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Abstract—We explore machine learning methods to detect
gravitational waves (GW) from binary black hole (BBH) mergers
using deep learning (DL) algorithms. The DL networks are
trained with gravitational waveforms obtained from BBH merg-
ers with component masses randomly sampled in the range from
5 to 100 solar masses and luminosity distances from 100Mpc
to, at least, 2000Mpc. The GW signal waveforms are injected
in public data from the O2 run of the Advanced LIGO and
Advanced Virgo detectors, in time windows that do not coincide
with those of known detected signals, and the data from each
detector in the Advanced LIGO and Advanced Virgo network is
combined into a unique RGB image. We show that a classifier
network can be trained in order to detect the presence of GW
signal with high accuracy. Furthermore, we train a regression
network to perform parameter inference on BBH spectrogram
data. Without significant optimization of our algorithms we
manage to corroborate most of the BBH detections in the GWTC-
1 and GWTC-2 catalogs, and obtain parameter inference results
that are mostly consistent with published results by the LIGO-
Virgo Collaboration in GWTC-1. In particular, our predictions
for the chirp mass are compatible (up to 3σ) with the official
values for 90% of events.

Index Terms—GW astronomy, convolutional neural networks,
spectrogram classification, bayesian neural networks

I. INTRODUCTION

The detection of gravitational waves (GW) from binary

black hole (BBH) mergers [1] during the first data-taking

run (O1) of Advanced LIGO [2] was a remarkable milestone

that opened up a new window for observing the cosmos.

The European detector Advanced Virgo [3] joined the efforts

during the second observing run (O2) which helped improve

the sky localization of the sources. During O1 and O2 the

LIGO Scientific Collaboration and the Virgo Collaboration

(LVC) announced the confident detection of eleven GW signals

from compact binary coalescences (CBC) [4]. The third sci-

ence run (O3) ended on March 2020 after completing almost

one full year of data-taking. Recently, the LVC has released

their second GW transient catalog comprising the 39 CBC

detections accomplished in the first six months of O3 [5].

The detection of GW signals from CBC relies on accurate

waveform templates against which to perform match-filtered

searches. Faithful templates can be built either by solving

the gravitational field equations with numerical relativity tech-

niques or by using approximations to the two-body problem in

general relativity. Current gravitational waveform models (or

approximants) combine analytical and numerical approaches

and are able to describe the entire inspiral-merger-ringdown

signal for a large variety of parameter combinations (see

e.g. [6] and references therein). Once a CBC source is de-

tected, the estimation of its characteristic physical parameters

such as component masses, individual spins or distance, is

based on Bayesian inference [7], [8], which can be computa-

tionally expensive as it may take days to obtain a sufficient

number of posterior samples for BBH [9].

Machine learning (ML) and DL are bringing about a rev-

olution in data analysis across a variety of fields and GW

astronomy is not alien to that trend. In particular, the use

of Deep Neural Networks (DNN) for classification and/or

prediction tasks has become the standard on data analysis

applications, ranging from medical diagnosis [10] to particle

physics [11]. This trend has now organically been extended to

GW astronomy, both for signal detection [12] and for detector

characterization, by reducing the impact of noise artifacts or

“glitches” of instrumental and environmental origin [13], [14].

Recent approaches to eliminate, or at least mitigate, the effect

of glitches are discussed in [15], [16].

In this paper we explore the use of DL methods to both de-

tect GW from BBH mergers and perform parameter inference

using RGB spectrograms that combine open data from the

Advanced LIGO and Advanced Virgo three-detector network.

To achieve our goal we train a cross-residual network which

allows us to extract information about source parameters such

as luminosity distance, chirp mass, network antenna power,

and effective spin.

II. DEEP NEURAL NETWORK: ARCHITECTURES AND

METHODOLOGIES

We encode the information of simulated waveforms of BBH

mergers, produced with pycbc using the SEOBNRv4HM_ROM
approximant [17][18], into 3-channel RGB spectrograms (see
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Fig. 1. Combining spectrogram data into a single RGB image, to be used
as input to the deep learning networks. In all plots the x-axis is time and
the y-axis is frequency, while each channel’s colour intensity stands for the
signal power normalised to the 8-bit integer range (0-255).

