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RESUMO 

A pesquisa pelo veículo autónomo (AV) iniciou-se há já algumas décadas, com a introdução de vários 

sistemas inteligentes nos veículos do nosso quotidiano. O melhor exemplo deste tipo de sistemas são os 

Advanced Driver-Assistance Systems (ADAS). As grandes marcas da indústria automóvel e principais 

Original Equipment Manufacturers (OEMs) estão focados no desenvolvimento do primeiro AV. O Light 

Detection And Ranging (LiDAR) é considerado como uma tecnologia chave para implementação do AV. 

O sistema de leitura e medição do tempo de voo (Time-of-Flight - ToF) é um dos subsistemas constituintes 

do sensor LiDAR, e assume extrema importância. Os sistemas de medição de ToF de alto desempenho 

são normalmente implementados recorrendo ao desenho de células lógicas específicas e customizadas, 

o que leva a um aumento do tempo de desenvolvimento do sistema e, consequentemente, do custo. 

Estes tipos de sistemas apresentam desempenhos superiores aos necessários e o seu nível de integração 

é reduzido. O desenvolvimento de sistemas de medição de ToF capazes de serem completamente 

desenhados por linguagens de descrição de hardware (HDL) e implementados através de um fluxo de 

desenvolvimento totalmente automatizado permitirá alcançar maior portabilidade e níveis de integração. 

O propósito desta tese é o desenvolvimento e implementação de uma arquitetura para um sistema de 

medição de ToF, capaz de facilitar o processo de migração destes sistemas entre tecnologias e 

plataformas. As arquiteturas existentes foram analisadas e foram implementadas e avaliadas múltiplas 

arquiteturas recorrendo a plataformas de prototipagem. Para assegurar um processo de migração fluído, 

as ferramentas de desenho de Application Specific Integrated Circuit (ASIC) foram estudadas. Como 

resultado, foi desenvolvido um sistema de medição de ToF para aplicações automóveis LiDAR e 

estabelecido um fluxo de desenvolvimento que suporta a migração automatizada de arquiteturas ToF. 

O contributo da presente tese baseia-se no estudo sobre como devem ser desenhados e implementados 

os sistemas de medição de ToF para permitirem um fluxo de desenvolvimento automatizado e aumentar 

a sua portabilidade e integração, mantendo o desempenho necessário em aplicações automóveis LiDAR. 

A investigação iniciou-se com uma revisão do estado da arte em sistemas de medição de ToF, que 

culminou no desenvolvimento de duas arquiteturas em Field-Programmable Gate Array (FPGA) e na 

fabricação de um ASIC utilizando fluxo de desenvolvimento proposto baseado em Structured Data Path 

(SDP) para migrar arquiteturas de medição de ToF baseados em FPGA para tecnologia ASIC. 

Palavras-Chave: ASIC, FPGA, LiDAR, Tempo de voo, Time-to-Digital Converter (TDC).
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ABSTRACT 

The pursue for autonomous car started long ago with multiple smaller and smarter systems being 

researched and introduced gradually in our daily vehicles. The so-called Advanced Driver Assistance 

Systems (ADAS) are the best example of these stepwise process towards a full-autonomous vehicle (AV). 

Nowadays, all the major automotive groups and Original Equipment Manufacturers (OEMs) are pursuing 

the goal of launching an AV on the market. Light Detection And Ranging (LiDAR) is considered the key 

enabling technology to implement this AV. 

LiDAR sensor are composed by a multitude of systems and components, being the time-of-flight (ToF) 

readout system of extreme importance. State-of-the-art high-performance ToF readouts are implemented 

using highly customized cells, which increases both development time and costs. The performance 

achieved with these solutions usually highly exceeds the required for LiDAR and their level of integration 

is also reduced. The development of ToF measurement architectures capable of being completely 

described using hardware description languages (HDL) and implemented using a full automatized design 

flow, will help to attain reduced development time, increased portability and a high level of integration. 

This Thesis aims to develop and implement a ToF readout architecture to simplify the migration effort 

between platforms and technologies. Existing architectures are analyzed and, based on the acquired 

knowledge, multiple architectures developed and assessed using a fast prototype platform. To ensure a 

seamless migration process, the tools used on Application Specific Integrated Circuits (ASIC) development 

are studied, and the design flow steps that can be automated or supported by scripting are identified. 

The accomplishment of these activities enabled the development of a ToF measurement system for 

automotive LiDAR sensors and a design flow guideline and respective supporting scripts. 

The present Thesis contribute by reasoning about how should a ToF measurement system be designed 

and implemented to enable a full automated design flow process, increase portability and integration, 

while maintaining the required performance for automotive LiDAR based systems. The research started 

with an exhaustive literature review on FPGA ToF measurement systems, which lead to the 

implementation of two FPGA-based architectures, and to the fabrication of an ASIC TDC using the 

proposed Structured Data Path (SDP) design flow for migrating FPGA-based ToF systems to ASIC 

technology. 

Keywords: ASIC, FPGA, LiDAR, Time-of-Flight (ToF), Time-to-Digital Converters (TDC).  
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1. Introduction 

The world, and the understanding humanity has of it, is constantly changing. New technologies are 

developed daily to address people’s needs and ever-increasing demands, changing the reality in which 

we live. Automotive industry always played an important role on this technology advancement. Over the 

last few years, a collection of systems has been introduced in vehicles, aiming to improve the overall 

driving experience, increase drivers’ safety and reduce driving hazards due to human error. The current 

trend fueling automotive research is the autonomous vehicle (AV) concept, a technology that, when 

achieved, will completely shift the driving paradigm. The realization of such concept relies on the ability 

to endow a vehicle with capabilities to percept its surrounding environment. Thus, vison systems such as 

Radar Cameras and LiDAR are currently in the spotlight of research, being LiDAR pointed out as one of 

the core technologies, propelling numerous research works worldwide. 

In this chapter, an introductory concept of this Thesis is presented. First, this work’s motivation is 

explained, contextualizing its pertinence, formulating the problem statement and defining the Thesis 

scope. Then, the research questions are devised, and the objectives and methodologies defined. Finally, 

the main contributions to the scientific state-of-the-art achieved during this Thesis are listed and the 

structure of the remainder of this Thesis is presented. 

The Chapter is organized as follows: Section 1.1 formalizes the problem statement and presents the 

project’s dependent requirements and constraints; Section 1.2 motivates this Thesis, describes the 

Thesis’ scope and presents its research questions, targeted objectives and proposed methodologies to 
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attain them, while answering the formulated questions. Section 1.3 presents this Thesis contributions 

and Section 1.4 describes the structure and organization of this document. 

 

1.1. Contextualization and Problem statement 

Some decades ago, if someone talked about a car, it would be describing an almost full mechanical 

system. It was in 1882 that Karl Benz first patented the Benz Patent-Motorwagen. Then, in 1908, the first 

automobiles became accessible to the masses with the famous Model T, commercialized by Ford. Over 

the years, futuristic insights about driverless cars, pushed the automotive industry further, resulting in 

impressive technological improvements. This pursue lead to the incremental appearance of various 

functionalities, supported by various sensors and electronics, which reduced the driver’s workload and 

increased safety. Nowadays, a variety of sensors can be found in cars, among them, angular sensors 

used in the pedals to measure the throttle position, pressure sensors used to measure the fuel and boost 

pressure, temperature sensors, imaging sensors, etc. Recently, sensors like LiDAR, RADAR and Cameras, 

are gaining relevance due to its role on sensing the car surrounding environment, which is mandatory 

when implementing an Automated Vehicle (AV). For instance, in 2018, there were already 53 companies 

working on LiDAR technology for automotive in California [1.1]. Also, in 2016, the demand for all kind of 

sensor solutions was increasing [1.2]. 

Electronics have always played an important role on automotive industry, improving safety, automatizing 

some driving tasks in a controlled environment, and generally improving the driving experience with 

infotainment systems. Although the acceptance and introduction of Advanced Driving Assistance Systems 

(ADAS) was slow [1.3], nowadays they are part of everyday driving experience and are already considered 

as a must have system depending on the tier of the car. According to [1.3], an increase of 50% on the 

number of ADAS systems included in cars was verified in just two years, from 2014 to 2016, with the 

inclusion of surrounding view systems having an increase of more than 150%, in the same time span. 

ADAS are playing an important role on teaching people about autonomous driving and its revenues may 

be used to finance AV research [1.4], [1.5]. Nevertheless, this will only be possible if the adoption rate of 

ADAS on mass production vehicles increases [1.4], [1.5]. This highlights the need for cheaper, but still 

high reliable systems [1.3], [1.6]. The ever-increasing adoption of ADAS, together with the recent search 

for a full automated driving experience is continuously pushing electronic sensors and systems forwards. 

With sensors technologies holding the key for the future of automobile industry [1.7], research on low 
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cost and more reliable sensors and readout mechanisms used in ADAS systems and AV is required to 

tackle the new challenges ahead in the competitive automotive industry. 

According to the Society of Automotive Engineers (SAE), a full autonomous vehicle, level 5 in Figure 1.1, 

must be capable of controlling every aspect of the driving task in the entire imaginable scenarios. This 

means that electronic sensors and systems must be capable of performing even in the most severe 

conditions [1.8]. When no user interaction is allowed, as in the case of a level 5 vehicle, the electronics 

requirements drastically change compared to a typical ADAS. According to Goel [1.9], solving the 

challenges introduced by AV will require better hardware, to collect more data and with higher precision, 

and better software to analyze and make decisions based on the gathered data. Moreover, this new 

hardware will also have to be able to cope with the typical automotive requirements, i.e. low power, low 

area, resistance to harsh environment, etc. Fulfilling all these requirements is not a trivial task, and 

multiple OEMs have already invested millions of dollars and made partnerships trying to be the leaders 

on this new and emerging AV market. Companies like Honda, Ford, GM, Toyota, Volvo, Hyundai, BMW 

and Tesla have already announced their intention of having fully autonomous vehicles on the road 

between 2020 and 2030 [1.1], [1.8]. 

 

Figure 1.1- Levels of Automation (according to SAE) 

Although being relatively new in automotive markets, the vehicle surroundings mapping advantages 

offered by LiDAR, when compared to the more established technologies (i.e. cameras, ultrasonic sensors 

and radar), have propelled massive innovations. Thus, LiDAR is already considered as a key enabling 

technology for achieving AVs [1.7], [1.10]. This popularity increase has also enabled a dizzying drop on 

LiDAR’s cost, from around US$50000 to US$10000, with forecasts predicting a lower than US$200 cost 

per LiDAR module in 2022 [1.10]. 
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The current scenario on ambient mapping solutions make use of Radar for long- and short-range 

measurements, video cameras for medium range and ultrasound for short-range measurements, mainly 

used on parking assistance ADAS [1.11]. The introduction of LiDAR may replace and/or complement 

some of these technologies, resulting in a schema like the one depicted on Figure 1.2. 

 

Figure 1.2- Car Vision Technologies (based on [1.3]) 

Ultrasonic sensors are only viable for short range measurements since the effects of attenuation are 

strong beyond a few meters distance. Furthermore, although ultrasonic sensors resolution may be 

suitable for object detection, it is not for objected identification. Although LiDAR can also perform in short 

range measurements and give detailed data on the object shape, facilitating the object identification, its 

cost is still way above of an ultrasonic sensor. Therefore, LiDAR sensors research mainly targets medium 

to long range measurement applications. 

Other technologies targeting medium to long range measurements are Cameras and Radar [1.10]. 

Although Cameras offer a cost-effective solution due to its availability, the data processing power required, 

in order to extract useful information from the captured data, is a drawback of this technology. 

Furthermore, cameras are highly sensible to ambient light conditions. The only parameter in which LiDAR 

cannot outperform cameras is road signs and color detection. Thus, time critical detection tasks are better 

performed by LiDAR and cameras can be used to complement the information acquired by it, using a 

sensor fusion approach. 

Most of LiDAR current applications could also be addressed by Radar. Since Radar solutions are available 

at lower cost and are easy to integrate, due to smaller size, this technology is the one used on modern-

day vehicles. However, LiDAR research enabled LiDAR solutions to be shrunk over the years and the 

recent industry shift to solid-state LiDAR will further enhance integration and reduce costs [1.10]. 

Therefore, LiDAR is now capable of compete with Radar since it offers a set of performance improvements 
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like larger distance, better angular resolution and larger field-of-view. This enables an improved object 

classification, with higher resolution in a broader scene/frame, without significant backend processing. 

The possibility to cover short, medium, and long range with a single sensor is attractive. Radar relies on 

the technology used to cover different ranges, meaning that a combination of technologies per each range 

must be made. Although LiDAR performance degrades with adverse weather conditions, when compared 

with Radar which offers a robust performance even under heavy rain, snow and fog, the use of 1550nm 

wavelength enables LiDAR to reach acceptable performance values [1.10]. An overview on the 

performance comparison between LiDAR, Radar and Cameras, based on the data reported by Mizuho 

Securities USA, and presented at the AutoSens 2017 conference held in Brussels [1.12], is given in Table 

1.1. 

Table 1.1- Vision Technologies Comparison 

 LiDAR Radar Camera 

Range Best Best Worst 

Field of View Best Better Worst 

Width and Height Best Worst Worst 

3D Shape Best Worst Worst 

Object recognition at long 
range 

Best Worst Worst 

Rain, Snow, Dust Best Best Worst 

Night Best Best Worst 

Signs and Color Worst Worst Best 

Source: AutoSens 2017, “LiDAR systems for automotive: Benefits and the challenges for OEMs” [1.12]. 

LiDAR working principle is based on transmitting a pulsed or continuous light signal (generated by a laser 

beam) which will be reflected by the different objects at the scene being scanned (Figure 1.3). By 

measuring the characteristics of the reflected signal, a high-fidelity picture of the scene being illuminated 

can be reconstructed. The usual parameters used in LiDAR measurements are the pulse’s power, time-

of-flight (ToF), and phase shift of the received signal [1.7], [1.10], [1.13]. The maximum achievable range 

for LiDAR measurement is presented in [1.13], and can be calculated according to the following equation: 

𝑅𝑎𝑛𝑔𝑒 =  √
𝑃∗𝐴∗𝑇𝑎∗𝑇𝑜

𝐷𝑠∗𝑃𝑖∗𝐵
, (1.1) 
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where P is the laser’s pulse power, A is the area of the optics used, Ta is the transmittance of the 

atmosphere, which is dependent on the ambient conditions, To is the transmittance of the optics, Ds the 

detector’s sensitivity, and B is the laser beam divergence. 

Moreover, the reflectance of the targets on the scene is also an important factor on the maximum 

achievable measurement range, since for the same emitted power pulse and the same detectors 

sensitivity, a less reflective target will be harder to identify, because most of the laser’s pulse power will 

be absorbed. 

 

Figure 1.3- LiDAR Working Principle 

When using a continuous wave light source (bottom of Figure 1.3), the distance to a target can be 

indirectly calculated by measuring the phase difference between the emitted pulse and the measured 

received signal, using: 

𝑑 =  
𝑐∗𝜑

4∗𝜋∗𝑓
,  (1.2) 

where f is the modulated frequency of the emitted signal, φ is the phase difference, and c is the speed 

of light (3*108 m/s). 

Pulsed laser-based LiDAR systems are attractive due to its low power consumption, safety, low-cost, small-

size and light weight [1.13], being currently the employed solution. Nevertheless, these solutions’ 

performances are more affected by ambient light and weather conditions. The distance measurement is 

directly performed in pulsed LiDAR (top of Figure 1.3) by calculating the time interval between the instant 
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when the light pulse was emitted and the instant that it is detected by the photoreceiver. Equation (1.3) 

is used to calculate the distance: 

𝑑 =
𝐶∗𝑡

2
, (1.3) 

where d is the distance to a target, and t the measured time interval. 

Independently of the distance to be measured, since the laser beam does not diverge significantly, a 

precise point distance measurement to the object can be made. Moreover, the narrow wavelength 

bandwidth of the LiDAR’s laser allows for a higher ambient noise immunity by implementing a narrow 

bandwidth receiver. 

Despite the achieved improvements on LiDAR technology, there are still progress to be made in order to 

reduce production costs and increase system’s integration. Additionally, the amount of data capable of 

being collected by LiDAR sensors and the possible applications unlocked by the sensor, comprise a 

challenge by themselves. 

The ideal LiDAR sensor solution is yet to be developed. The ideal solution would use a single laser, 

illuminating the entire scene and a 2D single photon detector. However, this ideal solution has high power 

peak consumption and the design of a detector immune to ambient noise, while being sensitive to the 

multiple backscattered light pulses, is yet to be accomplished. An even major drawback for this 

architecture is the abundance of retroreflectors in a typical driving situation, which reflect most of the light 

and has almost no backscattering, blinding the sensor and rendering it useless. The alternative is to use 

a scanning device. However, moving parts add mechanical noise to the measurements, deteriorating the 

overall system’s performance. 

LiDAR sensors can be classified according to their beam steering implementation method into mechanical 

LiDAR and solid-state LiDAR [1.10]. The mechanical group includes 2.5D macro scanners and 3D macro 

scanners. The solid-state LiDAR implementations can be divided into fixed beam, fixed multi beam, flash 

and MEMS (Micro-Electro-Mechanical System) LiDAR. Some solutions are already available commercially. 

The most significant solutions are presented on Table 1.2. 

Despite the available options for LiDAR sensors, there is yet to be a solution that can combine high 

performance, low-cost and easy integration. Thus, LiDAR offers a good field of research. The Sensible Car 

project is a partnership between Bosch Car Multimedia and University of Minho in which research on  
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Table 1.2 -LiDAR Commercial Devices 

Product name SRL1 Infrared 

short range lidar 

sensor 

Leddar M16 Scala Wide angle 

scanning laser 

sensor 

HDL-64E HDL-32E VLP 16 Peregrine 3D Flash 

LIDAR Vision system 

SpectroScan 3D MEMS 

LIDAR MLS 201 

Lidar class Fixed Beam Fixed multi 

beam 

2.5D macro 

scanner 

3d Macro Scanner Flash LiDAR Microscanner 

Manufacturer Continental Leddartech Valeo IBEO Velodyne Google, quanergy ASCar SpectroScan Boing 

Basic principle Direct TOF Direct TOF Direct TOF Direct TOF Direct TOF Direct TOF 

Range 1-10m (standard) 
10-13.5m 

(expanded) 

0-100 m 0.3 – 375 m 50-120m 
depending on 

reflectivity 
(0.1-0.8) 

1-70m 100m 20.3m 20m 

#pixels 3 16 2500 >100,000 1000-10,000 1000-100,000 

#Laser-detector 

pair 

1 16 4 64 32 16 - - 

Accuracy +-100cm +-5cm +-40cm +-2cm +-2cm +-3cm - - 

Data rate - 6.25 Hz to 

100 Hz 

- 1.3M px/s 700k px/s 300k px/s - - 

Vertical fov 11º - 3.2º 26.8º 40º 30º Optional FoV lens: 
15º 

30º 
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Horizontal 

resolution 

- - 0.25º 5Hz: 0.08º 
10Hz: 0.17º 
20Hz: 0.35º 

5Hz: 0.08º 
10Hz: 0.17º 
20Hz: 0.35º 

5Hz: 0.1º 
10Hz: 0.2º 
20Hz: 0.4º 

30º 
45º 
60º 

0.2º 

Vertical 

resolution 

- - 0.8º 0.4º 1.3º 2.0 0.2º 

Horizontal fov 27º 9, 18, 24, 

34, 45, 95º 

145º 360º 360º 360º 60º 

Pulse time 33 ns - - 10 ns - - 5 ±3 ns - 

Wavelength 

(nm) 

905 940 905 905 903 903 1570 1550 

Power(W) <1.8 4 40 60 12 8 24 30 

size (mm) 150*73*36 104*66*48 108*60*100 203*284 86*145 104*72 50*76*149.5 133.35*88.9*177.8 

Weight <100 g 180 g 510 g 15 kg 1.3 kg 0.83 kg <680 g 2.27 kg 

Estimated price - - $250 $75000 $29900 $7999 - - 
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LiDAR sensors is being addressed. The objective is to research a new integrated system based on laser 

detectors, which allows for vehicle’s surroundings mapping, while complying with small size, low-cost and 

mass scale production requirements. 

A typical LiDAR system is depicted in Figure 1.4. The sensor is composed by a laser, controlled by a laser 

driver block, responsible for generating the pulse pattern and for starting a Time-to-Digital Converter (TDC) 

module. On solid-state LiDAR, the laser beam can be redirected using a MEMS micromirror (MEMS 

LiDAR), in which case a micromirror driver module is required to control the micromirror movement, 

together with a synchronization block to guarantee the correct interaction between the pair laser-

micromirror. 

 

Figure 1.4- LiDAR Block Diagram 

Another solution to obtain a larger field of view with just one laser is the use of a Flash LiDAR, in which a 

single pulse is fired [1.10], being the back-scattered light captured by a focal plane array of photodetectors 

located near the laser. This solution removes the need for the MEMS driver and synchronization block. 

However, it requires a TDC module per photodetector, which greatly increases production cost and power 

consumption. The receiver module is typically an analog block comprising an optical lens and optical 

filters in order to control the Field-of-View (FoV) of the detector, increasing its immunity to ambient light 

and another noise sources. The module also has an amplifier stage that converts the output of the 

detector into a usable signal. A comparator stage helps reducing the noise by generating a pulse only 

when the power of the received signal is above a defined threshold. The higher the threshold value, the 

higher will be the immunity to noise. However, for the same laser pulse power, the maximum detectable 
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range will be lower. If the threshold value is to be reconfigurable, a DAC (Digital-to-Analog Converter) 

module will have to be implemented to adjust it. The last block on the detector module is a pulse 

generator, responsible for generating a valid stop pulse for the TDC module. The TDC module defines the 

minimum distinguishable distance of the LiDAR sensor, since this is the module responsible for measuring 

the time-of-flight of the laser pulse. The better the TDC resolution, the higher the LiDAR’s resolution can 

be. For instance, a 250 ps (picoseconds) resolution TDC enables a precision of 3.75 cm (according to 

equation 1.3). The outputted value from the TDC is sent to a controller unit with a time-of-flight module, 

responsible for calculating, based on the outputted TDC value, the effective time interval between shooting 

the laser and detecting the backscattered light pulse. A microcontroller unit can be responsible to manage 

the data flow throughout the many modules comprising the LiDAR sensor and the memory module, where 

the data is stored. If a more software-oriented approach is being used, the microcontroller unit can be 

responsible for the entire of the data processing operation and calculations. However, due to a system 

and algorithms complexity increase, a divide and conquer approach is usually the strategy adopted, with 

multiple functions and algorithms being migrated to hardware accelerated modules. Timing constraints 

are also getting tighter (since the amount of data to acquired and processed in a single frame is increasing 

exponentially, which leaves less time for deciding and actuating in conformity), further endorsing the 

modular hardware acceleration approach. A data compressing block may also be included to reduce the 

cloud point information that needs to be treated and/or transmitted, simplifying the implementation of 

other modules responsible for data processing. The data processing modules can implement a myriad of 

services from object detection to human behavior prediction, object tracking, vehicle and path modelling, 

among others. Finally, the interconnection and communication module is responsible for shifting out the 

data to the system’s network or a dedicated electronic controller unit (ECU). 

 

1.2. Motivation, scope and Research Questions 

One of the Sensible Car project objectives is to develop a LiDAR sensor capable of scanning a 50˚ 

horizontal per 9˚ vertical field of view with a maximum range of 180 meters. An angular resolution of 

0.15˚ for both horizontal and vertical axis is required to enable the identification of objects as small as 

400 mm at 180 m. In addition, a range accuracy greater than 0.1 meters and a frame rate between 10-

20 Hz must also be achieved. Furthermore, in order to achieve a good depth contrast, which facilitates 

object detection, a depth resolution higher than 7cm is desirable. This Thesis targets one of the Sensible 

Car LiDAR’s project core subsystems, the time-of-flight measurement unit. Since the project is to be 
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concluded in a three-year time window, and there must be enough time for system integration and testing, 

it was defined that the ToF measurement unit research and implementation had to be done in less than 

three years. Moreover, apart from the time constraint, the ToF measurement unit must be easily 

integrated within the LiDAR sensor and easily ported between prototyping platforms (used in the initial 

stages of the project) and the final product platform (the final system is intended to be implemented in 

ASIC). 

Nowadays, solutions for high performance time-to-digital conversion usually imply a custom-made process 

which increases both project’s costs and development time. Thus, the aim of this Thesis is to develop a 

time interval measurement readout system to perform the Time-to-Digital Conversion (TDC) in a LiDAR 

sensor, capable of achieving high performance, with reduced customization and highly automated design 

flow processes, to accelerate development and reduce the system’s cost. The main principle is based on 

being capable of directly migrating a fully digital, synthesizable TDC architecture, implemented in a low-

cost prototype platform, i.e. FPGA, to an ASIC with minimum intervention. 

The main motivation for this Thesis consists on the possibility to work with a large set of tools for hardware 

and software development which will allow the author to improve its knowledge. Furthermore, prior to the 

start of this work, there was no knowledge regarding TDCs development in the author’s research group 

or Bosch Car Multimedia, which rises the challenge even further. Finally, the tools used to design digital 

systems are developed to be efficient in optimizing and analyzing synchronous designs, and therefore, 

the design of a system in which the relevant information is the one hidden between clock cycles, and that 

requires a precise characterization of the real circuit timings and not only the worst and best case 

scenarios is, by itself, a large and interesting challenge. 

 

1.2.1. Research Questions and Objectives 

The following research questions were formulated in order to guide this research, making possible to 

reach the aforementioned objective: 

• RQ1: What are the current research trends on ToF measurement systems for LiDAR sensors? 

• RQ2: Which architectures are simultaneously suitable for FPGA deployment (fast prototyping) and 

ASIC implementation, while maintaining the required performance for LiDAR sensors? 
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• RQ3: During the porting process (of the selected ToF measurement architecture) from FPGA-

based to ASIC technology, how to minimize the development effort and time? 

• RQ4: How does the developed ToF measurement solutions (FPGA and ASIC) compare with the 

current state-of-the-art for LiDAR sensors? 

The following sub-objectives were defined in order to gradually pursue the main goal of this Thesis, while 

answering the Thesis’ research questions: 

• O1: Review the state-of-the-art in time interval measurement systems; 

• O2: Develop different architecture working prototypes to gain insight on the main challenges and 

technical limitations when developing high performance time interval measurement systems; 

• O3: Evaluate the developed architectures performance to understand the scenarios in which they 

are viable, and how should the ToF measurement systems characterization be performed; 

• O4: Study the digital design flow for ASIC technology; 

• O5: Create scripts to configure and automatize the ASIC digital design flow; 

• O6: Implement a time interval measurement peripheral, addressing the issues identified during 

the state-of-the-art review and prototype development; 

• O7: Evaluate the proposed architecture, development flow and implemented peripheral and 

position it within the existing state-of-the-art. 

 

1.2.2. Research methodology 

To focus and guide the activities involved in the research process that would enable the attainment of the 

proposed objectives (O1 to O7) and answer the formulated research questions (RQ1 to RQ4), several 

research methodologies, from RM1 to RM8, were adopted during this PhD Thesis. 

RM1 – State-of-the-art of TDC: A review on the state-of-the-art of time interval measurement systems was 

performed on both academia and commercial fields to understand which type of architectures are being 

implemented, what are its typical performances, and which applications are being targeted. The review 

focused on architectures implemented in FPGA since these are the ones that can easily be ported to ASIC 

due to its intrinsic digital nature. The results of this study were published in article J1 [1.14], which 

proposes a taxonomy for FPGA-based TDCs classification, and identifies research gaps and new 

approaches that are not yet explored and may be an important contribution to build TDC systems. This 
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study was performed to address RQ1 and RQ2, targeting O1 and providing a solid field knowledge, crucial 

to target the remaining research questions. Afterwards, a study on the available ASIC architectures was 

made to understand the typical design flow used on ASIC TDC development and the performance values 

achieved. 

RM2 – Study the FPGA development framework: Developing time interval measurement systems, with 

resolution under the clock system frequency, requires a deep understanding on how the development 

frameworks are configured, as well as advanced knowledge of the FPGA platform being used. Therefore, 

a preliminary study of the Xilinx Vivado framework was made in order to: test multiple optimization 

configurations; assess how to avoid automatic optimizations on parts of a design; force the framework to 

generate specific hardware directly mapped to the FPGA configurable logic blocks (CLB); and understand 

how manual layout (placement and routing) could be applied to parts of the design, to improve the overall 

time interval measurement system’s performance. The FPGA platforms used were studied to learn which 

type of resources were available and how should them be configured. This enabled to establish a solid 

expertise required to target O2 and O3. 

RM3 – Development of FPGA-based TDC prototypes: To understand the challenges and issues involved 

on TDCs development, two different architectures were implemented in a FPGA device, namely the Xilinx 

Z7010. The first architecture was implemented with the objective of achieving the highest possible 

resolution, while the second one was designed targeting low resource utilization. Both architectures were 

designed to ensure portability and scalability. Details of the first architecture were presented in a 

conference proceeding C1 [1.15], with special focus on the synchronization block. Later, the same 

synchronization block was updated and a design methodology for synchronizer blocks was developed and 

presented in another conference proceeding C2 [1.16]. The details of the second architecture are partially 

presented in publication P1. The architecture consists on a modified version of the TDC presented by Wu 

and Xu in [1.17], which sacrifices the maximum achievable resolution in order to obtain improved linearity 

and homogeneity when multiple time interval measuring channels are implemented, and low resource 

and power consumption is required. Using this methodology, RQ2 was addressed and objective O2 

achieved. 

RM4 – Evaluate FPGA-based TDCs: The evaluation and characterization of the developed architectures 

was done to address RQ2 and target O3. The characterization process enabled a better understanding of 

the main metrics that need to be considered for proper TDC assessment, namely, which tests need to be 

performed and how to perform them. Two tests were performed on both architectures. The first test was 
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a code density test with 100 thousand samples, made to retrieve the TDC’s mean resolution and 

differential and integral non-linearity. After, a performance measurement with 100 thousand samples was 

executed to obtain the TDC’s precision based on its standard deviation. A third test could be done to 

analyze the TDCs performance variation with temperature. However, since the objective of the FPGA 

implementations is to study the viable solutions for ASIC porting, and because the performance 

temperature variation is highly dependent on the technology used, there is no significant advantage in 

performing such test. Furthermore, according to [1.18], the Xilinx Zynq 7000 FPGA family does not have 

a significant performance variation with temperature. Therefore, the temperature tests were only made 

with the final ASIC TDC implementation. The results of the tests performed for the first and second 

architecture are presented in the conference proceeding C1 [1.15] and in publication P1, respectively. 

RM5 – Study the ASIC design flow tools: The development tools for ASIC design are not the same as the 

ones for FPGA. Moreover, while using FPGA, a single framework with all the included tools was available. 

Although there are frameworks comprising every tool needed for an ASIC digital design flow, it is a de 

facto standard in industry that for synthesis, Synopsys’ DesignCompiler offer the better results while 

Cadence’s Innovus performs better during system layout. These tools are from different vendors, therefore 

the data transferred from one stage to the other must be handled by the ASIC designer. Moreover, as in 

the FPGA case, the tools are optimized to handle synchronous designs and to perform hardware intensive 

optimizations to reduce area, power consumption and design complexity. Those kinds of functionalities 

can only be applied to parts of the design (the synchronous part), while the module responsible for 

measuring sub-clock timings must be left out by the tool. Consequently, a thoughtful study on the tools 

used during digital ASIC design flow was performed, to understand how to manage the data exchange 

between tools, how to correctly configure the tools, how to manually manipulate the layout, and how to 

automate the different processes involved. With this methodology O4 was completed while addressing 

RQ3 and building the required knowledge to target O5 and O6. 

RM6 – Migrate and Evaluate the FPGA-based TDCs to ASIC: Although being designed to be easily ported 

between platforms, the results from a TDC architecture porting could lead to unbearable performance 

drops. Therefore, the implemented FPGA TDC architectures were ported to ASIC and a pre-evaluation on 

its performance was made, to understand which of the architectures would be able to produce better 

results. The migration process implies the creation of multiple design flow scripts, to configure Synopsys 

and Cadence IC design Tools and to generate the final architecture layout, used during fabrication and 

final test simulations. From the obtained results, the first architecture was chosen to be fabricated. The 
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porting results of the two architectures are presented in this Thesis on Chapter 4. These results address 

RQ3 and RQ4, while enabling to achieve O5 and start progressing into O6 and O7. The details on the 

ASIC design flow methodology adopted are reported in article J2 [1.19], while in article J3 [1.], the 

migrated architecture is presented in detail, together with the description of the scripts used to configure 

the tools during the synthesis and layout process. 

RM7 – Tape-out the ASIC TDC peripheral: the final process before ASIC fabrication is known as tape-out. 

This process consists on the final chip layout configurations, i.e. creation of the ASIC’s pad-ring, DRC 

(Design Rules Check) and LVS (Layout Vs Schematic) checks, and final timing simulation tests. During 

this process, a Printed Circuit Board (PCB), used to integrate and assess the ASIC TDC was designed 

and developed. Details on the entire ASIC design flow and PCB development are presented in article J3. 

These activities address RQ3 and enabled to complete O6, producing all the required resources to 

address RQ4 and achieve O7. 

