
 

 



1 Introduction

Hospital length of stay and discharge policy are key topics of research in both the medical

and health economics literature. Length of stay is considered a key indicator of both

resource usage and outcomes in the United States (U.S.) and around the world. It is

collected for every inpatient stay in countries using some form of the Diagnosis Related

Group (DRG) system. DRGs were initially developed in the U.S. but are currently being

used in approximately 36 countries for patient information collection, hospital financing or

reimbursement for inpatient care (October 2003). This widespread adoption of DRG type

systems should facilitate national and international comparisons of inpatient length of stay

by DRG.1

A survey by Clarke and Rosen (2001) found 548 published articles that analyzed length

of stay in some manner between the years 1983 and 1997. Length of stay is the result of a

complex process of interaction between patient characteristics, social environment, med-

ical practice, and hospital characteristics but the literature has focused primarily on the

effects of patient and hospital characteristics. Moreover, the literature often presents

conflicting results regarding the influence of these characteristics on length of stay.2

Initial studies of length of stay variation relied on linear and log-linear models estimated

by ordinary least squares. However, after Fenn and Davies (1990] showed that variations in

hospital discharge policies should be specified as the conditional probability of discharge

of the patient using duration models, most subsequent researchers began to focus on the

conditional probability of discharge and on the nature of the discharge.

Cutler (1995), Hamilton et al. (1996), and Picone et al. (2003) advanced the methods in

length of stay modeling and estimation by emphasizing the need to control for unobserved

patient heterogeneity. More importantly, these authors recognized the need to separate out

discharge destination and used models of competing risks to account for this. Hamilton and

Hamilton (1997) and Ho et al. (2000) suggested that, in addition to unobserved patient

heterogeneity, there may also exist important unobserved hospital heterogeneity. They

dealt with this potential problem by adding hospital fixed effects controls as a means to

control for these unobserved effects. Another relevant contribution to the length of stay

literature is due to Clark and Ryan (2002). These authors convincingly argued that,

especially when mortality is separate from live discharge, the use of more flexible models

(such as the piecewise constant hazard model (PCHM)) for estimation of competing risks,

may be a better approach than the parametric methods more commonly used.

The literature on length of stay modeling and estimation has thus evolved from the use of

ordinary least squares estimation of linear and log-linear models to the use of survival

analysis and competing destination risk models that adjust for unobserved patient hetero-

geneity and hospital effects. However, in many of these studies, authors often select specific

functional forms for the baseline hazard function based on visual inspections of the hazard

rate plots, and neglect to model unobserved heterogeneity or to consider the existence of

competing risks. We contribute to this literature by showing that estimates of standard

survival models and competing risk models for length of stay, with and without controls for

1 While it is the case that reimbursement based on DRGs affects length of stay depending on the mode in
which it is used (per patient payment versus hospital budget setting), this issue is beyond the scope of this
particular paper. See Dismuke and Guimaraes (2002) for a discussion of the DRG system in Portugal.
2 For example, Canoodt and Knickman (1984) found that teaching status of hospitals does not significantly
influence length of stay, while Burns and Wholey (1991) found that teaching status significantly increases,
but Shi (1996) concluded that teaching status significantly reduces length of stay.
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unobserved patient heterogeneity and hospital fixed effects can lead to very different

conclusions. Moreover, we find consistent with Clark and Ryan (2002), that the PCHM

holds great appeal and is a convenient and flexible approach for modeling length of stay.

2 Econometric models: background

2.1 Survival models

As Fenn and Davies (1990) indicated, inpatient length of stay is most adequately modeled

as the probability of discharge given length of stay until that time, so that time until failure

(duration or survival) models are most appropriate.

The hazard function, k, is a key concept in survival analysis and is defined as the rate of

failure at a point in time t, given survival until that time:

k t; xð Þ ¼ lim
dt!0

Pr t � T<t þ dtjT � t; xð Þ
dt

ð1Þ

where T denotes the random variable length of stay and x is a vector of explanatory

variables consisting of patient and hospital characteristics. Among the possible alternative

interactions between T and x proposed, the most popular in the length of stay literature is

the proportional hazards (PH) specification (Hamilton et al. 1996). In these models, the

hazard function is restricted to a multiplicative form so that

k t; x; b; hð Þ ¼ k0ðt; hÞ/ x; bð Þ ð2Þ

where k0 is the baseline hazard function, h is a vector of ancillary parameters charac-

terizing the distribution of T, b is a vector of unknown coefficients associated with x and

/ x; bð Þ is a proportionality factor which does not depend on duration.3 With proportional

hazards, the effects of the regressors on the conditional probability of failure do not depend

on duration. The baseline hazard function summarizes the pattern of duration dependence,

and alternative specifications of the baseline function lead to different hazard functions.

