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RESUMO 

Avanços recentes em robôs de serviço genéricos permitiram a sua utilização inovadora em vários 

meios ambientes, como residências domésticas, hospitais ou centros de saúde. O projeto CHARMIE 

(Collaborative Home / Healthcare Assistant Robot da Minho Industrial Electronics) é um robô 

antropomórfico que realiza tarefas em configurações não convencionais usando algoritmos de 

aprendizagem de máquina, que permitem ao robô tomar decisões racionais com base nas variáveis do 

meio ambiente que o rodeia. 

Com a intenção de criar uma melhor interação entre o robô e seus operários, esta dissertação 

apresenta um sistema de Deep Learning para reconhecimento facial de várias instâncias. Ao identificar 

a pessoa com a qual está a interagir, o robô adapta-se para realizar as suas ações pré-definidas 

atendendo às necessidades dela. O sistema é composto por várias redes neuronais de modo a compor 

os três módulos constituintes. Uma rede convolucional em cascata de várias instâncias procura zonas 

faciais, como olhos, nariz ou boca, prevendo as coordenadas que permitem isolar as caras detetadas, 

detetando todos os rostos exibidos ao usar uma câmara. A rede neuronal Inception-ResNet foi treinada 

num dataset extenso apropriado, funcionando como extrator de características faciais. Isso gera os 

vetores característicos de pessoas que serão usados como input para um classificador SVM, um 

modelo de aprendizagem máquina que irá prever a qual das identidades esses vetores correspondem. 

Essa implementação de princípio a fim dos três módulos permitiu a deteção e reconhecimento facial 

para ser usado como um método de identificação de usuários em tempo real. O método resultante foi 

implementado no robô de serviços CHARMIE. 

Essas tarefas foram realizadas com alunos e professores do Laboratório de Automação e Robótica 

(LAR) da Universidade do Minho. Para isso, foi usado um conjunto de imagens obtidas a partir de 

vídeos individuais dessas pessoas, invertendo ou rodando algumas dessas imagens aleatoriamente de 

modo a criar um sistema mais robusto 

Palavras-Chave 

Deep Learning, Deteção facial, Multi-Rede, Reconhecimento Facial, Robôs de serviço 
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ABSTRACT 

Recent advances in generic service robots have shown their introduction in various novel environments 

such as domestic and healthcare facilities. The CHARMIE (Collaborative Home/Healthcare Assistant 

Robot by Minho Industrial Electronics) project is an anthropomorphic robot that performs generic 

service tasks in non-standardized environment settings using machine learning algorithms, which allow 

the robot to make rational decisions based directly on the surrounding environment. 

In order to ensure an enhanced interaction between the robot and its specified users, this dissertation 

presents a real-time multi-stage deep learning pipeline for facial recognition algorithm. By detecting 

which of the pre-trained users the robot is interacting with, it can adapt its actions to best fit the user's 

needs. The multi-network system is composed of three modules. A multi-stage cascaded convolutional 

network searches for facial landmarks, such as eyes, nose, or mouth, predicting its bounding box 

coordinates, detecting all the faces showcased in the camera frame. An Inception-ResNet deep 

convolutional network was trained on a large dataset for facial feature extraction, comparing different 

hyperparameter settings and fine-tuning. That generates the feature vectors and provides an amplified 

network for facial recognition and an SVM classifier to categorize each of the faces recognized to the 

correct user. The combination of the three modules allowed an end-to-end facial detection and 

recognition that can be used as a real-time user-based identification method. The resulting method was 

furthermore implemented on the general service robot CHARMIE. 

Those tasks were carried out on students and teachers from the Laboratory of Automation and Robotics 

(LAR) of Minho University. For that, a dataset containing those people was built using images fetch from 

individual videos, with random frames being rotated or flipped to create a more robust system. 

Keywords 

Deep Learning, Facial Recognition, Face Detection, Multi-Network, Service Robots, 
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1. INTRODUCTION 

Visual perception and the information one collects from it is an essential ability in human behavior. The 

analysis of the information gathered allows humans to make structured decisions, with its interpretation 

being based on cognitive processes and previous knowledgeable interactions. 

Thus, endowing robotic systems with the sense of vision to implement cognitive systems is quite a 

desirable yet challenging process. The concept of Robot Vision refers to the ability of a robot to 

understand the environment in which it is located and use that information to perform tasks through 

artificial vision algorithms (Kragic & Vincze, 2009). That was enabled by extensively researches and 

breakthroughs in detection and recognition tasks, with Deep Learning fields of study having a 

determinant role. Those benchmarked classification tasks involving various cases of detection as well as 

identification. Hence, being able to perceive the surrounding variables branched the focus into various 

relevant techniques of visual recognition by robots (Khaligh-Razavi, 2014). That culminates in machines 

capable of accurately evaluate and interact with a broad range of scenarios by observing different 

environments and recognizing valuable data. 

State-of-the-art service robots provide aid in various novel environments, such as domestic and 

healthcare facilities, by performing generic service tasks based directly on the surrounding environment. 

This dissertation focused on providing a more collaborative and cooperative communication tool 

between the robot and its operators/patients/users. 

1.1 General Motivation 

Collaborative robots are designed to perform tasks with people in a shared work environment. It’s 

mainly applied in the Industrial field, where its precision and repeatability are desirable factors, as well 

as the faster and more efficient manufacturing processes, while guaranteeing a safe interaction (Villani, 

Pini, Leali, & Secchi, 2018). Additionally, the flexibility and shift demand of new products or procedures 

provided these robots the advantage over fully automated ones, with the former being quickly 

performed with the guidance of a user. 

Service robots are a type of machines that help in day-to-day tasks in different environments such as 

household, offices, or healthcare (Bauer, Wollherr, & Buss, 2008). The aim is to lower the staff 

workload by performing menial, dull tasks, but also to help solve complex chores with its users. They 

differ from the industrialized robots due to its form and function, having a more autonomous internal 
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control system, being mobile, and interacting with humans with a wide range of ways. These types of 

robots are used in a high spectrum of purposes, with recent advances uplifting their use in various 

novel environments, including domestic or healthcare facilities (Holland et al., 2021). Their introduction 

was possible due to technological improvements on manufacturing of cameras, sensors, and other 

robotic control tools such as speech recognition, as well as rapid advancements on Artificial Intelligence 

(AI), enabled by the availability of extensive big data analysis. 

A desirable feature is the ability of service robots to recognize people in its surroundings, providing a 

more natural Human–robot collaboration, by detecting which of the users is interacting with, it can 

adapt its actions to best fit the user's needs. This thesis approaches this challenge using artificial vision 

and AI methods, namely deep supervised learning using multi-Convolutional Neural Networks (CNN) 

(Lecun, Bottou, Bengio, & Ha, 1998). 

 

1.2 Objectives of the Dissertation 

The main objective of this dissertation was the implementation of a real-time face detection and facial 

recognition system implemented on CHARMIE, recognizing a set of pre-determined people with 

confidence or being able to learn new identities previously unknown. This model was then tested on 

said members of the LAR of Minho University. For that, the following tasks were performed: 

• Study of several NN architectures regarding state-of-the-art face detection and facial 

recognition, with different learning approaches used; 

• Definition and installation of the necessary tools for the development of the model, including 

the most suitable programing language; 

• Implementation of the defined NN used for face detection and recognition; 

• Selection of the most suitable dataset and creation of a custom dataset containing students 

and teachers associated to the LAR; 

• Training of the CNNs with the referenced datasets; 

• Testing of the NNs and selection of the best parameters; 

The aim is that the system can detect all the faces presented in a camera frame regardless of the 

position where it appears and different angles of the head. The system must then draw bounding boxes 

over the proposals, and predict the name of the shown person. That way, the robot can understand 

who it is interacting with and can act accordingly. 
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1.3 Scientific Contributions 

This dissertation theme and work was implemented on a larger project named CHARMIE, developed by 

the LAR of Minho University of DEI. CHARMIE is an anthropomorphic robot that performs generic 

service tasks in non-standardized environment settings. Its conceptual shape (Figure 1) is designed in a 

way that its users can be more prone to interact with it by making it human-like. Additionally, its shape 

and dimensions make it more practical and easier to introduce CHARMIE into an environment designed 

for human work. 

 

 

Figure 1 - Conceptual sketch of the anthropomorphic robot CHARMIE. 

 

The system’s design (Figure 2) is composed of Head, Robot Arms, Lifting Mechanism and Torso and a 

motion platform, allowing it to move dynamically in any direction (Gonçalves et al., 2019). A primary 

prototype was previously built (Figure 3) with additional parts of the project being under development at 

the time this dissertation is being written. 

CHARMIE’s goals are to provide aid in several chores in household and healthcare environments, from 

nursing homes to hospital facilities and including domestic homes. For that, the ability of understanding 

its surroundings and make rational decisions based on the information gathered is needed. To endow 

the robot with that ability, the LAR has been implementing different types of machine learning (ML) 

algorithms. For Autonomous Driving, such methods involve non-linear Navigation, Mapping, and 

Obstacle Detection and Avoidance. To provide communication tools with its users, the implemented 

processes include Person Detection and Recognition, and Speech and Gesture Recognition. For the 
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identification of certain items and being able to interact with them, such as pick-and-place and object 

delivery tasks, Object Detection and Recognition was also applied. 

 

 

Figure 2 - Developed anthropomorphic design. 
 

In order to benchmark new technologies developed for CHARMIE, service and assistive robotics 

competitions (Basiri, Piazza, Matteucci, & Lima, 2019) provide a common framework for a high-rigor 

benchmark of smart and autonomous systems. RoboCup@Home is regarded as a top competition in 

the field of domestic service and assistive robotics (Holz & Iocchi, 2013; Iocchi, Holz, Ruiz-Del-Solar, 

Sugiura, & Van Der Zant, 2015), where they must perform a set of pre-determined tests to aid in day-to-

day realistic non-standardized home environment setting. Earlier versions of CHARMIE have already 

participated in RoboCup@Home, and the most recent version is focusing on introducing itself to the 

competition with qualification material in the next years. 
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Figure 3 - Primary prototype assembled. 
 

1.4 Structure of the Dissertation 

This document is divided into 6 chapters: Introduction, Literature Review, Methodologies, Results, 

Conclusions, and Future Work. 

On the Introduction chapter, a brief description of the work is presented, as well as the motivation as to 

why it was produced, outlining the objectives necessary to accomplish the result and the scientific 

contribution of it. 

Throughout the Literature Review chapter, the study of the state-of-the-art is presented. First, the study 

of NN is presented, from the earlier and basic concepts to the more complex architectures used 

nowadays. After that, methods used for human face detection and recognition are introduced, 

demonstrating how the introduction of AI improved the accuracy of those fields, describing notorious 

works and algorithms. 

The Methodologies chapter describes the implementation of the end-to-end framework, starting by 

describing the software tools used. Then, the schematic structure of the work is displayed, with every 

part being analyzed with the methods implemented and the respective theoretical fundaments that 

corroborate them. 
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Then, the Results chapter compares the different variations and outcomes obtained regarding the 

previous chapter’s algorithms. Those include the detection of human faces in photos and videos, as 

well as in real time processing, the acquisition and pre-processing of individual images of members of 

LAR (to create a dataset necessary to train the NNs), and the results of the training of the NN using 

different data visualization tools. Finally, all those parts are connected, displaying the result of the 

dissertation. Also, a discussion regarding the obtained results is always presented after every module of 

the framework. 

The Conclusions chapter presents the outcomes of the work done and its analysis regarding the outline 

objectives of the dissertation, with the Further Work chapter evaluating improvements that can be 

made. 
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2. LITERATURE REVIEW 

In this chapter an overview of the state of the art is presented, from basic concepts to the more 

complex architectures used nowadays. After that, methods used for human face detection and 

recognition are presented and compared, demonstrating how the introduction of AI improved the 

accuracy of those fields, describing notorious works and algorithms. 

2.1 Introduction and basic definitions to Neural Networks 

ML refers to an Artificial Intelligence field of study that promotes the ability of machines to make 

decisions autonomously, i.e., without being programed explicitly for that purpose. This is done by the 

development of algorithms based on mathematical and statistical approaches, where the system learns 

by being exposed to data, the same way as humans. A popular branch of this field, and the foundation 

of deep learning algorithms, is Neural Networks (NNs) (Nielsen, 2018). Simply put, NNs are ML models 

inspired by the way the human brain works, where the model maps the input data into desirable 

outputs. For example, for classification purposes, such as the topic of this dissertation, it tries to predict 

the correct output pair of the data provided into these models by pattern recognition. 

The first NN as an electrical circuit was proposed in 1943 by Warren McCulloch, and a learning 

algorithm was proposed by Donald Hebb six years later (Capaldi, 1992). This introduced the concept of 

perceptron (or node), which consists on a basic unit of the neuronal network that simulates a neuron 

(Figure 4). Despite its simplicity, the perceptron is a binary classifier that can learn and solve complex 

problems.  

 

 

Figure 4 - Perceptron module. 
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The learning process can be summarized in equation (1): 

𝑜𝑢𝑡𝑝𝑢𝑡(𝑥) =

{
 
 

 
 0, 𝑖𝑓 ∑𝑥𝑘𝑤𝑘

𝑘

+ 𝑏 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1, 𝑖𝑓 ∑𝑥𝑘𝑤𝑘
𝑘

+ 𝑏 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
  (1) 

where K is the number of the connection, X is the input value and W is the weight of the inputs. The full 

model can be seen in Figure 5. 

 

 

Figure 5 - Perceptron Learning Module. 

 

The model receives input values by multiplying each value by a characteristic weight. Once all inputs 

are received, coming from other perceptrons or from the data itself sent to the network, they are added, 

together with a Bias (value for which the output of the neuron converges). Then the model passes the 

information through an activation function, which limits the output value to acceptable values, getting 

output value of each perceptron. 

Activation functions, or Transfer Function, defines how the weighted sum of the inputs converts into the 

output. Normally, those functions are non-linear, limiting the value into presentable values. The most 

commonly used function is the ReLU (Schmidhuber, 2015), defined by Equation (2): 

 

𝑓(𝑥) = max(0, 𝑥) (2) 
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where 𝑥 is the input value. The output value is linear if positive or 0 if negative, as observed in Figure 6.  

 

 

Figure 6 - ReLU activation function. 

 

Nair & Hinton et al. (Nair & Hinton, n.d.) proved that activation functions perform better than sigmoid or 

hyperbolic tangent functions in Restricted Boltzmann Machines by preventing saturation of  gradients, 

which popularized its use. Glorot, Bordes & Bengio (Glorot, Bordes, & Bengio, 2011) showed that these 

activation functions speed up the training algorithms. 

Shallow NNs (Figure 7) group the perceptrons into three types of processing layers: input layer, output 

layer and, between them, hidden layers (Nielsen, 2018). These are fully connected layers, so that all 

nodes are connected to every node of the next layer, from start to finish. These models can already 

perform classification tasks, with Min & Chung et al. (Min & Chung, 2019) achieving 100% accuracy 

with shallow sigmoid-type NNs for personalized datasets following a linear separability condition. 

 

Figure 7 - Shallow Neural Network. 
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2.2 Deep Learning 

Deep learning methods revolutionized the way robotic systems recognize patterns through the data to 

which they are exposed (Lecun, Bengio, & Hinton, 2015). These methods derive from ANNs, but with 

several layers of processing, allowing better recognition. That was possible due to the availability of 

extensive training datasets for deep learning solutions, as well as larger CPUs and faster GPUs. Thus, 

this research field branched into Deep Neural Networks and CNN (O’Shea & Nash, 2015). The learning 

process is called ‘training’: the model receives inputs of a certain desirable task, altering itself over time 

accordingly to correctly predict what the input means. This method can be applied to different 

applications, with Classification, Regression and Clustering problems being some of the more 

researched and successful branches. The two main categories for training are Supervised and 

Unsupervised Learning, with the first being used more for classification and regression methods, and 

the second being mostly used on clustering. 

2.2.1 Deep Neural Networks 

DNNs (Figure 8) have the same structure as ANNs, but with more than one hidden layer being used for 

nonlinear patterns, requiring further information processing. DNNs are Feedforward networks, where 

the flow of information is passed from layer to layer from the input up to the output, with no feedback 

between the layers. 

 

Figure 8 - Deep Neural Network (DNN). 
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DNNs, or MLPs, are specified by its hyperparameters and parameters. Hyperparameters are the 

variables related to the architecture, such as the number of layers and nodes per layer, activation 

functions, etc., and the specifications of the learning process, such as the lr. These hyperparameters 

are set manually before the training process commences. The parameters are the configuration 

variables whose values are toned by the model, like the weights of the composed perceptrons. MLPs 

are used for classification and regression when the data used is presented in a tabular form, namely as 

a spreadsheet. Although DNNs can recognize images, they would usually have to be reduced into an 

array, normalized so that the desired information was in the center and with its entire data being the 

same size. Also, the fact that an image on a computer is represented by a two-dimensional matrix in 

which each pixel represents an input node with a corresponding weight would cause the training of that 

network to use a lot of computational power. 

2.2.2 Convolutional Neural Networks 

Each pixel of an image is considered an input neuron, and its value is given by its intensity. As an 

example, the MNIST dataset used in (Lecun, Bottou, et al., 1998) is a 28 x 28 pixel image of 

handwriting numbers from 0 to 9, containing 60.000 images for training and 10.000 for testing. That 

means that the network would have 784 input nodes (784 = 28 x 28). Having fully connected layers, 

DNNs connect all neurons from one layer to the next. This causes pixels at various points in an image 

to be treated in the same way. Given the spatial structure of an image, pixels in a given location have 

very similar characteristics. Knowing this, it is possible to map locations in the image, facilitating 

processing and improving the collection of characteristics.  

