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Abstract. Formal approaches to the design of interactive systems, such as the
principled design approach rely on reasoning about properties of the system at a
very high level of abstraction. Such specifications typically provide little scope
for reasoning about presentations and the representation of information in the
presentation. Theories of distributed cognition place a strong emphasis on the role
of representations in the cognitive process, but it is not clear how such theories
can be applied to design.

In this paper we show how a formalisation can be used to encapsulate representa-
tional aspects, affording us an opportunity to integrate representational reasoning
into the design process. We have shown in [3] how properties over the abstract
state place requirements on the presentation if the properties are to be valid at
the perceptual level, and we have presented a model for such properties. We base
our approach on this model, and examine in more detail the issue of verification.
Given the widespread consensus that proper tool support is a prerequisite for the
adoption of formal techniques, we apply a higher-order logic theorem prover to
the analysis.

1 Introduction

It has been proposed that formal techniques to modelling and specification can be used
to improve the quality of interfaces to interactive systems. For example, the principled
design approach aims to enhance the design process by ensuring conformance to certain
carefully chosen design principles.

These principles, such as predictability, reactivity and support for the user’s task
attempt to relate the system specification to properties that have meaning for the user.
This affords the designer the ability to reason about the usability of the system at a very
early stage in the development life-cycle. Specifications which support such reasoning,
for example those based on the interactor model [4], abstract away from the presentation
as presentations typically include many details which are not relevant and are highly
subject to change. Yet recent work on distributed and external cognition [10,5, 12, 8],
postulates that representations (both internal and external) play a critical role in the
cognitive process. Hutchins [6], uses this distributed view to study the role emergent
properties of a cockpit instrument play in helping the pilot perform his task. However,
it is not clear how such analysis could be used to inform and improve the design process.

Additionally, reasoning such as that described above generates requirements over
the presentation, which must hold if reasoning over the abstract specification is to be
valid at the presentation level (ie. as the user perceives the system) [3].



1.1 A Formal Approach
The aims of this paper are twofold:

— to provide a rigorous and direct means for integrating representational reasoning in
the style of [6] into the design process.

— to further explore issues of verification and show how the verification process ex-
poses assumptions and requirements embedded in the presentation.

To address these issues we build upon the formalisation in [3]. The benefits of for-
mality stem in this case from the ability to take a rigorous and methodical approach to
a form of analysis which would otherwise be conducted in an ad-hoc fashion, and that
we can apply the analysis to a specification of the system which has a formal relation-
ship with the artefact. In [3] it is shown how representational requirements could be
modelled in terms of a mapping between logical operators over the abstract state and
perceptual operators over the presentation. Taking a formal approach to this involves
constructing a model of the abstract artefact under consideration, its representation, and
the mapping between them.

This is not to say that we advocate full formal specification of presentations, a
proposition we see as neither practical nor valuable, but that a limited specification,
including details of the representation and the operators supported by the representa-
tion is sufficient for establishing the validity of a presentation with respect to a property,
such as support for a given task.

One of the emphases in this paper is on showing how the use of theorem proving
can help in the automation of the verification process. In particular we will show how
using a theorem prover forces us to spell out all the assumptions we are making about
the system and its presentation, and identify problems with both the presentation and
the system that should be behind it.

1.2 Overview

With this focus on machine-assisted verification in mind, we present in the next section
a summary of the nature of the properties to be verified, along with a short example.
Formalisation of this example reveals many representational issues. In the section fol-
lowing, we use this example in a proof using a higher-order logic theorem prover (PVS)
to illustrate how the verification reveals further aspects of the presentation and the is-
sues involved in providing machine assistance for the process. The formal notation em-
ployed is VDM-SL, but the approach can be applied to any model-based specification
language.

2 A Mode of Representation

We present in this section both a summary of the model in [3] and explore further the
formalisation process.



2.1 Presentation Model

We begin with a simple functional model of the presentation mapping, which represents
the abstract state (modelled as a set of attributes) to the presentation (modelled as a set
of presentation elements, or percepts). A given piece of information may of course have
many different possible representations.

1.0 p: Attribute-set — Percept-set

Unlike the abstract state, the percepts represent information which is visible to the
user, with no approximation or information loss. The mapping itself often (and neces-
sarily) approximates the abstract attributes.