2.1.1 Alternative model formulations

The impact of the covariates on the hazard function can be estimated using parametric or

semi-parametric techniques. The simplest models are parametric models that require

restrictive assumptions regarding the functional form of the baseline hazard function such as

Exponential:k t; x; bð Þ ¼ exp x0bð Þ; ð3Þ
Weibull:k t; x; b; að Þ ¼ ata�1 exp x0bð Þ: ð4Þ

The exponential model assumes a constant baseline hazard for each patient while the

baseline hazard for the Weibull model is strictly increasing or decreasing depending on the

value of a.4 Other baseline hazard specifications are possible but proportional hazards

3 / x; bð Þ is a non-negative function of the covariates. As typically done in the literature we let this function
be exponential and will henceforth replace it by exp x0bð Þ .
4 The parameter a assumes only positive values. If a > 1 then the hazard function increases monotonically,
if a < 1 then it decreases monotonically and if a = 1 the model collapses to the exponential case.
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models can be estimated with greater flexibility by assuming a less rigid functional form

for the hazard function such as the piecewise constant hazard specification. Under the

piecewise constant hazard assumption, the time period of interest is divided into M
intervals, such that (cm-1, cm], where cm are known constants, and m = 0,1,...,M�1, c0 = 0

and cM = ?. The choice of the intervals should be made in such a manner that they become

closer when the hazard function varies more rapidly and become further apart when

variations in the hazard function are slower (Rodriguez 2000). There then exist M unknown

constants, /m, which represent different values of the baseline hazard function for each of

the pre-specified intervals:

Piecewise-constant:k t; x; b;umð Þ ¼ exp umð Þexp x0bð Þ; um ¼ 1; . . . ;M: ð5Þ

The above duration models are easily estimated by maximum likelihood. The contri-

bution of complete observations to the likelihood function is given by the density function

for the length of stay, f, while the contribution of incomplete (right censored) durations5 is

given by the survival function, S. Regardless of the functional form chosen for the hazard

function the density and survival functions can be expressed in terms of the hazard

function:6

S ti; xi; b; hð Þ ¼ exp �
Z t

0

k ti; xi; b; hð Þdt

� �
; ð6Þ

f ti; xi; b; hð Þ ¼ k ti; xi; b; hð ÞS ti; xi; b; hð Þ: ð7Þ

The log-likelihood function is then given by:

ln L ¼
Xn

i¼1

di ln f ti; xi; b; hð Þ þ
Xn

i¼1

1� dið Þ ln S ti; xi; b; hð Þ; ð8Þ

where n is the total number of observations and di is 1 if the duration for the ith
observation is complete, and 0 if it is censored.

The Cox PH model is the most commonly used semi-parametric duration model (Jones

2000). Cox suggested a likelihood procedure (partial likelihood) to estimate the relation-

ship between the hazard rate and explanatory variables in the following general propor-

tional hazards model:

Cox PH:k t; x; b; hð Þ ¼ k0ðt; hÞ exp x0bð Þ: ð9Þ

In Cox’s model we do not need to make any assumptions about the functional form of

the baseline hazard function,k 0. However, since the partial likelihood approach discards

information regarding actual failure times and uses only their rank order, the efficiency of

the estimates obtained by this approach is reduced.

5 A duration is right censored if all that is known about that duration is that it lasted longer than a certain
time.
6 So far, we avoided using the subscript i for individual observations in order to facilitate the exposition. We
only use it in presenting the likelihood function.
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2.1.2 Unobserved heterogeneity

It is difficult for the researcher to control for all relevant patient and hospital character-

istics. However, unlike the linear regression case, duration models that do not account for

unobservable heterogeneity will produce biased estimates of duration dependence (Jones

2000; Elbers and Ridder 1982). A common way of approaching this problem is by letting

the hazard function of a patient be modified by a proportionality factor (frailty). If we let

v > 0 represent non-measured heterogeneity then the hazard function becomes:

k t; x; b; hð Þ ¼ k0 t; hð Þ exp x0bð Þv: ð10Þ

Thus, for v larger than 1, patients will have a higher risk of failure while the opposite is

true for values of v below 1. The proportionality factor v may be patient specific (unshared

frailty) or hospital specific (shared frailty). Commonly, v is assumed to be a realization of a

random variable V, which has known distribution and is uncorrelated with the other co-

variates. When v is a shared frailty it may be possible to model it as a fixed effect.

An alternative approach to deal with unobservable heterogeneity is to use robust variance

estimates. This approach is less common in the literature, most likely because its validity is

conditional on the assumption that the hazard function is correctly specified (Cameron and

Trivedi 2005). A related result is that of Clegg et al. (2000). These authors studied the

application of ‘‘population-averaged’’ marginal regression models to correlated censored

duration data. Their results indicated that misspecification of the marginal hazards model in

a marginal regression framework will lead to inconsistent estimators in general.

