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Resumo

Machine learning para o diagnóstico de lesões na massa branca em pacientes com Doença

de Fabry baseado na marcha e em características cardíacas

As manifestações cerebrais da doença de Fabry (FD) incluem lesões na matéria branca (WMLs). O

objetivo deste estudo é identificar quais as caracteristicas da marcha e cardíacas que permitem diferenciar

os pacientes com FD com WMLS de pacientes com FD sem WMLs.

Para o estudo da marcha, foram avaliados 76 sujeitos através de sensores vestíveis. Os valores da

série temporal das 16 variáveis da marcha foram normalizados usando modelos de regressão múltipla.

Usando as 32 medidas de marcha (média e variabilidade), foi aplicado um algoritmo de feature selection

seguido de cinco classificadores diferentes (LR, SVM Linear e kernel RBF, RF e KNN). Os algoritmos CNN

e LSTM foram implementados utilizando como input os conjuntos de séries temporais da marcha. Para

pacientes com FD e com WMLs vs controlos, a maior exatidão de 71,50% foi obtida usando RF. Para

pacientes com FD e sem WMLs vs controlos, o melhor desempenho foi observado usando KNN com uma

exatidão de 86,67%. Para pacientes com FD com vs sem WMLs, os melhores modelos foram obtidos

usando o algoritmo CNN e usando LR com base com uma exatidão de 81,43% e 80,76%, respetivamente.

Em relação aos dados cardíacos, foram utilizados os dados de dois exames: o eletrocardiograma

(ECG) e o ecocardiograma. Um total de 114 pacientes com FD (61 deste com WMLs) foram avaliados

com o exame de ECG. Para pacientes com FD com vs sem WMLs, a maior exatidão foi de 79,72%. Com o

uso simultâneo demarcha e ECG, dois modelos foram avaliados com um grupo de teste de nove pacientes.

O melhor resultado foi a exatidão de 80% com o algoritmo LR. Finalmente, análises de regressão logística

também foram realizadas nas 22 características do ecocardiograma de 93 pacientes com FD (49 com

WMLs). Os resultados confirmaram que a idade está significativamente associada à presença de WMLs.

Esses resultados demonstram o potencial das técnicas de machine learning baseadas na marcha e

nas características cardíacas para entender o papel dos WMLs em pacientes com FD.

Palavras-chave: Doença de Fabry, Machine Learning, Lesões da matéria Branca, Marcha, Exames

cardíacos.
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Abstract

Machine learning for differential diagnosis of white matter lesions in Fabry Disease patients

based on gait and cardiac characteristics

Brain manifestations in FD include progressive white matter lesions (WMLs).This research aims to

identify a set of gait and cardiac characteristics to discriminate FD patients with WMLs from FD patients

without WMLs.

For the gait study, 76 subjects walked through a predefined circuit using wearable sensors that con-

tinuously acquired different stride features. All strides of 16 gait variables were normalized using multiple

regression models. The mean and the variability of each gait time series were calculated, resulting in

32 gait measures. Using the 32 gait measures, a feature selection algorithm were applied. Then, five

different classifiers (LR, SVM Linear and RBF kernel, RF, and KNN) based on different selected set features

were evaluated. CNN and LSTM algorithms were implemented using as input the gait time series. For FD

patients with WMLs vs controls the highest accuracy of 71.50% was obtained using RF. For FD patients

without WMLs vs controls, the best performance was observed using KNN with an accuracy of 86.67%.

For FD patients with vs without WMLs the best models were obtained using the CNN algorithm and using

LR algorithm with an accuracy of 81.43% and 80.76%, respectively.

Regarding the cardiac data, was used the data from two exams: an electrocardiogram (ECG) and

an echocardiogram. A total of 114 FD patients were evaluated with the ECG (61 have WMLs). For FD

patients with vs without WMLs the highest accuracy of 79.72%. With the simultaneously use of both gait

and ECG features, two models were evaluated on a test group of nine patients. The best result was

80% accuracy with LR. Finally, logistic regression analyses were also performed on the 22 features of

the echocardiogram of ninety three FD patients (forty-nine with WMLs). The results confirmed that age is

significantly associated with the presence of WMLs.

These findings are the first step to demonstrate the potential of machine learning techniques based on

gait and cardiac characteristics as a complementary tool to understand the role of WMLs in FD patients.

Keywords: Fabry Disease, Machine Learning, White Matter Lesions, Gait, Cardiac exams.
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Chapter 1

Introduction

1.1 Contextualization and Motivation

Fabry Disease (FD) is a rare disease that greatly affects the quality of life and may lead to premature

death. This disease is an X-linked lysosomal storage disorder caused by the deficiency or absent activity

of the enzyme α-Galactosidase A (α-Gal A). This disease also affects several organs, including the kidney,

heart, and brain. Brain manifestations in FD include progressive white matter lesions (WMLs) (Buechner

et al., 2008; Körver et al., 2018a). White matter is the brain region responsible for the transmission of

nerve signals and for communication between different parts of the brain. Brain WMLs were an early

manifestation, affecting 11.1% of males and 26.9% of females under 30 years of age, even without cere-

brovascular risk factor outside FD (Azevedo et al., 2020). In (Körver et al., 2018a), WMLs were found in

46% of 1276 patients which tend to occur earlier in males and their prevalence revealed to increase with

patients’ age. WMLs have been associated with gait impairment (Starr, 2003) and the risk of falls (Snir

et al., 2019; Zheng et al., 2012). Gait abnormalities, such as slower gait and postural instability, have

been reported in FD (Löhle et al., 2015). Furthermore, gait assessment has been recently revealed as

a good complementary clinical tool to discriminate FD patients from healthy adults, however, not much

is known regarding the impact of WMLs on gait performance in patients with FD. Specific location and

distribution of WMLs suggest a specific underlying disease (Körver et al., 2018a) and may reflate in a
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different gait profile. Furthermore, heart abnormalities have been associated with the presence of WMLs

(Forte et al., 2019). However, it remains unclear whether cardiac biomarkers are associated with WMLs

in FD patients. It is then of extreme importance to explore different biomarkers that can assist in the

differential diagnosis of WMLs in FD patients.

Machine Learning (ML) is coming into its own, with a growing recognition that it can play a key role in

a wide range of critical applications. ML provides potential solutions in several domains and is set to be a

pillar of our future civilization. ML has been used in different industries, one of these being the healthcare

industry. Machine learning is a growing field that has been extremely used because of the excellent results

it can achieve when applied to different classification and pattern recognition tasks in the medical sector

(see e.g. (Maity & Das, 2017)).

The potential of ML methods based on gait, electrocardiogram, and echocardiogram has not yet been

explored for the task of assisting in the differential diagnosis of WMLs in FD patients. This may be due

to the fact that FD is a rare disease and data to develop different ML methods is not easily available. It

happens that in the district of Guimarães, Portugal, there is an unusually high number of FD patients. This

leads to the possibility of collecting a substantially high quantity of data about this disease and puts us in

a unique position to study different patterns and biomarkers for the differential diagnosis of WMLs in FD

patients using ML.

1.2 Objectives

This dissertation aims to investigate different machine learning algorithms based on different datasets

(gait, electrocardiogram, and echocardiogram) to develop a clinical decision support tool that enhances

the differential diagnosis of WMLs in FD patients. More precisely, the objectives of this thesis are presented

below:

• To evaluate the effectiveness of machine learning methods to discriminate:

– FD patients with WMLs from FD patients without WMLs, and these two groups from healthy

controls based on gait data;
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– FD patients with WMLs from FD patients without WMLs based on electrocardiogram data;

– FD patients with WMLs from FD patients without WMLs based on echocardiogram.

• Investigate how the integration of more than one dataset (gait, electrocardiogram, or echocardio-

gram) can improve the predictive system for the differential diagnosis of WMLs in FD patients.

1.3 Overview of the Thesis

Figure 1 presents an overview of the steps taken to achieve the stated objectives. Four different

datasets were used: clinical and physical data, gait data, electrocardiogram data, and echocardiogram

data. The first step consisted of analyzing each dataset to understand the influence of each feature:

their significance (statistical tests) and their correlations. The effects of inter-subject variations in each

dataset due to physical characteristics were analyzed. To reduce these effects normalization of gait data

was performed, and electrocardiogram and echocardiogram datasets were subdivided. Then, different

feature selection techniques were used to select the best subset of features of each dataset. Finally, with

the subsets created by the feature selection from one or more datasets, different classification machine

learning algorithms were evaluated. The results of the performance evaluation of the models provide prior

knowledge to develop a supervised predictive system to work as a support for the early diagnostic of the

presence or absence of WMLs in FD patients.

This dissertation is composed of four parts and a total of eight chapters. The first part contains

two chapters, introduction, and state of the art. Introduction talks about the general motivation and

contextualization, the objectives, an overview of this thesis, and the scientific papers developed in the scope

of this thesis. The last chapter of Part I is the state of art and it introduces the theoretical fundamentals of

the concepts addressed in the dissertation and the work developed in the areas related to the dissertation.

Part II describes the materials and methodology. The first chapter of Part II relates how the data gets

collected and the inside of each dataset to be used further in the dissertation. Second chapter reports the

methodology used across the development of this dissertation. Following is Part III with results, discussion,

conclusion, and future work. The initial chapter of Part III contains the results of the data analysis on the
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Figure 1: Overview of the research steps of this thesis.

information provided from the information in the third chapter plus a discussion for each of the different

types of dataset. The next chapter concludes this thesis with a scope for future work. Finally, Part IV is

the appendix, where is some extra information regarding the results.

1.4 Contributions of this thesis

The following publications have been made based on the work developed in this dissertation:

• José Braga, Flora Ferreira, Carlos Fernandes, Miguel F. Gago, Olga Azevedo, Nuno Sousa, Wol-

fram Erlhagen, Estela Bicho . “Gait characteristics and their discriminative ability in patients with

fabry disease with and without white-matter lesions”. In: Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
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Bioinformatics). Vol. 12251 LNCS. Springer Science and Business Media Deutschland GmbH,

July 2020, pp 415-428. ISBN: 978303058876. DOI: 10.1007/978-3-030-58808-330.

• Flora Ferreira, Carlos Fernandes, José Braga, Estela Bicho, Wolfram Erlhagen, Miguel F. Gago.“The

effect of levodopa medication on stride time variability in patients with Parkinsonism”. In: Journal

of Statistics on Health Decision 2.2 (Oct. 2020), pp 63-64. DOI: 10.34624/jshd.v2i2.20109
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State of Art

2.1 Fabry Disease

Fabry Disease (FD) is a rare genetic X-linked lysosomal disorder caused by the deficiency or absent

activity of the enzyme α-galactosidase A (alpha-gal A), which is responsible for destroying a type of fat

called globotiaosylceramide (Gb3 or GL-3). When these fat molecules start accumulating due to the lack

of alpha-gal A, they start causing damage to the cells. FD has a wide variety of signs and symptoms, that

goes from heart attacks and strokes to kidney diseases (Giugliani et al., 2016).

With the proper care and treatment, patients with this disease can live longer and have a good life

quality (Desnick et al., 2003).

2.1.1 Signs and Symptoms of FD

As said before, this disease can be related to many signs and symptoms, that can vary from person

to person. Several organs, including the kidney, heart, and brain may be affected (Giugliani et al., 2016).

Brain manifestations in FD include progressive white matter lesions (WMLs) (Buechner et al., 2008;

Körver et al., 2018a). In (Körver et al., 2018a), WMLs were found in 46% of 1276 patients which tend to

occur earlier in males and their prevalence revealed to increase with patients’ age. White matter is the
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brain region responsible for the transmission of nerve signals and for communication between different

parts of the brain. WMLs have been associated with gait impairment (Starr, 2003) and the risk of falls (Snir

et al., 2019; Zheng et al., 2012). Gait abnormalities, such as slower gait and postural instability, have

been reported in FD (Löhle et al., 2015). However, not much is known regarding the impact of WMLs

on gait performance in patients with FD. Specific location and distribution of WMLs suggest a specific

underlying disease (Körver et al., 2018a) and may reflect in a different gait profile.

2.1.2 FD diagnosis

“The timely diagnosis of FD is difficult” (Grünfeld, 2003).

It is easy to understand that this disease has a hard diagnose, although since it is a genetic disease,

analysing the family history can be very helpful. FD results in the accumulation of a fat molecule in cells,

with the years the symptoms have a higher percentage to start appearing, although symptoms have been

reported in children with two years old (Ramaswami et al., 2006). In the absence of a family member who

has already received a diagnosis of the disorder, many cases are not diagnosed until adulthood (average

age, 29 years) (Morgan et al., 1987), when the pathology of the disorder may already be advanced.

Pain, skin rashes, heat, intolerance, stomach upsets, fatigue, lack of energy, and the inability to exercise

are generally the first signs and symptoms to appear, but because these can be associated with other

conditions, it may take many years for a diagnosis of Fabry disease to be made. In fact, up to 25% of

patients are misdiagnosed (Atul Mehta, Michael Beck & Sunder-Plassmann, 2006). Kidney, heart, and

brain problems tend to become noticeable between the ages of 30 to 45 and it is at this point that many

individuals with FD are first diagnosed (MacDermot, KD and Holmes & Miners, 2001).

What is particularly concerning about FD is that there is an average delay between the onset of symp-

toms and diagnosis of 12 years. This is the same for both sexes, although the onset of symptoms tends

to occur about six years later in females than males (MacDermot, KD and Holmes & Miners, 2001).

Since this disease has many symptoms equals to symptoms related to other most commons diseases,

the diagnosis becomes harder. In figure 2, we can see the frequency of erroneous diagnoses in patients

with FD enrolled in FOS – the Fabry Outcome Survey.
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Figure 2: Frequency of erroneous diagnoses in patients with FD enrolled in FOS – the Fabry Outcome

Survey (adapted from (Atul Mehta, Michael Beck & Sunder-Plassmann, 2006)).

Due to the complexity of the disorder, the FD diagnosis is often delayed. This is a reflection of the wide

range of specialists required to correctly identify this disease. To reduce this diagnose some measures

can be helpful like screening programs (Sunder-Plassmann & Födinger, 2006).

Another important measure in the FD diagnosis is to perform early diagnosis in family members of FD

patients. It has been shown that the lifespan of a man with FD is reduced by approximately 20 years and

by approximately 15 years for a woman (MacDermot, KD and Holmes & Miners, 2001).

2.1.3 FD treatment

If the diagnosis of FD goes positive, it is necessary to start a treatment. This treatment can go some

different ways like - the most common - intravenous enzyme replacement therapy (ERT) (this treatment con-

sists of replacing an enzyme which is either absent or deficient in patients, in this case, α-galactosidase A,

Oral Chaperone Therapy, conventional medical treatment, therapy, and prophylactic medications (Mauer

& Kopp, 2018)).

Available therapies for FD include enzyme replacement therapy (ERT) and the chaperone migalastat.

There are still issues unsolved about ERT despite being heavily researched. Both FD specific therapies

present limitations and the attempt to correct the enzymatic deficiency, are not able to fully revert FD
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pathology and clinical manifestations. Therefore, several new therapies are under research, including

new forms of ERT, substrate reduction therapy, mRNA therapy, and gene therapy (Azevedo et al., 2020).