2.2 Logical and Perceptual Operators

Logical operators are those which may be defined over the abstract state (for example,
magnitude comparison of two integers). Perceptual operators are those which may be
defined over the presentation, and are understood to be directly performable by the user
(eg. determining if two objects on a display are adjacent). In terms of the formalisa-
tion above, logical operators are defined over Attribute-set, and perceptual operators
are defined over Percept-set. Both the logical and perceptual operators can hence be
formalised.

The concepts of logical and perceptual operators have previously been applied by
Casner [2] who constructed a system for automatic presentation generation by replacing
logical operators in a task description by graphical components supporting perceptual
versions of these operators. We take the converse view, and formulate our requirements
on the presentation (for the specific example of task support), as follows:

to support a given task, the presentation should provide perceptual equivalents
of the logical operatorsin the task

This of course refers to the portion of the task to be performed by the user.

We believe that formalising the transformation from logical to perceptual operators
provides an explicit and rigorous basis for reasoning about representational issues. For
example, the scale types of Stevens [9], applied by Zhang [11] to the analysis of re-
lational information displays, can be formalised in terms of the groups of logical and
perceptual operators that each scale supports. In this way, we can use the operators to
characterise the representation. By trying to formulate perceptual operators over the
presentation model, we can expose hidden referents in our tasks. This process serves
both to increase our understanding of the system, and acts as an aid to design.



2.3 A Model of Presentation Based Properties

One approach is to view the perceptual model as a reification of the abstract model, but
proving the consistency of state changes between the abstract and reified models tells
us nothing about how the presentation supports the desired properties.

For the reification to be valid, we must know that if a property holds on the ab-
stract specification, it also holds on the presentation. We accomplish this by relating
the abstract and perceptual models to a model in which the principle can be expressed.
Establishing the validity of the presentation then becomes a matter of showing that the
logical operators over the abstract state and the perceptual operators over the represen-
tation of this abstract state yield the same result in terms of the property (see figure 1).
We can express this formally as:

Abstract Model Presentation Model

Abstract Ops. Perceptual Ops.

Model from Principle

Fig. 1. Alternative approach to verification

2.0 Abstract-op(Attribute-set) = Perceptual-op(p(Attribute-set))

2.4 Anillustrative example

In this section, we present a formalisation of an application discussed by Hutchins [6].
Hutchins® approach involves a broader contextual view of the cockpit system, using
understanding derived from “distributed cognition’. By using this example, we hope to
illustrate how our approach achieves a good coverage of the representational aspects
of the analysis, and indicate how this might relate to a design context. The example
concerns the use of ‘speed bugs’ to record minimum manoeuvering speeds on an aircraft
air speed indicator.

The indicator takes the form of a circular scale on which a needle indicates the
current air speed. The “configuration change bugs’ take the form of movable tabs on the
perimeter of the instrument, and are set by the flight crew prior to the approach. The
configurations referred to are the four configurations of wing slat and flap settings. One
task of the crew is to change between them to generate more lift as the aircraft slows
for landing. In addition, there is also a ‘salmon bug’, internal to the instrument, which
denotes the speed commanded to the auto-throttle system. In the final approach they
must also ensure the aircraft is within a safe limit of the reference speed (which should
be that commanded to the auto-throttle system).
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Fig. 2. Simplified Air Speed Indicator, adapted from [6]

Logical Model What is interesting about this artefact and the tasks it supports is that
although on the surface it appears simple, there are in fact many pieces of information
required to perform the operations involved in the tasks. This becomes apparent when
we formulate an initial description of the configuration management task:

if current speed is within acceptable margin speed
of minimum manoeuvering speed for current configuration
then change to next configuration

We can see from this that there are four referents in the operation of changing configu-
ration: the current speed, the margin speed, the minimum manoeuvering speed and the
configurations being changed between (treated as one since they are paired). A logi-
cal operator to support this task could be one which checks a speed and configuration
and determines whether it is appropriate to change to the next configuration. The task
of tracking potential disparity between the indicated air speed and reference speed on
the approach could be supported by a logical operator which takes a speed and returns
whether it a safe deviation from V e¢.