Convolutional Neuronal Networks (CNNs), developed by LeCun (Lecun, Bottou, et al., 1998), 

benchmarked NNs in terms of image processing and vision by computers, approaching the drawbacks 

of their fully connected counterparts. Being more robust and automatic, they have the advantage of 

relying on the spatial structure of an image (height, with and depth), removing the need to interconnect 

all neurons between layers. The depth does not refer to the total number of layers within the ANN, but 

to the third dimension of an activation volume.  

CNNs were inspired by the work on the visual cortex in the brain of mammals (Hubel & Wiesel, 

1959)(Hubel & Wiesel, 1968), assessing how they process information. These studies concluded the 

existence of several layers of neurons between the fable and cortical areas, with local connections. That 

way, neurons of a given layer perform the same type of processing, and the size of the neuron’s 
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reception fields (i.e., the region of the cortex whose signal affects the operation of a neuron) increases 

from layer to layer. 

Lecun et al. (Lecun, Bottou, et al., 1998) states that these networks are based on three premises: local 

connections, shared weights, and spatial sub-sampling or pooling. The term “local connections” means 

that these networks extract the features of an area in an image, taking advantage of correlated pixels 

representing the same feature with the same local values. Shared weights allow the pattern to be 

discovered to be invariant to the location in the image, given that the extraction filter result comes from 

the same connection regardless of the position on an image. These networks are built by stacking 

several layers of three different types, commonly known as Convolutional layer, which performs spatial 

sub-sampling, resulting in Pooling Layer and Fully Connected Layer. 

The first layer of a CNN will usually be a Convolutional Layer. They extract the desired characteristics in 

an image using filters on regions of the image. The convolution is carried out using a flexible filter or 

kernel, and shifting it along the entirety of the layer, also called receptive field, extracting the features. 

Each kernel, which mathematically consists on a matrix array of a set of weights, calculates the scalar 

product by convolving the weights by the pixels of the input. From this, the network learns by 

acknowledging activations, i.e., kernels that understand specific features in an image. By repeatedly 

sliding the filter across the spatial dimensionality of the input, the completed process results in a 2D 

activation/feature map, represented in Figure 9. 

 

Figure 9 - Activation map. 



31 

Convolutional layers are also able to reduce the complexity of the model, optimizing its output with 

three hyperparameters: depth, stride and zero pathing. The depth is manually set through the number 

of nodes within the layer in the same input. Reducing this hyperparameter significantly reduces the 

number of neurons of the network but can also reduce the pattern recognition ability. The number of 

units in which the filter slides is called stride. As seen in Figure 10, the filter travels across the input 

one unit at a time. 

 

 

Figure 10 - Stride of 1 on a 7 X 7 input volume. 

The stride is always chosen so that the output volume is an integer and not a fraction. In Figure 11, it is 

possible to see that, when using a stride of 2, the output will be of a spatial dimension much smaller 

than the input from which it resulted. A small stride results in a heavily overlapped receptive field, 

producing a large number of activations, whereas increasing the stride reduces overlapping and 

produces lower spatial dimension outputs. 
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Figure 11 - Stride of 2 on a 7 X 7 input volume. 

The output of the Convolutional layer can be calculated through equation (3): 

 

𝑂 =
(𝑊 − 𝐾) + 2𝑃

𝑆 + 1
 (3) 

 

where O represents the output size, W the input dimension (height x width x depth), K the filter 

dimension, S the stride and P the zero-padding quantity. Zero-padding the process implies applying a 

combination of pixels of value 0 around the input, as represented in Figure 12. 

With this, the output spatial reduction will be smaller, while no important input information is lost, and 

more convolutions can be applied to be able to remove more features. 

 

 

Figure 12 - Zero-pathing technique. 

 

Pooling Layers are applied to perform a down sample of the input, when the dimensionality of the layers 

needs to decrease, further reducing the computational complexity by lowering the parameters. 
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These layers are used when a set of specific features are extracted through the activation maps of 

previous convolutional layers, and their exact spatial location is no longer important to their position 

relative to the other features. With this, the layers will be drastically reduced, resulting in fewer 

parameters, thus lowering computational resources. The most common Pooling methods are Max and 

Average Pooling, as seen in Figure 13 and Figure 14 respectively.  

 

 

Figure 13 - Max Pooling on an 8 X 8 activation map with stride of 4. 

 

 

Figure 14 - Average Pooling technique on an 8 X 8 activation map with stride of 4. 

 

Through a filter and a stride, Max Pooling method checks the highest pixel value, eliminating the rest. 

The final output is then left with the larger value of each sub-region, not changing the features of the 

image, but considerably decreasing its spatial value. Average Pooling calculates the mean value 

between the nodes. 

Fully Connected Layers will be used at the end of the network after the desired features have been 

extracted through convolutions and pooling. The output of those layers is a one-dimensional array. It 
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represents the inputs of the network with reduced dimension. Like DNNs, all these layer’s neurons are 

interconnected to all the previous layer’s neurons, with its size being manually determined. A 

Convolutional network can have various Fully-connected layers, reducing the dimensional size without 

the need of creating more activations nor searching for more features in the spatial dimension of the 

images, to avoid create overfitting. 

2.3 Training of Neural Networks 

For the neural network to be able to classify the input of data sent, it needs to be able to recognize and 

identify patterns in it and understand their meaning. This is achieved through learning and training 

methods, perform a classification validation with precision tests. For that, a training set is necessary, 

with inputs of data of a desired subject grouped into batches and fed into the network. 

Typically, training a network is divided into training cycles, called epoch, with a batch of data being fed 

into the network by a feed forward manner, where the model then tries to predict what this data means. 

The learning process modifies the weights of the connections between the perceptrons, initially random, 

so that it can achieve expected results. The measurements of the errors in the performance of the 

model are estimated by the cost/loss function. Having a small cost function is the objective of the 

model, so that it has minimal losses and maximum precision. The weight values are updated with 

Backpropagation. Rumelhart et al. (Rumelhart, Hinton, & Williams, 1986) first used Backpropagation on 

neural algorithms by repeatedly adjusting the weights of the connections in the network so as to 

minimize the difference between the actual output vector of the net and the desired output vector. In 

CNNs, the algorithm updates the kernel values that extract the features. The weights are updated via an 

optimization process, where the gradients are calculated into a gradient descent method (Bottou, 

2010). That way, by back forwarding onto the network from the output layer into the input layer, the 

model finds the minimum values gradients in the direction needed to reduce errors. Then, the weights 

are optimized in the opposite way of calculated gradients. 

The training method can be divided into two major approaches: supervised and unsupervised learning. 

Supervised Learning focuses more on classification and regression problems, whereas Unsupervised 

Learning focus on Clustering issues or dimension. These two approaches are explained below. 

2.3.1 Supervised Learning 

Supervised Learning is a training method where the dataset used for training is labeled, i.e., every point 

of data is paired with an individual predefined ground truth, namely the output class desirable of that 
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data. That way, the training algorithm can assess if it got the correct answer. This method focuses on 

learning through the training process to correctly predict new instances of data without the attached 

label, intending to enable the model with the capacity of generalizing the problem outside of previously 

seen examples. For that, it needs to map the data with a function to recognize output features to 

categorize them by correctly predicting its samples. 

For classification problems, the final output are discrete labels, like fruits, animals, and people. Those 

can be binary classifiers for True or False problems like detection, or multiclass classifiers, such as the 

MNIST dataset previously discussed (Lecun, Cortes, & C.J.C., 1998). MNIST dataset is a 0 to 9 

handwritten digits dataset, used in various classification learning problems as an introductory exercise. 

Nowadays, various databases for image classification are available, which is instrumental for computer 

vision and deep learning research improvements. ImageNet project (Russakovsky et al., n.d.) offers a 

large visual database designed for visual object recognition software research, with more than 14 

million images hand-annotated indicating what topics are considered as pictures in more than 20000 

categories. This project also hosts a yearly software competition since 2010 called the ImageNet Large 

Scale Visual Recognition Challenge. This competition evaluates algorithms for object detection and 

image classification at large scale, allowing researchers to compare progress in detection across a 

wider variety of objects, and was crucial to various benchmarking progresses over the last years. 

Regression is a process of predicting a continuous value by finding the correlation between dependent 

and independent variables. These techniques are used to predict, for instance, pricings and market 

trends. 

2.3.2 Unsupervised Learning 

Contrary to the previous approach, unsupervised learning systems use untagged data, discovering the 

patterns and information without assistance. This allows users to perform more complex tasks, 

although its unpredictability can be a drawback, resulting in a more expensive training process, when 

compared to supervised learning.  

The main category of this method is Clustering. It analyses the structural components of the data and 

segregates them by similarity. Entities in each cluster are more similar to each other than to entities of 

different clusters. For that, the training algorithm needs to understand how the data is structured. Then, 

considering the data located in an n-dimensional space, intra-variance between samples needs to be 

minimal while having maximum inter-variance between different classes. 
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Another powerful method used is dimension reduction of data. Input variables are referred as 

dimensionality. As an example, feeding the network with an array of 10 positions means the input is a 

10-dimension input. As such, using an image as input can result in a hundred or thousand dimensions. 

By reducing its complexity, while retaining the meaningful properties of the original data, it is 

represented with fewer dimension, and the model tends to consequently be less sparse and not overfit. 

This technique is also used for visualization purposes by reducing the data into a 2D or 3D Euclidean 

space. The PCA (Jollife & Cadima, 2016) technique performs a linear projection by calculating the 

Principal Components, new variables that are linear combination of the original data, and creating new 

uncorrelated variables that successively maximize variance. Additionally, the t-SNE (Van Der Maaten & 

Hinton, 2008a) is a non-linear method based on Stochastic Neighbor embedding that computes K-

dimensional data into a lower dimensional mapping by performing several region based 

transformations. 

2.4 Convolutional Network Architectures  

This section provides an overview of some CNN structures that were important for the development for 

the field with different benchmarking records in recognition tasks, as well as recognizing the 

improvements those methods and ideas had in architecture designing.  

The first notorious architecture of a CNN was conceived by Lecun et al. (Lecun, Bottou, et al., 1998) 

who named it Lenet-5, and was a pioneer of this type of networks. It was used to test written 

handwritten digits for zip codes at post offices, now known as the MNIST dataset (Lecun, Cortes, et al., 

1998). Being the first structural architecture for these types of networks, Lenet-5 introduced the 

concept of convolutional networks, incorporating the spatial mapping in an image, where it extracted 

the features present through designated filters.  

The architecture was designed of several layers, namely: 

1. Input layer at the beginning of the network – considered as initial image; 

2. Convolutional Layer - created from the convolutions of the initial input, where 5x5 filters 

with stride of 1 were applied; 

3. Average Pooling Layer – created by subsampling with a 2x2 filter with stride of 2, 

reducing the spatial size of the initial image; 

4. Fully-connected Layer – sorts the data received from the network, predicting the input. 
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Although the method proved to be efficient, being acknowledged by its innovation at the time, its 

expensive computational cost required the model to be trained for 2 to 3 days until it could predict 

accordingly a simple dataset. Combined with lack of training data for real life problems, this approach 

proved unsustainable for better purposes than recognizing simple features in small images. 

With better performance CPUs and GPUs, multi-core parallel processing architecture allows the 

computer to perform expensive computational calculations, which shortened the time spent by a lot. 

Additionally, it led to a significant increase in labeled datasets publicly available, resulting in a big 

breakthrough in this field of study. Alex Krizhevsky et al. (Krizhevsky, Sutskever, & Hinton, 2017) 

proposed the AlexNet architecture in 2012 to participate in the ILSVRC competition (Russakovsky et al., 

n.d.). Hinton et al. (Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012) states that small 

datasets with deeper network tend to overfit the model, the state where the framework adapts and 

performs well to the training data, ‘memorizing’ its details, but struggles to generalize outside of it. 

AlexNet presented three techniques for that problem: 1) use of Data augmentation, 2) making the data 

more diverse, and 3) using the concept of Dropout. That way, this method prevents complex co-

adaptations on the training data by temporarily removing a percentage of random weights pixels in the 

hidden layers, along with all its incoming and outgoing connections. The AlexNet architecture is similar 

to Lenet-5, but has a larger number of layers, therefore more complex or, with the correct neural 

network nomenclature, deeper. Having a simple layout compared to more modern architectures, 

AlexNet architecture design was composed by 5 convoluted layers, max-pooling layers, dropout layers, 

and 3 fully-connected layers, with the non-dropout variation having only one fully-connected layer, using 

60 million parameters. The major difference in architecture features was the introduction of overlapping 

on the pooling layers. With s being the space between the pooling grid and z x z the center of the 

pooling grid location, the authors set s < z, reducing the top-1 and top-5 error rates by 0.4% in 

comparison to the s = z counterpart with equivalent output dimension. It was also observed that 

overlapping pooling was less prone to overfit. 

For training dataset, the network used the ImageNet data for the ILSVRC challenge, a subset of a larger 

dataset (15 million images with a total of 22,000 categories), containing 1000 subjects, with over 1.2 

million training images, 50000 validation images and 150000 testing images. For this, ReLU was used 

as activation function to prevent saturation, achieving 25% error rate on CIFAR dataset (Krizhevsky & 

Hinton, 2009), which is six times faster in relation to the tanh activation function previously used, as 

well as SoftMax function as classifier. The training was also done using 2 parallel GPUs, given that, at 

the time, processing 1.2 million images was not conceivable with only one. This architecture was 
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revolutionary in the area of deep learning. The top-5 error was reduced from 26.2% from the previous 

years to 15.3%, in the 5 classes where the model predicted the worst solution. (“ImageNet Large Scale 

Visual Recognition Competition 2012 (ILSVRC2012).” [Online]. Available:image-

net.org/challenges/LSVRC/2012/, n.d.) That demonstrated that CNNs obtain better performance in 

image recognition tasks than previous studied algorithms, making this the paradigm for this field of 

study. 

Introduced by Simonyan & Zisserman et al. (Simonyan & Zisserman, 2014), VGG-Net explored the 

concept of depth on CNNs in order to increase the model’s accuracy in image recognition settings. 

With various configurations proposed, highlighting the 16 and 19-layers layout, represented in Table 1, 

the convolution filter was modified to a 3 x 3 design with a stride of 1 in order to reduce the millions of 

parameters used. To compensate the reduction of parameters while maintaining the performance, the 

framework stacked 2 convolutional layers in a row. For instance, using 2 layers with a 3 X 3 filter 

results in 2 X 3 X 3 = 18 parameters, which has the same receptive field to one convolutional layer with 

a 5 X 5 filter with 1 X 5 X 5 = 25 parameters, decreasing substantially the number of parameters by 

28%. Even with a significant decrease, those models were still very computational heavy. The trade-off 

in a better performance network was the use of about 3 times the parameters used in comparison to 

the AlexNet counterpart. VGG-Net participated in the ILSVRC in 2014 on the same dataset as AlexNet, 

where it obtained a top-5 error-rate of only 7.3%, placing 2nd in classification and 1st in location 

(ImageNet Large Scale Visual Recognition Competition 2014 (ILSVRC2014).” [Online]. Available:image-

net.org/challenges/LSVRC/2014/, n.d.). This reinforced the notion that the deeper and easier CNNs, 

understand representations in images, the more accurate the results will be. 
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Table 1 - VGG-Net 2 best performance architecture configurations. 

VggNet Convolution configuration 

16 weight layers 19 weight layers 

Input (224 X 224 RBG image) 

Conv3-64 

Conv3-64 

Conv3-64 

Conv3-64 

Max Pool 

Conv3-128 

Conv3-128 

Conv3-128 

Conv3-128 

Max Pool 

Conv3-256 

Conv3-256 

Conv3-256 

Conv3-256 

Conv3-256 

Conv3-256 

Conv3-256 

Max Pool 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Max Pool 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Conv3-512 

Max Pool 

FC- 4096 

FC- 4096 

FC- 4096 

SoftMax  
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Also in 2014, Szegedy et al. (Szegedy et al., 2015) introduced the GoogleNet, also known as Inception 

architecture. Szegedy highlighted that, at the time, the most straight forward way of improving the 

performance of the networks was increasing the depth of the framework. Although practical, two major 

drawbacks could not be ignored: increasing cost of the model, which required more computational 

resources for the training and fine tuning, and the increase in parameters to calculate, making it more 

prone to overfit with smaller/low quality datasets produced. 

As stated, CNNs had a standard layout structure of stacking processing layers, varying in number and 

size. The authors theorized that a network architecture that made use of extra sparsity at filter level 

could be the next step to lessen the computation behind the network learning process. Thus, the 

Inception module was presented, with its configuration using convolution and pooling operations in a 

parallel way, concatenating them into the next level layer of the network, as seen in Figure 15. 

 

 

Figure 15 - Example of a ‘naïve’ Inception Module schematic performing 3 convolutions and max pooling with different spatial size filters. 

 

Hence, the model has different size kernels finding various features at the same time, and increasing 

the width of the network, the number of units at each level. The main problem with these modules is 

that even modest number of 5 X 5 convolutions can be prohibitively expensive on top of the large 

number of filters already used, leading to a blow up of parameters. 

To tackle that problem, Szegedy incorporated 1 X 1 convolutional layers, also known as ‘Bottleneck 

Layers’, firstly introduced in Network in Network by Lin et al. (M. Lin, Chen, & Yan, 2014). This simpler 

convolutional layer aims to reduce the dimension of its inputs. As an example, seen in  
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Figure 16, convoluting a 1 X 1 X 44 filter on a 24 X 32 x 190 input reduces the output depth of the 

output to only 44 channels without compromising the height and width. Those are used before the 

more complex convolutions, resulting in a less computational output compared to the ‘naïve’ first 

implementation, as well as increasing the non-linearity of its outputs, since the convolutions included 

ReLU functions which do not affect dimensions and avoid losing feature representation. The final 

Inception module can be visualized on Figure 17. 

