
This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation -

COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project

PTDC/CCI-INF/29583/2017 (POCI-01-0145-FEDER-029583) and the PhD grant SFRH/BD/124836/2016.

S
a
fe
ty

V
e
ri
fi
c
a
ti
o
n
fo
r
R
O
S
A
p
p
li
c
a
ti
o
n
s

A
n
d
ré

F
ili
p
e
F
a
ri
a
d
o
s
S
a
n
to
s

U
M
in
h
o
|
2
0
2
1

Departamento de Informática

André Filipe Faria dos Santos

Safety Verification for ROS Applications

Programa de Doutoramento em Informática

das Universidades do Minho, de Aveiro e do Porto

March 2021





Universidade do Minho

Escola de Engenharia

Departamento de Informática

André Filipe Faria dos Santos

Safety Verification for ROS Applications

Tese de Doutoramento

Programa de Doutoramento em Informática

das Universidades do Minho, de Aveiro e do Porto

Trabalho realizado sob a orientação do

Professor Doutor Manuel Alcino Cunha

e do

Professor Doutor Nuno Moreira Macedo

March 2021



DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e boas

práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não previstas

no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição

CC BY

https://creativecommons.org/licenses/by/4.0/

ii

https://creativecommons.org/licenses/by/4.0/


A C KNOWL EDG EMEN T S

First, and foremost, I would like to express my deepest gratitude to my advisors, Professors Alcino Cunha

and Nuno Macedo. They maintained a constant presence and guidance throughout the thesis, by reviewing

my work, helping me stay on the right track, and pointing out routes and resources of relevance. Their

expert knowledge was invaluable to formalise the approach this thesis proposes. Oftentimes our discussions

were long and exhausting, but never fruitless. I have faced a fair share of obstacles and dead ends along

the way. Without their support, however, I would have faced several more.

I am also grateful to our colleagues from the Centre for Robotics in Industry and Intelligent Systems

(CRIIS), from INESC TEC, namely Filipe Neves dos Santos, Luís Santos and Rafael Arrais. They are among

the first adopters of our work and have provided us with one of our robot case studies. Seeing as it is still a

system under development, without full documentation, I would have been lost in trying to understand it

without their assistance. Besides, they have also contributed to the preliminary empirical study that we

conducted at the very beginning of this thesis.

I could not go by without extending my sincerest thanks to Mirko Bordignon, Nadia Hammoudeh García

and a few other colleagues from Fraunhofer IPA. Our work has been widely promoted among the ROS-

Industrial community, and I have participated in various relevant events, such as ROS-Industrial conferences

and training sessions, all thanks to them. Furthermore, they are also among the early adopters of our

work, and have been applying it to some of the robots built at Fraunhofer IPA, including the well-known

Care-o-Bot.

I also had the great pleasure of working with Andrzej Wasowski (IT University of Copenhagen), Gijs

van der Hoorn (Delft University of Technology), Harsh Deshpande (Fraunhofer IPA) and Chris Timperley

(Carnegie Mellon University), over the major part of this thesis, conducting empirical studies on common

bugs that ROS developers face. We have had several enlightening discussions, and their feedback on my

progress has been deeply appreciated.

On a personal note, I must thank my parents and my partner Sofia for all the unconditional support they

provided over these years. I thank them for a multitude of things, but especially for the small things of

everyday life that one tends to take for granted, such as their patience. Many times they have listened to

my rambling, even though they likely did not understand any of it.

Lastly, I would like to acknowledge the financial support this work has received. This work is financed by

the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness

and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese

funding agency, FCT - Fundação para a Ciência e a Tecnologia within project PTDC/CCI-INF/29583/2017

(POCI-01-0145-FEDER-029583) and the PhD grant SFRH/BD/124836/2016.

iii



STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

iv



R E S UMO

Verificação de Propriedades de Correção em ROS

Os robôs são agora parte do nosso quotidiano e a sua utilidade parece não ter limites. Fabricam os

nossos bens, colhem alimentos de plantações e conduzem-nos de um lugar para o outro. A inovação na

área da robótica é uma constante, as expectativas são altas, e as responsabilidades que depositamos nos

robôs são cada vez maiores; os robôs são a nova definição de sistema crítico. Em parte, este sucesso

deve-se à abundância de frameworks livres para o desenvolvimento de sistemas robóticos, como é o caso

do Robot Operating System (ROS).

A comunidade ROS é numerosa e bastante ativa. O ROS tem sido usado principalmente ao nível da

investigação, mas, ultimamente, tem sido a base para vários projetos comerciais ou governamentais.

Sendo um ecossistema de componentes de software reutilizáveis, suportado por uma comunidade muito

diversa, garantir que sistemas baseados em ROS são confiáveis é da maior importância. No entanto,

mostrar que um software robótico é confiável não é, de todo, uma tarefa fácil.

Várias técnicas, como a Verificação Formal, Model Checking, Verificação Runtime, entre outras, têm

dado inúmeras provas da sua aptidão e eficácia para verificar uma variedade de propriedades críticas,

noutros domínios de software. Contudo, se há algo que todos estes métodos têm em comum, é a sua

complexidade. É necessária uma formação especializada para uma aplicação eficaz, e a maioria da

comunidade ROS não tem tais conhecimentos.

Nesta tese, respondemos à questão de como adaptar o estado da arte em técnicas de garantia de

qualidade para aplicações ROS, e como torná-las acessíveis a não especialistas. Temos em conta o facto

de que a maioria dos sistemas são desenvolvidos em torno do código-fonte, em vez de seguirem práticas

de Engenharia à base de modelos. Propomos um fluxo de trabalho unificado que, dado o código-fonte

de uma aplicação ROS, extrai modelos automaticamente e, de seguida, aplica uma série de técnicas de

verificação, estáticas e dinâmicas, relativamente a propriedades do sistema especificadas pelo utilizador.

No caso de as análises detetarem uma violação de propriedades, os resultados podem ser utilizados como

guias para a resolução de problemas. Caso contrário, os resultados constituem evidência da confiabilidade

do sistema, respetivamente às propriedades, que pode ser usada para construção de um argumento de

confiabilidade. Este fluxo de trabalho é implementado na plataforma HAROS, e avaliado com dois estudos

de caso em robôs reais. O resultado revelou-se eficaz, quer na construção automática de modelos, quer

na deteção de falhas, relativamente a propriedades especificadas pelo utilizador. De um modo geral, esta

abordagem foi bem recebida pela comunidade ROS. Vários membros já a usam de forma independente, e

estão até a propôr as suas próprias extensões.

Palavras-chave: engenharia de software, métodos formais, robótica
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A B S T R A C T

Safety Verification for ROS Applications

Robots are now part of our daily lives and their usefulness is, seemingly, never-ending. They manufacture

our goods, harvest our crops and drive us from place to place. Innovation in the field of robotics is constant,

expectations are high, and the responsibilities we place on robots are ever increasing; robots are the new

definition of safety-critical devices. In part, this success is due to the abundance of open source frameworks

to help develop robotic systems, such as the Robot Operating System (ROS).

ROS has a large and active community. It was mostly used in research, but is recently finding its way

into commercial and government projects as well. With such a diverse community, and being based on

an ecosystem of reusable software components, ensuring that ROS-based systems are dependable is

paramount. However, showing that robotic software is dependable is not an easy task.

Many techniques, such as Formal Verification, Model Checking, Runtime Verification, and more, have

proved, over and over, to be capable of verifying a diverse range of properties in other software domains.

However, if there is one characteristic that often defines these techniques, it is their steep learning curve.

They have a hard requirement on expert knowledge, and the vast majority of the ROS community is

composed of non-experts.

In this thesis, we answer the research question of how to adapt state-of-the-art quality assurance

techniques to ROS applications, and how to make them usable by non-experts. We take into consideration

the fact that most systems are developed with a code-first approach, rather than following Model-driven

Engineering practices. We propose a unified workflow that takes in ROS application code, automatically

extracts system models from it, and then applies a variety of static and dynamic analysis techniques with

respect to user-specified properties. If a property violation is detected, the results of the analyses can

be used as a debugging aid. Otherwise, they provide compelling evidence to structure a dependability

case for the given properties. This workflow is implemented in the HAROS framework, and later evaluated

with two robot case studies. We have found this approach to be effective, both at building models and

at finding faults for user-specified properties. Overall, it has been well-received in the ROS community.

Several members are now independently using it, as well as proposing their own extensions.

Keywords: lightweight formal methods, software engineering, robotics
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1

I N T R ODUC T I O N

Mankind has always dreamt of machines capable of remarkable feats of intelligence and human-like

behaviour. Robots are only a few decades old, but they are the culmination of more than two thousand

years of technical evolution [76].

With the advent of the Third Industrial Revolution, in the 1960s, we transitioned from analog, mechanical

and electronic technology to the digital technology we know and use. Coincidentally, this transition, that

marks the dawn of the Information Age [137, 144], also characterises the recent advances in robotics.

The common factor that enables this rapid progress is none other than software. The benefits of software

over the traditional technologies is evident, and it did not take long until software became ubiquitous. It

proliferated and took control of the emerging technologies, such as digital computers, cell phones, the

Internet and, recently, robots.

Robots are now part of our daily lives and their usefulness is, seemingly, never-ending. They manufacture

our goods, harvest our crops and drive us from place to place. They are the cornerstone of the Fourth

Industrial Revolution, also known as Industry 4.0, and their numbers are ever-increasing. It is estimated

that the worldwide operational stock of industrial robots has reached more than 3 million units in the year

of 2020 [82], and will reach almost 4 million by 2022.

Robots are now performing feats that could only take place in science fiction, a few decades ago. For

instance, the city of Seoul, in South Korea, has planned the construction of the Robot Science Museum

starting in the year of 2020, expected to finish in the year of 2022. What is unique about this museum

is that its first exhibition will start even before it opens – the façade of this museum will be entirely built

by construction robots and drones [30]. Besides being a unique feat in the history of robotics, the intent

behind this project is to support public education in robotics and raise awareness of artificial intelligence

initiatives.

Robots have also proved their usefulness under exceptional circumstances. In 2020, the COVID-19

global pandemic has completely changed everyday life – remote work and social distancing became new

realities, and hygiene is more imperative than it ever was. During these uncertain times, in which public

health is a top priority and the global economy has taken a major hit, robots come to the rescue. Hospitals

have employed mobile robots to deliver sterile goods and ensure that they do not run out of stock [87];

certain public spaces are sanitised using mobile robots mounted with ultraviolet light attachments [88];

cafes replace human waiters with robotic waiters; and the list goes on. As many jobs and workplaces

become extremely conditioned, the economy relies more on robotics to recover.

1
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There is no doubt that robots are capable of incredible things. Innovation is constant, expectations are

high, and the responsibilities we place on robots are ever increasing. Robots are the new definition of

safety-critical devices. But, what can we say about their overall software quality? In this thesis, we will

explore how can some aspects of software quality be improved in robotic systems.

1.1 Context

1.1.1 On Building Robot Systems

Primitive robot systems, much like any relatively new technology, were built mostly in an ad hoc fashion.

Over time, some software architectures thrived and became standards among practitioners.

One of the first major archetypes, that gained popularity in the first half of the decade of 1980, was

the Sense-Plan-Act architecture (SPA) [130]. It was believed in the Artificial Intelligence community that a

robotic system should be decomposed into three functional elements, as shown in Figure 1: a sensing

system, a planning system and an execution system. The sensing system was responsible for translating

raw sensor data into a world model. The planning system took the world model and a mission goal, such

as moving towards a given location, and generated a plan to achieve the given goal. The execution system

translated the action plan into concrete actions and commands that could be issued to the robot’s actuators.

This type of architecture is generally known as deliberative.

Figure 1: The Sense-Plan-Act robot architecture.

The SPA architecture is an open loop architecture; control flows in one direction, and feedback is never

taken into consideration. As a consequence, this architecture does not handle environmental uncertainty

and unpredictability very well. The intelligence of this approach, such as it is, resides in the plan generator,

which is generally slow and dependent on an accurate model of the world. It turned out that world modelling

and plan generation were later classified as Very Hard Problems.

It did not take long for alternative architectures to be proposed. In the mid 1980s, Rodney Brooks

proposed the Subsumption architecture [33], the most common departure from the previous paradigm.

The Subsumption architecture, as seen in Figure 2, is a reactive, behaviour-based architecture; it lives on

the opposite end of the spectrum, relative to the SPA architecture.
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Figure 2: The Subsumption robot architecture.

Subsumption set aside the problems of modelling and planning, to emphasise the coupling of the robot’s

immediate sensing and actions. The robot’s behaviours were decomposed in several layers, representing

progressively more complex tasks. Each layer was, essentially, a state machine that handled raw sensor

data directly. Layers were composed together, and relied on a process called suppression or inhibition,

that ensured that higher-priority behaviours would override less critical ones. Its basis on very simple,

stateless and low-level computations had a dramatic effect on performance. Collision-free mobile robots,

for instance, were much more performant when built on top of a reactive architecture. On the other hand,

it appeared to have a capability ceiling, as it had no means to manage very complex behaviours; it was not

sufficiently modular.

In the early 1990s, researchers agreed that none of the two extremes would be the right answer for

every problem. Their views converged, and hybrid architectures became the new norm. In particular, the

Three-Layered architecture [75] (Figure 3) was one of the most prominent. This architecture is comprised

of three elements:

• a reactive Controller, that tightly couples sensors and actuators, and operates with fast, stateless

algorithms to implement primitive behaviours;

• a Sequencer, or plan executer, that selects the most appropriate behaviour at any given time, and

supplies the necessary parameters;

• a Deliberator, that handles planning, world models, internal state representation, and all time-

consuming computations in general.

Figure 3: The Three-Layered robot architecture.
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As we can see in Figure 3, the Three-Layered architecture organises its components by time and space

complexity. The different layers cooperate, rather than inhibit each other.

As robots become more ubiquitous and the hardware becomes cheaper and more capable, the demands

we place on robotic systems increase without an end on sight. The size and complexity of robotics software

got out of hand for the existing architectures. New concepts and paradigms from other software domains

were adopted, such as publisher-subscriber communications in distributed systems, and, eventually,

standardised in a number of middlewares. Among the most common middlewares are YARP1, Orocos2,

Player3 and the Robot Operating System4. The last is now a de facto standard [45, 61, 73, 115], and is

the application domain of this thesis.

1.1.2 The Robot Operating System

The Robot Operating System [143] (ROS) started in 2007 as a collaborative effort, led by Willow Garage 5, to

provide the robotics community a common, free, open-ended development platform. This initiative, which

in its first few iterations was essentially a communication middleware, quickly evolved, adding numerous

tools, drivers, software components and libraries to its arsenal. It did not take long for ROS to match and

supersede its competitors, e.g., the Player project, in terms of suitability for the task, easier learning curve,

support and documentation. Now, nearing three thousand software packages in the official distribution, ROS

is the de facto standard in robotics research, paving its way into commercial and government applications,

backed by a large and active community.

Indeed, the community is one of the strongest aspects of ROS. Notably, some of the main developers and

researchers behind ROS established the Open Source Robotics Foundation6, a non-profit organization (the

first of its kind) dedicated to sustaining and improving open source robotics software, such as ROS itself and

the Gazebo7 robot simulator. Other initiatives, such as ROS-Industrial8, ROS-Military9 or ROS-Agriculture10

empower and drive the adoption of ROS in specific commercial domains. More recently, a number of other,

smaller groups within the community is also emerging. Among these, the ROS Quality Assurance Working

Group11, a group focused on improving Quality Assurance in the ROS ecosystem, is the most relevant

to our work. Since 2012, there is a yearly conference, ROSCon12, where hundreds of developers of all

levels (over 500 in the 2018 edition) have a chance to meet and share projects, ideas and research results

centered on ROS. The ROS-Industrial initiative also has its own yearly conference since 2013, although

with a smaller audience and a focus on industrial applications and software best practices. Parallel to

1 http://www.yarp.it/index.html

2 https://orocos.org/

3 http://playerstage.sourceforge.net/

4 https://www.ros.org/

5 http://willowgarage.org/

6 http://osrfoundation.org/

7 http://gazebosim.org/

8 https://rosindustrial.org/

9 https://rosmilitary.org/

10 http://rosagriculture.org/

11 https://discourse.ros.org/c/quality

12 https://roscon.ros.org

http://www.yarp.it/index.html
https://orocos.org/
http://playerstage.sourceforge.net/
https://www.ros.org/
http://willowgarage.org/
http://osrfoundation.org/
http://gazebosim.org/
https://rosindustrial.org/
https://rosmilitary.org/
http://rosagriculture.org/
https://discourse.ros.org/c/quality
https://roscon.ros.org
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these, developers worldwide organize regular regional meetups as well. Last, but not least, the community

has worked on a few invaluable online resources, such as:

• the ROS Wiki13, where over 8 000 users share 117 000 pages of documentation and tutorials;

• ROS Answers14, a website with more than 34 000 users where community members ask and

answer ROS-related questions;

• ROS Discourse15, a forum with more than 4 000 users, where the community discusses projects,

ROS-Industrial, Quality Assurance, embedded systems, and more.

1.1.3 A Note on ROS2

Traditionally, ROS has followed a release cycle that is similar to Unix distributions, as we will see in

Chapter 2. Newer versions introduced changes that, in many cases, did not break existing code. However,

the field of robotics is in constant evolution, and its needs change as well. ROS grew way beyond its initial

vision, and so, in December 2017, the development team released ROS2, a new major version, that is

mostly incompatible with the former. It relies on state-of-the-art technologies, and aims to cover new use

cases that ROS did poorly, or not at all. For instance, ROS2 has been designed from the start to be suitable

for:

• teams of multiple robots (which is possible in ROS, but there is no standard approach);

• small embedded platforms, such as micro controllers;

• real-time systems, provided operating system support;

• networks with poor connectivity;

• production environments (again, possible with ROS, but not ideal).

The long term plan is for ROS2 to eventually replace ROS. Currently, both versions of ROS exist in

parallel, and development for the original version is set to continue, at least, until 2025. Many users

(especially companies) are slowly migrating towards the new version, but there are many systems already

in place that work only with the original ROS. Since the original version is stable, and was the only released

version when this thesis project began, our research will focus solely on ROS, not on ROS2.

1.2 Thesis Statement

It is undeniable that ROS is finding its way into various safety-critical applications. Despite being rooted in

relatively harmless research robots, ROS is now the backbone of industrial robots, agriculture robots and

more. Safety cages are no more; expensive, powerful robots move freely in unstructured environments,

interacting closely with humans, animals, plants and precious goods. We want to be sure that our robots

13 http://wiki.ros.org/

14 https://answers.ros.org

15 https://discourse.ros.org

http://wiki.ros.org/
https://answers.ros.org
https://discourse.ros.org
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behave correctly, and, above all, that they are dependable. When confronted with the question “Does my

robot do what it is supposed to do, reliably?”, we want to be able to answer it with some degree of certainty.

It is well known in the software engineering field that this is not an easy question to answer. In some

cases, it might even be impossible to obtain a definitive answer. System dependability is often approached

from a process perspective, but, ultimately, a system should only be deemed safe, or dependable, if a set

of critical requirements, or properties, are considered satisfied. The satisfiability of these requirements

can be checked with a number of techniques, such as Formal Verification, Model Checking, Runtime

Verification, and more. These techniques have proved, over and over, to be capable of verifying a diverse

range of properties in other software domains. But using one technique in isolation might not suffice to

cover all desirable properties. Moreover, it is often the case that they are only able to address relatively

low-level properties, confined to small units of software and not the system as a whole. Ideally, we want to

specify high-level, system-wide dependability properties and have a direct means of showing that they hold.

This is where dependability cases [89, 129] come in.

A dependability case (also known as safety case) is an end-to-end argument that a system satisfies a

given critical property, supported by concrete evidence. The argument spans the system both horizontally,

considering various inputs and outputs, and vertically, from design level down to the source code. This

approach is flexible, in the sense that it can incorporate various methods to provide the necessary evidence.

It is, thus, a way to systematically combine the previous techniques and play to the strengths of each, as

needed. For instance, Model Checking can be used for sub-properties related to the system’s general

behaviour, while Runtime Verification, or Testing, can be used to provide evidence for real-time requirements.

Furthermore, this approach is also useful in the development process of the system, biasing design decisions

that make the case stronger or easier to provide evidence for, thus yielding a safer product, with higher

assurance. The introduced bias may also extend to coding standards, generating guidelines that make it

easier for other approaches to analyse and provide the necessary evidence.

The major obstacles to structuring a dependability case are the identification of which system components

are involved (and how) in a given property, as well as using the analysis techniques themselves to provide

evidence. One characteristic that often defines these analysis techniques is their steep learning curve;

they have a hard requirement on expert knowledge. When considering a large community, such as the

ROS community, coming from vastly different backgrounds (e.g., computer scientists, electrical engineers,

hobbyists, etc.), it is expectable that a considerable part of it is unaware of the standard, established

practices in software quality assurance [6]. This is concerning, given the fact that ROS thrives on being

open source, and promoting the reuse of existing components. If the reusable components are of dubious

quality, if they are built on shaky foundations, it is hard to trust the end product. In fact, this problem

has already been observed in practice [61]. Some of the factors that hold back the true potential of ROS

include:

• the existence of bugs in released components;

• the lack of basic documentation; and

• developers abandoning their projects.
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If the standard development processes adopted by the ROS community already included some form of

quality assurance, some form of dependability cases (if only for a small set of properties), the released

components would be more dependable. Even if the developers end up abandoning the projects, and there

are no active maintainers, the issue would be alleviated, to an extent, by the initial boost in dependability.

Thus, the question stands:

How can existing software analysis techniques (such as Model Checking, Runtime Verification,

etc.) and tools be used by non-experts, to improve the quality of ROS applications and to

provide the basis for dependability cases?

This is the main research question that drives our work. We know that there are many efforts to migrate

standard techniques to the domain of ROS applications, as we will see in Chapter 2. But, as we mentioned,

these approaches require expert knowledge. They are made by experts for experts. The notable exception

is, perhaps, Model-driven Engineering (MDE). MDE can make use of easy-to-learn tools, such as box and

line diagrams, that mask some of the underlying complexity, while reaping the benefits of code generation

and automatic enforcement of code conventions. Still, no particular approach has thrived to the point of

standardisation. Tool support is either scarce or scattered; most developers end up reverting to traditional

development processes [73], where models are informal and source code is the core development artefact.

In a world where the general robotics community is struggling to adopt models as the norm, we defend

the use of analysis techniques that are based on source code at their core. Such techniques would be able

to handle current and past systems, while, at the same time, being compatible with future systems built on

models (even MDE approaches end up generating source code). In addition, they are adequate for large

ecosystems of open source projects, such as ROS. However, ROS systems are composed of a number of

domain-specific concepts (introduced in Chapter 2) that general-purpose tools can hardly capture without

significant investment; again, requiring expert knowledge. Over the course of this dissertation, we will show

that:

Standard software analysis techniques can be employed behind an interface that caters

to ROS roboticists. Namely, an interface that (i) takes source code as input, (ii) reverse

engineers (formal) models as needed, and that (iii) uses a high-level property specification

language that addresses ROS concepts directly.

1.3 Running Example: Fict ibot

Over the course of this dissertation, we discuss various concepts and techniques that greatly benefit from

examples to make them easier to understand. In order to keep examples consistent and relatable, we will

use a fictitious robot, called Fictibot, as our running example. Conceptually, Fictibot is really simple. It is

a mobile robot platform that moves in two dimensions, using two wheels, and incorporates three basic

sensors to perceive its surroundings: a bumper sensor, to detect collisions; a laser sensor, to detect nearby

obstacles; and a wheel drop sensor, that detects whether the wheels are in contact with the floor. It is
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very similar to the Kobuki robot16 (Figure 4), an actual mobile platform that is commonly used in the ROS

community.

Figure 4: The Kobuki robot.

In terms of its software architecture, Fictibot only has four elements, as shown in Figure 5.

Figure 5: The Fictibot robot’s architecture.

Namely, in this architecture, we are able to identify:

• a Sensor Manager that reads sensor data and redistributes it to other components;

• a Random Controller that consumes sensor data and issues random commands, possibly paired

with other controllers, such as a Safety Controller;

• a Multiplexer that receives commands from multiple sources and lets through the highest-priority

one;

• a Motor Manager that receives velocity commands and relays them to the actuators.

The full source code for this example is provided in Appendix A.

1.4 Contr ibut ions and Document Structure

This thesis focuses on the application of lightweight Formal Methods, in a code-first paradigm. The idea

is to get the most out of the source code, with a low formal specification effort. We want to provide a

single workflow where source code is the starting point, and properties can be checked through the use of

various techniques, providing the basis for the construction of a depedability case. The construction of

the dependability cases themselves, however, is beyond the scope of this thesis. The proposed workflow

should alleviate the property specification burden, by allowing both partial specifications and approachable

16 http://kobuki.yujinrobot.com/about2/

http://kobuki.yujinrobot.com/about2/
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specification methods. To this end, we leverage existing techniques that are based on source code, and

extend them with ROS-specific domain knowledge. In addition, we explore model extraction techniques, so

that we can reverse engineer models out of code. This way we are not completely losing out on the benefits

of model-based analyses. At the same time, the use of automatically generated models can help ROS

developers familiarise themselves with these concepts, possibly promoting (indirectly) the future adoption

of model-based development processes.

Our main contributions can be summarised as follows.

1. A preliminary study on how the various ROS features are used in practice, published in [149]. This

study played an important role in helping us decide which features should be prioritised in new

analyses.

2. A metamodel for ROS applications, published in [151]. The intent of this metamodel is to raise

analyses to a level of abstraction that is more familiar to the ROS developer, as well as to enable the

use of model-based techniques.

3. An automatic procedure to build instances of the metamodel from source code via reverse engineering,

also published in [151]. The use of automatic model extraction makes our approach compatible

with any existing or future project. It also relieves the ROS developer from the burden of modelling,

which, in itself, can be an error-prone activity.

4. A minimalistic specification language to annotate models with behavioural properties for which we

want to construct dependability cases. It is based on well-known property specification patterns, so

that we can capture a large number of use cases, hide the formal semantics behind it, and avoid

common specification mistakes and pitfalls. A preliminary version of this language was published

in [41].

5. A property-based test framework that, given a system model and a behavioural property, generates

a tailor-made test whose goal is to falsify the property and present a minimal counterexample to

the user. This constitutes one method of gathering evidence to support a dependability case. A

preliminary version of this test framework, without taking behavioural properties into the generation

process, was published in [150].

6. The HAROS framework17 for the analysis of ROS systems. This framework implements the whole

approach in a unified workflow, and provides an interface that ROS roboticists can use to improve

various aspects of software quality for a given ROS project, without prior knowledge of the underlying

analysis methods. The foundation for this framework, without the contributions in the previous

items, was implemented prior to this thesis and published in [148].

As for the structure of this document, we start with an introduction to ROS in Chapter 2. This chapter

also presents the state of the art in the application of quality assurance practices in a ROS environment, as

well as our preliminary study on how the various ROS features are used in practice. Chapter 3 presents

our metamodel for ROS applications and the corresponding automatic model extraction procedure. In

Chapter 4 we define the specification language for behavioural properties with formal semantics. Chapter 5

17 https://github.com/git-afsantos/haros/

https://github.com/git-afsantos/haros/
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moves towards the technical aspects of this thesis, and serves as an introduction to the HAROS framework.

It shows how the previous concepts can be integrated in the framework, and how it can be further extended.

Chapter 6 shows a preliminary approach to check behavioural properties of ROS applications, using

Runtime Verification. This is not a core contribution for this thesis, but rather serves as a basis for the

approach presented in the following chapter. Chapter 7 shows our approach for Property-based Testing

of ROS applications – one of the many possible ways to check properties – and its respective integration

within HAROS, thus completing the proposed workflow. We evaluate the components of our workflow with

two case studies in Chapter 8, one of them being a popular research robot in the ROS community, and the

other being a robotic platform for hillside agriculture. Finally, in Chapter 9 we review our thesis and our

contributions. We show their impact in the ROS community, so far, and discuss some prospects for future

work.



2

T H E ROBO T O P E R A T I N G S Y S T EM

This chapter provides the necessary foundation for the remainder of the thesis. It is our ultimate goal

to propose a workflow based on a variety of software analysis techniques that leverages domain-specific

knowledge about the Robot Operating System, and is able to provide useful feedback at an early stage. Thus,

we start with an introduction to the baseline concepts of ROS in Section 2.1, going over the organisation and

deployment of a system, from the source code level to the runtime environment. Then, in Section 2.2 we

overview the state of the art in Formal Methods and Quality Assurance for ROS systems (specifically), piecing

together a picture of how systems are currently analysed and defects detected. Lastly, in Section 2.3, we

present one of the first contributions of this thesis – an empirical study on the usage of the various core

concepts and primitives of ROS [149]. The study sets the stage for our other contributions by putting into

perspective how (and how commonly) each feature is used in open source systems, which helps us set

correct priorities, i.e., what should new analyses and tools focus on.

2.1 The Basics of ROS

2.1.1 Packaging and Distributing Software

The Robot Operating System is, first and foremost, a collection of libraries, tools and components for the

development of robotic applications. This collection comes in several different versions, called distributions,

which are updated over time, following a well-defined release and support life cycle1, similar to, e.g., Linux

Ubuntu distributions. The main purpose of a distribution is to ensure that developers are working with a

stable codebase for a specific target platform – changes to the core features, within the same distribution,

are mostly limited to bug fixes and non-breaking improvements. For instance, ROS Indigo Igloo, released

on May 2014, was a Long Term Support (LTS) distribution, targeting Linux Ubuntu Saucy (13.10) and

Linux Ubuntu Trusty (14.04 LTS). Support for Indigo dropped on April 2019, at the same time that Ubuntu

Trusty reached its End of Life status. By that time, four more distributions had already been released: ROS

Jade Turtle on May 2015, ROS Kinetic Kame (LTS) on May 2016, ROS Lunar Loggerhead on May 2017,

and ROS Melodic Morenia (LTS) on May 2018. Choosing the right distribution is the first step one has to

take in order to use ROS.

1 http://wiki.ros.org/Distributions
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In a ROS environment, software is organised in packages, the basic build and release units. Over time,

distributions became very large, surpassing 4000 packages in ROS Melodic Morenia. Furthermore, there

are many open-source packages that are not part of the official distributions. It does not come as a surprise

that most users need only a relatively small number of these packages. To accomodate for this scenario,

distributions typically offer installations in four different levels, as seen in Figure 6.

Figure 6: Package organisation within a ROS distribution.

• ROS Base is the bare bones installation; it offers the core functionality and command line tools for

users to build their own ROS packages and applications.

• ROS Desktop offers the Base features, plus a few graphical tools and robot-generic libraries.

• ROS Desktop-Full offers ROS Desktop packages, plus navigation and perceptions libraries, as

well as 2D and 3D simulators.

• ROS Distribution offers a vast range of officially indexed packages that include all of the above

and more; cannot be installed directly via convenient commands as the previous levels.

In addition, individual packages, not included in the groups above, can always be hand-picked and

installed at any time.

A package has only three hard requirements, as follows. Figure 7 shows the structure of a minimal

package.

1. A package must have its own directory; nested packages or multiple packages in a single directory

are not allowed.

2. A package must contain a manifest file – an XML file, called package.xml, with meta information

about the package.

3. A package must contain a CMake build file (CMakeLists.txt), using the appropriate macros for the

ROS build system.

Besides the CMake and package XML files, a package can contain nearly anything, from source code to

robot models, from configuration files to standalone tools.
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Figure 7: Example of a minimal ROS package.

The package manifest defines basic properties about a package, such as the package’s name, version

number, authors, maintainers, licenses, and dependencies on other ROS packages. Listing 2.1 illustrates

the package.xml file of a controller component, for our Fictibot robot, the running example we use throughout

the thesis. In this file, we can see the <name> tag defining the fictibot_controller name for the package,

the <version> tag defining the version number 0.1.0 and the <description> tag providing a free text

description. We can also see author and maintainer information in the <author> and <maintainer> tags,

respectively, along with an MIT license in the <license> tag. Finally, we define some dependencies, such

as catkin – the standard package building tool for ROS – in the <buildtool_depend> tag, as well as the

roscpp, std_msgs and fictibot_msgs ROS packages, in the <depend> tag.

1 <?xml version="1.0"?>

2 <package format="2">

3 <name>fictibot_controller</name>

4 <version>0.1.0</version>

5 <description>The fictibot_controller package.</description>

6 <author email="andre.f.santos@inesctec.pt">André Santos</author>

7 <maintainer email="andre.f.santos@inesctec.pt">André Santos</maintainer>

8 <license>MIT</license>

9 <buildtool_depend>catkin</buildtool_depend>

10 <depend>roscpp</depend>

11 <depend>std_msgs</depend>

12 <depend>fictibot_msgs</depend>

13 </package>

Listing 2.1: An example package manifest XML file.

The catkin build system uses CMake, thus the need for a CMakeLists.txt file. There are a few

requirements regarding the contents of this file, such as declaring dependencies on other packages,

which end up duplicating information between CMakeLists.txt and package.xml. We will not delve into detail

for all available functions and macros, as such information is not relevant for this work. Listing 2.2 shows

an example CMake file for the same Fictibot controller package. In this example, we can see the name

of the package, declared in project, package dependencies after CATKIN_DEPENDS, directories where C++

header files can be located, in include_directories, as well as which executables are built from this

package, in add_executable, add_dependencies and target_link_libraries.

Sometimes, packages are closely related, and meant to be used in conjunction. For instance, in Fictibot,

it would make sense to install both a package for the robot drivers as well as for a high-level controller, since

the driver, by itself, does not do much. This is a common pattern in many robots, such as TurtleBot22 or

2 https://www.turtlebot.com/turtlebot2/

https://www.turtlebot.com/turtlebot2/
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1 cmake_minimum_required(VERSION 2.8.3)

2 project(fictibot_controller)

3 find_package(catkin REQUIRED COMPONENTS roscpp std_msgs fictibot_msgs)

4 catkin_package(

5 INCLUDE_DIRS include

6 CATKIN_DEPENDS roscpp std_msgs fictibot_msgs

7 )

8 include_directories(include ${catkin_INCLUDE_DIRS})

9 add_executable(fictibot_controller

10 src/controller_node.cpp src/random_controller.cpp)

11 add_dependencies(fictibot_controller

12 ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})

13 target_link_libraries(fictibot_controller ${catkin_LIBRARIES})

Listing 2.2: An example CMake build file.

the Care-O-bot 43. Another example is for libraries that provide similar functionality, such as navigation

algorithms. In these cases, it is possible to group packages together with a metapackage. A metapackage

is simply a package with no contents (besides the mandatory files) that declares runtime dependencies

on the packages that it is meant to group together. Thus, when a metapackage is installed, all of its

dependencies should also be installed. It is a clever mechanism to circumvent the restrictions on nested

packages.

2.1.2 Deployment and Runtime

The ROS Computation Graph

A typical ROS system is a distributed system, with various independent resources connecting to each other

through various means. This network of resources is called the ROS Computation Graph.

Every resource in the graph is named, with a hierarchical naming structure. For instance, both the

names /max_vel and /robot/max_vel represent resources named max_vel, but the former is said to be

under the global namespace, while the latter is under a /robot namespace. In this case, the first example

might represent a maximum velocity parameter for all components in the system, while the latter could

represent the maximum velocity of an individual robot in the network.

The intent of using namespaces is to provide encapsulation. In general, a resource can create other

resources within its namespace, and it can access resources within or above its namespace. I.e., /robot

can access /max_vel and /robot/max_vel, but it can only create /robot/max_vel. In practice, this is just

a convention, and any resource can access any other resource using its full name.

A full ROS name is a series of identifiers separated (and preceded) by forward slashes, as in the previous

examples. However, ROS provides a name resolving mechanism to avoid specifying full names all the time.

As such, a name is said to be:

1. a base name if it is a simple identifier, e.g., max_vel;

3 https://www.care-o-bot.de/en/care-o-bot-4.html

https://www.care-o-bot.de/en/care-o-bot-4.html
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2. relative if it is a series of identifiers separated by forward slashes, e.g., robot/max_vel;

3. private if it starts with a tilde, e.g., ~max_vel;

4. global if it is a full name, starting with a forward slash, e.g., /robot/max_vel.

From the definitions above, we can see that base names are also relative names. Private names are a

shortcut notation to resolve a name relative to the querying resource’s own namespace. For instance, if

/robot wants to access ~max_vel, ROS will look for /robot/max_vel. Relative names are resolved relative

to the namespace the querying resource is in. For instance, if /robot wants to access max_vel, ROS will

look for /max_vel, and not /robot/max_vel, because /robot lives in the global namespace, i.e., /. Global

names are considered to be fully resolved.

As a final note on names, at runtime initialisation, any name can be remapped into any other name.

This works as an intermediary look up table for each resource. It is a transparent mechanism to redirect

names, without changing source code. For example, suppose there are two resources named /robot1

and /robot2. If a remapping from /max_vel to /max_vel1 is defined for /robot1, whenever /robot1 tries

to access /max_vel, it will be transparently accessing /max_vel1 instead. /robot2 works normally, as

remappings are not global. Naturally, remappings play a big role when composing software from different

packages into a single system, since source code does not have to be changed for resources to be able to

access each other.

ROS Graph Resources

Up to this point, resources were presented in abstract terms. Now, we shall go over the four main types of

resources in a ROS system: nodes, topics, services and parameters. Nodes are the main resources in a

Computation Graph. They are processes that consume, process and produce data. They communicate

with each other via message-passing. The other types of resources either hold shared data (parameters) or

serve as message-passing channels (topics and services).

One of the main design principles of ROS is that nodes should be specific and modular, rather than

monolithic components. It is normal for a single robot to have a network of many nodes. For instance,

in the Fictibot example there is the /fictibase node that runs the robot’s drivers, providing access to

sensors and actuators, and the /ficticontrol node that provides a high-level controller. In a more realistic

example, there might be nodes for localisation, navigation or perception, and each sensor and actuator

might have its own individual node. Nodes are written using one of the ROS client libraries, such as roscpp

(for C++) and rospy (for Python), and they typically follow a common lifecycle, shown in Listing 2.3, although

this is not mandatory.
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1 #include <ros/ros.h>

2

3 void main_loop() {

4 // Option 1

5 ros::spin(); // loop until shutdown is requested;

6 // process incoming messages as they arrive

7 // Option 2

8 ros::Rate loop_rate(10); // aim for a 10 Hz loop

9 while (ros::ok()) { // repeat until shutdown is requested

10 ; // read sensors, create messages, update maps, etc.

11 ros::spinOnce(); // process all pending received messages

12 loop_rate.sleep(); // sleep the remaining time to meet the 10 Hz rate

13 }

14 }

15

16 int main(int argc, char **argv) {

17 ros::init(argc, argv, "node_name"); // register as a ROS node

18 // read and write parameters

19 // create topics and services

20 main_loop();

21 return 0;

22 }

Listing 2.3: Basic lifecycle of a C++ ROS node.

In Listing 2.3 we can see the use of the ros::init function, which registers the process as a ROS node

in the Computation Graph, using the name given as its third argument. Before any real work is done, there

is usually a setup phase, during which the node reads and writes ROS parameters that it might need,

as well as creating (or connecting to) a series of message-passing channels (topics or services). Once

this ROS interface is all set up, the node enters its main loop, which should run until a user requests the

shutdown of the ROS system. There are two main options for this loop, as shown in the example. The

first is simply a call to the ros::spin() function, which blocks the process indefinitely, simply waiting for

new messages. Once a message arrives, it should automatically trigger the respective reaction function,

as we will explain. The second option is to put together the loop manually, using while (ros::ok()) to

detect the user’s request to shut down. Within this loop, the user is free to perform any actions. The most

common actions are a call to ros::spinOnce(), which processes any incoming messages that might be

pending at the moment, and some sort of waiting mechanism, a variant of sleep() (which we also explain

later), so that iterations occur at a certain rate, rather than continuously.

There is a node variant, called nodelet, that is designed to bolster the performance of tightly coupled

nodes, i.e., nodes that are meant to share many (possibly large) messages and are closely related to

each other (e.g., image processing nodes). A nodelet runs on a single thread, rather than a process, and

multiple nodelets can be grouped under a nodelet manager that spawns the main process. The main

advantage of nodelets is that ROS is able to transparently share messages between nodelets via shared

memory, rather than sending messages over the network. A limitation of nodelets is that, being threads of

a process, they must reside on the same machine. Nodelets are able to communicate with regular nodes,

using the standard mechanisms.
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In every ROS system there is a special node, not implemented by the user, called the ROS Master, that

provides the naming service for the whole Computation Graph. Nodes communicate with the Master to

register themselves with a given ROS name, e.g., /fictibase, and to discover other nodes in the network,

e.g., /ficticontrol. Nodes must also communicate with the Master to create and access resources in

the Computation Graph, such as topics, services and parameters. For instance, when a node is interested

in accessing a certain topic, the Master shares with it the list of other nodes that are also accessing the

same topic name. This is all done transparently to the user, using certain functions of the ROS client

libraries, as we will see in the remainder of this section.