Fig. 1), using a 0.2 s window, with frequencies between 20Hz
to 300Hz. For more information on the composition of the

datasets see Tab. I. We now describe how to apply our DL

algorithms to identify GW information, using the classification

and regression networks discussed in this section. A summary

of the architectures of both networks is reported in Table

Tab. II.

A. Classification Network

Our first task is to test whether a Deep Neural Network

(DNN) can distinguish between possible signal events over a

random background. For this, we choose a Residual Network

(ResNet) [19], which consists of a DNN built as blocks of

convolutional layers together with shortcut connections (to

skip layers) that make them easier to optimize and overcome

the "vanishing/exploding gradient" problem [20].

For the classification task the highest discriminant power

was achieved with a ResNet-101 (see Tab. II), which consists

of 101 layers, where in between each Conv2D layer we have

a series of batch normalizations, average pooling and rectified

activations (ReLU). For our task, we have replaced the last

fully connected layers of the ResNet-101, responsible for the

classification, with the following sequence of layers:

• an adaptive concatenate pooling layer1,

• a flatten layer,

• a block with batch normalization, dropout, linear, and

ReLU layers,

• a dense linear layer with 2 units as outputs, each unit cor-

responding to signal or background class and a softmax

activation function, outputting a score between 0 and 1,

such that the sum of both outputs equals 1.

The AdaptiveConcatPool2d layer uses adaptive average

pooling and adaptive max pooling and concatenates them both.

Learning rate and weight decay are two key hyperparame-

ters to train DNNs. A good choice of these two parameters can

greatly improve the model performance. In our particular case

1AdaptiveConcatPool2d

Fig. 2. Simulated signal scores for different luminosity distances and
evaluated with a DL network trained with GW waveforms from BBH mergers
at a luminosity distance of 2000 Mpc. Results are shown as a function of the
BH masses of the binary system, m1 and m2, for GW signals from sources
at 400 Mpc (top left), 1000 Mpc(top right) and 2000 Mpc(bottom).

it implies a high accuracy classification and a good background

rejection, while drastically reducing the training time. Instead

of using a fixed value for the learning rate we opted to use

Cyclical Learning Rates (CLR) [21]. Following the guidelines

from Ref. [22], we have performed a scan over a selected

range of values for both learning rates and weight decays. In

our case, we have found the optimal values to be 2×10−3 for

the learning rate and 1×10−5 for the weight decay, while for

the maximum learning rate value we just multiply the initial

value by 10.

B. Regression Network

We based the regression network architecture on a Cross-

Residual Network (xResNet; see Table II) [23] and following

the guidelines in [24] replaced the average pooling layers with

blur pooling ones. Furthermore, we made use of Dropout

layers before pooling in order to approximate a Bayesian

variational inference process. This has given us a way of

estimating the network’s uncertainty in the parameter inference

at testing time using Monte Carlo (MC) dropout [25]. For

training, we use once again the CLR, with 1 × 10−2 as the

initial value for the learning rate and 1× 10−3 as the weight

decay. It is important to mention that we use the spectrogram

images generated from the GW signals to infer continuous

values for variables such as the chirp mass M≡ (m1m2)
3/5

(m1+m2)1/5

of the BBH system or the luminosity distance of the source

dL. While this approach seems to be rather non-intuitive,

convolutional neural networks carry inductive biases rooted in

translation invariance. Such biases are a direct consequence of

the convolutional filters and can be used to extract information

from patterns in the spectrogram images and correlated to

physical continuous variables.
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Classification
Parameters Train size Validation size

Multiple detector
(m1,m2) ∼ U(5, 100)M�,

dL = [100, 300, 1000, 1500, 2000]Mpc,
ι = π

2
,

4000 images
560 × 560 pixels

8-bit RGB

1000 images
560 × 560 pixels

8-bit RGB

Total images 20000 5000

Regression
Parameters Train size Validation size

Multiple detector
(m1,m2) ∼ U(5, 100) M�,
dL ∼ U(100, 4000)Mpc

ι ∼ U(0, π),
spin ∼ U(−1, 1),

restriction: SNR > 5

22049 images
224 × 224 pixels

8-bit RGB

9450 images
224 × 224 pixels

8-bit RGB

TABLE I
DESCRIPTION OF THE CLASSIFICATION AND REGRESSION DATASETS FOR TRAINING AND VALIDATION. THE IMAGES ARE GENERATED FROM WAVEFORMS

CALCULATED BY PYCBC, USING THE SEOBNRv4HM_ROM APPROXIMANT. FOR THE CLASSIFICATION DATASETS, THE INDIVIDUAL MASSES (m1,m2)
ARE SAMPLED WITH AN UNIFORM DISTRIBUTION WITHIN THE RANGE OF 5 TO 100 M� . FOR REGRESSION, THE PARAMETERS ARE ALSO UNIFORMLY

SAMPLED.