 

 
Figure 16 - Dimension Reduction using 1 X 1 convolutional layer. 
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Figure 17 - Inception Module schematic with bottleneck layers for dimension reduction. 

 

GoogleNet architecture is represented in Table 2. All the convolutions had ReLU activation functions. #3 

X 3 reduce and #5 X 5 reduce showcase the number of 1 X 1 filters in dimension reduction before the 

3 X 3 and 5 X 5 convolutions. The network was 22 layers deep and had 27 counting Pooling layers. It 

used auxiliary classifiers connected to intermediate layers, if considered that propagating gradients 

through all layers was a concern, given its large depth of the network. 
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Table 2 - GoogleNet architecture. 

 

This network was important because it resulted in a significant increase in performance, with its 

structural creativity at a modest increase of the computational cost compared to deeper networks. By 

reaching 1st place with a top-5 error-rate of 6.6% in classification on the 2014 ILSVRC, it outperformed 

the already reviewed VGG-Net in that regard, while also having 12 X fewer parameters (5 million) than 

AlexNet (60 million). 

The following year, Szegedy et al. (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016) managed to 

improve its approach by introducing 2 new frameworks: Inception-v2 and Inception-v3. 

Inception-v2, or Batch-Normalized Inception, targets what the authors call internal covariate shift - the 

phenomenon of changes in the distributions of internal nodes of a deep network due to changes in 

network parameters during training. That means that the NN must continuously adapt to input 

Layer Type 
Patch size/ 

stride 
Output size Depth # 1 X 1 

#3 X 3 

reduce 
#3 X 3 

#5 X 5 

reduce 
#5 X 5 Parameters Operations 

Convolution 7 X 7/ 2 112 X 112 X64 1      2,7 K 34 M 

Max pool 3 X 3/ 2 56 X 56 X 64 0        

Convolution 3 X 3/ 1 56 X 56 X 192 2  64 192   112 K 360 M 

Max pool 3 X 3/ 2 28 X 28 X 192 0        

Inception 

module 
 28 X 28 X 256 2 64 96 128 16 32 159 K 128 M 

Inception 

module 
 28 X 28 X 480 2 128 128 192 32 96 380 K 304 M 

Max pool 3 X 3/ 2 14 X 14 X 480 0        

Inception 

module 
 14 X 14 X 512 2 192 96 208 16 48 364 K 73 M 

Inception 

module 
 14 X 14 X 512 2 160 112 224 24 64 437 K 88 M 

Inception 

module 
 14 X 14 X 512 2 128 128 256 24 64 463 K 100 M 

Inception 

module 
 14 x 14 x 528 2 112 144 288 32 64 580 K 119 M 

Inception 

module 
 14 X 14 X 832 2 256 160 320 32 128 840 K 170 M 

Max pool 3 X 3/ 2 7 X 7 X 832 0        

Inception 

module 
 7 X 7 X 832 2 256 160 320 32 128 1072 K 54 M 

Inception 

module 
 7 X 7 X 1024 2 384 192 384 48 128 1388 K 71 M 

Avg Pool 7 X 7/ 1 1 X 1 X 1024 0        

Dropout  1 X 1 X 1024 0        

Linear  1 X 1 X 1000 1      1000 K 1 M 

SoftMax  1 X 1 X 1000 0        
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distribution of the learning system in the distribution of layer’s inputs, making the training slower, 

requiring low learning rates and careful parameter initialization. Addressing the problem, Batch-

Normalization (Ioffe & Szegedy, 2015) was applied into the layer’s inputs, allowing much higher lr 

without risk of divergence and less careful initialization. This network acted as a regularizer, having a 

beneficial effect on gradient flow through the network. Batch-normalization computes the mean and 

standard-deviation before inputting the next layer of the network layer, normalizing the response with 

these values. These practices achieved the same accuracy as the previous Inception Module with 14 

less fewer training steps. Another improvement made was the replacement of larger kernels with 2 

smaller ones, the same way as VGG-Net (Simonyan & Zisserman, 2014) on Inception modules (Figure 

18), where the 5 X 5 convolutions layer was replaced by two 3 X 3 convolutions. 

 

 

Figure 18 - Schematic Inception Module of Inception-v2, where 5 X 5 convolution layers were replaced by two 3 X 3 convolutions layers. 

 

Inception-v3 continued with optimization processes for lowering the computational cost. That was 

accomplished with the application of spatial factorization into asymmetric convolutions, i.e., factorized n 
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Inception-v3 continued with optimization processes for lowering the computational cost. That was 

accomplished with the application of spatial factorization into asymmetric convolutions, i.e., factorized n 

X n convolutions into n X 1, followed by 1 X n. E.g., using 3 X 1 and 1 X 3 convolution has the same 

receptive field as the already known 3 X 3, using less parameters: 

• 3 X 3 filter, number of parameters = 3x3 = 9; 

• 3 X 1 and 1 X 3 filter, number of parameters = 3x1 + 1x3 = 6; 

Resulting in a 33% reduction of parameters. Using the Inception module in Figure 17 as reference, its 

new factorized and more efficient counterpart can be seen on Figure 19. 

 

 

Figure 19 – Schematic of Inception Module of Inception-v3, using factorize filter and asymmetric convolutions. 

 



46 

This framework also proposed a different module with expanded filter bank outputs, believing that 

higher dimensions are easier to process locally within a network, where increasing activations allow for 

more disentangled features, which results in faster training. The module is represented in Figure 20. 

Another feature was the removal of the two auxiliar classifiers of the original architecture, where its loss 

was added to the final model’s loss. Instead, only one was used, but as a regularizer, performing Batch-

Normalization similar as Inception-v2. That results in 0.4% absolute gain in top-1 accuracy. 

Other ideas presented were label smoothing as regularization, preventing disparities of output sizes and 

efficient grid size reduction, in order to avoid representational bottleneck. 

 

 

Figure 20 - Inception Module of Inception-v3 for high dimensional representations. 
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The final architecture had 42 layers deep, with its computational cost being only about 2.5 fold higher 

than GoogleNet (Szegedy et al., 2015). The outlined of the network is presented in Table 3, where grid 

size reduction was used between the Inception modules. 

 

Table 3 - Inception-v3 Network Architecture. 

Type Patch size /stride Input size 

Convolutional 3 X 3  / 2 229 X 299 X 3 

Convolutional 3 X 3 / 1 149 X 149 X 32 

Convolutional (with 0-paddin) 3 X 3/ 1 147 X 147 X 32 

Pooling 3 X 3 / 2 147 X 147 X 64 

Convolutional 3 X 3 / 1 73 X 73 X 64 

Convolutional 3 X 3 / 2 71 X 71 X 80 

Convolutional 3 X 3 / 1 35 X 35 X 192 

3 x Inception Module As seen in Figure 18 35 X 35 X 288 

5 x Inception Module As seen in Figure 19 17 X 17 X 768 

2 x Inception Module As seen in Figure 20 8 X 8 X 1280 

Pooling 8 X 8 8 X 8 X 2048 

Linear Logits 1 X 1 X 2048 

Softmax Classifier 1 X 1 X 1000 

 

Inception-v3 was the runner up of ILSVRC in 2015 (ImageNet Large Scale Visual Recognition 

Competition 2015 (ILSVRC2015).” [Online]. Available: image-net.org/challenges/LSVRC/2015/, n.d.), 

reaching 21.2% top-1 and 5.6% top-5 error for single frame evaluation. With a 4-model ensemble and 

multi-crop evaluation, the accuracy was reported to be 3.5% top-5 and 17.3% top-1 error. 

Developed in 2015 by He et al. (K. He, Zhang, Ren, & Sun, 2016), ResNet focused on deepening 

networks without affecting its performance, given that deeper NN are more difficult to train given the 

vanishing gradient problem. ResNet solved this problem by introducing residual blocks into the 

architecture, explicitly reformulating the layers as learning residual functions with reference to the layer 
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inputs, instead of learning unreferenced functions. Those were easier to optimize, gaining accuracy with 

considerably increased depth. 

The vanishing gradient problem (Glorot & Bengio, 2010) refers to the saturation of the accuracy of the 

network when adding more layers, degrading rapidly. (Glorot & Bengio, 2010) verified that a 20-layer 

plain network got lower training error and test error than 56-layer plain network. That experimentation 

refuted the premise that the same network has better accuracy the deeper it gets. Such degradation 

was not associated to overfitting, but to backpropagation issues, computed from the back of the 

network to the front. When training a deep model, the weight of each layer receives an update 

proportional to the partial derivative of the error function but in some cases, the gradients disappear 

when vanishingly small multipliers are computed. This effectively prevents the weight from changing its 

value, proving that not all systems are similarly easy to optimize by stacking more layers. The proposed 

solution for the degradation problem was the introduction of a deep residual learning framework, 

presented below in Figure 21. 

 

.  

Figure 21 - Residual Block of ResNet model. 

 

By attaching skip/shortcut connections and performing identity mapping, the input 𝑥 was added to the 

output after a few weight layers. Formally, denoting the output as 𝐻(𝑥), the new the underlying 
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mapping summed with the identity was 𝐻(𝑥) =  𝐹(𝑥) + 𝑥. That meant weight layers fitted a residual 

mapping of 𝐹(𝑥) = 𝐻(𝑥) − 𝑥, being easier to optimize residual mappings than to optimize the 

original, unreferenced mappings. Identity shortcut connections did not add any extra parameter nor 

computational complexity. With that, He et al. (K. He, Zhang, Ren, & Sun, 2016) proved, on the 

ImageNet dataset, that: 

• Extremely deep residual nets with skip connections were easier to optimize in comparison 

with its plain network counterparts (that simply stack layers), with the former exhibiting 

higher training error when the depth increases. 

•  Deep residual nets could easily enjoy accuracy gains from greatly increased depth, 

producing results substantially better than previous networks. 

Four main architectures were proposed with different depths: ResNet-34, ResNet-50, ResNet-101 and 

ResNet-152, with 34, 50, 101 and 102 being the number of layers used in the architecture, 

respectively. The baseline models were stacked 3 X 3 convolutions, inspired by VGG-Net (Simonyan & 

Zisserman, 2014), using shortcut connections every 2 pairs, as seen in Figure 22.(a). The deeper 

models replaced those 2-layer building blocks with a 3 layer bottleneck block, with the same premise 

use in Inception architectures (Szegedy et al., 2015), in order to lower the number of parameters, and 

reducing the complexity whilst deepening the layout, as seen in Figure 22.(b). 
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Figure 22 - Residual building blocks schematic used on ResNet architectures (a) Residual building blocks used on ResNet--34; (b) 
Bottleneck building block used on ResNet-50/101/152. 

As notable results, a plain 34-layer and 18-layer networks were trained on the ImageNet dataset, the 

same way as ResNet architectures with the same number of layers. The top-1 error on ImageNet 

validation dataset is presented in Table 4. 

Table 4 - Top-1 error % on ImageNet validation comparison between plain and ResNet architectures. 

 Plain Network ResNet Network 

18-Layer error % 27.94 27.88 

34-Layer error % 28.54 25.03 

 

The error percentage was higher on deeper networks on plain layouts, presenting the gradient descent 

problem. With ResNet networks, the error decreased, solving the problem with shortcut connections. 

Compared with the state-of-the-art at the time, ResNet won ILSVRC in 2015 (ImageNet Large Scale 

Visual Recognition Competition 2015 (ILSVRC2015).” [Online]. Available: image-

net.org/challenges/LSVRC/2015/, n.d.), with some results Table 5. This architecture was a 

breakthrough to deep learning algorithms, proving that residual blocks optimized the deeper network 

training in comparison to plain counterparts, where better performances could be achieved with the 

same number of parameters with only skipping connections between some layers. 

 

Table 5 - Results of ResNet Architectures. 

 

2.5 Face Detection and Facial Recognition 

Face detection and facial recognition are active computer vision fields of study researched for over 

twenty years. Being a powerful biometric for a user’s identity authentication, its widely use covers many 

different areas such as law enforcement (Kalal, Mikolajczyk, & Matas, 2010), airport and boarder 

 VGG-16 GoogleNet ResNet-34 ResNet-50 ResNet-101 ResNet-152 
top-1 error % on 

ImageNet 
validation 

28.07% - 24.19% 22.85% 21.75% 21.43% 

top-5 error % on 
ImageNet 
validation 

9.33% 9.15% 7.40% 6.71% 6.05% 5.71% 

top-1 error % on 
single model 

ImageNet 

validation 

8.43% 7.89% 5.60% 5.25% 4.60% 4.49% 

top-5 error % on 

single model 
ImageNet 
validation 

24.4% 21.99% 21.53% 20.74% 19.87% 19.38% 
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control or marketing (Masi, Wu, Hassner, & Natarajan, 2019). As many computers vision problems, the 

research paradigm shifted with the blow up of Deep Learning. Convolutional Neural Networks and the 

availability of extensive training datasets in unconstrained capture conditions allowed for quicker and 

more robust systems regarding previously implemented methods. 

Face detection can be regarded as an object-class detection problem, where its algorithms check for 

facial landmarks in order to identify faces in images or videos, isolating the proposals via bounding 

boxes. This method is the cornerstone for several facial applications and analysis, such as facial 

recognition, being the initial step to modern vision-based human/robot interactions. According to 

Zafeiriou et al. (Zafeiriou, Zhang, & Zhang, 2015), the first efforts were mainly based on hand-crafted 

features extracted from images of upright frontal faces, fed into classifiers to detect likely face regions. 

The first landmark was the Viola & James framework (Viola & Jones, 2001) in 2001, providing a real-

time facial detector using Haar Cascade classifiers to detect promising face-like regions, fed into an 

Adaboost learning algorithm to select critical features from a very large set of potential options. This 

method explored cascade chain to reject false face regions. The work had high accuracy with great 

detection speed, with its principles still being used into new algorithms. This led to the widespread 

adoption of such scale-invariant face detection frameworks. Another popular approached was the use of 

regional statistics like histograms. Histograms of Oriented Gradients (HOG) (Dalal & Triggs, 2005) 

reviewed existing edge and gradient based descriptors, with the classification being performed with an 

SVM classifier, significantly outperforming existing features sets for human detection at the time. 

However, those methods proved to still be limited on multiple variations of faces like scale, pose or 

illumination. 

Facial recognition is a multi-label classification problem, focusing on the analysis of faces in order to 

predict a specific identity. A survey (M. Wang & Deng, 2021) highlighted three big milestones before 

Deep learning techniques, presented in Figure 23. 

 

Figure 23 - Milestone of face representation for facial recognition. 
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These holistic approaches derive from dimensional reduction algorithms as baseline. These dominated 

the face recognition community in the 1990’s and 2000’s through certain distribution assumption, 

such as linear subspace, manifold, or sparse representation. They were popularized by the Eigenface 

method (Turk & Pentland, 1991), where eigenvectors were calculated using principal components 

analysis (PCA) and then compared to known individuals. This framework proved to be efficient but has 

low accuracy with different scales of images, orientation invariance of the head, and lighting variation 

problems. Fisher Discriminant Analysis (Belhumeur, Hespanha, & Kriegman, 1997) performed better 

on illumination variance and expression in a linear subspace approach, while Laplacianfaces (X. He, 

Yan, Hu, Niyogi, & Zhang, 2005) used locality preserving projections (LPP), providing lower error rates. 

However, these methods are still very prone to misclassification when dealing with age and pose 

variation, as well as facial changes. 

In 2000’s, facial recognition converged to local feature-based filtering methods such spatial pooling or 

histograms. With these methods, Gabor-Fisher classifiers (C. Liu & Wechsler, 2002) and local binary 

patterns (Ahonen, Hadid, & Pietikäinen, 2006) techniques and its extensions achieved robust 

performances through some invariant properties of local filtering. Although handcrafted features were 

an important breakthrough, they suffered from a lack of distinctiveness and compactness. 

In the early 2010s, facial recognition used shadow networks with learning-based local descriptors (Low, 

n.d.) (Chan et al., n.d.), where local filters are learned for better distinctiveness, and the subject’s faces 

are compacted into encoders. With good results, these shallow techniques still had limitations regarding 

robustness and complex non-linear facial variations. 

In general, non-deep learning methods used one or two processing layers in order to recognize human 

faces, focusing on filtering responses, histograms, or local-based distributions. Those methods almost 

only focused on one aspect of unconstrained facial changes, like lighting, pose, expression, while not 

approaching these integrally. Researchers studied intensively to improved said results, only to improve 

the accuracy slowly. Hence, that technical insufficiency made facial recognition frameworks unstable, 

with its real-world systems having untrustworthy performances with various false positives. 

2.6 Related Work 

Deep Learning based facial detection and recognition pipelines reached state-of-the-art performances 

compared to traditional methods, having more processing layers which incorporated previous filtering 

techniques. A key contribution was the assembly of large datasets of annotated unconstrained face data 

in order to train said algorithms. 
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CNNs have been successfully applied for face detection and location. The main benchmarks for this 

field of study are the Wider Face (Yang, Luo, Loy, & Tang, 2016), with 32.203 images and 393.703 

labeled faces with a high degree of variability in scale, pose and occlusion, resulting in a very 

challenging dataset. For each event class, it randomly selected 40%, 10%, 50% data as training, 

validation and testing sets, accordingly. Other benchmarks include FDDB dataset, PASCAL Face (Yan, 

Zhang, Lei, & Li, n.d.), MALF, UFDD (Nada, Sindagi, Zhang, & Patel, n.d.) or VGGFace2 (Cao, Shen, Xie, 

Parkhi, & Zisserman, 2018). 