The first step in our formalisation is to construct a model of the ASI:

values
3.0 Smargin : Speed = 10 KNOTS — Margin for configuration change ;

4.0 Ssafe : Speed = 5 KNOTS — Variation from approach speed

types
5.0 Speed = R;

6.0 Configuration = Ny ;



7 AbstractASI:: V. : Speed — Current Speed

.0

1 C. : Configuration — Current configuration

2 Sim : Speed™ — Minimum manoeuvering speeds
3 V.etr : Speed — Reference speed of approach

We can now formalise the logical operation to support the configuration manage-
ment task as:
8.0 configChangeCheck : AbstractASI — B

1 configChangeCheck (asi) &
2 asi.Ve < a«Si-smm(cc) + Smargin

The operation for checking the approach speed is as follows:

9.0 approachSpeedCheck : Speed x Speed — B

.1 approachSpeedCheck (Ve, Vier) 2
2 Vref - Ssafe S Vc S Vref + Ssafe

We can see that this formal model provides a concise ‘computational’ view of the
operations, and the information required to carry them out.

Presentation Model The two main percepts are the ASI needle and the speed bugs.
The scale is also a percept, but we use it only to establish a relationship between angles
and sections of arc on the display, and absolute speeds.

We begin the specification with the data types representing the percepts. Perceptu-
ally the ASI needle is simply an angle from the upright (0 deg) position. A speed bug
has both a position (again, an angle from the upright), and an extent, an angle which
describes an arc to either side of the position. The perceptual function of the scale is to
relate angles on the display to speeds.

values
10.0 ScaleFactor : R = 1 — Unit speed per scale degree ;
11.0 SalmonExtent : Angle is not yet defined;

12.0 ConfigExtent : Angle is not yet defined

types
13.0 Angle = R;
14.0 ASINeedle:: posn : Angle ;

15.0 ASISpeedBug :: posn : Angle
1 extent : Angle ;

16.0 ASIScale::interpret : Angle - R



The full instrument integrates these three components, note that we have a sequence
of speed bugs, arranged in order of decreasing angle (and hence represented speed):

17.0 ASI_Instrument :: needle : ASINeedle

1 bugs : ASISpeedBug™
2 salmonbug : ASISpeedBug
3 scale : ASIScale

4 inv asi & — Speed bugs cannot overlap

5 Vi,j € inds bugs -

6 i<j = asi.bugs(i).posn > asi.bugs(j).posn
7 A asi.bugs(i).posn — asi.bugs(i).extent

8 > asi.bugs(j).posn + asi.bugs(j).extent

We are now in a position to formalise the presentation mapping between these two
models. The presentation p, maps an AbstractASI value to an ASI Instrument value
which represents it.

18.0 p: AbstractASI — ASI_Instrument

1 pa) &
2 mk-ASI Instrument (p-Needle(a.V.), p-BugSeq(a.Smm),
3 p-Salmon(a.Viyet), p-Scale)

190 p-Needle(v) &
1 mk-ASINeedle (v/ScaleFactor)

200 p-BugSeq (s : Speed™) bs: ASISpeedBug™
1 post Vi€ doms - bs(i) = mk-ASISpeedBug (s(i)/ScaleFactor,
2 ConfigExtent)
3 Alen(s) = len(bs)

21.0 p-Salmon (v) &
1 mk-ASISpeedBug (v/ScaleFactor, SalmonExtent)

220 p-Scale() &
1 mk-ASIScale (Aa : Angle - a * ScaleFactor)

Perceptual Operators The first perceptual operator we examine is that to support the
task of checking the approach speed (represented by needle) against the reference speed
(represented by the salmon bug). As explained by Hutchins [6], the operation reduces
to checking whether the ASI needle position falls within the section of arc covered by
the speed bug.

230 salmonBugCheck (needle, bug) 2&
1 in_arc (needle, bug.posn — bug.extent, bug.posn + bug.extent)



240 in.arc (needle, Agtart a’end) é
1 agtart < needle.posn < aeng

Part of what makes this artefact so effective from a representational point of view is
the simplicity of the perceptual operators for tasks such as this.

Moving on to support for the configuration management task, firstly there is the
issue of comparing the current speed to the configuration change bugs. This is more
complex than for the salmon bug, as the spatial extent of the bugs does not correspond
to the margin within which it is appropriate to change. Also, it is asymmetric, since
although it is acceptable to make changes within a certain margin above the minimum
manoeuvering speed, it is not acceptable to go below this speed before making the
configuration change.

Thus the perceptual operation must be one which determines (one sided) proximity
of the ASI needle to the speed bug, relative to a margin which is not represented in the
presentation.