Focusing on ERT, the commercially approved to treat FD may have some variances according to the

area where it is being administrated: may variate from agalsidase beta to agalsidase alfa (Mauer & Kopp,

2018). The producers write on their website “The lowering of GL-3 suggests that Fabrazyme may improve

how FD affects your body; however a relationship of lower GL-3 to specific signs and symptoms of FD has

not been proven” (Desnick et al., 2003).

With the availability of enzyme replacement therapy, prompt diagnosis and treatment of FD have

assumed new importance (Desnick et al., 2003).

2.2 Machine Learning for the diagnosis in healthcare

With the usage of all the data generated by medical exams, diagnoses, and treatments and focus-

ing on the study of different biomarkers, it is possible to use machine learning algorithms to assist in

the perception and diagnose of multiple diseases such as Rheumatoid Arthritis, Cancer, Lung Diseases,

Heart Diseases, Diabetic Retinopathy, Hepatitis, Alzheimer, Liver, Dengue, Parkinson, etc (Joseph, 2017;

Myszczynska et al., 2020).

Gait evaluation can be useful to differentiate different pathologies even in the presence of highly over-

lapping phenotypes, such as the differences found between two types of Parkinsonism (Vascular Parkin-

sonism vs Idiopathic Parkinson’s Disease) in (Fernandes et al., 2021). Furthermore, gait assessment has

been revealing as a good complementary clinical tool to discriminate adults with and without a pathology

such as Parkinson’s disease (Fernandes et al., 2019; Ferreira et al., 2019; Kubota et al., 2016), Hunting-

ton’s disease (Mannini et al., 2016) and recently FD (Fernandes et al., 2020). Gait is usually described

by its spatio-temporal and foot clearance characteristics such as speed, stride length, stride time, min-

imum toe clearance (mean gait characteristics), and their respective variability (given by the coefficient

of variation or the standard deviation) (Ferreira et al., 2019; Kubota et al., 2016; Rehman et al., 2019).

Different machine learning (ML) techniques have been used to select the best combination of relevant gait
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characteristics for gait classification (Caramia et al., 2018; Fernandes et al., 2019; Rehman et al., 2019).

Recent work (Rehman et al., 2019) shows that a subset of gait characteristics selected using random

forest with information gain and recursive features elimination (RFE) technique with Support Vector Ma-

chine (SVM) and Logistic Regression improves the classification accuracy of Parkinson’s Disease. Widely

used machine learning models for gait classification are SVM (Aich et al., 2018; Fernandes et al., 2020;

Mannini et al., 2016; Pradhan et al., 2015; Wahid et al., 2015), Random Forest (RF) (Aich et al., 2018;

Fernandes et al., 2020; Wahid et al., 2015) and K-Nearest Neighbor (KNN) (Pradhan et al., 2015; Wahid

et al., 2015). The outcomes of these studies show good performance accuracy in the classification of

pathological gait. In particular, the outcomes of previous work (Fernandes et al., 2020) show promising

results in the use of gait characteristics to discriminate FD patients and healthy adults. However, the

implication of the presence or absence of WMLs in gait performance has not yet been investigated.

Functional measurements of the heart obtained by cardiac exams such as the electrocardiogram

(ECG) and/or echocardiogram has been used for diagnosis and monitoring of patients with heart diseases

(G. Jignesh Chowdary, Suganya. G, 2020; Galluzzi et al., 2009; Hijazi et al., 2016; Tsai et al., 2019),

including FD patients (Satriano et al., 2020). The application of different ML techniques have been shown

to improve risk prediction in various cardiovascular diseases. As an example, the model proposed recently

in (G. Jignesh Chowdary, Suganya. G, 2020) which uses the voting of Logistic Regression(LR), Random

Forest(RF), Artificial Neural Network activated with ReLU function(NNR), K-Nearest Neighbors (KNN), and

Gaussian Naive Bayes(GNB) based on ECG data reveals good performance (an accuracy of 89%) to predict

the possibility of heart disease. In fact, ML techniques can learn the hypotheses available within the ECGs,

which are then used to provide predictions regarding patients’ health (Hijazi et al., 2016). In particular,

some functional measurements observed in an ECG exam were proved through regression analysis to

affect the presence or absence of WMLs (Galluzzi et al., 2009).

Extracting knowledge from medical datasets is quite difficult and time-consuming when performed

manually since these datasets generally contain a large number of records. The use of ML techniques in

these datasets is therefore recommendable for quick and accurate extraction of useful information that

could support doctors in their work (Faust & Ng, 2016; Prakash et al., 2018).
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Materials

The data to be used in the further studies are the outcome of gait assessment in healthy subjects

(controls) and FD patients, and, electrocardiogram and echocardiogram performed in FD patients.

3.1 Gait assessment

Gait analysis is the study of walking exercises. Two Physilog® sensors (Gait Up®, Switzerland) po-

sitioned on both feet were used to measure different gait variables of each stride. This study consists

of walking for 30m straight meters, turning around, and walking another 30m straight meters while the

sensors are acquiring the data. This data consists of the arithmetic mean calculated for all subjects’ stride

time series for 13 spatial-temporal variables and 4 foot clearance variables in a total of 17 gait variables

that contain the full step data, represented in table 1.

To perform the gait assessment the participants were asked to walking a 60-meter continuous course

(30 meters corridor with one turn) in a self-selected walking while two Physilog® sensors (Gait Up®,

Switzerland) positioned on both feet were used to measure different gait variables of each stride (also

known as gait cycle). The Physilog® sensor is equipped with a high-quality 3D accelerometer, a 3D

gyroscope, a barometric pressure sensor, and the capability of recording the data on an SD card.

This data consists of 11 spatial-temporal variables and 6 foot clearance variables in a total of 17 gait
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variables described in Table 1.

Table 1: Gait variables.

Spatial-temporal variables

Speed Velocity of one cycle

Cycle duration Duration of one gait cycle

Cadence Number of gait cycles in a minute

Stride length
Distance between successive initial

ground contact of the same foot

Stance The time during which the foot is in the ground

Swing The time during which the foot is in the air

Loading
Percent of stance between the heel strike

and the foot is fully on the ground

Foot flat Percent of stance where the foot is fully at on the ground

Pushing
Percent of stance between the foot being fully

on the ground and the toe leaving the ground

Double support Percent of gait cycle where both feet touch the ground

Peak swing Maximum angular velocity during swing

Foot clearance variables

Strike angle
Angle between the foot and the

ground when the heel hits the ground

Lift-off angle
Angle between the foot and the

ground when the toes are leaving the ground

Maximum heel clearance Maximum height above the ground reached by the heel

Maximum toe clearance 1
Maximum height above the ground

reached by the toes after heel max clearance

Minimum toe clearance Minimum height of the toes during swing phase

Maximum toe clearance 2
Maximum height above the ground

reached by the toes just before heel strike

Since the point here is to evaluate accurate forward gait performances and, due to the fact that the turn

causes severe variations that can affect the final outcome, the turn will be discarded for further analysis.

33



CHAPTER 3. MATERIALS

3.2 Electrocardiogram

The data provided by the electrocardiogram (ECG) consists of 15 features that analyzed heart rate

data and variability, QT (total time for the ventricles of the heart to depolarize and repolarize ( contract

and relax)) episodes, and supraventricular ectopy. All features are described in Table 2.

Table 2: ECG features.

Heart rate data

HR Min Minimum heart rate

HR Mean Mean heart rate

HR Max Maximum heart rate

Heart rate variability

ASDNN 5
Average standard deviation of all 5 mins

normal R-R (heartbeat) intervals

SDANN 5
Standard deviation of sequential 5 mins

of normal R-R interval means

SDNN Standard deviation of the normal R-R intervals

RMSSD Root mean square differences of successive R-R intervals

QT analysis

QT Min Minimum value of the QT interval

QT Mean Mean of the QT intervals

QT Max Maximum value of the QT interval

QTc Min
Minimum value for the QT interval

corrected for extreme heart rate

QTc Mean
Mean of the QT intervals

corrected for extreme heart rate

QTc Max
Maximum value for the QT interval

corrected for extreme heart rate

QTc ≥ 450
QT interval percentage that is greater

than 450 ms corrected for extreme heart rate

Supraventricular ectopy

Longest R-R Maximum difference between two R-R peaks

These ECG features should now be analyzed in order to find the correlation between them and the
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presence of FD. With this study, it may be possible to find a predictor among these 15 features. In Table

3, are described the normal reference range of values used to control the outcome of the ECG. These

values indicate the range of values in which a patient can be considered healthy.

Table 3: ECG normal reference range of values (Rijnbeek et al., 2014; Umetani et al., 1998).

Electrocardiogram

features

Normal reference

range of values

Male Female

Heart Rate 65 to 74 66 to 72

QT 378 to 398 390 to 400

QTc 409 to 430 418 to 432

ASDNN 5 (ms) 43 to 88 38 to 66

SDNN 5 (ms) 117 to 182 114 to 147

SDANN (ms) 104 to 162 102 to 133

RMSSD (ms) 22 to 53 22 to 43

3.3 Echocardiogram

The data provided by the echocardiogram consists of 22 features described in Table 4.

The typical reference range of values for echocardiogram features is referred to in Table 5 and can be

used to compare the actual result of a patient to check for abnormality in the outcome of the echocardio-

gram.
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Table 4: Echocardiogram features.

Echocardiogram features

MV E/A Ratio
Mitral valve ratio between early diastole (E Wave)

and atrial contraction (A Wave)

MV A Vel Mitral valve A Wave blood flow velocity

MV Dec T Mitral valve deceleration time

MV E Vel Mitral valve E Wave blood flow velocity

E’ Lateral
E Wave using tissue doppler imaging

at lateral mitral annulus position

E’ Septal
E Wave using tissue doppler imaging

at septal mitral annulus position

E/E’ Lateral
Ratio between E Wave and E’ Wave

measured at lateral mitral annulus position

E/E’ Medial
Ratio between E Wave and E’ Wave

at medial mitral annulus position

E/E’ Septal
Ratio between E Wave and E’ Wave

measured at septal mitral annulus position

LVPWd Left ventricular posterior wall thickness

ISVd Interventricular septum thickness at end-diastole

LVIDd Left ventricular internal dimension at end-diastole

LADiam/SC Left atrial diameter measured at subcostal position

AoDiam Aorta diameter

S’ Lateral
Peak systolic velocity using tissue doppler tissue doppler

imaging at lateral mitral annulus position

LVdMassInd ASE
Left ventricular mass at end-diastole indexed to body surface area

according to the American Society of Echocardiography (ASE)

LADiam Left Atrial diameter

S’ Septal
Peak systolic velocity using tissue doppler

imaging at septal mitral annulus position

A’ Septal
A Wave using tissue doppler imaging

at septal mitral annulus position

A’ Lateral
A Wave using tissue doppler imaging

at lateral mitral annulus position

LVDdMass ASE Left ventricular mass at end-diastole according to the ASE

LVIDd/SC
Left ventricular internal dimension

at end-diastole at subcostal position

36



CHAPTER 3. MATERIALS

Table 5: Echocardiogram normal reference range of values (Caballero et al., 2015; El Missiri et al.,

2016).

Echocardiogram

features

Normal reference

range of values

MV E/A Ratio 0.86 to 1.88

MV E Vel (cm/s) 0.61 to 0.93

MV A Vel (cm/s)
0.43 to 0.77

(must be smaller than MV E Vel)

MV Dec T (ms) 138.6 to 237.4

E’ Lateral (cm/s) 9.5 to 17.5

E’ Septal (cm/s) 7.3 to 13.3

E/E’ Lateral 4.0 to 8.2

E/E’ Medial 4.6 to 8.6

E/E’ Septal 5.5 to 10.3

S’ Septal (cm/s) 6.7 to 9.5

A’ Septal (cm/s) 7.4 to 11.4

S’ Lateral (cm/s) 7.4 to 12.2

LVPWd (mm) 7.65 to 10.07

IVSd (mm) 7.78 to 10.06

LVIDd (mm) 43.56 to 52.16

LADiam/SC (mm/m2) Not defined

AoDiam (mm) 23.22 to 27.88

LVdMassInd(ASE) (g/m2) 43 to 115

LADiam (mm) 23.74 to 30.44

LVdMass(ASE) (g) 95.78 to 192.81

LVIDd/SC (mm/m2) Not defined

37



Chapter 4

Methodology

4.1 Multiple Regression Normalization

Gait characteristics of a subject are affected by his demographics properties including height, weight,

age, and sex, as well as by walking speed (Wahid et al., 2016; Wahid et al., 2015) or stride length (Alcock

et al., 2018; Fernandes et al., 2019; Ferreira et al., 2019). To normalize the data regression models

according to Wahid et al.’s method (Wahid et al., 2016; Wahid et al., 2015) were used. Comparing to

other methods, such as dimensionless equations and detrending methods, MR normalization revealed

better results on reducing the interference of subject-specific physical characteristics and gait variables

(Mikos et al., 2018; Wahid et al., 2016; Wahid et al., 2015), thereby improving gait classification accuracy

using machine learning methods (Fernandes et al., 2019; Wahid et al., 2015).

First, to control the multicollinearity among predictor variables within this multiple regression, Variance

Inflation Factor (VIF) was calculated (Thompson et al., 2017). This test measures the colinearity of the

physical characteristics (age, weight, height, and sex), speed, and stride length, being a value of VIF

greater than 5 an indicator of this strong correlation.

Spatio-temporal gait variables and foot clearance variables were normalized as follows:

ŷi = β0 +

p∑
j=1

βjxij + εi (4.1)
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where ŷi represents the prediction of the dependent variable for the ith observation; xij represents the

jth physical property of the ith observation including age, weight, height, sex, speed or stride length, β0

represents the intercept term, βj represents the coefficient for the jth physical property and εi repre-

sents the residual error for the ith observation. The model’s coefficients are estimated using the physical

properties and the mean values of the gait variables of the healthy controls. Although at least 20 subjects

per independent variable are recommended in multiple linear regression (Katz, 2011), based on similar

studies (Mikos et al., 2018; Wahid et al., 2016) with higher sample sizes, MR models were computed for

all combinations with 1, 2, and 3 independent variables using a bi-square weight function. For the models

with all significant independent variables (p-value<0.05) Akaike’s information criterion (AIC) (Burnham &

Anderson, 2004) and R-squared metrics were used to select the best-fitted model. Statistical assumptions

of a linear regression including linearity, normality, and homoscedasticity were verified.

In each subject group, the best fitted MR models are used to normalize each stride gait variable by

dividing the original value yi by the predicted gait variable ŷi from (4.1), as follow:

yni =
yi
ŷi

(4.2)

where yni represents the normalized value for the ith observation.

After normalizing all strides of each of the 16 gait variables, the mean and the standard deviation (SD)

of each variable (each gait time series) for all subjects were calculated. In this work, the SD value is used

to measure the variability of each gait variable.

4.2 Statistical tests

Independent T tests or non-parametric Mann–Whitney U tests (if the variable is not normally dis-

tributed) were used to compare differences between two independent groups. The normality of data was

determined with Shapiro–Wilk tests. Fisher Exact T test was used to compare the differences between the

groups when the data is categorical.

The theory of statistical test of significance essentially involves the setting of a null hypothesis and
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competing for an alternative hypothesis. The null hypothesis is a hypothesis of “no difference among

groups” or “ a sample came from a normally distributed population”. To decide if the null hypothesis is

rejected or not, the p-value was calculated. The p-value means the probability of obtaining test results at

least as extreme as the results actual observed, under the assumption that the null hypothesis is corrected.