According to Minaee et al. (Minaee, Luo, Lin, & Bowyer, 2021), the four main techniques used for facial 

detection were: 

1. Cascade-CNN based models;  

2. R-CNN based models; 

3. Single shot detector models; 

4. Feature Pyramid Detector based models. 

Cascade-CNN based models grouped several architectures into one, where the output of the previous 

convolutional model is the input of the next. Those proved to be powerful multi-tasking frameworks, 

accurately performing facial regression as well as keypoint estimation, and managing to align the 

detected face proposals. Li et al. (Li, Lin, Shen, Brandt, & Hua, n.d.) proposed a 12-layer cascaded 

operating at different resolutions, quickly rejecting background regions on the early low-resolution 

stages, and having calibration methods after every detection phase. In the same order, Zhang et al. (K. 

Zhang, Zhang, Li, & Qiao, 2016) proposed a 3-phase cascaded architecture for joint face detection and 

alignment trained on the WIDER FACE dataset (Yang et al., 2016), where that training data presented 

large amounts of significant pose variation, lighting or expression.  

Region proposal-based CNN algorithms used a two-step approach. First identified regions where objects 

are expected. Then, these algorithms used region proposal networks, extracting regions of interest in 

order to propose bounding box coordinates for a desired class. By being very successful for object 

detection, those algorithms were adapted to face detection by several works. Chen et. al. (Chen, Hua, 

Wen, & Sun, n.d.) used a multi-task Region proposal network, where it predicted the candidate faces 

along with its facial landmarks. Those regions were then normalized and fed into a Region-CNN where it 

validated if the regions are valid faces or not. Wang et al. (Y. Wang, Ji, Zhou, Wang, & Li, 2017) 

presented a ResNet convolutional network with as feature extractor, resulting in a batch of the RoI. 

Those were then further fed into two sibling positions sensitive RoI pooling layer to produce class score 
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maps and bounding box prediction map. That way with multi-scale training maps to a certain location of 

the output score maps. 

Single shot detection models proposed bounding boxes over different aspect ratios and scales, 

generating scores accordingly to the certainty of the presence of a face. Additionally, the network 

combined predictions from multiple feature maps with different resolutions to naturally handle samples 

of various sizes, instead of rescaling the original image like the cascaded approaches. That way, single 

shot detects faces in a single stage directly. Najibi et al. (Najibi, Samangouei, Chellappa, & Davis, n.d.) 

achieved state of the art results by using a scale-invariant design in a single forward pass. 

Feature Pyramid Network Based models (T.-Y. Lin et al., n.d.) combined semantically weak features 

with meaningly strong features based on skip-connections. Zhang et al. (J. Zhang et al., n.d.) proposed 

a feature agglomeration network, where inherent multi-scale features were exploited by aggregating 

semantic features maps with different scales to augment lower-level feature maps via a hierarchical 

agglomeration manner. Deng et al. (Deng et al., n.d.) introduced RetinaFace, which performed a pixel-

wise face localization on various scales in a single-stage. This algorithm took advantage of joint extra-

supervised and self-supervised multi-task learning. The authors manually annotated five facial 

landmarks on WIDER FACE dataset, observing significant improvement in hard face detection. It 

achieved state of the art performance in several benchmarks. 

Facial recognition, being a multi-class classification, benefited greatly from deep learning techniques, 

having typical CNN architectures as structural baseline. Wang and Deng (M. Wang & Deng, 2021) 

categorized various novel frameworks by their lost functions, being grouped by Euclidean-distance-

based loss, angular/cosine-margin-based loss and SoftMax Loss and its variations. 

SoftMax Loss is a logistic function used for probability distribution. In multi-class classifications, SoftMax 

computes the probability vector of all the output classes. DeepFace (Taigman, Yang, Ranzato, & Wolf, 

2014) represented the first breakthrough in facial recognition using neural networks, where it achieved 

state-of-the-art accuracy (97.35%) on LFW benchmark (Huang et al., 2008) in 2014. Using the SoftMax 

loss function and the AlexNet (Krizhevsky et al., 2017) model trained using four million facial images, 

approaching human performance (97.53%). After this breakthrough, various proposals achieved state-

of-the-art performances regarding classification. However, SoftMax had the drawback that intra-

variations could prevail over inter-variations, making the loss function insufficient for generalization of 

the facial recognition pipeline. 
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Euclidean-distance-based loss method maps facial features extracted from images into embedding 

arrays into a Euclidean space, that maximized the inter-variance (different classes/between group) 

distance and minimized the intra-variance (same class/within group). 

Contrastive loss simultaneously compressed the Euclidean distance of image pairs of the same 

individual, while enlarging the distance between different identity pairs. DeepID2 (Sun, Wang, & Tang, 

2015) combined the SoftMax algorithm for classification with contrastive loss for verification, reaching 

99.15% accuracy on the LFW benchmark. Later, DeepID2+ (Sun, Chen, Wang, & Tang, 2014) added 

supervision to early stages of the CNN, as well as increasing the dimension of hidden representations. 

DeepID3 (Sun, Liang, Wang, & Tang, 2015) introduced the VggNet and GoogleNet architectures into the 

previous algorithms. Although powerful, the contrastive loss problems reside on the margin parameter 

used on the positive and negative pairs being difficult to choose in order to optimize accuracy. The main 

ideas were the Contrastive loss and the Triplet loss, providing great performances in facial classification 

functions. 

Triplet loss algorithm used face triplets, anchor, positive sample, and negative sample. Anchor and 

positive sample are the same class identities whereas the negative sample is a different class sample. 

The formula tried to minimize the relative distance between the anchor and the positive while 

maximizing the anchor/negative distance. This concept was introduced by FaceNet (Schroff, 

Kalenichenko, & Philbin, 2015), which directly optimized the embedding itself, rather than using an 

intermediate bottleneck. Using the Inception architecture, Szegedy et al. (Szegedy et al., 2015) provided 

the capability to concatenate different filter sizes in the same processing layer. VGGface (Parkhi, 

Vedaldi, & Zisserman, 2015) built a large-scale dataset, training a VGG network pipeline and fine-

tunning it via triplet loss. Triplet loss approaches can be difficult to optimize given the training instability 

induced by the selection of triplets, making it hard to choose effective samples for various classes. 

In other Euclidean loss metrics proposed, Center loss (Wen, Zhang, Li, & Qiao, n.d.) proposed a center-

invariant loss, calculating the ‘centers’ of each class, penalizing the distance between the features and 

their corresponding class centers. By reducing that distance of each data sample, it compresses the 

inter-variance. Combining it with a SoftMax loss, Center loss prevents embeddings from collapsing. 

Range loss (X. Zhang, Fang, Wen, Li, & Qiao, 2017) minimized the greatest ranges of harmonic means 

in one class and, maximizing the shortest inter-class distance within one batch. 

Angular/Cosine-margin based loss studied angular similarity of discriminative face features, generating 

angular/cosine separability between the learned characteristics. Compared to the Euclidean-distance 

based loss, this method added constraints in a hypersphere manifold, represented in Figure 24. 
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Figure 24 - Hypersphere manifold design. 

 

L-SoftMax (W. Liu, Wen, Yu, & Yang, 2016) combined the SoftMax function with a large angular margin 

in a multiplicative manner. Based on that work, A-SoftMax normalized the extracted feature vectors with 

a L2. normalizer, where faces are represented into a hypersphere space manifold, learning by angular 

margin. ArcFace (Deng, Guo, Xue, & Zafeiriou, 2018) and CosineFace (Feng Wang, Cheng, Liu, & Liu, 

2018) overcame the optimization problems by presenting additive angular/cosine margins. Those were 

easier to implement without the need of complex hyperparameters and can be converged without 

SoftMax. Angular/Cosine-margin based loss approaches tend to achieve better performance, although, 

according to Wang (Fei Wang, n.d.), these loss approaches are very vulnerable to noisy or unclean 

datasets. 

The biggest prerequisite for an effective deep learning face recognition pipeline is a sufficiently large 

dataset. Early works of facial recognition trained with private datasets. Naming a few, Facebook’s 

DeepFace (Taigman et al., 2014) trained on 4 million images of 4000 people. Google’s FaceNet 

(Schroff et al., 2015) trained on 200 million images of 3 million classes. DeepID methods trained on 

200.000 images of 10.000 people. Hence, performance results could not be replied given the lack of 

data necessary. Nowadays, public datasets were created, mainly by public institutions. CASIA-Webface 

(Yi, Lei, Liao, & Li, n.d.) provided the first public training dataset, containing 500.000 images of 10.000 

celebrities collected online. Recently, larger datasets were created and made available publicly, such as 

the MS-Celeb-1M (Guo, Zhang, Hu, He, & Gao, n.d.), VGGface2 (Cao, Shen, Xie, Parkhi, & Zisserman, 

n.d.) or Megaface (Kemelmacher-Shlizerman, Seitz, Miller, & Brossard, n.d.).Table 6 presents some of 

the most used datasets to achieve a robust facial recognition. 
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Table 6 - Facial Recognition datasets used for training 

Datasets Publish Time Images Subjects 

CASIA WebFace 2014 494.414 10.575 

Facebook (private) 2014 4.4 million 40.000 

CelebFaces+ (private) 2014 202,599 10.177 

Google (private) 2015 
>500 

million 
>10 million 

VGGface 2015 2.6 million 2.622 

VGGface2 2017 3.31 million 9.131 

MegaFaces 2016 4.7 million 672.057 

MS-Celeb-1M 2018 4 million 80.000 

 

In order to compare the state-of-the-art facial recognition methods, Wang and Deng (M. Wang & Deng, 

2021) compared the performance accuracy results on the LFW benchmark (Huang et al., 2008), which 

is presented in Table 7: 
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Table 7 - LFW benchmark results of deep learning facial recognition approaches. 

Method 
Public. 

Time 
Loss 

Number of 

Networks 
Architecture Training Set Accuracy +/- Std (%) 

DeepFace (Taigman 

et al., 2014) 
2014 SoftMax 3 Alexnet 

Facebook 

(4.4M,4K) 
97.35 +/- 0.25 

DeepID2 (Sun, 

Wang, et al., 2015) 
2014 contrastive loss 25 Alexnet 

CelebFaces+ 

(0.2M,10K) 
99.15 +/- 0.13 

DeepID3 (Sun, 

Liang, et al., 2015) 
2015 contrastive loss 50 VGGNet-10 

CelebFaces+ 

(0.2M,10K) 
99.53 +/- 0.10 

FaceNet (Schroff et 

al., 2015) 
2015 triplet loss 1 GoogleNet-24 

Google 

(500M,10M) 
99.63 +/ -0.09 

Baidu (J. Liu, Deng, 

Bai, Wei, & Huang, 

2015) 

2015 triplet loss 10 CNN-9 
Baidu 

(1.2M,18K) 
99.77 

VGGface(Parkhi et 

al., 2015) 
2015 triplet loss 1 VGGNet-16 

VGGface 

(2.6M,2.6K) 
98.95 

light-CNN (Wu, He, 

Sun, & Tan, 2018) 
2015 softmax 1 light CNN 

MS-Celeb-1M 

(8.4M,100K) 
98.8 

Center Loss(Wen et 

al., n.d.) 
2016 center loss 1 Lenet+-7 

CASIA-

Webface, 

CACD2000, 

Celebrity+ 

(0.7M,17K) 

99.28 

L-SoftMax (W. Liu et 

al., 2016) 
2016 L-softmax 1 VGGNet-18 

CASIA-

Webface 

(0.49M.10K) 

98.71 

Range Loss (X. 

Zhang et al., 2017) 
2016 range loss 1 VGGNet-16 

MS-Celeb-1M, 
CASIAWebFac

e 
(5M,100K) 

99.52 

L2-softmax (Ranjan, 

Castillo, & 

Chellappa, 2017) 

2017 L2-softmax 1 ResNet-101 
MS-Celeb-1M 

(3.7M,58K) 
99.78 

Normface (Feng 

Wang, Xiang, 

Cheng, & Yuille, 

2017) 

2017 contrastive loss 1 ResNet-28 

CASIA-

Webface 

(0.49M.10K) 

99.19 

C0.oco loss (Y. Liu, 

Li, & Wang, 2017) 
2017 CoCo loss 1 - 

MS-Celeb-1M 

(3M,80K) 
99.86 

vMF loss (Hasnat, 

Bohné, Milgram, 

Gentric, & Chen, 

2017) 

2017 vMF loss 1 ResNet-27 
MS-Celeb-1M 

(4.6M,60K) 
99.58 

Marginal 

Loss(Deng, Zhou, & 

Zafeiriou, 2017) 

2017 marginal loss 1 ResNet-27 
MS-Celeb-1M 

(4M,80K) 
99.48 

SphereFace(W. Liu 

et al., 2017) 
2017 A-softmax 1 ResNet-64 

CASIA-

Webface 

(0.49M.10K) 

99.42 

CCL(Qi & Zhang, 

2018) 
2018 center invariant loss 1 ResNet-27 

CASIA-

Webface 

(0.49M.10K) 

99.12 

AMS loss(Feng 

Wang et al., 2018) 
2018 AMS loss 1 ResNet-20 

CASIA-

Webface 

(0.49M.10K) 

99.12 

Cosface(H. Wang et 

al., 2018) 
2018 cosface 1 ResNet-64 

CASIA-

Webface 

(0.49M.10K) 

99.33 

ArcFace (Deng et 

al., 2018) 
2018 arcface 1 ResNet-100 

MS-Celeb-1M 

(3.8M,85K) 
99.83 

Ring los(Zheng, Pal, 

& Savvides, 2018) 
2018 Ring loss 1 ResNet-64 

MS-Celeb-1M 

(3.5M,31K) 
99.50 
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3. METHODS AND METHODOLOGIES 

In this chapter, the system’s core methodologies are presented. First, the tools and specifications are 

overviewed. After, the chapter describes the implementation of the end-to-end framework, displaying the 

schematic structure of the work, with every part being analyzed with the methods implemented and the 

respective theoretical fundaments that corroborate them. 

 

3.1 System Tools and Specifications 

The developed work was implemented on an Acer Predator Helios 3000. This computer contains 6 core 

Intel(R) Core (TM), an i7-8750H CPU processor @ 2.20GHz 2.21 GHz, and a NVIDIA GeForce GTX 

1060 GPU. The operative system used was Ubuntu 18.0, given its accessibility to run data files of 

different sources and libraries, as well as easy and supported package installation. 

The software’s core code language used was Python3, since all the main libraries used are supported 

in that language. The code scripts were built via Notepad++ and executed via Ubuntu’s command line. 

All the data used was locally stored, i. e., allocated on the device, including images, checkpoints of the 

trained models, and data visualization graphics. To access those directories and files paths, the OS 

module was used. It provides a portable way of using operating system dependent functionality. 

ArgParse module made possible to write command-line interfaces into the code as parameter 

definitions. 

The computer vision tasks, such as real time, video, or image processing and acquisition, were carried 

out via OpenCV library. Real time tasks were carried out with the built-in computer camera. 

For matrix and array manipulation, the main library used was NumPy. It provides a multidimensional 

array objects, various derived objects (such as masked arrays and matrices), and an assortment of 

routines for fast operations on arrays, including mathematical, logical, shape manipulation. This library 

has an API for the main library used, TensorFlow, making it easy to communicate between modules. 

For ML support, Scikit-learn was used. It is an open-source ML library that supports supervised and 

unsupervised learning. It also provides various tools for model fitting, data preprocessing, model 

selection and evaluation, and many other utilities. 

The main developing library of this work was TensorFlow (Abadi et al., 2016), which is a ML system 

that operates at large scale and in heterogeneous environments. It uses dataflow graphs to represent all 

computation and state in ML algorithms, including the individual mathematical operations, the 

https://docs.python.org/3/library/argparse.html#module-argparse
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parameters and their update rules, and the input preprocessing, focusing on training and inference (the 

testing part after training) of deep neural networks. The data is modeled as tensors, multi-dimensional 

arrays (Figure 25). 

 

 

Figure 25 - Spatial representation of a Tensor multi-dimensional arrays; (a) - 0-D tensor- scalar; (b)- 1-D tensor- vector; (c) - 2-D tensor - 
matrix, (d) – 3-D tensor. 

Since building and training neural network models was very computationally heavy, CUDA Toolkit API 

was installed and used with the TensorFlow framework (Figure 26). It is a software layer designed to 

give direct access to NVIDIA GPUs in order to promote parallel processing between cores while 

executing computer kernels. That way, using CUDA enabled TensorFlow, developers speed up 

computational-intensive applications by harnessing the power of 3D acceleration of the graphics card. 

To maximize performance, CUDA’s library cuDNN was installed, a GPU-accelerated library of primitives 

for deep neural networks. It allows the framework to focus on training neural networks and developing 

software applications rather than spending time on low-level GPU performance tuning.  

 

 

Figure 26 - TensorFlow enabling the CUDA library for GPU accelerated processes. 
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Lastly, TensorBoard, TensorFlow's visualization toolkit, provided the visualization and tooling needed for 

ML experimentation. It allowed tracking and visualizing metrics, such as loss and accuracy, visualizing 

the model graph, viewing histograms of weights, biases, projecting embeddings to a lower dimensional 

space and displaying of dataset images. Table 8 presents all versions of the mentioned tools used. 

Some versions had to be downgraded for compatibility issues. 

 

Table 8 - System tools and versions. 