2.1.2.1 Patient unobserved effects Hamilton et al. (1996) emphasized the potential

problem of patient unobserved heterogeneity in models that have patient characteristics as

regressors. Lancaster (1990) presented some examples of possible distributions for V,

including the Gamma distribution. The choice of the Gamma distribution for V is moti-

vated by computational convenience because, for particular baseline distributions, it is

possible to obtain a closed form solution when v is integrated out of the expression (10). If

we assume that the baseline function k0 follows a Weibull distribution, and that V follows a

Gamma distribution with an expected value of 1 and variance of r2, a Gamma mixing of

the Weibull function, commonly known as the Burr model, is obtained. The resulting

(mixed) hazard function is given by:

k t; x; b; r; að Þ ¼ exp x0bð Þata�1

1þ r2exp x0bð Þta : ð11Þ

Cutler (1995) and Hamilton et al. (1996) used an alternative method developed by

Heckman and Singer (1984) to deal with patient unobserved heterogeneity. Here V is

assumed to have a discrete distribution so that g(vk) = Pr(V = vk) = pk, k = 1,2,...,K where

K is the number of support points of the distribution. For ease of exposition, let us consider

K = 2, that is, assume that V takes two different values, v1 and v2, with probabilities p and

1�p, respectively. If we consider that the no-frailty hazard component has a proportional

hazards form with a Weibull baseline hazard, then the mixed hazard function is given by

k t; x; b; v1; v2; pð Þ ¼ pk t; x; b; v1ð Þ þ 1� pð Þk t; x; b; v2ð Þ
¼ pata�1 exp x0bþ v1ð Þ þ 1� pð Þata�1exp x0bþ v2ð Þ:

ð12Þ
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With the Heckman and Singer approach to patient unobserved heterogeneity it is rel-

atively simple to employ different formulations for the baseline hazard. For example, if the

PCHM is assumed for the baseline hazard then the mixed hazard function becomes:

k t; x; b;um; v1; v2; pð Þ ¼ pk t; x; b;um; v1ð Þ þ 1� pð Þk t; x; b;um; v2ð Þ
¼ p exp umð Þ exp x0bþ v1ð Þ þ 1� pð Þ exp umð Þ exp x0bþ v2ð Þ:

ð13Þ

All of the above models are easily estimated by maximum likelihood using the general

expression for the log-likelihood shown in (8).

2.1.2.2 Hospital unobserved effects An important issue that has to be addressed when

analyzing hospital length-of-stay, is the issue of possible clustering of length-of-stay within

hospitals. There may be unobservable hospital effects that are likely to affect discharge

probabilities in a systematic manner. From a technical perspective this situation is similar

to patient heterogeneity with the caveat that patients from the same hospital have identical

unobserved hospital effects (shared frailty) and so the hazard function becomes:

k t; x; b; hð Þ ¼ k0 t; hð Þ exp x0bð Þvh; ð14Þ

where the index h (for hospital) is added to emphasize that this value is common to all

patients from the same hospital. That is, that vh is a ‘‘hospital shared frailty’’. In this latter

situation it becomes possible to avoid the specification of a distribution for the frailty and

to simply add a set of hospital dummy variables to the explanatory variables included in

the model (hospital fixed effects). This approach has the advantage of fully accounting for

all the variation in length of stay that can be attributed exclusively to differences across

hospitals. However, this approach is unsuitable for a researcher interested in the impact of

specific hospital characteristics on length of stay because all variables that account for

inter-hospital variability are absorbed by the hospital dummy variables. Alternatively,

hospital effects may be modeled as random, in which case Vh is assumed to follow a known

random distribution. Now, it becomes possible to obtain estimates for the impact of spe-

cific hospital characteristics in the hazard function. Again, the most common approach is to

assume that Vh follows a Gamma distribution. Just as with patient unobserved heteroge-

neity, if we assume that the baseline hazard is Weibull, we obtain a closed-form solution

for the likelihood function (Hougaard 1984). Interestingly enough, as shown in Therneau

and Grambsch (2000), it is possible to estimate the parameters of a Cox PH regression

model, under the assumption of a shared Gamma frailty.

2.2 Competing risk models

The necessity to distinguish between different types of duration failure resulted in

extensions of the models presented above. As Gooley et al. (1999) explain, when several

risks are present, the number of failures from any competing risk will influence the number

of failures from the cause being analyzed and thus the estimate of the probability of failure

of that cause. This is so because failures from any competing risk reduce the number of

patients at risk of failure from the cause under analysis. In length of stay models, the
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implication is that if multiple destinations are possible upon discharge from the hospital,

then the number of discharges to a particular destination will influence the estimate of the

probability of leaving the hospital. Consider, for example, three possible discharge des-

tinations: died in the hospital, home, and transferred to another hospital. In this case, as

more individuals die in the hospital, there are fewer individuals at risk to be transferred to

another hospital.