In practice, the significance level (α) is stated in advance to determine how small the p-value must be in

order to reject the null hypothesis. Conventionally, it is considered statistically significant as p-value < α

when α=0.05 and statistically highly significant as p-value < α when α=0.001 (Kirkwood & Sterne, 2003).

4.3 Machine Learning

Machine Learning (ML) differs from typical programming because the goal here is to make computers

learn from data, as said by Arthur Samuel (1959): “field of study that gives computers the ability to learn

without being explicitly programmed.” Since this is an era where data can be accessed pretty easily, ML

algorithms can revolutionize everything.

Typically, to write a piece of code, we write all the rules necessary to make it logical as in Figure 3.

Figure 3: Traditional approach to data analysis project (adapted from (Géron, 2019)).

In a complex situation, the code can be pretty complicated and heavy. Another solution is to write a

ML algorithm that can detect a pattern and learn by itself, making it much shorter, easier to maintain, and
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more accurate (Figure 4).

Figure 4: Machine learning approach to data analysis project (adapted from (Géron, 2019)).

There is also the advantage of finding patterns in a large amount of data, that human eyes cannot

detect (data mining).

The first step is to know exactly what is the objective of the ML algorithm. This is important because

it will determine how to frame the problem, what algorithms to select and what performance measure

should be used to evaluate the model.

Second step consists of getting the data. Without data, ML is not possible because the computer

needs “something” to learn from. Usually, it is provided a dataset (database table where every column

of the table represents a specific variable (or feature), and each row corresponds to a sample) to the ML

algorithm. Missing data, duplicate data, outliers, a large number of variables, or highly correlated variables

are possible issues that originate at the source and that should be overcome to ensure good data. The

performance of ML is greatly affected by the quality of the data. Different techniques such as missing data

imputation, outlier detection, dimensionality reduction data transformations, are first applied to get data

with quality for ML modeling (Gudivada et al., 2017).

After the dataset is ready, it is time to create the test, train, and validation set:

• Training Dataset: The sample of data used to fit the model. The actual dataset that we use to

train the model. The model reads and learns from this data.
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• Validation Dataset: The sample of data used to provide an unbiased evaluation of a model fit on

the training dataset while tuning model hyperparameters. This data is used to fine-tune the model

hyperparameters hence the model never “learns” from it.

• Test Dataset: The sample of data used to provide an unbiased evaluation of a final model fit on

the training dataset. The test set provides the standard used to evaluate the model.

Next, it is important to keep the relevant features so that the training is not clouded with irrelevant

information because having many features will not help to have a better outcome (exactly the opposite).

The model will only be capable of learning if the training data contains enough relevant features and not

too many irrelevant ones. So it becomes critical to its success coming up with a good set of features to

train on. This process is called feature engineering and involves:

• Feature selection: selecting the most useful features to train on among existing features creating

a subset of the original attributes (features or variables);

• Feature extraction (or Feature projection): combining existing features to produce a more useful

one, reducing this way the high-dimensional spaces into a space with fewer dimensions achieved

by dimension reduction algorithms;

• Creating new features by gathering new data.

4.4 Feature selection

It is possible to state that feature selection is an inevitable part of a classifier design. For instance,

the classifier-independent univariate filter methods have similar trends. Filter methods such as the T Test,

Mann Whitney U Test or Fisher Exact T Test have better or similar performance with wrapper methods for

harder problems. This improved performance is usually accompanied by significant peaking (Hua et al.,

2009).
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In this study, a hybrid method (filter method followed by a wrapper method) was employed to select the

most relevant gait and cardiac characteristics. First, a filter method based on Mann Whitney U tests and

Spearman’s correlation between the variables was used to selected 10 gait characteristics. The selected

10 gait or cardiac characteristics are the ones that present a higher U -value and do not present a high

correlation between them (|ρ|<0.90).

Before applying a wrapper method, the selected 10 variables were scaled to have zero mean and unit

variance. Based on previous work (Rehman et al., 2019), the wrapper was developed using the Recursive

Feature Elimination (RFE) technique with three different ML classifiers: Logistic Regression (LR), SVM with

Linear kernel, and RF. RFE has some advantages over other filter methods (Iguyon & Elisseeff, 2003). RFE

is an iterative method where features are removed one by one without affecting the training error. The

selection of the optimal number of features for each model is based on the evaluation metric F1 score

(see definition in section 4.6) evaluated through 5-fold cross-validation, that consists in a procedure that

divides a limited dataset into 5 non-overlapping folds, where each fold is at some point of the iteration

used as a held-back test set, whilst all other folds collectively are used as a training dataset. The gait

characteristics’ importance was quantified using the model itself (feature importance for LR and SVM

with linear kernel and information gain for RF). The F1 score was used to assess the performance of the

different gait characteristics combinations.

4.5 Models theoretical basis

4.5.1 Logistic Regression

Some regressions can be used for classification. Logistic Regression is commonly used to estimate

the probability that an instance belongs to a particular class. If the estimated probability is greater than

50%, then the model predicts that the belongs to that class, or else it predicts that it does not. Therefore,

Logistic Regression is a binary classifier.

To compute this, Logistic Regression computes a weighted sum of input features (plus a bias term),
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but instead of outputting the result directly, it outputs the logistic of this result.

The Logistic Regression model estimated probability (vectorized form) is computed by the equation:

p̂ = hθ(x) = σ(θT · x) (4.3)

The logistic is a sigmoid function that outputs a number between 0 and 1. Is computed by the equation:

σ(t) =
1

1 + e−t
(4.4)

Once the Logistic Regression model has estimated the probability p̂ = hθ(x) that an instance x belongs

to the positive class, it can make its prediction ŷ easily.

ŷ =

0, if p̂ < 0.5,

1, if p̂ ≥ 0.5

(4.5)

Notice that σ(t)< 0.5 when t< 0, and σ(t)≥ 0.5 when t≥ 0, so a Logistic Regression model predicts

1 if θT · x is non-negative, and 0 if it is negative.

Now there is only one more question, how is it trained? The objective of the training is to set the

parameter vector θ so that the model estimates high probabilities for positive instances (y = 1) and low

probabilities for negative instances (y = 0). This idea is captured by the cost function below for a single

training instance x.

c(θ) =

−log(p̂), if y = 1,

−log(1− p̂), if y = 0

(4.6)

This cost function makes sense because –log(t) grows very large when t approaches 0, so the cost

will be large if the model estimates a probability close to 0 for a positive instance, and it will also be very

large if the model estimates a probability close to 1 for a negative instance. On the other hand, –log(t) is

close to 0 when t is close to 1, so the cost will be close to 0 if the estimated probability is close to 0 for a

negative instance or close to 1 for a positive instance, which is precisely the goal.

The cost function over the whole training set is simply the average cost of overall training instances.
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It can be written in a single expression called log loss:

J(θ) = − 1

m

m∑
i=1

[yi · log(p̂i) + (1 + yi) · log(1− p̂i] (4.7)

4.5.2 Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a very powerful and versatile Machine Learning model, capable of

performing linear or nonlinear classification, regression, and even outlier detection (Géron, 2019). SVM’s

are based on the concept of a decision boundary that separates two different classes of data in order

to discriminate classes. A separating hyperplane is constructed in the training phase by using an input

training data set containing data samples. The hyperplane that best separates the samples belonging

to the two classes is called a maximum-margin hyperplane that forms the decision boundary. The class

samples that are on the boundary are called Support Vectors (SVs).

These SVs obtained from the training phase are then used in the classification phase to classify new

data. The pattern x lies on the hyperplane in the feature space can be described by equation 2.9, where

w is a normal vector to the hyperplane and b is the model bias:

xiw
T + b = 0 (4.8)

By selecting the two hyperplanes described in equation (4.9) and equation (4.10), the data points are

separated in the margin region, and the aim is to maximize the distance between them.

xiw
T + b = +1, yi = +1 (4.9)

xiw
T + b = −1, yi = −1 (4.10)
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The distance between the two hyperplanes is 2
||w|| :

d+ − d− =
|1− b|
||w||

− | − 1− b|
||w||

=
2

||w||
(4.11)

and the goal is to minimize ||w|| since the aim is to maximize the margin 2
||w|| . Also, for every

i ∈ (1, n), xi and yi follows the constraints:

xiw
T + b ≥ +1, yi = +1 (4.12)

xiw
T + b ≤ −1, yi = −1 (4.13)

Equations 4.12 and 4.13 are equivalent to the following equation:

yi(xiw
T + b)− 1 ≥ 0,∀i (4.14)

The final SVM decision function is:

f(x) = sgn(xwT + b) (4.15)

Support vector classification relies on this notion of linearly separable data. However, in practice data is

often very far from being linearly separable, and we need to transform the data into a higher dimensional

space in order to fit a support vector classifier.

The function of kernel is to take data as input and transform it into the required form. Different SVM

algorithms use different types of kernel functions and separate data by class differently from each other.

These functions can be different types:

• Linear: K(x, z) = (x · z)

• Polynomial: K(x, z) = ((x · z)) + 1)d

• Gaussian Radial Basis Function (RBF): K(x, z) = exp(− ||x−z||2
2σ2 )

where in Linear and Polynomial function x · z is the cross product.
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4.5.3 Decision trees

Decision Trees are a class of very powerful Machine Learning Model. It is capable of achieving high

accuracy while being highly interpretable.

As the name goes, it uses a tree-like model of decisions. The “knowledge” learned by a decision tree,

through training, is directly formulated into a hierarchical structure, with leaves (nodes) and branches

(splits). This structure holds and displays the knowledge in such a way that it can easily be understood,

which means that is possible to fully understand where our accuracy and errors are coming from, what

type of data the model would do well with, and how the output is influenced by the values of the features.

Another great advantage of Decision Tree Models is that require very little data preparation. Many

Machine Learning models may require heavy data pre-processing or complex regularisation schemes.

Decision trees work quite well after tweaking a few of the parameters.

Also, the cost of using the tree for inference is logarithmic in the number of data points used to train

the tree. That is a huge plus since it means that having more data will not make a huge dent in the

inference speed.

Decision Tree models are created using two steps: induction (where the tree is built. Is, also, set all

of the hierarchical decision boundaries based on the data provided. Because of the nature of the decision

trees, they can be prone to major overfitting) and pruning (the process of removing the unnecessary

structure from a decision tree, effectively reducing the complexity to combat overfitting with the added

bonus of making it even easier to interpret).

Induction

Determine the“best feature” in the dataset to split the data on consists in choose the features to use

and the specific split, using a greedy algorithm to minimize a cost function. This algorithm consists of a

trial and error method, where different choices are made until the lowest cost solution is found. Better the

choices made on the tries, less wasting computations on testing out split point will exist.
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For a regression tree, it can be used a simple squared error as our cost function:

E =
∑

(y − ŷ)2 (4.16)

where y is our ground truth and (ŷ) is our predicted value. The sum of all the samples in our dataset

is the total error.

For a classification tree, it can be used the Gini Index Function:

E =
∑

[pk · (1− pk)] (4.17)

where pk is the proportion of training instances of class k in a particular prediction node.

A node should ideally have an error value of zero, which means that each split outputs a single class

100% of the time. This value is the objective because once reached that particular node, the output is

known whether on one side of the decision boundary or the other.

As a problem usually has a large set of features, it results in a large number of splits, which in turn

gives a huge, slow, and overfitted to our training dataset. That way is necessary to implement some

predefined stopping criterion to halt the construction of the tree.

The most common stopping method is to use a minimum count of the number of training examples

assigned to each leaf node. That way, if the count is less than a minimum value then the split is not

accepted and the node is taken as a final leaf node.

If all leaf nodes become final, the training stops. The smaller the minimum count, finer splits, and

more information will be given but is also prone to overfitting on the dataset. A larger minimum count

can make the stop happen too early. Doing so, the minimum value is usually set based on the dataset,

depending on how many examples are expected to be in each class.

Another way is to set the maximum depth of the tree, which means the length of the longest path from

a root to a leaf (Prashant Gupta, 2017).

Pruning

As previously mentioned, because of the nature of training decision trees they can be prone to major

overfitting. Because of the difficulty of setting a correct value for the minimum number of instances per
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node, the result ends up that many splits will be redundant and unnecessary to increase the accuracy.

Tree Pruning is a technique that leverages this splitting redundancy to remove (prune) the unnecessary

splits in the tree. In other, pruning compresses part of the tree from strict and rigid decision boundaries

into ones that are more smooth and generalize better. Being the complexity directly linked to the number

of splits in the tree, this method can reduce effectively the tree complexity.

Pruning can start at either root or the leaves. The simplest method of pruning, called reduced error

pruning, starts at leaves and removes each node with the most popular class in that leaf. This change

is kept if it does not deteriorate accuracy. There are more sophisticated pruning methods, called cost

complexity pruning, where a learning parameter (alpha) is used to weigh whether nodes can be removed

based on the size of the sub-tree. This is also known as the weakest link pruning. Another cost complexity

pruning method consists in go through each node in the tree and evaluate the effect of removing it on the

cost function. If the change is not significant then it is possible to prune it.

Random Forests

Random Forests (Breiman, 2001) are based on Decision Trees. Random Forest is used for supervised

learning which means learning from labeled data and making predictions based on the learned patterns.

Random Forests randomly selects observations/rows and specific features/variables to build multiple

decision trees from and then averages the results while a decision tree is built on an entire dataset, using

all the features/variables of interest. Random Forest also allows for controlling the number of trees built

along the process.

4.5.4 K-Nearest Neighbors

Nearest neighbor classification, also known as K-nearest neighbors (KNN), is based on the idea that

the nearest patterns to a target pattern x′, the pattern for which the label is seeked, deliver useful label

information. KNN assigns the class label of the majority of the K-nearest patterns in data space (Kramer,
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2013). In R, the Minkowski metric can be employed:

||x′ − xj||p = (

q∑
i=1

|(xi)
′ − (xi)j|p)1/p (4.18)

which corresponds to the euclidean distance for p=2. For binary classification, KNN is defined as:

fKNN(x
′) =

1 if
∑

i∈Nk(x′) yi ≥ 0

−1 if
∑

i∈Nk(x′) yi < 0

(4.19)

with neighborhood size K and with the set of indices Nk(x) of the K-nearest patterns.

The choice of K defines the locality of KNN. For a smaller K little neighborhoods arise in regions,

where patterns from different classes are scattered. For bigger choices of K, patterns with labels in the

minority are ignored. Therefore, the big question when building a KNN model is what K to choose to

achieve the best neighborhood and, consequently, the best performance.

4.5.5 Convolutional Neural Networks

Convolutional Neural Networks (CNN’s) were developed back in 1989 by LeCun to perform automatic

recognition of handwritten zip code digits by the U.S. Postal Service (LeCun et al., 1989). These networks

are intended to process data of a grid-like structure nature. Time-series can be processed by this model

if they are thought as a 1D grid of values with different time-steps. Also, imaging data can be thought of

as 2D or a 3D grid, depending on the color channel is included (Papernot et al., 2016).

CNN’s key idea is the convolution operations performed to input data. A CNN is fully filled with three

processing layers: convolutional layers, pooling layers, and fully connected layers (Papernot et al., 2016).