25.0 configBugCheck (needle, bug) &
1 in_arc (needle, bug.posn, bug.posn + (Smargin/ScaleFactor))

The presence of an element of the abstract state (Smargin) indicates a hidden ref-
erent in the operation. This does not necessarily indicate a serious inadequacy of the
presentation, (for example, information may sometimes be provided by other artifacts),
although it does point to a lack of integration with the other percepts involved in the
operation. In this case Smargin IS @ constant which is not as critical as deviation from
the approach speed (Hutchins describes this task as being constrained by “Operational
considerations” [6]). Thus, while this requires the pilot to have some internal represen-
tation of an acceptable margin for the configuration change, the configuration change
task is not as heavily loaded as the approach speed task and so may be an acceptable
cognitive burden on the pilot.

But there is also the issue of the current and next configuration. Ultimately, the
perceptual operator must relate the abstract artefact (a sequence of minimum manoeu-
vering speeds) to a sequence of speed bugs around the perimeter of the ASI. We could
use the ordering of the bugs as a simple formalisation, thus we employ a perceptual
operator which indexes the sequence of speed bugs with the current configuration:

26.0 getCurrentBug (C.,bugs) 2&
1 index (Ce, bugs)

We can see in this expression a requirement that the user already know the current
configuration (C.) or that it be represented in another artefact (which itself must enable
the user to extract the information perceptually). Another (and perhaps more realistic)
formalisation would be based on proximity of the ASI needle. Thus the ‘next lowest’
speed bug on the ASI is the one we want.

270 getCurrentBug (needle, bugs) &
1 next_counterclockwise (needle, bugs)



28.0 next_counterclockwise (needle: ASINeedle, bugs: ASISpeedBug™) bug:
ASISpeedBug

.1 pre 3ie N-bugs(i).posn < needle.posn
2 post 3i e N-bugs(i) = bug A bugs(i).posn < needle.posn
3 AVYjeN-j<i = bugs(j).posn > needle.posn

Integrating these two operations into a composite operation to support the configu-
ration change task yields:

29.0 asiConfigCheck : ASI_Instrument — B

1 asiConfigCheck (asi) &
2 configBugCheck (asi.needle, getCurrentBug (asi.needle, asi.bugs))

We can see from the above that the process of formalisation itself contributes to our
understanding of the system, and possible shortcomings. The next section will illustrate
how more complex assumptions embedded in the representation may be discovered.

3 Verification

Having defined both the abstract and presentation models, operators over these mod-
els and the mapping between them, we can proceed with the verification phase of our
analysis. Recall that the form of verification we are using involves establishing an equiv-
alence between logical operators over the abstract state and perceptual operators over
the presentation.

3.1 Theprover - PVS

In this section we will introduce PVS, the theorem prover that will be used in the ver-
ification process that follows. Our aim is to enable the reader to follow the subsequent
description of the performed verification. See [7] for a more thorough introduction to
the system.

PVS is a typed higher-order logic theorem prover, which provides an integrated en-
vironment for development and analysis of specifications. Specifications are organised
in theories. Typically a theory will introduce a number of types and constants (which
can be functions), and formulas associated with them (axioms and theorems, for in-
stance). Theories can be parameterised on types and constants. Entities declared in a
theory can be made available to others by exporting them (using the EXPORTING
clause). By default all declarations are exported. Entities that are exported in a theory
can be imported by another using the IMPORTING clause.

PVS features a powerful type system. This is very useful when writing specifica-
tions, but means that type checking becomes undecidable. To cope with this, the type
checker generates proof obligations (TCCs - Type Correctness Conditions) that must be



established by the theorem prover. If the system is unable to prove a TCC automatically,
then the user is asked to do it.

The usual types are available in PVS: natural numbers (nat), real numbers (real),
sequences (sequence[X]), sets (set[X]), tuples ([#...#]), etc. These types are either
built-in in the system or defined in the prelude library. PVS also allows for the definition
of predicate subtypes, dependent types and abstract data types. Although we will not
use these directly, they are used in the prelude to define some of the types we will be
using.

A library is a collection of theorems. The prelude is a special library whose theories
are always available, without the need for explicit importing.

PVS is used interactively. Its interface is mainly implemented as an Emacs major
mode, which integrates functionality for editing specifications and proving theorems.
When performing a proof, the system presents a goal in the form of a sequent, and
prompts the user for an appropriate command. If the command does not solve the se-
quent, it will generate a new sequent or a number of new sequents (ie. subgoals), and
the user will be asked to prove them in turn. When all subgoals are proved the original
goal has been proved.