For each individual in a competing risk model, a variable indicating the type of failure is

specified, J, with the values 1,...,k in addition to the random duration variable, T. The

simplest form of this model considers only one period of duration that terminates when an

individual leaves for one of k possible states. These states, mutually exclusive and

exhaustive, are designated by the index j, so that j = 1,...,k. Consider the existence of k
random variables, T(1),T(2),…,T(k), one for each destination, interpreted as latent duration.

These are imaginary time periods used in the construction of the models whereby T(j) is the

time to failure to state j, eliminating all other possible states. At each moment, entry into a

certain state is dictated by the smallest latent time period, i.e. by the smallest T(j). Math-

ematically, this can be specified in the following manner: T = min[T(1),…,T(k) ] and J = j, if

T = T(j). For each individual, only one T(j) is observed and others are considered censored.

Under the assumption that the random variables T(1),…,T(k) are independent, the model is

effectively that of independent competing risks.

It is possible to estimate conditional and unconditional probability functions that

characterize the variables T and J. The expression

kj t; xð Þ ¼ lim
dt!0

Pr t � T<t þ dt; J ¼ jjT � t; xð Þ
dt

ð15Þ

is the transition intensity into state j. These functions, often designated as cause-specific

hazard functions, can be empirically interpreted as the fraction of survivors at time t that

subsequently leave for state j. Assuming a proportional hazards specification, the cause-

specific hazard functions can be defined as

kj t; x; bj; aj

� �
¼ k0j t; aj

� �
exp x0bj

� �
; j ¼ 1; . . . ; k; ð16Þ

where the risk-specific baseline hazard function is k0j(t,aj) and, bj and aj are allowed to

freely vary for the k types of failure. As before, alternative distributions for the cause-

specific baseline hazard lead to different cause-specific hazard functions. For example, if a

Weibull baseline hazard is assumed, then the hazard function is

kj t; x; aj; bj

� �
¼ ajt

aj�1 exp x0bj

� �
; ð17Þ

an expression identical to (4). Note, however, that we can now estimate a set of coefficients

for each one of the competing risks. Similarly, we can recast all of the other models

presented earlier, including those that account for unobserved heterogeneity, as indepen-

dent competing risks models.

The log-likelihood function is now expressed as,7

lnL ¼
Xk

j¼1

Xn

i¼1

di ln f ti; bj; xi; hj

� �
þ
Xn

i¼1

1� dið ÞlnS ti; bj; xi; hj

� �" #
: ð18Þ

7 Again, we only use the individual subscript in presenting the likelihood function, but leave it out for the
remainder of the text.
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Furthermore, inspection of the log-likelihood expression makes it obvious that inde-

pendent competing risk models may be estimated as separate models, one for each risk,

with observations for other risks treated as censored. This logic applies also to the Cox PH

model which can be estimated for competing risks, with or without (shared) frailty.8

2.2.1 Identification issues

The introduction of unobserved heterogeneity into survival models raises a natural question

of identification. The problem may be expressed as follows: are the baseline hazard and

heterogeneity distributions unique, given the data? That is not necessarily the case.

Cameron and Trivedi (2005) summarize the two main positions regarding this issue: at one

end there are those who argue that one should favor nonparametric specifications of

heterogeneity such as the Heckman and Singer approach while, at the other end there are

those who defend that parametric specifications of unobserved heterogeneity are innocuous

provided the baseline is correctly specified. Identifiability of the frailty distribution

parameters requires that the frailty variable, V, be bounded, with expected mean of one and

finite variance.

Identification of the joint distribution of all latent durations, T(k), is also a major issue in

competing risks models (see, for instance, Bedford and Lindqvist (2004)). However,

Heckman and Honoré (1989) have shown that under non-restrictive assumptions, inde-

pendent competing risks models with proportional hazards specification are identified,

provided they have covariates.

3 Model specification and empirical strategy

3.1 Data and variables

We test the models described in Sect. 2 for length of stay outcomes using inpatient claims

data for patients with cerebrovascular disorders from Portugal that were hospitalized at any

time during the years of 1992 and 1993. The final sample consists of 34,250 observations.9

Length of stay is the (continuous) duration variable, T.10 For patients who are admitted

and discharged on different days, duration is calculated as the difference between the

discharge and admissions dates. Patients are required to have a stay of at least 24 h in order

to be classified as inpatient and attributed a DRG. Discharge destination, J, is equal to zero