As to how nodes actually send messages to each other, by default, there is a choice between the

aforementioned topics and services. Both are typed, meaning that when a resource is created, a message

type is registered along with the name, and all nodes are expected to send and receive messages of that

type only. Type checking is done only at runtime, by comparing MD5 checksums for the message type.

The ROS Base set of packages provides a number of standard message types (e.g., primitive data types,

laser scans, 3D poses, etc.), but users can also define their own custom messages. Message types are

defined in .msg files for topic messages and in .srv files for services, using a domain-specific language.

The package building system provides the tools to automatically generate source code for the different

client libraries. Listing 2.4 shows an example of a custom .msg file declaring a constant, THE_NUMBER, and

two message fields, a_number and stamp. When messages are sent, only the fields are actually serialised

and transmitted. Constants are defined for convenience, e.g., to check that a_number == THE_NUMBER.

Field types can be primitive types, time stamps, durations or other message types, to allow the definition

of complex messages via composition. Fields can also be fixed-length arrays or variable-length lists of any

of the previous types.

1 # Lines starting with `#' are comments.

2 # Constants are defined with the `=' sign.

3 uint8 THE_NUMBER = 42

4 # Fields only declare a type and a name.

5 time stamp

6 uint8 a_number

Listing 2.4: Example of a custom ROS msg with a field and a constant.

Topics are the most common message-passing mechanism, as we will see in Section 2.3. They follow

an asynchronous publisher-subscriber model, with many to many connections. Publishers can send

messages at any time, regardless of the number of active subscribers, and subscribers are notified (via

a callback function), once a new message is received. Both publishers and subscribers are backed by

a message queue whose size is defined by the user. Messages are processed in order. If a message

queue is full and a new message arrives, the oldest message is discarded silently. Before a node is able to

publish any messages on a topic it must advertise said topic. In practice, this is the step where the node

registers itself on the Master as a publisher, and gets back the current list of subscribers. This type of

communication is ideal for continuous data streams, such as sensor data. Listing 2.5 is an adaptation of
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the publisher-subscriber tutorial from the official ROS Wiki4, and shows a minimal example of publishing to a

topic out and subscribing to a topic in. The latter receives messages of the standard type std_msgs/UInt8

(8-bit unsigned integer), while for the former we use the custom message type defined in Listing 2.4,

assuming it is called tutorials/Custom.

1 #include <ros/ros.h>

2 #include <std_msgs/UInt8.h>

3 #include "tutorials/Custom.h"

4

5 void callback(const std_msgs::UInt8::ConstPtr& msg) {

6 // do something with `msg'...

7 }

8

9 int main(int argc, char **argv) {

10 ros::init(argc, argv, "node_name"); // register as a ROS node

11 ros::NodeHandle n;

12

13 ros::Publisher pub = n.advertise<tutorials::Custom>("out", 10);

14 ros::Subscriber sub = n.subscribe("in", 10, callback);

15

16 ros::Rate loop_rate(10); // aim for a 10 Hz loop

17 while (ros::ok()) { // repeat until shutdown is requested

18 tutorials::Custom msg;

19 msg.stamp = ros::Time::now();

20 msg.a_number = Custom::THE_NUMBER;

21 pub.publish(msg); // `msg' is sent at this point

22

23 ros::spinOnce(); // process incoming messages with `callback'

24 loop_rate.sleep(); // sleep the remaining time to meet the 10 Hz rate

25 }

26 return 0;

27 }

Listing 2.5: A minimal node with a publisher and a subscriber.

We can see in lines 13 and 14 the creation of a Publisher channel and a Subscriber channel,

respectively. Both use the creation functions with the least possible parameters. For the Publisher, in C++,

we have to instantiate the template function advertise on the spot, by providing the desired message type

(in this case, tutorials::Custom). The first parameter, given the argument "out", defines the desired

ROS name for the topic (which is subject to name remappings), while the second parameter defines the

desired message queue size. The call to subscribe is similar, except that the message type is given from

its third parameter – a pointer to a callback function that processes incoming messages.

Services are the second message passing method provided by the core ROS interface. This method

implements synchronous one to one communication, using remote procedure calls. So, in this case, there

is a notion of server (the node that provides the service) and client (the node that uses the service). It is

considered an error to have multiple servers for a service with the same name. Messages are exchanged

in request-response pairs, and clients block while waiting for a response. Ideally, services are used for

quick tasks, such as querying the current state of a node. Long tasks should avoid using services because

4 http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28c%2B%2B%29

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28c%2B%2B%29
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it might lead to unresponsiveness, as other messages queue up. Similar to publishers, a service server

must also advertise the service to the ROS Master before clients can request it. Listings 2.6 and 2.7 are an

adaptation of the service tutorial5, and show minimal nodes advertising and requesting a service that adds

two integers, respectively.

1 #include <ros/ros.h>

2 #include "beginner_tutorials/AddTwoInts.h"

3

4 bool add(beginner_tutorials::AddTwoInts::Request &req,

5 beginner_tutorials::AddTwoInts::Response &res) {

6 // request `req' contains two integers `a' and `b'

7 // response `res' contains a field `sum' to hold the result

8 res.sum = req.a + req.b;

9 return true;

10 }

11

12 int main(int argc, char **argv) {

13 ros::init(argc, argv, "add_two_ints_server"); // register as a ROS node

14 ros::NodeHandle n;

15

16 ros::ServiceServer server = n.advertiseService("add_two_ints", add);

17

18 ros::spin(); // loop, processing messages, until shutdown is requested

19 return 0;

20 }

Listing 2.6: A minimal node using a service server.

1 #include <ros/ros.h>

2 #include "beginner_tutorials/AddTwoInts.h"

3

4 int main(int argc, char **argv) {

5 ros::init(argc, argv, "add_two_ints_client"); // register as a ROS node

6 ros::NodeHandle n;

7

8 ros::ServiceClient client =

9 n.serviceClient<beginner_tutorials::AddTwoInts>("add_two_ints");

10

11 beginner_tutorials::AddTwoInts srv;

12 srv.request.a = 12;

13 srv.request.b = 15;

14

15 if (client.call(srv)) {

16 ROS_INFO("Sum: %ld", (long int) srv.response.sum);

17 } else {

18 ROS_ERROR("Failed to call service add_two_ints");

19 return 1;

20 }

21 return 0;

22 }

Listing 2.7: A minimal node using a service client.

5 http://wiki.ros.org/ROS/Tutorials/WritingServiceClient%28c%2B%2B%29

http://wiki.ros.org/ROS/Tutorials/WritingServiceClient%28c%2B%2B%29


2.1. The Basics of ROS 20

There is a third communication mechanism worth mentioning, called actions. Actions are not provided

by the core ROS interface, but rather by the actionlib library, that has been part of the official distributions

since ROS Indigo Igloo. They use several topics under the hood, but are similar to services, in the sense

that there is a client-server model. The main difference is that actions are intended to fill the gap left by

services for long-running tasks on demand. In this case, request and response (called goal and result,

respectively) are asynchronous, i.e., the client sends a goal, and does not block while waiting for a result.

Rather, the client is notified, via callback functions, of the progress towards the goal, and, later, of the

result itself. The main advantage of actions is that, at any time, the client has the option to preempt the

computation. Also, at any point, the client is able to block waiting for a result, just as if using services. Good

examples of actions are moving a robot to a certain location, or identifying an object from visual feedback

(perception). Seeing as they are not a core communication mechanism, but, rather, an abstraction built on

top of the other primitives, this thesis will be focusing only on topics and services.

The final type of resource, parameters, is used to share data with (or between) nodes, but without

messages, or any kind of explicit communication for that matter. The ROS Master holds a shared key-value

store, called the Parameter Server, where keys are ROS names and values can be any primitive type, ISO

8601 dates, base64-encoded binary data or lists of such values. Any node (or user, e.g., via a command

line) can read and write values on the server. The Parameter Server is not designed for high-performance

access; its main purpose is to hold static configuration parameters. For instance, if a node needs to read a

file at runtime, instead of hard-coding the filename in the source code, a path can be fetched from a string

parameter. Users would set the appropriate parameter before starting the node, resulting in a much more

modular solution. Listing 2.8 illustrates this example.

1 #include <string>

2 #include <iostream>

3 #include <fstream>

4 #include <ros/ros.h>

5

6 int main(int argc, char** argv) {

7 ros::init(argc, argv, "file_writer");

8 ros::NodeHandle n;

9 std::string file_path; // storage for parameter value

10 if (n.getParam("~file_path", file_path)) { // getParam reads the parameter

11 std::ofstream input_file(file_path); // open file for writing

12 if (input_file.is_open()) {

13 input_file << "This file was given via ROS parameters.\n";

14 input_file.close();

15 n.setParam("~succeeded", true); // write true on the parameter

16 }

17 } else {

18 n.setParam("~succeeded", false); // write false on the parameter

19 }

20 return 0;

21 }

Listing 2.8: A minimal node reading and writing parameters.



2.1. The Basics of ROS 21

When reading and writing parameters, namespaces have a special meaning. They are treated as

sub-mappings (or dictionaries, or data structures) within the root mapping. Suppose that a user defines

the following parameters.

1 "/rgb/r": 255

2 "/rgb/g": 140

3 "/rgb/b": 105

Whenever a user accesses, e.g., /rgb/r, they would get back 255. But if a node tries to read the

top-level /rgb name, the Parameter Server returns the whole mapping, i.e.,

1 {"r": 255, "g": 140, "b": 105}

Managing Time

Time and durations are central aspects to the design and implementation of cyber-physical systems. For

instance, a common approach to programming ROS nodes is to set the node’s main loop at a fixed rate.

This ensures that publishers always produce a relatively steady stream of messages, and also has the

potential to serve as a heartbeat mechanism, to ensure that the node is continuously making progress.

Thus, ROS provides a few convenience classes in the client libraries to ease the management of time,

durations and rates, namely:

• ros::Time to represent a moment, an instant in time, such as the current time;

• ros::Duration to represent a period of time, such as a period of 10 seconds;

• ros::Rate a convenience to represent a fixed rate, and making a best effort at keeping it by

accounting for the time used to do work in a loop.

These time primitives are all based on a Time Server – an internal ROS entity that, by default, keeps track

of time as any normal clock would. However, this behaviour can be changed. It is useful to change this

behaviour in simulation, for instance, either to slow down the passage of time, or to speed it up. For such

cases where real time is needed, though, even if running in simulation, ROS provides a wall variant of all

primitives above, that bypass the behaviour of the time server – i.e., ros::WallTime, ros::WallDuration

and ros::WallRate. Listing 2.9 illustrates the basic interface and usage of the time primitives.
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1 ros::Time today = ros::Time::now(); // the current time

2 ros::Duration five_seconds(5.0); // a duration of 5 seconds

3

4 // Time arithmetic

5 ros::Duration ten_seconds = five_seconds + five_seconds;

6 ros::Duration a_full_day = ros::Duration(24*60*60);

7 ros::Time tomorrow = today + a_full_day;

8

9 // Blocking for a period of time

10 five_seconds.sleep(); // sleep for 5 seconds

11 ros::Rate ten_hz(10); // 10 hz

12 while (ros::ok()) {

13 ten_hz.sleep(); // keep a rate of 10 iterations per second

14 }

Listing 2.9: The ROS time primitives.

In practice, ros::Rate tends to be combined with active publishers (i.e., producers of data). For instance,

Listing 2.5 shows an example of a node using a ros::Rate, named loop_rate, to define a fixed rate of

approximately 10 Hertz. Within the loop, the node calls pub.publish(msg) to publish a new message,

and ros::spinOnce() to process any pending messages that its subscriber might have received. Then,

loop_rate.sleep() is called as the final instruction of the loop, possibly blocking the process for some

time, and making the best effort to meet the defined rate. ros::Time is used for time arithmetic or, as in

this case, to set a time stamp for a new message, possibly to help distinguish stale data from current data.

Here we repeat the relevant excerpt of Listing 2.5.

1 ros::Rate loop_rate(10); // aim for a 10 Hz loop

2 while (ros::ok()) { // repeat until shutdown is requested

3 tutorials::Custom msg;

4 msg.stamp = ros::Time::now();

5 msg.a_number = Custom::THE_NUMBER;

6 pub.publish(msg); // `msg' is sent at this point

7

8 ros::spinOnce(); // process incoming messages with `callback'

9 loop_rate.sleep(); // sleep the remaining time to meet the 10 Hz rate

10 }

Durations are seldom used with publishers or subscribers. A more practical use is to set a time limit to

wait for the result of an Action. In a similar fashion, durations are used to set a maximum wait time until a

service becomes available, using ros::service::waitForService(service_name, timeout).

Deploying a System

There are two ways to start nodes in ROS. The first is to start each node individually, using a command line

tool called rosrun. In practice, though, this is not really feasible, given that a system may comprise several

nodes, each requiring setup. The second way, which is the standard, is through the definition of launch

files and the roslaunch tool. These are XML configuration files used to deploy standalone applications or
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components for more complex systems. A launch file can start any number of nodes, by defining <node>

tags, as well as providing a common place to define a number of settings, such as:

1. including other launch files, via a <include> tag;

2. defining name remappings, via a <remap> tag;

3. settings parameters, via a <param> or <rosparam> tag;

4. defining namespaces, via a <group> tag;

5. making tags conditional, via the if and unless tag attributes.

Allowing a launch file to include other launch files is a straighforward step to increase modularity and

composition. Parameters are set before launching the nodes, so that they are available as soon as the

first node starts. The main difference between <param> and <rosparam> is that the former is suited for

single parameters, while the latter allows, e.g., reading a list of parameters from YAML files. Remappings

apply to all following node tags, if defined at top level, or to the current node, if defined within a node tag.

Groups act as local scopes. That is, a <remap> within a <group> affects only nodes defined within that

group. Finally, the if (resp. unless) attribute declares that a tag is only evaluated if the given condition

evaluates to true (resp. false). Listing 2.10 shows a minimal launch file to launch the /fictibase and

/ficticontrol nodes.

1 <launch>

2 <node name="fictibase" pkg="fictibot_drivers" type="fictibot_driver" />

3 <node name="ficticontrol" pkg="fictibot_controller" type="fictibot_controller" />

4 </launch>

Listing 2.10: A minimal launch file for Fictibot.

There is a substitution mechanism for launch files that essentially mimics the use of variables. This

is done with the syntax $(cmd arg), where cmd is one of a pre-defined list of commands, and arg is

the respective argument for that command. A common example is $(find pkg), which is automatically

replaced with the path to the package pkg in the local file system. This makes it easy to reuse content

(e.g., nodes and launch files) from other packages in a portable way. Listing 2.11 shows a more complex

example of a launch file, adapted from the Kobuki6 robot.

1 <launch>

2 <node pkg="nodelet" type="nodelet"

3 name="mobile_base_nodelet_manager" args="manager"/>

4 <node pkg="nodelet" type="nodelet" name="mobile_base"

5 args="load kobuki_node/KobukiNodelet mobile_base_nodelet_manager">

6 <rosparam file="$(find kobuki_node)/param/base.yaml" command="load"/>

7 <remap from="mobile_base/odom" to="odom"/>

8 <remap from="mobile_base/joint_states" to="joint_states"/>

9 </node>

10 </launch>

Listing 2.11: A minimal launch file for Kobuki.

6 http://kobuki.yujinrobot.com/

http://kobuki.yujinrobot.com/
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2.2 Formal Methods and Qual i ty Assurance for ROS

Robots are, without a doubt, safety-critical systems. With ROS spreading to a large variety of application

domains, especially industrial and medical robots, quality assurance and formal methods for safety

verification have been gaining a lot of traction in the community.

Dependability, and software quality in general, can be improved with a number of different techniques.

Some follow a top-down approach, reasoning at the design level, while others follow a bottom-up approach,

starting from the implementation level. The former set of techniques is rooted in abstract and high-level

reasoning, and is commonly seen in model-based approaches. Such techniques often discover potential

faults during design, or generate correct source code automatically (correctness by construction). The

latter set of techniques is based on program analysis methods, but the analyses branch out in two variants:

static analysis, the verification of desired properties without executing the program; and dynamic analysis,

the verification of desired properties during program execution. In safety-critical systems, however, a

combination of techniques is the most sensible choice, as it overcomes the limitations of any single

technique and improves overall coverage. In this section we provide an overview of the quality assurance

and formal methods panorama for ROS, along the three axes described above.

2.2.1 Model-based Techniques

System models can be used for various purposes and with varying degrees of formalism and expressiveness.

Traditional Model-driven Software Development processes use modelling languages – sometimes Domain-

Specific Languages, or DSLs – to design a system, perform consistency checks, and automatically generate

source code, in part or in its entirety. These methodologies are a hot research topic in robotics, despite

their low adoption, after their success in the automotive and avionics industries, and for good reason. With

such a complex problem and solution space, and being the union of skill sets that it is, the field of robotics

can greatly benefit from abstracting away the details, to focus more on the functionality. For instance,

someone implementing custom mission logic should not be required to know the mathematical details of

kinematics or navigation; they just need components that offer such features with a clear interface.

In ROS, it is easy to see a number of small, immediate things that could potentially go wrong when

coding systems manually. Topic, service and parameter names are soft identifiers that lack compile-time

checks and fail silently at runtime, besides being scattered across multiple files. This is precisely the

problem tackled in [103], where the authors propose a modelling DSL to specify the interfaces of ROS

nodes and connect them to form systems. An analysis tool is then able to check the consistency of the

architecture, by comparing the models with manually written launch files, and adding some static analysis

traits to the approach.

A very common approach is to use graphical modelling languages, similar to UML diagrams, to model

systems as a set of components, connected to each other via ports. In the case of ROS, components

typically correspond to nodes, while ports correspond to topics (and, less often, to services). We can see

instances of this approach in [36, 39, 99, 169, 172]. The main advantage of graphical models is that they
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alleviate users from the burden of writing the necessary boilerplate code – besides ensuring that it is error

free. As distinguishing notes between these approaches:

1. BRIDE’s component model [39] follows themodel abstraction levels defined by the Object Management

Group (OMG7), enabling a transition from platform-independent models to platform-specific ones;

2. ROSMOD [99] considers both software components and hardware systems;

3. RAFCON [36] supports the specification of systems as hierarchical state machines;

4. ReApp [169, 172] extends components with an ontological classification, to set up a cloud-based

semantic component repository and to simplify the discovery (and reuse) of components.

At the time of writing, only ROSMOD and RAFCON seem to have been updated beyond the initial release

period.

A disadvantage of the approaches seen so far, is that the proposed models are not entirely formal.

Although they are a step forward in terms of improving the quality of the product, they waste the potential

of verifying critical safety properties. For instance, modelling ROS systems with the Robot Architecture

Definition Language [102] allows the verification of real-time properties (e.g., maximum message latency)

using SMT-based infinite-state bounded model checking. The trade-off is that nodes are assumed to follow

a relatively strict life cycle (although common, in practice), and require more specification effort (e.g.,

worst-case execution time). An alternative approach, much in the same spirit, is to use AADL [63] to model

and develop ROS applications [16]. Since AADL models can include hardware components and have

well-defined analysable semantics, it is a more natural fit for robotics over, e.g., UML.

Timed automata are another common formalism in robotics. They can be used with Uppaal8 to verify

real-time properties [78] (e.g., avoiding message loss due to overflow) or to synthesise C++ code too [108].

Stepping up in terms of the required expert knowledge, it is possible to generate ROS code that is provably

correct by construction [9, 121], using proof assistant tools such as Coq9. The first approach [121] focuses

on model-based deployment of platform-independent control code on a specific platform (ROS, in this

case). Various modelling and code generation tools generate components that need to interact with the

remaining components of the ROS system. The necessary ROS wrappers for the platform-independent

code are automatically generated from a node modelling DSL, and proved correct with Coq. Alternatively,

Coq can be used to build a physical and behaviour model of the system [9], which can be used later to

prove properties and to generate correct code. This is a unique approach in that it accounts for the events

of the physical domain and uses exact computations with real numbers, instead of the traditional floating

point arithmetics. However, despite being well suited for safety-critical systems, it is an approach with a

steep learning curve for the average ROS developer.

Lastly, [167, 168] presents a case study with Care-O-bot where they model a high-level planning and

scheduling system for human-robot interaction scenarios. It is a rule-based system that is shown to behave

correctly in the modelled scenarios, which include reminding a person to take medication at a given time,

7 http://www.omg.org/

8 http://www.uppaal.org/

9 https://coq.inria.fr/

http://www.omg.org/
http://www.uppaal.org/
https://coq.inria.fr/
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or moving to a specific location in the house, told by the person. For the modelling aspect, the authors

formalised requirements in LTL, and verified them with the SPIN model checker [83].

2.2.2 Static Analysis Techniques

Static analysis can be broadly defined as any kind of program analysis that does not require execution of

said program. It can target either source code or binary code. The former is vastly more common, both in

robotics and otherwise. To our knowledge, there is no published research on static binary analysis tailored

for ROS.

One of the most common themes in static analysis is the measurement of various metrics or coding

standards compliance. For instance, the ROSEco project [52] provides an overall measurement of package

impact and health, calculated from an aggregation of package dependencies, number of maintainers and

repository metrics (e.g., number of issues, number of watchers). A similar approach is proposed in [139],

in which the authors scan a large collection of ROS packages to identify packages that are themselves poorly

maintained or depend on poorly maintained packages. In terms of coding style and standards compliance,

roslint10 is a package provided in the ROS distribution that enables lint-style checks in C++ and Python

code, using cpplint11 and PEP812, respectively. Lastly, our own previous work, the plugin-based framework

HAROS [148], initially focused on applying a number of general-purpose tools to ROS repositories, in order

to gather quality metrics and verify compliance with coding standards.

Overall, the previous approaches offer little in terms of ROS- or robotics-specific insight. In contrast,

Phricky Units [133, 134, 135] is a tool that automatically identifies dimensional inconsistencies in ROS

code. This tool has a mapping of physical units that are expected for certain fields of ROS messages, and

then checks whether these fields, or variables derived from them, are misused in calculations with values

of different units (e.g., adding meters to meters squared). Lastly, [142] and [156] use static analysis to

partially reconstruct the ROS Computation Graph from C++ code and launch files (only the latter). They

further traverse control flow and function call graphs to try to determine dependencies between publishers

and subscribers. In [142] the goal is to document the publisher-subscriber architecture as a model, and to

find differences between two versions of the same component. In [156] the goal is to analyse the impact of

changes to the system, in order to determine which nodes are affected by, e.g., a change to the message

publication rate of a specific node. Conservative approaches, that do not take the publication rate into

account, could potentially recommend reviewing many (if not all) nodes of a system when a single node

is changed during development. With this approach, the authors achieve a more precise set of affected

nodes.

10 http://wiki.ros.org/roslint

11 https://github.com/cpplint/cpplint

12 https://www.python.org/dev/peps/pep-0008/

http://wiki.ros.org/roslint
https://github.com/cpplint/cpplint
https://www.python.org/dev/peps/pep-0008/


2.2. Formal Methods and Quality Assurance for ROS 27

2.2.3 Dynamic Analysis Techniques

Dynamic analysis is the complement to static analysis. The analysed target is the actual system implementation,

as is the case with static analysis, but the analysis requires execution. It can happen while the system

is executing, in which case it is called online, or it can happen after the fact (e.g., by analysing log files),

in which case it is called offline. Generally, dynamic analysis falls into two broad categories: testing and

runtime monitoring.

Testing techniques specifically tailored for ROS are not very common, presumably because general

purpose techniques can be applied, to some extent, and because ROS offers tools for traditional unit

and integration testing13 14. As such, new solutions [26, 60, 93] focus on the common theme of better

integrating simulation in tests, as well as supporting model-based tests and other modern testing methods.

Notably, [60] and [93] explore the use of timed automata to test navigation and localisation capabilities.

The latter also presents a testing toolkit that achieves scalability by enabling multiple tests to run in parallel,

possibly in a cloud-based environment, using simulation and Docker15 containers.

Runtime monitoring for ROS, on the other hand, is a hot research topic [4, 5, 27, 84, 85, 106, 171].

Some approaches focus more on the system monitoring aspects [27, 171] (e.g., system performance and

status), while others are used to detect violations of desirable behaviour properties [4, 5, 84, 85, 106], a

form of runtime monitoring that is more commonly known as runtime verification. For instance, [171] uses

hardware observers to monitor CPU and memory usage, diagnostic observers (with the ROS /diagnostics

topic) to check diagnostics messages, and node observers to determine whether a node is running. Similar

system introspection capabilities can be seen in [27], where the solution also monitors message latency

and checks the structure of the computation graph against a reference state (e.g., to detect missing nodes).

Runtime verification solutions aim at ensuring that a running system respects desirable safety (and

possibly liveness) properties. In comparison with static analysis, it is not held back by, e.g., the halting

problem, but it is limited to a single execution trace at a time. The main distinguishing factors between

these approaches are as follows.

1. ROSRV [85] does not offer a property specification language; properties are coded in manually, but

it can also monitor security policies, besides functional safety.

2. DeRoS [4, 5] has its own architecture and property specification DSL, based on the previous work

in [103]; in this case, the generated monitor is capable of monitoring temporal properties and

enforcing safety actions, albeit without an explicit semantics given in terms of standard temporal

logic.

3. RMoM [84] is capable of monitoring discrete-time Metric Temporal Logic properties over a finite

set of predicates for ROS robot swarms; predicates include whether certain nodes and topics are

present, the current swarm formation, as well as the position and velocity of robots within the swarm.

13 http://wiki.ros.org/rostest

14 http://wiki.ros.org/rosunit

15 https://www.docker.com/

http://wiki.ros.org/rostest
http://wiki.ros.org/rosunit
https://www.docker.com/
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4. Lesire et al. [106] propose a specification DSL that allows runtime verification of Past-time Linear

Temporal Logic properties with real-time constraints; this approach is benchmarked against DeRoS,

and found to be more effective and more efficient.

Finally, in [170] the authors tackle a different problem: the reconstruction and consistency checking of

the ROS computation graph. This approach is mixed, in that it uses static analysis for launch files – to

determine which nodes make up the system – and dynamic analysis to extract the interfaces of the nodes

themselves. Nodes are executed within a sandbox environment that also loads a library that intercepts

calls to the ROS Master. From these intercepted calls, they are able to determine which topics and services

are advertised and used by each node, and thus are able to put together the whole graph. The main

disadvantages of this approach are the assumption of a standard node life cycle (i.e., all topics and services

are created at setup), and, given that it is based on dynamic analysis, it can only extract information from

a single execution trace.

2.3 ROS in Pract ice

To push the quality of ROS systems forward, advanced analysis tools are undoubtedly required. Static

analysis, in particular, seems to be a promising approach, despite being generally hard to implement. It is

suitable for all systems and components, new and existing ones, as long as the source code is available. In

an open source ecosystem such as ROS, generic components tend to be reused, and application-specific

components tend to be custom made; in both cases, source code availability should not be an issue.

Besides, the ROS community is large and diverse, and many roboticists are not well-versed in formal

methods or standard software engineering practices, such as Model-driven Software Development, despite

the number of proposed approaches for either [9, 36, 39, 78, 99, 108, 121, 169, 172]. This leads to

a development process with little to no modelling and jumping straight into coding – an approach that

favours static analysis.

Building powerful, ROS-specific static analyses is possible [156, 170] but far from trivial. A first challenge

is that a ROS system is completely open. I.e., there is no real concept of application, since a group of nodes

could operate on their own in one context, or represent just a subsystem in another context. A second

challenge, as we can see in Section 2.1, is that ROS allows a high degree of freedom when it comes to

system design, making it difficult to reverse engineer the computation graph. In particular, launch files are

customisable with, e.g., environment variables or conditional statements. As a third challenge, the ROS

client libraries also provide a myriad of primitives, used to create topics and services or to read and write

parameters, that can be called at any point in the program.

Our first contribution is, thus, an empirical study, published in [149], with the goal of detecting common

usage patterns of ROS features and primitives, both in launch files and in the source code. The main

outcome of this study is a ranking of the most frequent usage patterns, making it easier to identify where

new analysis tools need to invest their effort. To address our first challenge, and for the purposes of this

study, we consider a ROS application to be a top-level launch file, i.e., a launch file that is not directly
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or indirectly included by any other launch file in the corpus. Thus, we conduct the study, driven by the

following research questions.

RQ1 Which ROS communication primitives are actually used, and how commonly?

RQ2 In which context are these primitives used and how are their arguments defined?

RQ3 What kind of features are typically used in ROS launch files to deploy applications?

RQ4 How and how commonly is the ROS parameter server used?

RQ5 How commonly are custom message and service types used in ROS communications?

From a code quality and analysis standpoint, the answers to these questions dictate how knowledgeable

static analysis (and the respective developers) must be. Knowing which primitives are used more often can

help prioritise their support in tools. For static analysis, it is also very relevant to know in which context such

primitives appear (namely, whether they are within control flow) and how are they parameterised (literal

arguments versus variable arguments). In particular, analyses become complex, if not impossible, when

values originate from the ROS parameter server. Parameters are dynamic by definition, but, contrary to

regular dynamic variables (which can be altered at various points within the same process), ROS parameters

can also change, without notice, by action of other processes in the network. There are only a few scenarios

in which one can determine, statically, the value of a ROS parameter, e.g., when it is undefined or when it

is defined in a launch file and no nodes redefine the value at any point. Finally, the usage and definition

of non-standard message types limits the domain-specific knowledge tools can leverage. For example,

the previously mentioned Phricky Units [133, 134, 135] is a tool that automatically identifies dimensional

inconsistencies in ROS code. To do so, it relies on a mapping of physical units that are expected for certain

fields of standard ROS messages. The introduction of non-standard message types, naturally, limits its

usefulness and capability to act.

2.3.1 Corpus of the Study

To put together a corpus of ROS packages would seem straightforward, at first glance. Given that ROS

is deeply rooted in the world of open source software, a corpus could be as simple (and as vast) as any

freely available ROS package. For instance, given that we worked with the ROS Indigo Igloo distribution,

our starting point could be to traverse the distribution’s index and collect all indexed packages. However,

this is an empirical study, backed by automatic mining tools, on the expected practices in standard ROS

application development – and here we hit a few issues that have us trim down the corpus significantly.

First, and foremost, the corpus should be representative of actual ROS systems. We focus on packages

that provide building blocks for robotic applications, i.e., controllers, drivers, planners, etc.. More specifically,

we chose packages from robot systems that are indexed in either the ROS Indigo Igloo or the ROS-Industrial

repositories (the latter is not a subset of the former), mostly based on popularity within the community and
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source code availability. Examples include the TurtleBot2, or the Fraunhofer IPA Care-O-bot16. But not

all robots are equally interesting to study; some have most of their functionality confined to proprietary,

ROS-agnostic drivers, exposing only a small ROS wrapper for integration purposes. Ideal systems, such as

the two aforementioned examples, have most of their source built for ROS and with ROS.

Our initial package corpus, based on concrete robotic systems, was then refined. Some packages are

just wrappers for ROS-agnostic libraries and utilities, their purpose being to streamline the process of

managing dependencies and making said utilities easily available for ROS developers. Such packages

should be avoided because they do not contain any ROS nodes or primitives. Including them would: (i)

skew the results (e.g., percentages relative to all packages); (ii) increase the overall time needed to process

all source code; and (iii) answer none of our research questions.

Moreover, we must take automation and technical limitations into account. At the time this study

was conducted, our prototype mining tools were limited to parsers for launch files and C++ source code.

Consequently, any components written in other languages (with Python being the most common alternative)

have to be left out of the analysis. The C++ mining tool relies on the Clang compiler, and most ROS

packages default to compiling with GCC. We had to ensure that every package could be properly compiled

beforehand, which means that, in some cases, we had to make changes to the source (mostly limited to

CMake files) in order to solve incompatibilities. This is an additional layer of manual work that severely

hinders our capacity to process a large corpus.

The initial selection yielded 480 packages. After filtering the selection, by removing metapackages and

some ROS-agnostic libraries, we settled on a corpus composed of 380 indexed packages. As per our

definition of ROS application within this study (a top-level launch file), the corpus contains 365 launchable

applications. Table 1 shows how the different packages and applications are distributed among the various

robot systems17. In this table, the entry Other Packages denotes packages that are used by one or more

robots, but are not part of any system in particular, such as ROS implementations of certain hardware

communication protocols.

Overall, 175 out of 380 packages, 46.05% of the corpus, contain C++ source code, and are, thus, subject

to the analysis pertaining to ROS primitives. In total, these represent 3,377 C++ files. The analysis of launch

file features is performed on 200 packages (52.63% of the 380) containing 901 files. By comparison, the

full ROS Indigo Igloo distribution index contains 2106 packages. After excluding 294 metapackages, we

found that 907 (50.06%) contain C++ source code and 757 (41.78%) contain launch files. In relative terms,

our corpus seems to be a representative sample of the ecosystem.

A preliminary analysis of our corpus shows that 40.51% of all launch files (365 in 901) fall into our

definition of launchable application. Unsurprisingly, we found that the package-application relation is

many-to-many, i.e., a single application depends on multiple packages, and a single package can contain

multiple applications.

16 https://www.care-o-bot.de/en.html

17 Some inconsistencies and unclear aspects were detected in this data after publishing the study. Here we present the correct values.

https://www.care-o-bot.de/en.html
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Name Packages Applications C++ LOC

Aubo 11 9 4,893

Clearpath Grizzly 9 14 1,510

Fraunhofer IPA Care-O-bot 68 27 43,765

Kinova MICO 5 5 4,265

Robotiq Adaptive Gripper 14 3 3,294

Robotnik AGVS 8 9 2,113

Robotnik GUARDIAN 10 19 5,555

Robotnik RB-1 13 23 525

Robotnik RBCAR 9 11 933

Robotnik SUMMIT 13 7 2,837

Shadow Dexterous Hand 57 43 33,983

TurtleBot2 71 101 38,739

Universal Robot 9 19 1,418

Yaskawa Motoman 10 29 8,747

Other Packages 73 46 543,776

380 365 696,353

Table 1: Corpus of packages used for the empirical study.

The collected data set, relative to the analyses over C++ and launch files, is available online18. We

describe the main results of the study and answer our research questions in the following subsections.

2.3.2 RQ1 – Which ROS communication primitives are actually used, and how commonly?

This study is limited to the two default communication primitives offered in ROS, the publisher-subscriber

paradigm and the client-server paradigm. Other mechanisms, such as Actions, were left out entirely;

they were not even counted towards the publisher-subscriber paradigm which is the foundation for their

implementation. We mined the source code, looking for calls to the various ROS C++ API functions that

create publishers, subscribers, service clients or service servers. Our initial guess, from reading the ROS

documentation, tutorials and other reference material, was that the publisher-subscriber paradigm would

be the most common. Indeed, our findings confirm this hypothesis, as shown in Figure 8.

(a) Absolute values. (b) Occurrence in packages and applications.

Figure 8: Number of Publishers, Subscribers, Service Clients and Service Servers in the corpus.

18 https://github.com/git-afsantos/ros_data

https://github.com/git-afsantos/ros_data
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(a) Options for Publishers. (b) Types of callback functions.

Figure 9: Usage of alternative primitive overloads.

We have registered a total of 379 publishers, 234 subscribers, 121 service servers and 14 service

clients, as shown in Figure 8a. Combined, we have 613 uses of the publisher-subscriber paradigm, as

opposed to 135 uses of the client-server paradigm. In relative terms, this means that nearly 82% of all

ROS communications create publishers and subscribers. Figure 8b shows that, across our corpus, 96 out

of the 175 analysed packages (54.86%) create ROS topics and 34 packages (19.43%) create ROS services.

The results are similar for launchable applications; 174 applications (47.67%) create topics, but only 80

applications (21.92%) create services.

The prevalence of topics is an expected result, since the publisher-subscriber paradigm allows for a greater

degree of flexibility. This model is more lenient in terms of system performance, since message processing

happens asynchronously, and components can be built regardless of whether there are counterparts on

the other end of the topic. For instance, a node that subscribes to a topic is, in theory, perfectly functional

regardless of the number of publishers on that topic. On the other hand, if a node is reliant on a service, it

blocks until a server is available.

Looking at the collected figures, we are also able to see that these systems produce more information

than they consume. The publisher to subscriber ratio is of 1.62 calls to advertise (producers) per call

to subscribe (consumer). For services, the ratio goes up to 8.64 calls to advertiseService per call to

serviceClient. This discrepancy could be due to robotic systems being typically designed in pyramidal

hierarchical approaches. Often, the number of low-level components is larger than the number of high-level

components (e.g., drivers and low-level controllers versus trajectory planners). In addition, the former

produce large amounts of information (e.g., from various sensors), to be collected and processed by

higher-level components, while consuming less types of information (e.g., velocity commands). We have

mentioned how most of the corpus is composed of building blocks for more complex (or custom) robotic

systems, so this is likely the reason behind these ratios.

We now look into the different primitive overloads provided in the ROS C++ client library in Figure 9.

The chart in Figure 9a shows the usage of optional parameters for advertise, the creation of a new ROS

publisher. It is evident that the default version, with no optional arguments, is the preferred choice; 92.35%

of all instances fall into this category. Only 20 publishers latch messages – the automatic re-publication of

the last published message when a new subscriber joins the topic. This is useful for data that does not

change often, like static maps, allowing a fire-and-forget type of behaviour. The other option, Subscriber
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Status, allows the topic advertiser to define custom callback functions for when a topic subscriber joins

or leaves the topic. It is a rather uncommon feature; there are only 9 advertisers that make use of it,

distributed between two packages from Fraunhofer IPA Care-O-bot for image processing. The two options

are not mutually exclusive, but we have found not a single topic advertiser using both at the same time.

There are 11 Care-O-bot applications, for different versions of the robot, that use a combination of all types

of calls to advertise.

The other chart, in Figure 9b, shows the preferences of users regarding the types of callback function

registered on subscribe (to create a subscriber) and on advertiseService (to create a service server). It

is clear that the vast majority of callback functions are member functions (methods) of a C++ class, with

312 functions out of 355. Other variants include global functions, with 25 instances scattered across 10

packages and 28 applications, and 18 Boost functions – a function wrapper created with the Boost C++

library, to create closures, i.e., to bind some variables to specific values whenever the wrapped function is

called. The likely reason for the dominance of member functions is to keep internal state from one function

call to the other, or to easily share state between different program points, or even threads. Global functions

are disfavoured in this case, since they would either be stateless, or have to rely on global variables to

share state (a discouraged practice, in general). Boost functions are a rather uncommon middle ground

alternative, that, most of the time, can be replaced with the simpler member function.

As a last remark, we have registered no occurrences of any ROS primitive using a transport protocol

other than TCP, which is the default.

2.3.3 RQ2 – In which context are these primitives used and how are their arguments defined?

This research question is more closely tied to the required complexity of static analysis tools. In terms of

context, we want to assess whether primitives are always called from the main control flow path, or whether

there might be primitives called conditionally, or even within loops. Analyses step up in complexity when

there are dynamic conditions involved, as the structure of the ROS interface is no longer static. A similar

reasoning applies to the arguments supplied to primitives, such as topic names and message queue sizes.

If the arguments are literal values, defined on the spot, not only is the source code more readable but

implementing a precise static analysis tool also becomes much more accessible. If, on the other hand, the

arguments stem from dynamic variables (or function calls, even), sophisticated data flow and control flow

analyses become a requirement.

We cannot have accurate data on the distribution of primitives under control flow constructs, relying

solely on automated mining methods. To gather accurate numbers, we would require a full-fledged control

flow analysis tool for C++. Building such a tool is a complex and daunting task, and one of the aims of

this research question is precisely to understand whether such an endeavour is worth the time it requires.

So, with this chicken and egg problem on hands, we settled for a middle-ground approach. We have only

accounted for control flow constructs, e.g., if or for, within the same function as the primitive; we did not

perform a full control flow analysis of the entire program. With this limitation in mind, we have found that

the number of conditional primitives is rather low, as shown in Figure 10a, amounting only to 74 out of
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748 primitives (about 10.43%). This seems like a rather promising figure for static analysis tools, if the

actual numbers, when considering the control flow of the entire program, are not much higher.

(a) Absolute values. (b) Occurrence in packages and applications.

Figure 10: Distribution of primitives under control flow.

