC- Error
Detection 2

Relaod Flag

Angle

Reset Flag

Fail Inidicator

Correct
Angle

Correct
Angle

Lockstep error

Reset
Flag

Lockstep Error

Reset
Flag

SWC-Communication 1

SWC-Communication 2

Raw
Data 2

Raw
Data 1

SWC- Driver
Communication

2_2

SWC- Driver
Communication

1_2
Output

Output

39

Chapter 4. Implementation

next value of the angle. The one calculated that is closer to the value predicted is the one that is going to

be chosen to transmit. All this process of comparing and deciding which is the correct angle is the aim

of the SWC-Compare Unit. Finally, after the angle is chosen, the software is in condition to have the angle

transmitted to the external bus. That is the responsibility of the SWC-Driver communication.

It is important to note that for the sake of this project only the blocks highlighted will be covered.

4.2.2 Sequence Diagrams

To have a clear picture on how the software components would interact between themselves a group

of sequence diagrams that depicts the various scenarios was elaborated. First, a scenario that depicted

the fault free environment was approached, then the fault that occurred at the lockstep mechanism was

depicted and finally a scenario where the data is miscalculated.

 Fault free scenario

In a fault free environment both subsystems are acquiring and calculating data, and the correct output

is sent to the output driver, by default, through subsystem 1. During this process there are at least two

exchanges of data between subsystems, in a first phase the raw data is exchanged and in a final phase

the calculated angle is exchanged to make the identification of errors that could come from the calculation

possible. In this particular scenario depicted in Figure 4-4 the process went as it should, no error was

found.

 Fault at one subsystem

In this case it was emulated the scenario where a fault has occurred in subsystem 2. As addressed

previously, throughout the well-functioning of the application it is intended to have two exchanges of data

between the subsystems, the first one consisting in the raw data acquired by each subsystem and the

second data traded is the angle already calculated. The scenario that Figure 4-5 has depicted, has indeed

two types of data exchanged between subsystems but the last one is not the angle calculated.

Aquisistion
1

Pre
processing 1

Calculation
1

Error
Detection 1

Error
Correction 1

Compare
1

Aquisistion
2

Pre
processing 2

Calculation
2

Error
detection 2

Error
Correction 2

Compare
2

Input Input

Raw Data1

Raw Data2

Data

Angle

Output
Driver

Data

Angle

Angle 1

Angle 2

Correct Angle

Withot Error

Figure 4-4: Sequence diagram, fault free environment

Without

40

Chapter 4. Implementation

In an initial phase both subsystems are acquiring data and trading the raw data but then a fault has

been triggered at subsystem 2. The process that should outcome from that is to send a message through

the internal bus to subsystem 1 informing that subsystem 2 is under a fault and that the fault free

subsystem must ensure the communication to the output bus.

 Miscalculated Data

In this last scenario the case where an inconsistency at the calculous algorithm has been found will

be addressed. Here, the error is only found in the last phase of the process. Once again, on the initial

phases both subsystems are working properly, acquiring, exchanging and calculating data but in the last

phase when the angles are compared and if by some reason the angles differ too much among

themselves it means that the system is facing a fault. This decision is made at the SWC compare unit

with the help of Kalman filter as it is going to be seen later.

Figure 4-6 illustrates the scenario where the miscalculated angle is coming from the subsystem 1.

Said that, and when identified by SWC-compare unit of subsystem 2 an extra message is sent to

subsystem 1 through the internal bus to inform that the angle calculated is wrong. The next step is to

ensure the communication through subsystem 2 which has the correct angle calculated.

Aquisistion
1

Pre
processing 1

Calculation
1

Error
Detection 1

Error
Correction 1

Compare
1

Aquisistion
2

Pre
processing 2

Calculation
2

Error
detection 2

Error
Correction 2

Compare
2

Output
Driver

Figure 4-5: Sequence diagram, fault at one subsystem

Input Input

Raw Data1

Raw Data2

Data Data

Lockstep Error

Fail
Indicator

Fail indicator 2

Reload Flag
Angle

Correct Angle

Aquisistion
1

Pre
processing 1

Calculation
1

Error
Detection 1

Error
Correction 1

Compare
1

Aquisistion
2

Pre
processing 2

Calculation
2

Error
detection 2

Error
Correction 2

Compare
2

Input Input

Raw Data1

Raw Data2

Data

Angle

Output
Driver

Data

Angle

Angle 1

Angle 2

Correct Angle

Miscalculated data

Incorrect Data from1

Figure 4-6: Sequence diagram, miscalculated data

41

Chapter 4. Implementation

4.2.3 Software Workflow

 In this phase some flowcharts are presented to better understand the implementation achieved. There

are some specific topics approached that were crucial to the implementation and validation of the system

in cause. Since the major point of this dissertation is to study and present a solution when it comes to

the error detection and error recovery, some errors were induced at the system to better validate it.

 Main Cycle

 Starting from the main cycle where the application is running cyclically in Figure 4-7 it is presented in

what consists this main cycle. Figure 4-7 is quite explanatory, but in a brief description the main cycle

starts by doing an initialization of all the modules and then it checks if there is a button pressed. That

button is used for validating the system with errors. If the button is pressed then the function responsible

for injecting the errors is called. Whether the button is pressed or not the application still needs to be in

run mode, that is why the function Run is called cyclically.

42

Chapter 4. Implementation

 Initialization Process

 The initialization process is called once during the well-functioning of this software as can be seen in

the main cycle. Basically, this process is responsible for the initialization of all the modules needed for

the application. Figure 4-8 represents the flow of execution when this function is called. To note that most

of the functions called within this process will not be addressed since they consist in a configuration. On

the other hand, the sub-processes such as arbitration and check_ status are going to be explained in

detail later.

 Arbitration Process

 The arbitration process arises from the necessity to have a homogeneous software functioning,

meaning that the software flashed into the two subsystems must be equal in both sides. Nevertheless,

Figure 4-7: Main Cycle flowchart

Main Cycle

_Init

Sw5 pressed?

No

_Run

Error
Injection

Yes

1=1?

Figure 4-8: Initialization
process flowchart

_Init

End

Port_Setup

Enable_Clocks

Config_SPI

Config_CAN

Config_ErrInjection

Config_Timer

Arbitration

Check_Status

UpdateStateMachine

43

Chapter 4. Implementation

when communicating internally the IDs for CAN message must be different for both subsystems.

Therefore, the software, despite being homogeneous, has a condition defining the IDs for messages

exchanged among subsystems.

 That condition is no more than an arbitration process. This process consists of reading a value of a

pin previously connected to 5V or GND depending on which subsystem. If that value is read as one (5V)

then it defines the CAN_NODE_A. On the other hand, if that value is read as zero (GND) it does not

define the CAN_NODE_A, as can be seen in Figure 4-9.

 Check Status Process

 The check status is a process made at the end of the initialization. This is mainly to understand the

status of the other subsystem and synchronize both subsystems. The flow chart can be referred in Figure

4-10. There are two different paths for the flow of execution, depending on which subsystem this process

is running. If the CAN_NODE_A is defined then it means that this system will, by default, communicating

to the outer system with a fix period of 10ms. Then a timer is enabled to define that period. In this case

the timer used was the Programmable Interrupt Timer (PIT). After that the NODE_A sends a message

internally to the other subsystem to understand the system state. If it is in fail-operational, it means that

NODE_A is waking up from an error recovery (as it is going to be shown later), so the next step is to send

a recovery command in order to inform the other subsystem that NODE_A is already fully functional.

Being or not the other subsystem in fault state, this NODE_A subsystem is the one communicating by

default, so a message to the outer system is ensured in either scenario. That is, if NODE_A is in normal

state the message to outer bus is sent by it, if is in fault state is the NODE_B who do it.

Arbitration

Read the value of
the PIN

Pin = 1?

End

yes
Define

CAN_NODE_A

Figure 4-9: Arbitration flowchart

44

Chapter 4. Implementation

The other path is for the subsystem in which the CAN_NODE_A is not defined. In this path where

NODE_B is defined, the first step is quite similar to the other path, in which the NODE_A is defined. The

main difference is that in this phase this subsystem does not need to ensure the communication with

the external bus being NODE_A running properly.

 Error Injection Process

 The scenarios developed for the error injection as can be seen in the main cycle are asynchronous.