8 For a more detailed discussion on competing risk models, see, for instance, Cox (1959), David and
Moeschberger (1978), and Prentice et al. (1978).
9 The Instituto de Gestão Informatica e Financeira, the entity responsible for the management of the
information technology and financial resources of the Portuguese Ministry of Health, provided all public
hospital discharges classified into DRG 14, Cerebrovascular Disorders Except Transient Ischemic Attack,
for the January 1992–December 1994 time period. DRG 14-Cerebrovascular Disorders includes the fol-
lowing ICD-9-CM diagnosis codes: 430 Hemorrhage, subarachnoid; 431 Hemorrhage, intercerebral; 432
Hemorrhage, intracranial, other and unspecified; 433.01 Occlusion and stenosis, basilar artery with cerebral
infarction; 433.11 Occlusion and stenosis, cartoid artery with cerebral infarction; 433.21 Occlusion and
stenosis, vertebral artery, with cerebral infarction; 433.31 Occlusion and stenosis, multiple and bilateral
arteries, with cerebral infarction; 433.81 Occlusion and stenosis, other specified precerebral artery, with
cerebral infarction; 433.91 Occlusion and stenosis, unspecified precerebral artery, with cerebral infarction;
434.01 Thrombosis, cerebral, with cerebral infarction.
10 Although in practice, time is always measured in discrete units, ‘‘when these units are very small, it is
usually acceptable to treat time as if it were measured on a continuous scale’’ Allison (1984), p. 14.
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if the observation is censored, 1 if the individual is discharged home, 2 if the individual is

transferred to another hospital and 3 if the individual dies in the hospital. Furthermore, for

each individual, a binary variable, d, was created which is equal to 1 if the observation is

complete and 0 in the case where the duration is censored. Patients discharged against

medical advice are classified as censored since the outcome of these patients is considered

to be beyond the control of the hospital. For more detailed information about the duration

and discharge destination, see Table 1.

The explanatory variables are thus typically divided into patient and hospital charac-

teristics (see Table 2 for a more detailed description of the variables). Patient character-

istics used as regressors include a binary variable for gender (Female), age (Age), whether

or not the patient received intensive care (ICU), whether or not the patient received

treatment in more than one service (e.g. internal medicine, neurology) (Service), and a

measure of patient severity, the Charlson Index Score11 (Charlson). We also include

whether or not the patient received a Computerized Tomography Scan12 (CTScan). Hos-

pital characteristics include variables that provide an administrative classification of

hospitals13; level (Level1) and district (District), whether the hospital is a central non-

teaching hospital (NonTeach), the logarithm of number of beds (LnBeds), and the hospital

case-mix (CaseMix) for the year in which the discharge took place.14

Table 1 Distribution of length of stay (LOS) and discharge destination

LOSa N % Censored Home Transferred Died

1 4,724 13.79 131 1,291 1,799 1,503

2 2,213 6.46 56 746 483 928

3–6 6,321 18.46 134 3,528 500 2,159

7–12 8,477 24.75 68 6,642 332 1,435

13–20 6,396 18.68 33 5,344 246 773

21–30 3,471 10.13 23 2,856 149 443

31 or + 2,648 7.73 36 2,040 92 480

Total 34,250 100 481 22,447 3,601 7,721

a The intervals in the first column correspond to the steps in the PCHM

11 The Charlson Index contains 19 categories of comorbidity, which are primarily defined using ICD-9-CM
diagnoses codes (a few procedure codes are also employed). Each category has an associated weight, taken
from the original Charlson paper (1987), which is based on the adjusted risk of 1-year mortality. The overall
comorbidity score reflects the cumulative increased likelihood of 1-year mortality; the higher the score, the
more severe the burden of comorbidity.
12 According to practice guidelines, Computerized Tomography of the head is critical for the emergent
evaluation of patients with acute stroke. It is important for excluding or documenting inter-cranial hem-
orrhaging as the stroke mechanism and to identify other features that directly or indirectly impact the
diagnostic evaluation and management of stroke (Culebras et al. 1997).
13 Portuguese hospitals are classified as either central, district or level one depending on the availability of
specialties. Central hospitals generally provide all specialties, district hospitals a moderate number and level
one, a basic level of specialties. The level of technological capacity also varies from greatest in central to
least in the level one hospitals.
14 The Casemix variable is a measure of the severity of all patients treated in a given hospital. To compute
this variable, each discharge in a hospital is weighted with the relative weight of its DRG, and the weighted
sum of all discharges is divided by the number of discharges in that hospital.
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The regressors used are the same in all specifications. Thus,

x0b ¼ b1Femaleþ b2Ageþ b3ICU þ b4Serviceþ b5Charlsonþ b6CTScan

þb7Level1þ b8District þ b9NonTeachþ b10LnBedsþ b11CaseMix
ð19Þ

where, depending on the specification, the constant may be explicitly added to the model or

defined implicitly by a set of dummy variables. Coefficient estimates are then interpreted

as the impact of each variable on the (conditional) probability of discharge and conse-

quently on the length of stay. For example, a positive estimate for b2 indicates that,

everything else constant, older individuals show higher discharge probabilities and hence

are less likely to stay longer in the hospital.

4 Results

All models were estimated using the statistical software STATA version 8.0.15 A com-

parison of the estimates from the basic survival models, is shown in Table 3.