In terms of packages, as shown in Figure 10b, we have found 19 packages (10.86%) that use conditional

publishers or subscribers, while only 2 packages (1.14%) use conditional services. One of these packages

belongs to Yaskawa Motoman, in which services are advertised whithin a loop, and another belongs to

Aubo, in which a service is created if the driver initialises successfully. Also in Figure 10b, we can see that

nearly one third of all applications (111, 30.41%) use conditional topics, and 64 applications (17.53%) use

conditional services. Considering how few packages use these features, here we can see just how often

different applications reuse the same packages.

The analysis of argument types is shown in Figure 11. This time, we consider not only the arguments

for communication primitives, but also for the ROS time primitives. We studied ROS names (both for topic

and services), message queue sizes and time amounts for ros::Time, ros::Duration, ros::Rate and

their Wall variants. The time primitives are relevant, for instance, to perform analyses related to publishing

rates, as in [156].

Figure 11: Types of arguments for various ROS primitives.

The results show that, for ROS names and queue sizes, the vast majority of arguments is defined as

literal values: 556 out of 748 ROS names (74.33%) and 607 out of 613 message queue sizes (99.02%) are

literals. For the remaining arguments, we can see that 149 names and 6 queue sizes result from reading

variables, and yet 43 names result from other expressions (e.g., string concatenation, function calls, etc.).
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Non-literals can be found in 36 packages (20.57%) and 150 applications (41.10%). The figures for the

time primitives are much more balanced. Only 53 out of 105 primitives are created from literal values

(50.48%), while 43 are created from the values of variables and the remaining 9 come from other sources.

Non-literal time values can be found in 29 packages (16.57%) and 88 applications (24.11%).

Further inspection of the argument values shows a few interesting facts. Among the literal values for

ROS names, we looked for the presence of global ROS names. Their use is discouraged, in general, as

it makes components less reusable. We registered 38 publishers, 40 subscribers and 4 service servers

that use global names, for a total of 82 names out of 748 (10.96%). They were found in 23 packages

(13.14%) and 61 applications (16.71%). Among the literal values for queue sizes, we registered 9 instances

of unbounded queues (a highly discouraged practice) and a surprising 331 queues of size 1 (about 54%).

While singleton queues are not harmful per se, they are worthy of notice and further thought. Singleton

queues should only be used when there is no interest in processing all messages, but rather only the most

recent ones, since ROS discards the oldest messages when a queue is full. Judging by the message types

associated with the majority of these occurrences, we can estimate that singleton queues tend to be used

for control messages (e.g., teleoperation commands) or highly volatile data (e.g., sensor data, especially

camera related).

2.3.4 RQ3 – What kind of features are typically used in ROS launch files to deploy applications?

As described in Section 2.1, launch files are XML files with a specific set of tags and attributes. Launch

files are interpreted, often with the roslaunch tool, and have their own semantics. Building an analysis tool

that understands the whole launch file language is not overly complex, as the language itself is not very

extensive. However, it still poses a few challenges, such as dynamic, external variables (e.g., environment

variables) and conditionals. By measuring the use of the various tags and attributes of a launch file we can

gain insight on how relevant each feature is, and how systems are deployed in practice.

Note that, for the purposes of this study, we focus on launchable applications, as previously defined,

rather than individual launch files. We consider applications in their entirety; <include> tags are resolved,

so that we can analyse systems as they are deployed in practice. This means that the contents of any

launch files that are included multiple times will be counted multiple times as well.

Our corpus contains 365 top-level launch files, and 901 launch files in total. The primary use of launch

files – and, consequently, of applications – is to deploy nodes, so we start our analysis with the <node> tag

and the chart in Figure 12.

Overall, we registered a total of 1418 nodes, of which only 275 (19.39%) are unique. Such a low number

is the result of compositional construction of applications. We have 901 launch files in total, but only 365

are top-level ones; this means that many launch files are reused as parts of a larger system, and thus,

any nodes they launch end up repeating (possibly with different parameters) over various applications.

Nodelets are seldom used, amounting to 119 out of the 1418 nodes. Besides being a relatively niche

feature, they are also mostly used in the TurtleBot2, a system with 101 top-level launch files and 90 uses



2.3. ROS in Practice 36

Figure 12: Uses of the <node> tag.

of nodelets in total. Out of the remaining 29 nodelets, 26 belong to three applications of the Fraunhofer

IPA Care-O-bot system, and 3 belong to an application of the Clearpath Grizzly.

The most notable among the remaining node features are, perhaps, the use of custom command-line

arguments, used in 554 nodes (39.07%), and marking nodes as able to respawn, used in 560 nodes

(39.49%). To be able to respawn means that if the node terminates, for any reason, a new copy is started

automatically, until the ROS system as a whole is shut down. Other node-related features are not really

common. Only 46 nodes are marked as required, meaning that if the node terminates the whole launch

application should be brought down. We also registered 201 conditional nodes, i.e., nodes under a

conditional statement within a launch file, and 16 remote nodes, nodes that are launched on a machine

specified by its network address that is (possibly) different from the one interpreting the launch file.

Figure 13: Overall use of launch file features.

The chart of Figure 13 shows the overall usage of other launch file tags and features within applications.

Immediately, we are able to see that the use of the <arg> tag, whose purpose is to define local variables

within a launch file, is commonplace with 4085 registered uses. A large number of these, 2069 to be

precise, is used to pass along to <include> tags, i.e., variables defined at a high level to pass to lower-level

launch files. As for the <include> tag, we observed 1015 instances. Both of the tags related to the ROS

parameter server, <param> and <rosparam>, are also abundantly used, with 2675 uses and 1060 uses,

respectively. Other frequently used features of launch files are remappings (1009 instances), reading

environment variables (652 instances), and conditional tags (1179 instances). In contrast, the <machine>
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tag, used to define or reference other machines within the network, is seldom used, with only 46 instances.

Four of these appear on the Shadow Dexterous Hand system, and the remaining 42 are part of Fraunhofer

IPA Care-O-bot applications.

Based on the observed figures, we can estimate that, on average, each launchable application remaps

between two and three names, reads about two environment variables, and declares over three entities

conditionally. There are implications from these statistics, as these features require additional analysis

steps. For remappings, tools are likely forced to implement the same name resolution mechanisms that

ROS uses. For environment variables, either user input is required (no automation) or the analysis has to

take place in the same environment where the launch file is meant to be used (reduced portability). For

conditionals, tools have to resolve arbitrary values, which may come, e.g., from environment variables.

2.3.5 RQ4 – How and how commonly is the ROS parameter server used?

The previous research question already sheds some light on how commonly the parameter server is used in

the context of ROS applications (see Figure 13). Namely, the simpler <param> tag is used 2675 times, while

the more complex <rosparam> tag is used 1060 times. On average, this amounts to over 10 parameters

per application, if we took each tag to be equivalent to one parameter. However, in some contexts, either

tag can define multiple parameters at once, so the actual number is likely much higher. In addition, out of

all 3735 parameter-related tags, we observed that 978 (26.18%) define parameters from the contents of

YAML data files, and 240 (6.43%) define parameters from the printed output of command-line programs. In

summary, there are 2517 parameter tags whose effects are more or less immediate, while nearly one third

of the tags is not self-contained within the launch files. These tags are scattered among 232 out of the 365

applications, meaning that nearly two thirds of all applications (63.56%) use the ROS parameter server.

Regarding the use of the parameter server by the nodes, we have not found any surprises. As stated

in Section 2.1, the parameter server is not designed for high performance, meaning that it should only

provide access to static data. We found only 38 runtime write operations, compared to 705 readings. Out

of these read operations, 585 (82.98%) declare a default value for when the parameter is not defined in

the server, as a fallback behaviour. Most of the accessed names (666) are given as literal arguments too,

which makes analysis easier. Overall, we can find accesses to the ROS parameter server in 87 out of 175

packages with C++ source code (49.71%).

Do note, however, that we have limited the study to the basic getParam and setParam variants of the

ROS C++ client libraries. There are many means of indirectly using and defining parameters (e.g., with the

dynamic_reconfigure package) that are beyond the scope of this study.

2.3.6 RQ5 – How commonly are custom message and service types used in ROS communications?

Defining new ROS message and service types is not overly common, although it is sometimes necessary.

We have found that 74 out of the 380 packages in the corpus (19.47%) define new types. More specifically,
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55 packages (14.47%) define 310 new message types, 42 packages (11.05%) define 153 new service

types, and we have even looked into the definition of 35 new Action types, with 20 packages (5.26%) doing

so. The chart in Figure 14a gives us more insight in terms of the absolute usage of these types. We can

see that 199 out of 613 calls to advertise or subscribe use a custom message type (32.46%), while 42

out of 135 calls to advertiseService or serviceClient use a custom service type (31.11%). In relative

terms, as shown in Figure 14b, we can see that a total of 67 packages out of the 175 that include C++

source code (38.29%) use custom types with calls to the ROS primitives. As for launchable applications,

these packages are required for 172 out of the 365 (47.12%). Given these figures, we can conclude that

using custom messages is a fairly common practice in ROS system development.

(a) Absolute values. (b) Occurrence in packages and applications.

Figure 14: Use of custom message and service types.

2.3.7 Impact on Static Analysis

While feature-wise statistics are interesting, from a static analysis perspective it is more relevant to consider

the combined usage of different features, namely, what would be the expected coverage of a static analysis

tool if only a given set of features is supported.

Our findings show that over half of all values passed to primitives are literals. This is a fortunate prospect

for analysis tools (as it avoids symbolic execution), but not too surprising. Most resources in the ROS

Wiki use literal values, and people tend to learn by example. In addition, we found that, most of the time,

primitives do not occur within loops or conditional blocks – another fortunate outcome for static analysis.

Two prominent and problematic usages of primitives, concerning RQ2, are conditional occurrences and

non-literal arguments, especially for arguments served from ROS parameters. Our study shows that 137 of

the 175 packages containing C++ code (78.29%) and 232 of the 365 applications (63.56%) do not use

these features at all, and thus could be handled by a relatively straightforward static analyser. However,

only 60 packages out of the same 175 (34.29%) and 42 applications (11.51%) do contain some primitives,

with none using these features. This means that the larger part of packages and applications, that do not

use either conditionals or dynamic values, does not use topics or services at all.

Unfortunately, this study also shows that the gains of supporting just one of these features, either

non-literal arguments or conditionals, would hardly be noticeable: the former would improve coverage from

60 packages to 64 and from 42 applications to 55; the latter would improve coverage from 60 packages
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to 79 and from 42 applications to 49. Not only that, but the parameter server is often used in packages –

about half of all packages containing C++ use it with the basic read and write primitives – which means that

tools likely have to be aware of it too. So, the main outcome of these statistics is that, in order to achieve a

high coverage of ROS applications, it would be necessary to support a fairly complex, feature-rich analysis.

2.4 Summary

This chapter covers the necessary background for this thesis. It starts with an overview of the main

characteristics of the Robot Operating System, in terms of software distribution, but also in terms of

software architecture. Namely, we were able to see how ROS organises and distributes software in

packages; that it is a distributed system where nodes communicate with each other via message-passing;

and how systems are often orchestrated and deployed via XML launch files.

Next, we went through the state of the art in Formal Methods and Quality Assurance techniques

specifically applied to ROS. Most of the published research focuses on models, with varying levels of

formalism, and in many cases with the main purpose of synthesising code. This is certainly a step forward

that could bring ROS closer to the norm in safety-critical systems. But, alas, roboticists come with all

sorts of backgrounds, and traditional software development processes (with little to no modelling) are

commonplace. Thus, static and dynamic analyses seem more promising for current and existing systems,

especially when coupled with reverse-engineered models – in particular, the ROS computation graph – to

support further model-based analyses (such as model checking).

Lastly, the chapter concludes with our first contribution: an empirical study on the usage patterns of ROS

primitives. This study is more of an educational contribution that sheds some light on the general coding

practices of ROS users. This understanding is valuable in various ways – it could be used to promote

certain (perhaps less known) features, or to design coding guidelines that avoid problematic ones. In the

scope of this thesis, however, its main purpose is to show that novel ROS aware analyses (including our

own), when applied to real ROS applications, need to handle a large spectrum of its features. Given all the

flexibility and dynamic aspects of ROS, this poses quite the challenge.
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MODE L L I N G AND R E V E R S E - E N G I N E E R I N G RO S S Y S T EMS

The previous chapter introduced the necessary concepts to understand and build a ROS system. It

describes how nodes communicate with each other via topics and services, forming a network called the

ROS Computation Graph. This graph, being one of the main characteristics of ROS, should be at the core

of any domain-specific analysis. The main challenge is that, to come up with new analysis techniques

that are applicable to any ROS system, we cannot rely on typical Model-driven Software Development –

where models are built explicitly and before the source code. Indeed, anecdotal experience shows that

many (if not most) ROS systems are not built this way, but rather by jumping straight to writing code, after

a relatively informal design phase. Thus, an opportunity for automated extraction of ROS architectural

models presents itself – even if the extracted models are (likely) not complete.

Model extraction and, more broadly, reverse engineering are not straightforward at all. What makes a

ROS architecture model? Is the computation graph enough, or do we need additional information? How

should this information be retrieved? In this chapter we propose answers to these questions with one of

our main contributions: a metamodel for ROS systems [151], and the respective automatic extraction

procedure.

3.1 State of the Art

The overall topic of building and reverse engineering architectural models for a software system is immense,

and has been under research for a long time. One key characteristic of the current state of the art, is

that there are no truly general-purpose solutions. In the same sense that there is no single one-size-fits-all

programming language – or programming paradigm, even – the same applies to the way one designs a

software system. Architectural models are often designed with some domain, application or paradigm in

mind. And this is not just out of convenience; models become more readable and easy to use when their

traceability to the implementation is evident.

The same reasoning applies to ROS. Even though ROS reuses a number of already well-established

concepts (e.g., independent components dynamically deployed over a network, the publisher-subscriber

model, or the client-server model), it also features its own domain-specific vocabulary, and a number of

domain-specific concepts (e.g., launch files), making room for tailor-made architectural models. In the

remainder of this section, we present some of the most relevant proposals – both in modelling architectures

40
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and in reverse engineering of such architectures – that either have been directly applied to ROS or could

be applicable to some extent.

3.1.1 Architectural Models

By far, the most common approach to design architectures is the component-connector model [3, 36,

38, 39, 77, 99, 169, 172]. A component is a (typically high-level) unit of computation or data storage.

Components are often independent parts of a system with input (resp. output) ports, where they consume

(resp. produce) externally visible data. Components are composed together by establishing connectors

between ports, where a connector is a communication mechanism with, at least, two roles. For instance, a

publisher-subscriber connector provides the roles of publisher and subscriber, which, when assigned to

specific ports of components, make said components the publisher and subscriber of that connection.

This model is abstract enough that it does not refer directly to source code structures (such as classes

or modules), but also concrete enough that traceability is not lost. Overall, it is easy to understand,

and easy to realise with both textual and graphical languages. UML, and UML-inspired diagrams are a

standard approach to this kind of architectural design (see [36, 38, 39, 99, 169, 172] for examples).

Another advantage of the component-connector model is that, in its simplest form, the model does not

impose restrictions on the implementation. The same architecture could be used for a monolithic, single-

threaded process, as well as for a distributed system with third-party components implemented in different

programming languages. In ROS, this translates well to using nodes as components, and using topics,

services and actions as connectors, but most approaches do not support the full catalogue of ROS features

– nodes and topics, at least, are the norm.

There are a few approaches that stand out of the classical box-and-line UML component-connector model.

For instance, the AADL language is proposed in [16] as a better alternative to UML for ROS applications.

While UML is the most popular modelling language, and there are plenty of UML solutions for robotics, the

authors argue that these are not really adopted in practice. AADL is the second most popular language [16]

and benefits from having well-defined analysable semantics and making hardware components a part of the

model – both desirable traits in a robotics environment. However, it has a deep focus on the cyber-physical

and embedded aspects of robotics; i.e., hardware, devices, threads, memory or processors are key aspects

of an AADL model, but we target the high-level software architecture.

Another approach [103] proposes a domain-specific textual language to specify ROS architectures. Its

main goal is to model nodes and launch files, so that the plethora of soft identifiers given as topic or

parameter names do not have to be checked manually for consistency (e.g., to ensure that remappings are

correct). One of its drawbacks is that it only includes topics (not services or actions) and treats parameters

as static (i.e., read-only, defined in launch files). Finally, [107] proposes the Robot Architecture Definition

Language. This is a language with a precise model of computation and communication. Systems are

encoded as calendar automata, which enables the verification of some real-time properties using SMT-based

infinite-state bounded model checking. However, the model imposes some restrictions, such as requiring

known latency bounds for all communication channels, the loop period of nodes, as well as worst-case
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execution times. The main loop of nodes is also assumed to read messages from subscribed topics,

execute a computation, and then publish on advertised topics.

3.1.2 Model Extraction

Model extraction, sometimes also referred to as reverse engineering, is the process of retrieving a model

(often, an architectural model) from an existing system. One of the primary purposes of model extraction is

to equip architects and developers with a model of an implementation, to check for compliance against a

reference model of the intended architecture. As such, it is a useful tool during the whole development cycle,

as systems evolve and significant architectural changes might be introduced. It also plays an important

role in handling and understanding legacy systems that lack a reference model of the intended architecture.

In this particular case, automated reverse engineering has the added benefit of enabling model-based

analyses, without the (very significant) cost of building models by hand.

The extraction process itself can be applied to a system execution (dynamic analysis), to the static

artefacts that compose such system (static analysis), or a combination of both. Dynamic analysis tends

to be the easier approach to implement, especially for dynamic, reconfigurable architectures, as is the

case in ROS. Its main drawback is the inherent limitation of dynamic analysis to extract information only

from a limited number of traces, possibly not achieving full coverage. Static analysis is orthogonal to this

approach. It is able to extract sound information, covering all possible executions of the system, at the

cost of increased complexity [1]. Static analyses can also be hindered by dynamic values, impossible to

determine without executing the system, and by false positives or over-approximation, often caused by

being unable to identify and ignore unreachable code. Depending on the purpose of the reverse engineering

process, it can be difficult to answer all questions strictly with either static or dynamic analysis. Some

questions are better answered with static analysis, while others lend themselves better to a dynamic

procedure [72].

D y n am i c A n a l y s i s The most immediate example of dynamic analysis within a ROS environment

comes from one of the standard ROS introspection tools, rqt_graph1. This tool provides a graphical user

interface that displays the various elements of a running ROS computation graph, such as nodes, topics or

services. In addition, it is able to display runtime statistics, such as the publish frequency of a given topic

or its average throughput in bytes.

Beyond the out-of-the-box ROS tools, an example of a dynamic analysis approach to ROS can be seen in

[96]. The authors argue that verifying correctness of publisher-subscriber systems in robotics middlewares,

such as YARP2 [122] and ROS, depends on a correct usage of said middleware. But middleware models

tend not to be available upfront, because they are often large and complex. Thus, they propose inferring

finite-state automata that model the behaviour of a concrete publisher-subscriber system, and combine

them with external control software models, to achieve a full picture. They apply this approach to YARP

1 http://wiki.ros.org/rqt_graph

2 https://www.yarp.it/

http://wiki.ros.org/rqt_graph
https://www.yarp.it/
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by analysing the interactions of the middleware with an enbedding context – essentially, a sandboxed

execution. Afterwards, they use model checking to verify the absence of deadlocks and other scenarios

that might lead to loss of messages between components.

S t a t i c A n a l y s i s On the other end of the spectrum, there are a few approaches based on static

analysis [1, 2, 47, 127, 142, 156], although only a few are ROS-specific [127, 142, 156].

The work of Abi-Antoun and Aldrich [1] proposes a static analysis solution to extract the runtime

architecture of object-oriented systems. They argue that previous static analysis solutions approach the

problem from a low level of abstraction, too close to the source code constructs, where the resulting graphs

are non-hierarchical and not scalable to large programs. They present an extraction process that is able to

aggregate related objects into higher-level components and partition them by architectural tiers, resulting

in a model that is called an Ownership Object Graph. The main drawback is that it requires developers to

add type and ownership annotations throughout the source code, to guide the extraction process.

Acher et al. [2] tackle a slightly different kind of problem: how to accurately identify variability points,

not in a single system, but in Software Product Lines? Software Product Lines are families of systems

that share common functionality, and allow for the addition, removal or interchange of features (called

variability points). Feature Models are a type of model designed precisely to capture variability, but building

large Feature Models by hand is time-consuming and error-prone – thus, the need for reverse engineering.

This process starts with an over-approximation of all possible feature combinations, which is then refined

by analysing plug-in dependencies, known constraints, and by integrating software architect knowledge.

Human intervention prevents the process from being fully automatic, but the authors advocate that full

automation is not desirable in this case, for integrating the software architect’s knowledge is deemed too

valuable.

The problem of applying static analysis to concurrent and distributed asynchronous message-passing

architectures is explored in [47]. The authors focus on the Erlang language, which has seen extensive real

world use, but poses a considerable challenge, given the flexibility of its message-passing primitives, and

being a dynamically-typed, higher-order language. The proposed static analysis identifies actors within the

system and matches message sending primitives with the corresponding message reception primitives,

thus building a communication graph. This analysis is completely automatic and aims for a balance

between soundness and completeness. It enables the detection of the following error patterns:

1. Receive with no messages – a process blocks waiting for messages when it is known that its mailbox

will be empty.

2. Receive of the wrong kind – a process expects a type of message that does not correspond to the

messages it actually receives.

3. Receive with unnecessary patterns – a process specifies response code for message types that it

will never receive.

4. Send nowhere received – a process sends a message to another process that does not expect any

messages or does not handle such message types.
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Lastly, there is also existing work applied to ROS, still with a pure static analysis approach [127, 142, 156],

as presented in Section 2.2. The first published approach [142] extracts the publisher and subscriber

part of the ROS computation graph, from the source code of C++ nodes. The extraction process traverses

the source code and identifies function calls to the various ROS primitives (e.g., advertise). Each call is

annotated with control flow information, i.e., conditions that might affect it. It further distinguishes reactive

and proactive message publications by tracing back calls to publish until it finds a callback function (in

which case the publication is reactive) or a leaf node in the source tree (e.g., the main function, in which

case it is proactive).

The second approach [156] also focuses on the publisher-subscriber aspect of the computation graph,

but the model is enriched with launch file information, such as remappings. Similarly to how the previous

approach classifies message publications as reactive or proactive, this approach classifies publishers as

dependent or independent. The main goal is to conduct rate impact analysis – i.e., to determine the impact

of changing a single node, especially with respect to its publication frequency. The naïve stance would be

to assume that all nodes transitively reachable from the changed node would be affected, but this might

not be the case. If the connected subscribers do not publish messages based on the rate of incoming

messages – in other words, if publishers are rate-independent – the nodes are, in principle, not affected by

the changes. A publisher is deemed to be rate-independent when it cannot be traced back to a callback

function or when it is used under a fixed-rate construct (e.g., timers or loops with adaptive sleep).

More recently (and published at the same time as our own approach [151]), Muscedere et al. [127]

used static analysis to identify Feature Interactions. A Feature Interaction occurs when two features of

a system, that work correctly on their own, intefere with one another when executed at the same time.

Simply put, a feature is a high-level component that is nearly independent, e.g., a ROS node. Similar to our

approach (presented in this chapter, and its implementation in Chapter 5), the proposed toolchain relies on

an Abstract Syntax Tree of the C++ ROS components to extract a database of facts (function calls, variable

assignments, control flow, etc.). With the use of relational algebra transformations, they are able to infer

additional facts, relative to component dependencies and information flow. Then, a query engine is used

on top of the fact database to look for user-defined patterns that represent potential Feature Interactions.

M i x e d A n a l y s i s Many approaches to model extraction recognise the complementary nature of

static and dynamic analysis, and end up employing a combination of the two [98, 120, 147, 157, 170].

The work of Silva and Campos [157] combines static and dynamic analyses in the context of Web

application GUIs. Dynamic analysis is used to crawl the interfaces, looking for user inputs (e.g., buttons

and forms), and to build the initial state diagram of the application. Since JavaScript event handlers are

always available on the client side, static analysis can be exploited to identify variables that lead to different

state transitions from the same user action. Conditions and value combinations are then tested, until a

final version of the model is achieved.

Riva and Rodríguez argue that, in order to better describe and understand software architectures,

multiple views of the system are necessary [147]. Their work proposes combining structural and dynamic

information using a four-step iterative process.
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1. Definition of architectural concepts. What is a component, and how do components communicate?

2. Data gathering from various sources. Employ both static and dynamic analysis. Also make use of

available documentation and expert knowledge.

3. Abstraction. Transform the low-level model generated from the previous step into different high-

level, domain-specific views. A rule-based Prolog system is used to formally define model to view

transformations.

4. Presentation. How to present logical, process, physical and development views of the system.

Directed graphs are proposed for static views (system structure), while simplified message sequence

charts are the model of choice for dynamic aspects (system behaviour).

Krogmann’s PhD thesis [98] addresses the problem of reverse engineering component-based software

architectures for the design and evaluation of performance properties. Krogmann states that no previous

satisfying approach existed to reverse engineer behaviour and performance models for component-based

software architectures, based on a language independent code analysis. Behaviour models of components

need to be highly parameterised with regards to: i) changing usage (number of users, user interaction

with the system, varying amounts of data); ii) changing assembly (connecting different components or

different component implementations); iii) changing execution platforms (fast versus slow servers). This

thesis proposes combining not only static and dynamic analyses but also statistical analysis, to achieve

the reconstruction of static architectures, behaviour specification and highly parameterised, abstracted

performance models of component-based software systems. Such models ultimately enable a range of

reasoning and prediction techniques in:

• Sizing – to estimate the necessary hardware to handle specific workloads, or to achieve a certain

degree of reliability and performance;

• Legacy software extension – to estimate the overall system quality after adding new components to

a legacy system;

• Reuse – to estimate the impact of adopting an existing component implementation;

• Design optimisation – to estimate the overall performance or reliability of the system.

The domain of microservice-based software is one that shares similarities with ROS. Microservices

decouple network-accessible components, enhancing independent development of components, deployment

and scalability. As is the case with ROS, the architectures of these systems are highly dynamic. Often they

are not defined upfront, but rather emerge by dynamically assembling services into systems. This makes it

hard to extract component relations from static sources and artefacts. In [120], the authors present an

architecture extraction prodecure that combines static service information with infrastructure-related and

aggregated runtime information for REST microservices. Architectural information is organised in three

levels:

1. Service – mostly static information, such as the service API, organisational information and the

domain model;

2. Infrastructure – service requirements, execution environments, deployment and scalability;
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3. Interaction – observed communication among services (requests and responses) gathered from the

runtime, and aggregated over long term windows.

Lastly, in the domain of ROS, as presented in Section 2.2, Witte and Tichy [170] propose a process to

extract the ROS computation graph that uses static analysis for launch files and dynamic analysis for node

interfaces. They deem static analysis alone to be too complex, because resources can be added to the

computation graph at any time, and launch files reference node executables – finding the corresponding

source code is not trivial. Their approach has nodes running within a sandboxed environment which, with

the help of an additional library, intercepts calls to the ROS Master, in order to build the dependencies on

topics and services. However, as stated by the authors, resources can be created at any time, and their

approach assumes that nodes follow a standard life cycle, in which all resources are created during set up.

A general approach would have to monitor nodes indefinitely. They acknowledge this potential weakness,

and propose the countermeasure of having the user provide annotations as launch file comments, to

specify the missing bits of the extracted model, as seen in Listing 3.1.

1 <launch>

2 <node name="listener" pkg="roscpp_tutorials" type="listener">

3 <!-- <topics>

4 <topic name="chatter" type="String" class="sub"/>

5 </topics> -->

6 </node>

7 </launch>

Listing 3.1: Specifying subscriber information as launch file comments [170].

3.2 A Metamodel for ROS Appl icat ions

There is no lack of research in modelling ROS systems. And with good reason, since models enable a wide

variety of architectural and behavioural analysis and validation techniques. Still, we find a detrimental gap

in the current state of the art. Notice how most of the existing approaches fall under (at least) one of the

following categories.

1. The approach requires expert knowledge (e.g., in Formal Methods). It is not amenable to be used

by a typical ROS developer.

2. Even though models are used, no metamodel is explicitly documented.

3. Some aspects of ROS are left out.

4. There are assumptions about how the concepts should be used (e.g., nodes following a specific life

cycle).

5. The models only include entities from the system’s runtime (e.g., nodes and topics, but not packages

and source files).

The last issue, in particular, is very prominent. As described in Chapter 2, there are two sides to ROS

systems: the runtime, which is mostly composed of the ROS computation graph and often tackled by other
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Figure 15: Diagram notation.

authors; but also the static artefacts, at the file system level, such as packages and source files. It is from

the latter that nodes are built and systems are set up in the first place. A number of different analyses can

take place solely at this level, even [52, 139, 148]. There is a whole graph of package dependencies to

explore, not to mention the more intricate dependencies among source and launch files. A metamodel

that is truly complete should encompass all these entities as first-class citizens, and exploit the relations

between them. One of the most useful (and often disregarded) relations is traceability – identifying culprit

source artefacts when a problem is encountered in a node, and vice-versa. Source artefacts and ROS

runtime resources are two sides of the same coin.

In this section we propose a metamodel to describe the software components of ROS systems [151]

that addresses the aforementioned issues. The various key entities of this metamodel are described with a

schema for YAML data representation. For readability purposes, we defer the schema’s definition to the

Appendix B; in this section, we simply use examples of the schema. We further illustrate the concepts with

class diagrams, where edges use the Entity-Relationship notation for cardinality, dashed boxes represent

abstract entities, and solid boxes represent concrete entities. We use abstract entities for readability

purposes. All abstract entities have concrete instances. We use sectioned boxes, with entity name and list

of attributes, for entities defined in the current diagram. Plain boxes, just with an entity name, are used to

reference entities that are defined in other diagrams. Figure 15 shows the diagram notation.

The remainder of this section goes into detail about each of the entities in the metamodel. The modelled

entities are split into two groups, for the source artefacts and runtime entities. Some entities and relations

are constrained by rules that cannot be captured either by the schema or by the diagram notation. In

these cases, we will provide textual explanation, and assume the existence of a model validation tool.

Some concepts provided by libraries, such as Actions and Dynamic Reconfiguration, were left out for

future extension, i.e., we do not have concrete entities in the metamodel for these features. In spite of

this decision, note that these features are often implemented in terms of the basic Topic, Service and

Parameter primitives – meaning that, at a risk of losing precision, the metamodel is flexible enough so that

they can still be captured.
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3.2.1 Source Entities

A Source Entity is any entity that is static and whose purpose is to build the ROS system. They are often

easily identifiable via artefacts in the file system (e.g., files and directories). We will go over familiar entities

first, related to the development process itself, and then transition to the entities that are more closely tied

with the ROS runtime.

S o u r c e F i l e A Source File is a single file in the file system. We assume that all files belong to a single

ROS package, i.e., there are no orphan files. Files are characterised by their name (a relative path within

their package) and their language. The language of the source file is one of: C++ (cpp), Python (python),

Package XML (package), Launch File (launch), CMake (cmake), ROS Message (msg), ROS Service (srv),

ROS Action (action), or unknown for unspecified or unknown languages. These are the most common

alternatives, but it is trivial to extend this enumeration to allow, e.g., JavaScript, which in recent years has

also seen some application in ROS.

Figure 16: Class diagram for Source Files.

Optionally, each file can provide its own source tree, an Abstract Syntax Tree under some standard or

convention, whose details are not part of this metamodel. Lastly, files can specify a set of dependencies on

other files. For instance, C++ source files depend on the header files they #include, Python scripts depend

on all scripts they import and launch files depend on other launch files that they <include>. Figure 16

shows the class diagram for Source Files. Listing 3.2 shows the YAML specification, according to the

metamodel schema, for the manifest file of the fictibot_drivers package, from our Fictibot running

example.

1 name: "package.xml"

2 package: "fictibot_drivers"

3 language: "package"

4 source_tree: null

5 dependencies: []

Listing 3.2: YAML specification of a Source File.

P a c k a g e A Package is an abstraction for a ROS Package. One of the mandatory characteristics

of packages is that they must contain the package XML manifest file. From this file, we can gather a

few metadata, such as the set of authors and maintainers, the version number, dependencies on other

packages, the file system path and whether it is a metapackage (Figure 17). While most of this information
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is not crucial for most kinds of analyses, it can be helpful, for instance, to assign issues, or to record

evolution over time (via version numbers).

Figure 17: Class diagram for ROS Packages.

We assume that each package belongs to a project, may be part of a repository, and can build any

number of ROS nodes. Since the names of files are relative paths within a Package, it follows that no two

files within the same Package can have the same name. Uniqueness of the file names is enforced in the

schema. Listing 3.3 shows schematic YAML for the fictibot_drivers package.

1 name: "fictibot_drivers"

2 authors: {name: "André Santos", email: "andre.f.santos@inesctec.pt"}

3 maintainers: {name: "André Santos", email: "andre.f.santos@inesctec.pt"}

4 version: "0.1.0"

5 path: "/home/ros/ws/src/haros_tutorials/fictibot_drivers"

6 is_metapackage: false

7 dependencies: ["roscpp", "std_msgs"]

8 project: "Fictibot"

9 repository: "haros_tutorials"

10 nodes: ["fictibot_driver"]

11 files:

12 - "package.xml"

13 - "CMakeLists.txt"

14 - "include/fictibot_drivers/motor_manager.h"

15 - "include/fictibot_drivers/sensor_manager.h"

16 - "src/driver_node.cpp"

17 - "src/motor_manager.cpp"

18 - "src/sensor_manager.cpp"

Listing 3.3: YAML specification of a Package.

R e p o s i t o r y A Repository is a standard source code repository. As seen in Figure 18, it is characterised

by its name, version control system (vcs, e.g., git or svn), its file system path and its version (e.g., branch

name in git). Optionally, not shown in the figure, metadata such as the number of commits, contributors,

the repository’s URL or the issue tracker can also be appended. An implicit rule, not captured by the

schema, is that the path of every Package under a Repository must be a (direct or indirect) child path of

the Repository’s path.

While repositories are not a core, or necessary, concept in ROS, they are a natural part of software

development. Including them in the metamodel enables, for instance, gathering process metrics (commits
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Figure 18: Class diagram for Repositories.

and contributors) as well as refining traceability, and possibly pointing issues directly to an issue tracker.

It also aids in tracking evolution over different versions. Listing 3.4 shows schematic YAML for the

haros_tutorials repository3, the repository that contains the Fictibot packages.

1 name: "haros_tutorials"

2 vcs: "git"

3 version: "master"

4 path: "/home/ros/ws/src/haros_tutorials"

5 packages:

6 - "fictibot_drivers"

7 - "fictibot_controller"

8 - "fictibot_msgs"

9 - "fictibot_multiplex"

Listing 3.4: YAML specification of a Repository.

P r o j e c t A Project, like a Repository, is a concept that is not directly introduced in the ROS documentation,

even though it exists (implicitly or explicitly) in practice. The main purpose of this entity is to aggregate a

set of packages that should be part of the same logical unit, such as a robot with a specific application.

Projects are not partitions of packages. There can be multiple projects using the same packages, although

probably with different configurations. There can only be one project per model – the project is the main

entity (and entry point) of the whole model.

Figure 19: Class diagram for a ROS Project.

As seen in Figure 19 and Listing 3.5, besides containing a set of packages, a project may also contain

a set of configurations (a runtime entity). Thus, along with Nodes (as we will see), Projects are a bridge

between source and runtime entities.

N o d e The term Node in ROS is actually a bit ambiguous, as it can mean one of two things. It could be

a node in the computation graph, a process interacting with the system, or it could be an executable, built

3 https://github.com/git-afsantos/haros_tutorials

https://github.com/git-afsantos/haros_tutorials
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1 name: "Fictibot"

2 packages:

3 - "fictibot_drivers"

4 - "fictibot_controller"

5 - "fictibot_msgs"

6 - "fictibot_multiplex"

7 configurations: ["minimal"]

Listing 3.5: YAML specification of a Project.

from source code, from which the runtime nodes are instantiated. In this metamodel, Node means the

latter. We use Node Instance for the former.

Figure 20: Class diagram for a ROS Node.

As seen in Figure 20, a node is identified by its executable name, always belongs to a package and

enumerates the source files needed to build it (that, in most cases, belong to the same package). The

model should also tell whether the node can be loaded as a nodelet. Optionally, as is the case with source

files, the node may contain the full source tree of the code that builds it, i.e., a merging of the source

trees from all source files. Properties are textual properties about the Node’s behaviour. The syntax and

semantics of the specification language are given in Chapter 4.

This is one of the entities (along with Project) that provides a direct connection to the runtime view,

via instances, which is the set of all Node Instances created from a particular node. If available, nodes

also provide the ROS name that is used by default to identify the node, when launch files do not override

it at instantiation. Finally, when possible, nodes should list all calls to ROS primitives throughout their

code, i.e., all calls to the ROS interface that would create or use topics (advertise and subscribe), services

(advertise service and service client) and parameters (get parameter and set parameter). Listing 3.6 shows

an excerpt of schematic YAML for a Node specification. We do not include the full listing, since including

all calls to the ROS primitives would impact readability.

R O S P r i m i t i v e C a l l A Primitive Call is a function call to any of the ROS functions that create or

make use of a resource, such as advertise that is used to create a topic publisher. As seen in Figure 21,
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1 name: "fictibot_driver"

2 package: "fictibot_drivers"

3 is_nodelet: false

4 ros_name: "fictibot_driver"

5 files: ["src/driver_node.cpp", "src/sensor_manager.cpp", "src/motor_manager.cpp"]

6 advertise:

7 - name: "bumper"

8 type: "std_msgs/Int8"

9 queue_size: 21

10 latched: false

11 traceability:

12 package: "fictibot_drivers"

13 file: "src/sensor_manager.cpp"

14 line: 10

15 column: 29

Listing 3.6: YAML specification of a Node (excerpt).

some attributes and relations are similar between all types of primitives (although the names of the attributes

change), but the model still treats each primitive type as its own entity, so that it is more easily extensible.

Figure 21: Class diagram for ROS Primitive Calls.

All primitives have a resource ROS name (e.g., the topic name given to a call of advertise, before

applying any remappings) and a value type (e.g., the message type for topics). In addition, all primitives

have a source code location, and possibly the control flow paths containing dynamic conditions. Primitives

can be instantitated as links, a runtime entity of this metamodel. The Advertise and Subscribe primitives

track the message queue size. Lastly, the Parameter primitives track default values (when reading and the

parameter is not defined) and written values. Listing 3.6 already includes an example of an Advertise call

in schematic YAML.

S o u r c e C o n d i t i o n a n d S o u r c e L o c a t i o n While not really entities per se, Source Conditions

and Source Locations (Figure 22) are useful complex attributes that some other entities require.
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Source locations point to specific locations in the source code, describing a package name, a file name,

a line number and a column number.

Figure 22: Class diagram for Source Condition and Source Location.

Source conditions are used to store dynamic conditions (as in the condition of an if or for statement)

that might affect whether another entity is evaluated. They are essentially an extension to the source

location, adding the type of statement and a string with the concrete expression. Multiple conditions can

be grouped under a control flow path.

3.2.2 Runtime Entities

A Runtime Entity, in contrast to Source Entities, is an entity that is dynamic, and generally only exists

while a ROS system is in operation. These are also some of the most iconic concepts in ROS, including

node instances, topics, and the computation graph in general. Many runtime entities are Resources of the

computation graph. A notable exception is the Configuration concept that we introduce as an abstraction

for a ROS application, and as a slight extension of the computation graph.

Every resource, as presented in Chapter 2, has a ROS name that should be a unique identifier among

the same class of resources. I.e., although not encouraged, a topic, a service and a parameter can all have

the same ROS name. Two different topics sharing the same name, however, is not possible. In addition,

every resource belongs to a single configuration, and might be considered conditional (i.e., it is not always

part of the configuration). In that case, the resource should provide the control flow graph of dynamic

conditions on which it depends. These may come either from source or launch files, depending on the

case.

N o d e I n s t a n c e A Node Instance is the runtime counterpart to the source entity Node. While the

Node represents the executable file in the file system, the Node Instance represents a process spawned

from a Node. It is a resource in the ROS computation graph.

As seen in Figure 23, besides including a reference to the original node executable, a Node Instance

also provides the command line arguments given at launch to the executable and a table of remappings.

Being a spawned process, its presence in the final Computation Graph might depend on a number of

conditions, such as the conditional statements of a launch file. All ROS Primitive Calls in the original

node are instantiated as ROS Links (publishers, subscribers, servers, clients, getters, setters). During this

step, the namespace and remappings of the node instance are applied to the arguments of the primitives,

yielding, thus, the concrete links. Listing 3.7 shows an excerpt of schematic YAML for a node instance.
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Figure 23: Class diagram for a Node Instance of the ROS Computation Graph.