Tool Version 

Python3 3.6.9 

OpenCV 4.4.0 

OS 5.4.0-77-generic 

NumPy 1.19.0 

Scikit-learn 0.23.1 

TensorFlow 1.15.0 

CUDA Toolkit 10.0.130 

cuDNN 7.6.5 

TensorBoarD 1.15.0 

 

3.2 Model Framework 

As mentioned in Objectives of the Dissertation, the developed system was a real-time multi-stage deep 

learning pipeline for facial recognition. It analyzed frames from the camera, where it detected and 

aligned faces, searching for facial landmarks, such as eyes, nose, or mouth, predicting its bounding box 

coordinates, cropping the detected faces containing the least background possible, and drawing the 

bounding boxes on the proposals’ original frame. Next, an array of the detected bounding boxes are 

encoded into another neural network, previously trained for that purpose, that extracted the features, 

creating a vector representing the faces, also known as embedding. With that, the classifier predicted 

the identity of all the elements of the embedding array, writing the name of the predicted person, as 

well as the certainty percentage. The proposed framework can be seen in Figure 27. 
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Figure 27 - Real time multi-stage deep learning pipeline for facial recognition. 

 

The system is composed of three main modules: Face detection, Facial Feature Extractor, and a 

Classifier. Initially, to perform face detection and alignment, MTCNN method (K. Zhang et al., 2016), 

previously mentioned in Related Work, was used. The motive for this choice was that cascaded 

networks proved to be powerful multi-tasking models, accurately performing face regression as well as 

keypoint estimation, aligning the detected face proposals. It also proved to be a very robust system for 

real world situations, detecting faces in non-standardized situations. The ending results of the first 

module was an image array of crops of isolated faces in a camera frame. The second module was a 

feature extractor, mapping the detected faces into an n-dimensional array representing features 

extracted. The deep learning CNN used was the Inception-ResNet architecture (Szegedy, Ioffe, 

Vanhoucke, & Alemi, 2017). That network combined both Inception and ResNet algorithms, previously 

highlighted in Convolutional Network Architectures, providing an enhanced network that best suits the 

facial recognition purpose. This pipeline was chosen thinking of the tradeoff between performance and 

computational cost of the overall architecture. Given the owned resources, it was important to have a 

less expensive framework while not sacrificing performance. As previously underlined, Inception 

modules maintained state-of-the-art accuracy with a modest increase of the computational cost 

compared to deeper networks, whereas ResNet’s residual blocks allowed for optimized deeper networks 
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while reducing training time with its skip connections. The cropped detected faces ultimately serve as 

inputs to the network to classify the faces, outputting them into an image representation vector 

allocated into a Euclidean space referred as embedding. For the classifier module, the analysis was 

made with SoftMax classifier and cross-entropy loss function when training the CNN of the facial 

recognition module, the standard practice, while the real time system uses a Support Vector Machine to 

classify the logits extracted. The reasoning of using the CNN as feature extractor, having a model 

classifying outside of the main network, was the motivation of this dissertation. As seen in previous  

sections, CHARMIE performs generic service tasks in non-standardized environment, focusing in 

providing healthcare and domestic support, performing collaborative and cooperative tasks whose 

communications revolve around interacting with specific workers/patients/users. When presented with 

an unknown person, the learning process of a new class needs to be efficient and fast. Training a CNN 

as a multi-class classifier, introducing a new class, means an end-to-end re-training and re-evaluation of 

the network, being an extended and expensive procedure. Using an external SMV classifier proved 

efficiency in adding new persons to the dataset without being time expensive, with great accuracy.  

Two standard datasets were used in this dissertation. For training of the feature extractor, the CASIA-

Webface (Yi et al., n.d.) dataset was applied, as well as the LFW (Huang et al., 2008) for validation and 

fine tuning. Additionally, the custom-made LAR dataset was created, with acquisition of images of 

researchers and professors associated with the laboratory. 

 

3.3 Face Detection 

MTCNN (K. Zhang et al., 2016) proposes a framework to integrate detection and alignment tasks using 

unified cascaded CNNs by multi-task learning. The cascaded CNN framework consists of 3 

architectures, those being, by structural and increasing complexity order, Proposal-Network, 

Refinement-Network, and Output-Network, where the output of the previous convolutional model is the 

input to the next. 

3.3.1 Image Pyramid 

Before being fed into the pipeline, the images were resized into different scales in an image pyramid 

manner, as seen in Figure 28. 
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Figure 28 - Image pyramid. 

 

This technique, widely embedded into cascaded frameworks, resized the original images using a scaled 

factor. That way the network’s kernels could find different size faces in one sitting in the same image 

without the need to apply different spatial sizes. 

3.3.2 Stage Cascaded Network and Non maximum suppression 

The first network is known as P-Net, presented in Figure 29. Being a Shallow framework, it generates 

many candidates of where the face is, calibrated with their bounding box regression vectors. 
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Figure 29 - Proposal Network architecture schematic. 

 

After those proposals were found, the NMS algorithm was applied to merge highly overlapped 

candidates. This technique is used when various proposals of the same object, in this context a face, 

exist, choosing the candidate with the best prospect, filtering the rest. The score of the candidates is 

calculated by the IoU metric, used to quantify the percent overlap between two bounding box 

predictions. IoU can be determined by Equation (4): 

 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (4) 

 

Where 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 is given by the Intersection (Figure 30.(a)) between two proposals and the 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 is set by the Union (Figure 30.(b)) of the two. Figure 31 compares performance and 

with different IoU settings between 2 proposals. 
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Figure 30 – Intersection (a) and Union (b) between two bounding boxes. 

 

Figure 31 - IoU performance comparison. 

 

NMS sets a threshold and calculates the IoU between the picked proposal with the best confidence and 

the rest of the proposals of the same candidate. If the IoU is higher than the threshold, meaning a big 

overlap between the two, that candidate is filtered. That way, a lot of saturated suggestions get merged 

to the previously chosen best candidate. 

The R-Net (Figure 32) analyses the proposals given by the first CNN and filters false positives. Being 

more complex, while using a fully connected layer in the end of the model, it rejected many proposals 

given. Like the first stage, it calibrates the proposals with NMS merging and bounding box regression. 

 

Figure 32 - Refinement Network architecture schematic. 

 

The final network is the O-Net (Figure 33), which creates the final bounding box output of the detected 

face's image and 5 facial landmarks.  

This framework produced 3 outputs: binary Face classification, 4 element Bounding Box Regression 

vector and 10-element Facial Landmark Localization vector. 
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Figure 33 - Output-network architecture schematic. 

 

3.3.3 MTCNN Training Methodology  

The training was conducted on the WIDER FACE (Yang et al., 2016) dataset. Face classification 

problem uses cross-entropy loss to check if the predicted proposal is indeed a face, given by Equation 

(5): 

 

𝐿𝑖
𝑑𝑒𝑡 = (𝑦𝑖

𝑑𝑒𝑡 log(𝜌𝑖) + (1 − 𝑦𝑖
𝑑𝑒𝑡)(1 − log(𝜌𝑖))) (5) 

 

where 𝜌𝑖 is the probability generated by the network that indicates a sample being a face. The notation 

𝑦𝑖
𝑑𝑒𝑡denotes the ground-truth label. 

Bounding box regression vectors and NMS, the offset is predicted, and the ground truth employed with 

Euclidean loss, seen in Equation (6): 

 

𝐿𝑖
𝑏𝑜𝑥 = ‖𝑦̂𝑖

𝑏𝑜𝑥 − 𝑦𝑖
𝑏𝑜𝑥‖

2

2
 (6) 

 

Where 𝑦̂𝑖
𝑏𝑜𝑥 is the target obtained from the network and 𝑦𝑖

𝑏𝑜𝑥 the ground truth coordinate. 

Like the bounding box regression, facial landmark detection is a regression problem where Euclidean 

loss is minimized by Equation (7): 
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𝐿𝑖
𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 = ‖𝑦̂𝑖

𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 − 𝑦𝑖
𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘‖

2

2
 (7) 

 

For this dissertation, only the Bounding Box regression output was considered. The trained weights and 

biases of this model were obtained via Transfer Learning. This is a ML method allowed pre-trained 

models to be reused, skipping the training part, focusing on the Inference part. Inference does not re-

evaluate the NN. It only applies knowledge acquired from a trained NN model, inferring the result. So, 

when new unknown data is presented, it outputs a prediction based on predictive accuracy of the NN.  

The implementation and parameters of this framework was used from GitHub (“GitHub - 

davidsandberg/facenet: Face recognition using Tensorflow,” n.d.). Showed on Figure 34, the 

parameters were loaded from NumPy array file, replacing the TensorBoard placeholders used in the 

implementation 

 

 

Figure 34 - Parameter acquisition via Transfer Learning. 

3.3.4 Implementation  

The three initial variables declared had the same value at every framework. Those were the n x n 

minimum size of faces to be detected, the thresholds used in the NMS algorithm and the scalar factor 

for the image pyramid method. The values used are presented in Figure 35 
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Figure 35 - MTCNN variables for face detection. 

 

The face detector can be used on individual images and videos by inputting the path file on Ubuntu 

terminal, or the real-time applications using the computers camera. These are executed with different 

scripts via Ubuntu Terminal, as showcased in Figure 36. 

 

 

Figure 36 - Executing Python Scripts for face detection; (a) - Images; (b) - Videos; (c) - Real time. 

As seen in the Figure 37 example of a dataset image, the align_dataset_mtcnn.py script automatically 

detected and aligned the faces in images in a dataset directory, creating a new dataset with only 

cropped faces with a specific configuration (160 x 160 image), the same configuration as the input 

values needed to feed CNN for feature extraction.  
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Figure 37 - Python Script used for detecting and aligning of faces in a dataset. 

3.4 Datasets 

To perform NN training and fine-tuning, two different datasets were used. Initially the CASIA-Webface (Yi 

et al., n.d.) dataset was used. It contained 494.414 images of 10.575 people for verification 

performance and it was further verified on the LFW (Huang et al., 2008) benchmark.  

3.4.1 LAR dataset  

Additionally, a personalized dataset was created and used for training and validation. It contains 19 

classes of image data from students and teachers associated with the Laboratory of Automation and 

Robotics (LAR) of Minho University. The elements contained in the dataset are set in Table 9. All 

members consented the use of their identity and use of one’s images. 
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Table 9 - Elements of the LAR dataset. 

Name Genre Age 

António Ribeiro Male 20 

Bruno Sousa Male 25 

Carlos Silva Male 23 

Carolina Pires Female 24 

Carolina Rua Female 23 

Dimitri Santos Male 23 

Fabio Cunha Male 22 

Fawad Male 32 

Fernando Ribeiro Male 54 

Francisco Ribeiro Male 18 

Gil Lopes Male 49 

Inês Garcia Female 25 

Inês Ribeiro Female 23 

Michael de Oliveira Male 26 

Nuno Andrade Male 22 

Nuno Pereira Male 25 

Rafael Marques Male 25 

Sérgio Baixo Male 24 

Tiago Ribeiro Male 25 

 

The individual images that made the dataset were fetched using the OpenCV library. It extracted frames 

from video of a sole identity using the computer’s camera or from a personal device. The video content 

was simple: the person would start by looking directly at the camera, then rotating their head 180º from 

left to right. That way, the model would have different perspectives of its classes.  

Then, the python script New_class.py, Figure 38, created a directory with the target’s name inside the 

selected dataset. The script checks the video frames, turning them into ordered file images with the 

person’s name, inserting them into the created directory. It had 4 arguments: the video for image 

extraction, dataset’s directory path to be inserted, the class name, and the flag ‘save’ to verify the 

extraction. 

 



72 

 

 

Figure 38 - Custom Dataset. 

 

3.4.2 Image Transformations 

In order to create a robust system, image transformations were performed in some of the frames 

extracted from the videos when the images were created. This included random rotations and horizontal 

flips of the image done via OpenCV library. The rotations were restricted to -30 to 30º, as seen in Figure 

39. 

 

Figure 39 - Image transformations using OpenCV Library, (a) - horizontal flip; (b) - Random rotation (> 0º); (c) - Random rotation (<0º). 
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3.5 Inception-ResNet Network  

The main deep NN pipeline used for faces feature extraction is the Inception-ResNet version 1 and 2 

(Szegedy et al., 2017). This model results in a combination of two different deep learning 

methodologies, previously reviewed in Convolutional Network Architectures: residual connections 

introduced by ResNet (K. He et al., 2016) and the Inception modules introduced with GoogleNet 

(Szegedy et al., 2015). The proposed model was trained locally using supervised learning methods. 

3.5.1 Approached Concepts   

In traditional NNs, a layer feeds data to the following one, but with residual connections (Figure 21), the 

information is sent directly from a layer into a deeper one. These blocks improve two distinct areas. 

First, the training time, given that skip-connections can jump layers without training. Secondly, the lost 

information when making gradient descent, since more deep networks have a hard time being accurate 

without overfitting or working more straight forward tasks (Vanishing Gradient problem (Glorot & Bengio, 

2010)). The residual Inception blocks used on this architecture were optimized with a filter- 

expansion layer, a 1 X 1 convolutions without activation (Figure 40). Those were implemented in order 

to compensate the dimensionality reduction induced by the Inception part, given that residual 

addictions only work if the input and output matched the same depth sizes. 

 

 

Figure 40 - Optimized residual block. 
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3.5.2 Network Architecture 

The pipeline’s architecture was the same for both versions, seen in Figure 41: 

 

 

Figure 41 - Schematic of Inception-ResNet version 1 and 2. 

 

Versions 1 and 2 of the models only differed from the stem (Annex I – Stem of Inception - ResNet 

architecture versions 1 and 2), which was the initial set of operations performed before introducing the 

Inception blocks and hyperparameter selection. Version 2 has the same stem as the Inception v4 

(Szegedy et al., 2017) model, presented in the same paper, with filter concatenation approaches, while 

the version 1 stem is a standard CNN. Inception-ResNet v1 has a computational cost similar to that of 

Inception v3 (Szegedy et al., 2016), while Inception-ResNet v2 has a computational cost that is similar 

to that of Inception v4. 

Both versions presented the same Inception modules, A, B and C, differing only on hyperparameter 

settings of this network. They were designed so that Pooling layers were replaced by the residual 

connections, adding the output of the previous  Inception module to the final output. 

Inception-ResNet-A block, version 1 (Figure 42.(a)) and version 2 (Figure 42.(b)), presented a 35 x 35 

grid module. Inception-ResNet-B block, versions 1 Figure 43.(a)) and version 2 (Figure 43.(b)), 

presented a 17 X 17 module, and Inception-ResNet C, versions 1 (Figure 44.(a)) and version 2 (Figure 

44.(b)) presented a 8 x 8 grid. The ideas presented in earlier Inception versions are also embedded, 

like asymmetric convolutions or replacement of 5 x 5 convolutions with two 3 x 3 convolutions or. Also, 

in Figure 42, Figure 43, and Figure 44 the number of activation maps in a convolution is shown inside 

parenthesis. One can notice that the version 2 has a more complex Stem and more filters per 

convolution. 

.(a)) and 2 (Figure 44.(b)) presented a 8 x 8 grid. The ideas presented in earlier Inception versions are 

also embedded, like asymmetric convolutions or replacement of 5 x 5 convolutions with two 3 x 3 
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convolutions or. Also, in Figure 42, Figure 43, and Figure 44 the number of activation maps in a 

convolution is shown inside parenthesis. One can notice that the version 2 has a more complex Stem 

and more filters per convolution. 

 

Figure 42 - Inception ResNet Block A; (a) version 1; (b) version 2. 
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Figure 43 - Inception-ResNet Block B; (a) version 1; (b) version 2. 

 

Figure 44 - Inception ResNet Block C; (a) version 1; (b) version 2. 

 

Regarding dimension reduction, instead of pooling layers, two specific structures were conceived. 

Reduce-A block (Figure 45.(a)) reduces the feature maps from 35 x 35 grid to a 17 x 17, while the 

Reduce-B block (Figure 45.(b)) reduces the 17 x 17 ones to an 8 x 8 grid. 
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Figure 45 - Reduction blocks; (a) Reduction-A; (b) Reduction-B. 

Batch Normalization, like the one presented by Szegedy (Szegedy et al., 2016), was applied on top of 

traditional layers, but not on filter concatenations, since the authors reported disproportionate amount 

of GPU memory. By omitting the batch-normalization on top of those layers, overall number of Inception 

blocks was increased substantially. 

Both versions’ implementations of this network architecture on TensorBoard were used from (“GitHub - 

davidsandberg/facenet: Face recognition using Tensorflow,” n.d.). 

 

3.5.3 Pipeline Implementation  

The CNN implementation is imported into the training/inference via python script using the Importlib 

package, or via a trained network’s metagraph and checkpoint, that contains the dataflow of the 

previous implementation and trained parameters of a previous network, using a TensorFlow saver, as 

seen in Figure 46.  

 

 

Figure 46 – Import of the Inception-ResNet model; (a)  Import the python implementation file; (b) Reload a trained model metagraph and 
checkpoint. 

 

The TensorFlow framework during training transforms the images in a batch into the input of the 

network. Those were a 4-D tensor of size [batch size, height, width, 3(the channels R G B)]. The height 

and width were 160 x 160, the same as the author’s implementation of the network. 

The network’s inference function inputted the variables set in the training first, as well as initiate the 

weights and biases and its regularizer. When the training starts, it feeds the network with the batches of 
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images. It is also responsible for setting the batch normalization parameters and the dropout layer, as 

well as configurate the size of the prelogit, the output of the network. 

The fully connected layer for classification, better known as logits layer, is built outside the main script, 

with its size being the number of classes to identify. After, the logits are normalized with an 

L2_Normalization, a technique where sum of the squares of the output will always be up to 1. These 3 

configurations are presented bellow in Figure 47. 