Results from all specifications in Table 3 are similar both in terms of the coefficients’

signs and significance. The estimates from the Exponential and Weibull model are

practically identical. This is not surprising given that the values for the log-likelihoods of

Table 2 Definition of variables and descriptive statistics

Variable Definition Mean Standard deviation

T LOS (days) 12.843 16.912

D 1 if the observation is complete 0.986

J 0 if the observation is censored 0.014

1 if patient discharged home 0.655

2 if patient is transferred to another hospital 0.105

3 if patient dies in-hospital 0.225

Patient characteristics

Female 1 if female 0.490

Age Age in years 70.002 13.066

ICU 1 if patient received intensive care 0.012

Service 1 if treated in more than 1 service 0.033

Charlson Charlson index of severity 1.466 2.467

CTScan 1 if patient received a CAT scan 0.352

Hospital characteristics

Level1 1 if level one hospital 0.137

District 1 if district hospital 0.489

NonTeach 1 if central non-teaching 0.137

LnBeds Log number of beds 5.784 0.930

CaseMix Case-mix in the year of admission 1.014 0.243

15 Most models were estimated using the STREG command in Stata. The exception were the Cox models
that were estimated with the STCOX procedure and models with Heckman and Singer heterogeneity that
required programming the likelihood function using ML commands. A list with the Stata code used in this
paper is available at http:// www2.eeg.uminho.pt/economia/cangelica/downloads/stata_commands.pdf.
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the two models are very similar. This means that we cannot reject the hypothesis that a = 1

for the Weibull model, and thus that the baseline hazard is constant.16 On the other hand,

the results of the PCHM are quite similar to those of the Cox PH model, suggesting that the

step function used for the baseline hazard approximates well the unknown baseline hazard.

However, the hypothesis of a constant baseline hazard function is rejected for the PCHM.17

This inconsistency may suggest that other problems, such as the presence of some form of

unobserved heterogeneity, may be affecting the results.

Hence, we next estimate the models that take into account unobserved patient hetero-

geneity. These are shown in Table 4. In general the signs and magnitude of the coefficients

are similar to those presented in Table 3. However, the volatility of the estimates is higher,

especially with respect to the coefficients on hospital characteristics. One of the known

consequences of neglected heterogeneity in proportional hazards models is that the hazard

rate is underestimated (Cameron et al. 2005). Note that with the introduction of Gamma

heterogeneity, the parameter of the Weibull distribution is now clearly above 1, indicating

the existence of positive duration dependence. On the other hand, the estimate for the

variance of the Gamma distribution is much smaller in the piecewise constant hazard

specification, suggesting that misspecification of the baseline hazard may be an issue with

the Weibull model.

Up to now, we have not yet accounted for hospital heterogeneity. To do this we

introduce hospital fixed effects18 to the models presented in Table 4. This approach leads to

Table 3 Basic survival modelsa

Variables Exponential Weibull PCHMb Cox

Female �0.054*(0.011) �0.055*(0.011) �0.051*(0.011) �0.049*(0.011)

Age 0.002*(0.000) 0.002*(0.000) 0.002*(0.000) 0.001*(0.000)

ICU �0.224*(0.051) �0.224*(0.051) �0.217*(0.051) �0.230*(0.051)

Service �0.521*(0.031) �0.523*(0.031) �0.466*(0.031) �0.459*(0.031)

Charlson �0.032*(0.002) �0.032*(0.002) �0.028*(0.002) �0.026*(0.002)

CTScan �0.104*(0.012) �0.104*(0.012) �0.121*(0.012) �0.134*(0.012)

level1 �1.411*(0.042) �1.415*(0.042) �1.266*(0.041) �1.260*(0.041)

District �0.966*(0.029) �0.970*(0.029) �0.861*(0.028) �0.854*(0.028)

NonTeach �0.545*(0.021) �0.548*(0.021) �0.481*(0.021) �0.477*(0.021)

LnBeds �0.283*(0.013) �0.284*(0.013) �0.254*(0.013) �0.253*(0.013)

CaseMix �0.882*(0.038) �0.886*(0.038) �0.772*(0.037) �0.756*(0.037)

Constant 0.736*(0.105) 0.732*(0.105)

a 1.005(0.004)

LogL �51695.3 �51695 �50689 �319341.4

a Significance at the 1, 5 and 10% level is indicated with *, ** and ***, respectively. Standard errors are
given in parentheses
b For the PCHM seven parameters (not reported) were estimated along with all the other coefficients