1 ros_name: "/fictibase"

2 configuration: "minimal"

3 node_type: "fictibot_drivers/fictibot_driver"

4 args: ""

5 remaps: {}

6 traceability:

7 package: "fictibot_controller"

8 file: "launch/minimal.launch"

9 line: 2

10 column: 3

11 publishers:

12 - name: "/bumper"

13 type: "std_msgs/Int8"

14 queue_size: 21

15 latched: false

16 traceability:

17 package: "fictibot_drivers"

18 file: "src/sensor_manager.cpp"

19 line: 10

20 column: 29

Listing 3.7: YAML specification of a Node Instance (excerpt).

T o p i c A Topic corresponds to a ROS topic in the computation graph. As seen in Figure 24, topics are

little more than convenient views of publisher and subscriber links on the same name.

S e r v i c e A Service corresponds to a ROS service in the computation graph. As seen in Figure 25,

services, like topics, are little more than a convenient view of a server and a set of clients on the same

name.

P a r am e t e r A Parameter corresponds to a ROS parameter in the computation graph. As seen in

Figure 26, a parameter provides the sets of its readers and writers. When a parameter is defined in a

launch file, it should include the source location as well as any dynamic conditions.

R O S L i n k A ROS Link is yet another concept that does not exist explicitly, neither in the ROS

documentation nor in the actual systems. It is the runtime counterpart to the ROS Primitive Call, and
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Figure 24: Class diagram for a Topic of the ROS Computation Graph.

Figure 25: Class diagram for a Service of the ROS Computation Graph.

establishes a relation between Node Instances and the other Resources they use. As seen in Figure 27,

a link contains a reference to the node instance and primitive call that create it. Some attributes of the

original primitive call are duplicated, due to the possibility of them changing at runtime. For instance,

ROS names can be remapped, queue sizes can be determined from parameters, and types can be set

dynamically by passing the type itself as a variable (more easily in Python than in C++).

As is the case with primitives, most types of links do not have any special attributes beyond the common

ones, but are still included to promote extensibility. Listing 3.7 already includes an example of a Publisher

link.

C o n f i g u r a t i o n A Configuration is the concept that we introduce to model a whole ROS system in

runtime. As seen in Figure 28, it is very similar to a ROS computation graph, in the sense that it binds

together the collections of nodes, topics, services and parameters of the system. Topics and services are

given as a convenience and to promote familiarity with the traditional computation graph; a configuration

can be fully determined given the sets of nodes and parameters. With the nodes, links come by extension

and, thus, the whole graph of resources.

In addition to the typical computation graph information, the model also specifies its unique identifier, a

human-readable name, the project it belongs to, the list of launch commands required to start the system,

and a copy of the required environment variables. It can be annotated with properties, using the syntax and

semantics given in Chapter 4, and with additional user-defined attributes (that have no special semantics

within the metamodel). The properties, in this case, apply to the Computation Graph as a whole, rather

than to single nodes. Listing 3.8 shows an excerpt of schematic YAML for a configuration.

3.3 Model Extract ion

Once a metamodel is defined, we can instantiate it manually, automatically or using a combination of

the two. Our ultimate goal is to improve the quality and development process of ROS systems, with as

little specification effort from the user as possible, so automation (or partial automation) is our preferred



3.3. Model Extraction 56

Figure 26: Class diagram for a Parameter of the ROS Computation Graph.

Figure 27: Class diagram for a ROS Link between Resources of the Computation Graph.

approach. Given the metamodel that we propose in the previous section, a great deal of the required

information can be gathered automatically and statically – especially for the file system entities. For runtime

entities, static analysis is deemed to be complex [170] but possible to some extent [142, 156].

In this section, we present an overview of the the model extraction process that is implemented in the

HAROS tool (described in Chapter 5). Since dynamic analyses are incomplete by definition, we base all of

the extraction process around static analysis. Despite its increased complexity, the availability of models

at compile time with such a level of completeness (under optimal conditions) is something that dynamic

analyses can hardly match. The fact that we already require static analysis for the file system entities is a

bonus. But, even though we do not propose dynamic analysis as the core of our approach, using it as a

complement to refine models is the next logical step for future improvement – which, at a high level, is the

reverse approach to that of Witte and Tichy [170]. In the event that static anaysis is unable to fully resolve

an entity, our approach builds entities out of partial information, as we will show. The presentation of the

algorithm is accompanied by examples from our Fictibot running example. A more in-depth evaluation of

the extraction capabilities of HAROS for real robot applications can be found in Chapter 8.
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Figure 28: Class diagram for a ROS Configuration.

1 uid: "minimal"

2 name: "Fictibot Minimal Configuration"

3 project: "Fictibot"

4 nodes:

5 - ros_name: "/fictibase"

6 node_type: "fictibot_drivers/fictibot_driver"

7 # ...

8 - ros_name: "/ficticontrol"

9 node_type: "fictibot_controller/fictibot_controller"

10 # ...

11 parameters: []

12 launch_commands:

13 - command: "roslaunch"

14 args: ["fictibot_controller/launch/minimal.launch"]

Listing 3.8: YAML specification of a Configuration (excerpt).

3.3.1 Overview of the Algorithm

Our aim is to automate the model extraction process as much as possible, and, indeed, most of the

metamodel is amenable to automatic reverse engineering. However, some pieces of information must,

inevitably, come from user input. In particular, our algorithm requires user specification for Configurations

because ROS has no clear definition for application – systems are entirely dynamic and open ended. There

is room for automation, for instance by considering top-level launch files as applications – as we did in [149]

(see Section 2.3) – but, as we stated, this is not always accurate. Thus, we rely on user input to specify

lists of launch files and rosrun commands (to launch individual nodes) that compose a single application.

Since the Project is the true entry point for a model, the algorithm for building a model can be seen as

the algorithm for building a project. As such, piecing together all bits of user input we get what is, in fact,

akin to a schematic YAML project specification (Listing 3.5). The main difference is that configurations

include additional information besides their name, such as a list of launch files. The algorithm itself, at a

high level, is straightforward and can be split into two complex steps – the extraction of the source code

artefacts, and building configurations and runtime entities.

Listing 3.9 shows an abstract version of the algorithm in Python syntax, where the main function

receives the YAML project specification and ends up building a Project, as per the metamodel. The
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source code artefacts are built in the first three lines, with the extract_packages_and_files, extract-

_repositories, and extract_nodes_and_primitives functions. P, F, R and N are sets of Packages, Source

Files, Repositories and Nodes, respectively. Then, configurations are built based on user input and the

source entity data. For instance, Nodes are required in order to build Node Instances, and ROS Primitive

Calls are required to build ROS Links. More details on extract_configurations are shown in Listing 3.12.

Lastly, the project binds all entities together. Note that, as previously defined in the metamodel, the project

needs only references to packages and configurations; all other entities are accessible from these.

1 def extract_metamodel(yaml_spec):

2 # ---- Source Code Entities --------------------------------------

3 P, F = extract_packages_and_files(yaml_spec["packages"])

4 R = extract_repositories(P)

5 N = extract_nodes_and_primitives(P)

6 # ---- Runtime Code Entities -------------------------------------

7 C = extract_configurations(yaml_spec["configurations"], P, F, N)

8 # ---- Project binds all Entities --------------------------------

9 project_name = yaml_spec["project"]

10 project = Project(project_name, P, C)

11 register_on_database(project, R, P, F, N, C)

12 return project

13

14 def extract_packages_and_files(package_list):

15 return # a set of packages and a set of files

16

17 def extract_repositories(P):

18 # packages are modified in place

19 return # a set of repositories

20

21 def extract_nodes_and_primitives(P):

22 # packages are modified in place

23 return # a set of nodes with primitive calls

24

25 def extract_configurations(config_specs, P, F, N):

26 return # a set of configurations, given source entities

Listing 3.9: Overview of the model extraction algorithm.

3.3.2 File System Artefacts

The first step to build a Project model is to extract all the source artefacts, as we have seen in Listing 3.9.

Runtime entities are instantiated from source entities, as discussed in Section 3.2, so there is no other

choice. The user input includes a set of package names that should be the main source artefacts under

development for the project. This is to ensure that these entities are present in the database, to enable

other kinds of analyses (Chapter 5).

Identifying packages is trivial. It boils down to a search for directories that match a given package

name and the expected structure of a ROS package: the directory must contain a well-formed package

XML manifest and a CMakeLists.txt file for the CMake build system. The fictibot_controller diretory,

containing the package of the same name, and shown in Figure 29 is an example of such a directory. The
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search for packages does not have to be blind, though. Some environment variables (e.g., ROS_PACKAGE_-

PATH) and tools (e.g., rospack) can be used to easily find the path to a package.

Figure 29: The fictibot_controller package directory.

Once a package is identified, traversing child directories yields the source files that belong to that package,

while traversing parent directories determines whether the package is contained within a repository. In the

fictibot_controller package we would identify the following files:

– ./package.xml

– ./CMakeLists.txt

– include/fictibot_controller/random_controller.h

– src/random_controller.cpp

– src/controller_node.cpp

– launch/minimal.launch

– launch/multiplexer.launch

The real challenge of this step is to identify nodes (extract_nodes_and_primitives). Nodes are the

executable binaries compiled from source code (or executable scripts, in the case of Python). These

artefacts are not part of the packages themselves, and there is no mention of them in the package XML

manifest. The only way to identify which nodes a package contains is to parse the CMake build files. It is

in these files that we can find build targets and files that are meant to be installed on the system. This is

straightforward in the case of fictibot_controller, as seen in Listing 3.10 (see Listing A.10 for the full

code). There is only one node, fictibot_controller, identified by the add_executable instruction.

1 add_executable(fictibot_controller

2 src/controller_node.cpp

3 src/random_controller.cpp

4 )

Listing 3.10: The fictibot_controller node, identified in the CMakeLists.txt file.

Still, adding to the challenge, not all CMake build targets are nodes. Some are simple libraries, others

could be tools. In order to be certain, it is necessary to parse the files that compose the executables, and

look for the ROS init function of the ROS client libraries (e.g., ros::init in C++ and rospy.init in Python).

Sure enough, in the main function of the src/controller_node.cpp file we can see the ros::init call

(Listing 3.11). The init function also provides the node’s default ROS name, which is one of the attributes

of the Node model.
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1 int main(int argc, char **argv) {

2 ros::init(argc, argv, "fictibot_controller");

3 ros::NodeHandle n;

4 RandomController controller(n, 10 /*Hz*/);

5 ros::Rate loop_rate(10 /*Hz*/);

6 while (ros::ok()) {

7 controller.spin();

8 loop_rate.sleep();

9 }

10 return 0;

11 }

Listing 3.11: The main function of the src/controller_node.cpp file.

Note that searching for Nodes the other way around, i.e., starting with the parsing and look up of the

init function in source code files, is not an optimal solution for a few reasons.

• The call to ros::init or rospy.init does not necessarily occur in the main file of the program,

although it is often one of the first instructions of the main function.

• Identifying the file with this function call, in C++, might not suffice to identify all files that compose the

node. One might be able to trace back header files, via #include directives, but other implementation

files still require the full compile command (as given in CMake).

• Although unlikely, the same file with a call to ros::init or rospy.init might be reused to compile

multiple (different) nodes, e.g., by retaining the same header files but changing the implementation

files in C++. This could be used to produce similar nodes for different target hardware, or to

distinguish between hardware and simulation nodes.

3.3.3 ROS Primitive Calls

When a node is identified, during the extract_nodes_and_primitives step, the set of source files that

build it is also known, as seen with add_executable. These files must be parsed in order to extract the

calls to ROS primitives, and this is the first true obstacle to static analysis. It is easy to understand that

resolving all arguments of a primitive call to concrete values might be hard, or even impossible in some

cases. But, sometimes, especially when layers of indirection come into play, detecting the primitives

themselves could be the problem. For instance, calling functions dynamically (e.g., with function pointers)

or using wrappers provided by libraries, such as the ROS message_filters or dynamic_reconfigure

packages, adds complexity to the process. The latter is especially prominent in practice, as we can see in

the evaluation chapter (Chapter 8).

Fortunately, as suggested by our empirical study [149] (see Section 2.3), most occurrences are rather

simple to process, in terms of their arguments, at least, with the majority being literals. However, the ROS

client libraries provide multiple overloads for the same primitives. In the C++ client library, for example,

there are 3 overloads for advertise – which is one of the primitives with the fewest overloads. Thus,

parsing primitive calls is not a matter of identifying one call of each type, but rather a roster of calls per
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primitive. Ensuring that this catalogue is exhaustive (possibly including popular libraries as well) is key to

ensuring the precision and recall of the extraction process.

When it is not possible to fully determine the argument ROS name (i.e., the topic, service or parameter

name), the extraction process should still resolve as many parts of the name as possible. For instance, it

might be the case that the namespace is known, but not the resource’s own name, or vice-versa. Unresolved

parts of the name are replaced with a wildcard ?, in an effort to make the model as complete as possible,

and enabling posterior analysis or user intervention to refine the names.

Another non-trivial detail of this step is how to deal with conditions. A simple implementation would

only look at the control flow of the function containing the primitive call (as we did for the empirical study

in Section 2.3), while a more thorough analysis would traverse all possible program paths that lead to

the primitive call. Within the boundaries of static analysis, we strive for the latter. That is, if the current

function body does not provide enough information (e.g., because a variable is a function parameter), we

traverse the bodies of the functions that call the current function, and so on, effectively traversing as many

program paths as possible, but in reverse order.

3.3.4 Configurations and Resources

After identifying all the source artefacts and calls to the ROS primitives, the reconstruction of the computation

graph can begin (extract_configurations, Listing 3.12). As mentioned before, there is no way to know,

for certain and in advance, which components are part of an application and which applications are part of

a project. Thus, we resort to user input. At the bare minimum, a configuration specification provides the

name of the configuration and the list of launch commands that compose the application. It is a list of

commands, and not a set, because the order in which nodes are launched and parameters are set could

be relevant (i.e., implicit dependencies between launch files).

1 def extract_configurations(config_specs, P, F, N):

2 C = []

3 for name, data in config_specs.items():

4 configuration = Configuration(name)

5 for item in data["launch_commands"]:

6 command = item["command"]

7 args = item["args"]

8 if command == "roslaunch":

9 add_roslaunch(configuration, args, P, F, N)

10 elif command == "rosrun":

11 add_rosrun(configuration, args, N)

12 hints = data.get("hints")

13 apply_hints(configuration, hints)

14 configuration.properties = data.get("properties", [])

15 C.append(configuration)

16 return C

Listing 3.12: Overview of the configuration construction algorithm.
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To build a configuration, each launch command is interpreted in order. Launching individual nodes is

relatively straightforward; the challenge resides on launch files. For each launch file, the algorithm has to

mimic the behaviour of roslaunch, the utility that interprets launch files and deploys systems. That is, it

must keep the semantics of all launch tags: <remap> tags must apply to the correct nodes; <node> tags

are processed in the order they appear, but cannot make assumptions about which nodes are actually

launched first; <param> tags must create parameters within the correct context (i.e., globally, or under a

node’s namespace); etc. This step can introduce various unresolved conditions and wildcards, due to

conditional statements present in the launch files, or simply due to arguments provided via command line

(manually, by the user), at launch.

Parsing launch files allows us to build all Node Instance and Parameter models, and from the pkg

and type attributes of <node> tags we know which Node models correspond to each Node Instance. For

instance, the launch/multiplexer.launch file of fictibot_controller, in Listing 3.13, contains 3 <node>

tags, which correspond to 3 Node Instances. Only the ficticontrol node is affected by the <remap> tags.

1 <launch>

2 <node name="fictibase" pkg="fictibot_drivers" type="fictibot_driver" />

3 <node name="fictiplex" pkg="fictibot_multiplex" type="fictibot_multiplex" />

4 <node name="ficticontrol" pkg="fictibot_controller" type="fictibot_controller">

5 <remap from="controller_cmd" to="normal_priority_cmd" />

6 <remap from="/stop_cmd" to="normal_priority_stop" />

7 </node>

8 </launch>

Listing 3.13: The fictibot_controller launch/multiplexer.launch file.

The last fully automatic step is, for each Node Instance, to build ROS Links from the ROS primitive calls

of the corresponding Node model. Links inherit most of their attributes directly from primitive calls, with the

notable exception of the ROS resource name. The resource name is resolved using the name resolution

rules of ROS, the name and namespace of the concrete Node Instance, as well as its remappings – with

the exception of also allowing the wildcards introduced in the extraction process. Whenever the name

resolution yields a name that is not yet present in the configuration, a new resource (Topic, Service or

Parameter) is created and added to the graph. After creating a new resource, or retrieving an existing

one with the same name, the new link is finally created between the node and the target resource. For

instance, in Fictibot’s Controller the primitive calls indicate topic advertisements for /controller_cmd and

/stop_cmd (Listing 3.14), but, with the remappings of the previous launch file, the corresponding links

would be created to /normal_priority_cmd and /normal_priority_stop instead.

1 RandomController::RandomController(ros::NodeHandle& n, double hz) {

2 /* ... */

3 command_publisher_ = n.advertise<std_msgs::Float64>("controller_cmd", 1);

4 stop_publisher_ = n.advertise<std_msgs::Empty>("/stop_cmd", 0);

5 /* ... */

6 }

Listing 3.14: Some of the topics used in the src/random_controller.cpp file of fictibot_controller.
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3.3.5 User-provided Hints

In many cases, the model should be complete after the previous instantiation step. Depending on the

precision and recall of the implementation, as well as the source code under analysis (which could have a

large number of dynamic values), the resulting model could end up featuring many unresolved names.

To accomodate for this, we extend the YAML configuration specifications, provided as user input, to also

include optional extraction hints (apply_hints in Listing 3.12).

Hints are, in essence, partial models built by hand, with varying levels of detail. They are specified per

configuration, and they follow the same YAML schema that defines our runtime metamodel entities, for

the most part. We focus on runtime entities because source entities, such as packages and files, are

straightforward to extract correctly. The problem lies mostly in primitive calls, as previously explained,

which are used to instantiate links. Our current approach uses hints to fix the extracted model of the

runtime entities that are the prime subject for analysis, although it could be extended to allow for more

entities.

The major difference between extraction hints and the metamodel’s YAML schema is that each entity

includes a create flag. When set to true, the entity should include its required attributes, as per the schema;

the entity is meant to be created and manually added to the extracted model, in all cases. Otherwise, the

only required attribute is the ROS name, as the hint is meant to fix automatically extracted entities. ROS

names are used to match with extracted entities, and if there is more than one possible match – due to

duplicate entities in the graph, or wildcards in the name – we resort to traceability information to resolve

conflicts. That is, the default behaviour is to match by ROS name, but, in case of ambiguity, we allow

the use of the containing package and source file, down to the line and column number, if necessary. All

remaining attributes are used to replace the extracted ones. We consider it an error to provide repair hints

(as opposed to creation hints) for entities that do not exist, or if there are multiple possible matches (e.g.,

because traceability was not specified to disambiguate). Hints always overwrite extracted attributes; they

are considered to be a ground truth.

As we have stated in the previous section, the runtime entities of the metamodel contain redundant

information, namely Topics and Services. Thus, we limit hints to Node Instances, Parameters, and ROS

Links – the essential information to build a Computation Graph. Listing 3.15 provides an example of

what extraction hints for the minimal Configuration could look like in YAML syntax, if any hints were

needed. In this example, we can see that a new Parameter /new_param is created (note how create

is set to true). Furthermore, the model of the /ficticontrol Node Instance is refined regarding its

Publisher and Parameter Getter Links. For the former, we just refine the msg_type of a Publisher on topic

/controller_cmd, by setting it to std_msgs/Float64. For the latter, we create a new Link, connected to

the Parameter we have just defined.

A more complex example can be seen, for instance, in the TurtleBot2 robot, one of our case studies in

Chapter 8. Subscribers are created within a loop, reading topic names from a given list of strings. The

automatic extraction is unable to resolve the ROS name argument because it is a dynamic value. We can
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1 configurations:

2 minimal:

3 # launch commands, etc.

4 hints:

5 nodes:

6 /ficticontrol:

7 publishers:

8 - name: "/controller_cmd"

9 type: "std_msgs/Float64"

10 getters:

11 - name: "/new_param"

12 create: true

13 type: "int"

14 traceability:

15 package: "fictibot_controller"

16 file: "src/random_controller.cpp"

17 line: 42

18 column: 3

19 parameters:

20 /new_param:

21 create: true

22 type: "int"

23 default_value: 1

24 traceability: null

Listing 3.15: Example extraction hints in YAML syntax.

solve this by providing one repair hint that matches this primitive call, for the first entity created in the loop,

and then provide the remaining entities as create hints.

Lastly, the application of extraction hints should follow a specific order:

1. application of extraction hints to Parameters;

2. application of extraction hints to Node Instances;

3. application of extraction hints to Links.

This approach aims to maximise the expressive power of hints, minimise name conflicts and make

them more intuitive. We start with Parameters, as these are mostly independent entities, and in a ROS

environment they would be set on the Parameter Server before launching nodes. Creating Parameters

first also allows specified Links to use these Resources right away; the other way around would lead to

Links implicitly creating new Parameters that would have to be matched against the hints. We leave the

refinement and creation of Links for last because the creation of new Node Instances is again based on a

Node, and on the instantiation of ROS Primitive Calls to create the initial set of Links. The fresh Links will

inherit any unresolved values from the parent Primitive Calls, which can then be resolved by applying hints.

In summary, we propose a simple approach where hints are regarded as the ground truth, even though

they might not describe every aspect of the model. This ground truth is used to extend the model or to

refine it, entity by entity. Every part of the ground truth must be present in the final model, as mentioned.

An interesting consequence of this approach is that it enables users to fully specify (the runtime entities

of) a system from scratch via hints, even when the extraction process produces an empty computation
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graph. This is useful, for instance, to overcome the limitations of an implementation, such as dealing

with unsupported programming languages – e.g., supporting C++ but not Python, and providing all Python

nodes via hints. In a sense, it plays nicely with both the traditional code-first development processes, or

the more formal model-driven ones.

3.4 Summary

A domain-specific ROS analysis requires, in some form, a model of the target ROS system based around

the core concepts of ROS, such as nodes, topics and services. Conveniently, the ROS documentation

already lays out an abstraction for the system’s runtime: the ROS Computation Graph. However, the main

purpose of finding defects is to correct them, and the entities of the computation graph, by themselves, do

not point at the origin of those defects, in the source code. Traceability is a key ingredient that any ROS

architectural model should contain. The main problem is that building such a complex model by hand, in

an environment that encourages dynamic architectures, entails a considerable volume of error-prone work

and volatile data. Thus, automatic model extraction (or reverse engineering) becomes more of a necessity

rather than a mere convenience.

In this chapter, we presented the state of the art in architectural modelling and architecture extraction,

followed by a metamodel for ROS architectures and an automatic extraction procedure based on static

analysis. The proposed metamodel retains traceability information and allows for a dual view of the

system, from a file system perspective and from a runtime perspective, relying mostly on concepts that are

already staples of ROS. This contribution, already published in [151], improves the comprehension of ROS

systems and enables reasoning about their design at static time. Achieving the same, manually, through

source code inspection would be infeasible for large systems under development. The proposed extraction

procedure, being based on static analysis, is, in general, incomplete, although sound. We acknowledge and

address this problem by introducing uncertainty points in the metamodel, as well as allowing the external

specification of extraction hints in order to refine extracted models by resolving some of those uncertainties.

An evaluation of the proposed extraction process is done in Chapter 8.
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B EH A V I O U R A L P RO P E R T Y S P E C I F I C A T I O N

The previous chapter was dedicated to the definition of an architectural model for ROS systems and the

corresponding automated extraction process from source artefacts. It is evident that the metamodel is

mostly concerned with the structure of the system. In this chapter we propose a language specially tailored

for the specification of behavioural properties, both for individual nodes and full applications. Depending

on the intended analysis, such properties can be taken as assumptions about the system, or as verification

goals. This chapter presents the syntax and semantics for this behavioural property specification language.

4.1 State of the Art

Specifying system behaviour inevitably comes down to describing observable actions, outputs, and how they

relate to each other (e.g., causality) or when they should manifest. There are various ways to accomplish

it, but temporal logics are especially fit for this purpose.

T em p o r a l L o g i c s Temporal logics, as implied by the name, must provide an abstraction for

time. Two of the most common approaches to this problem are Linear Temporal Logic (LTL) [140] and

Computation Tree Logic (CTL) [49]. The former views time, and the future in particular, as pre-determined,

i.e., a program execution is treated as a single trace of events, over which one encodes formulae. The

latter, by contrast, is a branching-time logic, meaning that computations are structured as a tree of possible

paths that a program can follow. This view is more closely related to the control flow of programs.

Both LTL and CTL have been extensively used in program verification, with applications in model

checking being the most prominent. As to which is the superior choice, there is no clear answer and

there are arguments in favour to both sides [165]. Both have limitations in their expressiveness; some

properties can be expressed with one, but not the other. The tree nature of CTL enables efficient verification

algorithms that are linear in the size of the specification, as opposed to LTL which is exponential. This

is one of the reasons for CTL to be the backbone of several model checkers, and for its extensive use

in industry. However, some important properties, such as strong fairness, can be specified in LTL, but

cannot be specified in CTL. In addition, the branching aspect of CTL, which adds a layer of complexity to

the language, is rarely a necessity for most specifications. Overall, not only is LTL more intuitive, it is also

amenable to semi-formal verification [66] – verification techniques that, while not exhaustive, are effective

66
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at finding defects by focusing on falsification. As in [165], we argue in favour of LTL and its extensions for

the specification of robotic behaviour.

Standard LTL often considers only future modalities, i.e., properties are expressed in terms of the

present and future time instants only. Two common examples are the � (always) and the ♦ (eventually)

operators. For a formula 𝜑, the formula �𝜑 states that 𝜑 must always hold, from the current instant

onward. Similarly, the formula ♦𝜑 states that 𝜑 must hold at the current instant or at some point in the

future, at least once.

A common variant of LTL is the Linear Temporal Logic with past operators. This variant adds past-time

modalities to the logic that allow specifications to refer to past states or events, besides the traditional

future ones. For instance, the � (historically) and � (once) operators are often introduced as the past

equivalents of the � and ♦ operators, respectively. Including past modalities does not make the logic any

more expressive, however [71], and there are ways to convert a past-time or mixed formula to pure-future

LTL [70]. The main benefits of introducing past-time operators are the syntactic reduction of some formulae

(up to an exponential factor [117]) and a significant improvement regarding formulae comprehension. A

common (yet simple) example to show its convenience is the property “𝜓 should always be preceded by

𝜑”. This is expressed in pure LTL using the until (𝒰) operator.

¬((¬𝜑) 𝒰 (𝜓 ∧ ¬𝜑))

The formula uses a double negative to state that “it is not true that 𝜑 never holds until the time instant

when 𝜓 holds”. With past modalities enabled, this property is reduced to the much more intelligible “it is

always the case that if 𝜓 holds at the current instant, 𝜑 held at least once in the past”, written as follows.

�(𝜓 → �𝜑)

Over the remainder of this chapter we will refer to the standard, Kripke-style syntax and semantics of

LTL operators, both in future and past modalities. Starting with the syntax, let Σ be a countable set of

atomic propositions.

Definition 1. LTL formulae over Σ are inductively defined: (i) For 𝑝 ∈ Σ, 𝑝 is a formula. (ii) For 𝜑 and

𝜓 formulae, (¬𝜑), (𝜑∧𝜓) and (𝜑∨𝜓) are formulae. (iii) For 𝜑 and 𝜓 formulae, ( e𝜑), ( u𝜑), (♦𝜑),
(�𝜑), (�𝜑), (�𝜑), (𝜑𝒰𝜓), and (𝜑𝒮𝜓) are formulae.

As for the semantics, formulae are evaluated over temporal frames (ℕ,≤) – a pair of a set (ℕ in this

case) and a binary relation on that set (≤), called precedence. The precedence relation is a total order; for

𝑎, 𝑏, 𝑐 ∈ ℕ:

• it is antisymmetric – if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎, then 𝑎 = 𝑏;
• it is transitive – if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐, then 𝑎 ≤ 𝑐;
• it is connex – it is true that 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎.

Letℳ = (ℕ,≤, 𝑣) be a temporal model, where (ℕ,≤) is a temporal frame, and 𝑣 ∶ ℕ×Σ ↦ {⊤,⊥}
is a valuation assigning a truth value to each atomic proposition 𝑝 ∈ Σ at a given time instant 𝑖 ∈ ℕ.
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The temporal model ℳ is said to satisfy a formula 𝜑, written ℳ ⊨ 𝜑, if and only if ℳ, 0 ⊨ 𝜑. Given an
atomic proposition 𝑝, time instants 𝑖, 𝑗 and 𝑘, and formulae 𝜑 and 𝜓, the semantics of LTL operators is
presented in Figure 30.

ℳ, 𝑖 ⊨ ⊤
ℳ, 𝑖 ⊭ ⊥
ℳ, 𝑖 ⊨ 𝑝 iff 𝑣(𝑖, 𝑝)
ℳ, 𝑖 ⊨ ¬𝜑 iff ℳ, 𝑖 ⊭ 𝜑
ℳ, 𝑖 ⊨ 𝜑 ∧ 𝜓 iff ℳ, 𝑖 ⊨ 𝜑 and ℳ, 𝑖 ⊨ 𝜓
ℳ, 𝑖 ⊨ 𝜑 ∨ 𝜓 iff ℳ, 𝑖 ⊨ 𝜑 or ℳ, 𝑖 ⊨ 𝜓
ℳ, 𝑖 ⊨ e𝜑 iff ℳ, 𝑖 + 1 ⊨ 𝜑
ℳ, 𝑖 ⊨ u𝜑 iff 𝑖 > 1 and ℳ, 𝑖 − 1 ⊨ 𝜑
ℳ, 𝑖 ⊨ ♦𝜑 iff ℳ, 𝑗 ⊨ 𝜑 for some 𝑗 such that 𝑖 ≤ 𝑗
ℳ, 𝑖 ⊨ �𝜑 iff ℳ, 𝑗 ⊨ 𝜑 for some 𝑗 such that 𝑗 ≤ 𝑖
ℳ, 𝑖 ⊨ �𝜑 iff ℳ, 𝑗 ⊨ 𝜑 for all 𝑗 such that 𝑖 ≤ 𝑗
ℳ, 𝑖 ⊨ �𝜑 iff ℳ, 𝑗 ⊨ 𝜑 for all 𝑗 such that 𝑗 ≤ 𝑖
ℳ, 𝑖 ⊨ 𝜑𝒰𝜓 iff ℳ, 𝑗 ⊨ 𝜓 for some 𝑗 such that 𝑖 ≤ 𝑗

and ℳ, 𝑘 ⊨ 𝜑 for every 𝑘 such that 𝑖 ≤ 𝑘 < 𝑗
ℳ, 𝑖 ⊨ 𝜑𝒮𝜓 iff ℳ, 𝑗 ⊨ 𝜓 for some 𝑗 such that 𝑗 ≤ 𝑖

and ℳ, 𝑘 ⊨ 𝜑 for every 𝑘 such that 𝑗 < 𝑘 ≤ 𝑖

Figure 30: Semantics of LTL operators.

S p e c i f i c a t i o n B a s e d o n L T L Linear Temporal Logic has been used extensively for property

specification with applications in model checking [17, 50, 83, 104], runtime verification [21, 23, 32,

106, 126] or testing [125, 138, 161]. But, even though LTL is considered to be more intuitive than CTL,

specification mistakes are bound to happen at some point. To overcome this threat, and, in a way, to

lower the barrier to adoption of automated verification, Dwyer et al. proposed a catalogue of patterns for

specification problems [58, 59] as follows.

1. Absence: 𝜑 is always false.

2. Universality: 𝜑 is always true.

3. Existence: 𝜑 is true at least once.

4. Bounded Existence: 𝜑 is true at most 𝑛 times.

5. Precedence: 𝜑 is a necessary precondition for 𝜓.
6. Response: 𝜑 must be followed by an occurrence of 𝜓.
7. Precedence Chain: Generalisation of Precedence to 𝑚 causes and 𝑛 effects.

8. Response Chain: Generalisation of Response to 𝑚 stimuli and 𝑛 responses.

Such patterns were put together based on experience, and represent properties that are often desirable

or required in various concurrent or reactive systems. Each pattern can be further refined with a scope,

limiting the extent to which the property must hold. The scope can be global (the entire execution), before

𝜑 (the whole execution up to 𝜑), after 𝜑 (the whole execution starting from 𝜑), between 𝜑 and 𝜓 (where
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both events must occur), or after 𝜑 until 𝜓 (similar to between, but 𝜓 is not required to occur, in which

case the property must hold forever after the last occurrence of 𝜑). Mappings of these patterns to LTL,
CTL and other logics have been proposed1 [58, 59], facilitating their adoption.

Bauer and Leucker expand the idea of specification patterns further with SALT [22], a specification and

assertion language that incorporates the previous patterns and extends them with notions of real time,

exceptions to normal behaviour and regular expressions. In terms of expressiveness, the untimed fragment

of SALT is as expressive as LTL, while its timed fragment is as expressive as Timed LTL, a temporal logic

based on automata with clocks (also known as state-clock logic [56, 146]). Another improvement over

Dwyer et al.’s patterns is the generalisation of scopes. In SALT, scopes can be nested, adding a layer of

complexity in exchange for increased flexibility and specificity of the specifications.

E x t e n s i o n s t o L i n e a r T em p o r a l L o g i c Two major limitations of LTL for the purposes of

specifications are its inability to express properties in terms of real time, and its lack of first-order predicates.

Metric Temporal Logic (MTL [97]) addresses the former, and First-Order Temporal Logic (FOTL [116]) was

proposed to address the latter. Despite being useful extensions on their own, especially when including

past-time modalities, complex systems (such as robots) inevitably require the full set of features. Metric

First-Order Temporal Logic (MFOTL [46]) is a logic that incorporates the benefits of both MTL and FOTL.

Given its relevance for the specification language presented in this chapter, herein we present the syntax

and semantics of MFOTL.

M e t r i c F i r s t - O r d e r T em p o r a l L o g i c Temporal operators in MFOTL can be annotated with

(metric time) intervals. A temporal formula is only satisfied if it is satisfied within the bounds given by the

time interval of the temporal operator, which is always relative to a time stamp.

Let Δ be the set of non-empty intervals over ℕ0. We write an interval 𝛿 ∈ Δ as [𝛿1, 𝛿2), where
𝛿1 ∈ ℕ0, 𝛿2 ∈ ℕ∪ {∞}, and 𝛿1 < 𝛿2, i.e., [𝛿1, 𝛿2) ∶= {𝑡 ∈ ℕ0 ∶ 𝛿1 ≤ 𝑡 < 𝛿2}. A signature 𝑆 is

a tuple (C,P, 𝑎), where C is a finite set of constant symbols, P is a finite set of predicates disjoint from C,
and the function 𝑎 ∶ P ↦ ℕ provides the arity 𝑎(𝑝) ∈ ℕ of each predicate 𝑝 ∈ P. Also, let V denote a

countably infinite set of variables, where we assume that V ∩ (C ∪ P) = ∅, for all signatures.

Definition 2. The formulae over 𝑆 are inductively defined: (i) For 𝑥, 𝑦 ∈ V ∪ C, 𝑥 = 𝑦 is a formula. (ii)

For 𝑝 ∈ P, 𝑛 = 𝑎(𝑝) and 𝑥1,… , 𝑥𝑛 ∈ V ∪ C, 𝑝(𝑥1,… , 𝑥𝑛) is a formula. (iii) For 𝑥 ∈ V, if 𝜑 and 𝜓
are formulae, then (¬𝜑), (𝜑 ∧ 𝜓) and (∃𝑥 ∶ 𝜑) are formulae. (iv) For 𝛿 ∈ Δ, if 𝜑 and 𝜓 are formulae,

then ( u
𝛿𝜑), ( e

𝛿𝜑), (𝜑𝒮𝛿𝜓), and (𝜑𝒰𝛿𝜓) are formulae.

We provide only the syntax and semantics for a core set of MFOTL operators (Figure 31). Other common

operators can be defined in terms of the core set, as shown in Figure 32. To fully define the semantics

of MFOTL, a few additional notions are required. A first-order structure 𝐷 over 𝑆 consists of a domain

|𝐷| ≠ ∅ and interpretations 𝑐𝐷 ∈ |𝐷| and 𝑝𝐷 ⊆ |𝐷|𝑎(𝑝), for each 𝑐 ∈ C and 𝑝 ∈ P. A temporal

1 https://matthewbdwyer.github.io/psp/patterns.html

https://matthewbdwyer.github.io/psp/patterns.html
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first-order structure over 𝑆 is a pair (𝐷, 𝜏), where 𝐷 = (𝐷0, 𝐷1,…) is a sequence of structures over 𝑆
and 𝜏 = (𝜏0, 𝜏1,…) is a sequence of natural numbers (time stamps), where:

1. 𝜏 is monotonically increasing and makes progress, i.e.,

∀𝑖 ≥ 0 ∶ 𝜏𝑖 ≤ 𝜏𝑖+1 and ∃𝑗 > 𝑖 ∶ 𝜏𝑗 > 𝜏𝑖;

2. 𝐷 has constant domains, i.e., ∀𝑖 ≥ 0 ∶ |𝐷𝑖| = |𝐷𝑖+1|;
3. each constant symbol 𝑐 ∈ C has a rigid interpretation, i.e., ∀𝑖 ≥ 0 ∶ 𝑐𝐷𝑖 = 𝑐𝐷𝑖+1.

A valuation is a mapping 𝑣 ∶ V ↦ |𝐷|. We abuse notation by applying valuations also to constant

symbols 𝑐 ∈ C, with 𝑣(𝑐) = 𝑐𝐷. Additionally, we denote 𝑣[𝑥 ↦ 𝑑] as the valuation where every mapping
is unaltered, when compared to 𝑣, save for 𝑥 ∈ V, which should map to 𝑑 ∈ |𝐷|.

Definition 3. Let (𝐷, 𝜏) be a temporal structure over 𝑆, with𝐷 = (𝐷0, 𝐷1,…) and 𝜏 = (𝜏0, 𝜏1,…),
𝜑 and 𝜓 formulae over 𝑆, 𝑣 a valuation, and 𝑖 ∈ ℕ0. The temporal structure satisfies a formula 𝜑, written
(𝐷, 𝜏) ⊨ 𝜑, if and only if (𝐷, 𝜏, 𝑣, 0) ⊨ 𝜑. We define (𝐷, 𝜏, 𝑣, 𝑖) ⊨ 𝜑 as shown in Figure 31.

(𝐷, 𝜏, 𝑣, 𝑖) ⊨ 𝑥 = 𝑦 iff 𝑣(𝑥) = 𝑣(𝑦)
(𝐷, 𝜏, 𝑣, 𝑖) ⊨ 𝑝(𝑥1,… , 𝑥𝑎(𝑝)) iff (𝑣(𝑥1),… , 𝑣(𝑥𝑎(𝑝))) ∈ 𝑝𝐷𝑖

(𝐷, 𝜏, 𝑣, 𝑖) ⊨ (¬𝜑) iff (𝐷, 𝜏, 𝑣, 𝑖) ⊭ 𝜑
(𝐷, 𝜏, 𝑣, 𝑖) ⊨ (𝜑 ∧ 𝜓) iff (𝐷, 𝜏, 𝑣, 𝑖) ⊨ 𝜑 and (𝐷, 𝜏, 𝑣, 𝑖) ⊨ 𝜓
(𝐷, 𝜏, 𝑣, 𝑖) ⊨ (∃𝑥 ∶ 𝜑) iff (𝐷, 𝜏, 𝑣[𝑥 ↦ 𝑑], 𝑖) ⊨ 𝜑, for some 𝑑 ∈ |𝐷|
(𝐷, 𝜏, 𝑣, 𝑖) ⊨ ( u

𝛿𝜑) iff 𝑖 > 0, 𝜏𝑖 − 𝜏𝑖−1 ∈ 𝛿, and (𝐷, 𝜏, 𝑣, 𝑖 − 1) ⊨ 𝜑
(𝐷, 𝜏, 𝑣, 𝑖) ⊨ ( e

𝛿𝜑) iff 𝜏𝑖+1 − 𝜏𝑖 ∈ 𝛿 and (𝐷, 𝜏, 𝑣, 𝑖 + 1) ⊨ 𝜑
(𝐷, 𝜏, 𝑣, 𝑖) ⊨ (𝜑 𝒮𝛿 𝜓) iff for some 𝑗 ≤ 𝑖, 𝜏𝑖 − 𝜏𝑗 ∈ 𝛿, (𝐷, 𝜏, 𝑣, 𝑗) ⊨ 𝜓

and (𝐷, 𝜏, 𝑣, 𝑘) ⊨ 𝜑, for all 𝑘 ∈ [𝑗 + 1, 𝑖]
(𝐷, 𝜏, 𝑣, 𝑖) ⊨ (𝜑 𝒰𝛿 𝜓) iff for some 𝑗 ≥ 𝑖, 𝜏𝑗 − 𝜏𝑖 ∈ 𝛿, (𝐷, 𝜏, 𝑣, 𝑗) ⊨ 𝜓

and (𝐷, 𝜏, 𝑣, 𝑘) ⊨ 𝜑, for all 𝑘 ∈ [𝑖, 𝑗)

Figure 31: Semantics of MFOTL.