Of course, the aim for this kind of implementation was done only to understand how the system would

react in case of an error. In real application there is no need to trigger an error manually, the hope is that

when an error has occurred the system knows what to do. With this implementation the purpose was to

define what to do in such case. As addressed in 3.4.2.2., there are 17 channels available for error

injection. In this phase is important to stress out the scenarios regarding memory and lockstep, error 1

and error 2 respectively represented in Figure 4-11.

 Error 1 is made by taking into account the address of memory that is going to be read in the next

instruction and then with the help of EIM some bits are inverted in order to have inconsistencies between

Figure 4-10: Check status flowchart

Check_Status

CAN_NODE_A?

End

yes

Check the state of
the other

subsystem

Is in FailOp AND
A_normal?

Send recover
command

yes

Ensure
communication
with outter bus

No

Check the state of
the other

subsystem

Is in FailOp AND
B_normal?

Send recover
command

yes

45

Chapter 4. Implementation

the data read and the CRC calculated. This type of error is reported by an ISR caused by the ECC. And

the ISR is mapped into the ERM.

 Error 2 is caused into the lockstep. The EIM intersects the bus shared by both cores and then invert

some bits with the purpose of having an inconsistency in the outputs produced by both cores. This event,

depending on how the FCCU module is configured, can trigger an ISR or a functional reset. For the

purpose of this dissertation, the configuration of the FCCU was done to trigger an ISR if such fault occurs

and then within the ISR the reset is activated by the developer. This implementation is much more

attractive since it allows the trade of information with the other subsystem, having more control of the

system as a whole.

The implementation regarding the memory injection is made according to Figure 4-12.

 To better understand how the modules were configured and in order to inject and to listen the errors

injected the annexes can be referred as well as chapters 3.4.2.1, 3.4.2.2 and, 3.4.2.3.

 Run Process

 The run process is made according to the necessities of the application. Since there is a great deal of

messages being traded at the internal bus, the first action to take in this process is to check if, in fact,

there are any messages to be read. Therefore, when the software checks that there exist messages on

the bus, actions must be taken. If it has received an ‘S’, which is basically a request, it must reply with

the status of the system. If the message is different from the mentioned ‘S’, then it means that the one

receiving a message must update the system state machine. And these are the scenarios in which there

are internal messages on the bus.

Since software is redundant there is a extreme necessity to understand in which system it is running.

Thus, it verifies if CAN_NODE_A is defined. If it is, the software checks whether the subsystem is in a

Core 1

Core 2

M
e

m
o

ry

C
h

e
ck

e
r

U
n

it

µP1

Error 1 Error 2

Figure 4-11: Error Injection Scenarios

Error
Injection

Invert the data on
the bus

End

Figure 4-12: Error Injection flowchart

46

Chapter 4. Implementation

normal state or not and if the system is normal or in fail operational state. It also verifies if there is any

message to be sent over the external bus. The reason why the system sends messages in fail operational

sate is due to the fact that the system state machine is only updated to the fail operational state when it

receives a message indicating that the other subsystem is facing a fault. Since the CAN_NODE_A assures

by default the external communication, it communicates with the outer system both in normal state and

in fail operational state of the system. On the other hand, if the CAN_NODE_A is not defined, then the

software checks only if the system is in fail operational state and whether the B subsystem is in normal

state as well as the need to send any messages over the external bus. As it was said previously in the

normal state of the system, the subsystem ensuring the communication with the “external” world is the

one where the CAN_NODE_A is defined. If, for some reason in B subsystem the state machine is in fail

operational state is, undoubtedly, due to the fact that the A subsystem is facing a fault, so it is the time

for B to ensure the communication.

Figure 4-13: Run process

_RUN

Is there any
message on the

internal bus?

End

yes Is it a S ?

CAN_NODE_A?

Send statusYes

UpdateStateMachine

NoNo

 A_normal AND
(Normal OR FailOp) AND

message to send?

Yes
Send CAN
message

Yes

 B_normal AND
FailOp AND

message to send?

No

Send CAN
message

yes

No

No

47

Chapter 4. Implementation

4.2.4 State Machine

 The state machine developed for the purpose of this project aims to track the system state. The state

machine in question is composed of three different states. The normal state fail operational state and

the failure state. Each state represents an action to take during the flow of the program. For instance,

the normal state represents the good functioning of the system where no fault has occurred nor

inconsistencies at the acquisition or at calculous level. The fail operational state means that a fault might

have occurred at the hardware and possibly leading to some inconsistencies while the system is still

operational due to the use of redundancy. So the process is: a subsystem that is facing a fault transmits

to the other one suggestive data that indicates that the previous one is under a fault. The receiving one

updates the state machine while the faulty one is trying to recover from that fault by a system reset or

even within an ISR defined. The other very unlikely and undesirable scenario is the failure scenario. In

this case, the system as a whole is facing a fault without even the possibility to exchange data between

subsystems. In other words, both subsystems at this state are facing a fault. The proper reaction to have

in these types of situations is undoubtedly the power cycles or even the system reset.

Figure 4-14: System state machine

INIT

NORMAL

FAILURE

Raw Data1
AND

Raw data2

FAIl
OPERATIONAL

Remaining subsystem trigger
(Fail Indicator OR Lockstep)

Recover
Flag
OR

Reset Flag

System Reset

(Fail Indicator1 OR Fail Indicator 2)
OR

(Lockstep error1 OR Lockstep error2)
OR

(Incorrect Data from 1 OR Incorrect Data from 2)

Raw Data 1
AND

Raw Data 2

48

Chapter 4. Implementation

 Besides the state machine already mentioned and depicted in Figure 4-14, there is another that

emulates the behaviour of each subsystem. That one is represented in Figure 4-15. In a brief description

of the state machine it is necessary just to highlight that the arrows that are coming in at the normal and

at the failure state represent the internal communication where both subsystems are trading data among

themselves. Once again, the normal state is where the application is running in the proper way, acquiring

data, sending data and calculating the angles based on data acquired. If for some reason the redundant

subsystem detects a fault then it sends that information to the other subsystem and transit to the failure

state where the fault is trying to be mitigated or recovered. If that occurs the subsystem is in conditions

to go back to the normal state, if not, it means that the fault is unrecoverable therefore the best reaction

to have is resetting the subsystem.

4.2.5 Kalman Filter

 Kalman Filter is one of the most important and common estimation algorithms. The Kalman Filter

produces estimates of hidden variables based on inaccurate and uncertain measurements. The Kalman

Filter also provides a prediction of the future system state, based on the past estimations [39]. With that

stated, the Kalman filter developed was used on the SWC-Compare-Unit. This filter aims to calculate the

next value that is going to be considered in order to identify possible inconsistencies between calculated

angles. If the reader imagines a scenario where there are two entities that supposedly produce the same

INIT

NORMAL

Failure

Received data
From other SWC

Sending data
To other SWC

Received data
From other SWC

Sending data
To other SWC

Application
Running in
Lockstep

RESET

Unrecoverable Error

Error triggered
inside the
subsystem

Error recovered
inside the subsystem

Figure 4-15: Subsystem state machine

49

Chapter 4. Implementation

output, in case of one differing from the other, there is no easy way to identify the erroneous one. The

Kalman filter aims to solve that problem. The goal is to use this Kalman filter in each subsystem meaning

that each subsystem should be tuning their own filter parameters according to the values in their

calculation block. At every calculous performed the filter is being feed with that result. If the values

calculated for each subsystem differ from each other, then the decision of which subsystem should

transmit the angle to the outer bus is made according to the estimations of the Kalman filter. But it is

important to mention that this decision is only valid if the estimated values from the filter are accurate

enough. Taking the scenario where the values calculated differ from each other the Kalman filter aims to

act as a tiebreaker and the value of the angle closer to the valid estimation is sent through CAN. If the

Kalman filter is not tuned to a point where is possible to trust its predictions and if the angle values at

that specific point in time differ a more rudimentary way of making a decision is used. A threshold value

for the angle is used. That is, from one sample to another the angle should not overtake the value defined

and if it does it means the value is the wrong one.

 The filter was developed in the third order, in other words, the angle value was predicted based on

the variation of speed and acceleration of it. The problem associated with this filter is that most of its

estimations are created based on their previous value meaning that the initial estimations are not as

accurate as their older ones. The parameters of the Kalman filter are being tuned at real time. Despite

this step back, the implementation can work around the problem since the data acquired are made at a

so high speed that for each 10ms of a message being sent to the outer bus there are at least five samples

acquired which gives the Kalman filter the inputs necessary for it to tune its values for a valid estimation.