RM8 – Characterize and integrate the fabricated TDC: In order to be able to compare the implemented 

TDC with available implementations, a set of tests was performed to characterize the device. The main 

parameters are the TDC resolution, non-linearity, precision and temperature performance drifts. The first 

two parameters can be obtained by a code density test, similar to the ones performed on the FPGA-based 

TDCs prototypes. The precision and temperature drift tests were done in a thermal chamber, in a range 

from 0 to 50 Celsius degrees. A set of Matlab scripts were developed to analyze the data from the 

performed tests. The obtained results allow the comparison of the developed TDC with the existing 

solutions. The architectures comparison, described in Chapter 6, were done using the main TDc 

performance metrics, described in Chapter 2. This comparison addresses RQ4 while enabling to achieve 

O7. 

 

1.2.3. Research Development Timeline 

In order to better understand which research methodologies were applied to address the formulated 

research questions and how were the proposed objectives targeted, the research timeline is depicted in 

Figure 1.5. The RQs are represented as circles and used has the starting point to achieve a single or 

group of objectives, also represented as a circle. The connection is done by a rectangle specifying which 

methodology or set of methodologies were used to answer the research questions, accomplishing the 

objectives. 
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Figure 1.5- Thesis Timeline 

 

1.3. Contributions 

To support the development of this Thesis and to validate its scientific contribute, in the field of TDCs and 

ASIC design flow, the following publications were submitted to peer-reviewed international indexed 

conferences and journals: 

Journal Papers: 

• R. Machado, J. Cabral and F. S. Alves, "All-Digital Time-to-Digital Converter Design Methodology 

Based on Structured Data Paths," in IEEE Access, vol. 7, pp. 108447-108457, 2019. doi: 

10.1109/ACCESS.2019.2933496 

• R. Machado, J. Cabral and F. S. Alves, "Recent Developments and Challenges in FPGA-Based 

Time-to-Digital Converters," in IEEE Transactions on Instrumentation and Measurement, vol. 68, 

no. 11, pp. 4205-4221, Nov. 2019. doi: 10.1109/TIM.2019.2938436 

Conference Papers: 

• R. Machado, L. A. Rocha and J. Cabral, "A novel synchronizer for a 17.9ps Nutt Time-to-Digital 

Converter implemented on FPGA," 2018 AEIT International Annual Conference, Bari, 2018, pp. 

1-6. doi: 10.23919/AEIT.2018.8577365 

• R. Machado, J. Cabral and F. Alves, "Designing Synchronizers for Nutt-TDCs," 2019 5th 

International Conference on Event-Based Control, Communication, and Signal Processing 

(EBCCSP), Vienna, Austria, 2019, pp. 1-6. doi: 10.1109/EBCCSP.2019.8836914 
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Under Revision: 

• R. Machado, F. Alves, A. Geraldes, J. Cabral, “Technology Independent ASIC based Time to 

Digital Converter”, submitted IEEE Transactions on Circuits and Systems I: Regular Papers 

• R. Machado, F. Alves, J. Cabral, “Gray-Code TDC Architecture with Improved Linearity and 

Scalability”, submitted 2020 6th International Conference on Event-Based Control, 

Communication, and Signal Processing (EBCCSP) 

 

1.4. Thesis Organization 

The remainder of this Thesis is structured as follows (Figure 1.6): 

Chapter 2 introduces the basic concept regarding TDCs, providing a theoretical background to understand 

the design decisions made throughout this Thesis work. First, the main performance metrics are 

explained. After, the most popular architectures, implemented in FPGA and ASIC platforms, are described 

and discussed in detail. For each architecture, the most relevant research works present on the literature 

are mentioned. Since this Thesis targets a system with improved integration and portability, more 

emphasis is given to architectures that can be implemented in a fully digital system. 

A description of the FPGA prototype platform and respective development environment is presented in 

Chapter 3, followed by the description of the selection process regarding which TDC architectures should 

be explored. Two architectures were selected considering the requirements for automotive LiDAR 

applications. These architectures modifications and support modules are described in detail, highlighting 

the benefits and identifying its limitations. A discussion on the performance assessment results, for each 

architecture, is presented at the end of the chapter. The main conclusions of this chapter support the 

decisions made throughout the development process of the final ASIC TDC. 

Chapter 4 introduces the development tools for digital ASIC design. Afterwards, the complete system 

implementation process is presented, describing the required architectural changes, the details of the 

scripted development design flow that enables an almost seamless migration from FPGA to ASIC platform, 

and the expected TDC performance, inferred from the simulation results and extracted timing information. 
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The main experimental results of the developed TDC are presented in Chapter 5. Chapter 5 starts by 

describing the performed tests and experimental setup used. Then, the performance of the TDC is 

assessed, identifying its limitations and discussing the needed improvements. 

Chapter 6 concludes this Thesis and summarizes the acquired knowledge and future research work for 

the time interval measurement device is proposed either to enhance its performance or its integration 

level. 
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Figure 1.6- Thesis Structure 
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2. Time-based Readout Circuits 

This chapter presents an exhaustive state-of-the-art, describing the literature and commercial solutions 

for time-of-flight measurement, which is, in LiDAR sensors, a crucial sub-system. Based on the analysis 

of the state-of-the-art, a discussion regarding the literature gaps is presented and the pillars for this Thesis’ 

research are established. 

Time-to-Digital Converters are circuits that measure the time interval between two events and convert it 

to a digital representation. This type of circuits has been extensively used in Positron-Emission 

Tomography (PET) research. The increased research interest on LiDAR sensors, also contributed for an 

increasing interest regarding TDCs, since time measurement resolution has a direct impact on the 

LiDAR’s maximum precision, and thus on improving object detection [2.1]. Other applications for such 

systems are Oscilloscopes and high precision measurement systems, phase-locked loops (PLL) and 

time-of-flight rangefinders. The timing and performance characterization of electronic circuits, like jitter, 

skew and clock ageing, can also be made using a TDC. Other less explored applications are time-based 

accelerometers, in which the pull-in time is used to calculate the acceleration [2.2]. In these 

accelerometers, improved time resolution directly enables higher precision on the detection of the pull-in 

phenomenon instant, and thus the accelerometer’s resolution. 

Lately, FPGA technology has seen great performance improvements and costs reduction, due to 

developments in the available fabrication technologies (currently, the modern FPGAs are already 

implemented in 16 nm technology and below). Enhancements on FPGA’s architectures (mainly on the 
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configurable logic blocks and routing resources) have also contributed to this performance increase. As 

a result, FPGA platforms became more attractive to possible TDCs implementations, not only increasing 

the TDCs range of applications but also enabling performance values that can compete with the ones 

achieved by ASIC-based TDCs. With technology scaling down, the maximum achievable resolutions of 

TDCs in the digital domain increases, making this circuits more reliable, and ultimately replacing some 

analogue components, which in lower technology nodes, with lower voltages, have worst performances 

[2.3]. Due to these motives, all-digital TDC implementations are becoming increasingly attractive. The 

chart presented in Figure 2.1 depicts the increasing interest in TDC research over the last 28 years. 

 

Figure 2.1- TDCs Research Interest Evolution 

The Chapter is organized as follows: Section 2.1 describes the main performance metrics used to 

characterize TDCs, independently of the platform used. The most popular TDC architectures are 

presented in Section 2.2, describing its principles of operation, advantages and drawbacks, and 

highlighting the most relevant literature research works’ results. No clear distinction is made regarding 

the implementation platform used, and, since one of this Thesis objectives is the seamless migration 

between platforms, all-digital TDC architectures are emphasized. On Section 2.3, the available 

commercial devices are listed to contextualize the current industry scenario regarding time-of-flight 

measurement modules. The Chapter ends with Section 2.4, where a discussion on the state-of-the-art 
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gaps, relevant research paths identification, and description of this Thesis proposed research is 

presented. 

 

2.1. Performance Metrics 

Before analyzing the state-of-the-art, it is important to understand what metrics are used to characterize 

TDC’s performance (see Figure 2.2 and Figure 2.3). These metrics are required to fully understand which 

are the benefits that each architecture has to offer and how do they compare to other architectures. Latter 

in the Section, the most relevant TDC architectures are presented. 

Figure 2.2 presents real measurement data utilizing the ASIC TDC fabricated during this Thesis. It 

summarizes the main metrics for TDC characterization which will be further discussed in this document. 

Accuracy is defined as the deviation of the performed measurement to the real value. Precision is defined 

as the measurement standard deviation. Throughout this document, every time the term precision is 

used, it will be referring to the single-shot precision (described in section 2.1.2). In interpolative TDCs, 

the LSB value defines the minimum distinguishable time interval, and is tightly coupled to the propagation 

delay of one logic cell, or group of cells. A step, also commonly referred to as bin, is the cell or group of 

cells responsible for implementing a time delay equal to one LSB. Throughout this Thesis, both terms are 

used. Neither in FPGA nor ASIC, is possible to have cells with exactly the same propagation delay. Thus, 

the TDC’s steps will also have discrepancies (even when different cells are merged to form a step). These 

discrepancies are known as the TDC’s non-linearities and will be discussed in Section 2.1.3. 

 

Figure 2.2- Characterization metrics 
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2.1.1. Dynamic range 

The dynamic range is the maximum time interval that can be measured by a TDC before it overflows. 

Nowadays, technology enables for high performance TDCs even in prototype platforms, so TDCs are 

becoming more attractive for new applications that require large measurement ranges and benefit from 

fine resolutions (sub-nanosecond resolutions). An example of such applications are time-based 

accelerometers [2.2], where measurements in the range of a few milliseconds are required, and the fine 

resolution is desirable to improve the pull-in time measurement. LiDAR applications used in avionics for 

geo-mapping (airborne LiDAR) are another example that require large measurement range while 

benefiting from fine measurement resolution. Usually, coarse counters are included in the TDC 

architecture to complement the range of the TDC and reduce the number resources required to improve 

the dynamic range. 

 

2.1.2. Resolution and Precision 

It is common to refer to the TDC’s resolution as the Least Significant Bit (LSB). This is the minimum 

incremental step that can be detected. For example, if a counter is clocked by a 50MHz crystal, its 

resolution (LSB) would be equal to 20 ns (the period of the reference clock). The precision of a TDC is 

usually presented as a standard deviation and represents the error from the expected measurement. 

Although there are some exceptions, this typically follows a gaussian distribution. According to [2.4], the 

rms value of the TDC precision can be calculated as follows: 

𝜎𝑇𝐷𝐶𝑟𝑚𝑠 = √𝜎𝑞
2 + 𝜎𝐼𝑁𝐿

2 + 𝜎𝐶𝐿𝐾
2 + 𝜎𝑒𝑥𝑡𝑟𝑎

2 , (2.1) 

where σq is the quantization error, given by LSB/√6, σINL is the TDC Integral non-linearity standard 

deviation, σCLK is the uncertainty (jitter) of the system reference clock, and σextra represents the contribution 

from external sources of jitter [2.5], [2.6]. 

Another commonly used method to evaluate the TDC precision is the single-shot precision [2.5], 

[2.7]-[2.10]. The single shot precision is usually obtained by performing a set of measurements (typically 

above 1000 samples) and calculating its standard deviation (see equation (2.2)). When the same channel 

is used to calculate the time of arrival of the start and stop events, according to [2.11], a single-shot 

resolution metric can be obtained by dividing the calculated measurement standard deviation by the 

square root of two. 
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𝜎 = √
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1 , (2.2) 

 

2.1.3. Non-linearity 

The TDC linearity is evaluated based on its Differential non-linearity (DNL) and Integral non-linearity (INL) 

(see Figure 2.3). Linearity errors are induced by mismatch on the TDC’s LSB size due to Process, Voltage 

and Temperature (PVT) variations. The DNL is the deviation of a quantization step (bin) regarding its ideal 

value [2.12]. DNL is usually obtained through a code density test [2.13], which consists on feeding the 

TDC with a fixed and periodic input time interval. The input signal must have a frequency unrelated to the 

system reference clock, and multiple measurements must be collected to reduce statistical error 

influence. Since the input frequency is unrelated to the reference clock, the probability for each 

quantization step to be sampled is the same. By recording the number of times each quantization step 

was sampled, it is possible to obtain a realistic approximation of each step delay using equation (2.3): 

𝜏𝑖 = 𝑛𝑖 ∗
𝑇𝐶𝐿𝐾

𝑁
, (2.3) 

where τi is the ith cell’s delay, ni is the number of times the ith delay cell was recorded, TCLK is the system 

reference clock period and N is the number of measures performed. If we consider 𝜏̅ as the theoretical 

delay, calculated as: 

𝜏̅ =
𝑇𝐶𝐿𝐾

𝑁𝑐𝑒𝑙𝑙𝑠
, (2.4) 

being Ncells the number of cells needed to fulfil a system reference clock period, then the DNL of each cell 

is defined as: 

𝐷𝑁𝐿𝑖 = 𝜏𝑖 − 𝜏̅, (2.5) 

The INL represents how large an error can be during a single measurement, estimating the non-linearity 

along the entire chain. Its value can be obtained by adding the DNL values of each cell of the TDL (see 

equation 2.6). It is also common to present the system’s INL as the module of the maximum INL value. 

𝐼𝑁𝐿𝑖 = ∑ (𝜏𝑖 − 𝜏)̅𝑁−1
𝑖=0   

𝐼𝑁𝐿 = 𝑚𝑎𝑥(|𝐼𝑁𝐿𝑖|) 
,   (2.6) 
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Figure 2.3- Linearity metrics 

 

2.1.4. Dead Time 

The dead time of a TDC is the time interval required, from the arrival of the stop signal, until the TDC is 

ready to perform a new measure. This metric is highly dependent on the TDC architecture. For instance, 

TDCs based on tapped delay lines usually report dead times equal to one reference clock period [2.14], 

while pulse shrinking [2.15] or ring oscillators [2.16] architectures can have a dead time dependent on 

the time interval to be measured, which can reach several hundreds of nanoseconds. Since high sample 

rate is required for modern applications, architectures capable of achieving low dead times are becoming 

popular. A common practice to reduce dead time and increase sample rate is to use multiple TDC 

channels multiplexed, measuring the same input signal in an interleaved schema [2.7]. 

 

2.1.5. Power Consumption, Area and Resource Usage 

Power and area play an important role on modern applications since the current mobile trend 

requirements focus on low power and high levels of integration. In digital systems, the power is usually 

characterized as dynamic (switching) or static (leakage). The first is directly related to the operation 

frequency of the system, while the second one is technology dependent. Another technology dependent 

characteristic is the system’s area or used resources, depending on whether the system is being 
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the same TDC architecture can be implemented in a smaller area, since the delay elements need to be 

redesigned and it is not always possible to shrink the cells. However, smaller technologies can definitely 

enable higher performances to be achieved, at the expense of higher fabrication costs. Modern FPGA 

technologies also enable higher performance values at higher platform costs. FPGA architectures size are 

measured in resources utilization count rather than on area dimensions as in the ASIC scenario. In the 

case of FPGAs, the selected platform can also constrain the type of TDC architectures that can be 

implemented. Regarding the FPGA platforms used during this Thesis, when the term resources is used, 

it will be referring to: the FPGA’s Configurable Logic Blocks (CLB) elements, namely, registers, Carry4 

and Look-Up tables (LUTs); the FPGA’s BRAM blocks; the FPGA’s PLL blocks; and the FPGA DSP blocks. 

The type of resource being used will be enumerated whenever pertinent. 

 

2.2. TDC Architectures 

TDCs are highly dependent on the available resources and/or technology in use. While in ASIC platforms 

there is theoretically no constraint to the implementation of any TDC architecture, FPGA platforms limit 

the range of implementable architectures. Therefore, contrarily to FPGA where architectures share a lot 

of similarities, in ASIC platforms it is often possible to find completely new approaches. In the following 

sections, the TDC architectures are presented and analyzed, divided accordingly to their principle of 

operation. Nevertheless, the differences and nuances between the FPGA-based and ASIC-based TDC 

architectures are presented, whenever the implementation is possible on both platforms. The most 

relevant and distinct FPGA and ASIC architectures are presented from section 2.2.1 to section 2.2.7. 

 

2.2.1. Coarse Counter Architectural Group 

Course counters are TDC implemented using binary-, gray-code or ripple counters, which are incremented 

by a reference clock. The works in [2.17]–[2.19] are examples of coarse counters’ implementation. The 

main advantage of such architectures is the simplicity of the design, its portability and the low resources 

utilization in FPGAs or small area in ASIC. Nevertheless, the achievable resolution is bounded to the 

frequency of the reference clock used. For instance, in order to achieve a resolution equal to 1 

nanosecond, a 1 GHz clock is required. The course counters can be implemented using a free running 

schema, in which the clock is always enabled, and the time event to be measured, usually denoted as 

hit, is responsible for sampling the value in the counter registers. Coarse counters can also be 
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implemented using an enable schema, in which the hit signal is responsible for enabling and disabling 

the counter. The range and resolution of this architecture is given by: 

𝑅𝑎𝑛𝑔𝑒 = 2𝑛, (2.7) 

𝜏 =
1

𝑓𝐶𝐿𝐾
, (2.8) 

where n is the number of bits of the counter register and fCLK is the system clock frequency. 

When multiple bit coarse counters are implemented, the routing of the hit signal for the counter’s registers 

must be carefully planned, regardless of its use as enable or sampling signal. Otherwise errors greater 

than 1 LSB may occur, especially when a binary code schema is used.  

Although the operating frequencies of nowadays FPGAs and ASICs technologies are higher, for example, 

the works in [2.20] and [2.21] reported the use of 500 MHz and in [2.22] a 710 MHz reference clock, 

for resolutions under the nanosecond scale, these architectures are still not suitable. Furthermore, even 

if it was possible to use a high frequency reference clock to achieve picosecond resolutions (a clock higher 

than 10 GHz would be required), it would be harder to secure low skew values between the signals for 

the counter’s registers. The largely enhanced skew effects increase the risk for metastability and counting 

errors. Therefore, the Coarse Counter architecture should only be employed when resolutions of a few 

nanoseconds and high measurement ranges are required. Recently, Wu and Xu proposed a Gray code 

counter without sampling stage [2.23]. This enables the operating frequency of the counter to be 

approximately equal to the cells’ plus routings’ propagation delays. Since the counting schema used is 

the Gray code, only one bit is changing at a time, which eliminates the possibility for incorrect counting 

sequence due to delays mismatch between the counting cells. 

 

2.2.2. Analog TDC 

Analog TDCs are usually built using a Time-to-Analog converter (TAC), followed by an Analog-to-Digital 

Converter (ADC). In these types of TDCs, a capacitor is charged by a fixed current source. The basic 

architecture is depicted in Figure 2.4. The amount of charge stored in the capacitor is proportional to the 

time the capacitor was charged. The final digital value is obtained using an ADC to convert the charge 

value into a digital value. The dynamic range (DR) of this architecture is given by equation (2.9): 
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𝐷𝑅 = 2𝑛 ∗ 𝑇𝐿𝑆𝐵, (2.9) 

where n is the number of bits of the ADC and TLSB is the resolution of the ADC. 

Although resolutions under 50 ps are possible, the use of a capacitor and a controlled current source, 

greatly increase the area and power consumption [2.4]. Moreover, this type of TDCs are highly susceptible 

to temperature drifts. More details on this architecture can be found in literature [2.4], [2.24]. Recently, 

a 50 ps resolution and precision analogue TDC has been implemented in a 110 nm process technology 

by Cossio [2.25]. 

 

Figure 2.4- Analog TDC overview 
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An alternative to achieve resolutions in the range of a few hundreds of picoseconds is the use of TDCs 
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1) Oversampling: this architecture is based on using phased clocks as reference clocks to independent 

counters. The time event to measure is used as the counters’ enable, just like in the case of coarse 

counters architecture. In fact, this approach is identical to the previous one, replicated m times, where 

m is the number of phased clocks used, and consequently the number of independent counters. It is 

important to mention that these phases have to be generated from the same reference clock and ideally, 

equally spaced. To determine the measurement value, equation (2.10) can be used: 

𝑡𝑂𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = (𝑛0 + 𝑛1 + ⋯ + 𝑛𝑛) ∗
𝑇𝐶𝐿𝐾

𝑚
, (2.10) 

where n0 to nm represent the number of counts in each counter. These numbers are added and then 

multiplied by the TDC’s resolution (given by the reference clock period TCLK, divided by the number of 

phases used). 

Resolutions equal to 1 nanosecond have been reported when using this architecture in [2.26]–[2.28], 

[2.31]. The main implementation challenge is related to the routing of the signal to be measured. The 

phase difference between the generated clocks is responsible for defining the clocks resolution. Therefore, 

the signal to be measured must be routed with the minimum skew possible between counters to avoid 

degrading the measurement. Also, as the number of used phases increases, the effect of jitter 

accumulates, degrading the TDC’s performance. Therefore, to avoid phase overlap, special attention 

should be given to the design of the phase generation mechanism. 

2) Phase detection: phase detection architectures sample the event to be timed with multiple phases (see 

Figure 2.5). The output of the sample process is a unique code dependent on which was the phase that 

first detected the event. The resolution (LSB) of these architectures is given by the phase difference 

between the multiple phases. As in the previous case, with the increase of the number of generated 

phases, the performance of the TDC tends to degrade due to the errors associated with the phase 

generation. With the increase of the frequency used as reference clock, and the routing skews, jitter and 

uncertainty of the phase generation, scenarios where the phase m arrives before phase m+1 can occur, 

resulting in bubble errors, which lead to missing codes, jeopardizing the TDC’s performance. Again, the 

phase generator mechanism assumes high relevance and its design must be carefully done when 

targeting sub-nanosecond resolution. A synchronization stage, like the one depicted in Figure 2.5, is also 

needed to assure the creation of a common clock domain allowing the correct sampling of the code 

pattern by the reference clock, before it can be used to determine the instant of arrival of the time event. 
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The synchronization module number of stages and resource utilization increases with the number of 

phases implemented. 

Opposed to what happens in the coarse counters and oversampling architectures, phase clocks based 

on phase detection offer great resolution and linearity but are not suitable for large dynamic ranges. To 

address this issue, it is common to extend the dynamic range of this architecture, complementing it with 

a coarse counter. In this way, the phase detection module just needs to cover the time equivalent to a 

full reference clock period while the coarse counter covers time intervals greater than the reference clock. 

Using the setup depicted in Figure 2.5, this TDC architecture can be described by the following equations: 

𝜏 =
1

𝑁𝑝ℎ𝑎𝑠𝑒𝑠
, (2.11) 

𝑇𝑓𝑖𝑛𝑒 = 𝑇𝐶𝐿𝐾 − (𝑝ℎ𝑎𝑠𝑒 ∗ 𝜏), (2.12) 

𝑇𝐷𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑛 ∗ 𝑇𝐶𝐿𝐾 + 𝑇𝑓𝑖𝑛𝑒, (2.13) 

where phase is the clock phase’s number that sampled the input signal (from 0, for the 0˚ phase clock, 

to m, to the m˚ phase clock), and τ is the resolution given by the phase difference between clocks. 

 

Figure 2.5- Phased Clocks based architecture (adapted from [2.29]) 

Research works, that use this architecture in FPGA platforms, report great linearity values without 
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reported in [2.32], the recent research work by Sano et al. [2.29] reports a 280 picoseconds (LSB) 

resolution with high linearity, being the DNL errors below 0.5 LSB. In [2.33], a precision of 56 picoseconds 

and resolution below 156 picoseconds was achieved, proving the potential of phase detection 

architectures. These results corroborate that high performance TDCs with lower design complexity and 

resource utilization can be achieved using phased detection architectures. Nevertheless, it is important 

to understand that the high linearity is also related to the relatively large LSB size. As the number of 

phases generated increase, the size of the LSB gets smaller and the errors associated with the clock’s 

phase generation and routing paths get more pronounced, thus deteriorating the TDC’s linearity. 

Phase detection interpolation is not a common architecture in ASIC technology. Although it has the 

advantage of being a pure digital architecture which simplifies the design and implementation process. 

The performance achieve by such architectures cannot compete with more sophisticated ones, like DLLs 

and pulse shrinking. Nevertheless, the linearity values reported by phased clocks are usually in the range 

of less than 0.2 LSB, making this architecture very attractive for applications where resolution in the range 

of a few hundreds of picoseconds is required. The resource consumption or area utilization per TDC 

channel is also reduced when compared to other TDC architectures. Since the architecture can be fully 

implemented in a digital flow, this architecture is a good candidate for ASIC migration. For the same 

reason, FPGA and ASIC platforms usually share the same phase detection architectures and issues. The 

main difference between FPGA and ASIC phased clocks architectures is the PLL block, which is already 

included in modern FPGA but, in ASIC platforms, must be designed and implemented, increasing the 

overall TDC architecture complexity. Recently, the work by Wang et al. [2.34] proposed a phased detection 

architecture where, instead of sampling the time event with the phased clocks, it was the phased clocks 

which were sampled by the time event (Figure 2.6). This enables for power savings since the sampling 

process will only occur once per time event. Furthermore, it removes the need of the synchronization 

stage, as presented in Figure 2.5, since the sampling is done in the same clock domain, enabling area 

savings. The TDC was implemented in a 130 nm process technology, reporting a 780 ps resolution, with 

a maximum bin variation of +/- 40 ps, corresponding to a DNL of +/-0.05 LSB. 
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Figure 2.6- ASIC Phased Clocks (Adapted from [2.34]) 
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the time event in order to generate multiple pulses, allowing multiple transitions to be sampled in the 

delay line, which, using of statistical methods, contributes to an increase of the TDCs precision. The 

critical blocks are the pair composed by the delay line and the sample line (Figure 2.8), since these define 

the base resolution of the TDC. The components presented in Figure 2.7 are usually implemented per 

TDL channel. In multiple chains TDCs, the base blocks are replicated for each channel. For a single TDL 

channel, the time interval measurement value can be obtained according to: 

𝑡𝑓𝑖𝑛𝑒 = 𝑛 ∗ 𝜏, (2.14) 

where τ is the propagation delay of each cell element and n is the number of cells traversed by the 

delayed signal. 

 

Figure 2.7- TDL TDC Block Diagram 

 

Figure 2.8- TDL architecture 
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In ASIC-base implementations, these basic delay cells are usually custom designed so that a specific 

propagation delay time is achieved. In FPGA-based implementations, one of the available cell resources 

must be selected. In modern FPGA there are two cells that can potentially be used to implement delay 

lines, the look-up tables (LUTs) or the Carry4 cells. Carry4 cells offer lower propagation delay and have 

dedicated routing paths, which are desired characteristics when designing a TDL TDC and therefore, a 

vast number of reported implementations used these resources as the TDL base step. Nevertheless, there 

are still some implementations of TDLs using LUTs [2.44], [2.52], which were able to achieve interesting 

resolutions. In [2.105], flip-flops were used to implement the TDL steps, using the output of a previous 

flip-flop to clock the next one. Although good linearity has been achieved, the resolution was not as good 

as the one achieved when using Carry resources to implement the TDL step. 

Regardless of the cell used to build the delay chain steps (Carries, LUTs, flip-flops, or custom designed 

cells), when implementing a TDL architecture, the following issues, divided by variation, must be 

addressed. 

1) Single TDL: TDLs are usually designed to cover a time interval equal to the period of a reference clock. 

When larger dynamic range are required, the TDL architecture is paired with coarse counters, otherwise 

a very large number of steps would be required. Since the arrival of the time event to be measured by 

the TDC is asynchronous to the coarse counting mechanism, the TDL and coarse counter must be 

synchronized for proper operation and to avoid metastability. Otherwise, the performed measurement 

may have an error of several coarse counter clock periods. For this reason, a second coarse counter, with 

a clock signal delayed by 180º is usually implemented and the value outputted by the TDL (sampled 

value) is used to identify which counter has the correct value, i.e. the value that is not metastable. A 

metastability error occurs when the hit signal arrives close to the rising edge of the reference clock (used 

to increment the coarse counter). Therefore, if the TDL value sampled is close to zero or to the maximum 

TDL value, there is a chance for metastability on the coarse counter. In these scenarios, the value on the 

second coarse counter, incremented by the 180º delayed clock, is used. When multiple transitions per 

time event are to be measured by the same TDL, the described method does not work [2.106]. In those 

scenarios, a methodology like the one proposed in [2.107] should be adopted. 

Since the resolution of TDLs is attached to the delay element used, statistical methods are usually 

employed to overcome this limitation. In the case of single TDLs, this is done using a Wave-Union (WU) 

launcher, which was first proposed by Wu [2.108]. Research works reporting a 10 ps resolution and 

38 ps precision, using a Lattice FPGA to implement a WU TDL can be found in [2.80] and [2.109]. The 
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same architecture, implemented on Xilinx Virtex-5 [2.110] and Spartan-6 [2.90] FPGAs achieved a 

precision of 32 ps and 14 ps, respectively. 

Process fabrication mismatch in carry cells is responsible for high variations on the propagation delay 

from cell to cell, since basic delay cells with exactly the same propagation delay and characteristics are 

impossible to achieve (either in FPGA or ASIC). These variations jeopardize the average propagation delay 

achievable and degrade the overall TDC linearity. To address the issue, the placement of the delay line 

carry cells must be carefully made. Nevertheless, even with optimal placement, the difference on 

propagation delays is enough to deteriorate the TDC’s linearity. These non-linearity issues must be 

addressed if a high performance TDC is desired. Therefore, calibration mechanisms capable of reducing 

the propagation delay variation throughout the TDL must be implemented. 

Won and Lee [2.14] propose a method to tune the delay line in order to minimize the carry cells 

propagation delay mismatch problem. The method consists in sampling the even and odd steps of the 

TDL in two separated thermometer codes. These thermometer codes are individually converted to binary 

and finally added to give the TDC measured value. The proposed method was evaluated using three 

different FPGA platforms, fabricated in different technologies. The best reported result reached a 10.1 ps 

LSB and a precision under 10 ps. 

With the introduction of Xilinx UltraScale+ architectures, the FPGA base structure changed and with it, 

new possibilities were unlocked to improve the TDL resolution. The UltraScale+ architecture allows the 

capture of both carry and sum results of the same slice. This method enables to theoretically double the 

achievable resolution when compared to the traditional sampling method, since for the same interpolation 

time, two times more steps exist. Liu et al. [2.20] used this feature to implement a TDL with 2.3 ps 

resolution and 3.9 ps precision. 

All the aforementioned methods were combined with calibration. Calibration in FPGA-based TDL 

architectures can be achieved using decimation [2.43], [2.61], [2.65], [2.83] and bin-by-bin calibration 

[2.9], [2.40], [2.45], [2.46], [2.48], [2.53], [2.55], [2.59], [2.67], [2.69]–[2.71], [2.73], [2.82], [2.84], 

[2.85], [2.111], [2.112]. In ASIC-based TDL architectures, the flexibility of creating a custom-designed 

cell, allows for the implementation of delay lines using a Voltage Controlled Oscillator (VCO) schema, as 

depicted in Figure 2.11. 
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Decimation consists in grouping multiple delay cells in a single step. The number of cells per step varies. 

The propagation delay of each step is equal to the sum of the propagation delay of the individual cells 

included in the step. Thus, steps with similar propagation delay can be achieved by grouping different 

numbers of delay cells, resulting on more uniform steps across the interpolation time. Decimation 

increases the delay chain linearity but has a negative impact in the TDC resolution, but neither adds 

processing overhead nor increases the number of resources required [2.21]. 

The bin-by-bin calibration enables the TDC linearity to be improved without degrading its resolution, which 

leads to better measurement precision. It consists in building a calibration table based on the real 

propagation delay of each delay cell used to build the TDL [2.21], [2.35], [2.112]. The real delay of each 

of the delay cells is obtained by performing a code density test and a calibration table is created with the 

accumulated real delay for each delay cell of the TDL. When a value (cell number) is obtained from the 

TDL, it is used as an index to address the calibration table position which contains the calibrated time 

interval value. This technique requires more resources (BRAM block to implement the calibration table) 

and extra processing time (typically one extra clock cycle to access the calibration table), however it has 

no impact on the TDC resolution while improving its linearity. Some research works built these tables 

prior to the implementation or at system start-up, by pre-building a memory with the calibration values 

that will stay the same throughout the TDC operation [2.46], [2.69]. In other research works the values 

presented in the calibration table are dynamically updated, achieving higher precisions since the 

calibration values are regularly updated based on the PVT conditions [2.35], [2.48], [2.111]. Recently, a 

technique to calibrate the TDC cells’ delays and increase its linearity, while consuming less resources 

than the bin-by-bin calibration, was proposed by Chaberski et al. [2.86]. The proposed technique is based 

on the use of dummy cells to control the capacitance load on the different stages of the TDL. 

As the number of stages of a TDL increases two main issues must be target, the linearity and the size of 

the outputted thermometer code. The solution for linearity issues is the implementation of a calibration 

mechanism, which was already discussed. The main problem with large thermometer codes is the 

complexity and the latency introduced by the thermometer-to-binary decode module. Larger TDLs require 

decoders with multiple combinatorial stages, which, depending on the reference clock used, may need 

multiple cycles to finish the conversion. This limits the maximum achievable sampling rate of the TDC, 

i.e. increases its deadtime. 