16 The parameter on duration dependence is not significantly different from 1 at the 1% level.
17 A likelihood ratio test of the hypothesis of equality for the seven ancillary parameters of the piecewise
constant model, with a chi-squared test statistic of 2,013.4, is rejected at the 1% significance level.
18 There are 78 hospitals in our data, so that models with hospital fixed effects include 77 additional dummy
variables.
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a marked improvement on the log-likelihoods even after adjusting for degrees of

freedom.19

Nevertheless, even though we are now accounting for hospital unobserved heteroge-

neity we are still observing similar results as reported for the model that accounted

exclusively for patient unobserved heterogeneity: the Weibull model is indicating positive

duration dependence, the variance of the Gamma distribution drops significantly when we

allow for a flexible baseline hazard. The main difference is that the ICU variable changes

signs becoming positive and is significant in the PCHM with Heckman-Singer heteroge-

neity. Normally, one would expect ICU usage to increase length of stay so this result

appears counterintuitive.20

We then estimate independent competing risks models for the probability of discharge,

conditional on the manner in which the patient left the hospital. Three possible destinations

of the patient were considered: discharged home alive, transferred to another hospital, and

in-hospital death. Although we estimated several variants of the competing risks models

Table 4 Basic survival models with unobserved patient heterogeneitya

Variables Weibull with Gamma
het.

Weibull with H.S.
het.

PCHM with Gamma
het.b

PCHM with H.S.
het.b

Female �0.072*(0.014) �0.060*(0.012) �0.059*(0.012) �0.052*(0.012)

Age 0.001**(0.001) 0.002*(0.001) 0.000*(0.001) 0.000*(0.001)

ICU �0.369*(0.066) �0.287*(0.056) �0.269*(0.057) �0.250*(0.054)

Service �0.653*(0.041) �0.557*(0.035) �0.544*(0.036) �0.517*(0.034)

Charlson �0.041*(0.003) �0.033*(0.003) �0.031*(0.003) �0.027*(0.002)

CTScan �0.230*(0.016) �0.186*(0.014) �0.166*(0.014) �0.165*(0.013)

Level1 �2.146*(0.055) �1.795*(0.048) �1.442*(0.047) �1.391*(0.044)

District �1.455*(0.036) �1.227*(0.033) �0.971*(0.032) �0.933*(0.030)

NonTeach �0.700*(0.027) �0.624*(0.024) �0.528*(0.023) �0.515*(0.022)

LnBeds �0.480*(0.017) �0.392*(0.015) �0.297*(0.015) �0.288*(0.014)

CaseMix �1.161*(0.049) �1.004*(0.043) �0.839*(0.042) �0.789*(0.040)

Constant 2.194*(0.134)

a 1.285(0.009) 1.137(0.006)

r2 0.362(0.012) 0.124(0.011)

v1 �0.287(0.131) �0.563(0.135)

v2 1.486(0.119) 1.201(0.111)

P 0.040(0.004) 0.018(0.003)

LogL �50684.9 �50761.6 �50595.4 �50398.4

a Significance at the 1, 5 and 10% level is indicated with *, ** and ***, respectively. Standard errors are
given in parentheses
b For the PCHM seven parameters (not reported) were estimated along with all the other coefficients

19 The Akaike information criterion (AIC) for the models in Table 4 is 101,397.8, 101,553.2, 101,228.8 and
100,838.8 versus 97,119.4, 97,113.4, 98,176.8 and 97,554.2 for Table 5. Similarly, the Bayesian information
criterion (BIC) is 101,516, 101,679.8, 101,389.2 and 101,016 versus 97,837, 97,847.8, 98,945 and 98,339.3.
20 We also estimated models that treated the hospital effects as random, namely the Weibull, piecewise-
constant hazard and Cox model all with Gamma shared frailty. All models pointed to the existence of
unobserved hospital heterogeneity but provided estimates that were similar in sign and significance to
models that accounted exclusively for unobserved patient heterogeneity.
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we only report results for two of these models: the Weibull and PCHM with Gamma

patient heterogeneity and hospital fixed effects.

The estimates in Tables 6–8 show the relevance of distinguishing between different

types of discharge in competing risk models since they clarify some of the estimates

obtained for the previous models. For example, in the survival models estimated earlier age

appeared to have a positive impact in the probability of discharge but the competing risks

version of this model shows age reducing the conditional probability of discharge home

and transfer to another acute care facility.

The piecewise constant hazard competing risks model is our preferred one. Most

notably, the variance for the patient unobserved random effects is much smaller than that

Table 6 Competing risks models: discharged homea

Variables Weibull with Gamma het. and hospital FE PCHM with Gamma het. and hospital FEb

Female �0.136*(0.021) �0.072*(0.018)

Age �0.044*(0.001) �0.004*(0.001)

ICU �0.177(0.116) �0.060(0.098)

Service �1.193*(0.065) �0.914*(0.056)

Charlson �0.046*(0.005) �0.010*(0.004)

CTScan �0.538*(0.027) �0.162*(0.023)

a 1.828(0.016)

r2 0.960(0.023) 0.291(0.018)

LogL �35245.5 �34423.1

a Significance at the 1, 5 and 10% level is indicated with *, ** and ***, respectively. Standard errors are
given in parentheses
b For the PCHM seven parameters (not reported) were estimated along with all the other coefficients

Table 5 Survival models with unobserved patient heterogeneity and hospital fixed effectsa

Variables Weibull with Gamma
het.