Figure 4-16 gives a good overview of the Kalman filter used. The Kalman filter is shown in the shaded

part of the diagram and the system where the filter is collecting its values for a proper estimation is also

represented but in the outer part of the diagram.

Figure 4-16: Block diagram of Kalman filter

50

Chapter 4. Implementation

4.3 Conclusion

 This chapter gave an overview of the implementation achieved during this project. The implementation

was made according to the chapter of system specification since most of the requirements were

respected and were taken into consideration during the implementation. The errors induced were

performed only to validate the architecture developed as well as to validate the fault tolerant mechanism

which is lockstep. Those scenarios induced also allow the possibility to validate the state machines

designed to track the states of both: system and subsystem. The Kalman filter is developed to validate

the calculation algorithm.

51

Chapter 5

Tests and Results

 This chapter contains the tests made to the architecture. As it was intended to develop a fail-

operational architecture the tests were performed to validate it. Tests were divided in a way to validate

each specification crucial for the architecture. In other words, a subset of functionalities which were

needed for the system were tested distinctly. With that being done, then make sense to evaluate the

system as a whole and check if the requirements were respected. It can be said beforehand that in order

to have a fully functional fail-operational architecture the costs are much higher due to the amount of

redundant resources needed. But when a system is designed there should be always a trade-off between

the costs and the functionality. Since the system is rated as safety critical, the functionality is the priority.

5.1 Tests

 This chapter will describe each test performed and later evaluate its results. To each subchapter

created within this chapter corresponds to a test performed. Table 5-1 shows the tests that were in need

to be performed as well as the results that were expected to have from each one.

Test Expected Result Real Result

Send flags through the

internal communication bus,

from both subsystems

Have an ISR for each internal

message received

Have a CAN-FD message in

the external bus within a fix

period of 10ms

Validate the message and

the timing of the message in

the CANoe software

52

Chapter 5. Tests and Results

Make use of module EIM in

order to induce faults at the

subsystem

An ISR triggered for each

error induced and flags

exchanged between

subsystems

For each fault detected at

the system, the state

machine must transit from

its state

Signalize the event of

transition, through a CAN-FD

message and through a LED

interface

Use Kalman Filter to predict

the value of the angle

calculated

Measure the error associated

with the prediction having

error values lower than 3%

Table 5-1: Test Table

5.1.1 External Communication test

 The external communication was made with the help of CANoe tool. CANoe is the comprehensive

software tool for development, test and analysis of individual ECUs and entire ECU networks. It supports

network designers, development and test engineers throughout the entire development process – from

planning to system-level test. [40] For the scope of this project the software tool was used to validate the

messages sent to the external bus from both subsystems. For that there was a necessity to emulate an

external bus which was later interpreted by the CANoe software. The tool used for that matter, was a

VN1610 which consist of a CAN interface with the possibility to emulate a CAN/CAN-FD bus.

 With all the tools needed to test this communication, two test scenarios were elaborated. The first one

was made in order to verify the time window in which the messages were being received at the CANoe.

The other test is to check if the external communication is ensured even when the whole system is in fail

degraded.

 Time Window

 In this scenario what must be taken care of is that the messages must appear in the external bus

within a 10ms time window. Therefore, with the help of CANoe which has a possibility to see ∆t of the

messages that are being received was possible to check if the time constraints were being respected.

Figure 5-1 shows the messages sent by one of subsystems and in the time column we can see the

amount of time that pass since the last message received. As can be concluded the time slots were being

respected. It was taken two print screens two see that there is an error associated, which is roundly to

1ns.

53

Chapter 5. Tests and Results

 Fail degraded

 With this particular test what was expected to verify is that during a fault induced and correspondent

recovery, the system ensure the communication with the external bus. In other words, the system still

communicates even in fail-degraded mode. Fail-degraded due to the fact that one of the redundant

subsystems is facing a fault and for that reason the system has lost some of its features. This means

that the system state machine is on fail-operational state.

Once again, using the CANoe software was possible to see the messages sent from different channels

which consist of messages being sent from both subsystems. This test has also a particularity to have

messages received at different CAN-FD IDs. This is to inform the entity that is external to the system that

the system is facing a fault. Despite the system still being operational, as it should, it will inform the

external “world” that is operating under fail degraded mode. As it can be seen the angle message which

is the message sent with ID of 600 was sent both by channel 1 and 2. This message ID represent the

angle was being sent only in channel 2 but with a fault induced at the system the angle still need to be

transmitted so that is why the channel 1 which is the channel of the other subsystem. Between changes

of channels, an error message is sent to signalize the fail-degraded mode of the system since during this

process of fault and fault recovery there is only one subsystem operational.

5.1.2 Error Injection Test

 This test was performed with the help of the existing modules available in the microprocessor to

induce faults at the different peripherals of the microprocessor. To be more detailed the modules used

are the ones already approached in 3.4.2.1; 3.4.2.2; 3.4.2.3. These modules turn out to be very useful

not only to induce faults at subsystems but also to study what the possible reactions are to be taken

Figure 5-1: External communication test, time windows

Figure 5-2: External communication, fail degraded test

54

Chapter 5. Tests and Results

when a fault occurs. Furthermore, these modules are also used for detecting the faults through ISRs

mapped into the memory region.

 At this point it is important to highlight that these tests are not as visual as the others already

addressed, so this test will mainly be explained over text since there is no image that could depict a fault

induced at the microcontroller. In brief reasons, two different tests will be explained: the ones induced at

the lockstep mechanism and the ones induced at the memory region.

 Lockstep

 This test was performed with the help of modules such as EIM and FCCU as addressed in 4.2.3.5.

Nevertheless, at this point the two possible scenarios that FCCU allows for it to have were exploited, the

ISR reaction and the functional reset.

 With a functional reset, as mentioned in 4.2.3.5, there is a lack of control of the application. That is,

when the error occurs the functional reset is performed without any possibility to track the problem or to

understand what happened. For that reason, this implementation is less attractive for the purpose of this

project.

 In the ISR scenario, as soon as the error is injected, the ISR is triggered. Inside it, there are plenty of

paths to be taken. The error techniques that this lockstep architecture uses so much could be applied,

but according to the documentation of the microcontroller when this type of error occurs the

recommended reaction to have is a functional reset. Nevertheless, the author explores other solutions

with this reaction. A scenario taken was trying to clean all the flags that were causing the ISR but in that

scenario the program counter (PC) was still tied in the ISR. So, the solution was to trigger an ISR and

within it, trigger a reset. Between processes the subsystem must inform the other one that a fault has

occurred in order to have more control of the application.

Core 1

Core 2

M
em

or
y

Ch
ec

ke
r U

ni
t

µP1

Error 2

Figure 5-3: Lockstep Error Injection

55

Chapter 5. Tests and Results

 Memory

 The error related with memory was injected through EIM module once again, and the module that

was responsible to “listen” to the errors was the ERM with the help of ECC mechanisms. In a first phase

it was induced at the memory errors composed by more than one bit flip, which is not compliant with

the ECC mechanism. According to the documentation the ECC can correct up to 1 bit flip detected at the

memory buses but more than that trigger an undefined behaviour, possibly causing hard faults. For this

type of errors a channel at the ERM was also configured to trigger an ISR if such error has occurred.

Within the ISR the author thought of reconstructing the signal by reverse engineering the value of CRC.

Nevertheless, there is nothing published indicating the CRC algorithm, thus making it almost impossible

to be done. Within ISR the possibility to clean the flags asserted at the error injection time was also tested

in order to verify if the PC was able to move forward. In this case two scenarios occur depending on how

many bits were flipped with the error injection. If it was just one, cleaning the flags that were causing the

error injection were enough to keep the program flowing. If it was more than one bit flipped, as mentioned

above, it causes undefined behaviour which the developer cannot control, and cleaning the flags does

not make it better.

 It is important to highlight that memory errors are critical since all the application depends on it, being

by code memory or data memory. Once corrupted, if it is not possible to restore its content then it is

impossible to trust it again. For that reason the best reaction to have when these events occur is to trigger

a reset such as the reaction to have when a lockstep error occurs.