Throughout the remainder of this thesis we use standard syntactic sugar such as the omission of

parentheses, infix binary predicates (e.g., 𝑥 < 𝑦) and the standard temporal operators presented previously
for LTL. In Figure 32 we show how these operators can be defined in terms of the core set of operators

for MFOTL. The same Figure also shows the weak-until operator (𝒲), the back-to operator (ℬ), and

the weak-previous operator (sometimes referred to as weak-yesterday, 𝒵), that we use to shorten some
formulae. Note that the non-metric variants of the temporal operators (as in LTL) are easily defined by

considering the interval to be [0,∞). For instance, �𝜑 ∶= �[0,∞)𝜑.

4.2 Language Overview

4.2.1 Context

In publisher-subscriber architectures (especially), where there are many-to-many communications, it is

common to implement components in such a way that they are independent to some degree – i.e., nodes
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(�𝛿𝜑) ≡ (¬(⊤ 𝒮𝛿 ¬𝜑))
(�𝛿𝜑) ≡ (¬(⊤ 𝒰𝛿 ¬𝜑))
(�𝛿𝜑) ≡ (⊤ 𝒮𝛿 𝜑)
(♦𝛿𝜑) ≡ (⊤ 𝒰𝛿 𝜑)

(𝜑 𝒲𝛿 𝜓) ≡ (�𝛿𝜑) ∨ (𝜑 𝒰𝛿 𝜓)
(𝜑 ℬ𝛿 𝜓) ≡ (�𝛿𝜑) ∨ (𝜑 𝒮𝛿 𝜓)

(𝒵𝛿 𝜑) ≡ ( u
𝛿𝜑) ∨ (¬( u

𝛿⊤))

Figure 32: Common operators of MFOTL, defined in terms of the core set of operators.

should make no assumptions about other nodes in the network. Ideally, a node behaves correctly with zero,

one, or multiple other components connected to it, for some definition of correctness. The number of peers

should be inconsequential. All application logic should revolve around the exchanged messages and the

data they carry, since these are the main observable actions that nodes take (save for direct interactions

with hardware). This decoupled approach has a few significant advantages:

1. it allows us to treat nodes as black boxes with a contract over their subscriptions (inputs) and

publications (outputs);

2. it makes components more robust;

3. it improves and promotes reusability and reconfiguration;

4. it lends itself naturally to event-based reasoning using temporal logics.

It follows, then, that to write down reusable and easily maintainable specifications about a component,

group of components, or even the system in general, embracing this black-box, event-based, message-

centric reasoning is a straightforward option. Properties should focus on the messages, their contents

and the (causal and temporal) relations between them, not on the inner workings of nodes. And we can

see that these concepts apply naturally to the message-passing nature of ROS. For instance, an informal

property for a mobile robot, in the context of ROS, could state that “whenever a message is observed on

topic /bumper such that the robot’s bumper is pressed, a message on topic /stop should follow, within

100 milliseconds of the first”. Considering this example, and how messages work in ROS, a specification

language for ROS systems must provide a few basic features, namely:

• references to individual resource names (e.g., topics);

• references to message contents (e.g., observing the contents of the /bumper message);

• temporal operators and relations (e.g., the message on /stop is observed after [and because of]

the message on /bumper);

• real-time behaviour specifications (e.g., observing a message at most 100 milliseconds after

observing another).

From Section 2.3, we know that the publisher-subscriber paradigm is the prevalent means of communi-

cation in ROS. For simplicity’s sake, our proposal for a specification language will focus only on this type of

observable behaviour. Services and actions would be relatively straightforward to include in the language,

but are left as future work.



4.2. Language Overview 72

4.2.2 Concept

One of our goals for this specification language is to propose a syntax and semantics that are both

minimalistic and domain specific, yet readable, easily extensible and similar to existing languages – a

common set of desirable qualities for a specification language [124]. Such traits improve the ease of

use, lower the barrier to adoption and alleviate the burden of specification in general. Another way to

make specification more straightforward and less error prone is to restrict properties to a set of well-known

patterns.

The property specification patterns proposed by Dwyer et al. [58, 59] have been widely adopted, due to

them capturing a large number of interesting real-world scenarios. Their approach of dividing a property

into a combination of predefined scopes and patterns aids in streamlining the specification process, without

sacrificing much in terms of expressive power. In our experience, most properties gravitate towards

an even smaller number of patterns, namely the Absence, Existence, Precedence and Response

patterns. We settled on these patterns to form the core of our language. All proposed scopes seem

useful, but we decided to drop the strict before and between scopes, and to retain only their weaker

variants, after-until and until (the latter not in the original proposal). The main difference is that the

until scopes do not require the termination event to happen, which is, in general, a more flexible approach

to specification that is able to handle, e.g., component crashes.

Despite their proven usefulness, Dwyer’s specification patterns fail to address some crucial issues in the

safety-critical context of cyber-physical systems. One such issue, as previously illustrated, is that real time

– and, by extension, system performance – cannot be left out of the specification. The abstract nature of

time in LTL or CTL is insufficient to capture correct robot behaviour. In this context, it is not hard to see

how responding to stimuli within 100 milliseconds or within 1 second could make the difference between

success and disaster, even though both occur eventually. Thus the need to move away from LTL and other

similar logics, into logics that handle real time, such as Metric Temporal Logic. This is a small extension in

terms of syntax, but a significant step up in complexity in terms of semantics.

Another shortcoming of the original specification patterns, being designed for LTL and similar logics, is

that they apply to atomic propositions. Again, in a system as complex as ROS, atomic propositions are

not expressive enough to encode the intended observable behaviour. In this case, we define observable

behaviour in terms of the messages that nodes exchange with one another, and, as previously mentioned,

we must be able to reference message contents. Recall that a ROS message is allowed to: (i) have an

arbitrary number of data fields; (ii) compose messages arbitrarily (i.e., use other messages as fields); and

(iii) contain lists of values of arbitrary length. Facing such complex data structures, first-order predicates

become a necessity. Without first-order predicates, it would not be possible to encode properties such as

“stop when one of the laser readings detects an obstacle within a range of 1 meter”, or that a sequence of

messages is supposed to contain monotonically increasing values. Combining this requirement with the

previous requirement of handling real time, we settled on Metric First-Order Temporal Logic as the base for

the language semantics.
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We have discussed the importance of building the language around exchanged messages as the main

events of interest. Scopes and patterns are specified in terms of events – e.g., “after receiving a message

such that 𝜑”, or “there are no messages such that 𝜑”. In its simplest form, an event simply requires a
topic name, under which messages should be observed. Any message passing through the topic should

match the event. Optionally, an event may be refined with a predicate over the message’s data fields, which

will act as a sort of filter; only those messages that satisfy the predicate will match the event. This is how

we impose, e.g., ranges of expected values for a certain field. Finally, predicates may include references to

previous messages in the same timeline (depending on the property’s scope and pattern). This way, we

have the necessary tools to establish relations between messages and message fields, such as equality

and monotonicity.

In short, even though we decided not to cover the original collection of patterns in full, we address some

of the features that are lacking in Dwyer’s proposal, such as real-time constraints, data parametrisation

(i.e., predicates over messages) and cross-references between events. Properties are built from scopes and

patterns, which in turn are specified in terms of observed events and time intervals. Putting all concepts

together, we get the hierarchichal structure depicted in Figure 33 (where dashed lines represent optional

elements).

Figure 33: Structure of a property in the proposed language.

4.3 Language Syntax

The previous section, and Figure 33 in particular, show that the two major components of a property are

its scope and its pattern. These are specified in terms of events, which, at their simplest, require a ROS

name and (possibly) a predicate over message fields. Below we can see the top-level grammar production

rule for properties, in Extended Backus-Naur form.

⟨property⟩ ::= ⟨scope⟩ ‘:’ ⟨pattern⟩

The remainder of this section goes into the details of the syntax for scopes, patterns, events and

predicates.

4.3.1 Scopes

Scopes are a way to represent time windows related to certain events or system states. Besides the

global scope, given by the keyword globally, which spans the whole system execution, we consider only
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a general event-based scope, which we call after-until, and its two simpler variants, after and until. The

grammar rules for scopes are as follows.

⟨scope⟩ ::= ‘globally’ | ⟨after-until⟩ | ⟨until⟩

⟨after-until⟩ ::= ‘after’ ⟨event⟩ [⟨until⟩]

⟨until⟩ ::= ‘until’ ⟨event⟩

The ⟨after-until⟩ scope is analogous to its homonym, as proposed by Dwyer et al.; it denotes the window
between an initial event (that we call the activator) and a second event (that we call the terminator). It can

be reduced to a variant that only specifies an activator event, mirroring the after scope by Dwyer et al., or

to a variant that only specifies the terminator event (the until scope).

4.3.2 Patterns

As previously mentioned, we build the specification language around four property patterns proposed by

Dwyer et al.: Absence, Existence, Precedence and Response. Absence properties, as implied by the

pattern name, forbid the occurrence of an event at any time within the scope, and are always expressed in

the negative form with the keyword no. The Existence pattern, given by the keyword some, states that a

certain message will be published at least once, at some point in the future (but always within the scope).

The Precedence pattern is the first of the binary patterns, in the sense that it is specified not in terms of one

event (as is the case with Absence and Existence), but in terms of two distinct events. This pattern is given

by the keyword requires, stating that one event requires another, i.e., the first event in the specification is

preceded by the second. The Response pattern is another binary pattern – the dual of the Precedence

pattern. It is used to specify that one event is the cause for another, i.e., an occurrence of the stimulus

implies an eventual occurrence of the response. In addition to these, we define a new pattern, called

Prevention, which is a mix between the Absence and Response patterns. Given by the forbids keyword,

it states that a stimulus event leads to the absence of another event. Its dual would state that an event is

preceeded by the absence of another event (e.g., b forbids a previous a), but note that this is equivalent

to saying that, if the first event happens, then the second must not happen (e.g., a forbids b). Thus,

introducing a new keyword is not necessary. Every pattern can include an optional timeout, as seen in the

following grammar.

⟨pattern⟩ ::= ⟨unary-pattern⟩ ⟨event⟩ [⟨time-bound⟩]
| ⟨event⟩ ⟨binary-pattern⟩ ⟨event⟩ [⟨time-bound⟩]

⟨unary-pattern⟩ ::= ‘no’ | ‘some’

⟨binary-pattern⟩ ::= ‘requires’ | ‘causes’ | ‘forbids’

⟨time-bound⟩ ::= ‘within’ ⟨time⟩

⟨time⟩ ::= ⟨non-negative-integer⟩ ‘ms’
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4.3.3 Events and Predicates

Events, as previously mentioned, are specifications for ROS messages. Including operators for more

complex events, such as event sequences, would allow us to incorporate the missing patterns from Dwyer

et al.’s catalogue, namely, the bounded variants for the Existence, Precedence and Response patterns,

but we leave them for future work. Event predicates include only a core set of operators, for illustrative

purposes.

⟨event⟩ ::= ⟨ros-name⟩ [⟨alias⟩] [⟨predicate⟩]

⟨alias⟩ ::= ‘as’ ⟨identifier⟩

⟨predicate⟩ ::= ‘{’ ⟨condition⟩ ‘}’

⟨condition⟩ ::= ⟨value⟩ ⟨binary-rel-operator⟩ ⟨value⟩
| ‘(’ ⟨condition⟩ ‘)’
| ‘not’ ⟨condition⟩
| ‘forall’ ⟨identifier⟩ ‘in’ ⟨msg-field⟩ ‘:’ ⟨condition⟩
| ⟨condition⟩ ⟨binary-connective⟩ ⟨condition⟩

⟨binary-rel-operator⟩ ::= ‘=’ | ‘<’

⟨binary-connective⟩ ::= ‘or’ | ‘and’

⟨value⟩ ::= ⟨boolean⟩ | ⟨num-expr⟩ | ⟨string⟩

⟨variable⟩ ::= ‘$’ ⟨identifier⟩

⟨msg-field⟩ ::= ⟨field-name⟩ {‘.’ ⟨field-name⟩}
| ⟨alias-ref⟩ ‘.’ ⟨field-name⟩ {‘.’ ⟨field-name⟩}

⟨alias-ref⟩ ::= ‘@’ (⟨non-negative-integer⟩ | ⟨identifier⟩)

⟨field-name⟩ ::= ⟨identifier⟩ [⟨index⟩]

⟨index⟩ ::= ‘[’ (⟨non-negative-integer⟩ | ⟨variable⟩) ‘]’

⟨num-expr⟩ ::= ⟨number⟩
| ⟨msg-field⟩
| ⟨variable⟩
| ‘(’ ⟨num-expr⟩ ‘)’
| ‘-’ ⟨num-expr⟩
| ⟨num-expr⟩ ⟨binary-num-operator⟩ ⟨num-expr⟩

⟨binary-num-operator⟩ ::= ‘+’ | ‘*’

We can see that the proposed operators provide some expressiveness, with logical connectives (not,

and, or, forall), relational operators (‘=’, ‘<’) and arithmetic operators. While we present only a small set
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of operators, we can assume a number of syntactic sugar operators, such as the relational operator ‘>’ or

the division operator ‘/’.

With the forall quantifier, we provide a basic means of iterating over array fields. This is intended

to iterate over all valid indices of the array, rather than the values directly. For instance, the syntax

‘forall i in array’ is roughly equivalent to the Python for i in range(len(array)).

The grammar also captures references to quantified variables (‘$var’), and to message fields (either of

the message associated to the event, or to other messages with the ‘@’ symbol). Message fields can be

simple identifiers to refer directly to a field of the current message (‘field’), multiple identifiers separated

by dots to refer to nested fields of composed messages (‘parent.child’), or indexed to access array

positions (‘parent.array[1]’). Regarding cross-references to other messages, every message has an

implicit associated index to be used with ‘@’. Messages are numbered, starting at 1 with the activator

event, and then with 2 for the first pattern event. Other events are not referenced in the current version of

the language. Since numeric references can become confusing, we introduce event aliases, a syntactic

sugar layer that replaces numeric references to other messages with human-readable names instead.

For instance, an activator event ‘/bumper as Bumper’ would allow predicates to refer to this message as

‘@Bumper’ rather than ‘@1’. Message fields would be accessed as ‘@Bumper.field’, for instance. We

reiterate that this is just a syntactic replacement, and thus has no effect over the language’s semantics.

We also note that not all events can refer to each other arbitrarily, for temporal and semantic reasons; an

event can only refer to another event that, unambiguously, happened before it. For example, activator and

terminator events must be independent, but pattern events can refer to the scope activator. The semantic

limitations that require independent terminator events are explained in Section 4.4.

4.3.4 Examples

This subsection provides some syntax examples for Fictibot properties. We start off with an example of the

Absence pattern with a global scope. Consider the following property for the Fictibot Driver.

At all times, all data published on /bumper is within the range [0, 7].

The property has to be encoded in the negative form; stating that only the values between 0 and 7 are

allowed is the same as stating that no other value is allowed. As such, the property becomes:

1 globally: no /bumper {data < 0 or data > 7}

Examples of the Existence pattern assert that a certain message shall be published. We can use it, for

instance, to specify some properties of system initialisation.

Within the first 500 milliseconds after launching, a message shall be published on /bumper.

This property does not impose any restriction on the message itself, thus it contains no predicates, but

it does use the timed variant of the pattern.
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1 globally: some /bumper within 500 ms

The Fictibot Multiplexer is, in essence a state machine. It provides the ideal setting to use the After-Until

scope, to model the node’s states. Combined with the Precedence pattern, we can assert properties such

as the following.

While in a high priority state (messages on /state carry data > 0), publishing a message on
/controller_cmd is preceded by receiving an exactly equal message on /high_priority_-

cmd, in the preceding 100 milliseconds.

1 after /state {data > 0} until /state {not data > 0}: /controller_cmd as CMD

2 requires /high_priority_cmd {data = @CMD.data} within 100 ms

The Response pattern, conversely to the Precedence pattern, specifies an event that should happen

after the stimulus event. It is adequate to specify reactive systems, such as safety controllers and some

aspects of the Fictibot Random Controller.

At all times, receiving a /bumper message such that data ≠ 0 leads to the publication of a

message on /normal_priority_stop, within, at most, 200 milliseconds.

The syntax for this property is as follows:

1 globally: /bumper {not data = 0} causes /normal_priority_stop within 200 ms

Lastly, an example of the Prevention pattern in this system would be the time-based nature of the Fictibot

Multiplexer’s states.

After entering a high priority state, the Multiplexer should remain in that state for, at least, 1

second.

1 globally: /state {data > 0} forbids /state {not data > 0} within 1000 ms

4.4 Language Semantics

We define the semantics of our specification language in terms of the semantics of MFOTL. That is, given a

syntactic construct of the language Φ, we define its interpretation as the equivalent MFOTL formula and

denote it as JΦK. We require only a few additional definitions beforehand.

Let 𝕄 be the set of all messages, where a message consists of a unique identifier. The first-order

structures 𝐷𝑖 over 𝑆 consist of a domain |𝐷| such that

• |𝐷| contains all numbers, i.e., ℝ ⊂ |𝐷|;
• |𝐷| contains all Boolean values, i.e., {⊤,⊥} ⊂ |𝐷|;
• |𝐷| contains all strings, i.e., 𝕊 ⊂ |𝐷|, with 𝕊 the set of all strings;
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• |𝐷| contains all messages, i.e., 𝕄 ⊂ |𝐷|.

Let 𝕋 be the set of all ROS topics. For all /t ∈ 𝕋 we define a predicate 𝑡 ∈ P such that 𝑡(𝑚) is true
if and only if a message 𝑚 ∈ 𝕄 can be observed on topic /t. The relation of messages to data fields is

given by predicates field(𝑚, 𝑥) ∈ P such that, for a message 𝑚, field(𝑚, 𝑥) holds if and only if 𝑚 carries

the value (or message) 𝑥 in a data field named field.

Array fields are only slightly different. To simplify quantification over the indices of an array, we redefine

the usual predicate field(𝑚, 𝑘), to hold for all indices belonging to the array, rather than values. That is,
for 𝑘 ∈ ℕ0, field(𝑚, 𝑘) holds if 𝑘 is an index of an array named field. In addition, we define a predicate

field𝑘(𝑚, 𝑥) for all indices 𝑘, such that field𝑘(𝑚, 𝑥) holds if the field field[k] carries the value 𝑥, i.e., if
field(𝑚, 𝑘) holds and the array contains 𝑥 at the index 𝑘.

We address composed messages with predicate composition. That is, for a data field f.g, we use the

composition of predicates 𝑓 and 𝑔, such that

𝑔 ∘ 𝑓 (𝑚, 𝑥) ≡ (∃𝑚′ ∶ 𝑓 (𝑚,𝑚′) ∧ 𝑔(𝑚′, 𝑥))

To shorten some formulae, and to improve readability, we assume that all interpreted properties Φ are

type-checked prior to their semantic interpretation JΦK. For instance, in the case of arithmetic operators,
for an expression 𝑎 + 𝑏, we assume that both 𝑎 and 𝑏 are such that 𝑎, 𝑏 ∈ ℝ. Otherwise, we would have

to introduce a new predicate, 𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟(𝑥), such that for all 𝑥, 𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟(𝑥) holds if 𝑥 ∈ ℝ, and

replace every arithmethic-related formula 𝜑 with 𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟(𝑎) ∧ 𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟(𝑏) ∧ 𝜑.

Definition 4. Let (𝐷, 𝜏) be a temporal structure over 𝑆, with𝐷 = (𝐷0, 𝐷1,…) and 𝜏 = (𝜏0, 𝜏1,…).
Let 𝑣 be a valuation, 𝑖 ∈ ℕ0 and Φ a property over 𝑆. We define JΦK, the interpretation of Φ, as a

function that translates Φ to its equivalent Metric First-Order Temporal Logic formula. Thus, we define

(𝐷, 𝜏, 𝑣, 𝑖) ⊨ Φ as (𝐷, 𝜏, 𝑣, 𝑖) ⊨ JΦK, and JΦK is defined as follows.

Scopes

Jglobally: ΨK ≜ JΨK∅
⊥

Jafter 𝑝: ΨK ≜ �(∀𝑥 ∶ enterScope(𝑝,⊥, 𝑥) → JΨK𝑥
⊥)

Juntil 𝑞: ΨK ≜ JΨK∅
𝑞

Jafter 𝑝 until 𝑞: ΨK ≜ �(∀𝑥 ∶ enterScope(𝑝, 𝑞, 𝑥) → JΨK𝑥
𝑞)

enterScope(𝑝, 𝑞, 𝑥)
≜ J𝑝K𝑥 ∧¬(∃𝑦 ∶ J𝑞K𝑦) ∧ 𝒵(¬(∃𝑦 ∶ J𝑝K𝑦) ℬ (∃𝑦 ∶ J𝑞K𝑦))

In the presented translation semantics we can see the use an auxiliary predicate, enterScope, that

deserves further explanation. The globally and until scopes start, by definition, at the initial instant of

the trace and, thus, require the resulting formula to be true when evaluated at that instant. On the other

hand, the after and after-until scopes do not start until the matching event has been observed. We
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know that a property must only hold within its scope, so the resulting formulae have to account for this

when evaluated at the initial instant of the trace – recall that a temporal structure (𝐷, 𝜏) satisfies a formula
𝜑, written (𝐷, 𝜏) ⊨ 𝜑, if and only if (𝐷, 𝜏, 𝑣, 0) ⊨ 𝜑, for a valuation 𝑣. In addition, the after-until

scope is (possibly) reentrant, which means that the activation of a scope might be observed multiple times.

This is why these two scopes require the � operator – so that, whenever an event marks the start of the

scope of a property, we can evaluate the inner pattern. Hence, given activator and terminator events 𝑝 and

𝑞, and given a message 𝑥, enterScope(𝑝, 𝑞, 𝑥) holds if and only if the message 𝑥 starts the scope at the

current instant. More precisely, enterScope(𝑝, 𝑞, 𝑥) holds if its three conjuncts are satisfied:

• 𝑥 matches the event 𝑝, i.e., 𝑥 is an activator message; and

• no message at that instant matches 𝑞 (as it would terminate the scope immediately); and
• in the previous instants, since either the initial instant or the last terminator event (for reentrant

scopes), there has been no other activator, i.e., 𝑥 is the first match for 𝑝 (further matches when

within the scope are ignored).

The third conjunct of enterScope imposes a limitation on the language. Due to its reference to a previous

scope, and due to the semantics of MFOTL, terminator events must be independent; a terminator event

cannot reference previous events (i.e., the scope activator). If such cross-references were allowed, we

would need to pass additional messages in the superscript vector of J𝑞K𝑦, such as J𝑞K𝑥,𝑦. But, in the

third conjunct, the back-to operator refers to the terminator of a previous scope (which would also have

references), and we cannot say, at that instant, which message opened the scope of that terminator. In

summary, allowing terminator events to refer to activator events would make the definition of enterScope

recursive.

Note that, for the translation of patterns and predicates, we used superscript and subscript annotations.

This is mostly a convenience to present the translation in a compositional fashion, from a top-down

perspective, and to allow us to carry over to the lower levels of the translation some variables that were

introduced at the higher levels. For instance, in JΨK𝑥
𝑞, the superscript 𝑥 is a vector of quantified messages.

In the translation of after and after-until, this vector contains a single message, the scope activator

message. In the translation of globally and until, it is ∅, representing an empty vector. Similarly, the
superscript ∅ represents a vector containing zero messages. The subscript 𝑞 is used to carry over the
terminator event from the scope to the translation of the pattern. The same notation applies to J𝑝K𝑥, except

that 𝑝 is a predicate, rather than a pattern.
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Patterns

Jno 𝑏K𝑥
𝑞 ≜ ¬(∃𝑦 ∶ J𝑏K𝑥,𝑦) 𝒲 (∃𝑦 ∶ J𝑞K𝑦)

Jno 𝑏 within 𝛿 msK𝑥
𝑞 ≜ ¬(∃𝑦 ∶ J𝑏K𝑥,𝑦) 𝒲[0,𝛿) (∃𝑦 ∶ J𝑞K𝑦)

Jsome 𝑏K𝑥
𝑞 ≜ ¬(∃𝑦 ∶ J𝑞K𝑦) 𝒰 ((∃𝑦 ∶ J𝑏K𝑥,𝑦) ∧ ¬(∃𝑦 ∶ J𝑞K𝑦))

Jsome 𝑏 within 𝛿 msK𝑥
𝑞 ≜ ¬(∃𝑦 ∶ J𝑞K𝑦) 𝒰[0,𝛿) ((∃𝑦 ∶ J𝑏K𝑥,𝑦) ∧ ¬(∃𝑦 ∶ J𝑞K𝑦))

J𝑎 causes 𝑏K𝑥
𝑞 ≜ (∀𝑦 ∶ J𝑎K𝑥,𝑦 → Jsome 𝑏K𝑥,𝑦

𝑞 ) 𝒲 (∃𝑦 ∶ J𝑞K𝑦)

J𝑎 causes 𝑏 within 𝛿 msK𝑥
𝑞 ≜ (∀𝑦 ∶ J𝑎K𝑥,𝑦 → Jsome 𝑏 within 𝛿 msK𝑥,𝑦

𝑞 ) 𝒲 (∃𝑦 ∶ J𝑞K𝑦)

J𝑎 forbids 𝑏K𝑥
𝑞 ≜ (∀𝑦 ∶ J𝑎K𝑥,𝑦 → Jno 𝑏K𝑥,𝑦

𝑞 ) 𝒲 (∃𝑦 ∶ J𝑞K𝑦)

J𝑎 forbids 𝑏 within 𝛿 msK𝑥
𝑞 ≜ (∀𝑦 ∶ J𝑎K𝑥,𝑦 → Jno 𝑏 within 𝛿 msK𝑥,𝑦

𝑞 ) 𝒲 (∃𝑦 ∶ J𝑞K𝑦)

J𝑏 requires 𝑎K𝑥
𝑞 ≜ ∀𝑦 ∶ prec(𝑎, 𝑏, 𝑞, 𝑥, 𝑦)

J𝑏 requires 𝑎 within 𝛿 msK𝑥
𝑞 ≜ ∀𝑦 ∶ prec(𝑎, 𝑏, 𝑞, 𝑥, 𝑦) ∧ once𝛿(𝑎, 𝑏, 𝑞, 𝑥, 𝑦)

prec(𝑎, 𝑏, 𝑞, 𝑥, 𝑦) ≜ ¬J𝑏K𝑥,𝑦 𝒲 (∃𝑧 ∶ J𝑎K𝑥,𝑦,𝑧 ∨ J𝑞K𝑧)

once𝛿(𝑎, 𝑏, 𝑞, 𝑥, 𝑦) ≜ (J𝑏K𝑥,𝑦 → �[0,𝛿)(∃𝑧 ∶ J𝑎K𝑥,𝑦,𝑧)) 𝒲 (∃𝑧 ∶ J𝑞K𝑧)

For the translation of patterns, we now see additional superscript annotations, not discussed for scopes.

For instance, in Jno 𝑏K𝑥
𝑞, the superscript 𝑥 is a vector (of arbitrary length) of quantified messages that

causally precede 𝑏; such as the activator message, or no messages at all if the vector is of zero-length.
Alternatively, as we will see in following translations, we can also use the notation J𝑏K𝑥1,…,𝑥𝑛 to refer to

a vector of length 𝑛. Furthermore, the use of the superscript J𝑏K𝑥,𝑦 means that the translation of the

predicate 𝑏 should consider a vector of all messages in 𝑥 plus the quantified message 𝑦.
We can see that the unary patterns, no and some have a translation that is already close a MFOTL

formula, save for the translation of the event predicates, J𝑏K and J𝑞K. The binary patterns causes and

forbids are translated via composition, reusing the translations of the previous unary patterns. The last

binary pattern, requires, is more complex, and is defined with the use of auxiliary predicates for readability

purposes. The first of these predicates, prec(𝑎, 𝑏, 𝑞, 𝑥, 𝑦) states that the event 𝑏 (the behaviour) should
not happen before 𝑎 (the required event) or 𝑞 (the scope terminator). When adding real-time constraints,
however, we also need the predicate once𝛿(𝑎, 𝑏, 𝑞, 𝑥, 𝑦), which states that, if the event 𝑏 happens before
the scope terminator, then the required event 𝑎 must have happened within the specified interval (the
previous 𝛿 time instants). The remaining translations, J𝑎K, J𝑏K and J𝑞K all represent predicate translations,
which we present next.
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Predicates

J⊤K𝑥 ≜ ⊤

J⊥K𝑥 ≜ ⊥

J /topic K𝑥1,…,𝑥𝑛 ≜ topic(𝑥𝑛)

J /topic { 𝜑 } K𝑥1,…,𝑥𝑛 ≜ topic(𝑥𝑛) ∧ J𝜑K𝑥1,…,𝑥𝑛
∅

J(𝜑)K𝑥
𝛾 ≜ (J𝜑K𝑥

𝛾)

Jnot 𝜑K𝑥
𝛾 ≜ ¬J𝜑K𝑥

𝛾

J𝜑 and 𝜓K𝑥
𝛾 ≜ J𝜑K𝑥

𝛾 ∧ J𝜓K𝑥
𝛾

J𝜑 or 𝜓K𝑥
𝛾 ≜ J𝜑K𝑥

𝛾 ∨ J𝜓K𝑥
𝛾

Jforall var in 𝑓: 𝜑K𝑥
𝛾 ≜ ∀𝑦 ∶ 𝑦J𝑓K𝑥

𝛾 → J𝜑K𝑥
𝛾[var↦𝑦]

Jforall var in @𝑘.𝑓: 𝜑K𝑥
𝛾 ≜ ∀𝑦 ∶ 𝑦J@𝑘.𝑓K𝑥

𝛾 → J𝜑K𝑥
𝛾[var↦𝑦]

J𝑎 = 𝑏K𝑥
𝛾 ≜ ∃𝑦, 𝑧 ∶ 𝑦J𝑎K𝑥

𝛾 ∧ 𝑧J𝑏K𝑥
𝛾 ∧ 𝑦 = 𝑧

J𝑎 < 𝑏K𝑥
𝛾 ≜ ∃𝑦, 𝑧 ∶ 𝑦J𝑎K𝑥

𝛾 ∧ 𝑧J𝑏K𝑥
𝛾 ∧ 𝑦 < 𝑧

The translations of most predicates are relatively straightforward. Atomic predicates, such as ⊤ and ⊥
are directly translated. Top-level predicates, including a topic name, translate to a predicate with the same

name as the topic, as previously explained, that checks whether the last message of the superscript vector

is present in that topic, at the given time instant (i.e., the message can be observed at that time). Simple

logic operators, not, and, or, translate to their respective logic operators and propagate the translation of

subformulae. Quantifiers and atomic formulae are not as intuitive.

In this semantics, most expressions are singleton values; the exception lies in array message fields,

that can represent multiple values. Namely, the predicate with the name of the array field denotes every

index of the array. In contrast, for simple message fields we use field(𝑥, 𝑦) to denote a predicate that
tests whether 𝑦 is a value of the homonymous field in message 𝑥. Thus, when translating expressions in
general, we use the notation 𝑦J𝑎K𝑥

𝛾 to represent a predicate that tests whether the value of the variable 𝑦 is

one of the possible values for the expression 𝑎.
To handle new variable definitions for quantification, we use an additional 𝛾 subscript. This subscript is

a mapping of syntactic replacements; given a variable name as written in the property, we can replace

its occurrences with a quantified variable in |𝐷|. For instance, given the predicate ‘forall i in array:

array[$i] = 0’, we quantify over all values for which 𝑦JarrayK𝑥
𝛾 holds, i.e., all the indices of the array, as

we will see next. For such values, 𝑦, the result of J array[$i] = 0 K𝑥
𝛾[i↦𝑦] must hold. This is equivalent

to stating that, in the translation of array[$i] = 0 we should replace every occurrence of $i with the

quantified variable 𝑦 (the array index).

Atomic formulae, such as 𝑎 = 𝑏, would, intuitively, just translate the left and right operands, as in

J𝑎K𝑥
𝛾 = J𝑏K𝑥

𝛾. This, however, is not possible, due to expressions having multiple possible values (in
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general), as previously explained. We require existential quantification to bind variables to their respective

values. Then, the = and < operators can only be applied to expressions that denote singleton values. The

use of array fields, an expression that does not represent a singleton value, is confined to quantification.

Values and Expressions

𝑦J(𝑎)K𝑥
𝛾 ≜ (𝑦J𝑎K𝑥

𝛾)

𝑦J-𝑎K𝑥
𝛾 ≜ ∃𝑧 ∶ 𝑧J𝑎K𝑥

𝛾 ∧ 𝑦 = −𝑧

𝑦J𝑎 + 𝑏K𝑥
𝛾 ≜ ∃𝑧,𝑤 ∶ 𝑧J𝑎K𝑥

𝛾 ∧ 𝑤J𝑏K𝑥
𝛾 ∧ 𝑦 = (𝑧 + 𝑤)

𝑦J𝑎 * 𝑏K𝑥
𝛾 ≜ ∃𝑧,𝑤 ∶ 𝑧J𝑎K𝑥

𝛾 ∧ 𝑤J𝑏K𝑥
𝛾 ∧ 𝑦 = (𝑧 × 𝑤)

𝑦J 𝑐 K𝑥
𝛾 ≜ 𝑦 = 𝑐

𝑦J$varK𝑥
𝛾 ≜ 𝑦 = 𝛾(var)

𝑦J 𝑓 K
𝑥1,…,𝑥𝑛
𝛾 ≜ J𝑓K𝛾(𝑥𝑛, 𝑦)

𝑦J@𝑘.𝑓K
𝑥1,…,𝑥𝑛
𝛾 ≜ J𝑓K𝛾(𝑥𝑘, 𝑦) if 1 ≤ 𝑘 ≤ 𝑛

JfieldK𝛾 ≜ field

Jfield[𝑘]K𝛾 ≜ field𝑘

Jfield[$var]K𝛾 ≜ field𝛾(var)

J 𝑓1.𝑓2 K𝛾 ≜ J𝑓2K𝛾 ∘ J𝑓1K𝛾

The translations of values and expressions are the last step to obtain a MFOTL formula. There is

nothing new at this point, except field references to other messages, e.g., @𝑘.𝑓. Recall that event aliases
are syntactic sugar that is converted to a message index at this point, i.e., 𝑘 is a number, rather than
a human-readable name. The translation for this case, then, refers to the 𝑘-th message given in the

superscript vector, 𝑥𝑘, rather than the current message, 𝑥𝑛. The fields themselves are translated to their

homonymous predicates, and field composition translates to predicate composition, as previously explained.

Arithmetic expressions are similar to the translations of atomic formulae, and 𝑐 denotes a constant symbol,
such as an integer.

4.4.1 Examples

We provide examples of the language’s property interpretation semantics, JΦK, using concrete traces of
the Fictibot system. Consider the trace in Figure 34, for instance. Each circle in the diagram represents

an event where the underlined text above or below it is the time stamp of the event and the dashed box

contains the associated topic name and message data (between braces, e.g., {data: 0}). The arrows in

the diagram represent the order between events in the trace, starting from the earliest event to the latest.
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Figure 34: Example trace of the Fictibot system.

With slight modifications of the trace in Figure 34 we can illustrate examples of violated properties in

Fictibot. The altered trace diagrams highlight the events causing the violation, using filled circles and red

text for the time stamp (if it is a timing violation) or for the event’s data (if it is a predicate violation).

A b s e n c e Figure 35 shows a trace excerpt where the following Absence property of the Fictibot Driver

is violated.

1 globally: no /bumper {data < 0 or (not data < 8)}

A message is published on /bumper with a value of 8, but it is only expected to publish data between 0

and 7 (inclusive).

Figure 35: Example trace of the Fictibot system violating an Absence property.

We translate the property into the following formula, while also applying some simplifications to make it

more readable.
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Jglobally: no /bumper {data < 0 or (not data < 8)}K

iff Jno /bumper {data < 0 or (not data < 8)}K∅
⊥

iff ¬(∃𝑥 ∶ J/bumper {data < 0 or (not data < 8)}K𝑥) 𝒲 (∃𝑥 ∶ J⊥K𝑥)

iff ¬(∃𝑥 ∶ J/bumper {data < 0 or (not data < 8)}K𝑥) 𝒲 ⊥

iff �(¬(∃𝑥 ∶ J/bumper {data < 0 or (not data < 8)}K𝑥))

iff �(¬(∃𝑥 ∶ bumper(𝑥) ∧ Jdata < 0 or (not data < 8)K𝑥
∅))

iff �(¬(∃𝑥 ∶ bumper(𝑥) ∧ (Jdata < 0K𝑥
∅ ∨ Jnot data < 8K𝑥

∅)))

iff �(¬(∃𝑥 ∶ bumper(𝑥) ∧ (Jdata < 0K𝑥
∅ ∨¬Jdata < 8K𝑥

∅)))

iff �(¬(∃𝑥 ∶ bumper(𝑥) ∧ ((∃𝑦, 𝑧 ∶ 𝑦JdataK𝑥
∅ ∧ 𝑧J0K𝑥

∅ ∧ 𝑦 < 𝑧)

∨ ¬(∃𝑦, 𝑧 ∶ 𝑦JdataK𝑥
∅ ∧ 𝑧J8K𝑥

∅ ∧ 𝑦 < 𝑧))))

iff �(¬(∃𝑥 ∶ bumper(𝑥) ∧ ((∃𝑦, 𝑧 ∶ data(𝑥, 𝑦) ∧ 𝑧 = 0 ∧ 𝑦 < 𝑧)

∨ ¬(∃𝑦, 𝑧 ∶ data(𝑥, 𝑦) ∧ 𝑧 = 8 ∧ 𝑦 < 𝑧))))

iff �(¬(∃𝑥 ∶ bumper(𝑥) ∧ ((∃𝑦 ∶ data(𝑥, 𝑦) ∧ 𝑦 < 0) ∨ ¬(∃𝑦 ∶ data(𝑥, 𝑦) ∧ 𝑦 < 8))))

It is easy to see that when evaluated at the initial instant of the trace, this formula does not hold. The

second message of the trace, with the highlights, is a message fitting for the quantified variable 𝑥. In
particular, it is a message such that bumper(𝑥), and one such that ¬(∃𝑦 ∶ data(𝑥, 𝑦) ∧ 𝑦 < 8). Such
conditions should never hold, as given by �(¬𝜑), resulting in a violation.

R e s p o n s e Figure 36 shows a trace excerpt where the following Response property of the Fictibot

Random Controller is violated.

1 globally: /bumper {not data = 0} causes /normal_priority_stop within 200 ms

In this case, it is a violation of the timing aspect of the property. The stimulus, a /bumper message such

that data ≠ 0, should have led to the publication of a message on /normal_priority_stop. While the

system does send the message, it does not respect the 200 millisecond response window.

Figure 36: Example trace of the Fictibot system violating a Response property.
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We translate the property into the following formula.