Finally, when implementing TDLs, a very common issue is the existence of bubble codes, which are the 

same as zero delay cells. The problem is typically originated by the clock skew between the sampling 
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flip-flops [2.21], [2.48]. These bubbles have a negative impact on the decoder stage, since it must be 

capable of correcting the thermometer code before performing the decoding. Therefore, bin realignment 

based on a histogram obtained using the code density test is usually performed. Other possible solution 

is to add a bubble removal stage before the decoding block. Recently, Wang et al. [2.103] proposed the 

use of the number of cells at logic level ‘1’, instead of using a decoding schema which detects the position 

of the last sampled cell in the delay chain. The premise states that even when a bubble exists, sooner or 

later, that supposedly zero delay cell will be sampled. Therefore, the relevant information regarding the 

time event to measure is store in the number of logic ‘1’s in the delay chain rather than the position of 

the last logic ‘1’. Therefore, if a decoding schema that counts the number of ‘1’s is implemented, the 

bubble occurrences can be ignored. 

2) Multi-chain TDL: Several research works have focused on implementing multi-chain TDLs to improve 

the overall performance, resolution and precision of the TDC channel [2.35], [2.74], [2.76]–[2.78], 

[2.87], [2.92], [2.113], [2.114]. The principle is based on the small discrepancies between multiple TDLs 

due to process variations (Figure 2.9). If two TDLs are measuring the same time event (hit) the delays of 

each bin of the TDLs will not be perfectly match. Therefore, the resolution of the TDC channel can be 

effectively divided by the number of TDLs measuring the same signal. This also reduces the effect that 

larger bins (usually called ultra-wide bins) have on the measurement, increasing the overall TDC linearity. 

The results can be further improved by increasing the number of chains used to average a single signal. 

However, at a higher resource cost, since each TDL usually requires a considerable amount of resources. 

Moreover, when implementing multiple TDLs, the routing of the time event signal must be done in a way 

that the offset between channels is minimized. 

3) Hybrid TDL: As aforementioned, the linearity of a TDL deteriorates with the increase of the number of 

delay stages that need to be implemented. To reduce the TDL length, a recent trend combines phased 

clock architectures with TDL architectures [2.8], [2.9], [2.63], [2.97], [2.115], [2.116]. In such 

architectures (Figure 2.10), the first stage measurement is done by identifying which was the first phase 

to detect the time event. A fine measurement is done by a TDL that only covers a time interval between 

two clock phases rather than the entire reference clock period. In [2.9], Szplet et al. reported a resolution 

of 1.9 ps using this architecture. In this topology, the routing should be done to minimize the skew 

between clocks since multiple clocks will be sampling the same TDL. Otherwise, the TDL behavior will be 

dependent on the sampling phase. 
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Figure 2.9- Multi-Chain TDL architecture 

 

Figure 2.10- Hybrid TDL architecture 

Delay Line m

Delay Line 1

Delay Line 0

τ0 

Q

Q
SET

CLR

D

τ1 τn

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

...τ2

Q

Q
SET

CLR

D

...

Start

Stop

Q0,0 Q0,1 Q0,2 Q0,n

Q1,0 Q1,1 Q1,2 Q1,n

Qm,0 Qm,1 Qm,2 Qm,n

1 2 3 4 n

2 4 5 6 9 2n

1 2 3 5 7 nTDL0

TDL1

TDLe 1210 1187

4 6

3 2n-1

Q0,0 Q0,1 Q0,2 Q0,3 Q0,4 Q0,5 Q0,6 Q0,n

Fine Stage Measurement

Fine Stage Interpolator

First Stage Interpolator

Second Stage Interpolator

Phase Generator (PLL)

0° 90° 180° 270° 

Stop

Second Stage Interpolator

Decode

Decode

Coarse Counter

τ 

Start

0° Phase Synchronizer

Q

Q
SET

CLR

D

E Q

Q
SET

CLR

D

E

90° Phase Synchronizer

180° Phase Synchronizer

270° Phase Synchronizer

To Decoder

Stop

Start

0° 

90° 

180° 

270° 

τ0 

Q

Q
SET

CLR

D

τ1 τn

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

...τ2

Q

Q
SET

CLR

D

...

Start

Stop

q0 q1 q2 qn

To Decoder

Reference Clock



2.Time-based Readout Circuits 

42 

Delay-Locked-Loops (DLL) 

As mentioned in the previous sections, DLL architectures share similarities with TDLs regarding its based 

structure. The main differences are in the type of cells used and the auxiliary circuits required to sustain 

a stable oscillation, which automatically calibrates and shields the delay line against PVT variations. Apart 

from the TDC, for proper calibration of the oscillation frequency of the DLL, a phase detector and a charge 

pump, or a PLL, must be implemented to control the supply voltage of the cells used in the delay chain 

(see Figure 2.11 for a DLL architecture overview). The drawback is the typical high frequency operation 

of such architectures which can reach several hundreds of MHz [2.1], [2.117]–[2.119], resulting in an 

increase in the power consumption and the need for designing custom cells and circuitry which increases 

system’s complexity. 

 

Figure 2.11- General DDL architecture (Single Stage) 
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where t is the time interval measured, Ncc is the number of counts on the cycle counter, TCLK is the DLL 

oscillation period, Nf is the fine value sampled in the DLL, and τ is the DLL resolution, given by equation 

(2.16) (ND is the total number of delay elements used to build the DLL). 

𝜏 =
𝑇𝐶𝐿𝐾

2𝑁𝐷
, (2.16) 

The range of resolutions achievable with this architecture is highly dependent on the design of the delay 

cell and the technology used. In [2.3] an 8.87 ps resolution with 9.8 ps precision was reported. The work 

by Perktold and Chritiansen [2.118] reported a 5 ps resolution with 3 ps precision, in a 130 nm 

technology, by adding a calibration buffer stage at the output of each step of the DLL. The buffers were 

used subdivide each step in four bins, enabling the reduction of the LSB size. This subdivision, together 

with the PVT compensation, enabled high resolution and precision to be achieved. 

Recently, a two-stage DLL TDC, with a similar structure to the one presented in [2.118] (see Figure 2.12), 

but using resistive interpolation to subdivide the DLL steps to lower sizes was presented [2.1]. The 

research work reported a 9.3 ps LSB resolution (after calibration) and a 4 ps precision in a 180 nm 

process technology. Although good resolution and non-linearity values lower than one LSB for both DNL 

and INL were achieved, the architecture requires the implementation of a PLL for generating an 800 MHz 

clock and an external reference clock of 50, 100, or 200 MHz to operate. 

 

Figure 2.12- Two-Stage DDL architecture 
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A common practice for ASIC-based TDCs is the use of time amplifiers as the input stage for a TDC channel 
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FPGA platforms. This enables to achieve lower resolutions since the effective resolution will be the LSB 

of the TDC divided by the amplification factor [2.120]. A resolution of 980 fs in a 65 nm technology have 

been reported in [2.120]. Molaei and Hajsadeghi [2.121] also implemented a TA TDC, achieving a 5.3 

picoseconds precision in a 180 nm process technology. 

 

2.2.6. Differential Delay Lines 

An alternative to improve TDC resolution under the intrinsic propagation delay of a cell is to adopt a 

differential approach. These types of architectures have a resolution equal to the difference between the 

delay step of two elements. This is obtained by, for example, delaying both the time event to be measured 

using a TDL and delaying the clock signal for the registers that are sampling the TDL (usually called 2D 

TDL or Vernier TDL). This way, the resolution is given by the difference between the cells used in the TDL 

and the cells used to delay the clock signal (see Figure 2.13 where the resolution of the TDC is given by 

τ1-τ2). TDCs based on the Vernier principle can also be considered as an interpolative TDC, similar to 

the TDL and DLL architectures. 

Nevertheless, since the resolution of the TDC is given not by a single delay element, but rather by the 

difference between two interpolative stages, these architectures were considered as differential, according 

to the taxonomy proposed in [2.122]. Another approach using two ring oscillators with slightly different 

frequencies could also be adopted, as presented in [2.123] and depicted in Figure 2.16. 

 

Figure 2.13- Differential Delay line Architecture 
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1) 2D TDL: On a 2D TDL, depicted in Figure 2.11, the resolution of the TDC is calculated according to 

equations (2.17) and (2.18). During implementation it must be guaranteed that the propagation delay of 

the cells used to build the clock delay chain is lower than the propagation delay of the cells used in the 

hit delay chain. Otherwise, the clock signal will never be able to catch up with the hit signal and the TDC 

will always return the maximum value. Another issue with this architecture is the length of the delay 

chains. As in the case of TDLs, the longer the chain is, the higher will be the error due to non-linearities. 

Furthermore, because it must also be guaranteed that an entire reference clock is covered by the delay 

line, and because the size of the step in 2D TDLs is lower than in simple TDLs, the delay chains will be 

longer. This requires more resources and decreases the TDCs precision due to the accumulation of non-

linearity errors across the chains. 

𝜏 = 𝜏1 − 𝜏2, (2.17) 

𝑡𝑓𝑖𝑛𝑒 = 𝑛 ∗ 𝜏, (2.18) 

For FPGA implementation, the choice for different cells is limited and therefore, when implementing 2D 

TDLs, the routing is used to obtain chains with slightly different delays steps. Therefore, getting a uniform 

delay difference across the two delay chains is a demanding process, hard to replicate. For these reasons, 

regarding differential TDCs in FPGA platforms, the ring oscillators are often more popular due to its 

simpler implementation. On the other hand, in ASIC implementation, it is possible to design different 

delay cells, achieving better resolutions. The research works in [2.124] and [2.125] reported a 30 ps and 

5 ps LSB resolution, respectively. 

2) Ring Oscillators: Ring oscillator architectures are usually implemented using TDLs in a loop schema 

[2.112]. Because the parameter responsible for defining the TDC resolution is the difference between the 

two ring oscillators, the cells’ delay mismatch issue is solved [2.112] (see Figure 2.16 and equations 

(2.19) to (2.22)). The main challenge is to obtain a high accurate and stable oscillation period in order to 

achieve high performance [2.123]. Two different implementations for ring oscillators TDC were proposed 

over the last few years for FPGA platforms [2.123], [2.126]. The first one is based on two counters 

incremented each by one oscillator and a phase detector which samples the counters when the phases 

of both oscillators align [2.123] (see Figure 2.14). The values on the counters is then added and multiplied 

by the TDC resolution. The measurement value can be calculated according to equation (2.20): 

𝜏 = 𝑇1 − 𝑇2,  (2.19) 
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𝑇𝑟𝑖𝑛𝑔𝑂𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟𝑇𝐷𝐶 = (𝑛1 − 1) ∗ 𝑇1 − (𝑛2 − 1) ∗ 𝑇2, (2.20) 

𝑡𝑚𝑎𝑥𝐶𝑜𝑛𝑣 =
𝑇1∗𝑇2

𝜏
, (2.21) 

being n1 the slow and n2 the fast counters’ value respectively. Accordingly, T1 and T2 are the slow and fast 

oscillators’ periods. The waveform diagram on Figure 2.15 depicts a typical measurement process for 

this type of architecture. The main drawback of the architecture is its long conversion time that can reach 

several hundreds of nanoseconds. 

 

Figure 2.14- Ring Oscillator with two independent counters 

 

Figure 2.15- Different frequency oscillators Vernier Architecture waveform 
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being nfine the number of counts in the counter until the fast oscillator is able to overtake the slow one, 

and τ the resolution of the TDC (given by equation (2.19)) [2.126] (see Figure 2.16). 

 

Figure 2.16- Ring Oscillator with single counter 

The main drawback of these architectures is the occurrence of pulse shrinking/stretching phenomenon 

that may happen when implementing ring oscillators that propagate a pulse. If this is not addressed the 

oscillation behavior will cease. Therefore, a pulse reshaping mechanism, like the one presented in [2.16] 

and [2.112], needs to be implemented. 

Ring oscillators architectures are also known for long measurement dead times. The time required to 

finalize a conversion can be calculated using equation (2.21). Based on it, depending on the time interval 

to be measured, the conversion time can reach several microseconds, which limits both the throughput 

of the TDC and the acceptable input rate. It is possible to decrease the conversion time by reducing the 

resolution of the TDC or by increasing the oscillation frequency of the ring oscillators. Neither are good 

solutions since high resolution is usually desirable and maintaining a stable oscillation behavior at high 

frequencies is not a trivial task. 

Ring oscillators topologies in ASIC share the same structure as the ones implemented in FPGA platforms. 

As most of the ASIC architectures that can be implemented in FPGA, the difference resides on the type 

of cell used to build the module responsible for defining the TDC resolution, in the case of the ring 

oscillators. Nguyen et al. [2.127] presented a ring oscillator TDC with 377 ps LSB resolution and 0.8 LSB 

precision in a 0.18 µm technology. 
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2.2.7. Pulse Shrinking Architecture 

The pulse shrinking phenomenon, cause by the mismatch between the rise and fall times for the cells 

used in a delay chain [2.128], although being an undesirable effect when trying to propagate a pulse in 

a ring oscillator, can be used to implement a high resolution TDC. Basically, if a counter is being 

incremented at each ring oscillator cycle, and if a pulse is propagating and being shrunk every cycle, the 

number of counted cycles until the oscillation behavior ceases will be proportional to the size of the pulse. 

Therefore, the resolution is given by the so-called shrinking factor, i.e. the amount the pulse that is being 

propagated is shrunk every cycle. This shrinking factor is given by the sum of the difference between the 

rise and fall times of every cell in the looped delay line that is implementing the ring oscillator. These 

TDCs, although achieving high resolution values, have a high measurement deadtime that is proportional 

to the pulse size that is being measured. Furthermore, there is an offset associated to the measurement 

since near the end of the measured, although the pulse is still circulating in the ring, it no longer has the 

capability of triggering the loop counters clock [2.128]. The measured value can be calculated according 

to equation (2.23): 

𝑡𝑖𝑛 = 𝑛 ∗ 𝑅 − 𝑡𝑜𝑓𝑓𝑠𝑒𝑡, (2.23) 

being R the pulse shrinking factor, i.e. the resolution, and toffset the offset size of the pulse circulating on 

the loop that can no longer trigger the counter’s clock (this value has to be obtained by a time consuming 

experimental procedure or estimated by exhaustive simulations). The main advantage of this architecture 

is its non-linearity which is bellow half of the LSB. 

The shrinking factor of a delay cell can be adjusted by controlling its power supply. Therefore, in FPGA 

platforms, implementing pulse shrinking architectures is hard since there is no direct mean to control the 

shrink factor of the ring oscillator. Nevertheless, the work from Chen et al. [2.128] reported a resolution 

in the range of 110-115 picoseconds with ±1 LSB INL, using a Xilinx XC3S200An FPGA. The authors also 

proposed a schema to address the offset issue, eliminating the time-consuming process of determining 

its value through experimental measurements. The proposals to the pulse shrinking architecture changes 

are depicted in Figure 2.17. Figure 2.18 depicts the waveform diagram of the architecture with the offset 

canceler mechanism. 

Although offering good linearity and relatively high resolutions, the extra complexity of implementation 

makes this architecture less popular when developing for FPGA platforms since TDLs and Phased clocks 

can offer the same or even better performances with lower design complexity. In fact, FPGA TDLs have 
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proven to be capable of reaching performance levels similar to the ones achieved by some ASIC pulse 

shrinking solutions [2.129]–[2.131]. 

 

Figure 2.17- Offset canceller pulse-shrinking architecture 

 

Figure 2.18- Offset canceller pulse-shrinking waveforms 

Though pulse shrinking architectures are not suitable for FPGA implementation, these are good solutions 

when developing for ASIC due to the finer grain control that a custom design cell can has over the 

shrinking factor, precisely controlling the TDC’s resolution. Moreover, the linearity of the TDC is just 

related with the shrinking factor and not to the individual cells’ propagation delays, enabling high 

performances to be attained. 

 

2.2.8. Summary 

Table 2.1 presents a summary on the recent FPGA-based and ASIC-based TDCs, grouped according to 

the Taxonomy proposed on the journal article J1 [2.122]. Note that a direct comparison between ASIC 

Cyclic Delay Line

Time Subtractor

Time Adder

Pulse-Shrinking 
Unit

...
reset

Delay Line

t1

t2
PWD

Counter
EOC

tou t

tout’
ntp

t1

t2

tin

t in

tp-nR
tp-R

. . .

tp-(n-1)R

tdtout

tp

tp-2R

tcycle toffset. . .

EOC

tout’
. . . . . .

. . .

. . . . . .

td



2.Time-based Readout Circuits 

50 

and FPGA based TDCs cannot be made. Although they may share some applications, usually the goal of 

these two implementations are not the same. Nevertheless, by the analysis of Table 2.1 it is possible to 

verify that FPGA-based TDCs’ performances are closing the gap to the ASIC-based ones. 

 

2.3. Commercial Devices 

Apart from the research that has been done in TDC, it is also important to analyze the available 

commercial devices. The performance values reported help on understanding the current state of the 

industry. Table 2.2 presents the most relevant TDC devices available. 

 

2.4. Conclusion 

By analyzing the state-of-the-art and the TDC’s architectures evolution throughout recent years a set of 

conclusions can be drawn: 

1) First, as technology scales down and FPGA platforms improve, architectures with higher resolutions 

are expected due to reduction on the cells’ propagation delays. However, this will also contribute to 

enhance the negative effect of PVT variations on the linearity of the TDC. Therefore, calibration 

mechanisms and methods to reduce PVT variations will assume higher relevance. 

2) Second, nowadays ToF applications are requiring multiple TDC channels. For example, in LiDAR 

applications, capturing larger parts of the scene in a single shot process by having multiple receivers, 

each with a TDC channel associated, has the advantage of saving time that can be used by the scanning 

and image processing algorithms. The alternative solution is to sweep a scene point-by-point, which is a 

much slower process and puts hard time constraints on the image processing algorithms, if a rate of 

10-20 frames per second is required. Thus, lower hardware resources TDC architectures are desirable in 

order to keep both costs and area utilization low, in order to increase systems integration. In FPGA 

platforms, some research works have already reported 128-channels [2.35] and 256-channels [2.37], 

[2.38] implementations. However, these works used large FPGA platforms and the resource utilization 

was on its limits. Recently the research work by Wu and Xu [2.23] proposed an interesting low resource 

architecture with good linearity and stability. This architecture seems promising for high channel count 

using low area, low resources platforms and states the need for more architectures focusing on other 

aspects of a TDC rather than its resolution. Therefore, architectures capable of reducing the length of the 
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delay chains without compromising system resolution will become more popular and will be the focus of 

future research works [2.61], [2.97]. 

3) Third, nowadays market is rapidly changing, and time-to-market constraints are tighter than ever. As 

stated in [2.4], porting an architecture from one application to another is not an easy task, and requires 

lengthy manual customizations. Therefore, research regarding reconfigurable and customizable TDCs 

architectures, is required. Also, tools that can help the designer generate the base core of the TDC would 

accelerate the development process and contribute for system portability and reutilization. A recent 

research work [2.55] has addressed this issue with promising results. Due to its characteristics, phased 

clocks architectures are promising candidates for exploring automated generation of TDCs. Automatically 

generated TDLs offer an extra challenge due to the non-linearity of the delay-chain. Nevertheless, some 

research works [2.14], [2.61] have explored a multichain architecture which improves the overall TDL’s 

linearity before calibration. These works are good use cases to test automatic TDC generation tools. With 

nowadays integration of microprocessors on most FPGA, systems that allow for programmable logic 

reconfiguration could also be used to achieve automatically generated TDCs. An algorithm to analyze the 

automatically generated TDL’s non-linearity could be implemented on the microprocessor. Depending on 

the results from the histograms, the chain’s hardware could be rearranged automatically in order to 

improve its linearity and reduce missing codes. In [2.162], a framework is proposed to dynamically control 

the FPGAs routing with precision. The use of such framework in TDC designs could contribute to achieve 

high linearity architectures in a simplified way. 

4) Fourth, in order to comply with modern application requirements, higher sampling rates architectures 

are required. Usually TDC architectures based on TDLs or DLL report sampling rates equal to the 

frequency of the reference clock being used. An alternative to reduce other architectures dead time, such 

as pulse shrinking and ring oscillators, is to have multiple TDC channels operating in an interleaved 

schema. However, this solution has a negative impact on resources utilization. Therefore, for applications 

with high input event rates, these architectures may not present the best solution, being phased clocks 

and delay lines more appropriated. 

5) Fifth, building on the literature analysis, it is expected that applications’ requirements will continue to 

drive TDCs evolution. FPGA-based TDCs have recently reported performance values that can compete 

with the ones achieved by ASIC TDCs. Therefore, it is expected that FPGA-based TDC would grow in 

popularity and start to be included on commercial products, rather than just being used in research field 

experiments or as prototype platforms. A full automated implementation and migration process for FPGA-
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based and ASIC-based TDC will certainly increase its popularity, reduce the production cost and ease the 

use of these systems in a broader range of applications. 

The state-of-the-art clearly shows that TDL are the most explored architecture when FPGA platforms are 

used. On the other hand, in ASIC-based TDCs there is no dominant architecture. Nevertheless, research 

works reporting the used of DLL, with or without a second stage interpolator to achieve resolutions under 

the values of the cells’ propagation delay, are the most popular architectures. In FPGA-based TDCs, 

linearity issues are often addressed by introducing a calibration stage to the TDC architecture, either by 

doing decimation or bin-by-bin calibration. In ASIC-based TDCs, the shielding against PVT variations is 

achieved through carefully design the delay element and by a DLL schema, locked to a fixed frequency 

that dynamically adjusts the power supply of the cells. 

With the evolution on automotive technology and the appearance of LiDAR sensor for autonomous driving 

scenarios, it is predictable that TDCs will become more popular, due to their performance on ToF 

measurements. Although requiring high performance systems, automotive applications have other tighter 

requirements such as area and power consumption. Therefore, architectures that can combine all these 

requirements will have the upper hand. In FPGA implementations, this trend can already be identified. 

The research work by Dinh et al. [2.41] proposes a mixture between a ring oscillator and a second stage 

interpolator based on a TDL architecture, that enables to reduce hardware resources utilization while 

maintaining high resolutions. A phased clock architecture with a TDL to cover the time interval in-between 

phases, proposed in [2.9], is also an indicative to this trend in FPGA platforms. 

Although FPGA constraint the TDC design by having the available resources pre-defined, the portability 

between different FPGAs is greatly enhanced when compare to the ASIC scenario where, if a TDC 

architecture needs to be ported to another technology, the delay cells must be completely redesigned to 

agree with the new technology rules. In FPGA-based implementation, it is only necessary to change the 

name of the cell used to create the delay chain in the HDL (Hardware Description Language) file. 

Furthermore, being capable of testing an architecture in FPGA and directly migrate it to ASIC improves 

system testability and reduce the risks associated to the porting. Therefore, research on TDC architectures 

and technology migration processes would definitely prove advantageous on the design of TDCs for new 

ToF sensors. 

The research on migration of digital FPGA-based TDC architectures to ASIC platforms is scarce, being the 

research work by Wang et al. [2.34] one of the few architecture proposals that could be directly migrated 
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from FPGA, since the TDC channel was developed using HDL. Thus, digital TDC architectures were 

studied during this Thesis’ research to understand which architecture could be directly migrated to ASIC. 

Maximum resolution, high sampling rate, power consumption and size were also considered when 

selecting the TDC architectures, since these requirements are extremely important for LiDAR sensors, 

which require multiple TDC channels. The selected architectures and design decisions are introduced 

and discussed in Chapter 3. 
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Table 2.1 - TDC Literature Review Summary 

Ref.-Year Technology/ 

Device 

LSB Precision DNL INL Measurement 

Range 

Dead 

time 

Power Nutt 

Method 

Resources 

Unit  ps ps LSB LSB ns ns mW  logic units 

ASIC TDCs 

[2.3]-12 350nm 8.88 9.8 [-0.9:0.65] [-2.5:0.84] 4.5 - 85 √ 8.88** 

[2.124]-00 700nm 30 20 - ±1 3.84 3.84 - X 9.92** 

[2.132]-06 350nm 105 - - ±0.05 - - 150 X 8.63** 

[2.133]-09 180nm 41 20 - - 3.4E+03 - 86 √ 9** 

[2.134]-09 180nm 126 

368 

- <0.5 <0.2 [20:4.2E+06] 

[20:12.3E+06] 

- 1.3 

1.7 

√ 0.044** 

[2.135]-14 65nm 1.12 0.773 0.6 1.7 0.578 4 15.4 X 0.14** 

[2.119]-14 350nm 244 - ±0.5 <0.2 2E+03 - 5 √ 0.35** 

[2.125]-15 130nm 5 - 0.63 1.47 6.4E+03 100 1.15 √ 0.7** 

[2.136]-15 350nm 0.61 4.2 - ±7.4 327E+03 1.25E+03 80 X 0.61** 

[2.137]-15 65nm 2.64 0.76 - - 1.8 6.7 0.0035 X 0.03** 

[2.1]-16 180nm 15 4 ±0.31 ±0.67 1.28E+03 20 45 X 0.196** 

[2.25]-17 110nm 50 50 - - - 17E+03 10 X - 
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[2.127]-18 180nm 377 362 1.41 2.31 355 1.5E+03 0.65 X 0.028** 

[2.138]-18 65nm 0.45 0.765 0.65 1.25 0.2 20 12.6 X 0.089** 

[2.129]-14 350nm 40 2.2 - ±0.6 22 1E+08 0.0016 X 0.025** 

[2.118]-14 130nm 5 2.5 [-0.8:0.6] [-1.2:0.4] - - 43 X - 

[2.117]-15 130nm 77 - - - 313.6 330 0.004 X - 

[2.139]-16 180nm 15 20 ±0.31 ±0.67 1,28E+03 <20 45 X 0.195** 

[2.140]-17 180nm 586 - [-0.18:0.05] - 6.8E+06 - 0.3155 X 0.026** 

[2.141]-17 350nm 320 233 ±0.68 [-1.23:1.19] 2,55E+03 - 10.9 X 0.152 

[2.34]-18 130nm 781 300 ±0.05 ±0.05 - - 6.5 X - 

[2.131]-19 180nm 2 1.44 1.5 4.2 130 303 18 √ 0.08** 

[2.121]-19 180nm 5.3  0.9 2.8 - 34 1.1 X 0.05** 

FPGA-based TDCs 

Phased Clocks TDCs 

[2.33]-14 Artix-7 156 56 ±0.32 ±1 - - - X 347 

[2.28]-14 Virtex-5 625 255 [-0.06:0.07] [-0.07:0.07] 640 - - X 436 

[2.142]-15 Spartan-6 1000 2600 [0.13:0.52] 0.39 >2E+07 - - √ - 

[2.38]-16 Kintex-7 89.3 56.2 [0.44:0.87] [0.44:0.82] - 4.3 - √ - 

[2.79]-16 Stratix IV 2.5 15.91 [-1.9:1.66] [-3.79:6.53] - - - X - 
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[2.143]-16 Kintex-7 280 - ±0.4 <0.05 3,7E+04 6.25 - √ - 

[2.27]-17 Spartan-6 1000 - - - 4,096E+03 32 - √ - 

[2.19]-17 Cyclone III 1190 - - - 1,95E+03 4.76 - X - 

[2.144]-17 Kintex-7 780 250 ±0.3 - 1E+05 - - √ - 

[2.145]-17 Artix-7 400 165 <0.3 <0.3 2,1E+05 0 - √ - 

[2.113]-17 Stratix IV 2.5 6.72 [-0.56:0.46] [-2.98:3.23] 16.5 19.75 212 X 35675 

[2.29]-17 Kintex-7 - 280 [0.13:0.31] - 3,7E+04 - 20 √ 1303 

[2.146]-18 Zynq-7000 138 73.6 - - 1.45E+06 - - X - 

TDL TDCs 

[2.108]-08 Cyclone II 30 25 - - - 5 - X - 

[2.147]-09 Cyclone II 20.1 50 - - - 0 - √ - 

[2.148]-11 Virtex-6 9.8 14.24 [-1:1.5] [-2.25:1.61] 1,0E+07 3.3 - √ - 

[2.149]-12 Virtex-5 30 15 [-1:3] ±4 - 30 - √ - 

[2.150]-13 Virtex-6 10 19.6 ±2 ±2.5 1,0E+05 3.3 - √ - 

[2.115]-13 Spartan-6 1.14 6 - 19.36 1,0E+10 2000 750 √ 13.44** 

[2.151]-13 Virtex-5 50 29 [-0.47:0.62] [-0.87:0.68] - - - X - 

[2.152]-13 Actel 
A3PE15000 

42 16.4 [-1:0.9] [-1:3.5] 6,553E+05 100 - √ - 

[2.114]-14 Spartan-6 1 6 [-1:2.91] [-14.1:15.7] 4,28E-01 3 - X - 
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[2.153]-14 Virtex-5 - 16.3 [-0.9:3] [-1.5:5] 2.86 0.15 - X - 

[2.91]-14 Kintex-7 22.7 85.7 <3 <4 5,24E+03 30 - √ - 

[2.63]-14 Spartan-3 45 150 - - 1,0E+09 - - √ - 

[2.49]-15 Virtex-4 120 65 0.04 0.017 8,0E+06 2.5 - X - 

[2.154]-15 Virtex-6 347 18 - [-0.12:0.11] - 5 2.7 X - 

[2.97]-15 Spartan-3E 30 - - - - - - √ - 

[2.39]-15 Virtex-6 23.9 24 [-1:3] ±3 >1E+09 30 - √ - 

[2.104]-15 Kintex-7 8.6 20 - - 1E+10 200 <5000 √ - 

[2.87]-15 Virtex-6 1.7 4.2 [-1:4] [-9.8:6.2] 6.25 - - √ - 

[2.31]-15 Virtex-5 38 15 [-1:1.4] - - 10 - √ - 

[2.35]-15 Kintex-7 8.7 - [0:4.6] - 360 1.47 - √ - 

[2.75]-15 Kintex-7 17.6 15 [-1:0.8] ±0.8 - - - √ - 

[2.155]-16 Virtex-4 20.5 7.2 <0.25 <0.25 - - - X - 

[2.21]-16 Kintex-7 
UltraScale 

3.29 4.2 [0:4] [-1.5:1.9] 440 4 - √ - 

[2.20]-16 Kintex-7 
UltraScale 

2.3 3.9 - - 440 4 - √ - 

[2.78]-16 Kintex-7 1.28 3.1 7 - 20 - - √ - 

[2.80]-16 Lattice  10 38 [-1:2.7] [-0.5:9] 1,62E+14 - - √ - 
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ECP3-150 

[2.14]-16 Kintex7 

Virtex-6 

Spartan-6 

10.6 

10.1 

16.7 

8.13 

9.82 

12.75 

[-1:1.45] 

[-1:1.18] 

[-1:1.22] 

[-1.23:4.3] 

[-3.03:2.46] 

[-0.7:2.54] 

- 5 

5 

5 

- √ 2218 

2218 

1048 

[2.9]-16 Kintex-7 1.9 4.5 [-1:4.2] [-12:5.8] 2,62E+14 87.7 1550 √ 47596 

[2.156]-16 Kintex-7 23 11 [-1:2.9] [-1:4.73] 8,0E+09 - - √ - 

[2.82]-16 Virtex-6 10 12.83 [-1:1.91] [-2.2:3.93] 20 - - √ - 

[2.83]-16 Spartan-6 - 25 - - 4.5 <100 - √ - 

[2.92]-16 Virtex-5 5.8 20 - - 45*109 - - √ - 

[2.42]-16 Zynq-7020 68 - ±0.7 [-0.6:0.5] 420 17 - √ 3470 

[2.43]-16 Spartan-6 80 80 <0.5 <0.5 2.5 - - X - 

[2.51]-16 Artix-7 40 - - - 640 45 - √ - 

[2.58]-16 Virtex-5 10 15 - - 1,07E+10 - - X 256* 

[2.157]-17 Virtex-5 7.4 6.8 ±0.74 ±1.52 5,07E+11 - 1113 X 3372 

[2.98]-17 Virtex-7 1.15 3.5 [-0.98:3.5] [-5.9:3.1] 12 8 - √ 19666 

[2.84]-17 Artix-7 33 12.86 ±0.6 ±0.8 - 10 - √ 1056 

[2.158]-17 Virtex-5 60 - [-0.66:0.65] [-0.54:0.24] - - - X - 

[2.77]-17 Zynq-7000 5 5.8 [0:3.4] - 50 2.63 - √ 8832 
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[2.74]-17 Kintex-7 2.45 3.9 [-1:5.5] 18.8 1,183E+05 3.6 821 √ 8983 

[2.45]-17 Virtex-7 10.5 5.11 [-0.38:0.87] [-1.23:1.02] - - - √ - 

[2.69]-17 Spartan-6 1.95 21.5 - - 2.14E+09 8 - √ - 

[2.81]-18 Spartan-6 25.6 37 [-0.9:1.23] [-0.43:2.96] - 8.69 131 √ 415* 

[2.65]-18 Kintex-7 3.17 4.3 4.4 [-1.7:2.1] 50 - - √ - 

[2.41]-18 Spartan-6 19 20 - - 3 - - X - 

[2.48]-18 Cyclone IV 45 18 [-0.5:0.13] [-0.48:0.37] 7.5 13.3 - √ - 

[2.53]-18 Spartan-6 15 21 - - 4.18E+06 8 - √ - 

[2.67]-18 Actel 
APA1000 

550 180 ±0.2 [-0.37:0.2] 6,4E+03 - - √ - 

Differential TDCs 

[2.159]-15 Spartan-3AN 23 - [-0.5:0.43] - - - - X - 

[2.15]-15 Actel 
SmartFusion 

63.3 61.7 [-0.55:0.28] [-0.72:0.63] 5 1410 - X - 

[2.16]-17 Stratix III 31 35 [-
0.08:0.073] 