Classification
Base architecture Hyperparameters Metric performance

ResNet-101
+ custom header

input size: 275× 275× 3(1),
batch size: 8 images,

learning rate: [2× 10−5, 2× 10−3],
weight decay: 1× 10−5,

loss function: Cross Entropy Loss (CE)

AUC: 0.82

Regression
Base architecture Hyperparameters RMSE

xResNet-18
+ Blur average layer

+ MC Dropout
+ custom header

input size: 128× 128× 3,
batch size: 64 images,

max learning rate: [1× 10−4, 2× 10−2],
weight decay: 1× 10−3,

loss function: Mean Squared Error (MSE)

RMSE: 0.021

TABLE II
CONVOLUTIONAL NEURAL NETWORKS ARCHITECTURES EMPLOYED FOR THE CLASSIFICATION, MULTIPLE (SINGLE) DETECTORS, AND REGRESSION

TASKS. THE CUSTOM HEADER FOR THE CLASSIFICATION DNN IS DESCRIBED IN SEC. II-A, THE CUSTOM HEADER FOR THE REGRESSION MODEL HAS

THE SAME STRUCTURE WITH THE MAIN DIFFERENCE THAT THE FINAL LAYER HAS ONLY ONE UNIT WITH A LINEAR ACTIVATION FUNCTION.

III. NETWORK ASSESSMENT

A. Classifier

For the classifier network we found that training for lower

amplitude signals (i.e. larger distances) allowed the model

to detect both low-amplitude and high-amplitude signals. As

such, going forwards we chose to use the network trained on

signals injected at 2000Mpc. Figure 2 shows the performance

of the model as a function of the binary component masses. It

is noticeable that larger masses and smaller distances (higher

amplitudes) result in higher scores. Fig. 3 exhibits the receiver

operating characteristic (ROC) curve for our network, using

2000Mpc data. The x-axis shows the fraction of background-

only spectrograms that are successfully rejected by the net-

work, 1 − εB , while the y-axis represents the fraction of

successfully detected signals, εS . As can be seen in the ROC

curve, we could alter the threshold for classification to be more

or less strict, according to the necessities of the problem at

hand.

B. Regression

1) Luminosity Distance Regression: Figure 4 shows the

performance of dL regression for our model on the validation

Fig. 3. ROC curve for the best-performing classifier. The red star displays
the current threshold location on the ROC used for classify the events into
signal (score ≥ 0.5) or background (score ≤ 0.5).

set. Each event is evaluated 100 times using MC dropout and

the mean value of the regressed parameter outputs are stored

in the histograms. The white dashed diagonal line shows the
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Fig. 4. Calibration for dL. Columns show different thresholds for the signal
to noise ratio: SNR > 5 (left), SNR > 10 (middle) and SNR > 15 (right).

Fig. 5. Calibration for NAP. Columns show different thresholds for the signal
to noise ratio: SNR > 5 (left), SNR > 10 (middle) and SNR > 15 (right).

ideal behaviour. For the lowest SNR threshold (left column)

the deviation from the ideal behaviour can be quite large.

However, as the threshold increases to SNR>10 and SNR>15

we are able to more confidently resolve the distances. On the

other hand, these thresholds mean that we lose the ability to

resolve distances for which larger SNRs are also rarer.

2) Network Antenna Power Regression: in Fig. 5 we show

the performance of our model in the regression of the network

antenna power (NAP) parameter. Note that almost no events

with NAP<0.2 are present, which is to be expected due

to the SNR requirements during event generation. For the

SNR>5 threshold (left column) there seem to be two separate

populations, one that broadly follows the diagonal line and a

second one that roughly follows a horizontal line around the

0.6 mark (likely due to the model assigning an overall average

NAP value to inputs whose relevant features it cannot resolve).