Jglobally: /bumper {not data = 0} causes /normal_priority_stop within 200 msK

iff J/bumper {not data = 0} causes /normal_priority_stop within 200 msK∅
⊥

iff (∀𝑥 ∶ J/bumper {not data = 0}K𝑥 → Jsome /normal_priority_stop within 200 msK𝑥
⊥) 𝒲 (∃𝑥 ∶ J⊥K𝑥)

iff (∀𝑥 ∶ J/bumper {not data = 0}K𝑥 → Jsome /normal_priority_stop within 200 msK𝑥
⊥) 𝒲 ⊥

iff �(∀𝑥 ∶ J/bumper {not data = 0}K𝑥 → Jsome /normal_priority_stop within 200 msK𝑥
⊥)

iff �(∀𝑥 ∶ (bumper(𝑥) ∧ ¬(∃𝑦 ∶ data(𝑥, 𝑦) ∧ 𝑦 = 0))

→ Jsome /normal_priority_stop within 200 msK𝑥
⊥)

iff �(∀𝑥 ∶ (bumper(𝑥) ∧ ¬data(𝑥, 0)) → Jsome /normal_priority_stop within 200 msK𝑥
⊥)

iff �(∀𝑥 ∶ (bumper(𝑥) ∧ ¬data(𝑥, 0))

→ (¬(∃𝑦 ∶ J⊥K𝑦) 𝒰[0,200) ((∃𝑦 ∶ J/normal_priority_stopK𝑥,𝑦) ∧ ¬(∃𝑦 ∶ J⊥K𝑦))))

iff �(∀𝑥 ∶ (bumper(𝑥) ∧ ¬data(𝑥, 0))

→ (¬⊥ 𝒰[0,200) ((∃𝑦 ∶ J/normal_priority_stopK𝑥,𝑦) ∧ ¬⊥)))

iff �(∀𝑥 ∶ (bumper(𝑥) ∧ ¬data(𝑥, 0)) → ♦[0,200)(∃𝑦 ∶ J/normal_priority_stopK𝑥,𝑦))

iff �(∀𝑥 ∶ (bumper(𝑥) ∧ ¬data(𝑥, 0)) → ♦[0,200)(∃𝑦 ∶ normal_priority_stop(𝑦)))

As per the formula above, whenever a /bumper message such that data ≠ 0 is observed, a /normal_-

priority_stop message (any message) must be published at most 200 milliseconds afterwards. We know

from Figure 36 that such a response message exists, but not within the time window, thus falsifying the

property.

A f t e r - U n t i l S c o p e For illustrative purposes, we also show the translation the following Fictibot

Multiplexer property.

1 after /state {data > 0} until /state {not data > 0}: /controller_cmd as CMD

2 requires /high_priority_cmd {data = @CMD.data} within 100 ms

This is a more complex example, using both the after-until scope and a Precedence pattern. Thus, we

skip the intermediate steps of the translation.
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Jafter /state {data > 0} until /state {not data > 0}: /controller_cmd as CMD

requires /high_priority_cmd {data = @CMD.data} within 100 msK

iff �(∀𝑥 ∶ (J/state {data > 0}K𝑥 ∧¬(∃𝑦 ∶ J/state {not data > 0}K𝑦)
∧ 𝒵(¬(∃𝑦 ∶ J/state {data > 0}K𝑦) ℬ (∃𝑦 ∶ J/state {not data > 0}K𝑦)))

→ J/controller_cmd as CMD requires /high_priority_cmd {data = @CMD.data}

within 100 msK𝑥
/state {not data > 0}

)

iff �(∀𝑥 ∶ 𝜑 → 𝜓)

with 𝜑 ≡ (state(𝑥) ∧ (∃𝑦 ∶ data(𝑥, 𝑦) ∧ (𝑦 > 0)))
∧ ¬(∃𝑦 ∶ state(𝑦) ∧ (∃𝑧 ∶ data(𝑦, 𝑧) ∧ (𝑧 ≤ 0)))
∧ 𝒵(¬(∃𝑦 ∶ (state(𝑦) ∧ (∃𝑧 ∶ data(𝑦, 𝑧) ∧ (𝑧 > 0))))

ℬ (∃𝑦 ∶ state(𝑦) ∧ (∃𝑧 ∶ data(𝑦, 𝑧) ∧ (𝑧 ≤ 0))))

𝜓 ≡ ∀𝑦 ∶ ((¬controller_cmd(𝑦)) 𝒲 (∃𝑧 ∶ (high_priority_cmd(𝑧)
∧ (∃𝑤 ∶ data(𝑧, 𝑤) ∧ data(𝑦, 𝑤))) ∨ (state(𝑧) ∧ (∃𝑤 ∶ data(𝑧, 𝑤) ∧ (𝑤 ≤ 0)))))
∧ ((controller_cmd(𝑦) → �[0,100)(∃𝑧 ∶ (high_priority_cmd(𝑧)
∧ (∃𝑤 ∶ data(𝑧, 𝑤) ∧ data(𝑦, 𝑤))))) 𝒲 (∃𝑧 ∶ state(𝑧) ∧ (∃𝑤 ∶ data(𝑧, 𝑤) ∧ (𝑤 ≤ 0))))

The resulting MFOTL formula is complex, but it follows a clear structure. The antecedent, 𝜑, is a
subformula that tests whether the current message, 𝑥, is the scope activator – it is the translation (and
expansion) of our enterScope auxiliary predicate. The consequent, 𝜓, is the translation of the pattern itself
– a subformula that tests whether a message 𝑦 on /controller_cmd is preceeded by a message 𝑧 on
/high_priority_cmd in the previous 100 milliseconds, such that the contents of the data field are equal.

4.5 Summary

Specifying robot behaviour is far from trivial. It raises many questions regarding the right level of abstraction,

or how to handle time. Ideally, a specification is as accurate and precise as possible (e.g., real time, as

opposed to logical time), but this incurs considerable complexity – both for the specifications themselves

as well as the verification process. There are a number of abstractions to address this issue, based on,

e.g., state machines or event traces. Most of these abstractions end up using Linear Temporal Logic, or

some variant of it, for the semantics of the behavioural properties.

In this chapter we present a property specification language for ROS that aims for a minimalistic syntax,

while packing powerful and relatively flexible semantics. We base our approach on the idea of event traces,

where observable events amount, essentially, to the messages that ROS nodes exchange over topics. This

language is heavily inspired by Dwyer et al.’s specification patterns [58, 59], although we consider real

time, event parametrisation and quantification to be first-class citizens – meaning that the classical Linear

Temporal Logic does not suffice for the language’s semantics. We settle on Metric First-Order Temporal
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Logic instead, with both future and past modalities. The fact that we focus on the publisher-subscriber

aspect of ROS also plays a role on defining the syntax, helping us minimise it, but, at the same time,

retaining details that are familiar to ROS developers. The proposed language is a complement to the

architectural models presented in the previous chapter – it is the missing piece for a full specification of

ROS software.



5

A F R AMEWORK FO R RO S - S P E C I F I C A N A L Y S I S

One of the main goals of this thesis is to conceive and implement software analysis techniques specifically

adapted for the ROS environment. Verification of software properties is a complex process that can be

achieved with a variety of techniques. While some properties – often the simplest and least relevant – can

be verified in a fully autonomous fashion using capable tools, others require increasing degrees of human

intervention, possibly to the point where proofs and evidence are gathered entirely by hand. Our work

focuses on lightweight formal methods – to achieve as much automation as possible, without considerable

loss in terms of verification power. That is, we aim for verification tools and techniques that require little

manual work, but are, at the same time, capable of finding violations of meaningful properties (behavioural

and otherwise) in complex ROS systems.

In the previous chapters we described a metamodel for the software architecture of ROS applications,

annotated with behavioural properties written in a domain-specific language. In this chapter we introduce

HAROS [148], a framework for the analysis of ROS software that serves as the basis for our prototype

analysis tools – both in terms of automatic architectural model extraction, and in terms of checking whether

systems comply with behavioural properties. The introduction in Section 5.1 presents work that was mostly

done prior to this thesis. New contributions start from Section 5.2 onward.

5.1 High-Assurance ROS

The High-Assurance ROS framework1 (HAROS, for short) was initially conceived as an aggregator for

existing static analysis tools. Before delving into ROS-specific software analyses – which is the theme of this

thesis – we conducted a study [148] to assess the overall software quality of the ROS ecosystem (using

general-purpose metrics), as well as its compliance with a number of coding standards. This study aimed

to evaluate a significant corpus of the official ROS distribution and find out whether, on average, package

authors cared about software quality and maintainability. Striving for high-quality, maintainable software is

standard practice in most well-established software industries, especially in safety-critical contexts. But

1 https://github.com/git-afsantos/haros/
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robotics is a relatively new domain, where developers are not necessarily (or likely) software engineers,

but rather, e.g., electrical engineers who end up building software out of necessity. Such a study had not

been conducted before in the growing ROS ecosystem, and we found out that, indeed, software quality was

inconsistent.

The study on software quality was based on tried and tested metrics – e.g., lines of code, cyclomatic

complexity, coupling between objects – and compliance checks with well-known coding standards – e.g.,

Google’s C++ Style Guide, MISRA C++, High-Integrity C++. To collect this information, we used a number of

existing static analysis tools, each contributing with small pieces (e.g., a few metrics for C++, or coding

standards for Python) that we combined to achieve the full panorama. The main problem with using several

analysis tools is that it results in processing large amounts of output, provided in diverse formats. Some

tools report error messages to the standard output in a terminal, while others produce XML or HTML reports

containing their findings. Furthermore, there is the issue of feeding the tools with the appropriate input.

Some tools work on a file by file basis, while others scan entire directories recursively. So, to effectively run

the toolset over a corpus of ROS packages and aggregate the results by package, a considerable amount

of set up is required. This was one of the main motivators to implement HAROS.

5.1.1 Architecture and Workflow

HAROS is specifically designed for the analysis of ROS software. Even as a prototype, one of its main

features was embedded knowledge about how ROS packages are structured and found in a file system.

Given a list of package names for analysis, it is able to find a local version of the packages, or download

them from the official distribution. It is able to navigate packages and identify source code files within,

categorised per programming language. Essentially, its prototype was able to build most of the file system

entities from our proposed metamodel (see Package, Repository, Source File in Section 3.2).

The analysis of ROS packages is based on a plug-in architecture. The intent was not to reinvent the

wheel of static analysis, but to reuse existing analysis tools. A plug-in based design combines the best

of both worlds – a plug-in can be a thin wrapper for an existing tool, performing the necessary format

conversions, or it can be a new analysis tool itself. This, combined with the previous feature of handling

ROS packages directly, took care of the issue of feeding the analysis tools with proper input. The remaining

issue was that of output heterogeneity, which HAROS also handled, by having plug-ins register their findings

via a single interface. After all the analysis results are gathered, HAROS produces a unified interactive

report, as well as several JSON data files containing, e.g., results per package. The diagram in Figure 37

provides an overview of the HAROS workflow just described.

The implementation of HAROS is divided into two components: the analyser, a Python console application

that does the bulk of the work (sometimes simply called HAROS); and the visualiser (or viz, for short) which

handles the interactive reports using web technologies. The choice of Python for the core of HAROS was

one of convenience. HAROS is intended to be used alongside a ROS installation, and ROS, by default,

already requires Python and has a few useful libraries available for Python scripting – e.g., rospack, a ROS

utility to find packages in the file system, upon which HAROS relies internally to offer the same feature.
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Figure 37: Workflow of the HAROS static analysis framework.

Thus, not only is Python adequate for the large amounts of configuration and scripting that HAROS boils

down to, it is also readily available without introducing aditional dependencies for the end user. A similar

reasoning applies for the choice of web technologies to display analysis reports.

It is typical for most console applications to have a number of options and parameters that may change

their operation, and HAROS is no exception. However, most of its modes of operation have three stages in

common, which we will detail: setup, analysis and reporting.

Setup Stage

During the setup stage, HAROS processes and builds all the necessary data structures for the following

analysis stage. It starts by processing user options and parameters, given via a configuration file or via

command-line arguments, which can be used, e.g., to determine whether it should incorporate repositories

into the analysis (as opposed to isolated packages) or to turn off specific plug-ins. An important concept to

take note of, not only for this stage but for HAROS as a whole, is the concept of a project file (included

in Figure 37). This is a user-provided file, in YAML syntax, whose primary purpose, in this version of

the framework, is to provide a project name and to enumerate the packages that should be analysed.

Listing 5.1 shows a minimal project file for the Fictibot running example.

1 project: Fictibot

2 packages:

3 - fictibot_drivers

4 - fictibot_controller

5 - fictibot_multiplex

6 - fictibot_msgs

Listing 5.1: Minimal project file for Fictibot.

After reading the list of target packages, HAROS proceeds to locating them and building its internal data

structures. This internal step, referred to as indexing, traverses the package directories, enumerates source

code files, and organises packages in topological order, based on their dependencies – much like catkin,
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the ROS build system, does before the actual building step. At this stage, users can also provide options to

enable HAROS to locate (and download) missing packages using the official ROS distribution index.

Analysis Stage

When HAROS transitions to the analysis stage, all packages and other data structures are already loaded

and in place. Thus, the first step is to load available analysis plug-ins, filtered by an optional whitelist

or blacklist given by the user. In the following subsection we will go over the details of how a plug-in is

structured and implemented. For now, it suffices to say that plug-ins can implement any number of a

few entry point functions that are called in order by HAROS – entry points that constitute the interface a

plug-in exposes to HAROS. Namely, plug-ins can provide a routine to analyse a single file, or to analyse

an entire package (leaving traversal of the directories, or use of HAROS’ representation, to the plug-in

implementation). These entry point functions are provided with two arguments, one being the HAROS data

structure that represents the intended scope (i.e., Source File or Package) and another being the opposite

interface that plug-ins use to communicate back with HAROS (the plug-in interface).

The plug-in interface is not very extensive – as we can see from the summary in Listing 5.2. Its main

purpose is to provide plug-ins with the two reporting functions, report_violation and report_metric. The

former allows plug-ins to register all sorts of free-text issues, with optional arguments to refine traceability

information (e.g., files, line numbers, function names). Its name stems from the coding standard oriented

analysis that we intended to perform in [148]. The latter allows plug-ins to register numeric values for

various metrics – another kind of analysis we performed in [148]. So, in summary, metrics and violations

are the two sides of a HAROS analysis report.

1 class PluginInterface(LoggingObject):

2 """Provides an interface for plug-ins to communicate with the framework."""

3

4 # inherits logging functions from LoggingObject:

5 # log_debug(msg), log_warning(msg), log_error(msg)

6

7 def report_violation(self, rule_id, msg, scope=None,

8 line=None, function=None, class_=None):

9 """Reports a rule violation detected by the plug-in during analysis."""

10

11 def report_metric(self, metric_id, value, scope=None,

12 line=None, function=None, class_=None):

13 """Registers a metric's value, measured by the plug-in during analysis."""

Listing 5.2: Interface through which plug-ins communicate with HAROS.

Reporting Stage

In the reporting stage, the HAROS analyser aggregates the results obtained from plug-ins and exports a

number of data files in JSON format. These files are organised by project, and then by package. There

is also a summary file, containing an overview of all results, as well as a history of previous results for

comparison. Listing 5.3 shows an excerpt of such a summary file.
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1 "source": {

2 "packages": 4, (the project contains 4 packages in total)

3 "files": 37, (there are 37 Source Files within these packages)

4 "languages": {

5 "cpp": 0.559461480, (55.95% of all code is C++)

6 "python": 0

7 },

8 "scripts": 0

9 },

10 "history": {

11 "issues": [143, 202, 208], (number of issues in the 3 previous runs)

12 "metrics": [9, 12, 12], (number of previously registered metrics)

13 "lines_of_code": [838, 1297, 1337],

14 "timestamps": [

15 "2018-02-24-18-31",

16 "2018-02-28-20-46",

17 "2018-03-08-18-12"

18 ]

19 (other entries were omitted)

20 },

21 "issues": {

22 "total": 208, (there are 208 issues reported by plug-ins in total)

23 "metrics": 12, (12 of these issues are related to metrics)

24 "coding": 200, (200 issues are related to coding standards)

25 "ratio": "0.16", (number of issues per line of code)

26 "other": 0 (other types of issues)

27 }

Listing 5.3: Excerpt of a JSON data file exported by HAROS.

The HAROS Visualiser, as previously mentioned, produces an interactive report, based on the exported

JSON data files, that users can explore. It defaults to a dashboard page (see Figure 38 for a screen capture

of the most recent version of the dashboard), where the summary data is provided for a selected project.

Projects can be switched on this page to load a different data set. This page sorts the information in three

panels: source code statistics (e.g., number of packages and files, or the number of custom message

types), analysis statistics (e.g., total number of issues reported by plug-ins) and history of several metrics.

Another page includes a package overview, where packages are drawn in a graph along with the

dependencies between them, and a few panels contain general package information (mostly extracted

from the XML package manifests). Yet another page is dedicated to the issues reported by plug-ins – the

main item of interest in the report as a whole. This page is shown in Figure 39. Issues are organised by

package and can be filtered using a menu. Each issue contains the violated rule, a location in the source

code (where the issue was detected), additional free text comments provided by the analysis tools, and

a set of tags. HAROS provides a short, central catalogue of common rules that plug-ins can reference.

New rules can be added by the plug-ins themselves, in a plug-in manifest file, as we will see. Tags are

associated to rules, and serve no special purpose other than helping to categorise the issues. They are

created on an ad hoc fashion, i.e., there is no central catalogue of tags. Regardless, they are the main

mechanism used for filtering issues – i.e., the Filter menu can be used to only show issues containing a

number of tags, or to ignore issues containing such tags.
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Figure 38: Summary page of the HAROS Visualiser.

Figure 39: Issue listing with the HAROS Visualiser.

5.1.2 HAROS Plug-ins

Creating a plug-in for HAROS is relatively straightforward. Simply put, a plug-in is a Python package

containing at least two files: plugin.yaml and plugin.py. The former is a manifest file containing

metadata about the plug-in, such as its name, version, and (optionally) which programming languages

does it support, as well as which metrics and rules does it analyse. New rule definitions are provided in

this manifest file. As an example, consider Listing 5.4, which contains an excerpt of the manifest of one

of the existing plug-ins for HAROS – a plug-in for the Radon2 tool, a tool to gather metrics from Python

source code. Most of the metadata in this file serves no special purpose other than pure information, but

declaring any supported languages (Python, in this case), means that, for a file by file analysis, HAROS will

only supply the plug-in with Python files. By declaring only Python support, the plug-in should never be

called for analysis of C++ files, for instance.

The plugin.py file is a Python script that HAROS uses to look for the plug-in’s entry points. From

a top-down perspective, this is the main script of the plug-in’s implementation. The only requirements

2 https://pypi.org/project/radon/

https://pypi.org/project/radon/


5.1. High-Assurance ROS 94

1 name: haros_plugin_radon

2 version: 0.1

3 languages:

4 - python

5 supported_rules: (some entries were omitted)

6 - max_file_length_400

7 - min_comment_ratio_20

8 - mi_below_65

9 - max_cyclomatic_complexity_10

10 supported_metrics: (some entries were omitted)

11 - comment_ratio

12 - cyclomatic_complexity

13 - maintainability_index

14 - sloc

Listing 5.4: Plug-in manifest file in YAML syntax.

imposed on this file is that it must contain at least one of the entry point functions defined by HAROS in

order to be executed. Listing 5.5 shows an excerpt of this script for the Radon plug-in. We can see how it

implements the file_analysis function, which is the entry point for file by file analysis used by HAROS.

This is where the execution of the plug-in starts. From that point on, the plug-in can organise itself in any

number of additional functions or modules. In this case, the plug-in is self-contained, with only a few helper

functions that call the various metrics measurement functions of the underlying tool. Throughout the code,

we can see how the plug-in reports metrics and threshold violations to the HAROS interface, through the

use of report_metric and report_violation.
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1 from radon.visitors import ComplexityVisitor

2 from radon.metrics import h_visit, mi_compute

3 from radon.raw import analyze

4

5 # The plug-in's entry point; file by file analysis.

6 # iface - the interface to communicate with HAROS

7 # scope - a HAROS Source File (language should be Python)

8 def file_analysis(iface, scope):

9 with open(scope.path, "r") as f:

10 code = f.read()

11 cc = analyse_cc(iface, code)

12 lloc, ratio = analyse_raw_metrics(iface, code)

13 h = analyse_halstead_metrics(iface, code)

14 mi = mi_compute(h, cc, lloc, ratio)

15 iface.report_metric("maintainability_index", mi)

16 if mi < 20:

17 iface.report_violation("mi_below_20", "MI of " + str(mi))

18 if mi < 65:

19 iface.report_violation("mi_below_65", "MI of " + str(mi))

20

21 def analyse_cc(iface, code):

22 visitor = ComplexityVisitor.from_code(code)

23 for f in visitor.functions:

24 iface.report_metric("cyclomatic_complexity",

25 f.complexity, line=f.lineno, function=f.name, class_=f.classname)

26 if f.complexity > 10:

27 iface.report_violation("max_cyclomatic_complexity_10", str(f.complexity))

28 if f.complexity > 15:

29 iface.report_violation("max_cyclomatic_complexity_15", str(f.complexity))

30 return visitor.total_complexity

31

32 def analyse_raw_metrics(iface, code):

33 metrics = analyze(code)

34 iface.report_metric("lloc", metrics.lloc)

35 iface.report_metric("sloc", metrics.sloc)

36 # ...

37 return (metrics.lloc, ratio * 100)

38

39 def analyse_halstead_metrics(iface, code):

40 metrics = h_visit(code)

41 # ...

42 return metrics.volume

Listing 5.5: Excerpt of the HAROS plug-in for the Radon Python tool.
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5.2 ROS Metamodel and Model Extract ion

The previous overview of HAROS shows that, despite it being designed for the analysis of ROS systems,

it did not incorporate much domain knowledge besides package structure, and did not perform any

domain-specific analyses per se. As such, and considering our research on modelling ROS systems for

domain-specific analysis (see Chapter 3), our first step to improve HAROS is to ensure that its internal data

structures follow a rich and complete metamodel. To enhance it further, we then incorporate prototype

model extraction components, based on the static analysis approach described in Section 3.3. This is our

first technical contribution (as part of this thesis). It ultimately enables the ROS-specific analyses we aim

for, and opens new possibilities for model-based plug-ins.

5.2.1 Changes to the HAROS Analyser

One of the most important changes to the analyser was to implement data structures with a direct

correspondence to our metamodel, presented in Section 3.2. Most of the file system structures, such as

Packages and Source Files, were already in place. Runtime entities, such as Nodes and Configurations, on

the other hand, had to be introduced from scratch. The notion of a Project – which was previously just a

collection of packages – had to be refined to accomodate Configurations. To promote reusability between

applications and compatibility with the Visualiser, all metamodel entities can be exported in JSON format.

The workflow of the analyser is unchanged in many aspects. We have extended the tool’s options and

modes of operation to enable model extraction. As mentioned, the process of model extraction has been

implemented in accordance with the algorithm presented in Section 3.3. If enabled, extraction happens

during the setup stage, after the source code indexing takes place – i.e., once HAROS has already built the

file system part of the model. At the time of writing, the extraction process is not complete, although it

covers most of the common use cases. There are some elements of the extensive ROS API (e.g., provided

by standard packages, such as message_filters, but not by the C++ or Python client libraries directly) that

are not yet covered. We focused on implementing extractors for C++ source code, more common amongst

critical and low-level code in ROS, whereas the Python extractors were an external contribution (more on

that in Chapter 9).

For model extraction to take place, we inevitably require some user input. There is no fully automatic

method to determine whether a launch file represents an application, or whether it should be used in

conjunction with others. Since Configurations are part of our notion of Project, we extended HAROS’

project files – the user input it already required to build Projects in the first place. Consider Fictibot as an

example. If we wanted to add, for instance, a Configuration corresponding to multiplexer.launch, one

of the various launch files found in the fictibot_controller package, we would add a configurations

section to the respective project file, as seen in Listing 5.6. Configurations are identified by a unique name,

followed by a list of launch files. The order of the launch files is important – the model extraction process

interprets files in the given order, as roslaunch would if actually launching the files.
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1 project: Fictibot

2 packages: ["fictibot_drivers", "fictibot_controller", "fictibot_multiplex",

"fictibot_msgs"]

3 configurations:

4 multiplex:

5 launch:

6 - fictibot_controller/launch/multiplexer.launch

Listing 5.6: Minimal project file for Fictibot with configurations.

We reiterate how model extraction is not complete (especially when based on static analysis). Our

proposed algorithm addresses this by allowing user-provided extraction hints. Hints can be partial (i.e., it is

not necessary to specify the system, or any node, in full), and are also specified in the project file, under

the respective Configuration. We follow the YAML syntax for hints defined in the metamodel (Chapter 3,

Section 3.3). For the sake of an example, assume that we had to fix the message type of the Fictibot

Controller’s publisher on the /controller_cmd topic. Listing 5.7 shows the resulting project file.

1 project: Fictibot

2 packages: ["fictibot_drivers", "fictibot_controller", "fictibot_multiplex",

"fictibot_msgs"]

3 configurations:

4 multiplex:

5 launch:

6 - fictibot_controller/launch/multiplexer.launch

7 hints:

8 nodes:

9 /ficticontrol:

10 publishers:

11 - topic: "/controller_cmd"

12 msg_type: "std_msgs/Float64"

Listing 5.7: Project file for Fictibot with a configuration and extraction hints.

Parsing source code to extract a model can take some time, especially when parsing complex languages

such as C++. To improve the overall performance of the extraction process, we enhanced HAROS

with a (work in progress) built-in database of pre-parsed Nodes. It features Nodes that belong to well

documented packages (e.g., diagnostic_aggregator, robot_state_publisher), released in the official

ROS distributions. Another justification for this database, besides performance, is that ROS favours the

reuse of components, and third-party packages are often installed from binaries. As a consequence, source

code may not be always available for such common packages, which would require users to specify the

missing nodes via hints. Embedding this domain knowledge in HAROS itself is another step towards the

completeness of the extracted models. At the time of writing, this database contains primitives (such as

calls to advertise, subscribe, etc.) from nodes belonging to 14 packages, as shown in Table 2. To clarify,

we registered standard primitives (e.g., advertise) used by nodes that these packages make available

(e.g., the static_transform_publisher node of the tf package). We did not register new primitives that

the packages themselves may introduce, to be used directly in C++ (as is the case with the message-

_filters package and its TimeSynchronizer, for example). The database contains entries spanning all



5.2. ROS Metamodel and Model Extraction 98

Table 2: Built-in parsing database for HAROS.

Package Nodes Primitives

controller_manager 1 5

diagnostic_aggregator 1 9

hector_mapping 1 29

husky_base 1 9

interactive_marker_twist_server 1 4

joy 1 5

lms1xx 1 3

move_base 1 20

nodelet 1 4

prosilica_camera 1 6

robot_localization 1 12

robot_state_publisher 2 18

teleop_twist_joy 1 9

tf 1 1

Total 15 134

ROS distributions, for each package, from Indigo Igloo up to Melodic Morenia. Table 2 presents the number

of unique entries; if a Node’s interface does not change from one distribution to another, it is not counted.

At this point, we also introduce the possibility of specifying configuration-specific data for analysis plug-ins.

Under each configuration, as shown in Listing 5.8, a subsection called plugin_data contains a mapping

where keys are plug-in names (e.g., plugin1, plugin2), and the values can be of any type, including

lists and other key-value mappings. The values are passed directly to the respective plug-in and have no

semantics for HAROS itself.

1 project: Fictibot

2 packages: [fictibot_drivers, fictibot_controller, fictibot_multiplex, fictibot_msgs]

3 configurations:

4 multiplex:

5 launch: [fictibot_controller/launch/multiplexer.launch]

6 plugin_data:

7 plugin1: [arg1, arg2, arg3]

8 plugin2:

9 arg1: ...

10 arg2: ...

11 arg3: ...

Listing 5.8: Project file for Fictibot with plug-in-specific input data.

While the reporting stage of HAROS is mostly the same (except that it has to export Configuration data),

the analysis stage was improved to allow plug-ins to perform model-based analysis. Namely, we added

a new plug-in entry point for Configurations (besides the existing ones for files and packages). Since

Configurations are runtime entities, and constitute a new analysis scope, we also extended the plug-in
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interface with a new reporting function, specifically to report issues on runtime entities. A practical example

on how to make use of this new plug-in entry point is given in Section 5.3.

5.2.2 Changes to the HAROS Visualiser

Graphical data visualisation is arguably one of the most valuable tools for developers in terms of obtaining

immediate feedback. This is one of the main driving principles behind the HAROS Visualiser. Having

equipped the analyser with model extraction capabilities, the next logical step is to extend the Visualiser

to display the extracted models. Graphical architecture models of ROS systems (or software systems

in general) are useful for two purposes: (i) helping develpers validate the implementation; (ii) providing

documentation assets for free.

We extended the HAROS Visualiser with a Computation Graph visualisation component that renders a

graph of a selected Configuration, where each graph node is a ROS Resource and the edges are the ROS

Links between them. This component features individual Resource inspection (e.g., message type and

traceability to the source) and visibility settings for different Resources. As an example, Figure 40 shows

the rendering of the multiplex Configuration from Listing 5.6. White circles represent Nodes, whereas green

circles represent Topics.

Figure 40: Display of a Computation Graph in the HAROS Visualiser.

One of the options of the Visualiser enables ROS parameters to be displayed in the graph. These

are displayed as purple circles, and are disabled by default, since, in many cases, their numbers are

overwhelming, making the graph unintelligible. Services are always displayed by default, just like topics,

but with blue circles. This particular example does not feature any services, though. Figure 41 shows

the same Configuration, but with parameters enabled and the /ficticontrol node selected. When a

Resource is selected, only its direct links are drawn on the graph.

In the previous graphs we can see that two topics are rendered with dashed lines. Dashed lines represent

conditional entities – entities that, depending on some conditions (e.g., an if statement) might not be
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Figure 41: Computation Graph with parameters shown.

present in all instances of the Configuration. This is one of the advantages of using static analysis for model

extraction. With dynamic analyses, determining conditional entities would require extensive instrumentation

of all sources of code (i.e., instrumentation of traditional C++ and Python, but launch files too).

The Visualiser provides an information panel for every entity in the graph, where users can easily

determine traceability details and which conditions affect the entity. Figure 42 shows the details of one of

the topics, where we can see that it is affected by one condition, in the random_controller.cpp file.

Figure 42: Resource details and traceability information.

The use of static analysis, as already discussed, sometimes faces limitations regarding name resolution.

For highly dynamic values (e.g., read from parameters), it is impossible to fully determine the resulting ROS

name of a topic, service or parameter. Our extraction process handles this by including the unresolved

entities in the model regardless, and the Visualiser does so too. When a Resource name is unknown,

it is represented with ‘?’. Since all names are resolved in the example from the previous figures, we

altered the source code of the Fictibot Random Controller slightly, so that its /stop_cmd topic (remapped

to /normal_priority_stop in this Configuration) becomes unresolved. As shown in Figure 43, when the

unresolved topic is selected, the Visualiser performs pattern matching to find suitable candidates, ensuring

that the message types match (highlighted in orange in the graph). One of the main benefits of this feature

is to aid users in defining correct extraction hints, to refine the extracted models.
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Figure 43: Pattern matching for unresolved Resources.

Lastly, since one of our additions to the analyser was a plug-in reporting feature specifically dedicated to

runtime entities, it only makes sense that the Visualiser is able to display such issues. If there are available

issues with a set of runtime entities to blame, users can select such issues from a drop down menu, and

the graph is updated with red highlights on the entities. The highlights can be applied both to nodes and

edges – i.e., to Resources or Links. Figure 44 in the next section illustrates this last feature.

5.3 A Simple Architectural Analysis Plug- in

The previous section describes how we enhanced HAROS, to equip it with model extraction capabilities.

Such capabilities, coupled with a new entry point for plug-ins focusing on Configurations, play a key role in

enabling ROS-specific analysis. New approaches, stemming from a model-based approach, become now

feasible, whereas previously, when relying solely on pure static or dynamic analysis, they would require a

lot more effort. In this section, we will build a proof-of-concept plug-in, to demonstrate how model extraction

can be harnessed.

The intended plug-in is a query engine over the extracted Computation Graph to detect architectural

issues. The idea behind it is not to impose (or to come up with) specific rules and checks, but rather to let

users specify the rules they want to enforce over an architecture. A basic example of this (that is actually a

common guideline in many systems) is to ensure that every topic has at most one publisher. This rule

is quite reasonable because, without it, there is a risk of having two publishers flood a topic, without any

means for the subscriber to tell which message belongs to which publisher. It is easy to see that, especially

when handling sensor data, this would likely cause unexpected behaviour.
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5.3.1 The PyFlwor Query Engine

Since the HAROS analyser (and, consequently, the interface to plug-ins) is implemented in Python, we

adopted the PyFlwor3 query engine as the basis for our plug-in. This is a Python query engine, with its

own Python-like query language, that works over in-memory objects. It is a good fit for this purpose, since

plug-ins handle HAROS models as Python objects too.

PyFlwor allows for two styles of queries, one based on XPath4 (called path expressions) and another

based on XQuery5 (called FLWR expressions). Both styles of expressions operate on collections, and

return sets of objects. Path expressions have a declarative flavour, whereas FLWR expressions are more

programmatic.

The syntax for path expressions is relatively straightforward. Objects and collections are navigated using

slash-separated identifiers, rather than the more common dot-separated variant seen in programming

languages. For instance, given a Configuration as a scope, the path expression topics yields the set of

all topics within the Configuration. The Python equivalent, assuming c as the Configuration, would be:

set(t for t in c.topics)

If we wanted the set of all message types used in a particular Configuration, then we would have to

navigate one level further. The expression topics/type yields this set. Again, the Python equivalent

would be:

set(t.type for t in c.topics)

It is possible to traverse an arbitrary depth of collections in this manner. For instance, to gather the set of

all queue sizes used by all topic publishers, we would have to gather first the set of all topics, and then the

set of all publishers, for all topics. This is given by the expression topics/publishers/queue_size,

and by the Python equivalent of:

set(p.queue_size for t in c.topics for p in t.publishers)

A path expression can be refined with a filter (called where condition) and combined with various set

operators (e.g., union, intersection and difference). A where condition is a Boolean expression within

square brackets, following a path expression. For instance, to obtain all queue sizes greater than 10, one

would write:

topics/publishers/queue_size[self > 10]

On the other hand, to obtain all queue sizes greater than 10 used by either publishers or subscribers,

we would require a union:

3 https://github.com/timtadh/pyflwor

4 XPath (XML Path Language) is a non-XML syntax for selecting different parts of an XML document.

5 XQuery is a query language for structured or semi-structured XML data.

https://github.com/timtadh/pyflwor
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topics/publishers/queue_size[self > 10]

| topics/subscribers/queue_size[self > 10]

The FLWR acronym stands for For-Let-Where-Return, the four basic statements of this query style.

FLWR expressions are more expressive than path expressions, and their syntax is closer to traditional

programming. For instance, a possible encoding of the “one publisher per topic” rule, in the FLWR style, is

given in Listing 5.9.

1 for t in <topics>

2 let pubs = <t/publishers>

3 where len(pubs) > 1

4 return t

Listing 5.9: Basic query to identify topics with multiple publishers.

A FLWR expression starts with a for statement, iterating over a collection of objects given by a path

expression. An optional let statement follows, where additional variables can be defined. We defined pubs,

to contain the set of all publishers for a topic t. The value of a variable can also be the result of a nested

FLWR query. The third statement, an optional where statement, is used to define arbitrary conditions, to

filter out the iterated entities or the variables defined with let. When a condition is satisfied, the return

statement calculates the desired result for that iteration and adds it to the set of values that is to be returned

at the end. As such, with an unsatisfiable where statement in place, the result of the query is always the

empty set.

Since the FLWR style uses path expressions internally, we end up with a number of different ways to

express the same queries. For instance, the previous query, of Listing 5.9, can be expressed entirely as a

path expression,

topics[len(self.publishers) > 1]

Or as a trivial FLWR expression, where the result is essentially the same as the path expression by itself

(Listing 5.10).

1 for t in <topics[len(self.publishers > 1)]>

2 return t

Listing 5.10: Basic query to identify topics with multiple publishers.

5.3.2 Plug-in Implementation

To implement a new HAROS plug-in, there are a few boilerplate steps we must follow. As previously

mentioned, a plug-in is a Python package containing at least two files: plugin.yaml and plugin.py. The

former is a manifest file, and the latter is the actual implementation. The manifest is minimal (Listing 5.11)

and does not warrant much discussion. It declares the plug-in name and version, and tells HAROS that it
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1 name: haros_plugin_pyflwor

2 version: 0.1.0

3 rules:

4 query:

5 name: User-defined Query

6 description: "A user-defined query found a match."

7 tags:

8 - code-standards

9 - query

10 - pyflwor

11 - computation-graph

Listing 5.11: Plug-in manifest file for the Pyflwor plug-in.

should be reporting issues for a new rule (query). The rule’s attributes are metadata to be displayed in the

HAROS Visualiser.

For this plug-in, we want to annotate the various Configurations with their specific architectural queries.

This can be done with the plugin_data section of the HAROS project file (the main source of input to the

tool, shown in Listing 5.8), to be accessed later within the configuration object. As an example, Listing 5.12

shows an excerpt of the Fictibot project file, including a single query. The full source code for the project

file is included in Appendix C.

1 project: Fictibot

2 packages: [fictibot_drivers, fictibot_controller, fictibot_multiplex, fictibot_msgs]

3 configurations:

4 multiplex:

5 launch: [fictibot_controller/launch/multiplexer.launch]

6 plugin_data:

7 haros_plugin_pyflwor:

8 - name: Query 1 - No Global ROS Names

9 details: "Found {n} Resources using global names - {entities}"

10 query: "topics/publishers[self.rosname.is_global] |

11 topics/subscribers[self.rosname.is_global] |

12 services/servers[self.rosname.is_global] |

13 services/clients[self.rosname.is_global] |

14 parameters/reads[self.rosname.is_global] |

15 parameters/writes[self.rosname.is_global]"

Listing 5.12: Project file for Fictibot with a configuration and Pyflwor queries.

Moving on to the plug-in itself, there is only one function that it is required to implement, configuration_-

analysis, which is the new plug-in entry point to analyse extracted Configurations, one by one. For each

Configuration, all the plug-in has to do is to read the query list, execute each query, and report back any

matches via the HAROS plug-in interface. Listing 5.13 shows the implementation for this function.

In Listing 5.13 we can see the use of some helper functions, namely _setup and _report. The former

imports Pyflwor and performs its necessary setup, such as defining directories for generated grammars

and assigning a number of Python built-in functions that should be available for the queries to use (e.g.,

len for sizes of collections). The _report function is little more than a wrapper for the reporting function of

HAROS. It does some pre-processing of the query matches found by Pyflwor, since these may come in
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1 def configuration_analysis(interface, configuration):

2 query_data = configuration.plugin_data.get("haros_plugin_pyflwor", ())

3 if query_data:

4 pyflwor = _setup()

5 for query_datum in query_data:

6 name = query_datum["name"]

7 details = query_datum.get("details", None)

8 query = query_datum["query"]

9 matches = pyflwor.execute(query, configuration, name=name)

10 _report(interface, matches, name=name, details=details)

Listing 5.13: Entry point function of the Pyflwor plug-in.

various return types. We identify ROS Resources and Links contained in the results, so that we can report

them to HAROS and benefit from the highlighting feature in the Visualiser. Comments and white space

aside, the plug-in can be implemented in under 100 lines of code. Appendix C contains the full source

code for reference.

5.3.3 Querying the Computation Graph

In order to test our query engine plug-in, we implemented a small catalogue of queries, based on common

practices in ROS development. We ran these queries over the previously mentioned multiplex Configuration

from Listing 5.6. The Pyflwor syntax for all the presented queries is shown in Listing 5.14.

Q u e r y 1 Are global ROS names used?

Global ROS names (names beginning with a slash, e.g., ‘/laser’) are unaffected by most name resolution

rules of ROS. This requires additional attention when creating multiple instances of the same Node within

a Configuration, as the global names will collide without proper remappings. For instance, if two Fictibot

robots existed within the same network and they used global names to publish sensor readings, it is likely

that each robot would receive sensor data from both. This situation leads to additional maintenance effort,

thus justifying the query.

Q u e r y 2 Are there any conditional publishers or subscribers?

Conditional publishers and subscribers can be easily spotted in the Visualiser graphs (they use dashed

lines). There is no justification for this query besides these constructs leading to an additional effort in

understanding the architecture. In many cases, such conditional links stem from loops, where topics are

subscribed to from a list parameter, and there is no significantly better alternative.

Q u e r y 3 Do message types match on both ends?

There is a type checking system for messages in ROS, but it is only active during runtime. When a message

type mismatch occurs, a warning is given and messages of the wrong type are discarded. This lack of

communication often has noticeable effects, but bringing this feedback to compile time is simple with our
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query system, and is an additional step to reduce development time. The query is formulated for topics

only, but implementing a similar type checking mechanism for services would be equally simple.

Q u e r y 4 Are there any unbounded message queues?

Message queue sizes should be carefully chosen in ROS. Avoiding unbounded message queues is a given,

as they could use up all the available memory if a node does not process its queue fast enough.

Q u e r y 5 Are there any message queues of size 1?

Queues of size 1 are a very particular case with a niche application. They are relatively common in

practice [149], but they can easily lead to message loss. Whether it is an intended effect should be

analysed on a case by case basis. For instance, in teleoperation nodes, it could be intentional. We want

nodes to process the last given command as fast as possible, and we count on the human operator to

issue appropriate commands for the current situation. This is especially important for emergency stop

commands.