5.1.3 State Machine Test

 In this test it is intended to test the transitions of the state machine according to the scenario in which

the system is facing. As addressed in 4.2.4, two state machines were designed, where one emulates the

Core 1

Core 2

M
em

or
y

Ch
ec

ke
r U

ni
t

µP1

Error 1

Core 1

Core 2

M
em

or
y

C
h

ec
ke

r
U

n
it

µP1

Figure 5-4: Memory Error Injection

56

Chapter 5. Tests and Results

behaviour of each subsystem and the other is used to discover in which state the entire system is. With

that in mind, the test will take into consideration the state machine of the system and it is going to be

explained with the help of the state machines designed for describing the behaviour of each subsystem.

 Normal state

 The normal state of the state machine is where the application is running as it should. Each subsystem

is able to exchange data between them, there is no error injected, the outputs are being sent by the

subsystem in which CAN_NODE_A is defined, and both subsystems are at normal state as can be seen

in Figure 5-5.

On the left side of the equal signal the state machines are defining the behaviour of each subsystem,

both at normal state. On the right side of the signal there is the result, the state machine that defines the

behaviour for the entire system. For this specific scenario, the only thing that was done was to run the

application. As it can be seen, the transition from INIT to Normal is unconditional.

 Fail Operational State

 For this test, a fault was induced at one subsystem in order to trigger in it a transition from the normal

to the failure state. With that scenario the entire system transits from normal to fail operational state as

it can be seen in Figure 5-6.

Figure 5-6: State machine in fail operational state

INIT

NORMAL

Failure

Received data
From other SWC

Sending data
To other SWC

Received data
From other SWC

Sending data
To other SWC

Application
Running in
Lockstep

RESET

Unrecoverable Error

Error triggered
inside the
subsystem

Error recovered
inside the subsystem

INIT

NORMAL

Failure

Received data
From other SWC

Sending data
To other SWC

Received data
From other SWC

Sending data
To other SWC

Application
Running in
Lockstep

RESET

Unrecoverable Error

Error triggered
inside the
subsystem

Error recovered
inside the subsystem

INIT

NORMAL

FAILURE

Raw Data1
AND

Raw data2

FAIl
OPERATIONAL

Remaining subsystem trigger
(Fail Indicator OR Lockstep)

Recover
Flag
OR

Reset Flag

System Reset

(Fail Indicator1 OR Fail Indicator 2)
OR

(Lockstep error1 OR Lockstep error2)
OR

(Incorrect Data from 1 OR Incorrect Data from 2)

Raw Data 1
AND

Raw Data 2

Figure 5-5: State machine in normal state

INIT

NORMAL

Failure

Received data
From other SWC

Sending data
To other SWC

Received data
From other SWC

Sending data
To other SWC

Application
Running in
Lockstep

RESET

Unrecoverable Error

Error triggered
inside the
subsystem

Error recovered
inside the subsystem

INIT

NORMAL

Failure

Received data
From other SWC

Sending data
To other SWC

Received data
From other SWC

Sending data
To other SWC

Application
Running in
Lockstep

RESET

Unrecoverable Error

Error triggered
inside the
subsystem

Error recovered
inside the subsystem

INIT

NORMAL

FAILURE

Raw Data1
AND

Raw data2

FAIl
OPERATIONAL

Remaining subsystem trigger
(Fail Indicator OR Lockstep)

Recover
Flag
OR

Reset Flag

System Reset

(Fail Indicator1 OR Fail Indicator 2)
OR

(Lockstep error1 OR Lockstep error2)
OR

(Incorrect Data from 1 OR Incorrect Data from 2)

Raw Data 1
AND

Raw Data 2

57

Chapter 5. Tests and Results

 The scenario has two possible outcomes for the system. The first one is: the faulty subsystem is able

to recover from the fault, by a recover or a reset, and then the system goes to normal state again. The

other scenario, extremely undesirable, is where both subsystems are under faults. Nevertheless,

throughout this chapter, after inducing the fault, the subsystem was able to recover from it making the

system to transit to normal state again.

 Failure State

This is the most critical scenario of this system. The scenario where a fault at one subsystem occurs

and followed by it there is another fault at the other subsystem. In this particular scenario there is not

much to do other than to perform a system reset.

 The subsystems in this particular scenario ensure the reset at each one, but before that the outside

“world” will be informed that a power on reset is necessary due to errors at the same time in the

subsystems. This is done by a repeated CAN-FD message informing the error.

5.1.4 Kalman Filter Test

 As already stated in this document the Kalman filter was developed with the purpose of being a

tiebreaker. As two subsystems are running in parallel with the same purpose and with the goal to compare

its outputs if they differ it is extremely difficult to identify which is the best value to transmit to the external

CAN bus being compliant with a fail operational architecture. For that reason Kalman filter is believed to

be a suitable solution.

 In these tests what was intended to have as a result was the best tuned model of the filter. For that,

the filter was studied with a set of datasets and the parameters were tuned to have a better response

from the Kalman filter. The datasets that were used are angles already calculated as it should be in the

real life application. Nevertheless, the data used in this purpose are not the best possible ones since it

is a little bit noisy. Throughout these tests data acquired from magnetic resistive sensors sensing

Figure 5-7: State machine in failure state

INIT

NORMAL

Failure

Received data
From other SWC

Sending data
To other SWC

Received data
From other SWC

Sending data
To other SWC

Application
Running in
Lockstep

RESET

Unrecoverable Error

Error triggered
inside the
subsystem

Error recovered
inside the subsystem

INIT

NORMAL

Failure

Received data
From other SWC

Sending data
To other SWC

Received data
From other SWC

Sending data
To other SWC

Application
Running in
Lockstep

RESET

Unrecoverable Error

Error triggered
inside the
subsystem

Error recovered
inside the subsystem

INIT

NORMAL

FAILURE

Raw Data1
AND

Raw data2

FAIl
OPERATIONAL

Remaining subsystem trigger
(Fail Indicator OR Lockstep)

Recover
Flag
OR

Reset Flag

System Reset

(Fail Indicator1 OR Fail Indicator 2)
OR

(Lockstep error1 OR Lockstep error2)
OR

(Incorrect Data from 1 OR Incorrect Data from 2)

Raw Data 1
AND

Raw Data 2

58

Chapter 5. Tests and Results

elements were used and then the various scenarios that emulate the real life application were taken into

account. The values can differ by rotating to right and left directions.

 Rotating wheel in one direction

 In both tests the Kalman filter has two purposes, the first is to clean the signal from all its noisy

acquisitions since the data with which the angle is calculated is not treated as it should and the second

one is to predict the next value that is going to be calculated. For each iteration the prediction that came

from the filter is compared to the real value and it is evaluated how accurate the prediction is. Taking

that scenario, the filter is tuning its parameters in order to fit the data the best as it could.

 This test takes the scenario where the wheel is rotating in one direction only. The angle can vary its

values between -2800deg and 2800deg and the discontinuity point that the signal has is due to the fact

that the angle calculated has reached its negative limit and then it should continue from a positive value

and decrease once again. Figure 5-8 also depicts the cleaning and prediction of the Kalman filter. On the

right top corner of the image is the legend of each signal represented in the image. The real signal

appears to be the only signal represented in the image but by taking a closer look it is going to be seen

that this image has much more to say.

 The signal and the Kalman response are overlapped as it was expected since the filter response aims

to follow the real signal. There might be small deviations from the real signal and the Kalman response

but that is due to the cleaning that the filter is doing. In the last points of the signal the prediction value

is represented and the real value where the error associated with this is going to be evaluated.

Figure 5-8: Kalman filter test, rotating in one direction

59

Chapter 5. Tests and Results

 In Figure 5-9 the last points of the signal are depicted but with zoom in in order to take a closer look.

 Here the existent deviations of the filter and the real signal are clearer. As it can be seen the filter

response takes the signal in a much more linear form when compared to the real signal. In the last

points, represented by an ‘*’ and an ‘x’ there is the prediction and the next value calculated respectively.

As it can be seen the points are very close from one to another and in a signal where the acquisition is

made in a more careful way the points would be even closer.

 Quantifying the error between these two signals the average of the error associated with the prediction

is about 0.08% (Error= [RealValue-PredictedValue]/RealValue*100).

 Rotating wheel in both directions

 In this test what was intended to verify was if the Kalman filter was able to follow the signal when

suddenly the wheel rotated in another direction. In order to perform this test and due to the lack of

datasets where the wheel rotating in the two senses is depicted, the data is simulated. In other words,

the data present and represented in Figure 5-10 was manipulated in order to have emulated that scenario

depicted. Said that, it was expected that the response of the filter was totally overlapped by the signal

but, as there is a gross change of the signal due to the change of direction in the wheel that is why in

Figure 5-10 the blue line, which represents the Kalman filter response, is seen more clearly when

compared to the previous test. In addition, in this test less samples were used when compared to the

previous ones which also have impact on how the signals are depicted.