±0.09 - 256 - √ 423 

[2.126]-17 Stratix III 20 35 ±1 ±1 - - - √ - 

[2.61]-18 Virtex-7 

Xilinx 
UltraScale  

10.5 

5 

14.59 

7.8 

[-0.05:0.08] 

[-0.12:0.11] 

[-0.09:0.11] 

[-0.15:0.48] 

- - - √ 377 

19794 
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Pulse Shrinking TDCs 

[2.10]-10 Spartan-3 42 56 [-0.98:0.5] [-4.17:3.5] 11.5 710 - X - 

[2.160]-14 Virtex-5 4.56 - - - - - - X - 

[2.128]-16 Spartan-3AN - 115 - ±1 15 - - X  

[2.161]-18 Actel 
SmartFusion 

8.5 42.4 0.36 0.91 10 1042 - √ - 

*-number of slices (for a TDL each slice usually has 8 logic units used in Xilinx FPGAs); **-units in mm2 

 

Table 2.2- TDCs Commercial Devices Summary 

Parameter Product 
Name 

Resolution 
(ps) 

Precision 
(ps) 

Range #channels System Clock 

(MHz) 

Readout rate Interface Reference 

vendor          

Texas 
Instruments 

TDC7201 55 35 Mode1:12 ns - 2 us 

Mode2:250 ns - 8 ms 

2 16 - SPI http://www.ti.com/product/TDC7
201#features 

AMS AS6500 - 20 0 s - 16 s 4 2-12.5 1.5 
MSamples/s 

SPI https://ams.com/as6500 

AS6501 - 10 0 s - 16 s 2 2-12.5 70 MSamples/s LVDS and SPI https://ams.com/as6501 

TDC-GPX - 10 9.8 us 8 40 40 MSamples/s 
(200 M peak) 

28-bit parallel https://ams.com/tdc-
gpx#tab/features 

http://www.ti.com/product/TDC7201#features
http://www.ti.com/product/TDC7201#features
https://ams.com/as6500
https://ams.com/as6501
https://ams.com/tdc-gpx#tab/features
https://ams.com/tdc-gpx#tab/features
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TDC-GPX2 - 10 0 s - 16 s 4 2-12.5 35 MSamples/s 
(70 M peak) 

Serial LVDS and 
SPI 

https://ams.com/tdc-gpx2 

Maxim 
integrated* 

MAX35101/ 
MAX35102/ 
MAX35103 

- 20 8 ms 2 - - SPI https://www.maximintegrated.com
/en/products/industries/metering-
energy-
measurement/MAX35101.html/ 

Cronologic TimeTagger
4 

500 - 8 ms 4 - 48 MHits/s PCIe 1.1 https://www.cronologic.de/time_
measurement/timetag/timetagger
42g/ 

HPTDC 25 to 
12,800 

 419 us 8 78.125 4 MHits/s PCIe 2.2 https://www.cronologic.de/time_
measurement/tdc/hptdc/ 

xTDC4 13 - 218 us 

(14 ms extended) 

4 - 48 MHits/s PCIe 1.1 https://www.cronologic.de/time_
measurement/tdc/xtdc4/ 

*for ultrasonic heat meters and flow meters markets 

https://ams.com/tdc-gpx2
https://www.maximintegrated.com/en/products/industries/metering-energy-measurement/MAX35101.html/
https://www.maximintegrated.com/en/products/industries/metering-energy-measurement/MAX35101.html/
https://www.maximintegrated.com/en/products/industries/metering-energy-measurement/MAX35101.html/
https://www.maximintegrated.com/en/products/industries/metering-energy-measurement/MAX35101.html/
https://www.cronologic.de/time_measurement/timetag/timetagger42g/
https://www.cronologic.de/time_measurement/timetag/timetagger42g/
https://www.cronologic.de/time_measurement/timetag/timetagger42g/
https://www.cronologic.de/time_measurement/tdc/hptdc/
https://www.cronologic.de/time_measurement/tdc/hptdc/
https://www.cronologic.de/time_measurement/tdc/xtdc4/
https://www.cronologic.de/time_measurement/tdc/xtdc4/
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3. FPGA-based TDC Development 

In order to research and understand the numerous theoretical and experimental topics related with TDC, 

two architectures were selected for implementation from the architectures discussed on the previous 

Chapter. This had the objective of studying the best TDC design practices and identify architectures that 

could be potentially used in LiDAR sensor applications. In this chapter the process of designing, 

implementing and testing of the selected architectures is presented. The Chapter starts by introducing 

the FPGA platform used, a Zybo development board with a Zynq7000 System-on-Chip (SoC). Since one 

of the objectives of this Thesis is to achieve an architecture that can be seamless ported between 

platforms and technologies, only fully digital architectures were considered for implementation. Moreover, 

TDCs are intrinsically dependent on the hardware used. FPGA platforms have predefined resources which 

vary with the architecture and vendor. Characteristics such as power supply voltage are shared among 

the entire FPGA device, thus the typical ASIC architectures based on DLLs to shield the TDC against PVT 

variations were not considered since they cannot be implemented in FPGAs. 

The target application, the LiDAR sensor, requires high resolution (<1 ns for a 15 cm depth resolution) 

and precision, and low area. The architecture reporting the best resolutions in FPGA are based on multiple 

TDL. In modern FPGA devices, the typical propagation delay of a LUT element is about 250 ps. Moreover, 

modern FPGA also have dedicated carry blocks (Carry4 cells) for high speed calculations, with 

propagation delays under 30 ps, that can also be used to implement the Basic Delay Block (step) of TDLs. 

Therefore, there is no need for multiple TDLs to achieve a resolution under the intrinsic propagation delay 

of the available cells. Furthermore, the possibility of using a single TDL will help to meet the low area 
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requirement. Regarding the high precision requirement, TDLs are known for having low linearity which 

decreases the overall TDC precision (without calibration), especially in FPGA platforms. As discussed in 

the previous Chapter, calibration techniques like decimation and bin-by-bin calibration can be implement 

in FPGA with low hardware resources. When developing for ASIC implementation, bin-by-bin calibration 

can also be used as an option for post-measurement calibration, however it will occupy a considerable 

chip area. Nevertheless, it can be implemented in software by the acquisition system if the output of the 

TDC is given in absolute counts. Moreover, in ASIC technology the process mismatch between TDL’s cells 

is not as critical as with the FPGA-based TDL’s Carry4 cells. 

Decimation is also a solution to address the TDL non-linearity issue that can be implemented in ASIC with 

no extra hardware requirement, i.e., no impact on chip area, at the cost of resolution. TDLs can be 

implemented both in FPGA platforms and in ASIC technology and will have performances and resolutions 

that fulfil the requirements of the LiDAR sensor application. Consequently, the TDL architecture was 

selected for implementation since it can provide the required seamless portability. 

With Flash LiDAR sensors applications in mind, another TDC solution based on Gray-Code counters was 

also explored, since the main advantage of this architecture targets is its low resources consumption. 

Furthermore, the architecture is able to satisfy the minimum required resolution and can also be 

implemented in ASIC technology. 

 

3.1. The Zynq FPGA Platform 

The Zynq-7000 all-programmable SoC is a development platform from Xilinx with an integrated Artix-7 

based FPGA (Programmable Logic) and at least one Arm Cortex-A9 processors (Processing System) [3.1]. 

The ZYBO board, depicted in Figure 3.1, is one of the development boards equipped with this SoC. An 

overview of the SoC is depicted in Figure 3.2. The platform’s SoC is fabricated in 28 nm technology and 

targets hardware and software co-design, while fastening development cycles and enabling the design 

complexity to be reduced. Furthermore, the platform has full design flow stack development support using 

the Vivado Design Suite framework, for PL development, and Xilinx SDK environment, to program the PS 

and integrate the developed hardware with the co-designed software. Moreover, Xilinx has AXI buses 

interfaces that can be instantiated, facilitating the integration of hardware and software components [3.2]. 

Several IPs are provided by Xilinx that contribute to accelerate the development process. However, apart 
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from the basic structure of the AXI-Lite interface, no other IP was used during the development of the 

FPGA-based TDC prototypes. 

To develop the FPGA-based TDC prototypes, the Zybo Z7-10 development board was used. The platform 

is equipped with a dual-core Cortex-A9 processor, at 667 MHz operating frequency, a 1 GB, 32-bit bus, 

DDR3L memory, at 1066 MHz, and 5 PmodTM ports for expansion, from which eight are used for processor 

I/O [3.1]. Regarding the PL, the main difference between this FPGA and the Xilinx 7-Series Artix, are the 

dedicated ports and buses that connect the PL to the PS. All the PS peripheral controllers that are not 

connected to the Mux I/O can be routed through the PL to one of the Pmod ports using the Extended 

Mux I/O (EMIO) interface [3.2]. 

 

Figure 3.1- Zybo Development Board 

 

3.1.1. Processing System (PS): The Cortex-A9 

The Arm Cortex-A9 is a processor based on the Arm v7-A architecture that includes advanced Single 

Instruction Multiple Data (SIMD) and provides support for integer and floating-point vector operations 

[3.3]. It has support for full virtual memory implementation, due to its Level 1 cache subsystem, and has 

an instruction cache and branch prediction unit, to improve performance [3.3]. An overview of the main 

blocks composing the Cortex-A9 processor is depicted in Figure 3.2. 
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Figure 3.2 - Zynq SoC Overview 
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one output, or as two 5-input LUTs with one output each. Furthermore, in the case of SLICEM, the LUTs 

can also be used to implement 32-bit distributed RAMs and shift registers. Four of the Slice’s storing 

elements must be edge -triggered D-type flip-flops. The remaining four Slice storing elements can be 

configured as edge-triggered D-type flip-flops or latches, with a set or reset signal. However, if these storing 

elements are configured as latches, the first four flip-flops of the Slice cannot be used. Moreover, the 

storing elements must keep the same configuration inside the same Slice, i.e. if one of the storing 

elements is configured as a flip-flop with asynchronous reset, then the other storing elements can only 

implement the same type of flip-flop, since the control signals (clock, enable, set/reset) are shared inside 

a Slice. 

The Carry4 cell is provided to enable fast arithmetic operations (addition and subtraction). Each CLB as 

two identical 4-bit carry chains, one per slice. In order to increase the number of inputs supported by the 

carry element, multiple carries from different slices can be cascaded using the COUT and CIN ports (See 

Figure 3.3). The CYINIT input is used as the CIN bit in the first carry of a carry chain or to select between 

the add operation (0) and the subtract operation (1). The carry element outputs the result of the 

addition/subtraction on O0 to O3 while the carry out of each bit can be accessed through CO0 to CO3 

outputs, the last one, the most significant bit, is also connected to COUT to be used to cascade the carry 

chain. 

 

3.2. TDC Design Flow and General Architecture 

The first step when designing any digital system is to analyze the application requirements to understand 

which constraints and limitations must be addressed. According to the problem description presented in 

Chapter 1, a typical LiDAR sensor application requires resolutions below 7 cm and a range near 180 m. 

These requirements represent a time resolution for the ToF measurement better than 467 ps and a 

measurement range of approximately 1.34 µs. In order to address all the aforementioned constraints, 

the block diagram presented in Figure 3.4 was developed to guide the implementation of the TDC. The 

system’s architecture was designed to guarantee a modular and flexible implementation, thus, all the 

blocks represented in Figure 3.4 can operate in standalone and be reused in other digital designs. This 

enabled the use of the same design structure to implement both FPGA-based TDC architectures, by only 

changing the fine measurement module. 
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Figure 3.3- CLB disposition overview (top) and Slice detailed view (bottom) 
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Figure 3.4- TDL TDC Architecture Overview 
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resources can be seen in Figure 3.5. The digital flow adopted by Vivado has four main phases: System 

design entry, RTL Synthesis, Place & Route, and bitstream generation. System simulation can be done 

in-between each of the design steps. 

 

Figure 3.5- FPGA Design Flow 
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or error will occur stopping the synthesis process. At the end of the synthesis step a new RTL description 

is obtained. 

This RTL description is no longer technology independent. Thus, functional and timing simulations are 

now possible. However, timing simulations prior the implementation step do not have information 

regarding placement and routing of the logic elements used. Therefore, these simulations only take into 

account the propagation delays on sequential storing elements and consider the propagation delay 

throughout combinatorial logic as ideal. Nevertheless, functional simulation in this step is important to 

guarantee that the optimization and technology mapping process did not change the intended behavior 

of the digital design. 

With the design synthesized and its functional behavior validated, the cells instantiated by the technology 

dependent RTL must be placed and routed. This step is done during the Place & Route phase (also known 

as implementation). Timing constraints are important throughout the entire design flow since the tool’s 

optimization algorithms make use of them to decide if a part of the design should be replicated or if 

buffers should be added to a given output. However, in the implementation phase, these constraints are 

very important, since these are the major drivers when deciding the optimal spot to place a logic element 

and which routing box and path must be selected. The lack of timing constraints may lead to design 

malfunction, solely due to arbitrary placement and routing. Upon completion of the implementation 

phase, functional and timing simulation of the placed and routed digital design can be performed. 

The main difference between the post-synthesis timing simulation and the post-implementation timing 

simulation is that, in the later, the propagation delay of the combinatorial circuits and the routing delays 

are also considered during simulation. This timing information is represented and described in a Standard 

Delay Format (SDF) file that is generated by Vivado during the implementation phase. All timing 

simulations are made considering the worst-case timing scenarios by default. Apart from timing 

constraints, physical constraints must also be defined to map the input and output ports of the design to 

the FPGA physical locations. At the end of the implementation phase, power, timing and resources 

utilization reports are made available to further analyze the final design result. 

The last step on the FPGA-based digital design flow is the generation of the bitstream used to program 

the FPGA. During this step a set of design rules, Design Rules Check (DRC), are made to validate the 

design. The output of this step is a .bit file that is used to configure the FPGA device according to the 

developed design. 
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Vivado also offers an IP integrator tool that enables multiple IPs to be instantiated, connected and validate. 

This functionality is especially useful to integrate the created designs with the processing system with 

minimal effort, since all the intermediary modules required are automatically generated by the framework. 

To make use of this functionality, the design must be encapsulated. More details regarding the created 

IP from the implemented design and the use of the IP integrator functionality will be presented in Section 

3.3.4. 

 

3.3. TDL TDC 

The TDL was one of the selected architectures to be implemented in FPGA due to its intrinsic digital 

nature, attractiveness for attaining a full autonomous migration for ASIC platforms in a later stage of this 

Thesis, and achievable high resolutions, due to the fast carry blocks available on Xilinx FPGAs. Although 

being a pure digital system, the design of a TDC demands for additional steps and considerations during 

implementation, mainly to avoid unwanted optimizations, automatically done by the framework in the 

various steps of the design flow. This section will describe in detail the design and implementation of the 

multiple modules presented on Figure 3.4. 

 

3.3.1. Architecture Design 

The main block of the TDC system is the fine measurement module, since the major performance metrics 

of the TDC are defined or highly influenced by it. It is also the module that distinguishes the design from 

any other digital system design. Although a TDL is used as the base architecture for the fine measurement 

module, some changes were made to the typical approach in order to minimize resources utilization. The 

applications that this Thesis targets has both start and stop signals asynchronous to the reference clock. 

Usually, in such scenarios, two fine TDL measurement channels are implemented, one for measuring the 

start signal arrival time and another for the stop signal. In this Thesis, a fine measurement module 

designed with a single TDL for capturing both start and stop time interval is proposed. Using this 

approach, only the second stage sampling block and the decoder block must be replicated. Figure 3.6 

depicts an overview of the RTL of the implemented fine measurement module. 

The decision of using a single TDL adds a timing constraint to the time interval to be measured. There 

must be a minimum time interval, equal to at least one reference clock cycle, between the start and stop  
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Figure 3.6- TDL RTL Overview
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signal in order to properly capture both start and stop time of arrival. Otherwise, multiple transitions will 

appear in the sampled TDL thermometer code, jeopardizing the measurement result. 

The main drawback of TDL architectures implemented in FPGA platforms is its poor linearity, due to 

process variation, which results in multiple steps having zero propagation delay, as mentioned before, 

this linearity issue is usually solved using decimation or bin-by-bin calibration. As already explained in 

Chapter 2, decimation sacrifices the TDC maximum achievable resolution, thus bin-by-bin calibration was 

the selected approach in this Thesis. This calibration technique can either be implemented directly in 

hardware or by software. Since one of the goals of this Thesis is to understand how to efficiently port a 

TDC design from a prototype platform to ASIC, and because the calibration tables required to implement 

bin-by-bin calibration require large chip areas to implement in ASIC platforms, it was decided that any 

sort of post-measurement calibration would be done by software and not directly implemented on 

hardware. Thus, bin-by-bin calibration tables, for the start and stop signals propagation delays, was built 

in software using the results obtained from a code density test with 100 thousand samples. The values 

received from the TDC are then used as index to address the calibration tables and the values returned 

are used in the final ToF measurement calculation. 

The principle of operation of the proposed TDC is as follows: the arrival of the start signal generates a 

rising edge that starts propagating throughout the delay chain, creating a 1-to-0 pattern on the last 

propagated step; on the following reference clock rise edge, the first sampling stage stores the state of 

the delay chain. Simultaneously, an edge detector module generates a start signal event. The first 

sampling stage is always enabled, updating the TDL state at each reference clock cycle; in order to secure 

a stabilized value for the decoding stage, a second sampling stage, enabled by the start signal event 

during one clock cycle, is also implemented. Furthermore, this double sampling method reduces the 

probability of metastability. A second sampling stage for the stop signal was implemented in an analogous 

way; two reference clock cycles after a start or stop signal, the second sampling stage has a stable value 

that can be used by the decoder to obtain the equivalent binary state of the TDL from the sampled 

thermometer code; the decoder module is a purely combinatorial priority encoder that converts the 

thermometer code sampled from the TDL to a binary value. This value corresponds to the position of the 

last step of the delay chain at logic level ‘1’. This approach has good performance and shields the TDC 

against bubbles since only the last ‘1’-to’0’ transition is considered. Further details regarding the 

implementation process to reduce bubble occurrence are discussed in Section 3.3.2; the start signal 

event generated by the edge detector module also enables the coarse counter module, which starts 
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incrementing at every reference clock cycle until the stop signal event is generated, disabling it and storing 

the value in a second set of registers; the process of obtaining the stop time interval is analogous to the 

start, but with the detection of a ‘0’-to-‘1’ pattern being propagated in the delay chain. Because the pattern 

to search is different, the decoder module must be different to the one used for the start signal. A 

waveform diagram exemplifying a typical measurement is shown in Figure 3.7. 

 

Figure 3.7- Typical TDL TDC Operation Waveform 
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Figure 3.8 depicts the RTL view of the input stage and the waveform diagram demonstrating its normal 

operation and the scenario in which partial time measurement could have been done if the hit signal 

check was not performed. 

 

Figure 3.8- Input Stage Schematic (top) and Operation Waveforms (bottom) 
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storing elements of the TDC will occur (see Figure 3.9). In such cases, the state of the TDL and coarse 

counter may differ (due to metastability on the counting registers or just incorrect counting and sampling, 

as a result of delay mismatch on the signals’ routing). Metastability on the coarse counting registers 

usually results in measurement errors (several nanoseconds) multiple of the reference clock period. 

However, these types of errors are not frequent. The most frequent errors occur due to the different 

insertion delay of the hit signal’s routing to the delay line and the enable pin of the counting registers, 

resulting in a measurement error equal to ±1 period of the reference clock. 

 

Figure 3.9- Synchronization Error Scenarios 

To correct the coarse measurement, according to the value sampled by the TDL, a synchronization block 

with two extra coarse counters and a decider block were designed. The coarse counters are clocked by a 

PLL that outputs two clock signals with the same frequency of the reference clock but that are shifted in 

phase. This phase shift ensures that at least one counter has a stable counting at the arrival of the hit 

signal. Usually, this type of synchronization is implemented using a 180° phased clock (because only 

one signal is asynchronous to the system and thus there are only two possible synchronization error 

scenarios). However, since in the designed system both the start and stop signals are asynchronous to 

the system, there are six possible synchronization error scenarios. On Figure 3.9, only the start 

metastability scenarios are depicted for simplicity (for the stop signal, the scenarios are a mirror of the 

presented ones). So, to correctly identify every possible synchronization error, two extra counters are 

required. 

The PLL was configured to output two clocks with a 35° and 70° phase difference regarding the reference 

clock. The start and stop values sampled by the TDL are used as reference to identify the moment of 

arrival of the hit signal regarding the reference clock. Depending on that value, the correct coarse counter 

is selected to be further used by the Merge module. The block diagram of the implemented synchronizer 

is presented in Figure 3.10. 
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Figure 3.10- First Version of the Synchronizer Block 

Later during this Thesis research, a second version of the synchronizer block was developed, aiming to 

reduce the number of resources and help structure the design process of the synchronizer. The main 

issue found with the first version of the synchronizer was its dependency on the placement and routing 

of the design, which demanded for experimental measurements to be done in order to understand if the 

synchronization boundaries were correctly defined. In order to systematize the design process, a design 

flow was created to assure a correct definition of the synchronization window (see Figure 3.11). 

Furthermore, if the coarse counter schema using the hit signal as the counting register’s enable is 

switched to a free-running counting schema, using the hit signal as the second stage coarse registers 

sampling signal, then only one extra counter is required to identify all possible synchronization errors. 

 

Figure 3.11– Design flow for proper synchronization window definition 
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In terms of storing elements, the number of resources used is the same since this approach required two 

coarse second stage sampling units (one to store the coarse value at the start event and another at the 

stop event). However, because only an extra counter is needed a 180° phase can be used, eliminating 

the need for a PLL. 

Two major constraints must be assured independently of the synchronization mechanism used: the hit 

signal’s skew and the clock signal skew between the coarse and fine measurement blocks must be as 

small as possible. Because multiple bits are being sampled in the coarse counter, the skew between the 

counting registers and the storing registers should be matched. The process of defining the 

synchronization windows is as follows: first, the limits must be defined with a value larger than the setup 

and hold time of the storing elements, being the lower and upper limits tied to the TDL values sampled 

moments before and after the reference clock signal rising edge respectively; after, a timing margin must 

be added to these limits to consider the signal skew when routing the hit and clock signals to the different 

systems insertion points. This margin will define the maximum allowable skew when placing and routing 

the design. The TDL values defined for the upper and lower limits of the synchronization window are used 

on the decider block to determine which coarse counter to use. Thus, in a normal TDC operation, if the 

value sampled by the TDL is inside the synchronization window, the 180° phased coarse counter sampled 

value is used. Otherwise, the value sampled from the main coarse counter is used. The block diagram of 

the decider module used in the second version of the synchronizer is depicted in Figure 3.12 (top), while 

the synchronization window process definition is depicted at the bottom of Figure 3.12 . When using the 

second version of the synchronizer, errors equal to ±1 reference clock period may occur in scenarios 

where one of the coarse values used is from the main counter and the other one is from the 180° phased 

counter. Those cases are identified in Table 3.1 with the respective correction factors that should be 

applied. 

The merge module is responsible for combining the fine and coarse measurement values into a 32-bit 

word, and to generate the control signals for controlling the TDC state and to write to the FIFO memory. 

As already mentioned, the thermometer-to-binary decoding stage is a pure combinatorial module. The 

size of the module is proportional to the number of bits of the thermometer code to convert. When large 

thermometer codes are used, the module will be composed of multiple combinatorial levels, increasing 

the time required to perform the decoding. Thus, to prevent for scenarios where the time needed to 

correctly decode the thermometer code is longer than the reference clock period, the merge block 

implements a configurable cycle counter, to wait until the binary values outputted by the decoding stages 
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are stable. Only when this counter expires the values are merged, setting a write enable flag to signalize 

the FIFO that a new value is ready to be stored. The write enable flag is also used as the end-of-conversion 

flag, to reset the input stage, making the TDC ready to perform a new measurement. 

 

Figure 3.12- Second Version of the Synchronizer and Synchronization Window 

Table 3.1- Synchronizer Correction Factors 

Condition Correction Factor 

TDL Start Code > Sync Window Upper Value & TDL Stop 
Code < Sync Window Upper Value 

-1 Coarse Count 

TDL Start Code < Sync Window Upper Value & TDL Stop 
Code > Sync Window Upper Value 

+1 Coarse count 

 

3.3.2. Implementation Notes 

The implementation of a TDC using a full HDL approach demands for additional Verilog constructs to be 

defined in order to control how the tool processes the files. The first thing to consider are the optimizations 

done by the tools upon synthesis. It is mandatory to mark the TDL components with the dont_touch 

keyword as illustrated in Figure 3.13. Otherwise, since the input of the delay line is always equal to the 

output, the synthesis will omit the delay chain, which in turn will also omit all sampling registers, rendering 
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the TDL module useless. It was decided that both the TDL and the first and second sampling stages 

would be directly instantiated using the FPGA’s platform available cells. However, the sampling stages 

could have been implemented using the traditional Verilog always construct. The remainder modules of 

the TDC do not required special considerations and can be optimized by the tools if necessary. To 

maintain the modular structure of the TDC, the keep_hierarchy attribute was defined at every module 

instantiation on the top module of the TDC. This indicates the synthesis tool that any optimization process 

must be done inside the boundaries of the module, prohibiting different modules to be merged during 

optimization. Although preventing some inter modules optimizations, which may lead to area optimized 

designs, this approach enables to keep a modular architecture, guaranteeing that the replacement of a 

module in the design will not affect the remaining ones, which is a much-appreciated characteristic during 

prototyping phase. 

 

Figure 3.13- TDL Generation 

Another important parameter to consider when implementing TDL is the real propagation delay of the 

basic delay cell used. To function properly, the TDL must have a length capable of surpassing the period 

of the reference clock in any scenario (best-, typical- or worst-case execution). The simulation tools only 

give information regarding the worst-case scenario. There is no information regarding the propagation 

delay of the FPGA elements on Xilinx’s documentation. Thus, in order to determine the typical-case 
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propagation delay, an experiment was made. The test consisted on creating a TDL with the maximum 

possible size allowed, which is only limited by the number of rows available on the FPGA device (one 

hundred in the case of the Zybo Z7-10). Since every row has a CLB with a Carry4 element in it (which 

has 4 carry elements), a four hundred steps (one carry element per step) TDL was built. The TDL was 

sampled by a set of registers which was storing the sampled thermometer values at every reference clock 

cycle to a FIFO memory. The integrated Arm processor was used, with an AXI interface to read the FIFO 

memory at the maximum allowable rate, and display the hexadecimal code read. Since the AXI-Lite is a 

32-bit interface, 13 reads were made per measurement to obtain the full 400-bit thermometer code. With 

the test system implemented, one of the FPGA’s PLL blocks was configured to output a 50% duty-cycle 

square-wave at a frequency doubling the one used in the reference clock. The output of the PLL was 

mapped to a FPGA’s output pin and physically connected to the input pin of the TDL. With this 

configuration, it was possible to capture a full square-wave cycle within the sampled thermometer code. 

Knowing the number of cells needed to comprise a full PLL square-wave period, by dividing the period for 

this number, the average cell delay could be obtained. Accordingly, to the performed tests the average 

propagation delay of a carry element on the Zybo Z7-10 platform was 17.9 ps. In the timing simulation 

results, presented on Section 3.6.1 however, each carry element should have a propagation delay of 

28.5 ps, which almost doubles the real value. 

Considering the real average delay of 17.9 ps, in order to fully cover a reference clock with a 4 ns period 

(250 MHz), a TDL with a minimum of 224 steps must be implemented. Thus, a 256 step TDL was 

implemented. The extra steps were added to account for temperature variations and for faster Carry4 

cells resultant from process variations. 

 

3.3.3. Layout Considerations 

While controlling synthesis is crucial in a full HDL TDC design, once the design is correctly implemented 

and mapped to the available technology in the FPGA, some additional constraints must be applied during 

placement and routing not only to guarantee proper TDC functioning, but also to improve the achievable 

performance. 

The first layout consideration is regarding the placement of the TDL delay elements. Since the FPGA is 

divided into clock regions, and the routing of the clock has an impact on the performance of the delay 

line, the TDL must be placed inside a single clock region, if possible. Since 256 steps were implemented, 
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the carry delay chain can only be propagated upwards, each CLB has four carry elements grouped up in 

a Carry4 block, and the Zybo Z7-10 platform has 50 rows per clock region, it is not possible to keep the 

TDL inside the same clock region. 

For this reason, an ultra-wide bin is expected around the 200th step. This could be avoided if LUT elements 

were used to implement the TDL, since they do not have the restriction of only enable a propagating chain 

upwards. However, LUTs have higher propagation delay (approximately 123 ps in the Zybo Z7-10 

according to the worst-case timing simulations), which would greatly reduce the TDCs resolution. 

Moreover, LUTs do not have a dedicated routing like the one connecting all the carry blocks in a column, 

instead LUTs use the route boxes. This would ultimately result in longer propagation delays due to longer 

routing paths and worse linearity performance as result of the non-uniform routing across the multiple 

TDL steps. Thus, having some ultra-wide bins was considered preferable, since the issue can be easily 

targeted by a calibration mechanism. 

The routing between the output of the carry elements and the sampling stage registers is also an important 

factor to achieve higher linearity across the delay chain. While it is enough to constraint the propagation 

delay between the first and second sampling stages to one reference clock cycle, between the delay chain 

and the first sampling stage, the routing must be uniform across all steps and as small as possible. 

Therefore, the first sampling stage registers must be placed inside the same Slice as the carry elements 

they are sampling. 

FPGAs have a highly optimized clock tree structure. Thus, inside the same clock region the routing skew 

has typical values under 30 ps. However, the same cannot be said when multiple clock regions are used 

since the insertion delays from the clock input pin to the distribution buffers of each region varies, thus 

increasing the skew between clock regions. 

Controlling the clock signal in the TDC architecture presented is not as critical as controlling the hit signal. 

As mentioned during the presentation of the synchronization module, the hit signal insertion delay to the 

TDL and enable pins of the coarse counter registers must be closely match. Otherwise, the 

synchronization window will suffer a shift equal to the hit signal skew. The insertion delay of the hit signal 

can be controlled by adding LUTs configured as buffers to delay the signal on the fastest paths or by 

rerouting it. 
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3.3.4. Interface 

To interface the TDC and store the measurement values, a FIFO module was implemented. Apart from 

performing a clock domain crossing mechanism, the FIFO module is also useful to temporarily store 

some measurement values when the processor’s reading rate is lower than the acquisition rate of the 

TDC. The signals from the FIFO module were designed to enable the simple exchange of communication 

protocols, increasing the system modularity. In fact, the FIFO can also be addressed directly, reading the 

32-bit output in parallel, with no communication protocol in-between the TDC and the processor reading 

from it. 

The FIFO module is composed by a dual port RAM memory and two smaller modules to generate the 

write and read address pointers and the full and empty flags. Because the empty and full flags are 

generated by comparing the write and read pointers and these are generated in two different clock 

regions, a clock domain crossing module was implemented, using a double register method. Figure 3.14 

depicts an overview of the FIFO implementation (top) and the write pointer and full flag module (bottom). 

 

Figure 3.14- FIFO Module Overview and FIFO write pointer and Full Flag Generation module 
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The write and read address pointers generators are similar. The structure of the implemented write pointer 

generator is depicted at the bottom of Figure 3.14. The system is based on a (n+1)-bit binary counter, to 

address the 2n FIFO memory positions. The extra bit is used to calculate the empty and full flags. If the n 

least significant bits of the read and write pointers are the same, then the logic XOR of the n+1 bit from 

those pointers define whether the FIFO is full or empty (empty when the MSB are the same and full when 

they differ). Before crossing the write pointer to the read clock domain, the value is converted from binary 

to Gray-code. The same is done when passing the read pointer to the write clock domain. This is done to 

avoid multiple bit state changes when the pointers’ values are updated, increasing the system’s 

robustness. 

The FPGA Processing System’s Arm Cortex-A9 uses an AXI bus to communicate with internally mapped 

peripherals. Using the Vivado framework it is possible to automatically generate a 32- or 64-bit AXI4 slave 

or master interface, with a default state-machine implemented, to encapsulate custom made IPs and 

automatically map them into the processor’s peripheral address space. This functionality was used to 

automatically generate a 32-bit AXI-Lite slave interface. By default, four registers were instantiated in the 

AXI-Lite state machine to communicate with the processor. Only two of those registers are used, one to 

read the next value from the TDC’s FIFO and another used by the processor to send commands to the 

implemented TDC IP. Since the AXI interface presented in the Arm Cortex-A9 processor is still a legacy 

AXI3 version, it was necessary to implement a bridge between it and the AXI4 interface encapsulating the 

TDC peripheral. This bridge may be generated by the Vivado framework or manually instantiated by the 

user when using the IP Integrator tool. 

With the TDC IP implemented and mapped into the processor’s memory, the last step was to develop a 

software application to read the values from the TDC peripheral. The Xilinx Software Development Kit 

(XSDK) is integrated in Vivado framework and enables the development of embedded application, grants 

access to the automatically generated Board Support Package (BSP) of the implemented system and 

provides a full debugging environment. 