Q u e r y 6 Are there multiple publishers on a single topic?

As previously mentioned, in most cases, having multiple publishers on a single topic is unintended, likely

due to a missing name remapping. For pure data producers, such as sensors, merging multiple publishers

under a single topic would likely lead to erroneous behaviour. For controllers, a single source of direct

commands is also desirable, in order to avoid conflicts. This is why a common solution for multiple

command sources is to introduce a multiplexer between the controllers and the actuator (as we do in

Fictibot, and as other popular robots such as TurtleBot2 do). A valid use of multiple publishers on a single

topic would be for sporadic (or high-level) events where the robot has multiple units capable of detecting, or

producing, such events. In Fictibot, this would make sense if we had a sensor processor, that subscribed

to all sensors and then published, e.g., obstacle events – which could be detected either from /bumper or

/laser.

Q u e r y 7 Are there any disconnected topics of the same type, with similar names?

This query is slightly more complex than the others, in terms of implementation, but it shows how the query

language allows for some programmatic freedom. We used some heuristics based on string comparison of

the Topic names of publishers and subscribers, to try and detect those where the message types match,

but the names are only slightly different – e.g., in /laser and /robot/laser the proper names match,

but the namespace prefix does not. Many times, this could be an indicator that the developer applied a

name remapping on one of the nodes, but forgot to match it in another node, or that they forgot to apply

remappings altogether. Wrong name remappings are another issue in ROS that can be manually detected

during runtime (via inspection), but for which there are no built-in compile-time checks of any kind.

Q u e r y 8 Are there any uses of the message type std_msgs/Empty?

The final query, asking whether the message type std_msgs/Empty is shown for illustrative purposes. We



5.3. A Simple Architectural Analysis Plug-in 107

know in advance that there are a few occurrences in Fictibot, and this query serves for the plug-in to report

those topics (which we can later see in the Visualiser). Regardless, this is a message type that contains no

data, and thus should be treated specially. It is useful as a trigger for events or actions, but one should

consider whether additional data could be of use.

1 Are global ROS names used?

2 topics/publishers[self.rosname.is_global] |

topics/subscribers[self.rosname.is_global] |

3 services/servers[self.rosname.is_global] | services/clients[self.rosname.is_global] |

4 parameters/reads[self.rosname.is_global] | parameters/writes[self.rosname.is_global]

5

6 Are there any conditional publishers or subscribers?

7 topics/publishers[len(self.conditions) > 0] |

8 topics/subscribers[len(self.conditions) > 0] |

9 services/servers[len(self.conditions) > 0] |

10 services/clients[len(self.conditions) > 0]

11

12 Do message types match on both ends?

13 for p in <nodes/publishers | nodes/subscribers>,

14 q in <nodes/publishers | nodes/subscribers>

15 where p.topic_name == q.topic_name and p.type != q.type

16 return p, q

17

18 Are there any unbounded message queues?

19 topics/publishers[self.queue_size == 0] | topics/subscribers[self.queue_size == 0]

20

21 Are there any message queues of size 1?

22 topics/publishers[self.queue_size == 1] | topics/subscribers[self.queue_size == 1]

23

24 Are there multiple publishers on a single topic?

25 topics[len(self.publishers) > 1]

26

27 Are there any disconnected topics of the same type, with similar names?

28 for pub in <nodes/publishers[self.topic.is_disconnected]>,

29 sub in <nodes/subscribers[self.topic.is_disconnected]>

30 where pub.type == sub.type and (pub.topic.id.endswith(sub.topic.name)

31 or sub.topic.id.endswith(pub.topic.name)

32 or pub.rosname.full == sub.rosname.full

33 or pub.rosname.full.endswith(sub.rosname.own)

34 or sub.rosname.full.endswith(pub.rosname.own)

35 or pub.rosname.given == sub.rosname.given)

36 return 'pub':pub, 'sub':sub

37

38 Are there any uses of the message type std_msgs/Empty?

39 topics[self.type == 'std_msgs/Empty']

Listing 5.14: Query catalogue to run over Fictibot’s Computation Graph.

Query Results

The multiplex Configuration of Fictibot is a working configuration. Given that some of our queries are

designed to catch bugs (e.g., query 3 for topic type checking), we do not expect many issues to be reported.

But Fictibot’s code has been designed, on purpose, to contain a few red flags, that other warning-level
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queries should pick up (Figure 44). These red flags are mostly concentrated on the Fictibot Random

Controller, as shown in Figure 45. Namely, we can see:

• an occurrence of one global ROS name (/normal_priority_stop);

• two topics under conditional statements (/custom_noparam and custom_w_param);

• a topic using an unbounded queue (/normal_priority_stop);

• a topic using a queue of size 1 (/normal_priority_cmd);

• four topics using messages of type std_msgs/Empty (the four stop topics around the Multiplexer).

Figure 44: Computation Graph with query reports in the HAROS Visualiser. Highlighted is a Link with a queue of size

1.
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Figure 45: Query reports in the HAROS Visualiser.
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5.4 Summary

In this chapter, we started by introducing HAROS, a plug-in driven framework for static analysis of ROS

systems. Initially, this framework featured little domain knowledge of ROS systems, besides their package

structure. Its plug-ins were also adaptations of analysis tools for general-purpose programming, useful for

gathering quality metrics or checking compliance with certain coding conventions. Nonetheless, it had

been used for a general quality study of the ROS ecosystem.

Our main technical contributions to HAROS were the implementations of our proposed metamodel

and model extraction algorithm (presented in Chapter 3). This improvement changed how HAROS

fundamentally handles a ROS application, and enabled new, model-based capabilities for analysis plug-ins.

Most importantly, with our contribution, HAROS plug-ins are now able to perform any kind of analysis

or processing of the ROS Computation Graph at compile time. To demonstrate such capabilities, we

implemented a simple plug-in based on an existing Python query engine. This plug-in differs from traditional

analysis tools by not hard-coding any rules, but rather allowing users to define new checks over the

architecture of a ROS system.



6

ON L I N E RUN T I M E V E R I F I C A T I O N O F RO S A P P L I C A T I O N S

One of the goals of this thesis is to design (and implement) property checking techniques, applied to the

ROS domain, that could help us gather the necessary evidence to structure a dependability case. In the

previous chapters, we paved the way for this goal by (i) establishing a metamodel for ROS applications; (ii)

defining a language to annonate models with behavioural properties; and (iii) by enhancing an existing

ROS analysis framework with model extraction capabilities. We have demonstrated, in Chapter 5, how

architectural properties can be validated. In this chapter we address the challenge of providing evidence

that a system’s behaviour complies with its behavioural specification.

Up to this point, we built a foundation mostly on static analysis. To analyse how a ROS system behaves at

runtime, we propose an approach based on dynamic analysis instead. Namely, we propose using Runtime

Verification to detect violations of MFOTL formulae (restricted to the subset defined by our specification

language in Chapter 4). While Runtime Verification is not a novel concept in the ROS ecosystem, our

approach is the first to be both based on a high-level, pattern-oriented specification language, and on

Metric First-Order Temporal Logic. It is integrated in the HAROS framework via a plug-in that generates the

appropriate runtime monitors for a given Configuration and its behavioural specification. Furthermore, this

Runtime Verification approach will provide a foundation for other techniques to build upon, as we will see

in Chapter 7.

6.1 State of the Art

Runtime Verification is a verification technique that revolves around the use of monitors to observe a

system’s execution, in terms of its internal or external operations. As with any verification technique, the

goal is to determine whether the system under observation satisfies or violates a given correctness property.

The main advantages of this technique are that it is relatively lightweight, and that it acts on a system

implementation, rather than a model.

The domain of Runtime Verification is a vast research topic. There are many approaches to it, and they

vary wildly with regards to, e.g., how monitors observe a system, whether they interfere with said system,

or how timely is their detection ability. Some taxonomies have been proposed to address this matter. We

start this section by presenting the different types of Runtime Verification. Then, we discuss the existing
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tools and algorithms that relate the most to our own approach. More concretely, we are interested in the

state of the art in Online Monitoring.

6.1.1 Taxonomies for Runtime Verification

Cassar et al. [42] focus on the distinction between Offline Monitoring and Online Monitoring. They

consider the former as its own category, and then spread Online Monitoring across a spectrum of

Completely-synchronous Monitoring (CS), Synchronous Monitoring with Synchronous Instrumentation

(SMSI), Asynchronous Monitoring with Checkpoints (AMC), Asynchronous Monitoring with Synchronous

Detection (AMSD) and Completely-asynchronous Monitoring (CA).

O f f l i n e M o n i t o r i n g The offline approach is completely decoupled and independent from the

system under observation. Typically, an execution (i.e., a trace) of the system is recorded and persisted

inside a data store – for instance, as a log file. The trace may contain a full execution of the system, or

it can be partial, but either way it is finite. The monitoring solution then processes the stored trace and

determines whether it satisfies the specified properties. One of the main advantages of this type of monitor

is that it can view the system’s execution as a whole, and it can traverse the trace multiple times, both

forwards and backwards. The obvious price of such decoupling and flexibility is late detection – when a

violation is detected, it is too late to act. Cassar et al. deem Offline Monitoring especially suitable to double

check the behaviour of systems that already have a high correctness confidence.

O n l i n e M o n i t o r i n g The online approach, as implied by its name, is the exact opposite of Offline

Monitoring. A system is monitored during its execution – meaning that monitors have to run alongside the

system (or as part of it). The most immediate advantage is that violations can be detected earlier, and,

sometimes, monitors can even preempt the system from causing harm or entering an error state. This is

essentially mandatory for safety-critical systems and for security purposes. In exchange, the monitoring

algorithms tend to be more complex (the trace is observed incrementally) and the monitors themselves

may impact the system’s performance. Cassar et al. had in consideration the different levels of coupling

between an online monitor and its monitored system, and categorised the existing approaches as follows.

CS Completely-synchronous monitors operate hand in hand with the system. In this tighly coupled and

highly intrusive approach, the system as a whole blocks every time the monitors process an event.

In the same fashion, when a violation is detected the whole system is affected (e.g., brought down).

The inevitable performance overhead is the cost of having the earliest possible detection. This

all-or-nothing stance is common in monolithic or embedded systems.

SMSI Synchronous Monitoring with Synchronous Instrumentation is a level only slightly less intrusive than

Completely-synchronous Monitoring. The main difference between the two, is that SMSI only blocks

the component whose event is being processed, letting other components execute freely.
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AMC Asynchronous Monitoring with Checkpoints is the middle ground approach. Monitors are sufficiently

decoupled for events to be processed asynchronously, but, after reaching a checkpoint (e.g., during

a light load period), the system blocks, waiting for the monitors to catch up. With AMC, it is possible

for users to strike a balance between timely detection (e.g., for safety-critical events), intrusiveness

and performance overhead – provided that checkpoints are properly configured.

AMSD Asynchronous Monitoring with Synchronous Detection is another intermediate approach. It behaves

mostly as a completely-asynchronous solution, but events that may directly contribute to a violation

are marked as critical events. After a critical event is sent to the monitor, the associated component

blocks, waiting for the monitor’s verdict.

CA Completely-asynchronous monitors are the most efficient of all. They are loosely coupled, requiring

only minimal instrumentation to listen to events. Event handling is done in the background, leaving

the system free to proceed with its execution. The obvious price to pay for increased efficiency

is late detection. As such, it is not an ideal solution for monitors to take preventive or mitigating

measures upon detecting a violation. In this sense, it is similar to Offline Monitoring, with the main

difference being the incremental monitoring nature of CA – it does not require a pre-recorded trace.

A more extensive taxonomy is proposed in [62]. Falcone et al. classify Runtime Verification tools not

only in terms of Online versus Offline monitoring, but rather by taking into account seven parameters.

Namely, they propose a taxonomy driven by: specification and monitor traits; deployment (implementation)

of the monitor; how traces are modelled and observed; the monitor’s reaction to violations; the level of

interference with the monitored system; and, lastly, by the application area of the runtime verification tool.

S p e c i f i c a t i o n A specification encodes the properties that one wants to verify. It exists within

the context of a system model, and is often designed prior to running the system itself. Falcone et al.

distinguish specifications based on whether they are implicit or explicit. The former do not require user

input, and could be used to capture general errors that lay beyond the compiler’s ability, such as ensuring

memory safety or the absence of deadlocks. The latter, provided by the user, is a formal encoding of

functional or non-functional requirements of the system. Its main traits are: the expected output (Booleans,

witnesses, streams); the encoding paradigm (declarative or operational); the supported modalities (current,

past or future); how data is handled (propositional vs. parametric observations); and its concept of time

(totally-ordered or partially-ordered logical time vs. discrete or dense physical time).

M o n i t o r Monitors are among the main components of a Runtime Verification framework – they

enable the observation of a running system and decide whether a property is satisfied or violated. Monitors

are categorised by their decision procedure, execution and generation. Decisions can be analytical – by

querying and scanning records – or operational – using automata or formula rewriting to reach a verdict.

Furthermore, the procedures are distinguished by whether they are sound, complete or impartial, and

whether they use behaviour prediction or anticipation. Monitors can be explicitly or implicitly generated,
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and then directly executed or interpreted – based on whether they are implemented in their own piece of

code, rather than being made up of parameters for a general monitoring infrastructure.

D e p l o ym e n t This category refers to how monitors are implemented in practice, and how and

when they observe the target system. The deployment stage distinguishes whether the monitor acts

offline or online. In the case of online monitoring, the authors distinguish only between synchronous

and asynchronous monitoring. The placement of the monitor is said to be inline if the monitor runs as

part of an instrumented system, or outline if it runs as a separate entity, with a dedicated means to

receive observations. Deployment information also considers the architecture of the monitor, distinguishing

between centralised architectures and decentralised ones.

R e a c t i o n A monitor’s reaction to observations is either active or passive. The former is able to

affect the monitored system directly, for instance by preventing violations from happening, or, if a violation

happens, by taking recovery measures, raising exceptions or rolling the system back to a previous state. A

passive monitor does not affect the running system. It is a simple observer, concerned with producing the

designated specification output, various statistics or explanations for outputs (e.g., a witness trace for a

violation).

T r a c e Traces are another key concept to Runtime Verification. Falcone et al. note that there is a

distinction to be made between the trace model used in the specification, and the actual observed trace (i.e.,

the monitor’s abstraction). A model could be infinite, but an observed trace is finite by definition. Monitors

can sample the observed trace based on events or on time (e.g., periodic snapshots). Observations can be

precise or imprecise. The information contained in a trace also varies. Some traces contain only events,

while others can include internal system states, signals (for time-continuous information), and input-output

operations. All monitored information represents an evaluation of the system’s state, which could be

relative to a point or to an interval.

I n t e r f e r e n c e Interference is measured on a spectrum, between invasive and non-invasive. A monitor

can never be completely non-invasive (even in offline monitoring), due to the overhead of instrumentation,

to collect the trace. The degree of interference changes depending on multiple factors, but online monitors

(especially with an active reaction) tend to be more invasive.

A p p l i c a t i o n A r e a The application area of Runtime Verification mainly portraits its purpose. A few

example areas include collecting information, testing, debugging, failure prevention, recovery and various

safety, security and liveness analyses.

Francalanza et al. study Runtime Verification in the context of decentralised and distributed systems [68]

(of which ROS is an example). When monitoring such systems, one has to face a few challenges that are

not intrinsic to the simpler non-distributed programs. In particular, they emphasise the challenges of:
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• fault tolerance, as many monitoring approaches do not consider the independent failures of different

nodes;

• global atomic observations, which are hard to achieve when predicates can, potentially, refer to

distinct parts of the system;

• monitor orchestration, i.e., how to optimally distribute monitors over a network; and

• monitorability and correctness, given that decentralised and distributed systems impose even more

restrictions on runtime analysis than non-distributed systems (e.g., non-determinism).

As noted by Francalanza et al., there are multiple possible approaches to these problems. They review

the state of the art on distributed monitoring, and classify existing approaches mostly based on (i) whether

there is a single central monitor or the monitoring task is distributed; (ii) whether there is an assumption on

a global clock; (iii) whether the monitoring system tolerates failures; and (iv) its intrusiveness. Regarding (i),

the matter of monitor organisation, their classification includes the following four classes.

T r a d i t i o n a l M o n i t o r i n g This is the simplest, most straightforward approach to monitoring. In this

setup, there is a single, central monitor that observes the various processes scattered over the distributed

system. Its main advantage is that it always reports a trace with a total ordering of events, despite the

many possible interleavings of the monitored processes. However, it suffers from increased overhead,

sub-optimal efficiency, worse tolerance to faults and weaker security.

D e c e n t r a l i s e d M o n i t o r i n g The decentralised setup is the first step towards distribution, from

traditional monitoring. The specification is broken down in multiple monitors, which may reside in different

locations of the system, to perform local observations and build a single synchronised trace. Monitors are

not required to interact among themselves, and they assume the existence of a global clock and a total

order over all computations. The decomposition of a specification sometimes emerges naturally, when

sub-properties pertain to different nodes.

O r c h e s t r a t e d M o n i t o r i n g Orchestration is useful when more than one process resides in

multiple locations of the system. In this setting, a trace is produced for every location in the system, based

on local observations, without synchronisation or the assumption of a global clock. Monitors are central

(i.e., one monitor per correctness property) and live in a remote location, where they gather and merge the

local traces to produce a verdict. Centralisation trades scalability, in the form of increased communication

overhead, and security, augmenting the risk of data exposure, for simplified monitor logic.

C h o r e o g r a p h e d M o n i t o r i n g This setup is similar to Orchestrated Monitoring, in the sense that

traces are produced at the location of the processes, based on local observations without synchronisation.

The main difference is monitor distribution. Monitors are placed at the same locations as the processes,

making direct observations over the local traces, but they are allowed to synchronise with each other

to obtain remote information. This approach often requires less communication than the orchestrated
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approach, having its main drawback in the complexity of the implementation and instrumentation of the

monitored system, as well as being more intrusive in general.

6.1.2 Runtime Verification Tools and Algorithms

Numerous runtime verification tools and algorithms have been proposed, for all sorts of specification

languages and application areas. In this section, we provide an overview of some of the most relevant

approaches for our context – distributed, message-passing systems, preferably in the domains of ROS or

robotics in general. Our goal is to employ runtime verification for the specification language we presented in

Chapter 4, so there are a few attributes that are of particular interest to us, such as handling specifications

with parametric data and physical time.

As previously mentioned, the research topic of runtime verification for distributed or decentralised

systems is a challenging one. One notorious challenge is the possibility of network failures. Basin et al.

address this issue [19] and propose the first monitoring algorithm that is able to tolerate such failures as

well as being able to handle out-of-order messages. Their specification language is based on three-valued

Metric Temporal Logic, which is able to handle time constraints, but is limited to propositional events.

Mostafa and Bonakdarpour propose the first runtime verification algorithm for asynchronous distributed

programs that is both sound and complete [126], without assuming the existence of a global clock (a

consequence of asynchrony). They base their specification language on three-valued LTL defined over the

global state of the distributed program. A distributed program, in this context, is considered to be a set

of asynchronous processes that communicate using message-passing primitives over reliable channels.

A ROS system, for instance, would qualify for this definition. The algorithm is able to verify temporal

properties beyond safety predicates, and is inspired by distributed computation slicing – the technique

of abstracting distributed computations with respect to a given predicate. It is fully decentralised, in the

sense that each process maintains a replica of a monitoring automaton (an intrusive approach). Each

monitor deals with concurrent events by maintaining a set of all possible verdicts for a given predicate. This

approach was evaluated on a simulated swarm of flying drones, and the authors found that the monitoring

overhead grows only in the linear order of the number of processes and events.

DecentMon [21] is a monitoring tool for LTL specifications over decentralised systems, such as circuits

and embedded systems, where there are multiple parallel components working in synchrony (i.e., a global

clock can be assumed). DecentMon takes as input multiple traces of the system and an LTL formula.

Formulae are then monitored in two different modes:

1. traditional monitoring, where a central monitor merges the input traces into a single, global trace; or

2. decentralised monitoring, where each trace is read by an individual monitor.

ARTiMon [145] is a monitoring tool that specialises in handling time. It was historically developed for

online validation of Matlab and Simulink models, but it evolved to more general applications. In ARTiMon,

the monitored system is viewed as a set of state variables and a time domain (either discrete or continuous).

It interprets all terms of its input language as partial time functions over the time domain. The specification
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language itself includes a few interesting features, such as temporal operators with interval bounds, the

ability to aggregate values, and the ability to refer to the last observed value or the previous value for a

given event. One of its drawbacks is that the specification language only considers primitive data types.

Complex data types are not supported, and, thus, other features such as quantification are also left aside.

ARTiMon monitors are implicitly generated and of interpreted execution.

While ARTiMon specialises in time, DejaVu [81] focuses more on data. It is a monitoring tool for

First-Order Temporal Logic specifications with a past modality over events that carry data, that uses Binary

Decision Diagrams (BDDs) to represent and manipulate observed data. This data structure comes with a

few advantages, namely in terms of highly compact data representations and being highly efficient for a

number of operations. The authors note that the monitor construction procedure for the propositional case

naturally extends to BDDs, which comes as an added benefit for this choice.

R2U2 [153] is a runtime verification system specifically designed to monitor and diagnose security

threats for unmanned aerial vehicles (UAVs). In safety-critical systems, such as UAVs, both software and

hardware present potential threats and faulty components. Thus, R2U2 is proposed as a solution to verify

hardware safety and software security properties, by monitoring system health and finding possible attack

patterns. It is not generally applicable in other contexts, as it is implemented on its own hardware, as a

hardware and software bus traffic observer. Despite this major drawback, this design decision achieves

extra protection against attacks, and reduces obtrusiveness to a minimum.

Kane et al. present a case study on online monitoring of an autonomous research vehicle (ARV)

system [92]. Their work addresses an important problem in safety-critical systems – that, often, these

systems feature a number of black-box, commercial-off-the-shelf components. Without full access to the

source code, runtime verification approaches based on instrumentation become unfeasible. Furthermore,

ARV systems tend to be hard real-time, in which case instrumentation is neither available nor without

an impact in performace. They propose a passive monitoring algorithm, called EgMon, that observes

exchanged messages over a Controller Area Network (CAN) – a standard broadcast bus for ground vehicles.

Properties are written in future-bounded, propositional Metric Temporal Logic, in order to handle timing

related properties (which they deem to be common in this context1). The EgMon algorithm incrementally

takes as input a system state (defined as a mapping Proposition ↦ {⊤,⊥}) and a MTL formula and

eagerly checks the state trace for violations. EgMon’s eager approach, based on dynamic programming

techniques, aims to reduce the input formula as soon as possible using history summarising structures

and formula-rewriting.

TeSSLa [51] takes on a different approach regarding runtime verification. Whereas most tools and

specification languages are event based, TeSSLa focuses on stream based runtime verification. Stream

based verification, as implied by the name, treats input data as continuous streams, or signals (although

TeSSLa also handles sparse, event-based data under the same formalism). In cyber-physical systems, this

is a common notion that nicely captures, e.g., very frequent sensor readings. In essence, TeSSLa is just a

mechanism to transform input streams into output streams. Specifications define stream transformations,

1 As an example, the authors note that many properties in ARVs follow the pattern “the system must perform action 𝛼 within 𝜏 seconds of event 𝜀”. This could
be captured by our specification language as “globally: 𝜀 causes 𝛼 within (𝜏 × 1000) ms”.
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using standard operators, aggregation and more. Users are allowed to define any number of intermediate

streams, to allow for more complex transformations. This means that TeSSLa does not output a single

verdict, but rather it outputs data streams of any type. Obviously, it is possible to stream the value of

a verdict over time, but it also enables, for instance, statistics based on system observation. TeSSLa

employs non-intrusive monitoring, based on text input traces, or instrumented programs. The packaged tool

suite supports software instrumentation for C programs. Other interesting features include the automatic

timestamping of stream events (enabling reasoning for real time properties) and self-references to past

values within a stream.

Hallé and Villemaire studied the problem of monitoring message-based workflows where messages

contain data [79]. More specifically, they propose an approach for online monitoring of XML messages

that, like the DejaVu tool, puts some emphasis in handling parametric events. Properties are expressed in

LTL-FO+, an LTL extension with First-Order quantification over message data. One of the main innovative

aspects of their algorithm is that it works “on-the-fly” – i.e., unlike most other algorithms, it does not

compute an automaton nor does it store any previous messages, it works only with the current state. In a

follow-up work [80], the authors address some recurring issues of message-based workflows, namely: (i)

the inability to detect lost and out-of-sequence messages; and (ii) the unrealizability of some messaging

protocols. They propose a monitor-based messenger, which is essentially relegating message exchanges to

a central monitor that stamps messages (with a time stamp, thus ensuring order) and enforces a protocol

(the monitored properties).

Erlang2 [13] is an industrial-strength programming language and environment designed for highly-

concurrent, distributed programs. Programs follow an actor model, where a number of lightweight processes

(the actors) communicate via message-passing – somewhat similar to nodes in a ROS environment, although

much more scalable. Francalanza and Seychell studied the automated synthesis of concurrent monitors

and proposed an algorithm for this end, that they prove to be correct [67]. The implementation of this

algorithm, the DetectEr tool, provides concurrent runtime monitors for Erlang systems. Properties are

specified in a subset of Hennessy–Milner Logic with recursion (HML or 𝜇HML). 𝜇HML is a branching-time
logic to write properties about the computational graph of programs, and the adopted subset is, essentially,

a reformulation of the modal 𝜇-calculus that is limited to reactive (safety) properties. Monitors mostly

observe the system’s interactions with the environment in an asynchronous fashion, resorting to the Erlang

virtual machine’s tracing mechanisms, which is a natural choice for the actor communication model in a

distributed setting. A follow-up work [15], from Attard and Francalanza, also proposes an algorithm and

prototype tool for the synthesis of distributed monitors in Erlang, based on the same 𝜇HML formalism.
One of the major differences from [67] is that they extend the specification language to a larger subset,

called MHML (Monitorable Hennessy–Milner Logic).

In their PhD thesis [29], Yoann Blein addresses the issue of writing correct specifications for runtime

verification. Many engineers operating safety-critical systems (such as the medical devices used in their

case study) might not have the necessary background in formal methods to comfortably write properties in

LTL and other, more complex logics. As such, one of their goals is to define a user-friendly, human-readable

2 https://www.erlang.org/

https://www.erlang.org/
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language to specify properties over parametric events, and then convert such specifications to runtime

monitors. This language (and corresponding tools), called ParTraP, is based on Dwyer et al.’s specification

patterns [58, 59] – much like our proposed specification language (see Chapter 4). Compared to our

proposal, ParTraP is more feature rich. It allows nested scopes, a greater range of operators and even

arbitrary Python expressions over event data. However, it is designed with their industrial case study in

mind. In this case study, traces are obtained in an offline fashion, meaning that the runtime monitors

also work offline. Offline monitoring has greater freedom when it comes to going back and forth over a

trace’s events, which enables and facilitates the implementation of, e.g., nested scopes. Despite being

designed for untrained software engineers, the language has not been properly evaluated in terms of its

approachability. As is the case with many other tools, it only produces a verdict (not a counterexample)

when violations are found.

Adam et al. propose DeRoS [4, 5], another specification language and runtime verification approach,

this time targeting ROS systems. It is not clear which temporal logic is used to define the semantics

of the language, as it is used not only to specify safety properties but also the system architecture (i.e.,

the computation graph). Specifications are parametric regarding ROS messages, and are able to handle

physical time. Messages (and topics) are treated akin to streams, enabling users to refer, e.g., to the

event of a formula changing from being evaluated as ⊥ to ⊤ and vice-versa, or to refer to the event of a

formula holding for 𝜏 seconds. The monitor implementation, which is not publicly accessible, is based on

a central, online monitor that takes an active stance. Specifications can include actions for the monitor to

take when a certain formula (here called rule) holds. When compared to our proposed language, DeRoS

lacks a number of features. For instance:

• it cannot express scopes (e.g., ‘after /state’);

• it cannot express Absence patterns (e.g., ‘no /velocity’);

• it cannot express Response patterns (e.g., ‘/bumper causes /stop within 100 ms’);

• it cannot express Precedence patterns (e.g., ‘/stop requires /bumper within 100 ms’).

DeRoS has been used as a reference to evaluate the work of Lesire et al. [106], in which they propose a

runtime monitoring approach for Past-time LTL (PtLTL) specifications with physical time constraints. The

argument for including only Past-time operators is that one cannot predict the future, and, thus, including

future modal operators is useless (in terms of online monitoring). While true, this decision makes it harder

to specify bounded liveness properties. Their monitor synthesis implementation extends beyond ROS, to

the domains of Orocos3 [37], MAUVE [105], GenoM4 [65] and SmartMDSD5 [160]. This approach divides

monitors (here called observers) into atomic observers (for the PtLTL subset) and high-level observers (for

the real time constraints). Atomic observers observe data on ports (the equivalent to a ROS topic) over

the last 𝑛 states (messages). These observers are then combined into the high-level timed observers with

classical and timed operators. The monitoring process is based on the last rise and fall times of each

formula (the moments when the formula’s evaluation changes to ⊤ or ⊥, respectively). The proposed

3 https://www.orocos.org/

4 https://www.openrobots.org/wiki/genom

5 https://wiki.servicerobotik-ulm.de/smartmdsd-toolchain:start

https://www.orocos.org/
https://www.openrobots.org/wiki/genom
https://wiki.servicerobotik-ulm.de/smartmdsd-toolchain:start
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specification language allows for some degree of freedom – instead of providing a limited set of operators,

users can define custom predicates, which ultimately have to be manually implemented.

Manual implementation is also one of the key ingredients of ROSRV [85], a runtime verification approach

for ROS based on the principles of Monitor Oriented Programming (MOP). Specifications take the form

of event handlers associated to ROS topics, so that they are triggered on each incoming message. The

body of each specification is operational, being essentially composed of valid ROS C++ code. Users can

enable MOP logic plug-ins, to write formulae and patterns in said logic that help detect sequences of events

(e.g., in LTL). While there is no direct support for timed properties, since there is some programmatic

freedom given to the user, users can implement it on their own. As for monitor deployment, ROSRV takes

a somewhat intrusive approach, in the sense that it replaces the original ROS Master with its own version.

The regular ROS nodes, however, work normally, unaware of being monitored – monitors are placed as

men-in-the-middle for all communications. Granted, despite the nodes being unaware of the monitoring

process, monitors can take an active stance, for instance to drop messages that would lead to a critical

system state. This approach also opens up room to implement some security measures, such as access

control policies. It is possible to load the ROSRV Master node with such policies to ensure that, for example,

only trusted nodes can publish on a given topic.

Hu et al. propose another approach to monitor temporal properties of ROS systems, called RMoM) [84],

but they specialise in the context of robot swarms. Their approach provides a domain-specific language to

write specifications in, based on three-valued MTL semantics. Properties have access to the typical logical

operators, as well as a range of built-in functions that are organised in a hierarchy of four layers:

1. functions over system resources, for instance to assess CPU usage, memory consumption and

availability of cameras and other sensors;

2. functions over ROS communications, for instance to retrieve node names, topic names or message

types;

3. functions over a single robotic system, for instance to retrieve the robot’s position and current speed;

4. functions over the swarm as a whole, for instance to retrieve the total number of robots in the swarm

or to determine its current formation.

To cover the case where the given functions might not be expressive enough, users are given the ability to

define and implement custom functions over each of these layers. The authors also extend the language

with new logical operators to state, for instance that all robots in the swarm satisfy a given property, or that

a specific robot within the swarm satisfies a property.

Lastly, Basin et al. propose MonPoly [18, 20], a runtime verification tool for online and offline monitoring

that was designed to verify Metric First-Order Temporal Logic formulae. MonPoly takes three files as input:

(i) a signature file that declares all types of monitorable events; (ii) a formula file that contains the MFOTL

formula to monitor; and (iii) a log file containing a trace of events to monitor. By default, the monitoring

takes place in an offline fashion. By replacing the log file with a stream, the monitoring process becomes

an asynchronous online one.
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An event is defined by a name, at minimum, and may optionally contain parameters of primitive types,

such as integers, floats or strings. For instance, the following syntax declares two types of events, a and b,

where the former has two parameters (an integer and a floating-point number) and the latter has none.

a(int, float)

b()

The log file consists of a sequence of ordered time-stamped events, where the timestamps are non-

decreasing, and each timestamp may have multiple associated events. For instance, the following syntax

shows a trace with two instants where the first instant, at time 100 registers two events, a and b, and the

second instant (at time 200) registers a third event, also an a event but with different arguments.

@100 a(1, 0.5) b()

@200 a(2, 0.8)

The formula file, as stated, consists of the monitored MFOTL formula, possibly containing aggregation

operators such as sums or averages. However, not all MFOTL formulae are amenable to Runtime Verification.

The authors focus on a safety fragment of the logic that only accepts formulae of the form �∀𝑥 ∶ 𝜑,
such that 𝜑 does not contain unbounded future operators. Subformulae such as ♦𝜓 or ♦[𝑎,∞)𝜓 are not

allowed. In practice, MonPoly negates the input formula and searches the event log for a match; i.e., a

counterexample to the original formula.

6.2 The Need for a New Runtime Algori thm

We did not settle with one of the many existing tools because, in general, they lack at least one of the

features we require for our specification language. For instance, some are unable to handle events with

data [19, 21, 92], some lack real-time constraints [79, 85], some lack cross-event references arbitrarily in

the past [5, 84, 145], and some lack high-level data structures (e.g., lists) with quantification [51, 145].

There are two special cases, however, that deserve further discussion.

6.2.1 Online vs. Offline Monitoring

ParTraP [29] is based on a specification language that is similar to our own proposal, but it is intended for

offline monitoring. In this thesis, we are interested in solving the problem of online monitoring for ROS

systems, so direct reuse of Blein’s work is impossible.

As previously discussed, online monitoring allows for earlier detection of failures, by running the monitors

in tandem with the monitored system. This is an advantage in itself. Moreover, online monitors can also

serve as building blocks for other property checking techniques to build upon. For example, in Chapter 7

we show how to approach Property-based Testing in the context of ROS, from high-level specifications, by

relying on the Runtime Verification approach we present in this chapter to provide the test oracles.
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For the purposes of testing, both online and offline monitoring work as a foundation, in theory. Not only

that, but offline monitoring is far easier to implement. The idea behind it is rather simple – we let the

system run for the full duration of each test case, while recording a message log. Then, we feed the log to

the offline monitor to produce a verdict that, in turn, will dictate the outcome of the test case. But, despite

its simplicity, this approach is subpar in terms of time and space efficiency.

For testing to be effective, in general (and for Property-based Testing in particular), we want to run tests

for thousands of inputs, if not millions. Naturally, an offline monitoring approach can only detect violations

after an example has run its entire course, and this is bound to increase the overall time required to test a

property significantly. For instance, take the property ‘globally: no /a within 1000 ms’. Suppose that

a faulty system publishes /a after 500 milliseconds. An offline monitor will always take, at least, 1 second

to report a faulty test, while an online monitor is capable of doing the same in half that time. Note that this

is not limited to property violations, the converse is also true. Online monitors are capable of detecting

early success in bounded liveness properties, e.g., ‘globally: some /a within 1000 ms’, while offline

monitors cannot. Over a large number of test cases, this deficit of time efficiency adds up.

On the other hand, the need to record all exchanged messages over a relatively long period in a message

log entails a waste of space. Messages containing images, point clouds or odometry information, for

instance, are known to be large, in the order of kilobytes or even megabytes. If nodes publish such

messages, over several topics, at a rate of tens of messages per second, we can easily obtain message logs

with hundreds of megabytes. Online monitors are able to optimise this aspect in many cases. For properties

such as ‘globally: no /a within 1000 ms’, for instance, there is no need to store any messages at all.

The monitor can simply report a failure as soon as it observes the a message on /a within the first second

of execution.

Lastly, online monitors can also be used as core components of the system itself. Developers are able

to build, e.g., safety controllers that react with an appropriate action, such as stopping the robot or slowing

down its movement, when a monitor reports a property violation. In fact, this concept could be pushed to

the extreme, where monitors are used not only to detect proper failures, but also to detect a number of

other interesting scenarios (e.g., the robot reaching a certain location). Any number of controllers can then

be built on this foundation. In practice, however, it is likely that this extreme approach is not as performant

as embedding the detection of such scenarios in the client nodes, as roboticists already do. Alternatively,

developers can extend the monitor implementation with the desired actions, instead of using it simply to

report events.

6.2.2 General MFOTL Monitoring vs. Custom Implementation

The second tool worth further discussion is MonPoly [18, 20]. The semantics of our specification language

are based on MFOTL, which makes MonPoly very relevant to our work. There are only a few issues

preventing us from adopting it as a monitoring tool.

The first issue relates to the monitored formulae. In theory, we could translate our properties into the

equivalent MFOTL formulae, and feed them to MonPoly for online monitoring, but this is not trivial. The
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first step is to rewrite all formulae in our language’s semantics so that they match the �∀𝑥 ∶ 𝜑 form. But,

even in this form, some formulae contain unbounded future operators that MonPoly is unable to handle.

This, right from the start, would leave out the entire ‘after p until q’ scope, among other properties.

The workaround is to bound the future operators with a very long timeout. The drawbacks are that the final

formula is no longer logically equivalent to the original, and that, due to the large operator time bound,

MonPoly might delay the verdict until the last log entry is read.

The second issue is related to event logs. To account for being a ROS-agnostic tool, we have to translate

ROS messages into the event syntax that MonPoly uses, but this is also not straightforward. ROS messages

can be arbitrarily composed, and may also contain array fields. Composite messages are relatively easy to

handle – with a recursive traversal over the message types, we can flatten the fields until we are left only

with primitive types. For instance, geometry_msgs/Twist is a velocity message with two three-dimentional

vectors, linear and angular. Instead of declaring an event type with the two parameters, linear and

angular, we could declare an event with six parameters, linear_x, linear_y, and so on.

twist(float, float, float, float, float, float)

Handling arrays is not so linear. Recall that arrays in ROS can either be of fixed length or of variable

length. For fixed length arrays we can simply declare all fields up front, i.e., array_0, array_1, etc., as if

the array was merely another nested message with primitive fields. For variable-length arrays, however, it

is harder to figure out a workaround, given that MonPoly’s first order operators act only on the domains of

its primitive types (e.g., quantification over integers). Lists are not supported.

One way to handle variable-length arrays is to perform static analysis over the monitored properties,

and save only those indexes that are directly referenced in event predicates. For instance, for the event

‘/p {array[0] > 0}’, we only care about the value of the index 0 of the array. But this solution falls short if

the predicates quantify over the array indexes, e.g., ‘/p {forall x in array: x > 0}’. Then, the whole

array would have to be included, and there is no way of knowing the length of the array up front. An

alternative approach is to declare an event with a single argument, e.g., ‘p_array(int)’, and create an

event per index of the message’s array field. We can feed all events to MonPoly under the same timestamp,

to ensure that they are treated as simultaneous events. The drawback is that this solution implies a more

complex property translation; converting event predicates from our syntax to MonPoly formulae is no longer

a straightforward rewrite operation.

A third issue regarding the adoption of MonPoly is related to its monitoring algorithm, or, rather, how

MonPoly evaluates event logs. MonPoly is only able to evaluate a formula, at a given time instant, once it

has complete information about that timestamp, i.e., once it reaches the end of the event log, or once

it reads a new timestamp. Since multiple events are allowed under the same timestamp, in an online

monitoring setting, where events are fed one at a time, MonPoly will always have a slightly late detection.

Only when a new event is read, at a later time, can MonPoly evaluate the current events. For instance, in

the small event log shown before, even if the event a(1, 0.5) at time 100 constitutes a violation, such

violation will only be reported after MonPoly reads a(2, 0.8) at time 200. Until then, we could, potentially,

continue feeding more events under the timestamp 100, such as b().
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Also related to the theme of late detection is MonPoly’s focus on safety (and co-safety) properties. As

MonPoly negates the input formula and looks for a counterexample, it can only focus on detecting violations.

For properties such as ‘globally: some /b within 1000 ms’, MonPoly will always take one second to

produce a verdict: after one second, either b() was observed or it was not. There is no reliable way to

detect early success. The workaround is to run two monitors, one that looks for a violation, as normal – i.e.,

verifying �∀𝑥 ∶ ♦[0,1000)b – and another that does not negate its input formula – i.e., one that treats the

desired event, b() as the violation and verifies �∀𝑥 ∶ �[0,1000)¬b. Once a b() event is detected by the

second monitor, both monitors can be safely interrupted.

Finally, there are smaller, technical obstacles for the direct adoption of MonPoly. The most immediate

one is that the tool is implemented in OCaml, and ROS does not provide any official bindings for the OCaml

language. We would have to resort to unofficial bindings, or use the tool as a child process of a ROS node.