Convolutional layers

This is the first layer of a CNNmodel and is based on the discrete convolution operation. This operation

can be described as an inputD represented by a 2D array of size n1∗n2 convolved with a filter (also called

kernel) of size a ∗ a. The filter slides across the input D according to the stride parameter. The output
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of a convolutional layer is a collection of feature maps of size q1 ∗ q2, the number of generated feature

maps is given by the number of filters i (Koushik, 2016). The ith feature map of the lth convolutional

layer denoted C
(l)
i is computed as follows:

C
(l)
i = B

(l)
i +

a
(l−1)
i∑
j=1

K
(l−1)
ij ∗ C(l−1)

j (4.20)

where B
(l)
i is the bias, K

(l−1)
ij is the filter of size a ∗ a that connects the jth feature map in layer

(l− 1) with the ith feature map in layer l and C
(l−1)
j represents the jth feature of layer l− 1. The input

of the first convolutional layer (l = 1) is the input data D, that is C
(0)
1 = D.

Following the convolution layer, an activation function is applied to the feature maps and the output

of the ith feature map is:

Y
(l)
i = g(C

(l)
i ) (4.21)

where g(x) represents an activation function (ReLU for this work).

Pooling layers

Following the convolutional layer is always the pooling layer and its objective is to replace the feature

maps’ output values at a certain location with a statistical summary of the nearby values reducing the

dimensionality of the feature maps.

This objective is achieved using a mask of size b ∗ b to perform a pooling operation on each of the

feature maps. From the most common pooling operations available, maximum pooling operation was

selected for this work and it outputs the maximum value within a neighborhood (Koushik, 2016; Papernot

et al., 2016).

This pooling operation can also increase the robustness of the model to noise and distortions since

after this operation the representations of the feature maps are able to become approximately invariant

to small translations of the input. Therefore, pooling layer is essential to improve the performance of the

network for unseen data, but, no learning is done at the pooling layers. The only objective is to summarize

the output responses over a neighborhood (Papernot et al., 2016).
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Fully connected layers

Third and final layer of CNN is the fully connected layer. When convolutional and pooling layers are

finished, the output of the last pooling layer is flattened and given as input to fully connected layers. A cost

function is used to measure the discrepancy between the output of the network, the class labels, and the

weights of the CNN are updated using backpropagation and Adam optimization method (Papernot et al.,

2016).

4.5.6 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a class of neural networks specialized in processing sequential

data. They are built with a chain-like structure and can be used to process time series and predict their

outcome (Papernot et al., 2016). The key idea is to share parameters across different parts of a model,

sharing the same parameters across the different time steps (Graves, 2012; Papernot et al., 2016).

A sequence that contains vectors x(t) with the time index t ranging from 1 to τ , the value of the hidden

node can be defined as (Papernot et al., 2016):

h(t) = f(h(t−1), x(t); θ) (4.22)

where h(t) represents the state of a hidden node and θ represents the parameters of the network.

the hidden state is then able to save a ”memory” of previous inputs and therefore influence the output of

the network.

The hidden nodes receive two input signals (Graves, 2012). An RNN with I input nodes, H hidden

nodes, and K output nodes, the forward pass can be computed as follows:

u
(t)
h =

I∑
i=1

wihx
(t)
i +

H∑
h=1

whhz
(t−1)
h (4.23)

where wih represents the weights between the input vector x and the hidden node h, whh represents

the weights between hidden node h at time step t − 1 and t and ut represents the internal value of h
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at time step t. the output value z
(t)
h of the hidden node h is computed by applying an activation function

g(x):

z
(t)
h = g(u

(t)
h ) (4.24)

The output value α
(t)
k at time step t is then computed as:

α
(t)
k =

H∑
h=1

whkz
(t)
h (4.25)

z
(t)
k = g(a

(t)
k ) (4.26)

The loss of a RNN is the sum of the time step losses:

J(θ) =
τ∑

t=1

J(θ) (4.27)

where the J(θ) represents the cost function.

The training process of a RNN is made through backpropagation and this is how the gradients of

the cost function respective to the parameters are calculated. In this specific case, the algorithm is

backpropagation through time (BPTT). This algorithm unfolds an RNN into a Multilayer Perceptron allowing

the application of standard back-propagation (Haykin, 2009). Using this, the gradients are easy to compute

but very difficult to train due to vanishing or exploding gradient problems where the influence of the early

time-steps either decays or blows up exponentially as the sequence is processed by the network (Allen-Zhu

et al., 2018; Bengio et al., 1994; Sutskever et al., 2014).

The problem is that when applying backpropagation from z
(t)
h to z

(t−1)
h a multiplication by W T

hh is

performed. This means that many factors of W T
hh are involved in the gradient computation of z

(0)
h . The

value of the gradients will either vanish or explode depending on the magnitude of W T
hh. This can be

described as (Sutskever et al., 2014):

∂J

∂Whh

=
τ∑

t=1

dz
(t)
k z

(t−1)T
h (4.28)
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where

dz
(t)
k = (

τ∏
t=1

W T
hhg

′(z
(t)
k ))(4.29)

If the values of W T
hh are small then the contributions of the older inputs will rapidly tend to zero as t

increases. The algorithm closest to solve this issue is Long Short-Term Memory (LSTM).

Long Short-Term Memory

Long Short-Term Memory (LSTM) is part of the RNNs algorithms. It is based on the idea of creating

paths through time that derivatives that neither vanish nor explode.

It was developed in 1997 by Hochreither and Schmidhuber and since then it has been further devel-

oped and applied to various fields with a high degree of success. It works by a cell state which has a linear

self-loop controlled by different gates (forget and input gate) and the output is computed by the output

gate. The operations of an LSTM (Papernot et al., 2016) can be described as:

Forget Gate: f
(t)
i = bfi +

I∑
j=1

U f
i,jx

(t)
j +

K∑
j=1

Wi,jh
(t−1)
j (4.30)

f
(t)
i = σ(f

(t)
i ) (4.31)

Input Gate: s
(t)
i = σ(bsi +

I∑
j=1

US
i,jx

(t)
j +

K∑
j=1

W s
i,jh

(t−1)
j )� C̃

(t)
i (4.32)

C̃
(t)
i = tanh(bci +

I∑
j=1

U c
i,jx

(t)
j +

K∑
j=1

W c
i,jh

(t−1)
j ) (4.33)

Cell State: C
(t)
i = (f

(t)
i � C

(t−1)
i ) + s

(t)
i (4.34)

Output Gate: o
(t)
i = σ(boi +

I∑
j=1

U o
i,jx

(t)
j +

K∑
j=1

W o
i,jh

(t−1)
j ) (4.35)
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h
(t)
i = o

(t)
i � tanh(C(t)) (4.36)

where � is the symmetric tensor product and b, U, W are the bias, input weights, and recurrent

weights of the LSTM gate respectively. σ represents the sigmoid function, tanh represents the hyperbolic

tangent function, f
(t)
i represents the forget gate for time step t and cell i, s

(t)
i represents the input gate

for time step t and cell i, C
(t)
i represents the cell state for time step t and cell i, o

(t)
i represents the output

gate for time step t and cell i and h
(t)
i represents the hidden value of hidden node i at time step t.

As RNNs, LSTM can be trained using backpropagation and gradient descent. The vanishing gradient

problem is tackled because the LSTM cell state provides a way for the gradient to flow allowing the network

to learn long term dependencies (Papernot et al., 2016).

To go further into the analysis, CNN and LSTM approach were implemented with the group of features

selected above from the recursive feature selection method to check if these two methods can improve

the metrics. The features selected included its mean and standard deviation, but for CNN and LSTM the

all stride values of the gait variables were used on the iteration. To perform these models, an algorithm

iterating across different combinations of the number of neurons, learning rate, and kernel were developed

to achieve the best model. The process for both CNN and LSTM is described in the flowchart in Figure 5.

Figure 5: CNN and LSTM flowchart.

From Figure 5, first, from the raw full stride series of the gait assessment the MR normalization

described in Section 4.1. was performed. From this outcome, a feature selection algorithm using recursive

feature elimination was developed to select which gait variables are used in CNN and LSTM models.
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4.6 Machine Learning metrics

All classifiers hyperparameters were tuned using randomized search and grid search method with 5-

fold cross-validation: LR regularization strength constraint and type of penalty according to regularization

strength constraint; SVM regularization parameter, gamma, and different types of kernel (with different

degrees); RF maximum depth, minimum samples leaf, minimum samples split, and the number of esti-

mators; finally, KNN number of neighbors, weights, and metric. All classifiers were implemented in Python

programming language using Scikit-learn library (Pedregosa et al., 2011).

After tweaking your models for a while, eventually, the system performs sufficiently well. Now is the

time to evaluate the final model on the test set. Often classification accuracy is used to measure the

performance of the model, however, it is not enough to truly judge it. The most common metrics to

evaluate a classification model are:

• accuracy: the ratio of correct predictions;

• precision: the ratio of correctly predicted positive observations to the total predicted positive

observations;

• sensitivity/recall: the ratio of positive instances that are correctly detected by the classifier;

• specificity: the ratio of negative instances that are correctly detected by the classifier;

• F1 Score: the harmonic mean between precision and recall whose range goes from 0 to 1 (Gu

et al., 2009). It tells how precise the classifier is (how many instances it classifies correctly), as

well as how robust it is (it does not miss a significant number of instances):

F1 Score =
1

1
Precision

+ 1
Recall

(4.37)
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Chapter 5

Gait assessment

5.1 Participants

Gait assessment data from seventy-six subjects (28 males) were collected. Of this group, thirty-nine

of the patients have FD (14 males) and thirty-seven are healthy subjects (14 males). Of the thirty-nine

FD patients, twenty-five patients have White Matter Lesions (WMLs)(7 males). The subject demographics

of the groups of FD with WMLs, FD without WMLs, and controls are summarized in Table 6. For all FD

patients, the exclusion criteria were: less than eighteen years of age, the presence of resting tremor,

moderate-severe dementia (CDR > 2), depression, extensive intracranial lesions, or neurodegenerative

disorders, musculoskeletal disease, and rheumatological disorders. Local hospital ethics committee ap-

proved the protocol of the study, submitted by ICVS/UM and Center Algoritmi/UM. Written consent was

obtained from all subjects or their guardians.
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Table 6: Demographic variables for FD patients with and without WMLs and Controls.

FD patients with WMLs

(n = 24)

FD patients without WMLs

(n = 15)

Controls

(n = 37)

Age (years) 59.29 (15.99) 36.93 (10.99) 52.76 (22.91)

Male (%) 29% 47% 38%

Weight (kg) 66.03 (10.47) 64.69 (6.67) 66.51 (9.12)

Height (m) 1.59 (0.07) 1.66 (0.09) 1.62 (0.09)

Data is presented as mean (standard deviation)

5.2 Gait Normalization

The gait normalization was performed based on the physical properties and the mean values of the

gait variables of the 37 healthy controls. Variance Inflation Factor (VIF) was employed to measure the

colinearity of the physical characteristics (age, weight, height, and sex), speed, and stride length and the

results are presented in Table 7.

Table 7: Variance inflation factor for physical characteristics (age, weight, height, and sex), speed, and

stride length.

Age Weight Height Sex Speed Stride Length

VIF

2.24 1.97 3.76 1.28 6.05 9.89

1.99 1.93 3.37 1.27 - 2.06

1.82 1.97 2.9 1.28 1.26 -

Since when all variables are used both speed and stride length had a VIF value higher than 5 (an

indicator of strong correlation), they can not be used simultaneously. When used separately no VIF value

is higher than 5. Therefore, from the gait variables speed and stride length, only stride length is used on

further investigation.

All possible combinations for each feature were computerized by a developed algorithm, allowing to

find the best possible model for each feature. The models created for each feature are summarized in

Table 8 (right foot) and in Table 38 (left foot).

The models obtained for both feet shown in Table 8 and Table 38 are very similar, therefore, all the
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Table 8: Multiple linear regression models using only significative independent variables for each gait

variable on the right foot.

MR normalization
AIC Adjusted R2

Age Weight Height Speed Gender
Stride

length

Spatial-temporal variables

Cycle duration = +0.84 -0.0011 +0.372 -0.286 -143.71 0.771

Cadence = +137.86 +0.128 -42.44 +33.41 197.76 0.776

Stride length = -0.23 -0.0014 +0.502 +0.611 -126.29 0.928

Stance = +67.71 -5.933 146.57 0.227

Swing = +32.28 5.933 0.362 146.57 0.227

Loading = +16.72 -0.129 +2.68 +2.41 154.30 0.363

Foot flat = +63.20 +0.079 +0.162 -17.73 190.02 0.662

Pushing = +21.81 -0.067 -0.076 +14.88 181.53 0.600

Double support = +35.78 -11.89 187.90 0.277

Peakswing = +154.26 +178.691 340.04 0.570

Foot clearance variables

Strike angle = +16.14 -13.82 +3.83 +22.86 195.22 0.515

Lift-off angle = -28.99 +0.178 -35.40 214.51 0.767

Maximum heel

clearance
= +0.137 -0.00065 +0.085 +0.030 -147.28.06 0.449

Maximum toe

clearance 1
= +0.105 -0.027 -170.17 0.006

Minimum toe

clearance
= +0.013 +0.0003 -244.59 0.427

Maximum toe

clearance 2
= +0.023 -0.00057 +0.024 +0.115 -181.17 0.736

following analyses will be performed only for the right foot. After normalizing all strides of each of the

sixteen gait variables, two datasets were created:

1. Gait measures: the mean and the standard deviation (SD) of each variable (each gait time series)

for all subjects. The SD value is used to measure the variability of each gait variable;

Figure 6: Example of the mean and variability (SD) for patient N167 and his gait variables: cycle

duration, cadence, stance, swing, loading, foot flat, pushing and double support.

2. Gait time series: the all normalized stride values of each gait variable of all subjects (all the time

series).
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Figure 7: Example of a gait time series for patient N167 and his gait variables: cycle duration, cadence,

stance, swing, loading, foot flat, pushing and double support.
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5.3 FD patients with WMLs vs controls

To the differentiation task of FD with WMLs vs Controls, 24 subjects from the control group, aged-

matched with the group of FD patients with WMLs, were selected. The physical characteristics of these

two groups are described in Table 9.

Table 9: Demographic variables for FD patients with WMLs and Controls.

FD patients with WMLs

(n = 24)

Controls

(n = 24)
p-value

Age (years) 59.29 (15.99) 59.13 (21.69) 0.451

Male (%) 29% 29% 1

Weight (kg) 66.03 (10.47) 66.10 (10.27) 0.0.934

Height (m) 1.59 (0.07) 1.63 (0.07) 0.053

Data is presented as mean (standard deviation).

The comparison between the mean value of gait features in FD patients with WMLs vs controls for

the raw gait data and the MR normalized gait is represented in Figure 8, where significant differences in

gait features between FD patients with WMLs and controls are indicated with one asterisk (*p<0.001),

and whiskers represent 95% confidence interval (CI) values. The data was scaled between 0 and 1 to

fit onto the same plot. When using gait raw data: stance, swing, loading, pushing, double support,

strike angle, maximum heel clearance, maximum toe clearance 1, and maximum toe clearance 2 are

significantly different between FD patients with WMLs and controls (for more details see Table A.37). After

normalization, loading is not statistically significant while cycle duration, cadence, foot flat, stride length,

lift-off angle, and minimum toe clearance are now statistically significant.
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5.3.1 Feature selection

Recursive feature elimination (RFE) technique was performed on the 10 remaining features from the

filter method: cycle duration, swing, pushing, maximum toe clearance 1, maximum toe clearance 2,

loading variability, foot flat mean and variability, and maximum heel clearance mean and variability. The

heat map of these 10 features selected from the filter method algorithm is shown in Figure 9.