The algorithm for the software application to develop is as follows: first, the processor sends a read 

command to the TDC FIFO by writing to the memory position of register 1 of the TDC’s AXI interface. 

Then the processor reads from the address of TDC’s register 0, which has the updated value from the 

TDC FIFO. The 32-bit value received is then decoded to obtain the coarse, fine start and fine stop 

measurement values (see Figure 3.15 and Figure 3.16). 
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The TDC AXI peripheral was mapped in memory from address 0x43C00_0000 to 0x43C00_FFFF, being 

the base address represented by the macro XPAR_TDC_0_S00_AXI_BASEADDR in Figure 3.16. 

TDC_S00_AXI_SLV_REG0_OFFSET and TDC_S00_AXI_SLV_REG1_OFFSET are macros representing 

the offset address of the TDC AXI registers (0 in the case of register 0 and 1 for the register 1). 

 

Figure 3.15- TDC Read Application Flow 

 

Figure 3.16- TDC Read Application 
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The coarse value was multiplied by the reference clock frequency and the values from the fine start and 

stop measurements are used to address the calibration table. The final measurement result can be 

obtained using equation (3.1): 

𝑡 = 𝑐𝑜𝑎𝑟𝑠𝑒𝑐𝑜𝑢𝑛𝑡𝑠 ∗
1

𝑇𝐶𝐿𝐾
+ (𝑠𝑡𝑎𝑟𝑡𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 − 𝑠𝑡𝑜𝑝𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑), (3.1) 

 

3.4. Gray-Code TDC 

The Gray-code oscillator architecture was first proposed in [3.4]. The architecture reported a mean bin 

size of 256 ps and 271 ps, for the two TDC channels implemented, using 8-LUTs and 8 flip-flops per 

channel, being its main components a gray counter and a 2-bit oscillations counter. 

This architecture was developed in order to achieve high resolution for a low-power and low-resource 

system. Typically, a counter is composed by a combinatorial stage, which calculates the next value in the 

counting schema, and by a sampling stage, responsible for latching the value of the counter at each clock 

cycle, assuring a stable value for the combinatorial stage, so that the next value can be correctly calculated 

and latched in the next clock cycle. This is of extreme importance for binary counters in which multiple 

bits can change from one counting value to the next, activating multiple combinatorial paths at the same 

time. For example, in a 4-bit value, during the increment from seven (0111) to eight (1000), all the bits 

change. If no latching stage is present, i.e. the output of the combinatorial stage is directly connected to 

its inputs, there is the risk of having random values, and therefore a random counting sequence, due to 

different propagation delays in the counter’s datapath. However, if a Gray-code counting schema is used, 

this problem is avoided. In the original Gray-code, only one-bit changes from one state to the next one. 

Thus, the Gray-code can be configured in a loop, without the latching stage, since there is no risk of 

missing codes or making a random counting sequence. This enables the implementation of a counter 

with a resolution that is no longer limited by the system clock used to sample the state of the counter. 

Instead, the maximum achievable resolution is given by the propagation delay of the counter’s signals 

trough the Datapath (cells’ propagation delay plus routing delays). 

The Gray-code counter implemented in [3.4] is based on the a 5-bit reflected binary code (RBC) schema. 

In such schema, the first bit of the Gray-code does not have a dependence on itself. As the Gray-code has 

only 5-bits, a single 5-input LUT is enough to calculate each bit next state. However, because the counter 

also needs a bit to enable the counter, 6-input LUTs are used to implement it. Apart from the Gray-code 
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counter, a 3-bit cycle counter was also included, which counts the number of full counts performed by 

the Gray-code counter. This mechanism was implemented to extend the range of the TDC, enabling a 

lower clock frequency to be used in the final system. From the three bits, only two are used. The decision 

of which bits should be used is done depending on the output of the Gray-code TDC. This guarantees that 

the selected bits are not metastable. 

The architecture was implemented in a Kintex-7, a Xilinx 28 nm technology FPGA. In this platform, as 

seen in Section 3.1, each CLB has two Slices with four 6-input LUTs, a 4-bit Carry block and eight flip-flops 

each. Therefore, a single TDC channel can be implemented in a single CLB, allowing for multiple channel 

implementation even on small FPGAs. The research reports step delays in-between 100 ps and 500 ps, 

which, for a mean step delay of 256 ps corresponds to a DNL in the range of -0.61 LSB to +0.95 LSB. 

To obtain these results, the building cells of the TDC were manually placed inside the same CLB, in a 

specific order. By the analysis of the steps’ delays for the two TDC channels presented in [3.4], it is 

possible to notice that, for some steps, the same TDC step in different TDC channels has delay differences 

greater than 200 ps, leading to the conclusion that placement influences TDC channel performance. 

Finally, to improve linearity, a four measurement per input pulse, followed by averaging, is proposed in 

[3.4]. This method, although enabling better linearity with no extra resource usage, decreases the system 

throughput. The Gray-code architecture was studied during this Thesis research, since it could be 

interesting for Flash LiDAR applications due to its very low resource utilization. In the following sections, 

a proposal for improving the base Gray-code TDC architecture linearity and scalability based on controlling 

the routing propagation delay is presented. 

 

3.4.1. Architecture Design 

Based on the wire load regulation principle presented in [3.5], and the base TDC architecture presented 

by Wu and Xu in [3.4], an improved linearity Gray-code TDC architecture was designed during this Thesis 

research. Furthermore, the followed approach enabled the improvement of the TDC architecture 

scalability, by reducing the channels mismatch when implementing multiple TDC channels. Thus, 

improved performance is obtained reducing the need for calibration circuitry or post-measurement 

calibration software routines. The base block diagram of the proposed architecture is depicted in Figure 

3.17, and Figure 3.18 present the logic equations to calculate each Gray-code bit. The core of the TDC 

channel, presented in Figure 3.19, is a pure combinatorial 5-bit Gray-code counter that, when enabled, 
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starts looping through the 32 possible values. The Gray counter is enabled on the rise edge of the hit 

signal. To avoid that the counter continues to oscillate undefinably, the input stage presented in Figure 

3.17 was used to guarantee that the enable for the Gray counter has a maximum duration of one 

reference clock cycle. After the arrival of a hit signal, on the next clock rise edge, the value of the Gray-

code counter is sampled and simultaneously, hit_r (the output of the Input Stage register) is cleared thus 

stopping the Gray counter. When the value sampled is different from zero, a store signal is generated to 

sample the value of a free-running coarse counter, used to increase the measurement range of the TDC. 

The Gray-Code value sampled is also stored in a second set of registers on the second rising edge of the 

reference clock. Like in the TDL case, this is done to reduce the probability of metastability on the 

sampling of measurement value from the Gray counter and to secure a stable value for the next operations 

(the first set of registers samples the Gray-code at every clock period and therefore, if the value was not 

stored, the measurement value would be lost at the second rise edge of the clock after the hit’s signal 

arrival). 

 

Figure 3.17- Gray-Code Architecture Overview 

 

Figure 3.18- 5-bit Gray-Code Logic Equations 
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Figure 3.19- Gray-Code channel RTL View 
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Figure 3.20- Gray-Code TDC Typical Measurement Waveform 

 

Figure 3.21- Gray-Code TDC State-Machine 
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3.4.2. Implementation notes and Layout Considerations 

Gray’s Counter oscillator Datapath Analysis 

Based on the results reported in [3.5], the propagation delay of a cell in FPGA platforms can be partially 

controlled by controlling the load of the cell. This can be done by adding dummy buffers to the output of 

a cell, to increase its load, or by increasing/decreasing the size of the routing, which will 

increase/decrease the parasitic capacitance of the net, changing the load at the output of the cell. The 

second option is more suitable for smaller adjustments, either to increase or reduce the propagation 

delay, but demands for a great knowledge on the FPGA routing resources, making its implementation 

more complex. Furthermore, the propagation delays obtained from the tool, which are dependent on the 

wire loads, are always the worst-case scenario. Nevertheless, the second option does not require extra 

resource usage, apart from the routing resources which are required for both methods. By assuring a 

close match between the propagation delays in the worst-case scenario, it is possible to assume that the 

typical conditions would be similar as well. Moreover, as the TDC channel can be confined to a single 

CLB, the voltage and temperature conditions should be similar in all the five LUTs used to build the 

Gray-code oscillator. Therefore, exploring the routing possibilities during the layout of the Gray-code TDC 

may lead to an implementation with higher linearity with no extra hardware cost, improving the overall 

system’s performance. 

By analyzing the pattern on the 5-bit Gray-code it is possible to conclude that only 8 out of the 24 datapath 

connections affect the size of the steps. Namely the paths from the output of LUT0 to the input of all the 

other LUTs (four connections) and the output of all the other LUTs to the inputs of LUT0 (another four 

connections, see Table 3.2 and Figure 3.19). This greatly reduces the effort of implementing the linearity 

correction through routing. The remaining 16 datapath will not affect the delay of the steps (as long as 

the propagation delay of these paths do not exceed two clock cycles), and therefore can be automatically 

routed by the framework. 

Manual Routing to Control Datapath’s delay 

The manual routing process can be done in Vivado design tool using the implemented design graphical 

interface, or by creating a file with the set of physical constraints annotated in a Xilinx Design Constraints 

(XDC) format. If the graphical interface is used, the manual routing is done by entering the implementation 

design view and selecting the routing resources option of the Device tab. Then the routings on the nets 
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Table 3.2- Gray-Code Datapath Delay Analysis 

Current Gray Value Next Gray Value Propagation delay 

bit4 bit3 bit2 bit1 bit0 bit4* bit3* bit2* bit1* bit0* 

0 0 0 0 0 0 0 0 0 1 Tphit + tpLUT0 

0 0 0 0 1 0 0 0 1 1 Tpbit0 + tpLUT1 

0 0 0 1 1 0 0 0 1 0 Tpbit1 + tpLUT0 

0 0 0 1 0 0 0 1 1 0 Tpbit0 + tpLUT2 

0 0 1 1 0 0 0 1 1 1 Tpbit2 + tpLUT0 

0 0 1 1 1 0 0 1 0 1 Tpbit0 + tpLUT1 

0 0 1 0 1 0 0 1 0 0 Tpbit1 + tpLUT0 

0 0 1 0 0 0 1 1 0 0 Tpbit0 + tpLUT3 

0 1 1 0 0 0 1 1 0 1 Tpbit3 + tpLUT0 

0 1 1 0 1 0 1 1 1 1 Tpbit0 + tpLUT1 

0 1 1 1 1 0 1 1 1 0 Tpbit1 + tpLUT0 

0 1 1 1 0 0 1 0 1 0 Tpbit0 + tpLUT2 

0 1 0 1 0 0 1 0 1 1 Tpbit2 + tpLUT0 

0 1 0 1 1 0 1 0 0 1 Tpbit0 + tpLUT1 

0 1 0 0 1 0 1 0 0 0 Tpbit1 + tpLUT0 

0 1 0 0 0 1 1 0 0 0 Tpbit0 + tpLUT4 

1 1 0 0 0 1 1 0 0 1 Tpbit1 + tpLUT0 

1 1 0 0 1 1 1 0 1 1 Tpbit0 + tpLUT1 

 

of the TDC must be eliminated. This will enable to enter the assign routing mode option, an interface that 

guides the user through the different available resources to connect two endpoints. By using a trial and 

error process, different routing options can be explored to achieve the desired net delay. 

In order to be able to fix the manual routing done on a pure combinatorial path, the LUTs need to be fixed 

with placement constraints and its inputs need to be locked. Otherwise the tool may change the order of 

the input ports from one run to another, leading to scenarios where it is impossible to respect the defined 

routing constraints [3.6], resulting in an implementation with unconnected nets. With the LUTs manually 

placed and its inputs locked, the manual routing can be safely defined. The mandatory constraints used 

in the proposed TDC channel implementation are presented in Figure 3.22. 
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Figure 3.22- Gray-Code TDC Constraints 

The definition of the routing and placement constraints in the Gray-code TDC not only enabled high 

linearity to be achieved but also higher performance uniformity across multiple TDC channels. When 

implementing multiple TDC channel in a complex system, the allocated routing resources on each TDC 

channel can vary significantly due to the channels positioning and proximity to other sub-systems’ logic 

inside the FPGA. Since the constraints created to a single TDC channel can be applied to different 

channels directly, system scalability and channel homogeneity can be assured. A more detailed 

discussion regarding the achieved results and test methodology used is presented in Section 3.6. 

 

3.4.3. Interface 

The interface between the Gray-code TDC architecture and the Arm processor is similar to the one used 

for the TDL TDC. The main difference is just on the application side. On the TDL case, the values obtained 

from the TDC IP were decoded into coarse, start and stop counts, and these values were directly used to 

calculate the time interval or to address the calibration table. In the Gray-code, after decoding the values 

on the AXI frame read, the start and stop fine values must be converted from Gray to binary before being 

used to calculate the measured time interval value. 

 

3.5. Serial Peripheral Interface (SPI) Interface 

Although the adoption of the AXI interface is advantageous when using Xilinx SoC platforms, this interface 

is not available on every processor. Since the objective of this Thesis is to study an efficient way to port 

the TDC IP between platforms and technologies, an alternative interface was developed in order to allow 

the TDC to be implemented as a standalone IP, accessible by multiple processor and microcontroller 



3.FPGA-based TDC Development 

104 

families. Serial Peripheral interface (SPI) is broadly used in embedded microcontrollers and can operate 

at an acceptable data rate for the given application [3.7]. Thus, an SPI slave interface was designed to 

convert the 32-bit parallel output from the TDC’s FIFO memory to a serial output, enabling the reduction 

of the number of pads required at the cost of the maximum sampling rate. 

SPI is a de facto standard that can be implemented with a 3- or 4-wire interface. In a 4-wire interface, the 

signals involved in the communication are: the clock signal (SCLK), generated by the SPI master; the 

master-out slave-in (MOSI) signal; the master-in slave-out (MISO) signal; and the chip select signal (CS). 

The chip select is used to select which slave is active, i.e. connected to the master, during a given 

transmission. The SPI protocol does not specify the number of bits per transmission and enables four 

different operation modes, which define when the data should be read and updated. The operation mode 

is limited to the ones supported by the device acting as the Slave. 

To support the most common SPI interfaces designed for 8-bit frames transmission, the SPI slave module 

implemented processes the data sent or received as an 8-bit package. Thus, in order to get a complete 

32-bit TDC measurement value, four sequential SPI reads are required. Moreover, the SPI slave interface 

only supports mode 0, i.e. the data lines are sampled at the rising edge of the SPI clock signal and at the 

falling edge the data is shifted out. The SPI slave interface was designed according to the state machine 

presented in Figure 3.23. For debugging purposes, a set of eight dummy registers were implemented to 

test the SPI read and write operations. These registers are available for future implementations, if the 

need for configurable parameters arise. A complete read operation consists of a minimum of two data 

package transmissions. The first data package is the register’s address from which the SPI master wants 

to read. The FIFO was mapped to address zero being the eight dummy registers mapped to the addresses 

from 1 to 9. The second data package is the data sent by the slave or written by the master. It is only 

possible to write to the SPI slave interface if the selected address is in the dummy registers address 

range, otherwise the operation is ignored. When reading from the FIFO, after writing the address zero to 

the SPI slave interface, four read operations must be performed in order to get a complete TDC 

measurement value. Only after these, the FIFO read pointer incremented. There is no limit for the 

consecutive reads that can be done since the FIFO read pointer will automatically reset once the last 

memory position is reached. 
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Figure 3.23- SPI Slave State Machine 

 

3.6. Simulation results 

To test the proper behavior of the implemented architectures, a set of simulations were developed. The 

simulation consists of a set of hit signals generated in sequence at random instants. Since one of the 

core modules behavior is based on the propagation time of the FPGA logic, timing simulations must be 

done. However, these timing simulations were used only to validate the proper functioning, and not to 

extract information regarding delay times (worst-case timing models are used in the simulation resulting 

in propagation delay values that are far from the real values). 

 

3.6.1. TDL TDC Simulation 

A simulation of the typical measurement functioning of the TDL TDC is depicted in Figure 3.24. Upon the 

arrival of the hit signal, it is possible to verify the signal propagation throughout the delay chain 

(represented by the variable tdl_val_w[255:0]). The value is sampled in the next reference clock and the 

binary decoded value becomes stable after a few nanoseconds. The same happens on the falling edge of 

the hit signal. It is possible to see that a new hit signal arrives before the register tdc_val_w[31:0] gets 

updated with the previous measurement value. Thus, this start event is ignored due to the implemented 

hit filter module, preventing erroneous measurement values. The value stored in tdc_val_w[31:0] 

corresponds to the concatenation of the fine stop value (9b), fine start value (53), and the counter value 
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(0045), indicating that the merge operation is also correct. Thus, it can be concluded that the 

implemented TDL architecture is working properly. 

 

Figure 3.24- TDL TDC Timing Simulation 

Analyzing the thermometer code in detail, it is possible to see the occurrence of bubbles (077ffff…). If the 

hit signal propagation is analyzed with more detail, it is possible to verify that the timing simulation has a 

limitation when displaying the value of the delay line (see Figure 3.25). The four different carries on the 

Carry4 element are updated at the same time. Thus, the propagation of the hit signal in the simulation is 

done in steps of 114 ps (equivalent to four carry cells in the worst-case scenario). Thus, the bubble 

occurrences in simulation highlight for the mismatch in the routings between the carries and the storing 

elements. The clock skew between storing elements is also a cause for this behavior. However, since a 

priority encoder is being used, the bubbles in the code can be safely ignored, and the output of the 

decoding stage maintains a valid value. 

 

Figure 3.25- Detailed View of the Carry4 Propagation Delay 
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According to the simulation, a Carry4 element has 114 ps propagation delay, which corresponds to an 

average value of 28.5 ps per carry cell. In reality, the delay of each carry is more than 10 ps lower. The 

code density test performed, and presented in the Section 3.7, showed an average carry propagation 

delay of 17.2 ps, enforcing the statement that timing simulation, when studying TDCs, should be used to 

test proper system functioning, but not to extract relevant timing simulation. 

 

3.6.2. Gray-code TDC Simulation 

The same testbench used in the TDL TDC timing simulation was used to test the Gray-code TDC. The 

functional timing simulation results are presented in Figure 3.26. The behavior of the architecture is 

similar to the one of the TDL. The main difference is related with the handling of the hit signal. Although 

the hit signal is at logic level one during multiple reference clock cycles, the Gray-code fine measurement 

stage only counts until the next reference clock rise transition (in the TDL scenario the hit signal was 

always being propagated by the TDL). After it, the Gray-code counter is disabled. This behavior matches 

with the architecture described in Section 3.4, validating the implemented fine measurement stage. 

Furthermore, since the obtained result from the fine stage measurement does not need to be decoded, 

the system is ready for another measurement one reference clock cycle after the hit signal falling edge 

event. 

 

Figure 3.26- Gray Code TDC Timing Simulation 
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pattern identified before (in Section 3.4). Thus, if the routing timings is subtracted to the times obtained 

from the simulation, the worst-case scenario of the LUT’s propagation delay can be calculated according 

to equation (3.2). 

 

Figure 3.27- Detailed View of the Gray-Code Sequence Generation and step size 

𝑡𝐿𝑈𝑇𝑖 = 𝑡𝑃𝐷 − 𝑡𝑅𝑂𝑈𝑇𝐸𝑖, (3.2) 

where tLUTi is the LUT propagation delay, tROUTEi is the propagation delay of the LUT’s output wire to the LUT 

which will change state for the next count, and tPD is the total propagation delay, extracted from the 

simulation. 

Taking the LUT responsible for generating the least significant Gray-code bit and the 1 (00001) to 2 

(00011) transition as an example, the LUT propagation delay would be equal to 123 ps (999 ps - 876 ps, 

see Figure 3.27 and Table 3.3). As in the TDL scenario, 123 ps is the worst-case propagation delay for 

all the LUTs. These results conform with the information on the Xilinx datasheet stating that the LUT’s 

propagation delay is independent of the truth table being implemented. Since the first LUT has one less 

output connection than the remaining LUTs, but all of them have the same propagation delay, one can 

also conclude that the LUT’s propagation delay is independent of its output load (at least for the timing 

simulation). Furthermore, the routing resources appear as the main delay source, further supporting the 

statement made previously regarding the impact of controlling it to achieve better linearity. The 

experimental results presented in Section 3.7 study the differences between manual and automatic 

routing and its impact on the TDC channel linearity and scalability. 
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The TDC architectures were deployed in Xilinx Zybo Z7 development board (depicted in Figure 3.1). The 
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Table 3.3- Routing Delays for the Gray-Code TDC 

STOP 

CHANNEL 

MANUAL ROUTING AUTOMATIC ROUTING 

LUT4 LUT3 LUT2 LUT1 LUT0 LUT4 LUT3 LUT2 LUT1 LUT0 

BIT0 665 691 686 876 - 664 701 696 295 - 

BIT1 700 198 193 475 477 700 198 193 475 477 

BIT2 911 732 737 162 580 909 730 735 1080 165 

BIT3 394 306 307 711 709 394 306 307 711 709 

BIT4 296 916 914 518 513 297 612 609 330 514 

 

by the development board, the waveform generator and a host PC running a MATLAB script to analyze 

the data read from the board. The TDC IP with the AXI interface and the integrated Arm processor was 

used (the SPI interface was built to target the ASIC solution). For each architecture, a code density test 

was performed to extract the real delay of each step of the fine interpolation stage. The results from these 

tests were used to calculate the non-linearity of the fine measurement module, namely, the DNL and INL. 

 

Figure 3.28- FPGA Test Setup 

A total of 100 thousand measurements were made to reduce probabilistic errors. A single-shot precision 

test was also performed, with 100 thousand samples. Then, to reduce the influence of the errors 

introduced by the arbitrary waveform generator, a 10 measurements average was made, and the 

precision recalculated. To understand the impact of a calibration mechanism in the TDCs’ performance, 

a post-measurement software bin-by-bin calibration was applied to the 100 thousand samples collected 

during the single-shot precision test. The calibration tables were created based on the results from the 

code density test. Then, the single-shot precision and average precision were recalculated after applying 

the calibration. All the tests were performed at ambient temperature of 25°C and with a power supply of 

3.3V. The following assessment results are presented by TDC architecture. 
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3.7.1. TDL TDC Code Density Test 

In order to evaluate the real delay distribution across the implemented TDL, a code density test was 

performed. The waveform generator was configured to output a square wave signal at a frequency 

unrelated with the 250 MHz reference clock used, thus creating a sliding window effect on the sampling 

steps of the TDC, which, in an ideal scenario, would have the same probability to be sampled. The 

selected frequency was 999133 Hz. 

The code density test for the start and stop events propagation is presented in Figure 3.29. Regarding 

the start signal, it is possible to notice that no step was captured prior to the 22nd step. The last step 

through which the start event was able to propagate was the 254th. Thus, the start signal can propagate 

through a total of 232 steps in one clock period. Since the reference clock used is operating at 250 MHz, 

the average delay of each step when propagating the start signal is 17.2 ps. Notice that almost half of 

the steps have zero delay. This is mainly caused due to process variation and it is the main reason for 

the mandatory implementation of a calibration mechanism in FPGA-based TDL TDCs. Since the proposed 

architecture uses the same TDL to measure both time events, a similar behavior was expected for the 

stop signal propagation. This can be observed when analyzing the results from the stop signal code 

density test. The ultra-wide steps are the same (for example, the 200th step) and the number of steps with 

zero propagation delay is also similar. The main difference is regarding the first bin to be sampled that, 

in the stop propagation scenario is the 10th step. Since a rising edge (start signal) and a falling edge (stop 

signal) have different propagation behaviors, this difference was expected. Thus, the average delay per 

step when propagating a stop signal is 16.4 ps. 

The values obtained from the code density test were used to create two calibration tables. Each of the 

rows in filled with the cumulative sum of the delays of the TDL steps until that row position, i.e. at the 70th 

row, the value would be equal to the sum of the delays of the first 70 steps of the delay line and so on. 

 

3.7.2. TDL TDC Linearity 

The DNL and INL of the TDL were calculated using the data obtained from the code density test, according 

to the equations (2.5) and (2.6) presented on Chapter 2 (considering 17.2 ps and 16.4 ps as the LSB for 

start and stop respectively). Figure 3.30 depicts the non-linearity for the start and stop events propagation. 

For the start event propagation, the maximum DNL is equal to 3.3 LSB (56.16 ps), while for the stop 
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event, a maximum DNL of 3.7 LSB (60.84 ps) was obtained. The INL ranges between -3.8 and 1.8 LSB 

when propagating the start event, and -3.7 and 2 LSB for the stop event. 

 

Figure 3.29- TDL TDC Code Density Test for Start (top) and Stop (bottom) event propagation 

 

Figure 3.30- TDL TDC Linearity results for start (left) and stop (right) signals propagation 
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3.7.3. TDL TDC Precision 

To assess the TDC precision, the waveform generator was configured to output a square-wave with 

999.133 kHz frequency with 50% duty-cycle. The output frequency was verified using an oscilloscope to 

check the duration of the pulse between the rising and falling edge of the signal (portion of the signal 

measured by the TDC). A duration between 480.242 ns and 480.434 ns was observed. 

From the code density test performed and the linearity results obtained, it is possible to conclude that the 

TDC precision will be considerably affected if equation (2.14) from Chapter 2 (which uses an average cell 

delay value) is used to calculate the time interval measurement. This is highlighted in Figure 3.31, which 

presents the results from the single-shot measurement without calibration (top) and with calibration 

(bottom). A precision improvement of 40.3 ps (2.4 LSB) was obtained when calibration is applied. The 

raw precision test shows a 481.007 ns average measurement (573 ps offset regarding the expected 

value) and a precision of 211 ps. After calibration, the precision is improved to 179 ps, with an average 

time interval measurement of 480.891 ns (457 ps offset regarding the expected value). 

 

Figure 3.31- TDL TDC Single-Shot Precision before (top) and after (bottom) calibration 

However, even with calibration, the obtained precision is still far from the ideal LSB size (approximately 

17 ps). The reason for such results may be explained by two factors: first, the existence of multiple ultra-
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wide bins along the TDL deteriorates the TDC’s precision, even when the real cell delays are used to 

calculate the time interval measured; second, the arbitrary waveform generator jitter and noise introduces 

errors to the time interval generated. To reduce the influence of the errors introduced by these factors, 

an average of 10 measurements was performed for both raw and calibrated data. The results are depicted 

in Figure 3.32 (being the non-calibrated measurement precision depicted in the top graph and the 

calibrated measurement precision on the bottom graph). A precision of 59 ps and 56.7 ps was attained 

for the raw and calibrated data, respectively. 

 

Figure 3.32- TDL TDC 10 Measurement Average Precision before and after Calibration 

 

3.7.4. The synchronizer contribution 

In order to understand the necessity of a synchronizer block, a set of measurements with the synchronizer 

disabled were performed. The results obtained for 1,000 measurements with and without the 

synchronizer implemented are presented in Figure 3.33, being the results without synchronizer displayed 

at the top of the figure while the results with the synchronizer enabled displayed at the bottom. As can be 

observed in Figure 3.33, multiple errors in the range of ±1 coarse counter LSB appear in the 
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measurements. Moreover, there are even measurements where the error is equal to multiple clock cycles. 

This is because the coarse counter is binary, thus multiple bits can change simultaneously. When this 

happens, if only some bits are properly updated, errors equal to multiple clock periods can appear. With 

the synchronizer implemented, no measurement deviations equal or greater than the system clock period 

were recorded. Thus, it is possible to conclude that, in the FPGA implementation, the synchronizer module 

is working properly. 

 

Figure 3.33- Synchronizer Effect on TDC Measurement Value Output. 

 

3.7.5. Gray-code TDC Code Density Test 

The same setup used to test the TDL TDC was used during the assessment of the Gray TDC. However, 

since the proposed Gray TDC architecture was targeting an improvement on the TDC linearity, two 

different implementations were deployed to FPGA and tested. The first implementation followed the 

strategy adopted by Wu and Xu [3.4], constraining just the placement of the TDC’s channel LUTs and 

storing elements, while the routing was performed automatically, using the Vivado framework default 

implementation run. 
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The second implementation followed the design flow proposed in this Thesis, first placing the TDC’s 

channel cells, then letting the tool perform automatic routing using a low_net_latency implementation 

run, and finally manually routing the nets identified to try to have equal parasitic capacitances. The TDC's 

start and stop channels' code density test results, for both implementations (default and manual routing), 

are presented in Figure 3.34 (being the default results are presented on the left while the manual routing 

implementation results are presented on the right). Since reducing the delays of the slowest nets is usually 

harder (most of the times impossible when using the low_net_latency option), the strategy adopted was 

to increase the delay of the fastest nets. This resulted in a higher average step delay. However, as can 

be seen in Figure 3.34, it reduces the delay differences across the TDC channel. 

 

Figure 3.34- Gray-Code TDC Code Density Test for Default and Manual Routings 

The previously presented Table 3.3 depicts the pre- and post-manual routing net delays for the stop 

channel. A 125 MHz reference clock was used in the Gray-code TDC. Thus, the average step delay is 

380.9 ps, a 33.1 ps increase regarding the solution where only the placement is constrained. Another 

important factor to notice is the delay uniformity across channels. When manual routing is performed, 
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maximum difference of 295 ps. When analyzing the work by Wu and Xu, a maximum difference of 230 

ps can be observed. Thus, the proposed implementation improves the TDC scalability, since it will secure 

a uniform performance when multiple channels are implemented. Furthermore, the same calibration 

mechanism, for instance a single bin-by-bin calibration table, can be deployed to calibrate multiple TDC 

channels due to its similar delays’ distribution, enabling resource and power savings. 

 

3.7.6. Gray-code TDC Linearity 

The DNL and INL calculated from the code density test results is presented in Figure 3.35 (being the 

default results are presented on the left while the manual routing implementation results are presented 

on the right). As expected, the manual routing scenario shows higher linearity with a maximum DNL of 

0.38 LSB and an INL in the range of 0.01 and 0.7 LSB for the start channel (worst case) (see Figure 

3.35). 

 

Figure 3.35- Gray-Code TDC Linearity Results for Default and Manual Routing 
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3.7.7. Gray-code TDC Precision 

Although calibration can be applied to the TDC channel, given the obtained linearity, high performance 

without calibration is expected. The single-shot precision test results are presented in Figure 3.36 (being 

the default results are presented on the left while the manual routing implementation results are 

presented on the right). A difference of 2.2 ps precision can be seen when bin-by-bin calibration is applied 

to the manual routing implementation. On the automatic routing implementation, the precision difference 

is about 109 ps. Thus, the proposed design flow proved to be efficient in improving the performance of 

the TDC channel without extra resource costs. The trade-off is purely in the design stage which require 

an additional manual step. 

 

Figure 3.36- Gray-Code TDC Single-Shot Precision for Default and Manual Routing 

Again, to reduce the influence of the errors introduced be the waveform generator, another test, in which 

each measure was a 10-measurement average was performed. The precision results are depicted in 

Figure 3.37 (being the default results are presented on the left while the manual routing implementation 

results are presented on the right). Here is important to highlight that the non-calibrated average precision 

of the manual routed TDC was able to surpass the average precision of the calibrated default routed TDC. 

Precision Before Calibration

Precision After Calibration

Precision Before Calibration

Precision After Calibration

40000

30000

20000

10000

60000

40000

20000

C
o

u
n

ts

C
o

u
n

ts



3.FPGA-based TDC Development 

118 

 

Figure 3.37 - Gray-Code TDC Average Precision for Default and Manual Routing 

 

3.8. Discussion 

As expected, the TDL implementation is able to achieve higher performance than the Gray-code 

architecture. However, the low resource utilization of the Gray-code architecture might be interesting for 

applications such as Flash LiDAR. With technology scaling down and new FPGA models arriving to the 

market with higher performances, like the recent Xilinx Ultrascale+, Gray-code TDC architectures might 

reach resolutions suitable for these sets of applications, at very low resource and power consumption. 

On these latter FPGA technologies, the routing impact will certainly be greater, thus manual routing when 

implementing a Gray-code TDC will be mandatory, not only to improve linearity, but also to avoid possible 

scenarios where some steps are not sampled. 

It is also important to notice that, according to the waveform generator datasheet, the jitter when 

outputting a square-wave signal is typically bellow 1 ns, a value way above the resolution of the 

implemented TDCs. Thus, the measured TDCs’ precision is certainly being deteriorated by the precision 

of the waveform generator. 

Although both implemented architectures are purely digital and described using an HDL, the Gray-code 

architecture might not be suitable for ASIC migration. The homogeneous behavior displayed by the 

Gray-code TDC is only possible due to the existence of LUT cells which have a propagation delay unrelated 

to the function that is being implemented. Thus, every bit of the Gray-code will have a similar delay, no 
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meter the complexity of the implemented expression (as long as the number of inputs does not exceed 

the available six inputs of the LUT). In ASIC, each bit will have a different implementation and thus, 

different combinatorial levels, which may lead to some bits having a much longer propagation than others. 

In Chapter 4, a preliminary study on the Gray-code TDC architecture migration is done to understand the 

viability of the port. 

Regarding the TDL, a closer match can be done when implementing in ASIC by replacing a carry stage 

by a standard cell (like a buffer or a AND gate with the inputs shorted). Thus, this architecture seams 

more suitable for the migration. The main challenge will be to minimize the TDL non-linearity due to the 

lack of dedicated routing channels and the expected random placement done by the layout tools. 