The user interacts with the prover by issuing commands to be applied to the sequent.
There are commands for induction, quantifier reasoning, rewriting, simplification using
decision procedures and type information, and propositional simplification using binary
decision diagrams.

3.2 Writing the specification in PVS

The translation from VDM to PVS is straightforward [1]. The specification is organised
into three theories. One for the logical model (theory AST), another for the perceptual
model (theory perceptual ASI), and a final theory that combines the previous ones and
introduces the equivalences to be proved (theory ASlIverification).

Figure 3 presents the PVS theory for the logical model as described in section 2.4.
The theory starts by introducing the four types. Speeds is declared as a sequence of
Speed, and abstract ASI as a tuple with four elements (Vc, Cc, Smm, and Vref). After
the types, two constants are introduced — Smargin and Ssafe — both of type Speed.
Note that they are left uninterpreted (ie. no actual values are given). The variable abs _asi
is declared and used in the axiom that follows (axiom inv_abs_asi2). This axiom asserts
the invariant of abstract ASI. Finally, the theory declares the two logical operators.

The theory in figure 3 was obtained by translating the VDM specification. As will
be shown, the verification process will prompt us to introduce some changes in the
specifications. In Appendix A we present the final ASI theory that resulted from the
verification process. The perceptual ASI theory is defined similarly. The final version
(after verification) is given in Appendix B.

Note that we have added an axiom (bug_posn_ext), expressing an invariant condi-
tion needed for the ASISpeedBug type theory, which was not included in the VDM
specification. This restriction was identified by PVS as a TCC for ASISpeedBug. The
last theory, ASIverification (see figure 4), imports the two previous theories and intro-
duces the equivalences to be proved as conjectures (ie. putative theorems).



ASI| : THEORY
BEGIN

Speed: TYPE = nat

Speeds: TYPE = sequence[Speed]

Configuration: TYPE = nat

AbstractASI: TYPE = [# Vc: Speed,Cc: Configuration, Smm: Speeds, Vref : Speed#]

Smargin : Speed
Ssafe : Speed

abs_asi : VAR AbstractASI
inv_abs_asi2: AXIOMY (i,j: nat): i < j < Smm(abs_asi)(i) > Smm(abs_asi)(j)

configChangeCheck ((asi : AbstractASl)) : bool = Vc(asi) < Smm(asi)(Cc(asi)) + Smargin
approachSpeedCheck((Vc, Vref : Speed)) : bool = Vref - Ssafe < Vc A Ve < Vref + Ssafe

END ASI

Fig. 3. Initial version of the logical model

ASlverification : THEORY
BEGIN

IMPORTING ASI, perceptual ASI
vc, vref : VAR Speed

approach_speed_task : CONJECTURE
approachSpeedCheck (vc, vref) = salmonBugCheck(rha. Needle(vc), rha Salmon(vref))

abs_asi : VAR AbstractASI

configuration_change_task : CONJECTURE
configChangeCheck (abs_asi) = asiConfigCheck(p(abs.asi))

END ASlverification

Fig. 4. ASlIverification theory



3.3 Approach speed task

The first conjecture (approach_speed_task) declares the equivalence between the oper-
ators approachSpeedCheck and salmonBugCheck. When we start the proof attempt
for this conjecture we get the sequent:

Sequent 1 approach_speed_task:

{1} (¥ (vc: Speed,vref: Speed):
approachSpeedCheck (vc, vref) =
salmonBugCheck(rho_Needle(vc), rho_Salmon(vref)))

If we apply a grind (a powerful, somewhat brute force, rule which, among other com-
mands, applies rewriting and simplification) we are left with four subgoals to prove. The
sequent for the first subgoal is (where priming is used to indicate skolem constants?):

Sequent 2 approach_speed_task.1:

{-1} v¢' >0

{-2} vref > 0

{-3} vref’ - Ssafe < vc’

{-4} v¢’ < Ssafe + wvref

[{1} (v¢’ / ScaleFactor < SalmonExtent + vref / ScaleFactor)

What PVS is asking us to prove is that, if the current velocity (vc’) is inside the safe
margin of the reference speed (vref’), then the needle must be below the speed indicated
by the edge of the salmon bug when positioned at vref’ in the dial (consequent 1).