Figure 9: Gait correlation heat map in FD patients with WMLs vs controls.

Max.: maximum; Var.: variability; Min.: minimum.

The results are summarized in Figure 10 and Table 10. Four gait characteristics were selected by LR

with a F1 score of 61.08%, while SVM selected 7 features with a F1 score of 60.42% and RF selected 7

features with a F1 score of 68.55%. In Table 10, are the training and validation accuracies for the optimal

models of each algorithms. RF had the higher accuracy in the training while the three models showed
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Table 10: Results for each of 3 machine learning algorithms (Random Forest, SVM with linear kernel,

and Logistic Regression) with recursive feature elimination for FD patients with WMLs vs controls.

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)

Logistic Regression 67.66 ± 2.63 63.50 ± 14.46

SVM

(Linear Kernel)
71.79 ± 4.27 65.50 ± 18.19

Random Forest 80.24 ± 2.91 65.00 ± 14.14

SD: standard deviation

similar accuracies in validation, being SVM the highest.

Figure 10 (right side) shows the contribution of each gait characteristic in the classification model.

The common gait characteristics among the selected features by each model were three (Top 3): foot flat,

cycle duration, and pushing. The common gait characteristics from LR and SVM were four (Top 4): cycle

duration, pushing, and foot flat mean and variability, illustrated in Figure 11.

5.3.2 Gait classification based on gait measures

These Top 3 and Top 4 were evaluated with five classification models (LR, SVM Linear kernel, SVM

RBF kernel, RF, and KNN) to identify the optimal combination of gait characteristics and the classification

model with better performance.

As shown in Table 11, RF, SVM RBF Kernel, and KNN performance increased slightly by reducing the

number of features from 4 to 3 while SVM Linear Kernel had the same accuracy in both cases and LR

had a decrease in the model’s validation accuracy. With Top 4, higher accuracies are observed in LR and

RF related to Top 3. KNN and SVM Linear Kernel show equal validation accuracy with Top 3 and Top 4,

although KNN displays higher training accuracy with Top 3. The better performance is observed for RF

with Top 3 and Top 4 achieving a validation accuracy of 71.50% and a training accuracy of 77.61% in Top

3 and a validation accuracy of 64.50% and a training accuracy of 70.18% in Top 4.
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Figure 10: F1 score vs number of features for selection of optimal numbers of gait characteristics (left)

and feature importance results (right) obtained based on Logistic Regression, Support Vector Machine

(SVM) Linear kernel and Random Forest in FD patients with WMLs vs controls. Recursive feature

elimination was used through the 5-fold cross-validation (RFECV).

Max.: maximum; Var.: variability; Min.: minimum.

5.3.3 Gait classification based on gait time series

The groups selected were Top 3 (same as Top LR and Top 4): pushing, cycle duration, and foot flat;

Top SVM: pushing, cycle duration, foot flat, maximum toe clearance 2 and maximum heel clearance; and
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Figure 11: Top 3 and Top 4 after performing RFE on gait features for FD patients with WMLs vs controls.

Table 11: Classification accuracy on training and validation data for top common gait characteristics in

FD patients with WMLs vs controls with LR, SVM (linear and RBF kernel), RF, and KNN.

Top 3 Top 4

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)

LR 64.58 ± 2.05 63.00 ± 12.49 67.66 ± 2.63 63.50 ± 14.46

SVM

(Linear Kernel)
67.63 ± 5.24 61.50 ± 15.46 65.00 ± 6.09 61.50 ± 16.70

SVM

(RBF Kernel)
60.92 ± 5.06 64.50 ± 10.05 66.11 ± 4.92 61.50 ± 14.11

RF 77.61 ± 2.04 71.50 ± 10.91 70.18 ± 3.67 64.50 ± 4.58

KNN 71.04 ± 7.43 60.57 ± 13.08 74.38 ± 3.64 60.12 ± 15.30

LR: Logistic Regression, RBF: radial basis function, RF: Random Forest, KNN: K-Nearest Neighbour,

SD: standard deviation

Top RF: pushing, cycle duration, foot flat, maximum toe clearance 1, maximum heel clearance, swing,

and maximum toe clearance 2.

Table 12 shows the results for CNN and LSTM performed based on the gait time series of the FD

patients with WML vs controls. Top RF achieved the best performance for both CNN and LSTM with a

validation accuracy of 71.61% and 69.39%, respectively. Comparing CNN and LSTM algorithms, CNN

achieved the highest percentage of validation accuracy for Top 5 and Top SVM, while Top 3 had the

highest validation accuracy in LSTM method.

Finally, comparing the results from Table 10, Table 11, and Table 12, Top 3 had a better performance
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Table 12: CNN and LSTM results on selected gait features from the gait time series for FD patients with

WMLs vs controls.

CNN LSTM

Training

accuracy%

(Mean ± SD)

Validation

accuracy%

(Mean ± SD)

Training

accuracy%

(Mean ± SD)

Validation

accuracy%

(Mean ± SD)

Top 3 62.79 ± 3.69 58.89 ± 12.40 62.18 ± 7.14 61.39 ± 8.82

Top SVM 76.72 ± 8.82 73.83 ± 16.93 75.57 ± 9.28 69.11 ± 10.59

Top RF 83.11 ± 6.71 71.61 ± 17.35 75.03 ± 12.76 69.39 ± 15.54

CNN: Convolutional Neural Networks, LSTM: Long-Short Term Memory, SD: standard deviation

using the first approach with RF algorithm with a validation accuracy of 71.50%. On the other hand, in Top

SVM and Top RF both CNN and LSTM outperformed the rest of the algorithms, being CNN the algorithm

with the best metrics achieving 73.83% and 71.61%, respectively. Regarding the standard deviation of the

validation accuracy, there are no major differences between the results from all the models.

5.4 FD patients without WMLs vs controls

To FD without WMLs vs Controls differentiation task was selected from the control group 15 subjects

aged-matched with the group of FD patients without WMLs. The physical characteristics of these two

groups are described in Table 13.

Table 13: Demographic variables for FD patients without WMLs and Controls.

FD patients without WMLs

(n = 15)

Controls

(n = 15)
p-value

Age (years) 36.93 (10.99) 37.00 (13.12) 0.87

Male (n(%)) 47% 47% 1

Weight (kg) 64.69 (6.67) 69.73 (13.82) 0.325

Height (m) 1.66 (0.09) 1.71 (0.08) 0.246

Data is presented as mean (standard deviation).

The comparison between the mean value of gait features in FD patients without WMLs vs controls for
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the raw gait data and the MR normalized gait is represented in Figure 12, where significant differences in

gait features between FD patients without WMLs and controls are indicated with one asterisk (*p<0.001),

and whiskers represent 95% confidence interval (CI) values. The data was scaled between 0 and 1 to

fit onto the same plot. When using gait raw data: cycle duration, cadence, loading, foot flat, pushing,

peak swing, strike angle, lift-off angle, maximum heel clearance, and minimum toe clearance are statisti-

cally significant between FD patients without WMLs and controls (for more details see Table A.37). After

normalization, pushing is not statistically significant while stride length is now statistically significant.
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5.4.1 Feature selection

Recursive feature elimination algorithmwas performed on the 10 remaining features from filter method:

foot flat, peak swing, strike angle, minimum toe clearance mean and variability, stride length variability,

loading mean and variability, lift-off angle variability, and maximum heel clearance variability. The heat

map of these 10 features selected from the filter method algorithm is shown in Figure 13. Results are

stated in Table 14 and Figure 14.

Figure 13: Gait correlation heat map in FD patients without WMLs vs controls.

Max.: maximum; Var.: variability; Min.: minimum.

The results show that LR and SVM selected 5 features as the optimal number of gait characteristics

with a F1 score of 72.31% and 74.90%, respectively, and RF selected 6 features with a F1 score of 79.81%.

Table 14 presents the training and validation accuracies for the optimal models of each algorithm. LR
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presents the higher training and validation accuracies.

Figure 14: F1 score vs number of features for selection of optimal numbers of gait characteristics (left)

and feature importance results (right) obtained based on Logistic Regression, Support Vector Machine

(SVM) Linear kernel and Random Forest in FD patients without WMLs vs controls. Recursive feature

elimination was used through the 5-fold cross-validation (RFECV).

Max.: maximum; Var.: variability; Min.: minimum.

Taking into account the contribution of each gait characteristic in the classification model (Figure 14,

right side), the common features were 3 (Top 3): loading mean and variability and lift-off angle variability.

The common gait characteristics from LR and SVM were 5 (Top 5): foot flat, stride length variability,
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Table 14: Results for each of 3 machine learning algorithms (LR, SVM with linear kernel, and RF) with

optimal gait characteristics’ from recursive feature elimination for FD patients without WML vs controls.

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)

LR 88.33 ± 3.12 76.67 ± 8.16

SVM

(Linear Kernel)
85.00 ± 3.33 76.67 ± 8.16

RF 94.17 ± 4.25 70.00 ± 12.47

SD: standard deviation

loading mean and variability, and lift-off angle variability (see Figure 15).

Figure 15: Top 3, Top 5, and Top 3 (LR & SVM) after performing RFE on gait features for FD patients

without WMLs vs controls.

5.4.2 Gait classification based on gait measures

These Top 3 and Top 5, as well as the Top 3 from LR and SVM (stride length variability, loading

variability and lift-off angle variability), as shown in Figure 15, were evaluated with five classification mod-

els (LR, SVM Linear kernel, SVM RBF kernel, RF, and KNN) to identify the optimal combination of gait
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Table 15: Classification accuracy on training and validation data for top common gait characteristics in

FD patients without WMLs vs controls with LR, SVM (linear and RBF kernel), RF, and KNN.

Top 3 Top 5 Top 3 (LR & SVM)

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)

LR 83.33 ± 4.56 80.00 ± 12.47 88.33 ± 3.12 76.67 ± 8.16 80.83 ± 2.04 80.00 ± 12.47

SVM

(Linear Kernel)
85.00 ± 3.33 73.33 ± 13.33 85.00 ± 3.33 76.67 ± 8.16 83.33 ± 3.73 76.67 ± 8.16

SVM

(RBF Kernel)
80.00 ± 4.08 80.00 ± 19.44 87.50 ± 4.56 80.00 ± 6.67 78.33 ± 4.86 70.00 ± 12.47

RF 92.50 ± 7.17 70.00 ± 16.33 95.83 ± 3.73 70.00 ± 12.47 90.83 ± 1.67 73.33 ± 8.16

KNN 91.67 ± 2.64 83.33 ± 10.54 91.67 ± 2.04 86.67 ± 8.16 93.33 ± 4.56 86.07 ± 12.47

LR: Logistic Regression, RBF: radial basis function, RF: Random Forest, KNN: K-Nearest Neighbour,

SD: standard deviation

characteristics and the classification model with better performance.

From Table 15, KNN achieved the highest validation accuracy in all three different top’s with a valida-

tion accuracy of 83.33% in Top 3, 86.67% in Top 5 from LR and SVM, and 86.07% in Top 3 from LR and

SVM. The validation accuracy in KNN and SVM Linear Kernel increased by changing from Top 3 to Top

5 while the other models decreased (except SVM RBF Kernel who remained equal). Going from Top 5 to

Top 3 from LR and SVM, produced a slight decrease in SVM RBF Kernel and increase in LR and RF (SVM

Linear Kernel and KNN had no change). Overall, KNN showed higher mean validation accuracy followed

by SVM RBF Kernel.

5.4.3 Gait classification based on gait time series

The groups selected were Top 5 (same as Top LR and Top SVM): lift-off angle, loading, foot flat, and

stride length; Top RF: loading, maximum heel clearance, minimum toe clearance, lift-off angle, and peak

swing; Top 3: lift-off angle and loading; and Top 3 LR & SVM: stride length, loading, and lift-off angle.

Table 16 shows the results for CNN and LSTM performed based on gait time series of the FD patients

with WML vs controls. Top 5 achieved the best performance when using CNN algorithm with a validation

accuracy of 80.48% while Top RF achieved the best performance for LSTM with a validation accuracy of

67.62%. Comparing CNN and LSTM algorithms, CNN outperformed LSTM in all group of features.

Finally, comparing the results from Table 14, Table 15 and Table 16, KNN achieved the highest vali-
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Table 16: CNN and LSTM results on selected gait features from the gait time series for FD patients

without WMLs vs controls.

CNN LSTM

Training

accuracy%

(Mean ± SD)

Validation

accuracy%

(Mean ± SD)

Training

accuracy%

(Mean ± SD)

Validation

accuracy%

(Mean ± SD)

Top RF 84.53 ± 10.38 69.05 ± 25.95 82.23 ± 21.98 67.62 ± 23.65

Top 3 85.37 ± 14.89 65.24 ± 18.53 59.73 ± 19.75 48.57 ± 22.08

Top 5 87.93 ± 10.12 80.48 ± 19.69 75.00 ± 13.01 60.48 ± 14.17

Top 3

(LR & SVM)
77.33 ± 9.28 64.76 ± 11.21 71.73 ± 16.00 55.24 ± 17.78

CNN: Convolutional Neural Networks, LSTM: Long-Short Term Memory, SD: standard deviation

dation for Top 3, Top 5, and Top 3 (LR & SVM) with a validation accuracy of 83.33%, 86.67%, and 86.07%,

respectively. For Top RF, using RF algorithm the validation accuracy was higher with 70%. Regarding the

standard deviation of the validation accuracy, it showed higher for all the results in both CNN and LSTM.

5.5 FD patients with vs without WMLs

For the analysis of FD patients with WMLs vs FD patients without WMLs all patients were included.

The physical characteristics of these two groups are described in Table 17.

Table 17: Demographic variables for FD patients with and without WMLs.

FD patients

with WMLs

(n = 24)

FD patients

without WMLs

(n = 15)

p-value

Age (years) 59.29 (15.99) 36.93 (10.99) < 0.001

Male (%) 29% 47% 0.318

Weight (kg) 66.03 (10.47) 64.69 (6.67) 0.743

Height (m) 1.59 (0.07) 1.66 (0.09) 0.011

Data is presented as mean (standard deviation).

The comparison between the mean value of gait features in FD patients with vs without WMLs for the
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raw gait data and the MR normalized gait is represented in Figure 16, where significant differences in gait

features between FD patients with and without WMLs are indicated with one asterisk (*p<0.001), and

whiskers represent 95% confidence interval (CI) values. The data was scaled between 0 and 1 to fit onto

the same plot. When using gait raw data all variables are statistically significant between FD patients with

and without WMLs (for more details see Table A.37). After normalization foot flat, double support, lift-off

angle, and maximum toe clearance 1 are not statistically significant.
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5.5.1 Feature selection

Recursive feature elimination algorithmwas performed on the 10 remaining features from filter method:

swing, minimum toe clearance variability, loading variability, double support variability, maximum toe clear-

ance 1, foot flat variability, peak swing, pushing, strike angle, and lift-off angle variability. The heat map

of these 10 features selected from the filter method algorithm is shown in Figure 17.

Figure 17: Gait correlation heat map in FD patients with vs without WMLs.

Max.: maximum; Var.: variability; Min.: minimum.