 Either way the results coming from this test were also quite satisfactory. The filter was not only able

to follow the signal as well as it also had more acceptable error values very. The average of the error

associated in this test was about 0.07%.

Figure 5-9: Kalman filter test, rotating in one direction zoom in

60

Chapter 5. Tests and Results

Despite the great challenge that it was to develop this Kalman filter it is believed the filter has extremely

satisfactory results and this implementation can be used, without a doubt, in future implementations to

act as a prediction algorithm.

5.2 Results

 This subchapter aims to evaluate the real result of each test that was intended to perform in order to

validate the project developed.

Test Expected Result Real Result

Send flags through the

internal communication bus,

from both subsystems

Have an ISR for each internal

message received

Messages sent and received

successfully within the ISRs.

Have a CAN-FD message in

the external bus within a fix

period of 10ms

Validate the message and

the timing of the message in

the CANoe software

CAN messages are being

sent to the external bus with

a time frame of 10ms±1ns

Make use of module EIM in

order to induce faults at the

subsystem

An ISR triggered for each

error induced and flags

exchanged between

subsystems

Error successfully injected

ant the status flags were able

to be exchanged between

subsystems

For each fault detected at

the system, the state

machine must transit from

its state

Signalize the event of

transition, through a CAN-FD

message and through a LED

interface

Event signalized; state

exchanged.

Figure 5-10: Kalman filter test, rotating in both directions

61

Chapter 5. Tests and Results

Use Kalman Filter to predict

the value of the angle

calculated

Measure the error associated

with the prediction having

error values lower than 3%

It was able to predict the

next value. Values of error

lower than expected

62

Chapter 6

Conclusion and Future Work

 After the whole implementation, conclusions can be drawn from the developed work and the results

obtained. This chapter aims to make an overview of the results obtained and what can be concluded

from them, as well as suggest further improvements that can be made in future implementations.

6.1 Conclusion

 With this project it was possible to explore fault-tolerant techniques and get a deep knowledge of fail

operational architectures while having in mind the norms that ISO 26262 have designed for these types

of systems. It is important to highlight that this project was developed under the V model. For each part

developed a set of tests was designed in order to avoid systematic failures in the future. This is of extreme

importance since the aim of the architecture developed is to avoid faults, which consequently lead to

failures. So, the processes that come before the implementation such as the analysis and design must

be performed with the purpose of avoiding faults as well. It is important that these processes be revised

by other people besides the one responsible for doing it. This is to ensure redundancy in the process of

revising, analysing and designing thus being compliant with V model mentioned.

 There are three concepts that could summarize the architecture developed. Those concepts were

already approached in the state of the art chapter as background knowledge. Nonetheless, as a

conclusion, they are going to be referred once again since the architecture developed does not make

sense without having them in context. Redundancy, Fail Operational and Functional safety are the crucial

terms for the understanding of this project. As can be concluded, and as stressed throughout the

document, the terms are extremely correlated between themselves especially in safety critical

applications. It is impossible to have a fail operational architecture without having redundancy satisfied

at some level. On the other hand, the purpose for having a fail operational architecture is to be compliant

with the functional safety classification imposed by the ISO 26262.

63

Chapter 6. Conclusion and Future Work

 The built-in lockstep mechanism that each subsystem has, among others, was a great challenge in

this project. To note that these mechanisms are gaining the interest of the industry mostly due to its

safety achievements. In this project it was no different. It was the intention to study how the mechanism

in question would react in case of fault. That was possible to achieve with the help of modules that the

microcontroller has. With that being done, the design of the best reaction to have when such fault occurs

was done in order to still have a valid output in the outer bus, being compliant with the fail operational

requirements.

 It is believed, in what concerns the requirements, that this project fulfilled them all. In what regards

the tests, it is safe to conclude that most of them had the expected result as can be seen and regarding

Kalman filter the values of error were even better than was expected.

 Obviously, that in order to have a full fail operational architecture there is still a long way to go but the

first step has, undoubtedly, already been taken.

6.2 Future Work

 Despite the development achieved during this project, it is assuredly possible to improve some points

or even follow another path of implementation. During this subchapter those points in which the system

developed could improve are going to be presented.

Integrate the calculous algorithm

 As stated in previous chapters the use case of this architecture is the calculous of an angle. During

the implementation the goal was to keep the architecture the most generic possible enabling it to be

used in different types of applications. Nevertheless, it is important to have the application for which the

architecture was designed implemented in order to study performances of the application. With that, it

is possible to take more reasoned decisions.

Acquisition block

 The acquisition block is highly correlated with the previous point. In order to have the calculous

implemented it is necessary to have the data in which that calculous will rely on. To have valid data, the

acquisition block implemented, and all block related with it, such as the pre-processing one is needed.

Once again this is of extreme importance since it allows a performance study of the application. With

that done it is possible to analyse how many acquisitions and calculations are possible to have within a

10ms window which is the time that the system possesses to put a CAN message in the external bus.

64

Chapter 6. Conclusion and Future Work

Communication redundancy

 All the design of the architecture was made to avoid common mode failures and for that redundancy

at both hardware and software levels were used. However, in what concerns communication there is no

total redundancy ensured. In the external communication, the entity that could be transmitting to the

external bus is replicated but the bus is not redundant so if any problem occurs with the external bus

there is no possibility to transmit a message. In this undesirable scenario, despite the fact that the system

works as it should, this problem is interpreted as fault by other systems that will be dependent on this

one. Another common mode failure that this architecture has is the internal communication since it has

not redundancy ensured. There is only one bus between the subsystems so the same scenario addressed

for the external bus could also happen in here. A possible solution is to implement another protocol

between subsystems. In that way, if the internal communication bus used was under a fail the

subsystems could use the other protocol.

Heterogeneous redundancy

 Throughout the implementation of this project the use of homogeneous redundancy for software was

highlighted in order to be compliant with the requirements established. Despite the software developed

it was made according to the V model imposed by ISO26262 which ensures the redundancy necessary

for the processes that came before the implementation. This type of redundancy could lead to permanent

faults of the system due to a possible fault in design or even in the implementation phase.

 For that reason, the author finds it relevant to study the possibility to use heterogeneous redundancy.

With this, the software working at both subsystems would be different from each other but with the same

goal which, in this case, is the calculation of the angle. This implementation also must be made according

to the V model to ensure the redundancy necessary for revising and implementing the software in

question.

65

Chapter 7

Annexes

/*

 * Err_Cfg.h

 *

 * Created on: 10/07/2020

 * Author: EMS1BRG

 */

#ifndef ERR_CFG_H_

#define ERR_CFG_H_

#include "S32K2TV.h"

#include "NVIC.h"

