mcr-4 carrying *Escherichia coli* isolates of Europe exhibit a high genetic diversity but a highly conserved plasmid type encoding the colistin resistance

Authors: Isidro García-Meniño^{1,2,4}, Ana Oliveira³, Annemarie Käsbohrer⁴, Azucena Mora^{1,2}*, Jens Andre Hammerl^{4*}. *(Shared senior researcher authorship)

¹Laboratorio de Referencia de *Escherichia coli* (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain. ²Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain. ³CEB (Centre of Biological Engineering). (Lab. de Investigação em Biofilmes Rosário Oliveira), University of Minho, Braga, Portugal. ⁴Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany.

Background

Colistin represents an important antimicrobial for the veterinary and human sector. Besides its outstanding antimicrobial use in gastrointestinal infections in animals, it is currently a last-line treatment option for human infections caused by multidrug-resistant Gram-negative bacteria. Successively after the description of the first mobile colistin resistance (*mcr*-1) element in *Escherichia coli*, the identification of other genes (*mcr*-2 to *mcr*-10) and variants has forced the understanding of the colistin resistance and dissemination mechanisms in Enterobacterales.

Material and Methods

For comparative analysis, a collection of Spanish (n=28), German (n=14) and Portuguese (n=9) *E. coli* isolates of porcine origin exhibiting the mobile colistin resistance determinant *mcr*-4, were subjected to phenotypic and genotypic *in depth* characterization. The isolates were investigated for their antimicrobial susceptibility, macrorestriction profiles (Xbal-PFGE), plasmid patterns (S1-PFGE) and plasmid transmission (*in vitro* filter mating studies). Short-read whole-genome sequencing (WGS) data were used for *in silico*-based typing of the genomes.

Results

Overall, the investigated isolates of the three countries differed substantially in their macrorestriction profiles. While Portuguese and Spanish isolates exhibited a closer phylogenetic identity, in relation with their geographic origin, German isolates showed high heterogeneity. Similar results were observed from S1-PFGE analysis. However all isolates showed a low size *mcr*-4 carrying plasmid (range10 to 25 kb). *In vitro* transmission to the sodium azide-resistant *E. coli* J53 strain was confirmed in at least 50% of the Spanish and Portuguese isolates. Interestingly, most of the transconjugants harbored two plasmids of which only one carried the mobilizable *mcr*-4 plasmid, while the second would probably act as a helper for the transmission. While the *mcr*-4 plasmids seem to be based on a highly conserved ColE10 plasmid backbone, the majority of their host are highly heterogeneous.

Conclusions

Our results indicate a close relationship of the individual *mcr*-4 carrying plasmids of Portugal, Spain and Germany. Thus, we suppose that dissemination of the conserved plasmid-type is based on a common

ancestor However, the impact of this gene is currently unknown, since no comprehensive information on *mcr* determinants in colistin-resistant isolates from human infections exists.

Acknowledgement and funding

L. Lestón acknowledges the Ministry of Education of Spain for her pre-doctoral grant FPU19/01127. I. García-Meniño acknowledges (FEMS-GO-2020-205). This research was funded through: PID2019-104439RB-C21/AEI/10.13039/501100011033 from the Agencia Estatal de Investigación (AEI, Spain), cofounded by the Euro-pean Regional Development Fund of the European Union: a Way to Making Europe (FEDER). The research of J.A. Hammerl was supported by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 773830 (FULL-FORCE).