Results are stated in Table 18 and Figure 18. LR selected 7 features as the optimal number of gait

characteristics with a F1 score of 72.51%, SVM selected 6 features with a F1 score of 64.13% and RF

selected 6 features with a F1 score of 67.79%. Table 14 summarizes the training and validation accuracies

for the optimal models of each algorithm. The higher training accuracy is obtained with RF while the higher
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validation accuracy is obtained with both LR.

Figure 18: F1 score vs number of features for selection of optimal numbers of gait characteristics (left)

and feature importance results (right) obtained based on Logistic Regression, Support Vector Machine

(SVM) Linear kernel and Random Forest in FD patients with vs without WMLs. Recursive features

elimination was used through the 5-fold cross-validation (RFECV).

Max.: maximum; Var.: variability; Min.: minimum.

Looking across each gait characteristic in the classification model (Figure 18, right side), the common

features for LR, SVM, and RF were 3 (Top 3): minimum toe clearance variability, peak swing, and swing.

The common gait characteristics from LR and SVM were 5 (Top 5): lift-off angle variability, minimum toe
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Table 18: Results for each of 3 machine learning algorithms (Random Forest, SVM with linear kernel,

and Logistic Regression) with recursive feature elimination for FD patients with vs without WMLs.

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)

LR 83.86 ± 3.59 80.76 ± 5.01

SVM

(Linear Kernel)
83.06 ± 1.60 77.90 ± 10.54

RF 83.86 ± 3.68 71.71 ± 15.86

SD: standard deviation

clearance variability, foot flat variability, peak swing, and swing, as shown in Figure 19.

Figure 19: Top 3 and Top 5 after performing RFE on gait features for FD patients with vs without WMLs.

5.5.2 Gait classification based on gait measures

Top 3 and Top 5 were evaluated with five classification models (LR, SVM Linear kernel, SVM RBF

kernel, RF, and KNN) to identify the optimal combination of gait characteristics and the classification

model with better performance. Results are summarized in Table 19. In both Top 3 and Top 5 from LR
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Table 19: Classification accuracy on training and validation data for top common gait characteristics in

FD patients with vs without WMLs with LR, SVM (linear and RBF kernel), RF, and KNN.

Top 3 Top 5

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)

LR 72.71 ± 5.85 68.57 ± 15.09 84.63 ± 1.94 80.76 ± 5.01

SVM

(Linear Kernel)
68.55 ± 4.72 68.38 ± 18.16 80.09 ± 3.82 68.38 ± 12.90

SVM

(RBF Kernel)
61.31 ± 1.12 61.52 ± 4.33 61.31 ± 1.12 61.52 ± 4.33

RF 82.32 ± 6.32 71.71 ± 9.40 83.75 ± 6.23 68.86 ± 14.29

KNN 71.72 ± 5.78 67.24 ± 11.35 78.25 ± 4.70 73.90 ± 16.41

LR: Logistic Regression, RBF: radial basis function, RF: Random Forest, KNN: K-Nearest Neighbour,

SD: standard deviation

and SVM, LR had the highest validation accuracy with 68.57% and 80.76%, respectively. Reducing the

number of features from 5 to 3, LR and KNN had a small decrease, SVM Linear and RBF Kernel remain

with the same and RF had an increase in the validation accuracy. Overall, LR showed as the best algorithm

achieving a validation accuracy of 72.71% and a training accuracy of 68.57% in Top 3 and a validation

accuracy of 84.63%, and a training accuracy of 80.76% in Top 5.

5.5.3 Gait classification based on gait time series

Based on the results obtained in the feature selection the groups of variables selected were: Top LR:

lift-off angle, swing, minimum toe clearance, peak swing, foot flat, double support, and maximum toe

clearance 1; Top SVM: lift-off angle, peak swing, pushing, swing, foot flat, and minimum toe clearance;

Top RF: maximum toe clearance 1, minimum toe clearance, peak swing, strike angle, swing, and pushing;

Top 3: peak swing, swing, and minimum toe clearance; and Top 5: lift-off angle, foot flat, peak swing,

swing, and minimum toe clearance.

Table 20 shows the results for CNN and LSTM performed on the stride series of the FD patients with

vs without WMLs. Top 3 achieved the best performance when using CNN algorithm with a validation

accuracy of 81.43% whilst Top RF achieved the best performance for LSTM with a validation accuracy of

73.93%. Comparing CNN and LSTM algorithms, CNN outperformed LSTM for Top LR, Top SVM, Top 3
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Table 20: CNN and LSTM results on selected gait features from the gait time series for FD patients with

vs without WMLs.

CNN LSTM

Training

accuracy%

(Mean ± SD)

Validation

accuracy%

(Mean ± SD)

Training

accuracy%

(Mean ± SD)

Validation

accuracy%

(Mean ± SD)

Top LR 88.53 ± 11.87 78.93 ± 16.34 87.22 ± 8.81 68.93 ± 10.98

Top SVM 89.19 ± 9.00 71.07 ± 16.88 79.54 ± 8.39 66.43 ± 17.40

Top RF 86.01 ± 14.70 70.71 ± 24.50 78.27 ± 12.32 73.93 ± 14.79

Top 3 95.63 ± 8.75 81.43 ± 14.49 75.08 ± 6.41 71.43 ± 13.27

Top 5 92.40 ± 7.80 75.71 ± 27.26 76.37 ± 7.34 68.93 ± 7.63

CNN: Convolutional Neural Networks, LSTM: Long-Short Term Memory, SD: standard deviation

and Top 5, being only outperformed in Top RF.

Finally, comparing the results from Table 18, Table 19, and Table 20, CNN achieved the highest

validation for Top 3 with a validation accuracy of 81.43% and LR achieved the best performance for Top 5

with a validation accuracy of 80.76%. For Top LR, using LR algorithm the validation accuracy was higher

with 80.76%. For Top RF, using LSTM achieved the best validation accuracy with 73.93%. Finally, for Top

SVM, the better performance was obtained using SVM algorithm with a validation accuracy of 77.90%.

Regarding the standard deviation of the validation accuracy, using CNN and LSTM the standard deviation

values were slightly higher than with the other algorithms.

5.6 Discussion

Based on previous literature (Aich et al., 2018; Fernandes et al., 2020; Mannini et al., 2016; Pradhan

et al., 2015; Rehman et al., 2019; Wahid et al., 2015) different classification models were evaluated with

different sets of gait characteristics selected using a filter method based on Mann Whitney U tests and

Spearman’s correlation between the variables followed by a recursive feature elimination wrapper method

with RF, SVM Linear kernel, and LR. Sixteen gait time series were obtained by two wearable sensors.

All strides were normalized before developing any ML model according to previous studies (Fernandes
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et al., 2020; Mikos et al., 2018; Wahid et al., 2016). Then, for each gait time series the mean and the

standard deviation (as a variability measure) were calculated obtaining 32 gait characteristics. From the

feature selection analysis, foot flat, pushing, and maximum toe clearance 2 were identified as important

characteristics to classify FD with WMLs. While stride length variability, loading variability, and lift-off angle

variability, followed by loading, foot flat, and minimum toe clearance were identified as important gait char-

acteristics to distinguish FD without WMLs from aged-matched healthy adults. Previous work (Fernandes

et al., 2020) reveals that FD patients (with and without WMLs together) present lower percentages in foot

flat and higher in pushing comparing with healthy adults.

For FD patients with WMLs versus controls, validation accuracy of 62-72% and a similar training

accuracy of 58-83% was achieved through the five selected classification models based on Top 3 gait

characteristics, showing RF classifier the best performance with validation and training accuracy of 72%

and 78%, respectively. With one more feature (foot flat variability) RF and LR revealed good performance

with an accuracy of 65% and 64% for validation and 70% and 68% for training. These results corroborated

the hypothesis that the gait characteristics can be used to distinguish FD patients with WMLs from controls.

This goes in line with the premise that gait is a final outcome of WMLs (Snir et al., 2019; Starr, 2003;

Zheng et al., 2012).

Surprisingly, in the FD patients without WMLs versus controls classification higher training and vali-

dation accuracies of 60-93% and 49-86%, respectively, were obtained based on Top 3, Top 5 or Top 3

LR & SVM. KNN classifier displayed the best performance based on Top 3, with an accuracy of 83% for

validation and 92% for training. By increasing the feature set for Top 5 (adding stride length variability and

foot flat), overall validation accuracy of 61–87% was achieved, where for the SVM Linear Kernel, KNN,

and CNN classifiers the accuracy slightly increased. Finally, reducing the number of features to 3 with

Top 3 LR & SVM showed KNN as the best classifier with a top accuracy of 86% for validation and 93%

for training. Also, reducing the number of features increased the performance of LR and RF. Similarly, in

(Rehman et al., 2019) an increase in the model accuracy was observed with feature reduction.

FD patients with vs without WMLs overall performance across all algorithms stood with 62-81% for

validation and 61-96% for training. When using Top 5, LR produced the best performance with an 81%

validation accuracy and 85% training. Reducing the number of features to 3 (Top 3) improved the accuracy

of the best performance to 81% for validation and 96% for training. Further, feature selection (reduction)
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plays an important role to deal with the problem of model overfitting, reduces training time, enhancing the

overall ML performance and implementation.

These results suggest that selected gait characteristics could be used as clinical features for supporting

diagnoses of FD patients even without WMLs from younger ages since the mean age of these patients is

36.93 ± 10.99 years.

Due to the number of subjects involved in this study, all dataset was used in the training and validation

of the models and any independent (external) dataset was used for checking the model performances.

To test the robustness of classification models based on the selected gait characteristics further research

with independent datasets is needed.
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Electrocardiogram

6.1 Participants and Holter data

One hundred and fourteen FD patients (44 males) were evaluated with a 24-hour ambulatory ECG

(Holter) exam. From this group, 61 have WMLs (23 males). The group of patients with WMLs was

significantly older than the group of patients without WMLs (Table 21). The age of about half of patients

with WMLs ranged from 49 to 67 years and 91 years is the age of the oldest one while the age of 50%

of FD patients without WMLs ranged from 34 to 55 years years and the oldest patient has 76 years old

(Figure 20).

Table 21: Demographic characteristics for 114 FD patients with and without WMLs.

With WMLs

(n = 61)

Without WMLs

(n = 53)
p-value

Age (years) 55.28 (16.52) 44.13 (14.90) < 0.001

Male (%) 38% 40% 0.849

Data is presented as mean (standard deviation) plus p values from Mann Whitney U Test.

Regarding the Holter data, Table 22 shows that there is a significant difference between the two groups

on six ECG features: heart rate maximum, QT mean, minimum, and maximum, QT corrected mean, and

QT corrected ≥ 450.
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Figure 20: Boxplot of age stratified for the presence of WMLs in FD patients.

Table 22: ECG features for 114 FD patients with and without WMLs.

With WMLs

(n = 61)

Without WMLs

(n = 53)
p-value

HR Min 50.39 (5.88) 50.45 (6.84) 0.75

HR Mean 74.69 (7.32) 77.4 (8.43) 0.0197

HR Max 121.45 (12.5) 134.52 (16.91) < 0.001

ASDNN 5 58.83 (22.58) 59.92 (19.18) 0.301

SDANN 5 119.17 (30.07) 120 (41.36) 1

SDNN 137.37 (32.71) 136.56 (44.73) 0.88

RMSSD 58.74 (52.9) 44.09 (29.6) 0.242

QT Min 309.08 (26.91) 292.5 (27.46) 0.005

QT Mean 403.12 (33.96) 384.48 (27.04) 0.003

QT Max 490.14 (76.93) 466.36 (67.49) 0.019

QTc Min 374.19 (34.3) 373.29 (32.07) 0.483

QTc Mean 443.73 (29.48) 430.26 (24.93) 0.007

QTc Max 556.33 (69.52) 545.43 (73.44) 0.197

QTc ≥ 450 35.33 (35.34) 19 (27.16) 0.012

Longest R-R 1.84 (0.95) 1.61 (0.4) 0.952

Data is presented as mean (standard deviation) plus p-values from T test or Mann Whitney U Test

for normally or non-normally distributed continuous variables or Fisher Exact T Test for categorical

variables.
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From the univariate logistic regression, heart rate maximum, QT minimum, QT mean, QT corrected

mean, and QT corrected ≥ 450 present a significant association with the presence of WMLs. However,

when adjusted by age no ECG features present a significant association with the presence of WMLs (Table

23).

Table 23: Univariate and multivariate (adjusted for age) logistic regression model to predict the presence

of WMLs.

Univariate

Logistic Regression

Adjusted

for age

p-value p-value

HR Min 0.739 0.467

HR Mean 0.228 0.613

HR Max < 0.001 0.210

ASDNN 5 0.487 0.144

SDANN 5 0.827 0.331

SDNN 0.876 0.244

RMSSD 0.098 0.236

QT Min 0.005 0.061

QT Mean 0.003 0.361

QT Max 0.108 0.376

QTc Min 0.887 0.333

QTc Mean 0.004 0.367

QTc Max 0.304 0.362

QTc ≥ 450 0.004 0.720

Longest R-R 0.304 0.759

So, since age influences the presence of WMLs the group of patients was subgrouped into three age

classes: age 19-39 years, age 40-59 years, and age > 59 years (Table 24). In each age class, there

was no significant difference in age distribution between FD with WMLs and FD patients without WMLs.

However, there is a big difference between the number of patients in age classes 19–39 and 60-91 years.

While in subjects aged 19-39 years the number of patients without WMLs is higher in subjects aged 60-91

years the majority have WMLs. Due to this difference, these two age classes were not included in further

study.

Focusing only on patients between 40 and 59 years inclusive (age distribution is shown in Figure 21)

same tests done earlier were repeated and the results are shown in Table 25 and Table 27.
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Table 24: Number of FD patients with and without WMLs per age classes

With

WMLs

Without

WMLs
Total p-value

[19,40[ 8 25 33 0.411

[40,60[ 23 25 48 0.331

[60,91] 30 3 33 0.683

P-values from Mann Whitney U Test.

Figure 21: Boxplot of age stratified for the presence of WMLs in FD patients with ages between 40 and

59 years old, inclusive.

Table 25: Demographic characteristics for patients between 40 and 59 years old, inclusive.

With WMLs

(n = 23)

Without WMLs

(n = 25)
p-value

Age (years) 50.61 (1.078) 49.00 (1.134) 0.331

Male (%) 35% 40% 0.552

Data is presented as mean (standard deviation) plus p-values from Mann Whitney U Test.

In these subgroups of patients the age and sex differences are not statistically significant (Table 25).

From the univariate logistic regression analysis, two ECG features were significantly associated with

the presence of WMLs: heart rate variability SDANN5 and SDNN (Table 26). These two features were

further analyzed using multivariate logistic regression (adjusted for age or sex), and both remained as
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Table 26: Univariate and multivariate (adjusted for age or sex) logistic regression model to predict the

presence of WMLs for patients between 40 and 59 year old, inclusive.

Univariate

Logistic Regression

Adjusted

for age

Adjusted

for sex

p-value p-value p-value

HR Min 0.080 0.067 0.104

HR Mean 0.220 0.316 0.300

HR Max 0.437 0.721 0.589

ASDNN 5 0.149 0.091 0.190

SDANN 5 0.002 0.001 0.002

SDNN 0.004 0.002 0.004

RMSSD 0.151 0.122 0.163

QT Min 0.154 0.231 0.224

QT Mean 0.649 0.882 0.766

QT Max 0.301 0.166 0.281

QTc Min 0.423 0.380 0.393

QTc Mean 0.524 0.414 0.534

QTc Max 0.247 0.169 0.333

QTc ≥ 450 0.460 0.300 0.361

Longest R-R 0.329 0.401 0.289

independent predictors of the presence of WMLs in the adjusted models (see Table 27).
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Table 27: Association of heart rate variability SDANN5 and SDNN with WMLs in FD patients age ranged

from 40 to 59 years.