Furthermore, in FPGA, a PLL was used to generate the reference clock phases, required by the 

synchronizer block. In ASIC implementation, in order to avoid the implementation of a PLL, the clock tree 

will have to be manipulated to generate the required clock phases. As in the case of the Gray-code TDC, 

in Chapter 4, a preliminary study was done to study the feasibility of the porting. According to the results 

obtained, the architecture to be ported was selected. 

The implementation of FPGA-based TDC prototypes allowed to acquire the needed knowledge to test ToF 

measurement systems, crucial for properly testing the future ASIC prototype. Moreover, the Gray-code 

TDC, although not presenting highest precision, enabled the study of the influence that the routing and 

placement may have during the TDC implementation. These lessons were extremely important when 

porting a TDC architecture from FPGA to ASIC. In FPGA, the dedicated routing and mandatory vertical 

placement of carry blocks automatically minimize these issues, being process variations the main cause 

for the TDL non-linearity. In ASIC, these structured placement and routing must be mimic, otherwise the 

automatic placement and routing may lead to scenarios identical to the Gray-Code architecture (in which 

some steps might never be sampled depending on the manual routing performed). 

 

3.9. Conclusion 

High performance Time-to-Digital Converters are core structures on multiple time-of-flight systems. 

However, these systems are highly hardware dependent and required a custom-made process, which 

increases development time and costs. Recent FPGA technology developments enabled these platforms 

to reach performance values capable of competing with ASIC for some applications. Thus, FPGA-based 

TDC research interest has grew in recent years and many solutions are already available. However, the 
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main problem persists: how to migrate an already validated TDC prototype to ASIC without requiring a 

custom-made cell design? 

This chapter described and presented two different FPGA-based architectures, one targeting the 

maximum achievable resolution, and another focusing on resource saving and scalability, with the 

objective to study TDC systems and analyze how to seamlessly migrate the system from a prototype 

platform to a massive production ASIC. The major difference between the two architectures is the fine 

measurement module, while the remainder modules are the same, thus proving modularity and flexibility. 

All the modules were explained in detail, with higher emphasis on the fine measurement block. The details 

of implementation were discussed, together with all the systems’ constraints and limitations. Functional 

timing simulations were presented to assess the systems’ behavior, and the results explained. 

The two TDC architectures were implemented, tested and characterized. The resolution, precision and 

non-linearity of each architecture was discussed. Based on the obtained results and the hardware 

structure of the implemented architectures, the ASIC migration feasibility was discussed at the end of this 

chapter. Finally, the main lessons learned from the FPGA-based TDC implementation process are 

presented, explaining how these can be important when migrating the proposed TDC architectures to 

ASIC. 
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4. ASIC-based TDC Development 

Several conclusions were drawn from the implemented FPGA-based TDC prototypes, which are relevant 

when migrating or designing a synthesizable TDC architecture for ASIC. The implementation of the FPGA-

based TDL architecture enabled the study of the impact of process variation on the TDC linearity. Also, 

the importance of the skew on the clock network distribution was also demonstrated with the appearance 

of ultra-wide bins on the clock region crossing steps. On the other hand, the Gray-code architecture 

implementation enabled the analysis of the routing impact on the TDC's performance metrics, showing 

that when resolutions as low as a few hundred of picoseconds are targeted, even the small parasitic loads 

introduced by routing can deteriorate the TDC linearity. Finally, the comparison of the two FPGA-based 

architectures implemented showed that a structured placement and dedicated routing enable higher 

performance to be achieved while fostering system scalability and performance homogeneity across 

multiple channels. 

In this chapter, the migration and development process used to implement one of the developed FPGA 

TDC architectures to ASIC is described. Since the ASIC-based TDC architecture being implemented is the 

same as the one implemented in FPGA (described in Chapter 3), no further details about the architecture 

will be given. Only specific migration considerations will be addressed during this chapter. To perform a 

seamless migration between FPGA and ASIC, the ASIC development tools, and design flow are analyzed 

to understand the required changes. This analysis focus on the Register Transfer Level (RTL) generated 

by the ASIC tools, to understand the limits and compromises of each of the FPGA-based architectures 

prototyped. The architecture which achieved better results was selected for layout and fabrication. The 
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entire design flow process of the selected architecture is described in detail, including all the developed 

scripts used to configure the ASIC tools. 

The Chapter is structured as follows: Section 4.1 describes the development environment, the technology 

library used to implement the ASIC TDC and a comparison between the adopted digital design flow and 

typical one; Section 4.2 presents the analysis on the migration of the FPGA-based TDC architectures, 

discussing the obtained results and identifying the selected architecture for porting; the synthesis scripts 

and procedures are explained in Section 4.3; the layout considerations and scripts are described in 

Section 4.4; Section 4.5 presents the developed testbenches and the results from time simulation; the 

tape-out process is briefly addressed in Section 4.6; finally, Section 4.7 summarizes the Chapter. 

 

4.1. ASIC development environment 

There are multiple tools, from multiple vendors, that assist designers on digital, analog and mixed-signal 

integrated circuit development. These IC design tools usually offer two different interfaces: a TCL scripting 

interface, that allows the user to navigate throughout the multiple design phases using command line 

inputs (useful for automating the design flow); and a graphical interface, that guides the user throughout 

the design phases and allows for more precise manual changes and to visually analyze the design 

structure and statistics. 

When the same vendor tools are used across all design phases, the border between phases is blurred 

and completely abstracted to the user. However, when tools from different vendors are used in different 

design stages, the user must understand the various outputs and inputs that are required for all stage's 

transitions. In the integrated circuit industry, Synopsys’ Design Compiler is considered one of the best 

design synthesis tool, while Cadence’s Innovus (former Encounter) and Virtuoso are the ones most 

frequently used for layout planning and tape-out. Thus, a multivendor design flow is usually adopted. In 

the following sections, a brief description regarding the digital IC tools used in this Thesis is presented. 

Since the TDC performance metrics depend heavily on the hardware circuit, it is also important to 

understand the technology in which the TDC is being implemented. Thus, Section 4.1.2 describes the 

Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 µm 6-metals process technology. 
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4.1.1. Development tools 

A multivendor development environment was adopted, following the current industry trend. The Verilog 

analysis and RTL synthesis were done using Synopsys’ Design Compiler. The Layout of the obtained 

Netlist was performed using Cadence’s Innovus, and SimVision was used during behavioral and functional 

simulations. The pad ring definition and final DRC and LVS checks were done using Cadence’s Virtuoso. 

Design Compiler (DC) 

According to Synopsys Design Compiler datasheet [4.1], DC Ultra is a RTL synthesis tool which performs 

concurrent timing, area and power optimization to guarantee better time Quality of Results (QoR). Apart 

from analysis, elaboration, compilation and static timing analysis of the developed design, DC Ultra offers 

a set of graphical interfaces and tools to help study the design’s critical paths and possible congestion 

areas. On later versions of the software, cross-probing between the RTL source code and other design 

views (like the Netlist schematic view) was introduced, enabling designers to have better control and 

understanding regarding the optimizations and design changes that are being performed by the tool, and 

efficiently identify possible design issues in early stages of the development [4.1], [4.2]. 

The main optimization operations performed by the tool are based on arithmetic changes, logic 

duplication (to reduce the high fan-out loads on critical paths), design ungrouping (to reduce silicon area 

and achieve better timing performance), buffer insertion on high fan-out nets (to improve the total negative 

slack), and register retiming (which can also add pipeline registers on long combination paths) [4.1], 

[4.3]. The DC Ultra also enables the automatic addition of scan registers for test and debugging purposes. 

Innovus 

Genus is Cadence’s framework for digital IC design. From the set of tools included, Innovus is used in 

the layout step (place and route). One of the main distinctive features of this tool, when compared to its 

competitors is the placement engine, GigaPlace. The GigaPlace follows a slack driven approach, as 

opposed to the traditional “time-aware” approach [4.4], [4.5]. According to Cadence [4.4], this enables 

a concurrent convergent optimization of both electrical and physical metrics. The new placement engine 

builds slack models considering the design floorplan, routings topologies, congestion and other electrical 

constraints, and optimizes the design placement. 

Another distinctive feature is the clock tree synthesis (CTS) engine. In order to improve useful skew and 

merge physical optimization with clock tree synthesis, Innovus introduces a new CTS engine named Clock 
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Concurrent Optimization (CCOpt). The optimizations are based on true propagated clocks and consider 

on-chip variations (OCV) [4.4]. 

Apart from placing and routing the design, the tool also offers verification and validation options in order 

to test the implemented layout against the technology’s DRCs. Similar to Synopsys’ tools, Innovus has a 

TCL interface and a graphical interface, in which all the design characteristics can be inspected in detail, 

including, among others, power, electromigration, routing congestion analysis, clock tree debugging, 

design hierarchical view search. 

SimVision 

SimVision, also known as NCSim, is a Cadence software tool for debugging digital, analog, and 

mixed-signal designs [4.6]. It supports testbenches written in Verilog, SystemVerilog, VHDL and SystemC 

languages (or a combination of these). This tool offers multiple graphical functionalities that simplify the 

debugging process and can be used for behavioral and functional simulation. It includes support for 

functional timing simulations using standard delay format (SDF) files, ideal to validate a post-layout design. 

Virtuoso 

Virtuoso is an analog and mixed-signal design environment that offers multiple capabilities for electrical 

analysis and verification [4.7]. A graphical user interface and a TCL-based command line supports the 

development, when using this tool. In this Thesis, Virtuoso was used solely to create the pad ring for the 

developed chip, to perform the last DRC and LVS verifications and validations, and to tape-out the design. 

 

4.1.2. Technology adopted 

Depending on the technology adopted, some files required by the IC design tools to perform various 

verifications might not be available. This limits the depth of the analysis that can be performed. For 

instance, if only the worst-case capacitance tables (captables) are available on a technology pack, then, 

a best-case scenario analysis cannot be performed. Furthermore, if the layout of the digital cells is not 

available, it is not possible to perform a complete Design Rules Check (DRC) and Layout Versus Schematic 

(LVS) verification. 

The set of available technologies for ASIC design was limited to the AMS 0.35 µm technology package 

and the TSMC 0.18 µm technology package (the ones available at the International Iberian 
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Nanotechnology Laboratory). The development package selected was the TSMC 0.18 µm, since it was 

expected that the lower node technology would result in higher performances to be achieved on 

synthesizable TDCs. 

There are three different available libraries with different routing resources namely, 4-, 5-, and 6-metal 

layers, and multiple combinational and sequential logic cells. In the adopted TSMC package, the core 

library cells are always designed using metal layer 1. The 6-metal layers library was used to implement 

the proposed ASIC-based TDC. The technology package also includes Engineering Change Order (ECO) 

cells (designed using metal layers 1 and 2) to enable minor changes to the design after tape-out. 

According to TSMC documentation, the digital standard cell library is compatible with a vast set of design 

tools. The development package is described in multiple formats, like the .db and .lib format required by 

Synopsys Design Compiler, and LEF files, required by layout tools. Moreover, these libraries are described 

in multiple timing models (like Non-Linear Delay Model - NLDM- and Composite Current Source Model - 

CCS), which allow the user to reach a compromise between the tool’s run time and static timing analysis 

precision. Each timing model can be described based on the best, worst, or typical case scenarios. 

A timing model is composed by tree models: the driver; the receiver; and the net. Driver and receiver 

models are characterized using a circuit simulation, like SPICE simulator LTSPICE. The wire model can 

be extracted from the layout using the various metal, via and contact parameters (among others), or it 

can be estimated. Only NLDM and CCS timing models are available in TSMC 0.18 µm technology package 

used. Thus, the other timing models will not be described in this Thesis. NLDM estimates cells’ delays 

and transition times for the driver model based on six points (three for the input and three for the output). 

These points are: in/out slope lower threshold; in/out slope higher threshold; and in/out delay threshold. 

The receiver model is characterized using a single capacitor (load). For technology nodes above 65 nm, 

this model suffices for proper static timing analysis. However, when targeting 65 nm technology nodes 

or lower, the 3-point schema used by NLDM is not sufficient to properly reflect the circuits’ non-linearity 

during static timing analysis. Furthermore, the miller effect on the receiver side, which in small impedance 

nets dominates the delay calculation, is not captured by NLDM. CCS models provide better accuracy 

when the net impedance is high, when compared to the driver resistance, since it models the driver as a 

current source. Regarding the receiver model, CCS is very similar to NLDM. However, the capacitance is 

divided in two, giving the model more granularity and enabling it to account for the miller’s effect. Since 

0.18 µm technology node is being used, the NDLM models were used in this Thesis. 
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During synthesis only the .db files are required for static timing analysis, since placement information is 

still not available, and routings are considered ideal. However, during layout, in order to perform proper 

time closure, there are additional files that must be provided. These files comprise: .lef (which contains 

the physical characteristics of the library being used); worst and best cases timing model libraries, for 

multi-corner multi-mode (MCMM) analysis; capacitance tables (.captable), used to model the interconnect 

parasitics of the design. Ideally, a worst- and best-case capacitance tables should be provided to the 

layout tool. However, the TSMC kit only provides the typical-case capacitance table file. Therefore, the 

same file had to be used when creating the time analysis corners, used during layout. 

 

4.1.3. Design flow 

When implementing digital systems, the traditional design flow can usually be automated by the design 

tools. As can be concluded by the aforementioned description of the design tools, the focus is on area, 

power and timing optimizations, which more often than not lead to changes on the generated Netlist when 

compared to the inputted RTL design. Although this might be advantageous to several designs, there are 

scenarios where it can lead to erroneous circuit behavior. Thus, when implementing a synthesizable TDC 

in ASIC, some changes must be performed to the typical design flow (see Figure 4.1). Typical HDL designs 

are technology independent, however this is not the case of a HDL TDC design. Thus, a previous study 

of the technology to be used is required to select the logic elements that will be selected to build the fine 

stage measurement. Afterwards, depending on the TDC architecture, a set of additional constraints must 

be loaded during synthesis to avoid the optimization of certain parts of the design (specifically if delay 

lines are used). These optimization constraints must also be included in the synthesis exported constraints 

file. As verified during the implementation of the Gray-code architecture in FPGA, routing has great 

influence on the TDC linearity. Therefore, the placement and routing of the design during layout phase 

must also be constrained, in contrast to the traditional time-driven placement and routing, implemented 

by the IC design tools. The remaining of the design flow is similar to the typical one. Figure 4.1 presents 

the digital design flow adopted during the migration of the FPGA-based TDC architectures. The additional 

synthesis’ and layout’s constraints used are explained in detail in Sections 4.3 and 4.4. 
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Figure 4.1 - Adopted Design Flow 

 

4.2. TDC architecture migration 

A preliminary study aiming to understand which one of the implemented FPGA-based TDC architectures 

would attain better performance when migrated to ASIC was made. This study was based on the obtained 

synthesized Netlists and the information available on TSMC 0.18 µm technology datasheet for the typical 

operation scenario. During this analysis, routing and placement was treated as ideal, i.e., not influencing 

the steps’ propagation delays. 

 

4.2.1. TDL preliminary results 

The FPGA-based TDL TDC was implemented in a Hardware independent language, however it has a direct 

reference to a technology dependent cell responsible for creating the delay line. Thus, this HDL code 

must be changed to instantiate a cell available on the technology library being used. The TSMC digital 

standard cells library was analyzed to select which cell should be used in the TDL implementation. Since 
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the same TDL is propagating the start and the stop signals, ideally the cell should present a similar low-

to-high and high-to-low transition time from input to output. This type of characteristic is common on cells 

used to implement clock trees. Therefore, the set of clock buffers, inverters, and gates were analyzed. 

The cell that theoretically would offer better resolution would be a clock inverter. However, since the 

developed decoders expect a thermometer code with a sequence of 1s followed by a sequence of 0s (or 

vice-versa), if inverters were to be used, each TDL step would have to be comprised by two inverters, 

otherwise the decoder blocks would have to be changed. Another solution would be to use a clock AND 

gate with short-circuited inputs. Nevertheless, both solutions have higher propagation delay than the one 

obtained when a single clock buffer per step is used (see Table 4.1). So, the clock buffer with lower 

propagation delay and sufficient fan-out to supply the sampling flip-flop and the next step clock buffer was 

selected, since it was able to comply with the resolution requirements established for this Thesis 

application. According to the TSMC typical case datasheet, the CKBD0BWP7T has the lowest low-to-high 

and high-to-low propagation delays and fulfils the fan-out requirement. A comparison between the 

generate block used to implement the delay line in FPGA and the ASIC one is presented in Figure 4.2. 

Table 4.1 - TSMC clock digital cells propagation delay analysis 

Digital Cell Connection Schema Total Fanout Capacitance (pF) 
High-to-Low 
Propagation 
Time (ps) 

Low-to-high 
Propagation 
Time (ps) 

Inverters 

(CKND0BWP7T) 

 

 

0.007966 (one stage) 

0.003597 + 0.007966 (two stages) 
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110.3 

68.8 

121.9 

AND gates 
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0.009842 141.8 126.8 

Buffers 
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0.008506 
107.1 105.1 

 

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D



4.ASIC-based TDC Development 

130 

 

Figure 4.2- FPGA vs ASIC HDL Comparison 

The modified code was synthesized, avoiding the delay line optimization, according to the process 

described in Section 4.3. Analyzing the fine measurement module in detail, it is possible to verify the 

correct delay line generation (see Figure 4.3). Accordingly, a good estimation for the expected TDC 

performance can be obtained from the TSMC datasheet, using equation (4.1) and (4.2). 

 

Figure 4.3- TDL Synthesized Netlist Overview 
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𝑡𝑃𝐿𝐻 = 0.0743(𝑛𝑠) + 3.6185(𝑛𝑠/𝑝𝐹) ∗ 𝐶𝑙𝑜𝑎𝑑(𝑝𝐹)
, (4.1) 

𝑡𝑃𝐻𝐿 = 0.0785(𝑛𝑠) + 3.3704(𝑛𝑠/𝑝𝐹) ∗ 𝐶𝑙𝑜𝑎𝑑(𝑝𝐹)
, (4.2) 

where tPLH and tPHL are the low-to-high and high-to-low propagation delays (in nanoseconds), respectively, 

and Cload is the total load being driven by the cell (in picofarad). 

Considering that the clock buffer used has an input capacitance equal to 0.004137 pF and that the 

generated flip-flop D pin has a 0.004369 pF capacitance, the typical propagation delay of each step is 

approximately 105 ps and 107 ps for low-to-high and high-to-low transitions, respectively. These results 

comply with the defined LiDAR application’s requirements, making the migration of this architecture 

feasible. The migration process can also be fully automated, requiring only a change in the instantiation 

of the cell used to build the delay line, if a different technology is desired. Regarding linearity, it is known 

that longer delay chains tend to have its performance degraded. This is mainly caused by process 

mismatch (something that cannot be controlled by design), temperature and voltage variations (which 

can be minimized by layout). Thus, if this architecture is to be ported to ASIC, the layout will have a 

significant impact on the system’s linearity. The layout consideration will be further discussed in Section 

4.4. 

 

4.2.2. Gray-code TDC architecture preliminary results 

The Gray-code TDC architecture does not need any Verilog change before being synthetized by the ASIC 

tools. It also does not require any special attention regarding optimization constraints when being 

synthesized. However, contrarily to what happens in FPGA-based implementations, where each Gray-code 

bit was generated by a single LUT, the resultant Netlist in ASIC is composed by multiple logic gates, 

arranged in a combinatorial loop, being the different Gray-code bits extracted at different points of the 

circuit (see Figure 4.4). Thus, while in FPGA every LUT has the same propagation delay independently of 

the truth table implemented, in ASIC development the various paths of the Gray-code combinatorial logic 

Netlist must be analyzed. 
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Figure 4.4- Gray-Code TDC Channel Synthesized Netlist Overview 

When analyzing the Netlist to determine the estimated propagation delay of each step, it must be 

considered that, at any time, from one step to the next one, only paths that does not change multiple 

Gray-code bits must be considered as valid. Using the detailed Netlist schematic of the start channel fine 

measurement module, presented on Figure 4.4, and the transition from the code 00001 to 00011 as an 

example, only the paths “AOI221D0-INVD0-OAI31D2” and “AOI221D0-INVD0-ND3D1” are valid. The 

other ones like, for example, “AOI221D0-NR2D0-CKND2D1-IAO22D1-NR2D0-XOR2D0-MAOI22D0-

OAI31D2”, does not corresponds to a valid system behavior, since it would generate multiple bit changes 

on the outputted Gray-code. For brevity, the equations used to calculate the propagation delay of each 

logic cell (depicted in grey color at the top of each cell in Figure 4.4) are not presented. However, the 

process is analogous to the one used in the TDL architecture. First, the input and output capacitance for 

each cell pin is annotated. Then, for each cell, the output load is calculated and the value is used in the 

propagation delay equation of the cell (obtained from the TSMC standard digital library datasheet). With 

the propagation delay of each cell calculated (using the typical-case datasheet values), the Netlist paths 

are analyzed for each step, and the propagation delay of the cells contained in the path are added. It is 

important to notice that the time of a step is equal to the propagation delay of the bit that changes to the 

following bit to change, i.e., considering the sequence 00001-00011-00010, the step size of the code 

00011 will be equal to the time required for the 4th bit (the one that changed from 00001 to 00011) to 

generate a change in the 5th bit (the one that changes from 00011 to 00010). Table 4.2 presents all the 

Gray-code steps delays and corresponding path according to the presented Netlist.  
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Since the goal is not to obtain a detailed characterization of the TDC channel, but rather an overview of 

the performance and architecture limitations, although some steps change at the high-to-low transition, 

the delay calculations were done considering the propagation delay of a low-to-high transition. 

Table 4.2- Gray-Code Path Propagation Delay Analysis 

Gray-code Step Path Propagation Delay (ps) 
0 U1-U9 560 
1/9/17/25/5/13/21/29 U10-U11 411 
2/10/18/26 U9 383 
3/19 U10-U14-U6 554 
4/12/20/28 U7-U8-U9 757 
6/14/22/30 U20-U9 441 
7/23 U12-U17-U3-U4 718 
8/24/16 U5-U7-U8-U9 1021 
11/27 U10-U13-U6 387 
15 U12-U16-U18-U19-U2 806 
31 U12-U16-U19-U2 712 

 

The analysis of the results presented on Table 4.2 demonstrate that eleven different paths are responsible 

for Gray-code changes (three more than in the FPGA case). Moreover, there is a considerable step delay 

variation, with a maximum variation equal to 638 ps. This value is even higher than the worst case 

scenario obtained in the FPGA simulation, which already included routings. Another important aspect to 

highlight is the complexity of the routing that will be required to be managed during the layout step. There 

are multiple insertion points per step and no routing pattern (when compared to the TDL case where the 

routing from one step to the next one followed a well-defined pattern). 

In conclusion, although performance loss was expected due to the process technology in which the TDC 

is being fabricated (the same happened in the TDL architecture), the migration of the Gray-code TDC 

architecture to ASIC introduces multiple other issues that do not exist in FPGA-based designs. The 

following section compares the preliminary results from the TDL and Gray-code architectures. 

 

4.2.3. Discussion 

When analyzing the preliminary results of the implemented TDCs, it is clear that the performance of the 

Gray-code architecture is deteriorated when migrated to ASIC. This is mainly due to the dissimilarity of 

the combination logic for each Gray-code bit. While in FPGA-based implementation, a LUT cell with a fixed 

propagation delay (regardless of the implemented truth table) is available, in ASIC-based implementation 

logic cells must be used which, depending on the logic equation to implement, may have different levels 
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of combination logic, resulting in different propagation delays. Furthermore, although in the best-case 

scenario (the one with less combination logic stages), the achieved resolution is circa to the one obtained 

in FPGA, the worst case path presents a propagation delay in the range of 1 ns. This propagation delay 

discrepancy between stages also has a negative impact on the overall TDCs linearity, forcing the 

implementation of an extra calibration mechanism, something that in FPGA-based design was not 

necessary. One can argue that additional combination logic could be added to the fastest paths in order 

to achieve a uniform delay in each Gray-code bit calculation. However, this solution would imply a 

resolution in the range of 1 ns. Please note that one of the requirements of this Thesis was to achieve a 

resolution and precision under 500 ps, in order to cope with the LiDAR requirements. 

Regarding the ASIC-based TDL TDC implementation, due to its structure, a stable step propagation delay 

is expected across the delay chain. This stability may only be compromised by the parasitic loads 

introduced by the routing and PVT variations. Since the process technology in use to implement the TDC 

in ASIC is much bigger than the one used to fabricate the FPGA used during prototyping, the reduced 

resolution was expected. However, when considering the typical operation scenario for the selected clock 

buffer, the 105 ps (low-to-high) and 107 ps (high-to-low) transition time obtained are enough to comply 

with the LiDAR’s requirements. The main drawback of the TDL architecture is its larger layout area and 

power requirements when compared to the Gray-code architecture. Nevertheless, the TDL higher linearity 

and superior resolution justify its implementation as opposed to the Gray-code. Regarding portability, the 

TDL forces the editing of the Verilog code block responsible for defining the delay line (which was not 

required in the Gray-code architecture since it was described in a technology independent fashion). 

Nevertheless, this change can be scripted using a define statement in the Verilog TDL description. Thus, 

a full automated migration was still feasible with minimal user intervention. 

 

4.3. Synthesis 

The first step in the design flow, is to run synthesis to obtain a technology dependent netlist from the 

technology independent code. Again, as in the case of the FPGA design flow, the tool must be configured 

to avoid unwanted optimizations. While in the case of Xilinx tools this could be done inside the Verilog 

code file, using the dont_touch keyword, when using Design Compiler, it is necessary to use a TCL 

command which can be included in a script that controls the flow of the synthesis process. The TCL 

command used is the set_dont_touch followed by the name of the cells that should not be considered 
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for optimization (as depicted in Figure 4.5). In the ASIC-based design, both the TDL delay elements and 

the TDL sampling registers were constrained. Otherwise, since the input of the delay chain will always be 

equal to its output, the synthesis process would remove all the inserted buffers as well as its sampling 

registers (similarly, to what happens in the FPGA synthesis case). There is no need to constrain the start 

and stop storing elements since the tool will not optimize them (since the sampling stage registers are 

not optimized). The remainder of the design constraints, regarding clocks definition for static timing 

analysis, and input and output ports delays and driving capacitances, are loaded using a Synopsys Design 

Constraints (SDC) file. 

 

Figure 4.5- TCL Command for TDL Optimization Constraint 

Since different vendor tools are being used, the information regarding the optimization constraints must 

be registered and imported to the layout tool. This can be done using the SDC file. Since the synthesis 

process changes the name references of the design elements, a new SDC file, based on the one uploaded 

and including the optimization constraints must be generated. This is done using the write_sdc TCL 

command to create the base SDC file and then, the optimization constraints can be appended using the 

echo command with the text set_dont_touch followed by the new name of the TDL cells, obtained using 

the get_cells command option, as depicted in Figure 4.6. 

 

Figure 4.6- TCL Command for Exporting the TDL Optimization Constraints 

The created synthesis scripted flow goes as follows: 

1. First, the target library to use during synthesis is defined (in a .db format). The worst-case NLDM 

timing library information was used during synthesis. Thus, the static timing analysis and circuit 

optimizations done by the tool ensure proper circuit operation, even in extreme, corner cases, 

scenarios. 

2. After proper library configuration, the directory containing the source files of the design is 

searched and the design files are loaded and analyzed. After analysis, the design is elaborated, 

creating a first, still technology independent, Netlist. This view enables to do preliminary checks 

regarding the developed code. No optimization is performed until this point. Thus, one can verify 

the direct map between the developed code and the hardware generated. 
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3. Third, before compiling the design to obtain a technology dependent Netlist, the design 

constraints must be loaded to secure proper static timing analysis and give additional information 

to the tool (so that proper buffer insertion, logic duplication and other optimization tasks can be 

performed correctly). During this step, the mentioned optimization constraints, related with the 

TDL generation, should be added. 

4. To eliminate scenarios where different modules have elements with the same name, the uniquify 

command should be used to solve the design ambiguities. 

5. The design compilation is done using the compile_ultra command with the flag  -no_autoangroup. 

This secures that the design hierarchy is maintained during compilation and that inter-modules 

optimizations are not performed. Instead, optimization is applied individually to each module as 

if the module was the only one in the design. 

6. With the technology dependent Netlist created, a set of commands is used to change the names 

of the Netlist elements according to the Verilog naming convention. A second compile_ultra 

command invocation is done with the flags -incremental and -area_high_effort_script to try to 

obtain an improved Netlist with lower area consumption. 

7. The check_design command is launched in order to the tool to validate the Netlist and, if there 

are no issues, the Netlist is written to a file in a Verilog format. 

8. Timing, area and power reports are exported to further analyze the obtained Netlist performance. 

9. Finally, the loaded constraints are merged with the TDL optimization constraints and a new 

standard delay format file (.sdf) is written and exported. 

As could be seen in Figure 4.3, the Netlist schematic kept the hierarchy defined in the Verilog code, and 

the fine stage measurement module was not removed by the optimization algorithms, as intended. 

 

4.4. Place and Route (Layout) 

Placement and routing have great impact on system’s performance, thus, before starting the Layout step, 

it is important to keep in mind the system’s requirements and modules structure. In the proposed 

architecture, the synchronizer and fine measurement blocks demand for special attention during Layout. 

The remaining modules of the proposed architecture are typical digital blocks that do not required special 

consideration. The first aspect to address is the need for multiple reference clock phases, to assure a 

proper synchronizer block functioning. In FPGA-based development this was achieved using a PLL block. 
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In ASIC-based development however, since the phase differences that are needed are spaced, and the 

precision required for the phase generation is relaxed, it is possible to manipulate the clock tree generation 

to create these phases instead of implementing a PLL, which would increase system’s complexity, power 

consumption and layout area. As discussed on Section 4.2.1, the layout phase will also have great impact 

on the TDC overall performance and linearity. Thus, mimicking the FPGA dedicated routing paths and 

placement could result in better TDC performance. However, manually placing and routing a delay line 

composed by many steps is a monotonous task that requires massive user intervention during the design 

flow (as in the case of custom cells design). To automate the process, Cadence’s Innovus Structured 

Data Path (SDP) functionality was explored to constraint the fine measurement module placement. 

The following sections will introduce the concepts related with Structured Data Path and Clock Tree 

Configuration, presenting the adopted approach and script files created that need to be loaded and 

integrated into Innovus design flow to enable the layout process automation. 

 

4.4.1. Structured Data Path (SDP) 

According to Cadence’s Innovus user guide [4.5], the Structured Data Path (SDP) capabilities allow for 

better performance, power and layout  rea to be attained. This can be done using an SDP TCL script, 

using the graphical SDP user interface, or by loading an SDP file into Innovus with information regarding 

the relative placement of the data path to constrain. Cadence advocates that SDP should be used when 

the design has standard cell columns and rows that need to be aligned, when a performance increase is 

required, or when time to market does not allow for a full custom design approach. Framing the proposed 

TDC architecture in this context, the application of the SDP functionality to perform the TDC layout allows 

the alignment of the multiple TDL steps automatically, without recurring to a custom manual flow. 

Using the SDP functionality it is possible to concurrently place standard cells and SDP constrained cells, 

achieving optimal placement while providing a uniform environment for routing and timing analysis. 

Furthermore, the SDP ensures uniform routing among the constrained cells, which is a much-appreciated 

feature when designing TDL, since it guarantees a homogeneous routing parasitic effect along the delay 

chain, reducing non-linearities and contributing for a uniform step delay. Multiple SDP files can be created 

in order to experiment different placement topologies and study their effect on routing congestion and 

timing. Another important capability of SDP is the implementation of high-speed register columns, which 

help on reducing the clock skew and insertion delay (latency), since the routings between the clock drivers 
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and the registers are shorter and more uniform. This also allows for a more precise clock driver selection 

because of the known routing and register load. Moreover, electromigration and IR-drop 

(current(I)*resistance(R) - voltage drop) on power rails can be reduce since the registers are grouped in 

columns. 

However, the usage of the SDP requires detailed design knowledge in order to achieve the best possible 

results. Since Innovus does not automatically recognize SDP elements, these must be scripted based on 

naming conventions, respecting the design´s hierarchy and namespaces. Nonetheless, it is still less 

demanding than the full custom design process typically used to implement TDCs in ASIC. 

Typically, the SDP information is added into the layout after importing the design and defining the floorplan 

(layout area, power planning and Macros placement). After defining the SDP constraints, SDP and 

standard cell placement can be performed. Optionally, after running the placement command, SDP 

columns and rows can be edited to explore alternative solutions. Upon conclusion, the typical digital layout 

flow can be used. 

TDL SDP Placement Analysis 

Based on the presented SDP capabilities, its application to migrate the TDL enables to address all the 

concerns identified in Section 4.2. Namely, dedicated and uniform routing and automated layout. 

Furthermore, this approach enables to mimic the Carry4 structure available in FPGA platforms, which is 

one of the reasons for the popularity of TDLs in FPGA platforms. 