As we increase the SNR threshold, this second population

fades away and we isolate a population of predictions that

nicely follows the diagonal line.

3) Chirp Mass Regression: Figure 6 shows the behaviour

of the predicted source frame chirp masses. Our predictions

for the chirp masses nicely follow the actual injected values as

the events closely cluster along the diagonal lines in the plots.

Of all variables we employ to calibrate our method, the chirp

mass is the one that shows the smallest average deviation from

the ideal results. The distribution for SNR>5 already displays

a fairly low error in the predictions and as we increase the

SNR threshold the error further shrinks.

4) Effective Inspiral Spin Regression: to end the discussion

of the calibration of our model we show in Fig. 7 the

predictions for χeff compared to the real values. We see that

all models follow closely the ideal diagonal line, with the

faithfulness of the distribution width increasing as we raise

Fig. 6. Calibration for M. Columns show different thresholds for the signal
to noise ratio: SNR > 5 (left), SNR > 10 (middle) and SNR > 15 (right).

Fig. 7. Calibration for χeff . Columns show different thresholds for the signal
to noise ratio: SNR > 5 (left), SNR > 10 (middle) and SNR > 15 (right).

the SNR threshold.

IV. ANALYSIS OF REAL GW DETECTIONS

We turn now to assess the model’s performance on actual

GW detections. To this end we explore the BBH detections

published in the GW transient catalogs from the LVC, GWTC-

1 [4] and GWTC-2 [5], though due to length constraints we

will perform parameter inference only on GWTC-1 events.

A. Classifier

To analyse the real GW events we produce RGB spec-

trograms using publicly available data for all GWTC-1 and

GWTC-2 BBH events, combining the data from Hanford (R),

Livingston (G) and Virgo (B). We leave out the binary neutron

star events (GW170817, GW190425 and GW190426) as those

cases involve different time scales and are not present in

training. However, we include GW190814 despite the fact

that it involves a ∼ 2.6M� compact object, since its precise

nature remains undetermined [26]. In addition to the confident

detections from GWTC-1 and GWTC-2, we also analyze the

marginal subthreshold triggers for GWTC-1.

The results of our classifier are presented in Table III.

All confident detections reported by the LVC for GWTC-1

are corroborated by our classifier: GW150914, GW170104,

GW170814 and GW170823 are all given the score of 1.00,

the highest value possible. From the remaining events, 0.87

was the lowest score obtained. When we analyse the marginal

detections from GWTC-1 we obtain, as expected, much lower

scores across the board. Under the default threshold for

detection, which assumes a score of 0.50 or higher, only

three events are classified as signal. These are MC151116,

MC161217 and MC170705, with scores of 0.73, 0.72 and 0.51

respectively. The first two in particular may deserve a more

careful analysis in the future, but this stays outside the scope of
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GWTC-1 Confident GWTC-1 Marginal GWTC-2
Event Score Event Score Event Score Event Score

GW170814 1.00 MC151116 0.73 GW190521 1.00 GW190708_232457 0.98
GW150914 1.00 MC161217 0.72 GW190602_175927 1.00 GW190909_114149 0.97
GW170823 1.00 MC170705 0.51 GW190424_180648 1.00 GW190514_065416 0.96
GW170104 1.00 MC170630 0.49 GW190620_030421 1.00 GW190814 0.95
GW170729 0.99 MC170219 0.45 GW190503_185404 1.00 GW190521_074359 0.95
GW170809 0.97 MC161202 0.40 GW190727_060333 1.00 GW190731_140936 0.92
GW151012 0.96 MC170423 0.35 GW190929_012149 1.00 GW190513_205428 0.92
GW170608 0.92 MC170208 0.33 GW190915_235702 1.00 GW190421_213856 0.87
GW170818 0.88 MC170720 0.30 GW190630_185205 1.00 GW190412 0.81
GW151226 0.87 MC151012A 0.26 GW190519_153544 1.00 GW190728_064510 0.77