With WMLs

(n = 23)

Without WMLs

(n = 25)

Univariate

Logistic Regression

Adjusted

for age

Adjusted

for sex

p-value p-value p-value

SDANN 5 133.18 (7.02) 106.11 (4.61) 0.002
group 0.001 group 0.002

age 0.105 sex 0.41

SDNN 145.43 (7.28) 119.51 (4.93) 0.004
group 0.002 group 0.004

age 0.052 sex 0.621

Data is presented as mean (standard deviation).

6.2 Feature selection with RFE

Going further with the analysis of the electrocardiogram, the same feature selection technique used

earlier with the gait assessment was employed again to develop a machine learning model that best fits

the data. As done earlier, a filter method was performed to select the 10 most significant features (Mann

Whitney U Test) not correlated (|ρ| < 0.80).

Recursive feature elimination algorithm was performed on the 10 remaining features from the filter

method: heart rate minimum, mean and maximum, QT minimum, mean and maximum, QT corrected≥

450 and minimum, ASDNN 5, and SDANN 5. The heat map of these 10 features selected from the filter

method algorithm is shown in Figure 22.

Results are stated in Table 28 and Figure 23. LR selected 6 features as the optimal number of gait

characteristics with a F1 Score of 64.94%, SVM selected 6 features with a F1 Score of 60.07% and RF

selected 6 features with a F1 Score of 68.12%. Table 28 presents the training and validation accuracies

for the optimal models of each algorithm. RF presents the higher training and validation accuracies.
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Figure 22: ECG correlation heat map in FD patients.

Table 28: Results for each of 3 machine learning algorithms (LR, SVM with linear kernel and RF) with

optimal ECG characteristics’ from recursive feature elimination for FD patients with vs without WMLs.

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)

Logistic Regression 81.71 ± 1.77 79.04 ± 3.66

SVM

(Linear Kernel)
78.76 ± 1.12 77.80 ± 2.98

Random Forest 84.75 ± 0.09 79.08 ± 3.42

SD: standard deviation
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Figure 23: F1 score vs number of features for selection of optimal numbers of ECG characteristics (left)

and feature importance results (right) obtained based on Logistic Regression, Support Vector Machine

(SVM) Linear kernel and Random Forest in FD patients with vs without WMLs. Recursive features

elimination was used through the 5-fold cross-validation (RFECV).

Max.: maximum; Min.: minimum.
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6.3 Electrocardiogram classification

Taking into account the contribution of each ECG feature in the classification model (Figure 23, right

side), the common features were 4 (Top 4): heart rate mean and maximum, QT maximum, and SDANN

5. Multiple logistic regression analysis revealed that SDANN5 and SDNN features were significantly as-

sociated with the presence of WMLs even after adjustment for age or sex (Table 27). This Top 4 and

SDANN 5 (since SDANN 5 and SDNN are highly correlated, ρ = 0.85) were evaluated with five classifica-

tion models (LR, SVM Linear kernel, SVM RBF kernel, RF, and KNN) to identify the optimal combination

of ECG features and the classification model with better performance. Results are displayed in Table

29. Overall, the validation accuracies were higher when the input was the Top 4, where RF achieved the

highest performance with a validation accuracy of 79.72%, followed by KNN with a validation accuracy of

77.75%. LR and SVM (both Linear and RBF kernel) had similar validation accuracy with 75.80%, 76.46%,

and 75.17%, respectively. Every one of the 5 models created had a validation accuracy of above 75%

with a standard deviation in the range 0.72–3.45%, which means that all models showed a good and

consistent performance. Although the validation accuracy values obtained with SDANN 5 as input was

lower compared with Top 4, the difference was very small. Expect with RF, the validation accuracy was

above 74% with a standard deviation in the range 0.67-0.72.
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Table 29: Classification accuracy on training and validation data for top common ECG characteristics

and SDANN 5 in FD patients with vs without WMLs with LR, SVM (linear and RBF kernel), RF and KNN.

Top 4 common features SDANN 5

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)

LR 76.91± 1.45 75.80 ± 3.45 74.51 ± 0.23 74.52 ± 0.72

SVM

(Linear Kernel)
76.31 ± 0.40 76.46 ± 2.41 74.51 ± 0.16 74.53 ± 0.67

SVM

(RBF Kernel)
76.47 ± 0.72 75.17 ± 1.30 74.28 ± 0.44 73.00 ± 0.81

RF 84.10 ± 0.72 79.72 ± 1.40 77.56 ± 0.81 66.10 ± 6.00

KNN 82.18 ± 1.37 77.75 ± 1.57 71.51 ± 0.78 71.37 ± 1.14

LR: Logistic Regression, RBF: radial basis function, RF: Random Forest, KNN: K-Nearest Neighbour,

SD: standard deviation

6.4 Gait + Electrocardiogram analysis

To end both gait and ECG study’s, a joint model of both was created to check if it would improve their

performance. First, the model with the best performance for each dataset was selected: Top LR for gait

which achieved a validation accuracy of 80.76% with lift-off angle variability, swing, minimum toe clearance

variability, peak swing, foot flat variability, double support variability, and maximum toe clearance 1; and

Top 4 with RF for ECG with a validation accuracy of 79.72% and as input the features QT maximum,

heart rate mean and minimum, and SDANN 5. These models were re-built without using a group of 9

patients that were assessed on both gait and ECG, that was used only for test purpose. This group of

9 patients was also used to test a model which combined the features mentioned above for both gait’s

Top LR and ECG’s Top 4 with RF, which achieved the best performance, respectively, using LR and RF

algorithm. In Table 30 are represented the training, validation accuracy, and testing accuracy for gait’s

Top LR, ECG’s Top 4 with RF, and gait + ECG best model combined using LR and RF. The highest testing

accuracy was achieved by gait + ECG using LR with 77.78%, while gait’s Top LR, ECG’s Top RF, and gait +

ECG model using RF had 66.67% accuracy. The SVM Linear Kernel, SVM RBF Kernel, and KNN classifiers

were also evaluated with this set of gait + ECG features (the results can be consulted in Table A.39) but

the classification accuracies were not superior to LR.
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Table 30: Classification accuracy on training and validation data plus testing accuracy for group of 9

patients that were assessed on both gait and ECG with gait’s best model (Top LR), ECG’s best model

(Top RF), Gait ECG best model combined with LR and RF.

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)
Testing accuracy%

Gait’s best model

Top LR
88.73 ± 1.50 77.90 ± 5.43 66.67

ECG’s best model

Top 4 with RF
83.91 ± 1.33 79.31 ± 2.38 66.67

Gait + ECG best model combined

with LR
84.09 ± 0.80 79.72 ± 2.92 77.78

Gait + ECG best model combined

with RF
93.53 ± 5.46 71.24 ± 11.61 66.67

LR: Logistic Regression, RF: Random Forest

In Table 31, are discriminated the predictions of each model for each individual patient, who are

described from Patient 1 to Patient 9.

Table 31: Gait and ECG plus gait + ECG best models prediction for 9 patients selected for test.

Patient
Age

(years)
Sex

Presence

of WMLs

Gait’s best model

Top LR

Prediction

ECG’s best model

Top RF

Prediction

Gait + ECG

best model combined

With LR With RF

1 42 Male Yes Yes Yes Yes Yes

2 44 Female No Yes No No No

3 49 Male No No No No No

4 51 Female No No Yes No Yes

5 51 Female No No Yes No Yes

6 52 Female Yes No Yes No Yes

7 52 Male No No No No No

8 53 Female Yes No Yes No Yes

9 54 Female Yes Yes No Yes No

LR: Logistic Regression, RF: Random Forest
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6.5 Discussion

The results from statistical analysis using all patients showed that the ECG outcome differences be-

tween patients with and without WMLs are affected by age (Table 22 and Table 23). As reported in other

studies (Körver et al., 2018b; Rost et al., 2016), the patients with WMLs were significantly older compared

to patients without WMLs (mean age 55.3 ± 16.5 vs 44.1 ± 14.9 years, p<0.001). The prevalence of

WMLs reported in FD corresponds to that found in individuals in the general population, especially in the

elderly (Alber et al., 2019; Körver et al., 2018b). With age, people tend to have their heart functions

decreased (Strait & Lakatta, 2012) which reflects on different values on the ECG features. To further

analysis, participants were divided into age groups: young adulthood (19 to 39 years), middle-aged (40 to

59 years), and older adulthood (59 years and older). Most patients above 60 years old presented WMLs

while most of the younger patients did not present WMLs. So the remaining analysis done in this chapter

was centered on the middle-aged. In patients aged 40-59 years, SDANN 5 and SDNN were the only ECG

features to demonstrate an association with WMLs in logistic regression models (Table 26 and Table 27).

The FD patients with WMLs presented higher values in these two heart variability measures compared

to FD patients without WMLs (Table 27). Independently of age and gender, SDANN 5 and SDNN were

revealed to be good independent predictors of the presence of WMLs. Using only SDANN 5 (since SDANN

5 and SDNN are highly correlated, ρ = 0.85) as input a good classification performance was obtained

(Table 29). Expect with RF, the validation accuracy was above 74% with a standard deviation in the range

0.67-0.72.

When using Top 4 (heart rate mean and maximum, QT maximum, and SDANN 5) as input, FD pa-

tients with vs without WMLs classification overall performance across all algorithms stood with 75-80% for

validation and 77-84% for training. RF produced the best performance with an 80% validation accuracy

and 84% training. These results suggest that selected electrocardiogram characteristics are associated

with the presence of WMLs in FD patients in the middle-aged.

Gait’s Top LR: lift-off angle variability, swing, minimum toe clearance variability, peak swing, foot flat

variability, double support variability, and maximum toe clearance 1; and ECG’s Top 4: QT maximum,

heart rate mean and minimum, and SDANN 5 were used to create a joint dataset to test the hypothesis
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of improving the accuracy by using gait and ECG together. To test this hypothesis nine patients were left

outside as a test group for this hypothesis. Gait plus ECG using LR achieved the best accuracy with 77.78%.

Analyzing the results in Table 31, patients 1,3, and 7 were classified correctly by the four classifiers (LR

based on gait, RF based on ECG, LR based on gait+ECH, and RF based on gait+ECG). Patients 4, 5, and

9 were classified correctly when gait or gait+ECG as input and LR algorithm were used but these patients

were not well classified when ECG or gait+ECG as input and RF algorithm were used. While patients 6

and 8 were classified correctly when ECG or gait+ECG as input and RF algorithm were used but these

patients were not well classified when gait or gait+ECG as input and LR algorithm were used. These results

suggest that the presence of WMLs may be associated with gait patterns and ECG characteristics, or just

one of them. Patient 2 was not correctly classified when gait was used as input but when gait+ECG was

used as input this patient was well classified using in both cases LR algorithm. Furthermore, the validation

accuracy was higher when gait+ECG as input and LR algorithm was applied. Then, there is some evidence

that suggests the use of the two datasets, gait and ECG features, with LR as the classification algorithm

to support the identification of WMLs.
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Echocardiogram

7.1 Participants

The dataset used in this section was the result of an echocardiogram on 93 FD patients (38 males).

From this group, 49 of the patients have WMLs (25 males). As observed in the previous group of FD

patients (see Section 6.1) the patients with WMLs were significantly older than the patients without WMLs

(Table 32). Furthermore, sex difference was found between the two groups of patients (Table 32). By

observing the boxplot (Figure 24), we find that the two groups of patients have a different distribution of

age. While the age of about half of patients with WMLs ranged from 30 to 50 years, the age of 50% of

patients with WMLs ranged from 50 to 70 years.

Regarding the echocardiogram data, only two features, LVIDd/SC and A’Lateral, did not present a

significant difference between the two groups of patients (Table 33).

Table 32: Demographic characteristics for 93 FD patients with and without WMLs.

With WMLs

(n = 49)

Without WMLs

(n = 44)
p-value

Age (years) 57.24 (14.52) 39.02 (14.62) <0.001

Male (%) 51% 30% 0.029

Data is presented as mean (standard deviation) plus p values from Mann Whitney U Test.
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Figure 24: Box plot of FD patients with vs without WMLs according to age.

From the univariate logistic regression, also the same two features did not present statistical signif-

icance with the presence WMLs (Table 34). All the features were then adjusted by age and sex. While

when adjusting by sex no changes are noticed, adjusting by age, except for LVIDd, all echocardiogram

features become no significant predictor of the presence of WMLs.

To decrease this influence of age, the group of patients was subgrouped into the same three age

classes as in Section 6.1 (Table 34). There was no significant differences in age between the two group

of patients in all three age classes. However, the number of patients in group of patients in age classes

19–39 and 60-91 are very different. Therefore, these two age classes were not included in further study.

Focusing only on patients between 40 and 59 years inclusive (age distribution is shown in Figure 25) the

univariate logistic regression analysis was performed again. The results are shown in Table 36. Only

MV E/A Ratio, MV A Vel and S’ Lateral were significantly associated with the presence of WMLs and just

the association of S’ Lateral with the presence of WMLs retained significance in the adjusted models for

age. Furthermore, in the three models adjusted for age, the variable age was still a significant predictor

of WMLs.
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Table 33: Echocardiogram features for 93 FD patients with and without WMLs.

With WMLs

(n = 49)

Without WMLs

(n = 44)
p-value

MV E/A Ratio 1.01 (0.56) 1.48 (0.53) <0.001

MV A Vel 0.81 (0.19) 0.60 (0.18) <0.001

MV Dec T 245.58 (63.34) 202.08 (36.74) <0.001

MV E Vel 0.74 (0.17) 0.82 (0.13) 0.014

E’ Lateral 9.36 (4.32) 14.16 (5.21) <0.001

E’ Septal 7.37 (3.25) 10.70 (3.68) <0.001

E/E’ Lateral 9.27 (3.47) 6.53 (2.66) <0.001

E/E’ Medial 10.56 (3.96) 7.86 (2.98) <0.001

E/E’ Septal 11.72 (5.11) 8.73 (3.51) 0.001

LVPWd 11.19 (3.29) 9.04 (2.36) <0.001

ISVd 12.55 (4.18) 9.82 (3.32) 0.001

LVIDd 42.74 (4.56) 46.07 (3.57) 0.001

LADiam/SC 21.69 (3.55) 19.52 (2.92) 0.001

AoDiam 32.44 (3.69) 30.13 (4.23) 0.006

S’ Lateral 8.47 (2.67) 9.75 (2.82) 0.013

LVdMassInd ASE 108.67 (47.35) 86.16 (37.70) 0.020

LADiam 37.06 (5.76) 34.29 (5.51) 0.024

S’ Septal 7.06 (1.85) 7.80 (1.63) 0.027

A’ Septal 9.24 (2.08) 8.34 (2.11) 0.036

A’ Lateral 10.43 (2.48) 9.48 (2.87) 0.108

LVDdMass ASE 108.07 (82.25) 153.78 (71.95) 0.040

LVIDd/SC 25.11 (2.79) 26.06 (2.42) 0.063

Data is presented as mean (standard deviation) plus significance on T test, Mann Whitney U Test

for normally or non-normally distributed continuous variables and Fisher Exact T Test for categorical

variables.
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Table 34: Univariate and multivariate (adjusted for age) logistic regression model to predict the presence

of WMLs.