/*Enable/Disable channels for error injection*/

#define ERM_CHANNEL_NOT_INIT 0

#define ERM_CHANNEL_INIT 1

/*Channels for ERM*/

66

#define ERM_CH0 ERM_CHANNEL_NOT_INIT /*Error injection in SRAM0

 Error Collected in ERM */

#define ERM_CH1 ERM_CHANNEL_NOT_INIT /*Error injection in SRAM1

 Error Collected in ERM*/

#define ERM_CH2 ERM_CHANNEL_NOT_INIT /*Error injection in SRAM2

 Error Collected in ERM*/

#define ERM_CH3 ERM_CHANNEL_NOT_INIT /*Error injection in DMA

TCD Error Collected in ERM*/

#define ERM_CH4 ERM_CHANNEL_NOT_INIT /*Error injection in CM33_0

instruction cache tag Error Collected in ERM*/

#define ERM_CH5 ERM_CHANNEL_NOT_INIT /*Error injection in CM33_0

instruction cache data Error Collected in ERM*/

#define ERM_CH6 ERM_CHANNEL_NOT_INIT /*Error injection in CM33_0

data cache tag Error Collected in ERM*/

#define ERM_CH7 ERM_CHANNEL_NOT_INIT /*Error injection in CM33_0

data cache tag Error Collected in ERM*/

#define ERM_CH8 ERM_CHANNEL_NOT_INIT /*Error injection in CM33_1

instruction cache tag Error Collected in ERM*/

#define ERM_CH9 ERM_CHANNEL_NOT_INIT /*Error injection in CM33_1

instruction cache data Error Collected in ERM*/

#define ERM_CH10 ERM_CHANNEL_NOT_INIT /*Error injection in CM33_1

data cache tag Error Collected in ERM*/

#define ERM_CH11 ERM_CHANNEL_NOT_INIT /*Error injection in CM33_1

data cache data Error Collected in ERM*/

#define ERM_CH12 ERM_CHANNEL_NOT_INIT /*Error injection in CM7

instruction cache tag Error Collected in ERM*/

#define ERM_CH13 ERM_CHANNEL_NOT_INIT /*Error injection in CM7

instruction cache data Error Collected in ERM*/

#define ERM_CH14 ERM_CHANNEL_NOT_INIT /*Error injection in CM7 data

cache tag Error Collected in ERM*/

#define ERM_CH15 ERM_CHANNEL_NOT_INIT /*Error injection in CM7 data

cache data0 Error Collected in ERM*/

67

#define ERM_CH16 ERM_CHANNEL_NOT_INIT /*Error injection in CM7 data

cache data1 Error Collected in ERM*/

#define ERM_CH17 ERM_CHANNEL_INIT /*Error injection in CM33 Lockstep

 Error Collected in FCCU*/

#define ERM_CH18 ERM_CHANNEL_NOT_INIT /*Error injection in DMA

Lockstep Error Collected in FCCU*/

#define ERM_CH19 ERM_CHANNEL_NOT_INIT /*Error injection in EDC

checking Error Collected in FCCU*/

/**

 * Function to enable and inject errors at modules enabled

 */

extern void Err_SetEIM(void);

/**

 * Function to initialize ERM(Error Reporting Module)

 */

extern void Err_InitERM(void);

/**

 * Function to initialize FCCU(Fault Collection and Control Unit) to report errors

 */

extern void Err_InitFCCU(void);

#endif /* ERR_CFG_H_ */

/*

68

 * Err_Cfg.c

 *

 * Created on: 10/07/2020

 * Author: EMS1BRG

 */

#include "Err_Cfg.h"

void Err_SetEIM(void)

{

 /* Check if there if ERM_CH0 is wanted - SRAM0 Error Injection*/

 #if ERM_CH0 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD0_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD0_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 //EIM.EICHD0_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH0EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 Err_InitERM();

 #endif

 /* Check if there if ERM_CH1 is wanted - SRAM1 Error Injection*/

 #if ERM_CH1 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD1_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD1_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD1_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH1EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

69

 #endif

 /* Check if there if ERM_CH2 is wanted - SRAM2 Error Injection*/

 #if ERM_CH2 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD2_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD2_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD2_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH2EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH3 is wanted*/

 #if ERM_CH3 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD3_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD3_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD3_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH3EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH4 is wanted*/

 #if ERM_CH4 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD4_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD4_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD4_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH4EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

70

 /* Check if there if ERM_CH5 is wanted*/

 #if ERM_CH5 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD5_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD5_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD5_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD5_WORD3.B.B8_11DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH5EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH6 is wanted*/

 #if ERM_CH6 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD6_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD6_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD6_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH6EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH07 is wanted*/

 #if ERM_CH7 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD7_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD7_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD7_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD7_WORD3.B.B8_11DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD9_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read Time*/

71

 EIM.EICHEN.B.EICH7EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH8 is wanted*/

 #if ERM_CH8 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD8_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD8_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD8_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH8EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH9 is wanted*/

 #if ERM_CH9 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD9_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD9_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD9_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD9_WORD3.B.B8_11DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD9_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHEN.B.EICH9EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH10 is wanted*/

 #if ERM_CH10 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD10_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD10_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD10_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

72

 EIM.EICHEN.B.EICH10EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH11 is wanted*/

 #if ERM_CH11 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD11_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD11_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD11_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD11_WORD3.B.B8_11DATA_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD11_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH11EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH12 is wanted*/

 #if ERM_CH12 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD12_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD12_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD12_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH12EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH13 is wanted*/

 #if ERM_CH13 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD13_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD13_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD13_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD13_WORD3.B.B8_11DATA_MASK |= 1; /*Bits exchanged at Read Time*/

73

 EIM.EICHD13_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH13EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH14 is wanted*/

 #if ERM_CH14 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD14_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD14_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD14_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD14_WORD3.B.B8_11DATA_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD14_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH14EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH15 is wanted*/

 #if ERM_CH15 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD15_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD15_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD15_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD15_WORD3.B.B8_11DATA_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD15_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH15EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH16 is wanted*/

 #if ERM_CH16 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD15_WORD0.B.CHKBIT_MASK |= 1; /*Bits exchanged at Read Time*/

74

 EIM.EICHD15_WORD1.B.B0_3DATA_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD15_WORD2.B.B4_7DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHD15_WORD3.B.B8_11DATA_MASK |= 1; /*Bits exchanged at Read Time*/

 EIM.EICHD15_WORD4.B.B12_15DATA_MASK |= 1; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH15EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH17 is wanted*/

 #if ERM_CH17 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD17_WORD1.B.B0_3DATA_MASK |= 0b1111111111111111111;

 /*Bits exchanged at Read Time*/

 EIM.EICHEN.B.EICH17EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH18 is wanted*/

 #if ERM_CH18 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD18_WORD1.B.B0_3DATA_MASK |= 1111; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH18EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

 /* Check if there if ERM_CH19 is wanted*/

 #if ERM_CH19 !=ERM_CHANNEL_NOT_INIT

 EIM.EICHD18_WORD1.B.B0_3DATA_MASK |= 1111; /*Bits exchanged at Read

Time*/

 EIM.EICHEN.B.EICH18EN |= 1; /*Enable Channel to induce errors*/

 EIM.EIMCR.B.GEIEN |= 1; /*Enable Module*/

 #endif

}

75

void Err_InitERM(void)

{

 /* Check if there if ERM_CH0 is enabled - SRAM0 Error Injection*/

 #if ERM_CH0 !=ERM_CHANNEL_NOT_INIT

 ERM.CR0.B.ENCIE0=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR0.B.ESCIE0=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 ERM.CR0.B.ENCIE1=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR0.B.ESCIE1=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH1 is enabled - SRAM1 Error Injection*/

 #if ERM_CH1 !=ERM_CHANNEL_NOT_INIT

 ERM.CR0.B.ENCIE2=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR0.B.ESCIE2=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH2 is enabled - SRAM2 Error Injection*/

 #if ERM_CH2 !=ERM_CHANNEL_NOT_INIT

 ERM.CR0.B.ENCIE3=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR0.B.ESCIE3=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH3 is enabled*/

 #if ERM_CH3 !=ERM_CHANNEL_NOT_INIT

 ERM.CR2.B.ENCIE16=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR2.B.ESCIE16=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

76

 #endif

 /* Check if there if ERM_CH4 is enabled*/

 #if ERM_CH4 !=ERM_CHANNEL_NOT_INIT

 ERM.CR0.B.ENCIE4=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR0.B.ESCIE4=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH5 is enabled*/

 #if ERM_CH5 !=ERM_CHANNEL_NOT_INIT

 ERM.CR0.B.ENCIE5=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR0.B.ESCIE5=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH6 is enabled*/

 #if ERM_CH6 !=ERM_CHANNEL_NOT_INIT

 ERM.CR0.B.ENCIE6=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR0.B.ESCIE6=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH07 is enabled*/

 #if ERM_CH7 !=ERM_CHANNEL_NOT_INIT

 ERM.CR0.B.ENCIE7=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR0.B.ESCIE7=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH8 is enabled*/

 #if ERM_CH8 !=ERM_CHANNEL_NOT_INIT

 ERM.CR1.B.ENCIE8=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR1.B.ESCIE8=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH9 is enabled*/

77

 #if ERM_CH9 !=ERM_CHANNEL_NOT_INIT

 ERM.CR1.B.ENCIE9=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR1.B.ESCIE9=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH10 is enabled*/

 #if ERM_CH10 !=ERM_CHANNEL_NOT_INIT

 ERM.CR1.B.ENCIE10=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR1.B.ESCIE10=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH11 is enabled*/

 #if ERM_CH11 !=ERM_CHANNEL_NOT_INIT

 ERM.CR1.B.ENCIE11=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR1.B.ESCIE11=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH12 is enabled*/