- - MC151008 0.20 GW190706_222641 1.00 GW190719_215514 0.76
- - MC170405 0.14 GW190413_134308 1.00 GW190803_022701 0.66
- - MC170616 0.12 GW190701_203306 1.00 GW190930_133541 0.58
- - MC170412 0.09 GW190517_055101 1.00 GW190828_065509 0.56
- - - - GW190408_181802 1.00 GW190924_021846 0.40
- - - - GW190910_112807 1.00 GW190707_093326 0.35
- - - - GW190828_063405 0.99 GW190720_000836 0.16
- - - - GW190413_052954 0.99 - -
- - - - GW190512_180714 0.98 - -
- - - - GW190527_092055 0.98 - -

TABLE III
CLASSIFIER SCORES FOR GWTC-1 CONFIDENT DETECTIONS (LEFT), GWTC-1 MARGINAL DETECTIONS (MIDDLE) AND GWTC-2 DETECTIONS (RIGHT).

this paper. Keeping in mind that the classifier is not optimized

for the O3a run, which has a significantly lower noise floor,

we look also at the new BBH events of the GWTC-2 catalog.

Despite the lack of any optimization, we find that 34 out of

37 events are given a score above our threshold for detection,

and from these, 27 (31) events are given a score above 0.90

(0.70). The highest possible score is obtained for a subset of

16 events.

B. Parameter Inference on GWTC-1

To perform parameter inference on GWTC-1 events we

used MC dropout to pass the spectrogram corresponding to

each event to our model 1500 times. Due to the properties

of MC dropout the output of this is an array of normally-

distributed values, from which we calculate the mean and

standard deviation for the values of the chirp mass, luminos-

ity distance and effective inspiral spin. Figure 8 shows the

comparison between the results obtained with our model and

the values published in the GWTC-1 paper: the green shading

covers the LVC published values for the 90% interval for each

parameter, the blue shading covers our MC dropout inferred

90% interval, and the red bar delimits our 3σ range. We

observe a remarkable compatibility with published data with

an uncertainty up to three standard deviations, with the one

exception being GW151226, where our model overestimates

M and underestimates χeff when compared with the LVC re-

sults. The reasons for this may be related to the homoskedastic

nature of MC dropout. Furthermore, due to the significant size

of the parameter space, a larger dataset may be required. This

warrants further investigation.

V. CONCLUSIONS

In this work we introduce Deep Learning (DL) methods

to study gravitational waves from BBH mergers, using spec-

trograms created from Advanced LIGO and Advanced Virgo

open data. For black holes of varying mass and zero spin,

we have trained a residual network classifier, which has been

applied on GWTC-1 and GWTC-2 detections, corroborating

34 out of 37 confident results with high scores. An analy-

sis of marginal triggers has identified 3 cases (MC151116,

MC161217 and MC170705) as GW signals, rejecting all

others.
We have also trained a cross-residual network to perform

parameter estimations on GW spectrogram data from BBH

mergers. Using MC dropout we have obtained a natural

estimation of the uncertainty of our predictions. We have

shown that it is possible to perform parameter inference on

the distance, chirp mass, network antenna power and effective

inspiral spin. Applying this network to spectrogram data from

GWTC-1 BBH events, we have found a remarkable agreement

with the results published by the LVC in the case of dL estima-

tions. Most of our chirp mass and effective spin estimations are

also compatible with the published 90% confidence intervals

up to an MC dropout uncertainty of 3σ, with the exception

of GW151226. Going forward, optimizing the network archi-

tecture could provide further improvements on our results.

Other physical effects of BBH mergers, such as orbital plane

precession or eccentricity, may also be explored. For building

a full detection pipeline, a more thorough comparison with

existing methods should be done.

ACKNOWLEDGEMENTS

We thank Nicolás Sanchis-Gual for fruitful discussions

that allowed the setup of the team involved in this project.

This work was supported by the Spanish Agencia Estatal

de Investigación (PGC2018-095984-B-I00), by the Generalitat

Valenciana (PROMETEO/2019/071), by the EU’s Horizon

2020 research and innovation (RISE) programme (H2020-

MSCA-RISE-2017 Grant No. FunFiCO-777740) and by the

Portuguese Foundation for Science and Technology (FCT),

project CERN/FIS-PAR/0029/2019. APM and FFF are sup-

ported by the FCT project PTDC/FIS-PAR/31000/2017 and

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on February 03,2022 at 14:53:18 UTC from IEEE Xplore.  Restrictions apply.



Fig. 8. Predictions of the DL network for the chirp mass (left), luminosity distance (middle) and effective inspiral spin (left).
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