 

 

Figure 47 - Inception-ResNet inference function initialization and classifier layers. 

3.6 Training Methodology  

For model training, the script uses various input arguments (example on Figure 48) for various 

purposes such as loading the dataset, modification of the hyperparameters to control the learning 

process, as well as defining the file information storage, saving the information obtained, such as 

parameters graphs, metafiles or training checkpoints. 

 

Figure 48 - Python script for training the Inception-ResNet CNN. 

 

3.6.1 Hyperparameter Settings 

Different hyperparameters input settings were employed to study the better model configuration. For 

batch configuration, the inputs included the batch size, the number of batches to use in an epoch and 

flags for data augmentation  
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For the training flow, the input parameters defined the number of max epochs for training and the 

number of epochs between another validation evaluation of the model. 

For the network structure, the inputs replaced the pre-determined parameter values. Those included the 

dropout layer, the lr, the optimizer used for gradient descent and the weight decay used in the 

l2_regulizer. 

3.6.2 Image manipulation 

When importing the dataset directory, the images are grouped into 3 sub-sets: a training dataset 

containing 90% of a class images (with 10% of those being allocated for the cross-validation) and a test 

dataset containing the remaining 10%. The training dataset are the images used for training. The 

validation dataset is used during training to estimate the model skill while tuning model’s 

hyperparameters. The test dataset is used in the end of training to verify its performance.  

The images are fed into the network though batches using a FIFO queue containing 3 elements: The 

Image, the matching Label, and a Control number. The Control number manages Data Augmentation, a 

technique used to increase the number of images, and employed to simulate an additional pose 

variation, hence the diversity in the dataset. This is managed by 3 flags: flipped_images, 

cropped_images and rotated_images. If the flags were activated, via input argument on the terminal, a 

copy transformation (either flip, rotated or cropped copies per image or a combination of them) of the 

data were added to the original queue. As example, Figure 49 shows a batch input of the LFW dataset 

using data augmentation with rotated images. 

 

 

Figure 49 - Batch visualization using data augmentation with rotated images. 
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Before being inputted to the network, the images are prewhiten, which subtracts the average and 

normalizes the range of the pixel values of input images. It made the training process a lot easier by 

speeding up the training and inference. 

 

3.6.3 Learning Methodology  

The NN used Softmax with Cross Entropy as training loss function over an input batch. The Softmax 

function computes the output probabilities array of the classes in the dataset. The higher the probability 

on a class, the more the model thinks the input object represents that class. The sum of the class’s 

probability is always 1. This is represented by the function: 

 

𝑆𝑖 =
𝑒𝑉𝑖

∑ 𝑒𝑉𝑗𝑗

 (8) 

 

Where 𝑉𝑖 represents the input elements and ∑ 𝑒𝑉𝑗𝑗  the normalization term to range the probability in 

the 0-1 range. 

The loss is then calculated with Cross-Entropy, defined by:   

 

𝐻(𝑝, 𝑞) = −∑𝑝(𝑥) log q(𝑥)

𝑥

 (9) 

 

Where 𝑝(𝑥) represents the conditional empirical distribution over class labels, being 1 to the observed 

class and 0 for all others, and  q(𝑥) is the conditional distribution, probability obtained from the model 

given an input. 

 

3.6.4 Saving the Model  

Saving the model and its variable logs and events was carried out with Summary FileWriters, providing 

a mechanism to create an event file in a directory and add summaries and events to its protocols. The 

tf.Summary module provides APIs for writing summary data, being visualized in TensorBoard.  
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Split into 3 files for training, validation, and testing, observed in Figure 50, those events were inserted 

into the directories trained model. That way, when using TensorBoard, one can check the 3 directories 

at the same time or import one isolated list. 

 

 

 

Figure 50 - Creation of the file writers for data exportation. 

 

After an epoch training, the model’s checkpoint and metagraph were also exported to the model’s 

directory with a saver. Those can later be used for the classifier pipeline or training other models with 

transfer learning. The variables tuned from training epoch are then saved to the file writers, as seen in 

Figure 51. 

 

Figure 51 - Saving and importing the model's metagraph and variables. 

3.7 Classifier 

With the model of Inception-ResNet, adding a new person to the dataset implied having to always 

restart the training with new classes. As a solution, using the model only as a feature extractor to map 

images into an embedding vector, the predictions can be done using outside classifiers with less 

computational cost. 

Before building the classifier, the Inception-ResNet feature extractor graph is loaded, where the images 

used are encoded into an embedding array. Those are then used to train an SVM classifier. 
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Support Vector Machines produced significant accuracy with less computation power. The objective of 

the support vector machine algorithm is to find a hyperplane in an N-dimensional space (N the number 

of features) that distinctly classifies the data points, as observed in Figure 52. 

 

Figure 52 - Support Vector Machine representation. 

Hyperplanes work as decision boundaries that classify the data points. Those allocated on either side of 

the hyperplane can be attributed to different classes. By finding the maximum margin the maximum 

distance using the support vectors (data points closer to the hyperplane that influence its position and 

orientation), future data points could be classified with more confidence. Some classification problems 

cannot be solved using a linear hyperplane. The SVM used a kernel to transform the input space to a 

higher dimensional space to be able to segregate the data points. 

The model used was the SVM implementation of Scikit-learn library (Figure 53). It used linear kernel 

technique. It is used when the data can be separated using a single line, since the dataset had a large 

number of features. 

 

 

Figure 53 - SVM implementation on Scikit-Learn library. 

 

The python script used has 2 input modes, with its input initialization specified on  

Figure 54: TRAIN and CLASSIFY.  
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Figure 54 - Classifier Script inputs; (a) Train the classifier; (b) Predict with classifier. 

 

The TRAIN mode inserted the images and labels into the SVM model, where the final classifier is stored 

in a Pickle file, a Python module that enables objects to be serialized on a disk or deserialized into a 

program runtime classifier uses. On the other hand, the CLASSIFY loaded the classifier, where the input 

images classes are predicted by the previously trained classifiers. 

3.8 Data Visualization  

TensorFlow’s data visualization toolkit, TensorBoard, provided the necessary mechanisms to evaluate 

the model’s performance, plotting how the learnable parameters converged over time of training with 

different hyperparameters. It also allowed the display of different variables, like the dataflow of the 

computations, images, or projection of data used. 

3.8.1 Computational graph 

The computational graph allowed a schematic view of the TensorFlow model using the TensorBoard's 

Graph Dashboard, examining its structural design. As previously discussed, the data used by 

TensorFlow is stored in tensors. Hence, the computations done are schemed into the operations/nodes 

performed by the code, with the computational dataflow being represented as well. 

In Annex II – TensorBoard Training Graph, the computational graph of the used model is presented. In 

order to have a simpler layout, all operations involving a module were designated with the same name 

scope. As an example, the millions of parameters of the network are hidden inside the Inception-ResNet 

name scope, not compromising the graphs design. 
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3.8.2 Plots  

Key metrics, such as loss or accuracy, were plotted using the TensorBoard's Scalars Dashboard via 

Summary File Writers (Figure 55). The same way, images were exported using the TensorBoard's 

Image Dashboard (Figure 49). 

 

 

Figure 55 - Scalar call after an epoch train and exporting via Summary writer. 

 

 

3.8.3 Embedding Projector  

TensorBoard ‘s Embedding Projector graphically represents the high dimensional feature vectors into 

smaller dimensions using Dimension Reduction algorithms. That way, examining how those methods 

separate/cluster the data created by the extractor can validate the training process. 

To encode the images into the projector, a file directory had to contain a sprite file to be uploaded, the 

configuration file and the neatly labels that identify the images (Figure 56.(a)). 

The configuration file associated the sprite image with the metadata. It also set the single image size to 

then be isolated for each other (Figure 56.(b)). The metadata was a TSV file, a file extension for a tab-

delimited file used with spreadsheet software, that contained the matching labels in the sprite images 

(Figure 56.(c)). 
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Figure 56 – Embedding Projector Setting  (a)-Projector Directory; (b)-  Projector configuration file; (c) – Metadata file containing the 
ordered labels 

The sprite image was a single frame compilation of all images uploaded to the projector as seen in. 

 

 

Figure 57 - Sprite of some images of the classes used in the LAR dataset. 

3.8.4 Principal Component Analysis 

Principal Component Analysis reduces the data dimensionality, making a linear projection of smaller 

components, with the premise that more straight forward samples are more accessible to interpret and 

visualize at the cost of very little information loss.  

At a conceptual level, PCA determines the principal components of new variables that are a linear 

combination of the original data. It accomplishes this by creating new uncorrelated variables that 

consecutively maximize variance. 

 

  
 

(a) (b) (c) 
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After normalizing the data, the covariance matrix is calculated by Equation (10): 

 

𝑐𝑜𝑣(𝑋, 𝑌) =
1

𝑛 − 1
∑(𝑋𝑖 − 𝑥̅)(𝑌𝑖 − 𝑦̅)

𝑛

𝑖=1

 (10) 

 

To check how the variables are related to each other, the Eigenvectors, vectors whose direction remains 

unchanged when transformed, are calculated, as well as the Eigenvalues. The scalar from which the 

eigenvector is scaled from uses Equation (11): 

 

𝐴𝑣 = 𝜆𝑣 (11) 

Where A is the correlation matrix, v is the eigenvector, and λ is the eigenvalue. The Principal 

Components are the top k-dimensional eigenvectors that give the direction of the axes, with the largest 

eigenvalues, meaning that more variance was stored, where k is the new dimension. It ranks these 

from highest to lowest K value returning the principal components in order of significance. 

3.8.5 t-SNE 

T-distributed stochastic neighbor embedding, presented by Van Der Maaten and Hinton (Van Der 

Maaten & Hinton, 2008b) is a non-linear method based on Stochastic Neighbor embedding that 

computes K-dimensional data into a lower dimensional mapping by performing several region-based 

transformations. t-SNE differs from PCA by preserving only small pairwise distances or local similarities 

whereas PCA is concerned with preserving large pairwise distances to maximize variance. 

For that, it calculates the joint probability distributions (similarities between data, mapping them into a 

dataset of points in the new n dimension), applying gradient descent to tune similarities in the 

distribution.  

The similarity of datapoint 𝑥𝑗 to datapoint 𝑥𝑖 is the conditional probability 𝑝𝑗|𝑖, where 𝑥𝑖 would pick 𝑥𝑗 

as its neighbor if neighbors were picked in proportion to their probability density under a Gaussian 

centered at 𝑥𝑖, and those probabilities are proportional to the similarities. That probability is given by 

Equation (12): 

 

𝑝𝑗|𝑖 =
𝑒𝑥𝑝(−‖𝑥𝑖−𝑥𝑗‖

2
/2𝜎𝑖

2)

∑ 𝑒𝑥𝑝(−‖𝑥𝑖−𝑥𝑘‖
2/2𝜎𝑖

2)𝑘≠𝑖
 (12) 
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Where 𝜎𝑖 represents the variance of the Gaussian that is centered on datapoint 𝑥𝑖. Joint probability in 

the high-dimensional of data is defined as 𝑝𝑗𝑖, to be the symmetrized conditional probabilities, 

calculated by Equation (13): 

 

𝑝𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑛
 (13) 

 

To reduce the data, a random dataset of the same number of points of the high dimension dataset is 

created in the K-dimension desired. The distribution joint probability is created with t-distribution, given 

that it maximizes distances between points in the low dimension space compared to the same distance 

in the correspondent high-dimensional space. 

Joint probability in the low dimensional space is defined as 𝑞𝑖𝑗, calculated by Cauchy distribution using 

Equation (14): 

 

𝑞𝑖𝑗 =
(1 + ‖𝑦𝑖 − 𝑦𝑗‖

2
)
−1

∑ (1 + ‖𝑦𝑘 − 𝑦𝑙‖2)−1𝑘≠𝑙
 (14) 

 

Kullback-Leiber divergence, defined by Equation (15) measures the difference between P (joint 

probability distribution in the high dimension) and Q (joint probability distribution in the low dimension) 

distributions in 𝑋 space, the result as smaller as similar they are. This makes the map’s representation 

of joint probabilities (almost) invariant to changes in the scale of the map for map points that are far 

apart. 

 

𝐷𝐾𝐿(𝑃 ∥ Q) = ∑𝑃(𝑥) log(
𝑃(𝑥)

𝑄(𝑥)
)

𝑥∈𝑋

 (15) 

 

The gradient of the Kullback-Leiber divergence between P and the Student-t based joint probability 

distribution Q is given by Equation (16): 

 

𝛿𝐶

𝛿𝑦𝑖
= 4∑(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖−𝑦𝑗)) (1 + ‖𝑦𝑖 − 𝑦𝑗‖

2
)
−1

𝑗

 (16) 
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Where the cost function applies gradient reduction to the low dimensional dataset, so that its 

distribution resembles the one on the original. 
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4. RESULTS 

4.1 MTCNN  

4.1.1  Implementation Results 

The first presented result refers to the output implementations of the MTCNN framework using the 

computers camera, presented in the Stage Cascaded Network and Non maximum suppression section. 

With an image-pyramid scale factor of 0.709, as well as a [0.6;0.7;0.7] detector threshold for the 

bounding box IoU for the 3 stages. 

The P-Net flagged all face proposals with different kernel sizes, using the image pyramid, generating 

numerous bounding boxes. Afterwards, those proposals were filtered by non-maximum suppression, 

ready to be inputted into the next network. The P-Net final output with NMS is shown in  

Figure 58.(a). 

Next, the R-Net focuses on filtering a high number of false positives. It used the previous network’s 

proposals data to generate more precise bounding boxes, with all the lower confident candidates being 

eliminated. The boxes are then calibrated to have a square-like shape. The R-Net output is presented in  

Figure 58.(b). By using NMS again, the bounding boxes are reduced, merging overlapped proposals, 

being calibrated and padded to have a squarer like shape, as shown in Figure 58 - Output bounding 

boxes of MTCNN framework. (a) P-Net output with NMS. (b) R-Net output. (c) R-Net output after NMS 

(d) O-Net output (e) O-Net output after NMS (f) Final Cropped face.(c). Finally, the O-Net standardizes 

both the bounding box and facial landmarks coordinates,  

Figure 58.(d). After the NMS, only the bounding box prediction with the highest confidence level is 

provided, as shown in  

Figure 58.(e). The final output of the MTCNN is the cropped imaged from the final bounding box 

prediction represented in  

Figure 58.(f). This image is a representation of the data used for training/inference the Inception-

ResNet. The final output is a 160 x 160 image. After the implementation result, more tests were done 

on public images on the internet, as well as real-time tests regarding different variables that could risk 

the viability of the framework. The results signalized detected faces in the frames, with the bounding 

box coordinates serving as measurements. For a better visualization, the bounding box was outlined on 

the faces in the images. After, the MTCNN aligned and cropped faces in a dataset in an equal 

configuration to the necessary input settings for the Inception-ResNet CNN. 
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Figure 58 - Output bounding boxes of MTCNN framework. (a) P-Net output with NMS. (b) R-Net output. (c) R-Net output after NMS (d) O-
Net output (e) O-Net output after NMS (f) Final Cropped face 

 

4.1.2 Tests on Images and videos 

The face detector was tested on different crowded scenarios, given that these configurations provided a 

large spectrum of faces for real world applications. This execution gave the model verification tools for 

many frameworks, with samples containing different face sizes, blurred faces, pose variation, lighting 

changes or localization on the frame on images and videos. 

With an image-pyramid scale factor of 0.709, proposed by the authors (K. Zhang et al., 2016), as well 

as a [0.6;0.7;0.7] threshold array, different size faces are equally detected. Figure 59 showcases an 

image from RoboParty 2019 with a high people density with tiny face sizes found in different spatial 

locations, successfully detecting the faces with some minor exceptions where people are considerably 

not facing the camera. 

   

   

(a) (b) (c) 

   

(d) (e) (f) 
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Figure 59 - MTCNN output bounding boxes in a highly populated scenario with small size faces  

Figure 60 showcases the same premise, where a highly populated scene is presented, but with 

considerably bigger targets. With the same scalar factor and threshold, MTCNN detected most of the 

faces. That image also presents several face pose variations detected. This included faced up faces, 

sideways perspectives, or different facial expressions. Although many of the faces are recognized, 

blurred faces in that frame challenged the detector. Hence, the 3-stage model thresholds were adjusted 

to compare the performance gain on difficult candidates. By tuning the threshold array to [0.5, 0.6; 

0.6], Figure 61 shows the detection pipeline increased its performance on challenging cases on the 

same target. The drawback of that decision was the appearance of false positives, damaging the 

model’s accuracy. 
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Figure 60 - MTCNN bounding box output Mob image showcasing different detected face pose variations with [0.6,0.7,0,7] threshold array. 
Photo by Michael Dornbierer covered by Creative Commons license 

 

 

Figure 61 - – MTCNN bounding box output of the same frame (Figure 60)) using [0.5,0.6,0,6] threshold array. Photo by Michael 
Dornbierer covered by Creative Commons license 
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The same way, harder tests were also carried out regarding variables that possibly could affect the 

model’s performance on real-world problems, such as blurred faces, lighting variations and ‘disguise’ or 

harder face characterization.  

Figure 62 presents a situation where background people had their faces blurred. While some of the 

faces were detected, difficult samples were left unrecognized. 

Regarding Illumination problems, the MTCNN was applied to images with low lighting backgrounds. 