Univariate

Logistic Regression

Adjusted

for age

Adjusted

for sex

p-value p-value p-value

MV E/A Ratio <0.001 0.774 <0.001

MV A Vel <0.001 0.146 <0.001

MV Dec T <0.001 0.222 <0.001

MV E Vel 0.015 0.745 0.022

E’ Lateral <0.001 0.879 <0.001

E’ Septal <0.001 0.711 <0.001

E/E’ Lateral <0.001 0.663 <0.001

E/E’ Medial <0.001 0.868 0.001

E/E’ Septal 0.02 0.711 0.004

LVPWd 0.001 0.787 0.001

ISVd 0.001 0.861 0.003

LVIDd <0.001 0.016 <0.001

LADiam/SC 0.002 0.926 0.001

AoDiam 0.006 0.857 0.017

S’ Lateral 0.027 0.270 0.044

LVdMasInd ASE 0.014 0.366 0.033

LADiam 0.021 0.819 0.036

S’ Septal 0.044 0.293 0.081

A’ Septal 0.040 0.296 0.054

A’ Lateral 0.090 0.810 0.130

LVDdMass ASE 0.048 0.299 0.120

LVIDd/SC 0.084 0.241 0.113

Table 35: Division of patients according to respective ages plus age significance value for each age

interval performed with Mann Whitney U Test.

With WMLs Without WMLs Total p-value

[17,40[ 5 22 27 0.416

[40,60[ 24 19 43 0.082

[60,91[ 20 3 23 0.404

101



CHAPTER 7. ECHOCARDIOGRAM

Figure 25: Box plot of patients with vs without WMLs in the interval of ages between 40 and 59 years,

inclusive.

Table 36: Echocardiogram features presented as mean ± standard deviation, statistically significant

after performing univariate logistic regression and adjusted logistic regression for age to predict the

presence of WMLs for patients between 40 and 59 years, inclusive.

With WMLs Without WMLs
Univariate

Logistic Regression

Adjusted

for age

Adjusted

for sex

MV E\A Ratio 1.02 ± 0.33 1.31 ± 0.42 0.017
group 0.068 group 0.003

age 0.013 sex 0.091

MV A Vel 0.79 ± 0.18 0.68 ± 0.17 0.04
group 0.142 group <0.001

age 0.039 sex 0.219

S’ Lateral 9.25 ± 2.88 8.42 ± 2.35 0.027
group 0.039 group <0.001

age <0.001 sex 0.309
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7.2 Discussion

In agreement with the results presented in the previous chapter, age was found to be significantly

associated with the presence of WMLs. In the group of patients analyzed in this chapter, the patients with

WMLs were 18 years older than the patients without WMLs on average. As mentioned before, with age,

people tend to have their heart functions decreased (Strait & Lakatta, 2012) which also reflects on different

values on the echocardiogram features. The results (Table 33) show that the difference in echocardiogram

features between the two FD patients groups with WMLs and without WMLs are due to the age difference.

Furthermore, after age stratification, in the group aged from 40 to 59 years, the results (Table 36) reveal

that the values of the echocardiogram features are still affected by age.

From this first analysis, the echocardiogram features not reveal to be good predictors of the presence

of WMLs in FD patients. Then, it is not expected to get higher classification performance with the echocar-

diogram features comparing with the performance achieved previously with gait and ECG data. However,

further research is needed to confirm this hypothesis. But, as the echocardiogram and ECG data are from

two different groups of FD patients, this analysis is left for future work.
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Chapter 8

Conclusion, limitations, and future work

8.1 General conclusions

The major goals of this dissertation were to evaluate the effectiveness of machine learning methods for

the differential diagnosis of WMLs in FD patients based on a dataset from one of three different sources:

gait evaluation, electrocardiogram exam (Holter), or echocardiogram exam, and, to investigate how the

integration of information from more than one source can improve the predictive system. To achieve

these aims, several steps were performed including the evaluation of a MR normalization strategy for

the de-correlation of physical properties, speed, stride length, and gait variables, the implementation of

various feature selection methods using hybrid methods, the implementation and evaluation of different

classification algorithms based on different datasets.

To the best of our knowledge, this was the first study that explores gait characteristics and cardiac

data and their discriminate power in FD patients with WMLs from FD patients without WMLs.

Using gait data, for the discrimination of FD patients with WMLs from age-matched healthy adults the

model with higher accuracy (72%) was achieved with RF classifier with the variables foot flat, pushing, and

cycle duration as input. For the discrimination of FD patients without WMLs from age-matched healthy

adults, the best-suited model was achieved using KNN based on the variables loading, foot flat, stride

length variability, loading variability, and lift-off angle variability, with an accuracy of 87%. Finally, to
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discriminate the presence of WMLs in FD patients using gait characteristics, the models that fit best were

using CNN based on the time series of the variables minimum toe clearance, swing, and peak swing,

with an accuracy of 82%, and using LR algorithm based on 5 gait measures lift-off angle variability, swing,

minimum toe clearance variability, peak swing, and foot flat variability, with an accuracy of 81%.

When using ECG features for the differential diagnosis of the presence of WMLs in FD patients the

best-suited model was using RF with QT maximum, heart rate mean and maximum, and SDANN 5, with

an accuracy of 80%.

To analyze if the use of both gait and ECG features as input could improve the identification of the

presence of WMLs, the best models described above: LR algorithm based on gait measures and RF

algorithm based on ECG features were evaluated on a test group of nine patients. Six patients were well

classified when the LR algorithm was performed based on gait or based on gait+ECG. However, with the

RF algorithm based on ECG features 6 patients were well classification and this number increase to 7

when gait+ECG was used as input. This result shows some evidence that the use of both datasets could

improve the performance of identification of WMLs in FD patients.

The results from logistic regression analysis revealed that age was independently associated with the

presence of WMLs, and the echocardiogram features that revealed some significant association with the

presence of WMLs showed to be affected by age. Then, it is not expected to get higher classification

performance with the echocardiogram features comparing with the performance achieved previously with

gait and ECG data. However, further research is needed to confirm this hypothesis.

8.2 Limitations

Several limitations were found across this study. Firstly, the developed MR models were based on a

fairly small number of control subjects (n = 37), still comparable to other previous works (Mikos et al.,

2018; Wahid et al., 2016; Wahid et al., 2015). A larger amount of subjects along with more independent

variables might improve the robustness of the feature selection methods by reducing the correlation among

variables and, therefore, improve the effectiveness of the classifiers. To validate the best set of gait
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variables found by the feature selection methods further research with a higher number of subjects is

required. For last, gait, ECG, and echocardiogram datasets were not collected for all the same patients,

which made it impossible to develop a classification model with the three datasets as input.

8.3 Future work

The findings reported in this thesis are the first step to demonstrate the potential of machine learning

techniques based on gait and cardiac variables as a complementary tool to understand the role of WMLs

in the gait impairment of FD. For future research, a larger sample size will be used to confirm and extend

these findings.

The implications of WMLs on gait compromise in FD or predictive value of each kinematic gait variable

remain still elusive, warranting further investigation with a more enriched cohort.

Due to the number of subjects involved in this study, in most of the cases, all subjects were used in

the training and validation of the models, and only in Section 6.4, a small independent group test was

used for checking the model performances. To test the robustness of classification models based on the

selected gait and cardiac characteristics further research with a larger independent group test is needed.

Since, in this study, the classification of FD was only evaluated based on gait, to go further with this

study of the presence or absence of FD, is required to analyze: FD patients vs controls with ECG data,

FD patients vs controls with echocardiogram data, and, finally, FD patients vs controls with gait + ECG +

echocardiogram.
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Table 37: Value of gait assessment of 17 gait variables for 39 FD patients with vs without WMLs, 25 FD

patients with WMLs vs controls and 14 FD patients without WMLs vs controls.

With WML

(n = 24)

Without WML

(n = 15)
p-value

With WML

(n = 24)

Control

(n = 24)
p-value

Without WML

(n = 15)

Control

(n = 15)
p-value

Speed

Mean 1.28 1.44 0.02* 1.28 1.28 0.992 1.44 1.41 0.511

SD 0.056 0.063 0.3 0.056 0.056 0.801 0.063 0.067 0.635

CV 4.45 4.399 0.92 4.45 4.34 0.691 4.399 4.71 0.401

Cycle

duration

Mean 1.02 0.99 0.53 1.02 1.015 0.977 0.99 1.04 0.15

SD 0.026 0.023 0.28 0.026 0.023 0.273 0.023 0.0199 0.427

CV 2.5 2.28 0.35 2.5 2.22 0.225 2.28 1.92 0.210

Cadence

Mean 118.24 121.41 0.53 118.24 118.8 0.961 121.41 116.04 .15

SD 2.89 2.73 0.55 2.89 2.63 0.318 2.73 2.22 0.194

CV 2.46 2.24 0.39 2.46 2.21 0.248 2.24 1.91 0.210

Stride

length

Mean 1.28 1.41 0.01* 1.28 1.28 0.808 1.41 1.44 0.571

SD 0.038 0.042 0.44 0.038 0.041 0.304 0.042 0.53 0.035

CV 3.05 2.97 0.94 3.05 3.21 0.421 2.97 3.65 0.019

Stance Mean 60.9 58.69 0.004 60.9 59.92 0.043 58.69 59.06 0.511

SD 1.04 1.45 0.11 1.04 1.34 0.240 1.45 1.33 0.603

CV 1.7 2.48 0.067 1.7 2.25 0.190 2.48 2.26 0.635

Swing Mean 39.1 41.31 0.004 39.1 40.08 0.043 41.31 1.84 .511

SD 1.04 1.45 0.11 1.04 1.34 0.240 1.45 1.33 0.603

CV 2.68 3.48 0.13 2.68 3.34 0.337 3.48 3.24 0.635

Loading

Mean 12.17 14.62 0.03 12.17 12.62 0.705 14.62 12.03 0.061

SD 1.15 1.63 0.017 1.15 1.38 0.108 1.63 1.12 0.089

CV 9.15 11.29 0.13 9.15 10.82 0.080 11.29 9.21 0.401

Foot flat

Mean 53.52 49.44 0.03 53.52 55.38 0.299 49.44 53.28 0.033*

SD 1.91 2.11 0.38 1.91 2.36 0.041 2.11 2.15 0.946

CV 3.66 4.34 0.15 3.66 4.36 0.204 4.34 4.14 0.839

Pushing

Mean 34.31 35.94 0.24 34.31 31.998 0.138 35.94 34.69 0.306

SD 1.68 1.84 0.39 1.68 2.08 0.322 1.84 2.095 0.667

CV 4.92 5.17 0.041 4.92 6.62 0.165 5.17 6.08 0.376

Double

support

Mean 21.22 18.36 0.03* 21.22 20.04 0.282 18.36 18.97 0.667

SD 1.59 2.1 0.11 1.59 1.84 0.485 2.1 1.87 0.454

CV 7.67 12.02 0.041* 7.67 9.61 0.233 12.02 10.03 0.401

Peakswing

Mean 390.11 435.8 0.016* 390.11 387.74 0.764 435.8 405.87 0.041*

SD 16.74 17.57 0.76 16.74 15.87 0.372 17.57 17.70 0.946

CV 4.35 4.04 0.72 4.35 4.11 0.467 4.04 4.39 0.804

Strike

angle

Mean 23.51 28.88 0.004* 23.51 24.58 0.567 28.88 26.24 0.094

SD 1.28 1.4 0.35 1.28 1.34 0.352 1.4 1.20 0.150

CV 5.82 4.86 0.22 5.82 5.59 0.915 4.86 4.64 0.667

Lift-off

angle

Mean -65.94 -74.07 0.017* -65.94 -64.11 0.399 -74.07 -73.56 0.874

SD 1.76 1.55 0.25 1.76 1.71 0.869 1.55 1.93 0.077

CV -2.73 -2.095 0.038* -2.73 -2.75 0.705 -2.095 -2.65 0.085

Maximum heel

clearance

Mean 0.23 0.26 0.005 0.23 0.25 0.290 0.26 0.27 0.037

SD 0.0075 0.0086 0.15 0.0075 0.0082 0.243 0.0086 0.011 0.062*

Maximum toe

clearance 1

Mean 0.063 0.071 0.24 0.063 0.71 0.029 0.071 0.068 0.910

SD 0.006 0.0073 0.12 0.006 0.0062 0.884 0.0073 0.0087 0.306

Minimum toe

clearance

Mean 0.032 0.028 0.43 0.032 0.031 0.961 0.028 0.021 0.227

SD 0.0044 0.0053 0.098 0.0044 0.0047 0.668 0.0053 0.0069 0.085

Maximum toe

clearance 2

Mean 0.13 0.17 0.003 0.13 0.14 0.318 0.17 0.17 0.769

SD 0.0082 0.0096 0.098 0.0082 0.0086 0.365 0.0096 0.0089 0.482

Data is represented in arithmetic mean, standard deviation and coefficient of variation plus statistical

significance on non parametric Mann Whitney U Test for the right foot. *Statistically significant for the

left foot.
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Table 38: Multiple linear regression models using only significative independent variables for each gait

variable on the left foot.

MR normalization
AIC Adjusted R2

Age Weight Height Speed Gender
Stride

length

Spatial-temporal variables

Cycle duration = 1.081 -0.0011 0.219 -0.274 -124.37 0.658

Cadence = 110.572 0.132 -24.879 31.301 220.30 0.697

Stride length = 0.301 -0.002 0.301 0.494 -116.39 0.893

Stance = 66.496 -4.547 -1.109 150.62 0.229

Swing = 33.504 4.547 1.109 150.62 0.229

Loading = 16.522 -0.141 3.629 2.476 167.79 0.359

Foot flat = 62.227 0.032 0.169 -15.921 195.63 0.604

Pushing = 23.327 -0.031 -0.069 12.131 190.28 0.463

Double support = 32 -8.804 -1.454 197.81 0.207

Peak swing = 243.705 -22.362 137.775 4.883 338.19 0.589

Foot clearance variables

Strike angle = 13.508 -0.153 3.227 15.6465 182.29 0.600

Lift-off angle = -42.221 0.179 -25.831 224.27 0.705

Maximum heel

clearance
= 0.161 -0.0003 0.039 0.0718 -166.19 0.560

Maximum toe

clearance 1
= 0.048 0.00026 0.014 -192.54 0.159

Minimum toe

clearance
= 0.007 0.00042 -231.63 0.455

Maximum toe

clearance 2
= 0.032 -0.0006 0.0289 0.106 -186.18 0.759

Table 39: Classification accuracy on training and validation data plus testing accuracy for a group of 9

patients that were assessed on both gait and ECG with Gait ECG best model combined with SVM Linear

Kernel, SVM RBF Kernel, and KNN.

Training accuracy%

(Mean ± SD)

Validation accuracy%

(Mean ± SD)
Testing accuracy%

Gait + ECG best model combined

with SVM Linear Kernel
77.12 ± 3.33 72.14 ± 15.71 66.67

Gait + ECG best model combined

with SVM RBF Kernel
77.78 ± 3.47 67.50 ± 20.47 55.56

Gait + ECG best model combined

with KNN
80.59 ± 5.06 78.21 ± 13.19 66.67

SVM: Support Vector Machine, KNN: K-Nearest Neighbor
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