As stated in the previous section, the SDP demands for detailed knowledge of the design being 

implemented. This includes the dimensions and pin locations of the cells being used. In extreme cases, 

this may also include cells’ blockages. Only with this information can the placement and routing be 

effectively predicted when structuring the SDP file. The TDL TDC architecture has three different cells 

instantiations, the clock buffer used as the delay element (CKBD0BWP7T), the sampling flip-flops 

(DFQD0BWP7T), and the storing flip-flops (EDFKCND0BWP7T). The detailed dimensions and pin 

locations of these cells are depicted in Figure 4.7. Figure 4.8 depicts a detailed view of two TDL steps. 
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Figure 4.7- TDL's Cells Layout and Dimensions (units in µm) 

 

Figure 4.8- Detailed View of Two TDL Steps 

Multiple SDP topologies were analyzed in order to find a balance between the TDC channel performance 

and the overall layout area, power and timing optimization. The first decision is to choose whether the 

TDL should follow a horizontal or vertical layout. Two drafts were made to study how the TDL disposition 

would affect the remaining system (see Figure 4.9). 
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Figure 4.9- Vertical (top) and Horizontal (bottom) Study of the TDL Layout 

A pure horizontal TDL would require a core width of 4014 µm, which would result in a poor layout ratio, 

making it difficult to properly place and route the remaining system and achieve time closure. Moreover, 

using the horizontal approach it is not possible to design the TDL to be routing and area optimized 

simultaneously. If uniform routing is targeted (the scenario depicted at the bottom of Figure 4.10), an 

approximately 72.45 µm2 per TDL step would be wasted. On the other hand, if area optimization is 

targeted, the routing between stages would get compromised due to pins being harder to access (depicted 

at the top of Figure 4.10). Furthermore, both horizontal approaches would compromise the clock signal 

distribution, resulting in a complex clock tree design. In order for the horizontal approach to be feasible, 

the TDL would have to be folded. Although the approach seems feasible, considering the used cells, if 

the folded horizontal approach implementation is analyzed in detail, it is possible to conclude that this 

solution would increase the routing complexity between the TDL and the decoding stages while sharing 

the clock distribution issue identified for the non-folded horizontal approach. 
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Figure 4.10- Horizontal Layouts Detailed View 

The vertical layout offers a more advantageous solution for all scenarios. As in the horizontal approach, 

the TDL SDP topology can focus routing or area optimization. When targeting routing optimization 

(depicted on the left of Figure 4.11), the unused area corresponds to 32.928 µm2 per step (55% less than 

in the horizontal topology). The vertical layout ratio is also better when targeting routing optimization. A 

maximum of 2010 µm height is required, if the TDL was not to be folded (50% less than the width required 

for the horizontal TDL). The other alternative, depicted on the right in Figure 4.11, focusing the area usage 

optimization, requires a 1050µm height to implement a non-folded version of the TDL, resulting on a 

1050*850 µm layout (targeting the routing optimization would result in a 2100x425 µm layout). Both 

layouts are feasible, however, given the maximum chip size limitation of 2.5 mm for the ASIC fabrication 

run provided by TSMC, the routing optimized solution would constrain the chip pad ring design. 
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Figure 4.11- Vertical Layouts Detailed View. Optimized for Routing and for Area 

Although it is possible to fold the TDL, the routing in the folding point would generate a non-uniformity in 

the TDL steps, similar to what happens with ultra-wide bins in FPGA platforms when crossing clock 

domains. Moreover, the folded TDL compromises the decoder blocks performance, which in turn 

deteriorates some TDL routings (see Figure 4.12). Analyzing the layout area of the optimized SDP solution, 

it is possible to conclude that the routing patterns that will be generated automatically will be very similar 

to the ones obtained when targeting routing optimization. Thus, the approach depicted on the right side 

of Figure 4.11 was selected for SDP implementation. Not only the routes follow a well-defined pattern, 

since layout ratio is balanced, but also the remaining system and clock tree generation can be easily 

placed and optimized, enabling power savings and easier time closure. Moreover, there is no need to fold 

the TDL, therefore the decoder blocks can be placed in a way that enables good performance while not 

interfering with the TDL routings. 

SDP File Structure 

In order to implement the defined structure presented on the previous section and to load the SDP 

placement constraints information to Innovus, a file following a standard structure must be created. This 

file contains the data paths’ relative placement information, supports hierarchical constructs and wildcard 

for the design’s instance names, allow pre-place location, orientation, flipping and alignment constraints 

to be defined, and supports numerical bus bit range and order sequence as part of an instance name. 

The final SDP file used to constraint the implemented TDL is depicted in Figure 4.13. 
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Figure 4.12- Influence of Folding the TDL on the Routing 

 

 

Figure 4.13- Structured Data Path File used to Constrain the TDL Module 

A total of sixteen keywords are available when defining an SDP file. In the presented example datapath, 

row, and column keywords specify the data path structure, row group and column group names 

respectively. The row and columns names defined must be unique within the same or across different 

datapath groups. The origin keyword is used to define the lower left floorplan coordinate of the data path 

structure. Design cells are declared using the keyword inst. Multiple cells can be specified with a single 

inst keyword using wildcards (as depicted in Figure 4.13, where all the cells with its name starting by 
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tdl_inst/delay_cell_ will be included in the SDP constrain). Note that the instance name must follow the 

hierarchy defined in the design to properly identify the targeted cell. The justifyBy defines the anchor point 

used when aligning the SDP group or cell. If the justifyBy property is not defined in a group or cell, the 

value used is the one defined in the hierarchical group immediately above (parent group). Finally, the 

skipSpace keyword defines a space that should be empty. When defined in a column, this value 

represents the number of rows to skip. When specified in a row, the skipped value is equal to the specified 

number times the pitch of the first vertical layer, i.e. the number of Metal 2 tracks to skip. Thus, if a Metal 

2 track has 1 µm width, and a skipSpace 10 is specified inside a row, then a 10 µm space between the 

previously defined row element and the next row element, will be left empty. To specify that the value 

used in the skipSpace definition should be interpreted in microns instead of the number of Metal 2 tracks, 

the keyword micron can be used. If a group of instances needs to be placed with space between them, it 

is possible to use the spreadGroup keyword followed by the value to skip and the cells to instantiate. 

It is also possible to specify the orientation of the cells using the orient keyword and to align the placement 

of the cells by pin name using alignByPinName. This last keyword allows the router to generate a straight 

routing path connecting all defined cell instances. Thus, this keyword is typically used when defining high 

speed register columns, to align their clock pins. 

 

4.4.2. Clock Tree Configuration 

Since version 14.2, the clock tree synthesis engine used in Innovus is the Clock Concurrent Optimization 

(CCOpt) which performs Clock Tree Synthesis (CTS) using timing driven useful skew and Data path 

optimization simultaneously, as opposed to the CK engine, used in older versions of the software, which 

performed the traditional global skew balancing based on a FE-CTS specification [4.5]. 

The new engine enables for smaller and highly efficient clock tree generation based on the timing 

constraints files. It is also possible to include additional constraints to the clock tree generation using the 

Innovus’ command line. The set of constraints created can then be merged in a clock tree specification 

file. This file enables the user to analyze an overview of the clock tree prior to its implementation. 

Moreover, CCOpt flow merges post CTS optimization as part of its final internal optimization process. 

According to Cadence’s Innovus user guide [4.5], to properly operate CCOpt requires high quality 

multi-mode timing constraints, with clocks configured in ideal clocking mode, i.e. estimated clock network 

latency from the SDC constraints. The main CCOpt configuration steps are: 
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• Load post-CTS timing constraints, since the CCOpt flow performs post-CTS optimization these 

must be defined prior to the call of the TCL command that runs the CTS (typically this step was 

done only after the CTS was generated and was used to analyze the system with propagated 

clock timing models instead of the ideal scenario). 

• Configure CCOpt mode settings, like the active analysis views. 

• Define clock routing types (optional). This step is used to specify routing rules, usually referred 

as Non-Default Routing rules (NDRs), like different widths and shielding for the clock nets. These 

rules can be added using a LEF file or the add_ndr TCL command. 

• Configure the library cells to use on the CTS generation. 

• Configure maximum transition and skew target. 

With the structure of the TDL defined and the global clock configurations done, before creating a clock 

tree specification (used by the CCOpt to generate the design’s clock tree), further configurations must be 

done to guarantee the minimum skew between the TDL’s sampling flip-flops. The clock tree configuration 

must also comprise constraints that enable the generation of two different reference clock phases for the 

synchronizer. This can be achieved by configuring different skew groups and respective insertion delay 

parameter. First, a global skew group was created, to target all the cells of the design, with a 500 ps 

insertion delay. In order to create the phased clocks, two skew groups were created with an insertion 

delay 1.5 ns and 2.5 ns, targeting only the coarse counter 1 and 2, respectively (see Figure 4.14). Thus, 

a 1 ns phase between clocks was created (equivalent to a 5° and 10° phase regarding the reference 

clock). For these clocks, no maximum skew was defined, since each group was composed by 16 flip-flops. 

Therefore, it was predictable that a single clock buffer would be used by the clock tree generator, resulting 

in a reduced skew value induced by the routing mismatch. These new skew groups constraints override 

the previously defined global skew group just for the targeted elements. Finally, a fourth skew group, with 

the same insertion delay of the global skew group is created for the TDL registers. This groups constraints 

the targeted skew to 50 ps, in order to secure a skew lower than the step delay, eliminating the risk of 

bubble occurrence on the sampled thermometer code. 

 

Figure 4.14- Clock Tree Skew Groups for Phase Generation 
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The SPI slave clock tree was also constrained using the typical SDC create_clock constraints. False paths 

were also defined in the SDC file to prevent the system from considering different clock domain paths 

during optimization and time closure. Since the FIFO block was implemented with double register 

synchronizers for the read and write addresses, a proper data clock domain crossing is always secure. A 

representation of the Innovus’ clock tree debug view for the created clock tree specification file is 

presented in Figure 4.15. 

 

Figure 4.15- Clock Tree Overview 

 

4.4.3. Layout Scripted Flow 

Apart from the SDP flow and additional CTS constraints for phase clocks generation, the layout flow used 

is similar to the typical digital ASIC flow. Moreover, the needed changes were fully scripted, thus an 
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automated process was maintained. The final layout is depicted in Figure 4.16. The created layout 

scripted flow goes as follows: 

1. Since Synopsys Design Compiler was used to get the synthesized Netlist, a configuration step 

must be done. This comprises the import of the extracted Netlist and SDC from Design Compiler, 

the specification of the maximum and minimum timing libraries to be used (the same used during 

synthesis), the specification of the technology LEF file (having the standard digital cells’ layout 

information), the creation of RC corners and the loading of the capacitance tables specification 

for timing analysis, and the definition of the design analysis views, which aggregate all the 

specified timing information. Other parameters like the maximum allowed routing layers and the 

preferred layer for clock routings are also defined during the initial configuration. For this design, 

only 5 out of the 6 layers available were used, since the last metal layer was reserved for post-

layout pad-ring routing. The process technology being targeted should also be defined. Although 

not necessary, this last configuration automatically sets some tool’s parameters specific for that 

process technology. 

2. After successfully importing the design and configuring the tool, floorplan and Macro placement 

can be performed. The initial dimensions for the floorplan were defined based on the area report 

results exported during synthesis.  

3. Third, the power ring and VDD and GND nets are connected (power planning). 

4. With the floorplan and power plan concluded, the SDP constraints are loaded to Innovus using 

the readSdpFile command. The placement mode is also configured using the -sdpPlace 

and -sdpAlignment flags set to true, as suggested in the Innovus user guide SDP flow. The 

placement was also configured to be time driven and to not place I/O pins automatically. Finally, 

the I/O pin file is loaded (with the floorplan location of eac I/O pin. The placement of the SDP 

and standard cells was done concurrently by executing the placeDesign command. 

5. In recent versions of Innovus, global routing was performed simultaneously with the placement 

activity. This allows for an early analysis on design’s routing congestion points. It also allows for 

early power analysis to check for IR drops. If the results are satisfactory (for routing a <0.05% 

vertical and <0.1% horizontal routing congestion are desired), the pre-CTS optimization phase 

can be performed. Otherwise, new floorplan and placement iterations should be done until the 

obtained results are satisfactory. 

6. Afterwards, the clock tree synthesis was performed following the procedure defined in Section 

4.4.2. Although CCOpt has already post-CTS optimization integrated, which reclaims design area 



4.ASIC-based TDC Development 

148 

and fixes DRC and setup violations, an additional call to optimize the design while correcting hold 

violations is required. This is done running the optDesign command with the -postCTS and -hold 

flags. 

7. Finished the CTS phase, fillers were added to the design in order to meet metal density rules 

defined by the foundry and to secure a continuity on the power rails. 

8. Finally, the layout is ready to be routed. The detailed explanation of the routing process is out of 

the scope of this thesis. It is only important to mention that, after the first route iteration (executed 

using the routDesign command), the optDesign command with the -postRoute option is executed 

to fix DRC, setup and hold violations. A final routing iteration was executed after the optimization 

completion. 

9. The final layout was checked against connectivity, geometry, and process antenna design rules 

to verify that there are no DRCs violations. 

10. Finally, the layout timing, area, and power reports are generated. The RC parasitic are extracted 

and annotated in a .spef and .sdf file formats, and the layout Netlist for post layout simulations 

was exported. The GDSII layout stream file generation is the last step before completing the layout 

phase. This stream file exported will be used as an input to Virtuoso, where the chip pad-ring is 

created, the layout integrated and the final tape-out made. 

 

Figure 4.16 - Post Place & Route TDC layout 
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4.4.4. Standard Delay Format Results Analysis 

The SDF file exported has detailed information on the propagation delays for every connection and cell 

included in the resultant Layout Netlist. This information can be used to predict and study the delay line 

linearity. At the beginning of this Chapter, it was stated that, in order to improve the TDL linearity, 

placement constraints would have to be defined. This was addressed through SDP capabilities. To validate 

the adopted approach and understand its impact on the TDC channel, a second layout without the SDP 

flow was created and the results compared. A comparison between the two final layouts is depicted in 

Figure 4.17. A detailed analysis at the non-SDP layout shows a great discrepancy on the cells positioning 

as well as non-uniform distance between cells implementing subsequent steps. 

 

Figure 4.17- Typical and SDP Layout Comparison 

The exported SDF files are also a good indicative regarding the effectiveness of the SDP approach. The 

first thing to notice when analyzing both SDF files is that, although the routings from the two 

implementations are completely different, the delay introduced in the data path is identical in both 

scenarios (zero in the SDP case and a maximum of 1 ps in the non-SDP). However, if the cells’ 
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propagation delays are compared, it is possible to see that the non-uniform routing generates large 

variations on the cells’ propagation delays (see Figure 4.18). This is mainly due to the discrepancy of the 

capacitive load introduced by different routings. A comparison between the achieved linearity considering 

the worst-case scenario for the created layouts is presented in Figure 4.19 (based on the data extracted 

from the SDF file). The SDP layout presents a maximum variation of 1 ps between steps while the non-

SDP approach has a maximum on 77 ps. This discrepancy between steps result in a maximum DNL and 

INL of 0.38 LSB and 8.58 LSB for the non-SDP implementation respectively. In the case of the SDP 

layout, the values of the DNL and INL achieve a maximum of 0.038 LSB and 1.1 LSB respectively. 

 

Figure 4.18- TDL Typical and SDP Design Flow steps' Propagation Delays comparison 

 

Figure 4.19- TDL Typical and SDP Approach Non-Linearity Comparison 

Typical Design Flow SDP Design Flow

Typical Design Flow SDP Design Flow
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4.5. Simulation Results 

According to the metrics presented on Chapter 2, the code density test is of particular interest to 

determine a good approximation to the steps’ real delay and, subsequently, the TDL linearity behavior. 

Thus, in order to validate and test the implemented layout, a testbench simulating a code density test 

was implemented (see Figure 4.20). 

 

Figure 4.20- Code Density Test Testbench 

The testbench generates a fixed length pulse with 100 ns. To ensure a sliding window effect, the stimulus 

generation is delayed by i*START_POS_INC_PS after the reference clock positive edge has been 

detected. START_POS_INC_PS is a constant used to control the time shift increment (in picoseconds) 

that is made from one iteration to the next, while i represents the iteration number. A 40 ps time increment 

was used on the simulation results presented in this Thesis. The number of pulses to generate was 

defined by N_SAMPLES. Since a total of 100 thousand samples is planned for the experimental tests to 

reduce probabilistic errors, the same value was used in the testbench for coherency. As the objective of 

the testbench is to validate the system behavior and study the linearity of the implemented TDL, after 

each pulse, the value on the second stage start and stop sampling registers were written to a file for 

further analysis using a MATLAB script. A SPI master read request was also simulated using the task 

spim_rd to validate the SPI interface operation (not depicted in Figure 4.20). The post-layout timing 

simulation waveforms are similar to the ones presented on Chapter 3 on Figure 3.24. The MATLAB 

analysis of the obtained simulated code density test are depicted in Figure 4.21. 
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Figure 4.21- Worst-Case Post-Layout Timing Simulation Linearity Results 

As expected, the start and stop step delays present similar behavior, with most of the steps presenting a 

160 ps propagation delay. However, there are some cells with a 200 ps delay. Considering the results 

obtained from the SDF file and CTS, this discrepancy is probably due to the ±50 ps skew between the 

sampling registers. Furthermore, since the hit signal is completely asynchronous to the TDL sampling 

process, metastability scenarios are frequently detected in simulation, resulting on sampled values with 

multiple ‘X’s. This makes it difficult to precisely determine the last step to be sampled and could also 

justify this discrepancy. It was decided that the ‘X’ values on the thermometer code would be considered 

as ‘1’s for the analysis. The simulated results were obtained from the worst-case timing model, thus only 

117 steps are considered. In the ASIC experimental tests, a typical behavior is expected, thus, an average 

delay of 105-107 ps per step should be verified. This represents a total of approximately 188 steps to 

cover the entire reference clock period. Therefore, although these simulations are helpful to predict some 

delay discrepancies on the implemented ASIC, it must be stated that the experimental result are expected 

to be considerably different. Nevertheless, from the analysis of the code density test, a group of slower 

steps is expected around the 87th step (the peak existing on both start and stop code density tests). 
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Regarding Linearity, the DNL values are in the range of [-0.1:0.7] LSB, and the INL, for the worst-case 

scenario verified when propagating the start signal, in the range of [-0.7:0.9] LSB (considering a 170.9 ps 

LSB). Again, these results are only approximations. Nonetheless, a DNL in the range of ±0.2 LSB is 

expected for most steps in the implemented TDC, as showed by the simulated results. 

 

4.6. Tape-out 

Since the obtained performance results from post-layout simulations were satisfactory, the last step before 

tape-out is to build the pad-ring, integrate it with the TDC core layout (depicted on the right side of Figure 

4.17), and perform final verification, namely LVS and DRC. For the digital core input and output pins the 

PDUW0408CDG pads were used. The schematic of the pad is presented in Figure 4.22, and the pad 

signals for input and output configuration is displayed in Table 4.3. The final layout checks were done 

using Assura.  

 

Figure 4.22- I/O PAD Schematic 

Table 4.3- I/O PAD Configuration 

Configuration DS OEN I PE IE  
Input X 1 X X 1 C = PAD 

Output X 0 0/1 X 0 PAD = I 

 

The final layout, ready for tape-out, and the fabricated TDC chip are depicted in Figure 4.23. In Figure 

4.23, the final TDC layout used during tape-out is depicted in a), while b) depicts the fabricated ASIC. The 

numbers 1, 2 and 3 stands for the TDC IP, an independent slave I2C IP and a slave SPI IP (also 

implemented), respectively. In c) a microscopy photography of the ASIC is presented. The last metal layer 

was used to cover the chip rendering it impossible to see the other metal layers' details. Finally, the ASIC 

bounded to its carrier socket is depicted in d). 
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Figure 4.23 - Different views of the fabricated ASIC 

 

4.7. Conclusion 

The digital ASIC design, although being capable of a full automated flow, usually requires multiple 

iterations of the same step to improve the system’s performance and optimize its layout area, power 

consumption and timing results. Multiple vendors offer a complete design environment covering all the 

digital design phases, with multiple automation options accessible through graphical interfaces or TCL 

console commands. However, the traditional approach is to adopt a multivendor flow, taking advantage 

of the best tools from each vendor. Generally, for synthesis, the Synopsys’ Design Compiler offers the 

best results, while Cadence’s Innovus is often the option for layout implementation. For time analysis, 

Synopsys’ Primetime typically is selected, while mixed-signal integration and tape-out is usually done 

using Cadence’s Virtuoso. 
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When adopting a multivendor development flow, multiple files need to be exchanged between tools. 

Moreover, tool configuration must be done multiple times with different files. In order to improve the 

design flow and secure proper tool configuration in every digital design, a script was implemented to 

automatically create the digital project hierarchy, the scripts defining the design flow, and the 

configuration files for the different tools. Thus, the user must only provide the digital design top module 

name and the needed design files will automatically be created. Then, only project specific parameters 

need to be edited on the generated scripts, like the size of the layout, and if SDP flow is to be included or 

not. 

During this chapter, a multivendor design flow, used to migrate and implement the developed FPGA-based 

TDL prototype to ASIC was presented. The main digital ASIC design flow was analyzed, and the required 

adaptations discussed. Emphasis was given to the layout implementation, since this phase has great 

impact on the final TDC channel linearity and performance. The SDP flow was explained and multiple 

TDL layouts discussed. The CTS process using the new Innovus CCOpt engine was presented, detailing 

the creation of skew groups to generate different clock phases for proper synchronizer block functioning. 

The SDP effect on the design was studied and the extracted SDF timing information used to predict the 

implemented TDC performance. Post-layout timing simulations were performed and presented to validate 

the system functionality. According to the obtained results, the worst-case scenario resolution is 

approximately 169 ps. However, since the calculation performed for the typical operation showed a cell 

propagation delay of 105-107 ps, a resolution within ±10% of this value is expected. Regarding non-

linearity, a maximum DNL of 0.7 LSB was verified, while the peak-to-peak INL was 1.6 LSB. A similar 

linearity performance is expected in the typical operation scenario. Finally, the chapter ends by presenting 

the result of the integration between the developed TDC core and the pad-ring, including an explanation 

on the pad-ring configuration. 
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5. Experimental Results 

A promising approach for a FPGA-based TDC architecture migration to ASIC platforms was proposed in 

this Thesis. According to the simulated results, linearity deviations under 1LSB are expected across the 

implemented delay line. The proposed SDP approach enabled a structured cell placement, which enables 

an uniform routing between steps and consequently parasitic load homogenization. This resulted in a 

buffer delay variation of 1 ps across the entire delay line. However, the sampling flip-flops clock skew also 

influences the step delay. Since the clock tree is automatically generated by the CTS engine, it can only 

be partially controlled through clock skew group constraints. Thus, CTS will be the major contributor for 

the implemented TDC non-linearities. 

In this chapter the fabricated readout was experimentally tested. In Figure 5.1, the readout carrier board 

developed is presented in a), while the detailed view of the bounded ASIC TDC on the chip carrier is 

presented in b). The final readout system with the ASIC TDC, a microprocessor, a temperature sensor 

and a reference TDC integrated is depicted in c). 

The main focus of the research work described in this chapter was to experimentally validate the proposed 

approach and identify its shortcomings. Nonetheless, a performance evaluation of the designed ASIC, in 

terms of resolution, linearity, precision and thermal stability is also presented. The main experimental 

results include short- and long-range measurement precision. The thermal stability of the TDC was 

investigated in a range between 0 and 50 degrees Celsius. Some layout considerations and architectural 

changes are discussed, to better understand the obtained results and how to improve the fabricated TDC 
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performance. To reduce the effect of non-linearities and increase the TDC’s performance, a software 

calibration mechanism is investigated. The software calibrated TDC thermal stability was tested in the 

same temperature range mentioned previously. The chapter ends with some reflections summarizing 

how to improve the proposed architecture and correct its current issues. 

 

Figure 5.1- Fabricated Readout System 

 

5.1. Measurement Setup 

The measurement setup used to assess the TDC performance is depicted in Figure 5.2 (on the left side). 

The setup is composed by a Tektronix AFG1022 arbitrary function generator, a PCB developed to integrate 

the fabricated ASIC TDC with a microprocessor, and a host computer running a MATLAB script for data 
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analysis and display. During the temperature tests, the PCB was placed inside a DY60T hoven from ACS 

(see Figure 5.2 on the right), with the USB and input signal cables being passed through a hole at the 

side of the oven. 

 

Figure 5.2- Measurement Setup and Hoven used during Temperature tests 

The ASIC TDC Test Board (PCB) integrates a Microchip (former Atmel) microcontroller, configured to 

perform the bridge between the TDC and the host computer. The SPI master interface from the 

microcontroller was configured to read from the ASIC TDC, rearrange the data to the format expected by 

the MATLAB script, and send it through serial port to a host PC. The microcontroller is also used in latter 

tests to implement a software calibration algorithm for the TDC measured values. In order to validate the 

measures performed by the TDC, a reference TDC from Texas Instruments, the TDC7200, was used. 

This TDC as a resolution of 55 ps, 35 ps precision, and in mode 1 can measure time intervals in the 

range of 12 to 500 ns [5.1]. This reference TDC was used mainly to validate synchronization errors that 

might have not been corrected by the implemented synchronizer block. The temperature sensor, an 

ADT7310 [5.2], was used during the thermal tests to monitor the PCB temperature. Two external crystals, 

a 50 MHz one for the TDC and a 16 MHz for the microcontroller are also included along with voltage 

regulators, to secure a stable power supply for the ASIC TDC. A jumper was included at the input of the 

TDC to select between the original signal, connected to the board using the SMA connector, and the 

output of a Schmitt-trigger, used as a filter, to guarantee proper transitions when measuring a noisy or 

low slew rate signal. 
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At the time the tests were performed, only the Tektronix AFG1022 arbitrary function generator was 

available. The function generator enables the generation of a pulse wave with a duration in the range of 

40 ns to 999 s and a frequency in the range of 1 mHz to 12.5 MHz [5.3]. However, the <12 ns edge 

transition time and <1 ns (rms) of typical jitter are far from the ideal values when testing a device capable 

of measuring picosecond differences. Thus, although the code density test and linearity analysis 

performed might not get compromised, due to its probabilistic nature (in which case the 100 thousand 

samples measured help on minimizing these issues), the obtained single-shot precision values were 

negatively affected by function generator’s non-ideal characteristics. 

 

5.2. TDC Characterization 

The TDC was characterized according to the metrics defined in Chapter 2. Thus, a code density test was 

performed, and the values recorded used to study the real steps’ delays across the implemented TDL. 

The average step delay was calculated and the linearity of the TDC analyzed considering the calculated 

average step delay as the LSB. The precision tests were performed for two different time intervals, a short-

range interval of approximately 480 ns, and a long-range time interval of approximately 1.101.321 ns. 

Single-shot measurement values are presented (no average was applied). As explained in Chapter 3, the 

TDC conversion time is dependent on the time interval being measured, however, after the occurrence of 

a stop event, a fixed number of extra clock cycles are required to secure a stable value on the output of 

the decoder blocks. A three cycle clock delay was defined on the ASIC implementation. After getting a 

stable value on the decoder blocks, an extra clock cycle is required to merge an write the values to the 

FIFO memory. Thus, a total of four clock cycles are required until the measurement value is ready. Since 

a 50 MHz reference clock is being used, the TDC has an 80 ns deadtime in-between measures, resulting 

in a maximum of 12.5 MHz sampling rate. 

 

5.2.1. Code Density Test 

The code density test was performed using the same configuration as in the FPGA performance analysis, 

i.e. the function generator was configured to output a square wave with 999,133 kHz, and 100 thousand 

samples were captured. The results representing the TDL’s steps delays when propagating a start and 

stop event are depicted in Figure 5.3. 
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Figure 5.3- ASIC TDC Code Density Test Results 

From the analysis of the code density test, if the reference clock period is divided by the maximum number 

of steps traversed, an average step delay of 112.3 ps and 111.1 ps, for start and stop events propagation 

respectively, can be obtained. These values are close to the theoretical 105 ps and 107 ps values obtained 

from the TSMC datasheet equations. Also, a peak on the steps propagation delay can be observed around 

the 80th-90th step, which was expected due to the results of the worst-case scenario post-layout timing 

simulation. This is even more noticeable on the case of the stop event propagation. Since the propagation 

delay when considering the worst-case scenario gives an average propagation delay of approximately 

170.9 ps, the experimental values can only be compared to the simulated ones until the 117 th step. 

However, another peak on the steps’ propagation delay can be observed around the 160th step for both 

start and stop events propagation. These variations are related with the TDL sampling clock skew. A 

detailed analysis on these linearity deviations is presented in Section 5.4. Moreover, no zero delay steps 

exist, validating the minimal skew approach adopted during CTS. 
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5.2.2. Linearity 

The DNL and INL results for start and stop propagation events are presented in Figure 5.4. Overall, and 

considering a 111 ps LSB size, the TDC step variation is within ±0.2 LSB for both start and stop 

propagation, with some outliers reaching 0.5 LSB and a peak non-linearity of 0.9 LSB. Regarding INL, a 

variation in the range of -2.7 LSB to 3.9 LSB was verified on the propagation of the start event, while in 

the case of the stop event, a -8 LSB peak was obtained. Based on these results, a considerable increase 

in the TDC performance is expected if bin-by-bin calibration is applied. A study on the influence of this 

calibration method on the TDC performance is presented in Section 5.4.2. 

 

Figure 5.4- ASIC TDC Linearity Results for Start and Stop Propagation 

 

5.2.3. Precision 

Apart from the TDL linearity, when combining a fine measurement method with a coarse measurement 

to increase the system’s dynamic range, the reference clock non-ideal characteristics also interfere with 

the measurement precision. Thus, the TDC’s single-shot precision was studied for both short- and long-

range measurement scenarios, with the test results being presented in Figure 5.5. 
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Figure 5.5- ASIC TDC Raw Single-Shot Precision Results 

The first thing to notice when analyzing the obtained results is the existence of some outliers with a 

measurement error equal to one reference clock cycle. Although representing less than 1% of the total 

measurements done, even with an LSB resolution of 111 ps, the TDC could only achieve a standard 

deviation of approximately 2.47 ns and 2.8 ns for the short- and long-range measurement, respectively. 

These results, according to the equations presented in Chapter 2, in a single-shot resolution of 1.75 ns 

and 1.98 ns respectively. These outliers represent corner cases that the implemented synchronizer is not 

able to correct. In Section 5.3, a study of the TDC’s performance when no outliers are measured is 

presented. An analysis on the current architecture and a proposal for simplifying the synchronizer and 

guarantee its correct operation in every scenario is also presented on Section 5.3. 

 

5.3. Synchronization Issues 

Although the synchronizer implemented on the FPGA-based TDC was able to effectively correct coarse 

measurement errors, when migrated to ASIC, some corner cases were not being correctly compensated. 

These scenarios were not detected during post-layout timing simulations due to the synchronizer block 

functioning timing dependency. Furthermore, since some start and stop values were sampled with 

Short-Range TDC measurements distribution 

Long-Range TDC measurements distribution 
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metastability (which is normal due to the TDL asynchronous principle of operation), some of the outputted 

TDC values in the simulation could not be validated, contributing to this phenomenon to go unnoticed. 

 

5.3.1. Architectural Changes 

Multiple parameters must be controlled during the synchronizer implementation. The first, and most 

important, is the reference clock phases generation. Depending on the clock phases generated, the 

comparison values used on the synchronizer must be changed accordingly, to adjust the synchronization 

window. The hit signal skew between the first stage of the TDL, the enable pin of the coarse counter 

registers and the start and stop event detectors is also important and should be kept as small as possible, 

otherwise, scenarios like the one depicted in Figure 5.6 might occur, resulting on an incorrect 

synchronization error detection. Finally, the clock skew between the first sampling registers of the TDL, 

the edge detector modules and the coarse counter, must also be controlled and within a limited range of 

values defined by the implemented reference clock phases. This hardware dependency implementation 

makes the synchronizer block susceptible to PVT variations and demands manual tuning based on 

simulated results (in the case of ASIC platforms) or experimental results (in the case of FPGA). Since the 

simulated results are based on worst- or best-case scenarios, it is hard to correctly tune this solution for 

all scenarios, resulting on some corner cases not being covered in the ASIC implementation. 

These concerns were addressed in detail in [5.4], where a methodology for designing synchronizers for 

Nutt-TDCs is presented, based on the experience acquired and the analysis of the ASIC TDC performance 

results. However, the proposed methodology demands for a different coarse counting schema and is still 

hardware dependent. 

In order to overcome the above limitations, a different solution was explored and later tested using an 

FPGA platform. The alternative solution is based on the sampled values of the first and last step of the 

TDL. Since the TDL is designed to encompass a time period greater than the reference clock cycle, the 

exclusive OR operation between the first and last step of the TDL can be used to identify a start or stop 

event. Thus, since the TDL is sampled using the reference clock, the generated start and stop events are 

already synchronous. The proposed solution schematic is presented in Figure 5.7. 
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Figure 5.6- Effect of the Hit Signal Skew on the Synchronizer 

 

Figure 5.7- Hardware Independent Synchronization Circuit 

The validation of the proposed solution was done by changing the synchronizer block on the FPGA-based 

TDC architecture. The obtained results were similar to the ones presented on Chapter 3, with the 
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difference of an offset in the code density test, equal to the propagation delay of the extra TDL steps 

minus the setup time of the sampling flipflops (as can be seen in the waveform diagram in Figure 5.7, 

where the TDL is sampled two consecutive clock cycles by the Store Start Stage). Due to the adopted 

synchronization method, any hit event arriving inside the window captured by the first k th-1 steps of the 

delay line (with k being the number of extra steps implemented to cover more than one reference clock 

period), will be captured again during the second clock cycle. Thus, and considering j as the number of 

steps required to cover a full reference clock cycle, the TDC output for a hit signal in this scenario will 

always be j+(k-1). Since both start and stop event are sampled using the same TDL, this has no effect on 

the final measurement precision. Regarding the coarse counter, although it is sampled two times, 

meaning one less count, since the TDL is also sampled twice, it will have a timestamp equal to one coarse 

count plus the fine time to be measured. This secures that the system always outputs a correct 

measurement value with no errors greater or equal to one coarse counter. 