 #if ERM_CH12 !=ERM_CHANNEL_NOT_INIT

 ERM.CR2.B.ENCIE12=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR2.B.ESCIE12=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH13 is enabled*/

 #if ERM_CH13 !=ERM_CHANNEL_NOT_INIT

 ERM.CR1.B.ENCIE13=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR1.B.ESCIE13=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH14 is enabled*/

 #if ERM_CH14 !=ERM_CHANNEL_NOT_INIT

 ERM.CR1.B.ENCIE14=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

78

 ERM.CR1.B.ESCIE14=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH15 is enabled*/

 #if ERM_CH15 !=ERM_CHANNEL_NOT_INIT

 ERM.CR1.B.ENCIE15=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR1.B.ESCIE15=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /* Check if there if ERM_CH16 is enabled*/

 #if ERM_CH16 !=ERM_CHANNEL_NOT_INIT

 ERM.CR1.B.ENCIE15=1; /*Trigger an interrupt if channel 0 has one bit exchanged*/

 ERM.CR1.B.ESCIE15=1; /*Trigger an interrupt if channel 0 has more than one bit

exchanged*/

 #endif

 /*TODO: Investigate how to inject errors in flash*/

 /*Trigger interrupt if some error is found on the different blocks of FLASH memory**/

 ERM.CR2.B.ENCIE17=1;

 ERM.CR2.B.ESCIE17=1;

 ERM.CR2.B.ENCIE18=1;

 ERM.CR2.B.ESCIE18=1;

 ERM.CR2.B.ENCIE19=1;

 ERM.CR2.B.ESCIE19=1;

 ERM.CR2.B.ENCIE20=1;

 ERM.CR2.B.ESCIE20=1;

 Enable_Interrupt(ERM0_IRQn);

 Enable_Interrupt(ERM1_IRQn);

79

}

void FCCU_clear_faults(void)

{

 /* 1. Write the proper key into the FCCU_NCFK register */

 //Non-critical fault key = AB34_98FEh

 FCCU.NCFK.R = 0xAB3498FE;

 /* 2. Clear the status (flag) bit NCFSx => the opcode OP12 is automatically

 /* Read all NCFS registers to clear all faults.*/

 /* For details which faults can be cleared see Table 7-36. FCCU Non-Critical Faults Mapping

in RM */

 FCCU.NCF_S[0].R = 0xFFFFFFFF; // read FCCU.NCF_S0 register

 /* Verify if state change was successful */

 while (FCCU.CTRL.B.OPS != 0x3); //Operation status successful

 /* NCFS_1 register clear */

 FCCU.NCFK.R = 0xAB3498FE; //Non-critical fault key = AB34_98FEh

 FCCU.NCF_S[1].R = 0xFFFFFFFF; // clear FCCU.NCF_S1 register

 /* Verify if state change was successful */

 while (FCCU.CTRL.B.OPS != 0x3); //Operation status successful

 /* NCFS_2 register clear */

 FCCU.NCFK.R = 0xAB3498FE; //Non-critical fault key = AB34_98FEh

 FCCU.NCF_S[2].R = 0xFFFFFFFF; // clear FCCU.NCF_S2 register

 /* Verify if state change was sucessful */

 while (FCCU.CTRL.B.OPS != 0x3); //Operation status succesfull

}//FCCU_clear_faults

void Err_InitFCCU(void)

80

{

 FCCU_clear_faults();

 FCCU.CFG_TO.B.TO = 7; /*Timeout for Congig state*//*Later review this

value*/

 __asm__("svc #0x00"); // System Call to enable Supervisor Mode

 /* Unlock configuration */

 FCCU.TRANS_LOCK.R = 0xBC;

 /* provide Config state key */

 FCCU.CTRLK.R = 0x913756AF; //key for OP1

 /* enter config state - OP1 */

 FCCU.CTRL.R = 0x1; //set OP1 - set up FCCU into the CONFIG mode

 /* wait for successful state transition */

 while (FCCU.CTRL.B.OPS != 0x3); //operation status successful

 /***

 *

 * Lockstep error channel Configuration

 * Functional RESET/ISR

 * ***/

 /*Configure NCF channel*/

 FCCU.NCF_CFG[0].B.NCFC1 = 1;/*Lockstep channel enable*/

 /* 1-Enable Functional Reset// 0-Enable ISR*/

 FCCU.NCFS_CFG[0].B.NCFSC1 = 0;

 /*Enable Timeout signal for any channel*/

 FCCU.NCF_TO.B.TO = 5; /*Review this value*/

 /*Enable alarm-state*/

 FCCU.NCF_TOE[0].B.NCFTOE1 = 1;

 /*Enable Alarm state reaction*/

 FCCU.IRQ_ALARM_EN[0].B.IRQEN1 = 1;

 /*Enable Channel*/

 FCCU.NCF_E[0].B.NCFE1 = 1;

81

Snippet 1: Err_Cfg.c

/***/

 /* set up the NORMAL mode of FCCU */

 FCCU.CTRLK.R = 0x825A132B; //key for OP2

 FCCU.CTRL.R = 0x2; //set the OP2 - set up FCCU into the NORMAL mode

 while (FCCU.CTRL.B.OPS != 0x3); //operational status successful

 Enable_Interrupt(FCCU0_IRQn);

 Enable_Interrupt(FCCU1_IRQn);

}

82

References

[1] B. Chen, “practices and Challenges for Achieving Functional Safety of Modern Automotive SoCs,”

2019.

[2] C. Tiang, C. Zong, L. He e X. W. Y. Don, Fault tolerant control method for steer-by-wire system,

Changchun: International Conference on Mechatronics and Automation, 2009.

[3] Cédric Wilwert, N. Navet, Y.-Q. Song e F. Simonot-Lion, Design of automotive X-by-Wire systems,

2007.

[4] B. M., “Fault-Tolerant Platforms for Automotive Safety-Critical Applications,” 2003.

[5] Z. Hu e F. Zhang, “Reliability Analysis of Redundant Steering-by-Wire System,” em Sixth

International Conference on Intelligent Systems Design and Engineering Applications (ISDEA),

Guiyang, 2015.

[6] B. Euram, “X-by-wire – safety related fault tolerant systems in vehicles, final report,” 1998.

[7] Koshal, “DifferenceBetween.com,” 15 June 2011. [Online]. Available:

https://www.differencebetween.com/difference-between-safety-and-vs-security/. [Acedido em 16

December 2019].

[8] ISO, ISO 26262: Road vehicles - Functional Safety, 2018.

[9] Nelson e V. P., “Fault-Tolerant Computing: Fundamental Concepts,” IEEE, Auburn, 1990.

[10] M. Hitt, Fault-tolerant avionics., 2006.

[11] Reilly e B. Michael, Programming Embedded Systems in C and C++, O Reilly, 1999.

[12] T. Noergaard, Embedded Systems Architecture - A Comprehensive Guide for Engineers and

Programmers, 2005.

[13] A. Schnellbach, Fail-operational automotive systems, Graz, 2016.

[14] “ISO 26262-1 Road vehicles — Functional safety — Part 1: Vocabulary,” 2018.

[15] “ISO 26262-2 Road vehicles — Functional safety — Part 2: Management of Functional Safety,”

2018.

[16] “ISO 26262-3 Road vehicles — Functional safety — Part 3: Concept phase,” 2018.

83

[17] “ISO 26262-4 Road vehicles — Functional safety — Part 4: Product development at the system

level,” 2018.

[18] “ISO 26262-6 Road vehicles — Functional safety — Part 6: Product development at the software

level,” 2018.

[19] “ISO 26262-9 Road vehicles — Functional safety — Part 9: Automotive safety integrity level (ASIL)-

oriented and safety-oriented analyses,” 2018.

[20] A. Avizienis, J. .. Laprie, B. Randell e C. Landwehr, “Basic Concepts and taxonomy of dependable

and secure computing,” em IEEE Transactions on Dependable and Secure Computing, 2004.

[21] E. Dubrova, Fault-tolerant design, Springer, 2013.

[22] L. Montecchi, P. Lollini e A. Bondavalli, “Towards a MDE Transformation Workflow for Dependability

Analysis,” em 16th IEEE International Conference on Engineering of Complex Computer Systems,

Las Vegas, 2011.

[23] Institute of Electrical and Electronics Engineers, “IEEE Standard Computer Dictionary: A

Compilation of IEEE Standard Computer Glossaries.,” New York, 1990.