Assumption 1 The need to prove this derives from our assumption, at the perceptual
level, that the extent of the salmon bug indicates the safe margin (a logical referent) of
the reference speed. Hence we need to introduce a formal relation between the extent
of the bug and the safe margin speed - a constraint spanning the abstract and percep-
tual levels. This is done by defining SalmonExtent as an interpreted constant which
represents, at the perceptual level, the value of Ssafe:

SalmonExtent : Angle = Ssafe / ScaleFactor

Once this is done it becomes easy to prove sequent 2. The other three sequents
are of similar nature and easily proven once the relation above is established. The
proof tree for the final proof is shown in figure 5. The rewriting of SalmonExtent
to Ssafe/ScaleFactor is not shown explicitly as it is done automatically by the grind
rule.

! Skolem constants are arbitrary representatives for quantified variables.
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Fig. 5. Proof tree for approach_speed_task

3.4 Configuration changetask

Having proved the equivalence of the logical and perceptual operators of the approach
speed task in the revised version of the specification, we will now attempt to do the same
for the configuration change task. The conjectures that represent the equivalence are
introduced in theory ASTequivalence (see figure 4). The first sequent for this conjecture
is:

Sequent 3 configuration_change_task:

{1} (V (abs_asi: AbstractASI):
configChangeCheck (abs_asi) = asiConfigCheck(p(abs.asi)))

We start the proof by skolemizing and expanding definitions. Eventually we reach a
point where, after introducing the definition of next _counterclockwise, the proof splits
into two subgoals (configuration_change_task.1 and configuration_change task.2).

Proceeding with the first subgoal, after expanding definitions and some arithmetic
simplifications the proof is again divided into two further subgoals (configuration-
_change_task.1.1 and configuration_change_task.1.2). The first is represented by the fol-
lowing sequent, where ccbugindex is a skolem constant representing the index of the
first bug just below the needle (which we interpret in configChangeCheck as represent-
ing the current configuration):



Sequent 4 configuration_change task.1:

{-1} posn(rho_BugSeq(Smm(abs_asi’))(ccbugindex)) <
posn(rho_Needle(Vc(abs_asi')))
{-2} (¥ (j: nat):
j < ccbugindex =
posn(rho_BugSeq(Smm(abs_asi'))(j))
> posn(rho_Needle(Vc(abs_asi')))
{1} (Vc(abs_asi’) < Smm(abs_asi’)(Cc(abs.asi’)) + Smargin =
configBugCheck(rho_Needle(Vc(abs asi)),
rho_BugSeq(Smm(abs_asi’))(ccbugindex)))

The sequent can be read as: if needle points to a velocity above or equal to the bug
ccbugindex (antecedent -1), and all bugs above ccbugindex are also above the needle
(antecedent -2), then, testing that the current (abstract) velocity Vc(abs.asi’) is below
the minimum manoeuvering speed of the current configuration Smm(abs_asi ') (Cc(abs_asi’))
plus the safe margin, yields the same result as performing a configBugCheck on the
needle and the bug just below the needle.

|_
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(lemma "next_counterclockwise™)

\
i
(apply (repeat (inst?)))
\
il
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-
- =
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\
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\
(lemma “cc_bugs") Simplifying
\
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Fig. 6. Schematic proof tree for configuration_change_task



This is not unexpected and should be true, as we interpret the bug just below the
needle as indicating the current configuration. To prove it, we must be able to establish
that Cc(abs_asi’) (the configuration index at the logical level) and cchbugindex (the
configuration index at the perceptual level) point to the same minimum manoeuvering
speed.

Assumption 2 Thus we expose the second assumption - that the bug just below the
needle indicates the current configuration. The effect of this assumption is to assign a
meaning (in terms of configuration) to regions of the airspeed indicator face - a vital
representational property that Hutchins dwells on in some detail [6]. To proceed with
the proof, we formalise the assumption with the following axiom:

cc_bugs: AXIOM
V (i: nat):
((posn(bugs(asi)(i)) x ScaleFactor < Vc(abs_asi))A
(=3 (j: nat):
j < iA
(posn(bugs(asi)(j)) x ScaleFactor <
Vc(abs_asi)))) =
i = Cc(abs_asi)

After applying the axiom, we proceed once again by expanding definitions and simpli-
fying. Eventually, the subgoal is further subdivided into two subgoals, both of which
are easy to prove. We are left with subgoal configuration_change task.2. This subgoal
is represented by the sequent:

Sequent 5 configuration_change task.2:

|
{1} (3 (i: nat):

(Smm(abs_asi’)(i) / ScaleFactor < Vc(abs_asi’) / ScaleFactor))

Assumption 3 This condition is generated by the precondition to next_counterclockwise.
Combining this with the axiom cc_bugs yields a third assumption about the system. As

failing to change configuration before dropping below the minimum manoeuvering is

a critical item, it is generally assumed that this is never the case. Without knowledge
of this constraint, we would have to conclude that the presentation is inadequate for

representing configuration and would have to be changed or used in conjunction with

some other perceptual artefact. Formalising the assumption, we introduce the following

invariant for ASI:

inv_abs_asi : AXIOM V(abs_asi : ASI) : Vc(abs_asi) > Smm(abs_asi)(Cc(abs asi))



A very interesting aspect of this assumption is that it is an operational constraint (that
the pilot must keep the aircraft in an appropriate configuration for the speed), on which
the success of the representation (that it reflects the current configuration) is based, and
further illustrates how abstract and representational properties are intertwined. Using
the above invariant the proof for this subgoal can be finished. The proof tree for the
final proof is shown in figure 6.

35 Summary

In the process of verification, we identified three significant changes, in the form of
assumptions about the system, to the specification. Each of these assumptions is derived
as a direct result of the sequent at which it is introduced. Two of these highlighted
aspects of the abstract level that needed to be better represented at the perceptual level:

— the extent of the salmon bug had to be explicitly related to the safe speed margin,
in order for the perceptual operator configBugCheck to work properly;

— the relationship between bugs and current configuration had to be made explicit in
order for both operators of the configuration change task to be equivalent.

The third brought out the implications of some of the assumptions we were making
about the interface and showed us that those issues were not been included in our ab-
stract model. The most important point to grasp is that each of the assumptions added
to enable completion of the proof had a representational basis and concerned vital prop-
erties of the presentation.

In summary, checking for consistency between an abstract specification of the in-
teractive system and the presentation for that system, allowed us not only to better
understand the issues involved at the interface level and what assumptions were being
made, but also to see how assumptions made at the perceptual level relate back to the
system itself. Additionally, the verification process was valuable in that it allowed us to
identify a number of minor bugs in both specifications.

Finally, although these proofs are not so complex that it would be infeasible do them
by hand, we found the prover to be helpful in two ways:

— PVS has a number of powerful proving commands that, most of the time, can save
us a lot of time and patience — as we use more and more concrete specifications
of the perceptual level, so the theorem prover will become more and more useful in
this regard

— at a different level, by being totally impartial, the theorem prover better exposes
assumptions we are making about the system. Had the verification been performed
by hand, some of those assumptions might have crept into the proof unnoticed.



4 Conclusions

The stated aims of this paper were to provide a means for integrating representational
reasoning into a design process, and to explore further the verification process.

We have shown that by employing a formal model which allows us to address rep-
resentational issues, we provide both a rigorous and precise framework for reasoning
about representation, and confidence that reasoning over the abstract state holds at the
presentation level.

We have also shown how the verification process improves our understanding of
the specification, and in particular brings out assumptions about the system which are
embedded in the representation. We consider it an interesting aspect of the process
that some issues have emerged purely from the effort of formalisation, whereas oth-
ers emerge only when we attempt to verify the relationship between the logical and
perceptual operators.

Each of the assumptions brought out by the verification process had an important
representational significance and a direct correspondence with Hutchins analysis. While
the first concerned a simple relationship between abstract state and representation, the
second established the implicit representation of current configuration by the configu-
ration change bugs. The final assumption exposed an operational constraint, which is
not part of the abstract system model, yet which is vital for the success of the presen-
tation. Thus it is not merely a question of errors or omissions in the specification, but
additional information and understanding which emerges from the analysis.