Figure 63.(a) and Figure 64.(a) showcase bad performances regarding MTCNN bounding box output on 

a low illumination backgrounds in shrouded faces. By tunning the thresholds into the same 

configuration presented above, the threshold array [0.5, 0.6; 0.6] increased the framework’s 

performance, as seen in Figure 63.(b) and Figure 64b). However, those results were still lackluster. By 

lowering the threshold array again to [0.4, 0.5; 0.5], the model’s performance could not detect all the 

faces presented. Instead, it started to detect false positives on the same previously recognized targets 

(Figure 63.(c) Figure 64.(c)). The blurred and lighting tests proven to be the most demanding out of the 

model’s performance. By lowering the thresholds necessary to detect the faces, the performance 

increased slightly, although some false positives were also being detected. 

 

Figure 62 - Bounding box output on images containing blurred faces. Photo covered by Creative Commons license 
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Figure 63 -MTCNN bounding box output comparison on a low illumination background with different threshold arrays (1). (a) - [0.6, 0.7; 

0.7]; (b) - [0.5, 0.6; 0.6]; (c) - [0.4, 0.5; 0.5] 
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Figure 64 - MTCNN bounding box output on comparison on a low illumination background with different threshold arrays (2). (a) - [0.6, 
0.7; 0.7]; (b) - [0.5, 0.6; 0.6]; (c) - [0.4, 0.5; 0.5]. Photo under Creative Commons License 

 

‘Disguise’ tests were also done on images. Those contained harder faces to characterize. On 

Figure 65, another real-world situation is presented, containing people wearing glasses and caps.  

Figure 65.(a) presents the [0.6, 0.7; 0.7] initial threshold array output, detecting the clearer candidates, 

with  
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Figure 65.(b) showcasing the [0.5, 0.6; 0.6] output having a better performance. Although neither 

output can detect all the targets, most of the explicit faces were recognized. Given the current world’s 

pandemic, images with people wearing masks were also target tested (Figure 66). The model usually 

can easily detect faces in those settings, as long as the rest of the facial landmarks were not hidden.  

 

Figure 65 – MTCNN output on harder faces to characterize with different threshold arrays. (a) - [0.6, 0.7; 0.7]; (b) - [0.5, 0.6; 0.6]. Photo 
covered by Creative Commons license 
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Figure 66 - MTCNN bounding box results on an image of people wearing masks. Royalty Free photo taken online 

4.1.3 Camara tests 

The same experiments carried out on Tests on Images and videos were applied to real time face 

detection, using the computer’s camera.  

The first test done was the number of frames possible using the MTCNN. Being computationally heavy, 

with the cascaded network, the fps can fluctuate between 10 to 18 fps, depending on other processes 

being used in parallel. 

Lighting tests were done using the computer camera with different illumination settings. On  

Figure 67, different lighting deviations are presented on the same target environment. Having a target 

person presented in front of the camera, the model manages to identify the face on 3 illumination 

settings easily. 

 

 

Figure 67 - MTCNN bounding box output on different face poses detected with the camara 

 

Another important feature regarding face detection tested was the different face pose scenarios in real 

world applications. Various poses in front of the camera were carried, with Figure 68 example 

demonstrating different face-detection perspectives. 

   
(a) (b) (c) 
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Some tests were also done on people wearing masks, since its use became a standard variable in day-

to-day activities. The face detector managed to accurately identify the faces, failing in some frames, 

accusing some uncertainty. Two of those poses recorded are showcased in Figure 69. 

 

Figure 68- Face detection using  wiht computer's camara for diferent lightin settings. (a)- Bright enviroment; (b)- Intermediate lighting; (c) 
Sub-par ilumination 

 
Figure 69 - Face detection using the computer’s camara on masked faces 

4.1.4 LAR dataset 

The custom-built LAR dataset had 19 classes with 300 data points per identity. That summed up to 

5700 images in total, with 4617 of them used for training, 513 for cross-validation and 570 for test at 

the end of training framework. 

The images were gathered from videos of the individual identities, creating the pre-processed dataset. 

Before inputting the images into the face detector, random transformations were done on the images. 

Those allowed for more variety in the data intended to train the model. With that, the classifier was 

more prone to identifying new samples correctly in the inference part of the model. The methods used 

were random rotations and horizontal flips, with an example of those results being showcased in the left 

column of Figure 70.(b), Figure 70.(c) and Figure 70.(d). After the MTCNN output, the dataset images 

only contained the cropped and aligned faces in a 160 x 160 dimension setting. Those are showcased 

in the right column of Figure 70. 
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Figure 70 – Image transformations from frames gathered from videos form people in the dataset and respective MTCNN detector and 
alignment output; (a) - No transformation; (b) – Random rotation(>0º); (c) - Random rotation(<0º); (d) – Horizontal flip. 

 

 

(a) 

 

 
 

(b) 

 

 
 

(c) 

 
 

(d) 
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4.1.5 Face Detection Conclusion 

Regarding the Implementation Results section, the MTCNN pipeline was easy to implement in real-time 

settings. By loading the weights and bias from transfer learning from the previously trained network by 

(“GitHub - davidsandberg/facenet: Face recognition using Tensorflow,” n.d.), large part of the 

implementation was skipped. With those, the model was able to easily detect faces on images, 

recorded videos and in real-time video in standard conditions. The proposed variable settings displayed 

in Figure 35 were adequate pursuing a good framework accuracy when not exposed to extreme 

disadvantage situations. 

On Tests on Images and videos section, tests with different number of targets, like the ones on Figure 

59 and Figure 60, proved that the framework’s performance was not affected by the number of faces to 

be detected. Those tests also demonstrated that different candidate’s size faces, simulating how 

far/near the viewpoint was, were equally detected, proving the efficiency of the image pyramid 

algorithm. 

MTCNN was also proven capable of identifying a face in various pose scenarios in real world 

environments, with different analysis being done such as the one in Figure 60 or Figure 65. Although 

the cascaded CNN was still not able to fully recognize all targets, those whom the model could not 

identify had a lot of noise in their surroundings or adverse conditions. 

To better understand the model’s flaws, more tests were done on blurred images, bad lighting or 

‘disguise’. Those proven very challenging for the detector framework when facial landmarks were not 

exposed or in bad detecting conditions. By lowering the threshold array of the 3 stages, more proposals 

marked as faces, passing through the NMS algorithm, as seen in Figure 61, Figure 63 or Figure 65. 

That allowed the MTCNN to point out more faces in harder situations. One drawback of this practice 

was that even when lowering the thresholds, still not all the faces were detected. The other drawback 

was that false positives were more frequent (Figure 63.(c) and Figure 64.(c)), costing the models 

accuracy. 

When implementing the model with the camera for real-time settings, the model reached a constant 

frame count of 10 to 18 fps. That made the model reliable in real time configurations. The same tests 

were carried out using the camera in standard environments. Those verified good detection results in 

different distances from the camera. The model also easily detects different faces pose variations in 

different illumination settings. 
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When building a dataset for face recognition, the samples are usually the cropped face of the class 

identity, with the least background possible. The MTCNN pipeline did that by cropping and aligning the 

face of the people to be inserted in the custom dataset of users from LAR. Those data points were 

obtained in the frames directly fetched from videos done individually. Due to Covid restrictions, this 

approach was a simple method to build the dataset, without the acquisition of many images. To make 

the system more robust to new samples of data, image transformations were implemented on random 

frames (Figure 70). Those improved the classification of new samples in the inference part of the work. 

The reason for this framework decision was the motivation of the dissertation. Since the premise was 

creating a more suitable HRC, real world situations needed to be kept in mind. With more diverse data 

fed into the classifier, the model was able to recognize identities in various scenarios other than looking 

directly forward. 

4.2 Inception ResNet Training 

For the Inception-ResNet training, both versions v1 and v2, important hyperparameters were studied to 

tune the networks to achieve maximum accuracy and minimum loss. Those included the tunning of the 

batch size, number of mini batches epoch, lr and dropout. The results of training were uploaded into 

the TensorBoard feature, visualizing the parameters convergence as training went by. For every train 

done, 3 graphs were plotted and analyzed: train accuracy, loss scalars and cross-validation scalar. Both 

trained frameworks used ADAM optimizer for gradient descent. The prelogit normalization loss factor for 

batch normalization was set to 0.005, as well as L2 weight decay and L1 norm loss activation. 

The batches were divided into a set of mini-batches, for 2 reasons: computer resources and mini-batch 

gradient descent. Since the computer’s resources were limited, the GPU had difficulty allocating enough 

memory to train big batches of data, necessary when training a deep neural network such as Inception-

ResNet model. Mini-batch gradient descent reduced the variance of the gradients when calculating the 

error and updating the coefficients. Figure 71 demonstrates how the model’s training was supervised 

using the Ubuntu’s terminal. 
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Figure 71 - Terminal output example for supervision when training Inception-ResNet models 

The results presented in this document on developed work in the CASIA-Webface dataset were made 

using only version 1 on the Inception-ResNet. Since the version 2 presented a much more expensive 

architecture topology, the computer was not able to allocate enough memory to present good results 

(Figure 72). Since the custom dataset presented a much smaller number of dataset classes, a of both 

version results were used and compared. 

 

Figure 72 - CUDA error when trying to allocate large sets of data 

4.2.1 CASIA-Webface dataset 

The first hyperparameter test and tunning on the Inception-ResNet v1 CNN models trained with CASIA-

Webface dataset was the training lr. For that, the same CNN was trained, with different learning rates. 

That network had a 5000-batch size (50 batch in 100 mini batches), trained during 300 epochs with a 

40% dropout. The framework results are showcased in Figure 73. 

 



103 

Figure 73 - Train accuracy and loss plots using different Learning Rate on the same CNN configuration 

The 0.1 and 0.07 learning rates, although bigger, presented the worst accuracy results and bigger loss. 

Between 0.03 and 0.06 the CNN presented a good convergence as time went by, with the 0.05 lr 

having the highest train accuracy at the time of the 300 epochs. This Inception ResNet v1 framework 

had a training time of around 9 hours. Although the Inception-ResNet models on Figure 73 trained 

during 300 epochs, its accuracy was still underfitted. By increasing the epoch training, the accuracy on 

the models plateau at around 65% accuracy during the 500 epochs, taking 14 hours of training. 

The next test was understanding how increasing the batch size would influence the learning process. 

Figure 74 presents two Inceptions-ResNet v1 models with a 0.04 lr, 40% dropout, trained in 500 

epochs using a 6000-image batch.(1) and 5000 image batch.(2). The 6000 batch was the maximum 

batch size the networks could train without crashing the whole framework. 

 

 

Figure 74 - Accuracy and Loss comparison between the same network with different batch sizes; 1- 6000 train batch size; 2 5000 train 
batch size 

With more 1000 images per batch, the CNNs had the same convergence pattern, with a slightly 

accuracy gain in the 6000-batch framework. As tradeoff, the 6000-batch network trained for 18 hours 

while the 5000-batch one only trained for 15 hours and 9 minutes. Even increasing the batch size on 

different learning rates, the model’s accuracy was having difficulties converging. 

Since these difficulties involved bad converging status passing a certain number of epochs with a stable 

lr, learning rate decay technique was applied. The model starts with a large lr, decaying into smaller 

numbers in a pre-set number of epochs. The technique was added to the model (6) pipeline on Figure 



104 

73. Starting at a 0.1, the learning rate decrease to 0.009, decaying 0.01 at 30 epochs. It then continue 

to drop the same 0.01 amount every 50 epochs, substantially increasing the model’s accuracy. The 

comparison between the models is showcased in Figure 75. After 400 epochs the model went from 

29% to 67% accuracy using only the lr decay approach. 

 

Figure 75 - Accuracy and Loss gain between the same network using learning rate decay on an undefeated network with high learning 
rate; (a)- Static 0.1 learning rate; (b)- Learning Rate decay starting at 0.1  

Regarding the dropout parameter, different instances were tested to verify overfitting problems. The way 

the overfitting could be verified was to plot the validation subset accuracy, comparing it to the matching 

train accuracy. 

Three models with the same learning rate decay and batch size using different dropout settings were 

trained and plotted (Figure 76). The network’s dropouts were set to 80%, 70% and 40% dropout. The 

way the overfitting could be verified was to plot the validation subset accuracy when cross-validation is 

computed, comparing it to the train accuracy showcases the plots. 
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Figure 76 – Train and validation accuracy and loss plots on the same Inception-ResNet model using different dropout settings. 

The model with the least amount of dropout had the higher performance Figure 76.(a), as well as the 

better performing validation performance (Figure 76.(b)). The least accurate model was also the one 

with the biggest dropout percentage (Figure 76.(e)). Since the 3 modules validation accuracy proved to 

converge accordingly, lowering the dropout below 40% would only damage its performance. 

The best performing Inception-ResNet V1 model had the following topology: 5000 batch size, with a 

starting lr of 0.6, decaying 5e-2 every 100 epochs, finishing with 0.02 lr at 500 epochs. The dropout 

rate was set at 20%. It reached 90% train accuracy and 77.5% validation accuracy after 500 epochs, 

taking approximately 14 hours. The model’s convergence over time can be seen in Figure 77. 

 

Figure 77 - Best Performing Model using the CASIA-Webface dataset 
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4.2.2 Custom Dataset  

With the custom dataset, CNN was trained with both version v1 and v2. Being such a complex, the 

biggest problem surrounding the network’s train was the overfitting when training with smaller sets of 

data. As previously stated, that happens when the train accuracy is very high, while not able to correctly 

classify the outside samples, in other words, the validation subset. 

The first test trained the model with a batch size of 45 throughout 100 epochs with a learning rate of 

0.01 (Figure 78). It managed to reach 99% train accuracy and only 40% validation accuracy on the v1 

version, and 99.4% train accuracy and 60% validation accuracy on v2. Checking the converge over time 

from the models, both versions demonstrated overfit features, with a high train accuracy and low 

validation accuracy. Other conclusion was that the v2 version had better accuracy, as stated in the 

model’s literature. 
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Figure 78 – Same hyperparameters Inception-ResNet v1 and v2 network comparison 

Reviewing the data augmentation effect on smaller datasets, the topology on Figure 79 introduced 

random crops, flips and rotations to the dataset when inputted into the FIFO pipeline. A data 

augmentation model was plotted in the same graph as the non-augmented counterpart, with a batch 

size of 40 throughout 150 epochs with a learning rate of 0.05. The dropout was also lowered to 40%. 

The introduction of data augmentation lowered the accuracy during training but increased during 

validation of the model. It also did nothing regarding the overfitting problem, since the validations 

subsets still had problems converging, doing it latter in training when the model already learned the 

dataset’s patterns. 

 

Figure 79 - Data Augmentation effect on an overfitted topology 

Learning Rate decay was also studied, but its effect on the different topologies did not bring a 

consensual conclusion. Due to the high fluctuation introduced by small changes in hyperparameters, 

the decaying learning rate proved to be an advantageous solution in some cases but in some others 

could not help the model to converge. 
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The best performance (Figure 80) was an Inception-ResNet v2 model, with a 60-batch size segregated 

into 6 mini-batches of 10 images, proven beneficial as already stated and proved in the last section. 

Also, the lr was dropped to 0.001, extending the training epochs to 400, while the dropout was set at 

80%. The model reached 85% train accuracy and 75% validation accuracy. 

 

 

Figure 80 - Best Performing Inception-ResNet model on the LAR dataset 

4.2.3 Inception-ResNet Conclusions 

In this chapter, the Inception-ResNet CNN was trained and validated with a large dataset and a small 

dataset. A study to optimize the network’s hyperparameters was conducted with the help of the 

TensorBoard scalar plots, visualizing how the topologies would converge over time. This CNN proved 

challenging to optimize, given the number of gradients and parameters presented in its architecture. 

Regarding the CASIA-Webface dataset, the batch size had to be segregated into mini-batches. That way, 

more images could be fed into the CNN in one epoch. That was of immense importance, allowing the 

model to continuously variate the gradients into one epoch. When trying to train the model without mini-

batches, the accuracy performance proved lackluster. The maximum number of images the computer 

manage to process in a batch was 6000. However, when compared to smaller batches, like the 

standard 5000-image batch, proven efficient, the accuracy performance would slightly increase, but 

producing a less rewarding time-consuming framework (Figure 74).  

The ideal lr to initiate the training turned out to be between 0.03 and 0.06. Those could start the 

model’s convergence whereas bigger values could not start the training process. Smaller values would 

work but would produce worse performance results (Figure 73).  
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Learning rate decay was essential for the model’s execution (Figure 75). By slowly decaying the learn 

metric, the model was slowly adjusting by its patterns , whereas with a stable lr the Inception-ResNet 

topologies would have a very difficult time generalizing the learning process. 

Overfitting of the model turned out to not be an issue over the large dataset. By tuning down the 

dropout percentage, the model would have a lower accuracy and validation (Figure 76). 

The best performing Inception ResNet v1 model reached almost 90% train accuracy and 77.5% 

validation accuracy after 500 epochs. Since the dataset produced such a challenging classification 

framework, reaching that accuracy performance proved that a robust facial classifier to be used as 

feature extractor was accomplished. 

Regarding the LAR dataset, the biggest problem when training was the constant overfitting, even with 

low dropout. Inception- ResNet v2 was clearly better performing topology in an accuracy standpoint but 

would be much more expensive to train (Figure 78). 

Data augmentation managed to create more samples of each class, substantially increasing validation 

accuracy (Figure 79). For models that would converge naturally, the method t proved to be efficient on 

overfitted models but not so meaningful on models that were already predicting with high accuracy 

When training with such small dataset in a bigger CNN, the best performing models had to divide the 

batch into mini batches, with ideal image batch size rounded between 45 and 60. The best performing 

topologies also had a lower lr, between 0.005 a 0. 001, trained for more epochs than the first 

approaches. (Figure 80). Overall, this topology proved very challenging when training with smaller 

datasets, since its performance was optimized for bigger datasets regarding classification. 