[24] H. Kopetz, “Real-Time Systems: Design Principles for Distributed Embedded Applications,” em

Kluwer Academic Publishers, 1997].

[25] C. Rodrigues, I. Marques, S. Pinto, T. Gomes e A. Tavares, “Towards a Heterogeneous Fault-

Tolerance Architecture based on Arm and RISC-V Processors,” 2019.

[26] I. Umer, “Design methods and practises for fault prevention and management in spacecraft,” em

Tech. Rep. 20060022566, NASA , 2005.

[27] N. Kanekawa, E. Ibe, T. Suga e Y. Uematsu, Fault-Tolerant System Technology. In: Dependability

in Electronic Systems, New York: Springer, 2011.

[28] H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp e G. Duran, “Software Resilience and the Effectiveness

of Software Mitigation in Microcontrollers,” em IEEE TRANSACTIONS ON NUCLEAR SCIENCE,

2015.

[29] B. Randell, “System structure for software fault tolerance,” em International Conference on Reliable

Software, 1975.

[30] J. Sloan, R. Kumar e G. Bronevetsky, “Algorithmic Approaches to Low Overhead FaultDetection for

Sparse Linear Algebra”.

84

[31] J. Laprie, “Dependable computing and fault tolerance: concepts and terminology,” em Pro-

ceedings of 15th International Symposium on Fault-Tolerant Computing (FTSC-15).

[32] J. Von Neumann, “Probabilistic logics and synthesis of reliable organisms from

unreliablecomponents,” em Shannon, C., McCarthy, J. (eds.) Automata Studies, Princeton , 1956.

[33] A. vižienis, “Fault-tolerant systems,” em IEEE Trans. Comput.25(12), 1304–1312, 1976.

[34] MarFtin, “Spaceradiation.eu,” 2 February 2020. [Online]. Available:

https://spaceradiation.eu/redundancy-and-its-types-in-computer-systems/. [Acedido em 9 March

2020].

[35] M. Yang, G. Hua, Y. Feng e J. Gong, Fault-Tolerance Techniques for Spacecraft Control Computers,

Wiley, 2017.

[36] J. Abella e C. H. and, “Live: Timely error detection in light-lockstep safety critical systems,” em In

2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), 2014.

[37] R. D. Kral, J. S. Chong e A. L. Schreiber, “Implementation of a Loosely-Coupled Lockstep Approach

in the Xilinx Zynq-7000 All Programmable SoC™ for High Consequence Applications,” Sandia

National Laboratories, Albuquerque.

[38] NXP, S32K2TV Datasheet, Abstatt: NXP Semiconductors, 2019.

[39] A. Becker, “KalmanFilter.NET,” 2018. [Online]. Available:

https://www.kalmanfilter.net/default.aspx//#aboutAuthor. [Acedido em 13 May 2020].

[40] Vector, “Vector,” CAN interfaces, [Online]. Available:

https://www.vector.com/int/en/products/products-a-z/software/canoe/. [Acedido em 19 08

2020].

[41] A. M. Lister, Fundamentals of operating systems, 2013.

[42] M. Vuori, “Agile development of safety-critical software,” em Tampere University of Technology,

2011..

[43] T. Instruments, ISO1042-Q1 Automotive Isolated CAN Transceiver With 70-V Bus Fault Protection

and Flexible Data Rate, 2020.

[44] NXP, TJF1052i Galvanically isolated high-speed CAN transceiver, 2016.

[45] D. J. Barrenscheen, “On-Board Communication via CAN without Transceiver,” SIEMENS, 1996.

[46] T. Instruments, ISO772x-Q1 High-Speed, Robust EMC, Reinforced Dual-Channel Digital Isolators,

2020.

85

[47] S. Ray e e. al, “Extensibility in automotive security: Current practice and challenges: Invited,” em

Proc. 54th Ann. Design Autom. Conf., New York, 2017.

[48] C. Tian, C. Zong, L. He, X. Wang e Y. Dong, “Fault tolerant control method for steer-by-wire system,”

em International Conference on Mechatronics and Automation, Changchun, 2009.

[49] DeFranco, P. A. Laplante e J. F., “Software engineering of safety-critical systems: Themes from

practitioners,” em IEEE Transactions on Reliability, 2017.

[50] G. S. Rodrigues, F. Rosa, A. B. D. Oliveira, F. Lima, L. Ost e R. Reis, “Analyzing the Impact of Fault-

Tolerance Methods in ARM Processors under Soft Errors Running Linux and Parallelization APIs,”

em IEEE Transactions on Nuclear Science, 2017.

[51] A. Goleman, D. Boyatzis e R. Mckee, “Operating Systems,” em Operating Systems, 2019.

[52] J. Hatcliff, A. Wassyng, T. Kelly, C. Comar e P. Jones, “Certifiably safe software-dependent systems:

challenges and directions,” em Proceedings of the on Future of Software Engineering, 2014.

	Universidade do Minho
	Escola de Engenharia

	Universidade do Minho
	Escola de Engenharia
	Dissertação de Mestrado
	Mestrado em Engenharia Eletrónica Industrial e Computadores
	Sistemas Embebidos e Computadores
	Trabalho efetuado sob a orientação do
	Professor Doutor Jorge Cabral

	Resumo
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acronyms List
	Chapter 1
	Introduction
	1.1 Contextualization
	1.2 Motivation
	1.3 Objectives
	1.4 Dissertation Structure

	Chapter 2
	State of the Art
	2.1 Embedded Systems
	2.1.1 Elements of an Embedded System

	2.2 Functional Safety
	2.2.1 Introduction to safety standards
	2.2.2 ASIL classification and decomposition

	2.3 Dependability and Security
	2.3.1 Attributes
	2.3.1.1 Reliability
	2.3.1.2 Availability
	2.3.1.3 Safety

	2.3.2 Threats
	2.3.2.1 Fault, Error, Failure

	2.3.3 Means
	2.3.3.1 Fault Preventing
	2.3.3.2 Fault Removal
	2.3.3.3 Fault Forecasting
	2.3.3.4 Fault Tolerance

	2.4 Redundancy in Fault tolerance
	2.4.1 Space Redundancy
	2.4.2 Time Redundancy

	2.5 Lockstep
	2.5.1 Lockstep Implementations
	2.5.1.1 Triple Modular Redundancy
	2.5.1.2 Dual Modular Redundancy

	2.5.2 Error Recover Techniques

	2.6 Conclusion

	Chapter 3
	System Specification
	3.1 Use Case
	3.2 System Requirements
	3.3 System Architecture
	3.4 Hardware Specification
	3.4.1 Microcontroller
	3.4.2 MCU’s peripherals
	3.4.2.1 Fault Collection and Control Unit (FCCU)
	3.4.2.2 Error Injection Module (EIM)
	3.4.2.3 Error Reporting Module (ERM)

	3.5 Conclusion

	Chapter 4
	Implementation
	4.1 Hardware Configuration
	4.1.1 Angle Position Sensor
	4.1.2 Subsystem
	4.1.3 Hardware Setup

	4.2 Software Implementation
	4.2.1 Software Components
	4.2.2 Sequence Diagrams
	4.2.2.1 Fault free scenario
	4.2.2.2 Fault at one subsystem
	4.2.2.3 Miscalculated Data

	4.2.3 Software Workflow
	4.2.3.1 Main Cycle
	4.2.3.2 Initialization Process
	4.2.3.3 Arbitration Process
	4.2.3.4 Check Status Process
	4.2.3.5 Error Injection Process
	4.2.3.6 Run Process

	4.2.4 State Machine
	4.2.5 Kalman Filter

	4.3 Conclusion

	Chapter 5
	Tests and Results
	5.1 Tests
	5.1.1 External Communication test
	5.1.1.1 Time Window
	5.1.1.2 Fail degraded

	5.1.2 Error Injection Test
	5.1.2.1 Lockstep
	5.1.2.2 Memory

	5.1.3 State Machine Test
	5.1.3.1 Normal state
	5.1.3.2 Fail Operational State
	5.1.3.3 Failure State

	5.1.4 Kalman Filter Test
	5.1.4.1 Rotating wheel in one direction
	5.1.4.2 Rotating wheel in both directions

	5.2 Results

	Chapter 6
	Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	Integrate the calculous algorithm
	Acquisition block
	Communication redundancy
	Heterogeneous redundancy

	Chapter 7
	Annexes
	References