Weibull with H.S.
het.

PCHM with Gamma
het.b

PCHM with H.S.
het.b

Female �0.072*(0.015) �0.062*(0.012) �0.061*(0.013) �0.052*(0.012)

Age 0.000(0.001) 0.000(0.001) 0.001(0.001) 0.001(0.000)

ICU 0.100(0.080) 0.042(0.066) 0.104(0.069) 0.072*(0.064)

Service �0.932*(0.045) �0.776*(0.039) �0.753*(0.039) �0.704*(0.037)

Charlson �0.031*(0.003) �0.024*(0.003) �0.023*(0.003) �0.020*(0.003)

CTScan �0.444*(0.020) �0.332*(0.016) �0.304*(0.018) �0.289*(0.015)

a 1.397(0.010) 1.218 (0.006)

r2 0.392(0.013) 0.136(0.012)

v1 �4.946(0.069) �4.038(0.083)

v2 �2.789(0.043) �2.002(0.041)

P 0.027(0.002) 0.015(0.002)

LogL �48474.7 �48469.7 �48997.4 �48684.1

a Significance at the 1, 5 and 10% level is indicated with *, ** and ***, respectively. Standard errors are
given in parentheses
b For the PCHM seven parameters (not reported) were estimated along with all the other coefficients
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of its Weibull counterpart and, in the case of two of the risks, transfer and death, it becomes

very small suggesting that with a more flexible baseline hazard the covariates are able to

capture most of the variability in the data. Indeed, the results for the more flexible model

make sense. Contrary to the previous model, gender is now a significant factor in the

conditional probability of death. Also, the sign for the effect of age on the conditional

probability of death is positive and significant, as expected.

5 Conclusions

The literature on length of stay and hospital outcomes is often used to inform policy

regarding hospital payment and outcomes. Fenn and Davies (1990) were the first to call

attention to the inadequacy of ordinary least square estimation of linear and log-linear

models of length of stay and suggest the use of duration (survival) models. Cutler (1995),

Hamilton et al. (1996), Ho et al. (2000), and Picone et al. (2003) advanced the literature in

Table 8 Competing risks models: discharged deatha

Variables Weibull with Gamma het. and hospital FE PCHM with Gamma het. and hospital FEb

Female 0.078(0.073) �0.097*(0.023)

Age �0.024*(0.002) 0.026*(0.001)

ICU 0.083(0.347) 0.510*(0.111)

Service �1.551*(0.233) �0.230*(0.065)

Charlson �0.216*(0.017) �0.064*(0.005)

CTScan �2.863*(0.120) �0.725*(0.033)

a 2.577(0.105)

r2 17.684(1.054) 0.000(0.000)

LogL �25387.1 �24499.8

a Significance at the 1, 5 and 10% level is indicated with *, ** and ***, respectively. Standard errors are
given in parentheses
b For the PCHM seven parameters (not reported) were estimated along with all the other coefficients

Table 7 Competing risks models: transferreda

Variables Weibull with Gamma het. and hospital FE PCHM with Gamma het. and hospital FEb

Female �0.211*(0.046) �0.067**(0.034)

Age �0.061*(0.001) �0.015*(0.001)

ICU �0.631(0.441) �0.269(0.324)

Service �1.986*(0.186) �1.252*(0.137)

Charlson �0.064*(0.009) �0.013**(0.007)

CTScan �0.835*(0.060) �0.260*(0.044)

a 1.005(0.022)

r2 2.308(0.169) 0.000(0.000)

LogL �13044.7 �11538.4

a Significance at the 1, 5 and 10% level is indicated with *, ** and ***, respectively. Standard errors are
given in parentheses
b For the PCHM seven parameters (not reported) were estimated along with all the other coefficients
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focusing not only on the importance of accounting for correlation between length of stay

and outcomes, but also to control for the potential problem of unobserved patient

heterogeneity.

Using a sample of inpatient claims for one DRG, we confirm the observations of

Hamilton et al. (1996) that results are sensitive to the use of survival or competing risk

models, as well as controls for unobserved patient and hospital heterogeneity.

We did not intend to explore the full range of estimation techniques available for

dealing with the modeling of length of stay. Instead, we focused on more standard ap-

proaches that can be implemented with relative ease. Our results suggest that researchers

should carefully consider the specification of the baseline hazard and rely on more flexible

models such as the PCHM, consistent with the findings of Clark and Ryan (3). Unobserved

patient and hospital heterogeneity should not be neglected as it can lead to substantial

distortions in the results. More importantly, researchers that model length of stay should

carefully consider the problem of multiple destinations and estimate competing risk models

whenever appropriate.
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