 

4.3 SVM Classifier 

The SVM machine learning method was trained and verified with the LFW and LAR dataset using a 

pretrained. After, the samples were loaded into the TensorBoard Projector, for the PCA and t-SNE 

analysis visualization. Also, the test Confusion Matrix was projected, checking where the model 

misclassified the samples.  

First, the dataset was split into 2 subsets, depending on the mode input used in the script (Figure 54). 

The train subset was used to train the classifier and the test subset was used to verify the accuracy on 

new samples of data, as seen below on Figure 81. It showcases the total number of classes and 

images the dataset had. It also gives two class examples with an 80%/20% for train/validation of the 

LAR dataset. 
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Figure 81 -- SVM dataset split example for training and validation using LAR dataset classes 

4.3.1 Train  

To train the SVM, the train dataset images had to be encoded into a feature vector. For that, a metafile 

and checkpoint of a previously trained Inception-ResNet CNN was needed, as seen in Figure 82. 

 

Figure 82 - - Loading of the pre-trained Inception-ResNet model to encode the images into embedding arrays 

For a metric comparison, 4 pretrained models presented on Inception ResNet Training section were 

used, described in Table 10 Those were strategically chosen to verify how a bad feature extractor could 

affect the classifier performance in comparison with better counterparts. 

Also, different sizes of the train dataset were tried out. That way, a study regarding the number of 

images necessary to obtain a good classifier performance was accomplished. 

 
Table 10 - Description of the pre-trained models to use as feature extractor 

 

 Inception-ResNet model Dataset used for training Description 

Model 1 Figure 79.(b) LAR dataset Overfitted model 

Model 2 Figure 80 LAR dataset Best performing model using LAR dataset 

Model 3 Figure 76.(b) CASIA-Webface Underfitted model 

Model 4 Figure 77 CASIA-Webface Best performing model using CASIA -

Webface dataset 
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The embedding vectors are inputted in batches into the classifier. Varying from the number of images 

used, the train time was neglectable, always under 2 minutes. After it is completed, those classifiers 

were stored into pickle file directory, to latter be loaded to categorize new samples (Figure 83). 

 

Figure 83 - Saving of the Classifier model in a Pickle serialization file into a directory 

4.3.2 SVM Results 

Three train/ test splits were performed on the 4 selected models. These were carried out to find the 

minimum number of images necessary for the model to have a good performance. After training, the 

results were done by loading the previously trained classifier file from the pickle directory (Figure 84) 

and the matching feature extractor model used in train.  

 

Figure 84 - Classifier storage directory 

The model classified new samples of data by outputting the class probability array, similar to the 

SoftMax function. The Predicted class was the Argmax position of the array, with the Probability being 

the confidence percentage. Those are then printed in the terminal, as showcased in the example of 

predicted LFW classes in Figure 85. 

 

Figure 85 - Predicted class, confidence, and ground truth of some of the LFW test dataset samples 

The first train setting had 5 images per class for training using the 4 feature vector models, with the 

results on the test subsets over the 4 trained models being presented on Table 11: 
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Table 11 - Test Accuracy on the 4 Models trained with 5 images per class 

5 images for test subset Accuracy 

Dataset  LFW LAR  

Model 1  0.2% 36.6% 

Model 2 0.1% 18.1 

Model 3 71.8% 63.1% 

Model 4 98.5% 90% 

 

This framework had bad accuracy results on the models trained with the LAR dataset. Another thing to 

notice was that the overfitted model (Model 1) produced better results than Model 2. For the models 

trained with the CASIA-Webface, the accuracy was lackluster on the underfitted Model 3, but was very 

high on Model 4. Although Model 4 presented good results on accuracy, the confidence of the samples 

was low. That was checked when new proposals outside the train/test were misclassified regularly. 

The next framework setting had 10 images per class for training. The results on the test subsets over 

the 4 trained models are presented on Table 12: 

  



113 

 

Table 12 - Test Accuracy on the 4 Models trained with 10 images per class 

10 images for test subset Accuracy 

Dataset  LFW LAR  

Model 1  0.3% 81.9% 

Model 2 1.7% 67.5 

Model 3 83.4% 97.3% 

Model 4 99.7% 99.3% 

 

With 10 images per class, the Inception-ResNet LAR trained models had a decent performance on 

classifiers trained with the same dataset, but still were not able to produce good results on the LFW 

dataset classifiers. 

The CASIA-Webface trained models produced good accuracy results. When using independent samples 

from classes of the dataset, some were still prone to misclassification, especially with the LFW dataset. 

The final classifiers allocated 80% of the dataset for train, with the remaining 20% used for testing. The 

obtained result on the test subsets over the 4 trained models are presented on Table 13: 

 

Table 13 - Test Accuracy on the 4 Models trained with 80% of the dataset images used for train 

 

The Inception-ResNet models trained with the LAR dataset presented subpar classification with other 

datasets. That meant that the feature extractor using the CNN trained with a small amount of data 

could not generalize outside of the dataset. 

The CASIA-Webface models had a significant improvement classifying new samples of data. Model 4 

using the Table 13 settings showcased great accuracy and confidence to be used as classifier on the 

real time face detection and recognition pipeline.  

80% of original dataset  Accuracy 

Dataset  LFW LAR  

Model 1  23% 98.8% 

Model 2 23.6% 98.4% 

Model 3 84.6% 99.6% 

Model 4 99.6% 99.9% 
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Annex III – Confusion Matrix displays the Matrix Confusion, plotted after every test subset prediction 

execution. It showcased a visual representation of the predictions percentages of the LAR dataset 

compared to the ground truths of the data points. This visualization tool was important to understand 

where the SVM was misclassifying the data when checking the minimal number of images for train. 

To ensure the model’s performance outside the LFW datasets, more tests were carried out on available 

images on the internet over celebrities on the LFW dataset. On Figure 86 a compilation of the results is 

showcased. The images presented the classifier prediction and confidence over the bounding boxes 

drawn with the help of the MTCNN face detector. 

 

 

Figure 86 - Compilation of the Classifier prediction and confidence on images of LFW classes outside the dataset 
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4.3.3 SVM Conclusions 

The classifiers training from feature vectors using a linear kernel support vector machine proved to be a 

fast solution with very high classification results for smaller datasets.  

The train of the datasets was never over 2 minutes, even when thousands of images were inputted. The 

pickle serialization file managed to save the progress of the classifier, as well as the classes used for 

training. 

When testing the classifier, the feature extractor model always had to be the same as the train 

framework. Four of the trained models with the Inception-ResNet were used for comparison. As 

demonstrated in SVM Results, feature extractors trained with the LAR dataset could not generalize 

outside of that dataset, given the lack of data necessary to make a robust system. It also proved the 

Model 1 overfitting, since this model had very good results classifying the same data it trained on. It 

meant that instead of learning how to classify the data, it memorized its patterns. It even outperforming 

Model 2, the better model on the same dataset. 

Models 3 and 4, trained on the large CASIA-Webface dataset, proved to be strong feature extractors. 

Since the produced samples arrays were more distinguishable, the SVM managed to have high 

accuracy values. 

Two datasets were used for classification. The LFW dataset presented a bigger challenge, since most of 

the classes had minimal images, while other presented a larger number. That would bias the classifier 

to predict those classes with a bigger number of samples when the result was uncertain. The LAR 

dataset had the same number of images per class, 300, so the classifier results were always balanced. 

The minimal number of images per class to have a good accuracy result was studied. With only 5 

images (Table 11), Model 4 had good accuracy, but the confidence metric was low, leading to 

misclassification problems outside the dataset. The minimum number of images per class that 

produced reasonable results on both datasets was 10 images (Table 12). By setting the train dataset to 

80% of the images (Table 13), Model 4 obtained great accuracy on datasets, predicting samples outside 

the model with high confidence, as seen in Figure 86 and Annex III – Confusion Matrix. 

4.4 Embedding Projector  

The embedding arrays extracted in the SVM Classifier and matching sprite images were loaded into 

TensorBoard (Figure 57). With the projector plugin, the PCA and t-SNE analysis was executed into the 

Euclidean dimensional space. Those Dimension Reduction Unsupervised Learning methods then 

clustered the data points into the Euclidean Space. The grouped samples were observed and analyzed. 
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4.4.1 PCA Analysis 

The PCA output is presented in Figure 87. The analysis was done with the 3 major principal 

components for max segregation. Overall, samples of the same class/identity were clustered together 

into different spatial locations. Some classes presented a more spreader cluster. Analyzing those 

samples, that happened because of the face pose, very similar to others in their surroundings. Hence, 

the PCA unsupervised method furthermore proved that the feature extractor Inception-ResNet CNN was 

able to differentiate classes into a lower-dimensional Euclidean space. One helpful setting on the 

TensorBoard plugin was the coloring of different classes for visualization pouposes, as seen in Figure 

88. That way, a better understanding can be experienced from an observer standpoint. 

 

Figure 87 - Principal Component Analysis visualizer with three first PCs using the TensorBoard Embedding Plugin 
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Figure 88 – Label coloring of the PCA analysis presented in Figure 87 

4.4.2 t-SNE Analysis 

As stated in t-SNE section, the algorithm starts by calculating the probability of similarity of points in 

high-dimensional space and calculating the probability of similarity of points in the corresponding low-

dimensional space. In TensorBoard, the projector started at interaction 0 (Figure 89). It then tries to 

minimize the difference between these conditional probability’s interaction by interaction. This process 

was done automatically by TensorBoard with a pre-set lr. After enough calculating interactions, the 

images were clustered according to similar neighbors. By analyzing Figure 90, the images in every 

spatial location were of the same identity, proving a good segregation between the labels. 
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Figure 89 - t-SNE plot on TensorBoard embedding plugin at interaction 0 
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Figure 90 - t-SNE plot on TensorBoard embedding plugin after the necessary calculation interaction to cluster the labeled images 

4.5 Real-Time Results 

The real time framework used the multi-network methodology built by importing the 3 previously 

implemented modules. With the camera, the MTCNN isolated the faces and generated the bounding 

boxes. Afterwards, the array of the cropped faces goes through the Inception-ResNet feature extractor, 

returning the embedding array. That array was inputted one by one by the trained SVM classifier, 

predicting the input’s identity and confidence. Should the confidence be higher than a certain threshold 

prediction value, the predicted person information was plotted in the original frame above the matching 

proposals. Figure 91 presents an example of the final pipeline result in a single person. 



120 

 

Figure 91 - Real-time user-based facial detection and recognition 

The facial detection and recognition system maintained between 4 to 9 fps, depending on the amount 

of people presented in the camera’s frame. That was a good real-time baseline, given that the model 

had to run with 2 CNNs and a SVM classifier at the same time. 

Some tests regarding pose variations and distance to the camera were performed. In Figure 92 the 

model predicted correctly a slightly tilted face, although the confidence dropped slightly.  

Figure 93 presents the prediction confidence on a test regarding different distances from the camera. 

That meant the size of the detected face would vary depending how far the person is from the camera.  

Figure 94 showcases the identification problem using a mask on the person detected. The pipeline still 

was able to correctly predict the person’s identity, but with a much smaller accuracy confidence. When 

using the threshold to discard less reliant proposals, normally candidates with less than 75%, these 

samples would be filtered.  

Figure 95 and Figure 96 present two users being detected and classified at the same time. In Figure 95 

two users part of the pre-trained classifier were both correctly detected with high confidence. Figure 96 

presents 2 more candidates to be classified. Since the right user was not part of the pre-trained users, 

it was labelled as ‘Unknown’. 
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Figure 92 - Pose variation prediction example using real time face recognition 

 

 

Figure 93 – Prediction on a further distance to the camera 
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Figure 94 - Prediction using mask 

 

Figure 95 -. Real-time user-based facial detection and recognition with two different users part of the pre-trained classifier, both correctly 
detected and classified  
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Figure 96 - Real-time user-based facial detection on 2 subjects. The left user is part of the pre-trained users and is classified correctly. The 
right user was not part of the pre-trained users, and so was labelled as ‘Unknown’. 

 

4.5.1 Real time Conclusions 

The real time framework was successfully implemented when combining the previously implemented 

modules. 

The recognition system maintained a minimum of 6 to 9 fps when a single person is detected, quickly 

dropping to 4 when more candidates appeared. Hence, even with 2 large CNNs working in the 

background of the framework, the system worked consistently without frame drops. 

The showcased test results concluded that all the previously implemented modules could successfully 

work in conjunction with new data instances. Using the pre-trained members of LAR as test labels, the 

system correctly detect faces and predicted the user’s identities on different configurations with very 

high accuracy and confidence. The system flaws came from the lack of diversity when building the 

custom dataset. Some pose variation settings, such as looking deeply left or right, would show a lower 

accuracy than the standard straight forward pose. That could successfully be tackled with a more 

diverse custom dataset, if not for the Covid restrictions at the time of the LAR dataset creation. 
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5. CONCLUSIONS 

This dissertation presented a real-time user-based face recognition system using multi-network deep 

learning methods, with the capability to detect and identify people. The final pipeline was formed by 3 

modules: the face detector, the face feature extractor, and the classifier. A custom dataset of users 

from the Laboratory of Automation and Robotics (LAR) from the University of Minho was built to support 

the execution and test of all the implemented algorithms. All LAR elements gave permission for their 

data to be used. 

The intent of the facial detection and recognition framework was to be implemented on a domestic and 

healthcare service robot, CHARMIE. For a service and assistive robot such as CHARMIE, face detection 

and user recognition are essential for a more user-oriented interaction. Therefore, CHARMIE can adapt 

its approach as well as how it performs different tasks depending on who the interacting user is. 

Additional information regarding its users can be associated with a specific user, for example, if it is a 

child, an adult or a senior, whether that person has any mobility issues or if it is allowed or not to be in 

a specific area of an environment. All this information helps create a more personalized experience for 

all user interactions since CHARMIE can use this technology to directly adapt its behaviors to positively 

influence whom it is interacting with. 

Initially, a detailed introduction to Deep Learning using Convolution Neural Networks was presented, 

from the earlier and basic concepts to the state-of-the-art architectures. It is concluded that CNNs 

benchmarked computer vision algorithms by relying on the spatial structure during image processing. 

CNN methods allowed for more robust detection and classification systems by training on large sets of 

data. These datasets were essential for AI methods to generalize specific classes problems, only 

available after extensive work by researchers and institutions. The state-of-the-art methods regarding 

Face detection and Facial Recognition were analyzed, allowing to conclude that using CNNs surpassed 

human performance accuracy using Euclidean-distance-based loss and Angular/Cosine-margin based 

loss methods. 

As face detector, a multi-task cascaded framework, MTCNN, performed the detection and alignment 

module that isolated the detected faces, predicting the bounding box coordinates. It also processed the 

faces into 160 x 160-dimension settings, serving as input to the extraction model. The parameters were 

loaded via Transfer Learning, taking advantage of a previously trained model’s inference. The 

framework was tested using the computers camera, achieving 10 to 18 fps consistently, making it 

reliable in real-time settings. It detected faces easily in standard scenarios, such as pose variance, 

lighting settings or ‘disguise’ conditions. Tests regarding face detection on real-world environments were 
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carried out. Some of those tests proved challenging for the model to have full accuracy on, even when 

lowering the model’s thresholds. The custom LAR dataset aligned and cropped faces with MTCNN. 

OpenCV library successfully rotated and flipped random samples of data, to provide more face pose 

variations. This was later very important for the model’s prediction in real time contexts. 

Both v1 and v2 versions of the Inception-ResNet CNNs modules were trained with the custom dataset, 

while the Webface-CASIA dataset only trained with version 1 due to lacking computational resources. 

The study of different hyperparameters using the two datasets on the CNN is presented. The 

dissimilarities between large and small sets of data on a deep CNN were exposed. 

Using an SMV classifier proved efficient in adding new persons to the dataset without being time 

expensive, with great accuracy. The SVM classifier was trained with the laboratory members using the 

built dataset. The samples used as input into the classifier were successfully encoded by the best 

performing Inception-ResNet module. Those modules as feature extractors were compared, selecting 

the best performing topology. Also, different experiments regarding the number of images necessary for 

an accurate classifier were carried out. Furthermore, the classifier using SVM can accurately predict 

new data instances of the labels.  

The TensorBoard Embedding Projector plugin allowed for a PCA and t-SNE plot analysis into the 

Euclidean space, segregating the data produced by the best performing Inception-ResNet topology. 

Those dimension reduction algorithms provided an unsupervised learning metric, managing to 

successfully cluster samples of the same identity. proving the precision Inception-ResNet when 

extracting facial features. 

All the networks end-to-end proved to be able to work on real-time applications and managed to detect 

users with different face poses and external variations such as illumination or even ‘disguise’. The 

system flaws came from lack of diversity when building the custom dataset. Some pose variation 

settings, such as looking deeply left or right, would show a lower accuracy than the standard straight 

forward pose. That could successfully be tackled with a more diverse custom dataset. Overall, the 

system was able to detect and predict every student with an above 90% confidence accuracy. 

5.1 Further Work 

Regarding the further work, the system’s framework can be upgraded by increasing the models 

complexity and performance. It can be used as standpoint for facial recognition comparisons, as well as 

a start point for more robust systems. 

The model’s performance and accuracy future upgrades can be summarized as follows: 
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• Creation of a more diverse dataset, improving the overall image acquisition of the person, as 

well as increasing the number of classes, comparing the model’s performance 

• Implement the models using 3D settings, comparing the models performance on a more real-

world configuration 

• Final implementation on the CHARMIE robot 
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