Representations are, of course, only one part of the distributed cognitive system;
one interesting area for future work would be to consider a wider range of cognitive
resources, for example by employing the resources model of [10].
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A ASIPVStheory

ASI: THEORY
BEGIN

Speed: TYPE = nat

Speeds: TYPE = sequence[Speed]

Configuration: TYPE = nat

AbstractASI: TYPE = [# Vc: Speed, Cc: Configuration, Smm: Speeds, Vref: Speed#]
Smargin : Speed

Ssafe : Speed

abs_asi: VAR AbstractASI

inv_abs_asi : AXIOM Vc(abs_asi) > Smm(abs_asi)(Cc(abs asi))

inv_abs_asi2: AXIOMY (i,j: nat): i < j<> Smm(abs_asi)(i) > Smm(abs.asi)(j)
configChangeCheck ((asi : AbstractASl)) : bool = Vc(asi) < Smm(asi)(Cc(asi)) + Smargin
approachSpeedCheck((Vc, Vref : Speed)) : bool = Vref - Ssafe < V¢ A Ve < Vref + Ssafe

END ASI

B perceptualASI PVStheory

perceptual ASI : THEORY
BEGIN



ASSUMING

IMPORTING ASI

ENDASSUMING
Angle: TYPE = nonneg.real
ASINeedle: TYPE = [# posn: Angle#]
ASISpeedBug : TYPE = [# posn: Angle,extent: Angle#]
ASISpeedBugs: TYPE = sequence[ASISpeedBug]
ASIScale: TYPE = [# interpret: [Angle — nonneg.real] #]

ASlInstrument:
TYPE = [# needle: ASINeedle, bugs: ASISpeedBugs,salmonbug : ASISpeedBug, scale : ASIScale#]

ScaleFactor : posreal

BugExtent: Angle

SalmonExtent : Angle = Ssafe / ScaleFactor

bug_posn_extent : Axiom V (bug : ASISpeedBug) : posn(bug) - extent(bug) > 0
asi: VAR ASlInstrument

abs_asi : VAR AbstractASI

inv_ASlInstrument : AXIOM
V (i,j: nat):
i<j=
(posn(bugs(asi)(i)) > posn(bugs(asi)(j))A
posn(bugs(asi)(i)) - extent(bugs(asi)(i))
> posn(bugs(asi)(j)) + extent(bugs(asi)(j)))

cc_bugs: AXIOM
V (i: nat):
((posn(bugs(asi)(i)) x ScaleFactor < Vc(abs_asi))A
(=3 (j: nat):
j < iA
(posn(bugs(asi)(j)) x ScaleFactor <
Vc(abs_asi)))) =
i = Cc(abs_asi)

rho_Needle((v : Speed)) : ASINeedle = (#posn: = v / ScaleFactor#)

rho_BugSeq((s: Speeds)): ASISpeedBugs =



A (i: nat): (#posn: = s(i) / ScaleFactor, extent: = BugExtent#)
rho_Salmon((v : Speed)): ASISpeedBug = (#posn: = v / ScaleFactor, extent: = SalmonExtent#)
rho_Scale : ASIScale = (#interpret: = A (a: Angle): ScaleFactor x a#)

p((a: AbstractASl)) : ASlInstrument =
(#needle: = rho_Needle(Vc(a)),
bugs: = rho_BugSeq(Smm(a)),
salmonbug: = rho_Salmon(Vref(a)),
scale: = rho_Scale#)

in_arc((needle : ASINeedle), (astart,aend : Angle)) : bool = astart < posn(needle) A posn(needle) < aend
next_counterclockwise : [[ASINeedle, ASISpeedBugs] — ASISpeedBug]

next_counterclockwise : AXIOM
V (needle : ASINeedle, bugs : ASISpeedBugs,bug : ASISpeedBug):
(3 (i: nat) : posn(bugs(i)) < posn(needle)) =
(next_counterclockwise (needle, bugs) = bug <
(3 (i: nat):
bugs(i) = bugA
posn(bugs(i)) < posn(needle)A
(V (j: nat):
j < 1= posn(bugs(j)) > posn(needle))))

getCurrentBug((needle : ASINeedle), (bugs : ASISpeedBugs)):
ASISpeedBug = next_counterclockwise(needle, bugs)

salmonBugCheck((needle : ASINeedle), (bug : ASISpeedBug)) : bool =
in_arc(needle, posn(bug) - extent(bug), posn(bug) + extent(bug))

configBugCheck((needle : ASINeedle), (bug : ASISpeedBug)) : bool =
in_arc(needle, posn(bug), posn(bug) + Smargin / ScaleFactor)

asiConfigCheck((asi : ASlInstrument)) : bool =
configBugCheck (needle(asi), getCurrentBug(needle(asi), bugs(asi)))

END perceptual ASI
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