A Hg-sensitive channel mediates the diffusional component of glucose transport in olive cells

Conde, C.1, Silva, P.1, Agasse, A.1, Tavares, R. M.1, Delrot, S.2 and Gerós, H.1

1. Departamento de Biologia, Universidade do Minho, Braga
2. Institut des Sciences de la Vigne et du Vin, INRA, Université Victor Segalen Bordeaux II, Villenave d’Ornon, France
gerós@bio.uminho.pt

In several organisms solute transport is mediated by the simultaneous operation of saturable and non-saturable (diffusion-like) uptake, but often the nature of the diffusive component remains elusive. In Olea europaea cell cultures, glucose uptake is mediated by a glucose–repressible, H+–dependent active saturable transport system1,2 that is superimposed on a diffusional component. The latter represents the major mode of uptake when high external glucose concentrations are provided. The present work investigates the nature of this diffusion-like component. The data demonstrate that this low-affinity, high-capacity transport system is mediated by a channel-like structure whose transport capacity may be regulated by intracellular proteination and phosphorylation/dephosphorylation3.


Response surface optimization of the culture medium for production of elastin-like polymers by Escherichia coli

Silva, D.1, Padrão, J.1, Machado, R.1, Teixeira, J.2, Casal, M.1 and Nobre, A.1

1. Centro de Biologia Molecular e Ambiental (CBMA) – Departamento de Biologia, Universidade do Minho, Braga
2. Departamento de Engenharia Biológica, Universidade do Minho, Braga
mcasal@bio.uminho.pt

Elastin-Like Polymers (ELP’s), a family of proteins based on repetitive pentapeptide sequences known by their smart and extremely biocompatible behaviour1,2, are of great interest to our research group. Ongoing work using E. coli as the expression system, strongly suggests that the biomass and polymer production are closely related. The Response Surface Methodology (RSM) is a collection of mathematical and statistical techniques useful for the modeling and analysis of problems, in which a response of interest is influenced by several variables and the main objective is to optimize this response, in a suitable set of experiments3. The referred strategy was employed in order to improve the production of both, biomass and ELP’s, in an auto induction medium previously designed by us (adapted from Terrific Broth and Phosphate Buffer Glycerol). The nutrients yeast extract, lactose and glycerol were the factors subjected to this statistical treatment. Knowing that glycerol and lactose are, respectively, sub-products of biodiesel production and dairy industry the use of these compounds is highly favorable for the design of a sustainable scale-up procedure. On the other hand, yeast extract was selected in order to maximize the final yield due to its described importance in the boost of production. The validation of the model obtained was achieved and allowed the optimization of biomass levels.

Acknowledgements: This work was supported by ElastM POCI/CTM/57177/2004, supported by FEDER and the FCT