 

5.3.2. Corrected Precision 

In order to evaluate the true precision of the TDC (without synchronization errors), the MATLAB script was 

changed to analyze the obtained results and correct any measurement error with a deviation from the 

mean measurement value equal or greater than one reference clock cycle. The correction simply added 

or subtracted the value of one reference clock cycle period, keeping the fine measurement information 

intact. The corrected short- and long- measurement range precision are presented in Figure 5.8. 

As can be observer, once the synchronization issues are corrected, the TDC standard deviation drastically 

improves to 318.6 ps and 409.8 ps, for short- and long-range measurements, respectively (an improve 

of approximately 85%). This corresponds to a single-shot resolution of 225.3 ps and 289.7 ps, 

respectively. Although the achieved performance already complies with the defined requirements targeted 

by this Thesis application, the non-linearity results strongly suggest that the performance of the TDC can 

be further improved if a calibration mechanism is applied. 
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Figure 5.8- ASIC TDC Precision after synchronization errors correction 

 

5.4. Linearization Issues 

Although the implemented methodology enabled DNL values lower than 1 LSB (see Figure 5.4), when 

compared to the simulated values, a higher linearity was expected. In order to understand the reasons 

behind the loss of performance, the implemented TDL was analyzed with further detail. 

The first aspect to consider when comparing the experimental results and the simulated ones are process 

variation and differences in the sampling flip-flops’ setup and hold times, which lead to different step 

timings, and cannot be controlled by design (unless a full custom design approach is adopted to try to 

minimize these effects). However, in 0.18 µm process technology (which is already a stable and well 

categorized process), the effect of process variation on standard digital cells, although present, should 

not generate such linearity discrepancies in the same chip. 

The second aspect to consider was the parasitic capacitance introduced by routing. These were covered 

with the Structured Data Path approach, which, according to the extracted SDF layout file, proved to 

reduce variations of tens of picoseconds (when no SDP was applied) to a maximum of one picosecond 
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step’s delay variation in the worst-case scenario. Thus, the observed experimental variations cannot be 

explained by the delay line interconnects. 

Therefore, the reason for such linearity variations must be closely coupled to the clock tree distribution 

along the delay line, since this was the only TDL layout process that was only partially controlled through 

clock skew constraints. Following, a detailed analysis on the generated clock tree and skew timings is 

presented. To improve the TDL’s linearity, future design considerations to control the TDL clock tree 

distribution are also discussed. 

 

5.4.1. Layout Considerations 

When designing a TDL, the analysis is usually done considering the clock tree distribution as ideal, which 

results in a delay step equal to the propagation delay of the element used to build the TDL. However, the 

routings’ skew in the clock tree distribution can be consider as another delay line, leading to a Vernier 

delay line structure, where both start and stop signals are delayed. This means that the effective step 

delay will vary according to its clock signal insertion delay. Moreover, due to the parallel structure of the 

clock tree distribution (as opposed to the serial distribution of the hit signal), when analyzing a scenario 

where a given step i has a higher insertion delay than the previous one i-1, the effective result is an 

increase of the ith step’s delay and a decrease on the ith-1 step’s delay, equal to the amount of skew 

between the two sampling registers (see Figure 5.9 and Table 5.1). 

 

Figure 5.9- Clock Skew Effect on the Propagation Delay of the TDL's Steps 
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Table 5.1- Example of the Sampled Values of Figure 5.9 

Hit Signal Expected TDL Output Real TDL Output 
hit1 (280 ps) 00001 00011 
hit2 (480 ps) 00111 00011 
hit3 (550 ps) 00111 00111 

 

Thus, controlling the clock tree generation for the TDL is another crucial part of the design process that 

must be constrained. A representative view of the fabricated ASIC clock tree was presented in Figure 

4.15. As depicted, a maximum skew deviation of 115 ps exist in the TDL clock tree distribution. Thus, if 

half the value of the maximum skew deviation is considered as the 0 point (meaning that the steps could 

have a ±57.5 ps skew relative to the middle point), and two consecutive steps exist with this skew 

difference, the resultant effective delay would be, in the worst-case scenario, equal to 172.5 ps (see the 

histogram presented on the example of Figure 5.9). This justifies some of the biggest discrepancies 

observed on the code density test histograms presented. Thus, it is possible to conclude that controlling 

the clock tree distribution when implementing a TDL TDC is as critical as controlling its steps’ 

interconnects. According to Cadence’s documentation [5.5], SDP can be used to implement very fast 

register columns. This functionality, along with the structured and uniform routing provided by SDP, can 

enable low skew on the TDL clock distribution, improving the proposed TDC architecture linearity and 

performance, at the cost of a slightest increase on the complexity of TDC design, due to extra SDP 

constraints and manually inclusion of clock buffer on the TDL Verilog description file. The TDL was 

analyzed and the designed clock tree, along with the Verilog code changes needed, are presented in 

Figure 5.10. 

 

5.4.2. Software Calibrated Precision 

The non-uniformity of the TDC steps’ size can be compensated by post-measurement calibration 

techniques. Since an INL on the range of 8 LSB was obtained, it is expected that the implementation of 

a calibration mechanism will have great impact on the TDC final precision, thus justifying its extra 

processing cost. One of the most commonly used methods to calibrate TDLs is the bin-by-bin calibration. 

Bin-by-bin calibration consists on the use of the data extracted from the code density test to build a lookup 

table. The lookup table can be built based on two main strategies [5.6] (see equation (5.1) and (5.2)). 

With the lookup table created, instead of multiplying the binary value outputted by the decoder (identifying 

the last propagated step) by the average step’s propagation delay, the decoded value is used as an index 
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Figure 5.10- TDL Clock Tree Design and Layout 
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step. The first approach considers the sum of the delay values obtained with the code density test as the 

calibrated values, while the second one calibrates the values to the center of each step (the first term is 

always half of the current step delay). According to [5.6], the RMS measurement errors are reduced when 

the calibration is done to the center of the step. However, the first approach (the one considering only the 

sum of the terms), is easier to implement, especially if the calibration is to be implemented in hardware. 

In this Thesis, since the objective of calibration was to study the potential of the developed TDC if 

linearization errors are minimized, the first approach was adopted to implement a software calibration 

table for the TDC. 

A calibration table was built according to equation (5.1) with the data obtained from the code density test 

presented in Section 5.2.1. The calibrated single-shot precision results for short- and long-range 

measurements are presented in Figure 5.11. The TDC’s precision is enhanced to 128.9 ps and 189.3 ps 

(for short- and long-range measurements respectively) when calibration is applied, representing a 40% 

and 46% improvement. 

 

Figure 5.11- ASIC TDC Calibrated Single-Shot Precision 
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5.5. Thermal Stability 

Temperature conditions influence electronic circuits working characteristics. Consequently, the 

performance of the developed TDC will vary according to temperature variations, due to changes on the 

cells’ propagation delay. Thus, a study on the effect of temperature on the TDC performance was 

conducted. A temperature range between 0°C and 50°C was analyzed. The code density tests for the 

corner cases (0°C and 50°C) are presented in Figure 5.12. As can be seen, in the 0°C scenario, the 

temperature variation has a reduced effect on the size of the TDL steps (when compared to the typical 

case, 20°C, presented in Figure 5.3). However, at 50°C, only 168 steps are sampled, meaning an 

average step delay of 119 ps, 7.9 ps more than the typical operation scenario. 

 

Figure 5.12- Code Density Test Results for Temperature Corner Cases 

The precision of the TDC and its variation with temperature was studied in three different configurations. 

First, the average step size was maintained at 111.1 ps (the size of the step at ambient temperature of 

20°C) and the precision was calculated for the different temperatures without applying any type of 

calibration. In this scenario a maximum precision variation of 94 ps was observed (see Table 5.2 and 

Figure 5.13). Then, a calibration table built according to the process described in Section 5.4.2 was 

employed to calibrate the TDC across all ranges of temperatures. This solution proved to be effective 

when the TDC is operating at temperatures in the range of 20°C or below. However, for temperatures 

above 30°C, the calibrated precision converges to values similar to the ones obtained when no calibration 

is applied. Finally, a calibration table for each 10°C temperature range interval was created and applied 

0°C 50°C
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to the TDC measurements. With this solution, a maximum of 2 ps precision deviation was obtained. This 

method, although proving to be very effective, demands for extra memory usage since different calibration 

tables must be stored. Moreover, it also requires constant monitorization of the operational temperature 

of the TDC in order to properly select the calibration table to be applied. 

With the performed temperature test, to reduce the need for different calibration tables per temperature 

range, an equation representing the step’s propagation delay variation with temperature was developed. 

Considering the average step propagation delay variation between 20°C-50°C, a 0.243 ps/°C was 

obtained. 

Table 5.2- Single-Shot Precision Values along the Studied Temperature Range 

Temperature (°C) Precision (ps) 
Without Calibration With Single Calibration 

Table 
With Multiple Calibration 

Tables 
0 348 189 128 

10 337 136 127 
20 318 129 129 
30 360 233 129 
40 385 323 129 
50 412 394 129 

 

 

Figure 5.13- Single-Shot Precision variation with Temperature 

Therefore, using the normal operation temperature (20°C) calibration table as the base correction value, 

the calibrated TDC measurement for different temperatures can be obtained using equation (5.3). 

𝑠𝑖 = 𝑐𝑖 + (∆𝑡 ∗ 0.243), (5.3) 
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Where si is the calibrated value with temperature compensation, ci is the value obtained from the base 

calibration table, and Δt is calculated by subtracting 20 to the current operation temperature. The results 

of using this methodology are presented in Figure 5.14. This solution still requires the monitoring of the 

TDC’s operation temperature but, although not offering the most optimal results, allow for a favorable 

trade-off between TDC’s precision and memory requirements. 

 

Figure 5.14- Corrected Single-Shot Precision Variation with Temperature using Equation 5.3 

Finally, it is important to state that, although effective on increasing the TDC precision across a different 

range of temperatures, the obtained precision variation is still higher than when a dedicated temperature 

calibration table is used. This is because each step is differently influenced by the temperature, and the 

TDL’s non-uniform clock distribution tree is probably one of the major contributors. Therefore, it is 

expected that the clock tree changes proposed in Section 5.4.1, not only will reduce the need for 

calibration due to higher TDL linearity, but also contribute to a more uniform temperature influence on 

each TDL’s step, resulting on a more effective temperature compensation when using the proposed 

equation. 

 

5.6. Conclusion 

The achieved results comply with the requirements for modern LiDAR applications with a resolution and 

precision higher than 400 ps and a measurement range of more than 1 ms. When the calibration is 

applied, depending on the strategy adopted, a resolution of 128 ps can be attained, resulting in a depth 

measurement resolution of 1.9 cm. Further performance improvements can be achieved if statistical 

methods (like multiple measurements average) are applied instead of using single-shot measurements. 



Readout Circuit for Time-Based Automotive Sensors 

175 

Although effective on reducing the synchronization errors, due to its intrinsic hardware and timing 

dependence, the migrated synchronizer block was not capable of completely eliminate the issue. A 

simpler and hardware independent solution was proposed and later validated using an FPGA platform. 

The proposed solution does not require any hardware placement or timing concern, thus making it ideal 

for porting. Moreover, it greatly reduces the hardware utilization and the need for generating phased 

clocks. 

Regarding linearity, although DNL was always in the range of ±1 LSB, the INL of the TDL oscillated in the 

range of 8 LSB. Therefore, calibration mechanisms must be implemented to minimize measurement 

errors and improve precision. These results contrasted with the delay line timing information obtained 

from the SDF file. The origin of the non-linearities of the TDL were investigated and a solution to improve 

it was proposed based on controlling the clock tree generation for the TDL. 

Temperature compensation methods were proposed to secure a stable TDC operation across a 0°C to 

50°C range. It is expected that, once the linearity of the TDL is improved by the homogeneous clock tree 

distribution, correcting the TDC temperature drift using an equation describing its thermal behavior may 

become more effective. 

Further experimental results must be obtained using different ASIC TDC samples to investigate the 

repeatability of the results, and check if the ASIC sample tested was not in one of the corner cases. 

Moreover, the available function generator was not ideal for sub-nanosecond measurements due to its 

typical jitter of 1 ns. This is certainly introducing time interval generation errors that are deteriorating the 

TDC performance measurement, especially its precision. Nevertheless, the obtained preliminary results 

are promising, and the suggested architectural changes have the potential to further improve the TDC’s 

performance. 
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6. Conclusion 

The theoretical and experimental verification and validation of a high resolution synthesizable TDC was 

presented in this Thesis. Two different TDC architectures were studied, analyzed and implemented using 

fast prototyping platforms (FPGA prototypes). After a preliminary study, the Tapped Delay Line (TDL) TDC 

architecture was selected since it showed better linearity and precision performance. The architecture 

was migrated to ASIC. The migration process and scripts were presented and discussed in Chapter 4. A 

complete TDC characterization of the FPGA prototypes and of the final TDC ASIC was made, and the 

results were presented in Chapter 3 and Chapter 5. The discussion, in Chapter 5, includes the limitations 

and shortcomings of the proposed TDC’s solution, and proposals for future improvements were also 

identified. 

In this Chapter a summary of the developed work, main contributions and conclusions of this Thesis is 

presented. Future research work proposals are also identified and discussed. 

 

6.1. Conclusions 

Based on the results obtained during this Thesis research work, some general conclusion can be drawn 

regarding TDCs and their applications. The fast evolution of FPGA devices has made possible the 

implementation of TDCs with performances comparable to those of ASIC based TDC. The technical 

evolution of FPGAs was mainly triggered by lower development costs, fast development cycles and 

system’s reconfigurability functionalities. These features have made FPGA’s attractive during the last 
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decade as a prototyping platform and, in some cases, for early product deployment [6.1]. Nonetheless, 

TDC’s performance is closely coupled to the technology being used. The typical ASIC development 

approach is based on a full-custom process, in which the TDC is designed at the transistor level, taking 

advantage of the full design flexibility that this technology offers. However, this flexibility hinders design 

portability to other manufacturing technology. Even though some research works targeting synthesizable 

TDCs for ASIC are presented in literature ([6.2], [6.3]), it is always necessary to select which standard 

cell should be used when coding in HDL. The same happens during FPGA design, where the structure of 

the Configurable Logic Block (CLB) must be known to properly implement a TDC. Thus, it is difficult to 

envision a TDC architecture that can completely abstract the designer from the details of the hardware 

underneath. Nevertheless, synthesizable architectures offer better portability, reducing the required effort 

when technology migration is required. Regardless of the adopted technology (ASIC or FPGA), a TDC will 

always be highly dependent on the ASIC fabrication technology or FPGA architecture selected. For 

instance, although the Gray-code architecture does not present any technology dependent instantiation 

when analyzing the HDL code, the architecture is carefully tuned for Xilinx 7-series FPGA that has LUTs 

with six inputs. When the proposed architecture was migrated to ASIC, its technology dependence became 

clear, with the generation of different combinatorial paths that result in poor linearity and low resolution. 

Therefore, research on TDCs design automation should be pursued if faster development cycles and 

portability are desired. A complete hardware and platform independent TDC IP is yet to be achieved. 

As mentioned in Chapter 1, the main motivation for this Thesis was to develop a time interval readout 

system capable of complying with the automotive LiDAR requirements. Since LiDAR is a technology that 

is still under research, the readout system to develop should promote portability and integration on a full 

automated design process, in order to promote a seamless technology migration. 

A fully digital, synthesizable, TDC architecture implemented using a technology independent HDL and a 

fully automated design flow has been achieved in this Thesis. A novel Tapped Delay Line (TDL) TDC 

architecture was described, which uses Structured Data Path (SDP) to constraint placement and routing, 

in order to achieve superior linearity and performance independently of the process technology adopted. 

A thorough literature review on FPGA-based TDCs was conducted (to the extent of the author’s knowledge, 

the only one focused on FPGA TDC architectures to the date) following the described methodology in 

RM1, resulting in publication J1 [6.4]. Apart from summarizing the most relevant works on the field of 

FPGA-based TDCs, the work also proposed a taxonomy to classify the existing FPGA TDC architectures 
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and provides paths for future research on this field. This artifact enabled the achievement of O1 while 

answering the research questions RQ1 and RQ2, introduced on Chapter 1. 

After conducting RM2, two prototypes based in different architectures (TDL TDC and Gray-code TDC) were 

developed in FPGA, according to RM3. These architectures served as base for the portability methodology 

development and enabled the exploration of software and hardware calibration mechanisms. The test 

procedures and TDC characterization process were also explored using the FPGA prototypes 

implemented, according to what was defined in RM4. 

These prototypes resulted in two publications, C1[6.5] and C2 [6.6], and addressed research question 

RQ2. Regarding the TDL TDC prototype, a resolution of 17.2 ps was achieved, with a maximum differential 

non-linearity of 3.3 LSB and integral non-linearity of 5.6 LSB peak-to-peak. The prototype achieved a raw 

single-shot precision of 211 ps and a calibrated single-shot precision of 179 ps (please refer to Chapter 

2 where a description of resolution, DNL, INL and single-shot precision are presented, according to the 

definitions used in the literature on TDC’s research field). Using the Gray-code TDC prototype, the effect 

of routing on the TDC resolution, linearity and precision was studied. It was demonstrated in this Thesis 

that, when targeting sub-nanosecond resolutions, controlling the routing between TDC interpolation steps 

is mandatory to achieve superior performance and scalability. It was also proved that, while maintaining 

the routing patterns, higher performance similarity between TDC channels could be achieved. This opens 

the possibility to use a single calibration mechanism to multiple channels, allowing savings in terms of 

area and power consumption. These conclusions resulted in artifact P1 that, by the time of this Thesis 

submission, was under revision. The Gray-code TDC prototype achieves a resolution of 380.9 ps with a 

differential non-linearity of 0.38 LSB and integral non-linearity of 0.71 LSB peak-to-peak. A single-shot 

precision of 290 ps was measured with or without calibration for the gray-code prototype, proving the 

efficiency of the proposed manual routing. The obtained results were limited by the error introduced by 

the waveform generator used, which had an average jitter superior to any of the implemented TDC 

prototypes' resolution. With the implementation and characterization of these prototypes O2 and O3 were 

achieved (please refer to Chapter 1 for the definition of RQx, Ox and RMx). 

Based on the conclusion drawn from the implemented FPGA prototypes and the study of the ASIC CAD 

tools conducted according to the described methodology in RM5, a design methodology for a technology 

independent TDC design was developed. The methodology support is the use of SDP constraints to secure 

a stable TDL generation across different technologies, which ensures improved linearity. This culminate 

in the production of artifact J2 [6.7], answering RQ3 and achieving O4 and O5. A set of TCL scripts were 
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developed during this Thesis to implement the proposed design flow and all the auxiliary files required, 

including project hierarchy structure and CAD tools’ configuration files. 

Following the proposed design flow methodology, the FPGA-based TDL TDC prototype was migrated to 

TSMC 0.18 µm CMOS technology, in order to validate and study the effectiveness of the proposed 

approach. The migration process followed the research methodology described in RM6 and RM7. 

According to the post-layout timing simulated results, for the worst-case scenario, a tenfold improvement 

on the TDC’s linearity was achieved when using SDP to constraint the layout. As technology advances, 

reaching lower process nodes, the effect of routing parasitics in TDCs become a major concern. The study 

performed using Structured Data Path (SDP) to constraint the TDC’s placement and obtain a uniform 

routing proved to be effective on homogenizing the delay line steps’ delays. As presented in Chapter 4, 

the extracted post-layout timing information showed a reduction greater than 90% on the cells’ delay 

variation, when SDP was used. Thus, the use of SDP on synthesizable TDCs is advantageous to improve 

linearity and performance. Moreover, SDP secures a technology independent structured placement and 

patterned routing, improving design’s portability. The resultant ASIC layout was fabricated (O6), tested 

and characterized (according to the description in RM8). The achieved performance proved to be capable 

of complying with LiDAR requirements, validating the proposed methodology. The fabricated ASIC was 

able to achieve a resolution of 115 ps and a single-shot precision value better than 400 ps, without 

calibration, as described in Chapter 5. When calibration was applied, a single-shot precision value of 

150 ps was achieved, proving that the TDC is suited for modern automotive LiDAR applications, one of 

the main goals of this Thesis, answering the final research question (RQ4) and completing O7. 

Finally, for TDL TDCs, the clock tree generation must also be constraint using SDP. Clock skew group 

constraints, although very useful to eliminate “bubble” issues (please see Chapter 4), are not adequate 

to ensure acceptable values of DNL and INL. Furthermore, temperature variation on asymmetrical TDLs’ 

clock tree has different impact per TDL step, reducing the effectiveness of the TDC calibration. This was 

noticeable in the description presented in Chapter 5, when an equation characterizing the TDL’s steps 

propagation delay variation with temperature was used to calibrate the TDC. 

The fabricated TDC performance is summarized in Table 6.1, along with a comparison with some current 

state-of-the-art devices. As can be seen, although not capable of competing with the most sophisticated 

TDC devices in the literature, the TDC described in this Thesis work can still achieve better resolution and 

linearity than some recently proposed TDCs (implemented using the traditional custom cell design 

process), while operating at a lower clock frequency. However, the use of standard cells instead of the 



Readout Circuit for Time-Based Automotive Sensors 

181 

typical custom cell design is process, results in lower power and area performance. Nevertheless, the 

major contribution of this Thesis are the scripts which enable the implementation of a TDC using a full 

automated design flow, that were created during this Thesis research. These scripts only receive the 

name of the delay element to be used in the TDL construction as input and automatically generate the 

layout of the TDC. According to the results obtained, the fabricated ASIC-based TDC offers standard cell 

level resolution and precision in the range of ±3 LSBs with no calibration mechanism (1.15 LSB when 

calibration is applied for short-range measurements). 

Table 6.1- State-of-the-art Comparison 

 This Work [6.8]-12 [6.9]-19** [6.10]-18 [6.11]-18 [6.12]-14 [6.13]-17 

Technology 180nm 350nm 180nm 130nm 180nm 130nm 350nm 

Architecture TDL* Two-Step 

(DLL) 

Two-Step (Pulse 

Shrinking) 

Phased 

Clocks 

Two-Step 

(Cyclic 

Vernier) 

Two-Step 

(DLL) 

DLL 

Resolution 
(ps) 

111 8.878 2 780 377 5 320 

Precision 
(LSB) 

2.8 

1.15* 

1.1 0.7 0.05 0.82 0.6 0.73 

DNL (LSB) ±0.8 -8.3:5.8 1.5 ±0.05 1.41* ±0.9 ±0.68 

INL (LSB) -2.6:3.8- -22:7.5 4.2 ±0.05 2.31* ±1.3 ±1.21 

Range 1310.72 µs 4.5 ns 130 ns 102.4 µs 355 ns - 2.5 µs 

Power (mW) 36 

(@1.8 V) 

85 (@3.3 V) 18 (@1.8 V) 6.5 

(@1.5 V) 

0.65 43 

(@1.2V) 

10.9 

(@3.3 V) 

Area (mm2) 0.89 8.88 0.08 - 0.028 - 0.152 

Operating F. 
(MHz) 

50 220 - 320 - 781 100 

*After calibration **Simulation 

 

6.1.1. Contributions 

This Thesis contributes to the advance of the current state-of-the-art by exploring the effect of routing on 

the TDCs linearity. The number of works exploring TDC’s routing is scarce, being the work by Zhang et 

al. [6.14] one of the few exploring routing as an interpolation step. The work by Chaberski et al. [6.15] 

explored the effect of the output load of the TDC’s interpolation steps by implementing “dummy” buffers 

on the output of each interpolation step. Nevertheless, to the best of the author’s knowledge, there are 

no works exploring the routing to reduce the TDC non-linearities, being the traditional approach the 

implementation of calibration tables, in the FPGA case, and the design of the TDC in a locked-loop 

configuration, in the case of ASIC. The implementation of the gray-code architecture with controlled 

routing in this Thesis had proven that the proper control of the routing resources in FPGA could lead to a 

high linearity TDC that can reach high performance without calibration. Furthermore, the proposed 
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method proved to be efficient on securing a scalable and uniform TDC channel, independently of its 

positioning in the FPGA. The results obtained were further explored in ASIC with promising results. 

Another contribution to the state-of-the-art is the proposal of SDP as a methodology to achieve a 

technology agnostic, linearity improved TDC. While traditional ASIC-based TDC architectures require 

interpolation stages designed at the transistor level, to improve resolution and steps mismatch, which 

increase the architecture technology dependency, this Thesis proposed SDP as a way to implement a 

synthesizable TDC with a fixed placement and routing, independently of the technology being used, to 

improve the TDC’s linearity. The improvement achieved by controlling the routing of the TDC thorough 

SDP, proved that, when targeting sub-nanosecond resolution, this aspect of the design cannot be 

overlooked, whether in ASIC no FPGA. Moreover, the proposed method can be applied to other 

synthesizable architectures, like the one presented in [6.2], in order to further improve the TDC’s 

performance. 

The set of scripts created to support the proposed methodology presents another contribution. ASIC 

design is an interactive process where, more often than not, some phases must be revisited to improve 

performance and/or correct system’s functionality. The proposed methodology, as well as the design of 

a synthesizable TDC, requires small changes on a typical ASIC design flow. Thus, the set of scripts 

developed will be helpful to anyone designing synthesizable TDCs. 

This Thesis final contribution is the new readout system for time interval measurement with LiDAR 

compliant performance. While there are multiple time interval systems on the literature, this Thesis offers 

a solution with a tradeoff between resolution, flexibility and development time. 

 

6.1.2. Limitations 

Even though several contributions were made to the state-of-the-art, the present work has some limitations 

that must be identified and addressed to improve the reported results. Although improved flexibility and 

technology independence have been achieved, the proposed TDC resolution is limited to the propagation 

delay of the cells available on the standard digital library being used. This is a well-known issue of TDL 

architectures. If a resolution below the propagation delay is required, other synthesizable TDC 

architectures must be explored. This would require a new SDP file, tailored to the designed architecture, 

however, the remaining of the design flow and scripts would be kept unchanged. 
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SDP guarantees a fixed, technology independent TDC layout, and had proven to be efficient on achieving 

a uniform routing, however, a deep knowledge of the design being implemented is required to properly 

configure the SDP constraints and achieve the best possible results. Thus, although useful for simplifying 

the migration of the TDC architecture to different technologies, the first SDP iteration demands high effort 

and technology knowhow. 

The adopted SDP approach had the objective of reducing the TDC’s non-linearities and to improve its 

precision. Although a DNL under 1 LSB and a single-shot precision of 1.15 LSB had been achieved, in 

order to further improve precision, the TDC’s INL must be reduced. It was proved that the major TDC’s 

non-linearities were due to the clock tree distribution asymmetry. Thus, SDP constraints must be 

implemented addressing the clock tree to reduce the need for post-measurement calibration. 

The major issue of the current version of the TDC presented in this Thesis is related to the synchronization 

mechanism. Although this mechanism revealed to be important to reduce the number of measurement 

errors, there are some corner cases in which the synchronization errors are not being correctly identified 

and corrected. In Chapter 5, a possible solution to address this issue was presented and discussed. 

The fabricated ASIC TDC has a slave SPI module which enables its interface with a microcontroller and 

helps on reducing the ASIC pin count, which in turns contributes for a reduction on the ASIC area since 

in most digital designs, the pad-ring area is usually superior than the core area. Moreover, the SPI 

implemented is completely generic and can be integrated in other designs, since it is already validated 

by this Thesis' implementation. Nevertheless, in applications where higher integration level is desired, the 

SPI must be removed from the design and the FIFO memory implemented directly mapped into the 

processor’s peripherals address space. Due to time constraints, it was not possible to fabricate a 

microcontroller with the developed TDC already integrated. The author expects to address this integration 

on future research, upon correction of the aforementioned synchronization and clock tree distribution 

issues. 

 

6.2. Future Work 

As always, there are several aspects that need to be further researched to enhance the results achieved. 

Moreover, the conclusions and artifacts of the present work opened a set of possibilities that should be 

further investigated. 
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Several hypotheses were identified to address the current TDC prototype limitations. These limitations 

and the strategies to tackle them, have already been discussed in Chapter 5. Future work will focus on 

studying the effectiveness of the proposed methods, especially the homogenization of the clock tree 

distribution to the TDL. This will require a new SDP file creation, in order to add constraints to the 

placement of the clock buffers included in the TDL design that guarantee minimum clock insertion delay 

skew between TDL’s steps. After, new layout and post-layout timing simulations must be performed to 

validate if the changes made are able to reduce the simulated non-linearities. Due to the timespan of this 

Thesis, it was not possible to have this new version of the TDC developed, fabricated and tested. The 

author is willing to participate in future research. 

As stated before, TDCs are highly dependent on the hardware being used. Thus, new technologies 

leverage TDC performance. Xilinx UltraScale+ platforms have been showing promising results in this field 

of research, being used by multiple works for TDC implementation (see Chapter 2). Therefore, the 

migration and performance exploration of the proposed FPGA-based architectures (TDL TDC and gray-

code TDC) to Xilinx UltraScale+ platforms are part of the author’s plans for future research. Since 

UltraScale+’s CLB structure and routing resources are different from the ones presented in the Xilinx 7-

Series FPGAs (the one used in this Thesis), the exploration of this technology may generate higher 

performance TDCs, as well as, new architectural possibilities, using the proposed architectures as base. 

This Thesis focused the development of TDCs for LiDAR applications. Another popular application for 

TDCs are All-Digital Phase-Locked-Loops (ADPLL). Although the presented architectures lack the 

performance typically required by ADPLL (<20 ps resolution), the proposed design flow methodology 

based on SDP could be applied to other synthesizable TDCs to improve their performance. Consequently, 

the author intends to explore new and existing synthesizable TDC architectures, like the one presented in 

[6.2], and implement them using the proposed design flow methodology, in order to explore ADPLL 

applications. 

Apart from the current version optimizations and new applications exploration, future research directions 

should focus on full system integration (TDC and processing unit), since it may improve peripheral access. 

For instance, in typical LiDAR applications, frame rates between 10-20 fps are desired. Considering a 

20 fps case, the measurement and data processing of an entire frame must be done inside a 50 ms 

timing window. For a 50° Horizontal x 15° Vertical field-of-view, with 0.15° step resolution, a total of 

33400 points per frame must be measured and processed. Considering 200 m as the maximum 

measurement distance, each point measurement would take 667 ns to complete. Thus, a full frame, at 
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maximum distance, would take 22.2778 ms to be constructed. This leaves approximately 27.5 ms left 

for frame processing (not considering the transmission time of every measurement when using a serial 

interface that can be made in parallel to the frame acquisition process for the most part). This rather low 

timing margin, along with the typically high image processing timing costs, highlights for the need for a 

faster data access mechanism. 

A direct TDC peripheral mapping into the processing system’s memory would allow extra slack for the 

processing image task to be performed. Furthermore, this solution would give the highest possible 

integration, along with application flexibility and reconfigurability. Regarding the FPGA implementations, 

an AXI slave interface is already part of the TDC IPs developed. This allows integration with any Arm 

processors. On the ASIC implementation, a slave SPI is currently being used to give external systems 

access to the FIFO that stores the TDC’s measurements. Therefore, the development of a processor with 

a TDC IP peripheral integrated in ASIC technology, to increase system integration, is also a research paths 

of interest. 

Regarding the processing system selection, considering the LiDAR embedded application requirements, 

both Arm Cortex-M0 and the recently popularized RISC-V based cores (like the Rocket Chip [6.16], [6.17]) 

are possible solutions. In the case of the Arm based architectures, the TDC interface would have to include 

an AXI interface in order to map the peripheral into the processing unit memory. Some RISC-V processors 

cores allow the direct connection of the TDC peripheral into memory using a simple data and address 

buses, making the integration process easier to implement. However, in the case of the Rocket Chip, an 

AXI or NASTI interface is also required. Figure 6.1 depicts the integration block diagrams for the described 

scenarios. 

The adoption of the Arm processor simplifies system’s applications development and fosters integration 

time, while increasing the costs of the project due to fabrication royalty fees. On the other hand, the 

adoption of a RISC-V based custom processor allows for the development of a tailor-made solution, more 

optimize, while requiring extra validation and the implementation of tools and debug structures for 

applications development support. The use of a RISC-V architecture seems the most promising approach 

to achieve an optimized solution for the LiDAR application described in Chapter 1. A possible integrated 

design is presented in Figure 6.2 (using a RISC-V based processor available at [6.18]). 
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Figure 6.1- Block Diagram of Possible Integration Scenarios 

 

Figure 6.2- Block Diagram of the Proposed TDC and Processing Unit integration 
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