Inter-process communication is, naturally, slower than using a single process, which further contributes to

detection latency.

Weighting all these factors, we have decided not to adopt ParTraP or MonPoly but, rather, to implement

our own Runtime Verification algorithm, tailored for our specification language. Regardless, we did put

MonPoly to the test, and compared its performance against the approach we propose in this chapter. This

evaluation can be found in Chapter 8, Section 8.3.

6.3 Approach Overview

We have seen how, according to Falcone et al.’s taxonomy [62], a Runtime Verification approach can be

categorised with respect to seven parameters, namely: the specification, the monitor, the deployment

process, the monitor’s reaction, the monitored trace, monitor interference, and application area. We are

able to identify our stance, right away, in terms of application area, property specification, monitored traces

and the monitor’s reaction.

A p p l i c a t i o n A Runtime Verification solution can have many potential application areas. In general,

one could argue that the main application of our approach is debugging. In Chapter 7, we show how our

approach can be used for testing too.

S p e c i f i c a t i o n We use explicit specifications, seeing as we provide a declarative language tailored

for this purpose. This language supports past, current and future observation modalities; handles complex,

parametric events with quantification; and is able to express logical time constraints with total order, and

physical time constraints with discrete time. In terms of output, the specification and monitors themselves

aim to produce only a verdict. Within the larger scope of Property-based Testing (see Chapter 7), for

instance, we can add a witness as well.

T r a c e We presented a specification language based on infinite trace models. During execution, trace

observation should be event triggered (as we are dealing with the observation of ROS messages) and
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precise – monitors observe every new event of interest. Trace evaluation should be done at specific points,

such as when a new message is observed or when a timer expires.

R e a c t i o n Monitors, regardless of their implementation, should have a passive reaction, i.e., they

should be limited to reporting verdicts. Our specification language does not allow the encoding of actions,

unlike, e.g., DeRoS. Moreover, a passive reaction is the most flexible approach to use runtime monitoring as

a building block for other purposes. For example, consider the testing approach we present in Chapter 7. If

the runtime monitors were allowed an active reaction, it could possibly interfere with the system’s behaviour

and, consequently, with the test results.

The other parameters essentially dictate how we will approach the monitor implementation, and will be

discussed in the remainder of this section.

6.3.1 Generation and Execution

The first design problem we face regarding runtime monitors is how to generate them. The taxonomy offers

two possibilities, explicit generation or implicit generation.

Design Problem 1. Should monitors be explicitly generated from the specification, or should they exist

implicitly as part of a general monitoring system?

Another way to put this question is to ask whether we want to have a tailor-made monitor for each

property, or whether we want to implement a generic monitoring solution, able to handle all types of

properties of our specification language. MonPoly, as we have seen, is an example of the latter. It exists as

a generic monitoring tool for a subset of Metric First-Order Temporal Logic.

In our case, we believe that explicit generation is the better option. We have a limited specification

language, with a number of patterns that we know ahead of time. As such, we can design a custom monitor

for each of the available patterns. Then, we can optimise each type of monitor individually. This is one of

the aspects MonPoly lacked in our previous analysis. For some formulae, MonPoly has no option but to

wait until the end of the trace (or the end of the specified temporal bound) to produce a verdict. There is

no reliable way to detect early success of an Existence property, for instance. By building a monitor that is

tailor-made for a given type of property, we can benefit from the earliest possible detection.

One of the disadvantages of working with a domain-specific specification language is its reduced

maintainability. The generation process is tied to this language. If the language evolves, to address issues

or to introduce new features, such changes could have an impact in the whole generation process.

Regardless of how monitors are generated, deciding how monitors are executed is also a binary problem.

Design Problem 2. Should monitors have their own piece of code to execute (direct execution) or should

a generic algorithm be parameterised to handle individual properties (interpreted execution)?

Monitor execution sounds as a problem that is related to monitor generation, but the two are actually

independent problems. We have decided to explicitly generate monitors, but we have not yet decided
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on what a monitor is. In other words, we have to decide what is the output of the generation process.

A monitor could be a set of parameters for a generic algorithm (e.g., the states and transitions of an

automaton), which is then interpreted, or it could be code that is directly executed.

Taking MonPoly for comparison, it uses an implicit generation process (i.e., the monitors are produced

internally) with interpreted execution. The input MFOTL formulae are converted into first-order queries (the

monitors) and then used to parameterise the generic monitoring algorithm.

In our case, the two options boil down, essentially, to the following:

1. direct execution – each property is synthesized into a full-blown monitor implementation (i.e., code),

where every variable is hard-coded in the output;

2. interpreted execution – we provide the user with a standalone, generic monitor implementation for

each pattern (i.e., a monitor for Absence properties, a monitor for Existence properties, etc.), which

is then parameterised with information that is specific to each monitorable property (the result of

the generation process, e.g., topic names, predicates over messages or timeouts).

Either option works. In order to tip the scales, we view this problem from the perspective of the

HAROS framework. HAROS is used for the whole process that leads to monitor generation, from the

initial specification to producing an annotated model. It makes sense that monitor generation should be

implemented as a plug-in for the framework. Using our new entry point for the analysis of Configurations

(see Chapter 5), we can take each annotated Configuration individually, and then generate the appropriate

monitors. Configurations are needed, in addition to the properties, in order to provide type information,

such as the expected message types of each topic. HAROS can also perform sanity checks on the specified

properties, e.g., to ensure that they refer to message fields that actually exist. In this context, we believe

that direct execution is more appropriate. Instead of having the plug-in generate a set of parameters for

the user to plug into an external monitor implementation, we can produce the whole monitor in one go. It

is the most portable solution, and allows for greater freedom when it comes to optimisation.

As for the technical aspects of monitor generation, we use metaprogramming and a template engine.

Template engines, such as Jinja6, are similar to compilers or transpilers, in the sense that they take source

code as input to produce an output (typically source code). In this case, the input source is a template, i.e.,

an arbitrary source file, similar in content and structure to the intended output (e.g., Python, C++, etc.), in

which users can insert variable points, using a mini-language provided by the engine. Given a template

and concrete values for each variable, the engine performs the replacement step to produce the output file.

In a way, they are more powerful versions of the same mechanisms that support format strings, such as:

1 x = 1; y = 2

2 text = '{c} = {a} + {b}'.format(c=(x+y), a=x, b=y)

3 print(text)

The main difference is that Jinja (and other template engines) support complex features embedded within

this template language, such as conditionals, loops, nested templates and template inheritance, to name a

6 https://palletsprojects.com/p/jinja/

https://palletsprojects.com/p/jinja/
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Figure 46: Workflow of the proposed Runtime Verification HAROS plug-in.

few. Figure 46 shows a high-level view of the integrated workflow within HAROS, from specifications to

monitor generation using Jinja templates.

6.3.2 Deployment

An online monitor is a component that runs alongside a monitored system (or as part of it) for the purposes

of the runtime verification process. But there are various methods to integrate the monitor with the system,

various ways to observe execution traces, and various degrees of interference with the monitored system.

Online monitoring will always have some degree of interference, due to the additional runtime overhead

of running the monitors. However, depending on the other choices we make, this interference can be

alleviated to an extent.

The most immediate question is where do the generated monitors go, or, rather, where are they placed

in the ROS computation graph.

Design Problem 3. Should the generated monitors run alongside the ROS system (outline monitoring)

or as an extension to the existing nodes (i.e., instrumentation, or inline monitoring)?

In essence, we are deciding whether the monitor generation plug-in produces a standalone (outline)

piece of code that executes alongside the ROS system, or whether it inlines the generated monitor in the

existing nodes, producing an altered (instrumented) version of the system. There is a grey area in which

the monitor runs as a separate entity, but some instrumentation is still applied to the system to report

events to the monitor.

Inlining is a common practice, especially in single-process software, as it is the closest a monitor can

get to the monitored system. It makes observation of events easier and allows for the earliest possible
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detection. It is also a great choice for monitors with an active reaction. The major drawbacks are the

increased level of interference, and the requirement of an editable version of the system to instrument

– it must alter, e.g., the system’s source code or other intermediate representations, such as bytecode.

This is not always feasible for various reasons. The target system might be encrypted, might be executing

remotely, or it might just be a matter of user permissions.

For ROS, in particular, we deem inlining to be a poor choice for a few reasons.

1. ROS applications are distributed by definition. It is possible for a single property to refer to topics

that are advertised by multiple nodes. For inlining to work, in general, we would be forced into a

distributed monitor architecture, which raises a number of other questions and obstacles.

2. It is unlikely for users to have access to the source code of all the components that make up the

system. After all, one of the core philosophies of ROS is component reuse and, in many cases,

reused components are installed as pre-compiled binaries, not as source code.

3. In the context of HAROS, we might be working with Configuration models for which there is neither

source code nor pre-compiled binaries to instrument. For instance, we could be using models

completely built by hand, or we could set up HAROS to run on a machine other than the machines

used for development, such as a remote server.

Outline solutions, i.e., monitors that run as their own entities, are more flexible in the ways they can

handle the obstacles above. Distribution of the ROS application, for example, can be tackled both with

a distributed monitor architecture and with a centralised monitor architecture, provided there is some

interface through which monitors are able to observe all necessary messages. The existence of source code

(or lack thereof) might not a problem either, depending on how we approach the observation of events,

which leads us to the next question.

Design Problem 4. Should monitors observe messages directly (i.e., should they subscribe topics on

their own, and thus register themselves as ROS nodes), or should the monitored system be instrumented

to log events, such as publishing or receiving a message, for external monitors to use?

This question determines whether we opt for a pure outline solution, or whether we fall into the grey

area, using instrumentation to report events, but not to evaluate formulae. The mixed approach is ideal to

achieve soundness of the decision procedure, as we will discuss later in this section. However, for the

reasons listed previously, regarding inlining, it might not always be feasible. In constrast, outline monitors

with no instrumentation, i.e., ROS nodes that passively observe the system, can always be generated and

deployed. This, in conjunction with a few other advantages, led us to choose the outline approach.

First, outline monitoring nodes can always be generated and deployed because this approach works

out-of-the-box with any ROS system. The system is, for all purposes, a black-box with exposed topics,

regardless of whether it actually exists or of its current state of development. Monitoring nodes can be

generated based on the specification. This decoupled stance is especially appealing in a few circumstances.

For example, in the context of HAROS, we want to minimise any restrictions on the systems we are able to

analyse, when possible.
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Second, the implementation is simpler, since it does not rely on instrumentation. Neither does it rely on

dynamic changes to the ROS environment, such as replacing the ROS Master, providing wrappers for the

ROS client libraries, or injecting men-in-the-middle nodes (e.g., as seen in ROSRV [85]). The monitored

ROS system is left as it is. We have only to put together a template for an independent node, that, like

many other ROS tools, uses the standard ROS interfaces to observe messages and perform its job.

Third, and related to the previous point, it is the least intrusive option. Since the implementation of the

monitored system is not tampered with, this approach has no effect on the non-functional performance

of the monitored nodes. This is an important point; if a node experiences decreased non-functional

performance, it can suddenly miss deadlines that it would not otherwise. Missed deadlines in one node

mean false assumptions and late (or stale) data for another node, which could ultimately spiral into a

system-wide failure. For instance, it is common for sensor nodes (such as laser scanners) to state their

publication rate up front in the device documentation. If the overhead of a monitor causes the sensor to

skip a message, client nodes (e.g., mapping and localisation) that assume this frequency might misbehave,

and cause the robot’s model of the world to start diverging from reality. Over time, these small divergences

accumulate and cause unexpected behaviour. One could argue that there is overhead in simply running

the monitoring system alongside the ROS application, but, since nodes run in independent processes, the

risk is smaller. In the worst case, the monitoring nodes could be moved to a separate machine in the ROS

network, exchanging performance overhead for late detection – which leads us to another discussion.

6.3.3 Architecture and Orchestration

One of the downsides of implementing outline monitors as ROS nodes that subscribe topics on their own is

late detection. In this case, monitors have to be completely asynchronous (as per the taxonomy in [42]),

and completely asynchronous monitors are known to suffer from late detection, in exchange for being

the most efficient. Without instrumentation, there is no way to block the system and have it wait for the

monitors, so any synchronous or partially synchronous approach is out of the question. These monitors

are not ideal to take an active stance (e.g., for system repair), but, as we previously stated, that is not our

main goal with this Runtime Verification approach. And, while detection might be late, it is still not as late

as with offline monitoring; there is some utility in it to explore.

The degree of latency to which monitors are subject is a variable that we can manipulate to some

extent. Our choices regarding monitor architecture, orchestration and distribution may be a contributing (or

dampening) factor. But, as noted by Francalanza et al. [68], distributed systems, such as ROS systems,

face an increased number of challenges, in particular regarding fault tolerance, correctness and global

atomic observations. Thus, lies our next question.

Design Problem 5. Should monitors be monolithic (i.e., a traditional monitoring approach, with a single

central monitor), or should they be distributed over the network (possibly addressing different parts of the

specification)?
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Choreographed, orchestrated and decentralised monitors take advantage of local observations, when a

system is spread over multiple network locations. In theory, they can be more efficient than a traditional

approach. In a ROS setting, however, nodes tend to live in a reduced number of locations (possibly a

single machine), with the notable exception being robot swarms. Even so, spreading monitors over multiple

machines in a network would only make a difference for high-frequency publishing between nodes living in

the same machine (to decrease the latency of the monitor). As such, we deem the increased complexity

of distributed solutions unnecessary and opt for a traditional monitoring approach, with a centralised

architecture.

To further reinforce this position, one of the goals of ROS is to abstract away the network layers and

focus on messages, after all. ROS nodes are allowed to subscribe any number of topics, and are able to

use a global clock by default (in the form of the rostime interface), further discouraging monitor distribution

and making the assumption of such a clock (and a total ordering of events) trivial. Furthermore, our

specifications are not easily prone to decomposition. There are not many circumstances in which we might

be actively looking for concurrent events (for a single property), and the addition of references to past

messages adds another layer of complexity to the monitor implementation.

Implementing a generation process that produces a monolithic ROS node (per property) is also convenient

to make verdicts available, both to the user and to other components. Once the monitor reaches a verdict,

of either ⊤ or ⊥, regarding the system’s compliance with the monitored property, it can simply publish

the verdict as a boolean ROS message. Thus, each monitor should advertise a verdict topic under its

private namespace, so that the verdicts for each property are both easily accessible, as well as easily

distinguishable. For instance, if we have two monitor nodes, /monitor1 and /monitor2, we would also

have two verdict topics, under the ROS names /monitor1/verdict and /monitor2/verdict. Components

that build on top of this Runtime Verification approach can, then, selectively listen for the verdicts that are

relevant to them. With this is mind, there is only one more item to discuss: monitor semantics, or how

monitors reach verdicts.

6.3.4 Semantics

The final design problem, now closer to the algorithm itself, is related to the monitor’s decision procedure.

Design Problem 6. What kind of decision procedure should monitors adopt?

Analytical decision procedures, such as querying records, are better suited for an offline monitoring

approach, rather than online monitors. Between the different operational procedures, we opt for an

automata-based monitor. Given that our specification language covers different states of the system and

their transitions – e.g., entering a scope or triggering a Response pattern – automata are the most direct

implementation.

The semantics of this decision procedure are mostly the same as the semantics we presented in

Chapter 4, for the specification language, with one caveat. We defined the semantics of the specification

language based on infinite traces. Online monitors can be based on the concept of infinite traces, even
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though they always operate on a finite trace prefix – the finite number of events that have been observed,

up to a certain point in time. The first thing we have to do is to define what is a finite trace prefix. Traces

can be defined in terms of temporal first-order structures, as follows.

Definition 5. Let (𝐷, 𝜏) be a temporal first-order structure over signature 𝑆, with 𝐷 = (𝐷0, 𝐷1,…)
a sequence of structures over 𝑆 and 𝜏 = (𝜏0, 𝜏1,…) a sequence of natural numbers (time stamps). Given
𝑘 ∈ ℕ0, we define the 𝑘-prefix of (𝐷, 𝜏) as the pair (𝐷[0,𝑘), 𝜏[0,𝑘)), where𝐷[0,𝑘) = (𝐷0, 𝐷1,… ,𝐷𝑘−1)
and 𝜏[0,𝑘) = (𝜏0, 𝜏1,… , 𝜏𝑘−1) are finite sequences of size 𝑘.

According to this definition, at the initial instant the monitor is operating on a 0-prefix, i.e., it has not

observed any events yet. As soon as it observes the first event, it operates on a 1-prefix trace. Note that this

is not a prefix of any particular trace. We know that, theoretically, there is only a single trace of execution.

In practice, at any given instant, we have only access to a 𝑘-prefix, for some 𝑘, which is a valid 𝑘-prefix for
an infinite number of infinite traces – we cannot predict the future. However, we must be able to query

the monitor’s verdict at any given time. Monitors do not run for an infinite amount of time, neither does

the monitored system. Intuition also says that, in many cases, we should be able to tell that a violation

occurred as soon as it is observed.

In order to be able to assign a verdict to each state of the generated automata, we use a three-valued

variant of MFOTL, similar to other three-valued variants of temporal logics commonly used in Runtime

Verification (see, for instance, [23]). Formally, we define the semantics of the runtime monitors in terms of

the semantics given in Chapter 4, as follows.

Definition 6. Let 𝑘 ∈ ℕ0 and (𝐷[0,𝑘), 𝜏[0,𝑘)) be a 𝑘-prefix of a temporal structure over 𝑆. Let 𝑣 be a

valuation, 𝑖 ∈ ℕ0 and Φ be a property over 𝑆. We define (𝐷[0,𝑘), 𝜏[0,𝑘), 𝑣, 𝑖) ⊨ Φ as

• ⊤ iff, for all (𝐷′, 𝜏′) temporal structures over 𝑆, (𝐷[0,𝑘), 𝜏[0,𝑘)) is a 𝑘-prefix of (𝐷′, 𝜏′)
and (𝐷′, 𝜏′, 𝑣, 𝑖) ⊨ Φ;

• ⊥ iff, for all (𝐷′, 𝜏′) temporal structures over 𝑆, (𝐷[0,𝑘), 𝜏[0,𝑘)) is a 𝑘-prefix of (𝐷′, 𝜏′)
and (𝐷′, 𝜏′, 𝑣, 𝑖) ⊭ Φ;

• ? (or unknown) otherwise.

Informally speaking, a runtime monitor has the following three possible outcomes.

TRUE if and only if, for all possible continuations of the observed trace prefix, the property is always true;

i.e., a good prefix has been already observed.

FALSE if and only if, for all possible continuations of the observed trace prefix, the property is always false;

i.e., a bad prefix has been already observed.

UNKNOWN in any other case; i.e., the monitor is still uncertain regarding the validity of future trace suffixes.

The proposed semantics ensure two key properties of the monitor’s decision procedure. First, the

decision procedure is complete – it always produces an output, one of ⊤, ⊥ or ?. Second, the decision
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procedure is impartial – its outputs are not contradictory over time. Monitors only transition from ? to ⊤
or from ? to ⊥, never backwards, and never from ⊤ to ⊥ or vice-versa. Unfortunately, another desirable

property, soundness cannot be guaranteed.

A sound monitor never provides incorrect output. Our monitors, as previously discussed, follow an outline

implementation. They are ROS nodes that passively observe the system and the exchanged messages

over time. This means that the monitors are subject to the non-deterministic nature of ROS, and it is this

non-determinism that puts soundness beyond our reach.

To clarify, in Chapter 4, we define the semantics of our specification language in terms of “observing a

message on a topic”. For reference:

Let 𝕋 be the set of all ROS topics. For all /t ∈ 𝕋 we define a predicate 𝑡 ∈ P such that

𝑡(𝑚) is true if and only if a message 𝑚 ∈ 𝕄 can be observed on topic /t.

In practice, we know that topics are abstract entities that represent a network connection between two

nodes. There is no such thing as a topic entity, where a message is stored, even temporarily. We must

build our implementation around one of two related events: either the publication of a message or the

reception of a message. Ideally, a smart combination of the two would be used. For example, take the

property ‘globally: /a causes /b within 100 ms’. If, by analysing the architectural model, we know

that the publishers of /b also subscribe to /a, the monitor should track timestamps for the reception of /a

and the publication of /b by such nodes.

However, figuring out all the best combinations of publication and reception timestamps, for all kinds of

system architectures, is far from trivial. In addition, this is an approach that would require instrumentation.

Instrumentation enables monitors to observe events as they happened during the execution of a ROS node.

There are no out-of-order observations, which is why we previously stated that a grey approach (outline

with some instrumentation) was ideal.

If instrumentation is not available, we can only refer to the monitor’s reception of a message. And

this is where the non-deterministic nature of ROS enters the scene. Under normal circumstances, ROS

only guarantees the ordering of messages within the same topic (but even this can be circumvented, e.g.,

when using UDP as the transport layer). Messages in different topics can be received in a different order

from that in which they were published, for various reasons (e.g., network delays, multithreading, etc.).

This means that the system could publish, deterministically, within a single thread, a message on /a and

then a message on /b. On the other end, the monitor could observe the /b first, and the message on

/a afterwards. The same applies to any node in the network, not just the monitors, and, as such, there

is nothing we can do regarding this issue. Fortunately, this issue requires such an alignment of factors

(timing of the reception of messages, timing of the thread scheduler, etc.) that it should be a relatively rare

occurrence in practice. In any case, we advocate that both the system as well as the specified behavioural

properties should be designed in such a way that they are resilient to small timing interactions.
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Figure 47: Workflow of the proposed Runtime Verification approach.

6.4 Monitor Implementat ion

In the previous section, we have dicussed how the most feasible approach for online monitoring of ROS

applications is to synthesize each specified property into a monolithic, standalone ROS monitoring node.

The synthesized node is a passive process – it does not interfere with the system’s execution. It should

subscribe to each topic the original property refers, and observe the exchanged messages on such topics,

until it is able to reach a verdict of either ⊤ or ⊥. In order to make its verdict easily observable (and usable

by other components), the monitoring node should advertise a topic, ~verdict, where the verdict of the

monitored property is to be published. If the monitor reaches a verdict of ⊤ (resp. ⊥), the monitor should

publish a boolean message on ~verdict containing True (resp. False). At that point, the monitor can

safely stop operating – verdicts are final. In every other state, the monitor’s verdict is ? and nothing should
be published. The diagram in Figure 47 illustrates the described workflow.

Regarding the decision procedure, our monitor implementation is based on automata. More specifically,

we implement monitors as state machines whose states and transitions reflect observed messages that

are relevant for the property. Naturally, different scopes and property patterns lead to different state

machines. In spite of these differences, however, from a high-level point of view, the handling of property

scopes changes little from pattern to pattern. Thus, we divide the presentation of our approach by pattern,

and discuss scopes where appropriate. Furthermore, binary property patterns (Precedence, Response,

Prevention) are quite more complex than unary patterns (Absence, Existence), due to the possible cross-

references between message contents, e.g., ‘/a as A causes /b {x = @A.x}’. If there are no such

references, the resulting state machines are much simpler. So, besides the division by pattern, we also

subdivide binary patterns into the simple and the general cases.

We provide state machine diagrams for each discussed pattern, according to the notation in Figure 48,

to help illustrate our approach. All diagrams reflect the implementation for the after-until scope, which
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Figure 48: Notation for state machine diagrams.

is the most complex (and least efficient) case. The monitor start-up (or launch) event is an event that is

automatically triggered on the monitor, once the ROS node is fully initialised. The state transitions via

activator message do not exist for the globally and until scopes, since these scopes do not have a

corresponding activator event (they start at the initial instant). In these cases, this transition is replaced

with an implicit event that triggers once, right after the monitor’s start-up event. The state transitions via

terminator message do not exist for the globally and after scopes, since these scopes do not have a

corresponding terminator event (they never terminate). These differences lead to optimisations that we will

discuss further.

6.4.1 Absence Properties

The monitors for Absence properties implement the state machine shown in Figure 49.

Absence properties are stated in the negative form, e.g., ‘no /bumper {data < 0 or data > 7}’. Intu-

itively, to detect a violation, monitors have to look for messages that match exactly the undesired behaviour

pattern, i.e., what comes after no (any message on /bumper such that data < 0 or data > 7 in this case).

As shown in the diagram, this state machine is composed of three non-final states.

I n a c t i v e S t a t e This is the initial state. In this state, the monitor ignores all messages related to the

inner pattern of the property. It is actively looking only for the necessary events to enter the scope of the

property. Upon observing the scope’s activator event, it transitions to the Active state.

A c t i v e S t a t e In this state, the monitor assumes that the trace is within a valid scope. It is actively

looking for messages that match the behaviour event or messages that terminate the scope. Upon observing

any messages that match the behaviour, a verdict of ⊥ is produced – the property states that there should
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Figure 49: State machine monitoring for the Absence pattern.

be none, after all. Upon observing the scope’s terminator event, it simply transitions back to the Inactive

state. In the case that the original property includes a timeout (e.g., ‘no /bumper within 100 ms’), once

the specified duration elapses (100 milliseconds in), the monitor transitions to the Safe state.

S a f e S t a t e In this state, the monitor assumes that the trace is within a valid scope. The monitor

only reaches this state once the property’s timeout elapses. As per the language’s semantics, once the

timeout elapses, it is no longer possible to violate the property; even if we observe messages matching the

behaviour event. Thus, this state is deemed safe, i.e., it cannot transition to a verdict of ⊥ by any means.

Upon observing the scope’s terminator event, it simply transitions back to the Inactive state. A timeout

cannot make the monitor transition directly to the Inactive state because, upon observing an activator

message (within the same scope), it would transition back to the Active state, which is incorrect. The

monitor must observe, at least, one terminator message before it tracks further scope activators.

Optimisations

An immediate fact about the presented diagram is that there are no final states with a verdict of⊤, implying

that Absence monitors can never deem a property as being true based on the observation of a trace prefix.

Considering that the semantics operate on infinite traces, and that the after-until scope can occur

infinitely often (due to being reentrant), it is, indeed, impossible to reach a verdict of ⊤. But this does not

apply to all scopes.

The globally and the after scopes do not have a terminator. If we remove the transitions via terminator

event from the diagram, we are left with no transitions out of the Safe state. Thus, the Safe state degenerates

into a final state. In this case, it degenerates into a verdict of⊤ because, as previously stated, it is impossible

to violate the property when in the Safe state.

Furthermore, the globally and the until scopes do not have an activator. In this case, the monitor’s

start-up event can take the monitor directly into the Active state, making it the new initial state. When a

terminator is observed (for the until scope), the monitor transitions from the Active or the Safe states
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Figure 50: State machine for the Absence pattern with the globally scope.

Figure 51: Monitoring example for the Absence pattern.

to the Inactive state. The Inactive state becomes a final state, since there are no activators, and, again,

degenerates into a verdict of ⊤ – once out of the scope, it is impossible to violate the property.

With the two aforementioned optimisations in mind, we can now observe the reduced state machine for

the globally scope, for example, in Figure 50.

Example

As a practical example of an Absence monitor, consider the following property of the Fictibot system,

1 globally: no /bumper {data < 0 or data > 7}

And the following trace of messages, which constitutes a violation to the property.

1 @50ms /bumper {data: 0}

2 @100ms /bumper {data: 8}

Note that we only list messages on the relevant topics (i.e., /bumper). Other messages have no effect

on the monitor. The resulting sequence of monitor states is shown in Figure 51.

Since the scope is implicit (globally), the monitor transitions directly to the Active state, considering

the reduced state machine. And it shall remain in this state until a verdict is produced, for there is

no scope terminator. The first message matches the behaviour topic, but, for the value 0, the event

predicate (‘data < 0 or data > 7’) is false; the message is not a match. In this case, non-matching

messages represent valid system behaviour. The second message, with a value of 8, matches the predicate

(‘data > 7’), which, as expected, leads the monitor through a transition to a verdict of ⊥.
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Figure 52: State machine monitoring for the Existence pattern.

6.4.2 Existence Properties

The monitors for Existence properties implement the state machine shown in Figure 52.

Existence properties (e.g., ‘some /bumper within 1000 ms’) require the observation of at least one

message matching the behaviour pattern, within the scope and the specified timeout. Intuitively, to detect

a violation, there must not be any matching message until the scope terminates or the timeout elapses. As

shown in the diagram, this state machine is composed of three non-final states.

I n a c t i v e S t a t e This is the initial state. In this state, the monitor ignores all messages related to the

inner pattern of the property. It is actively looking only for the necessary events to enter the scope of the

property. Upon observing the scope’s activator event, it transitions to the Active state.

A c t i v e S t a t e In this state, the monitor assumes that the trace is within a valid scope. It is actively

looking for messages that match the behaviour event or messages that terminate the scope. Upon observing

a message that matches the behaviour, it transitions to the Safe state – the property can no longer be

violated within that scope. Upon observing the scope’s terminator event, it produces a verdict of⊥, because

the monitor expected at least one behaviour message within the scope. The same applies if the specified

pattern duration elapses.

S a f e S t a t e In this state, the monitor assumes that the trace is within a valid scope. The monitor

only reaches this state after a behaviour message has been observed. As per the language’s semantics,

after observing a behaviour message, it is no longer possible to violate the property within the same scope.

Thus, this state is deemed safe, i.e., it cannot transition to a verdict of ⊥ by any means. Observing further

behaviour messages has no effect. Upon observing the scope’s terminator event, it simply transitions back

to the Inactive state.
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Figure 53: State machine for the Existence pattern with the globally scope.

Optimisations

The state machine for Existence properties, like the state machine for Absence properties, features no

final states with a verdict of ⊤. The reasoning is the same: the semantics operate on infinite traces, and

the after-until scope can occur infinitely often. At any given moment, the monitor is either unsure, or

it is certain that a violation has occurred. As was the case with the previous pattern, there is room for

optimisation, for other scopes.

The globally and the after scopes do not have a terminator. If we remove the transitions via terminator

event from the diagram, we are left with no transitions out of the Safe state. Thus, the Safe state degenerates

into a final state, with a verdict of⊤. There is also one less transition from Active to a verdict of⊥, meaning

that the only way to falsify the property is via timeout.

The globally and the until scopes do not have an activator. As we have seen before, the monitor’s

start-up event can take the monitor directly into the Active state, making it the new initial state. In a similar

fashion to the Absence pattern, the Inactive state becomes a final state, since there are no activators. In

this case, only the Safe state can transition into the Inactive state, meaning that, again, it degenerates into

a verdict of ⊤. We can take this further – the Safe state has only a single transition, into a verdict of ⊤.

Thus, we can safely replace the Safe state with the final state, and remove the Inactive state entirely.

With the two aforementioned optimisations in mind, we can now observe the reduced state machine for

the globally scope, for example, in Figure 53.

Example

As a practical example of an Existence monitor, consider the following property of the Fictibot system:

1 until /stop_cmd: some /bumper within 1000 ms

This property states two things. First, that there are no /stop_cmd messages before /bumper messages.

Second, that the publisher of /bumpermessages takes, at most, one second to initialise and start publishing.

Consider the following trace of messages (i), which constitutes a valid execution,

1 @100ms /bumper {data: 1}

2 @110ms /stop_cmd {}

And the following trace (ii), which constitutes a violation to the property via timeout.
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Figure 54: Monitoring examples for the Existence pattern.

1 @1050ms /bumper {data: 1}

2 @1100ms /stop_cmd {}

The resulting sequence of monitor states is shown in Figure 54.

Since the scope’s activator is implicit (until), the monitor transitions directly to the Active state. In (i),

the first message matches the behaviour topic, within the specified time window, causing a transition to

Safe. But, as we have just discussed, for the until scope, we can collapse the Inactive and the Safe states

into a single final state, with a verdict of ⊤. The terminator that comes afterward, then, is irrelevant, since

a decision is already made. In (ii), the first behaviour message only arrives after 1050 milliseconds have

elapsed. By that time, the state timer on Active has already ran out, and a verdict of ⊥ has been produced.

6.4.3 Precedence Properties (Without Variable References)

The monitors for Precedence properties (without variable references) implement the state machine shown

in Figure 55.

Precedence properties are binary in the sense that a behaviour event requires a precondition event to

have happened before, e.g., ‘/stop requires /bumper within 100 ms’. For this complex pattern, both

the behaviour and the precondition are monitored at the same time. Valid precondition messages are

logged, and behaviour messages trigger a precondition check. Without variable references, logging boils

down to keeping track of timestamps, i.e., when was the last precondition message observed. Intuitively, to

detect a violation, we must observe a behaviour message without having observed any previous precondition

messages (at all, or, at least, within the specified time window). As shown in the diagram, this state

machine is also composed of three non-final states. It works similarly to the Absence state machine, with

the major difference being its Safe state.

I n a c t i v e S t a t e This is the initial state, and it works the same way as the Inactive states of other

state machines seen so far. The monitor is actively looking for activator events and ignoring all other

messages. Upon observing the scope’s activator event, it transitions to the Active state.
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Figure 55: State machine monitoring for the Precedence pattern (without variable references).

A c t i v e S t a t e In this state, the monitor assumes that the trace is within a valid scope. It is actively

looking for messages that match the behaviour event, messages that match the precondition event or

messages that terminate the scope. As is the case when monitoring Absence properties, upon observing a

message that matches the behaviour, a verdict of ⊥ is produced – the property states that there should be

none without the proper precondition. Upon observing a precondition message, the monitor transitions to

the Safe state. Upon observing the scope’s terminator event, it simply transitions back to the Inactive state.

S a f e S t a t e In this state, the monitor assumes that the trace is within a valid scope. The monitor only

reaches this state after observing a precondition message. Observing behaviour messages in this state has

no effect; a precondition is already in place to validate the behaviour. In the case that the original property

includes a timeout, once the specified duration elapses, the monitor transitions back to the Active state, as

the observed precondition message is no longer valid. Observing further precondition messages renews

the timer on this state (if applicable). Upon observing the scope’s terminator event, it simply transitions

back to the Inactive state.

Optimisations

The state machine for Precedence properties, like the previous state machines for unary patterns, features

no final states with a verdict of ⊤. This is a recurring issue, always for the same reasons: the semantics
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Figure 56: State machine for the Precedence pattern with the globally scope.

operate on infinite traces, and the after-until scope can occur infinitely often. We can short-circuit some

transitions for other scopes, as we have done in the previous cases.

The globally and the after scopes do not have a terminator. If we remove the transitions via terminator

event from the diagram, we are left with a monitor that can only leave the Safe state via timeout. If a

timeout is not specified, then there are no further transitions out, and the Safe state degenerates into a

final state, with a verdict of ⊤.

The globally and the until scopes do not have an activator. As we have seen before, the monitor’s

start-up event can take the monitor directly into the Active state, making it the new initial state. In a similar

fashion to the Absence pattern, the Inactive state becomes a final state, since there are no activators.

Again, this state degenerates into a verdict of ⊤. If a timeout is not specified, the only transition out of the

Safe state is to this verdict. In that case, we can collapse the Safe state directly into the verdict of ⊤.

With the two aforementioned optimisations in mind, we can now observe the reduced state machine for

the globally scope, for a property with timeouts, in Figure 56.

Example

As a practical example of a Precedence monitor, consider the following property of the Fictibot system,

1 after /state {data > 0} until /state {not data > 0}:

2 /stop_cmd requires /high_priority_stop within 100 ms

And the following trace of messages, which constitutes a violation to the property via timeout.

1 @100ms /state {data: 1}

2 @200ms /high_priority_stop {}

3 @400ms /stop_cmd {}

The resulting sequence of monitor states is shown in Figure 57.

By default, the monitor starts in the Inactive state. After observing the activator message, it transitions

to the Active state, in which it listens both for precondition and behaviour messages. In this case, a

precondition happens to be observed first, causing the transition to the Safe state. However, more than

100 milliseconds pass until the next message. The absence of messages triggers the timer transition on the

Safe state, and the monitor reverts to the Active state; the observed precondition is no longer valid. When
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Figure 57: Monitoring example for the Precedence pattern (without variable references).

the behaviour message is finally received, since there are no valid precondition messages, the monitor

produces a verdict of ⊥.

6.4.4 Precedence Properties (General Case)

The monitors for Precedence properties (in general) implement the state machine shown in Figure 58.

The intuition for Precedence properties with variable references, e.g., ‘/b as B requires /a {data =

@B.data} within 100 ms’, is the same as in the simple case. To detect a violation, we must observe a

behaviour message without having observed any previous matching precondition messages (at all or, at

least, within the specified time window). But, in this case, we require a more complex logging structure.

Every precondition message has to be recorded individually, along with its timestamp, for the specified

duration (e.g., 100 milliseconds). After this duration has elapsed, the log entry can be safely discarded. If

the duration is left unspecified, log entries have to be kept until the end of the scope. This is due to the

fact that we do not have the entire trace up front, and are unable to predict the future, contrary to offline

monitors.

As shown in the diagram, this state machine is composed of multiple states. The number is dynamic,

and cannot be determined in advance. In essence, they are all the same, except for the number of entries

that is still valid (i.e., within its duration) in the precondition message log.

I n a c t i v e S t a t e This state works in the same fashion as the Inactive states of the state machines

presented so far. Upon observing the scope’s activator event, the monitor transitions to the Active-0 state.

A c t i v e - 0 S t a t e In this state, the monitor assumes that the trace is within a valid scope. There

are no entries in the precondition message log. The monitor is actively looking for messages that match

the behaviour event, messages that match the precondition event or messages that terminate the scope.
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Figure 58: State machine monitoring for the Precedence pattern.

Upon observing a message that matches the behaviour, a verdict of ⊥ is produced – the property states

that there should be none without the proper precondition. Upon observing a precondition message, the

monitor adds it to the message log, along with its timestamp, and transitions to the Active-1 state (an

instantiation of the Active-n state). Upon observing the scope’s terminator event, it simply transitions back

to the Inactive state.

A c t i v e - n S t a t e This is a generic state that is instantiated every time a precondition message is

observed and added to the log (Active-1, Active-2, etc.). In this state, the monitor assumes that the trace is

within a valid scope. It is actively looking for messages that match the behaviour event, messages that

match the precondition event or messages that terminate the scope. Upon observing a message that

matches the behaviour, the message log is queried. If there is a matching precondition message for the

current behaviour message, the monitor remains in the same state. If there is no matching precondition

message, a verdict of ⊥ is produced. Upon observing a precondition message, the monitor adds it to the

message log, along with its timestamp, and transitions to the next Active-n state (Active-2 if it is in Active-1,

etc.). Upon observing the scope’s terminator event, it simply transitions back to the Inactive state. If a

timeout is specified in the property, this state keeps track of the current time. If the oldest message in

the log expires, it is removed from the log and the monitor transitions to an 𝑛 − 1 state (Active-1 if it is in

Active-2, etc.). If the message log becomes empty, the monitor transitions back to the Active-0 state.
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Figure 59: State machine for the Precedence pattern (general case) with the until scope.

Optimisations

This is the first state machine seen so far where there is a valid concern regarding space efficiency.

Successive precondition messages cause the message log to grow, possibly until the monitor runs out of

available memory. One way to alleviate this issue is by specifying timeouts in the properties. Log entries

can be safely dropped after their duration expires, as mentioned. Another way to make space management

more efficient is by not storing entire messages. With a simple static analysis step over the property,

during monitor generation, we can determine which data fields are directly referenced. Those are the only

fields we need to store in the log, which could turn out to make a significant difference (e.g., storing a

floating-point number, versus storing an entire odometry message).

Contrary to the trend set by the previous patterns, there are not many states and transitions we can

remove for the globally, after and until scopes. If we remove the transitions via terminator event from

the diagram, we are still left with a monitor that is unable to reach a verdict of ⊤. Removing timeouts, in

addition to terminators, makes no difference in this case, because of the Active-n state. This state can

always increase its counter (and provide an opportunity for failure) with additional precondition messages.

By removing only the activator, however, in the until scope, we are able to degenerate the Inactive state

into a verdict of ⊤. In practice, this is the same as working with a finite trace that ends with the terminator

message. Hence, all possible continuations of the trace after the terminator message are effectively

equivalent. This optimisation is depicted in the reduced state machine shown in Figure 59.

Example

As a practical example of a Precedence monitor, with variable references, consider the following property

of the Fictibot system,

1 after /state {data > 0} until /state {not data > 0}: /controller_cmd as CMD
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Figure 60: Monitoring example for the Precedence pattern (with variable references).

2 requires /high_priority_cmd {data = @CMD.data} within 100 ms

And the following trace of messages, which is invalid behaviour.

1 @100ms /state {data: 1}

2 @200ms /high_priority_cmd {data: 1.0}

3 @250ms /high_priority_cmd {data: 0.8}

4 @325ms /controller_cmd {data: 1.0}

The resulting sequence of monitor states is shown in Figure 60.

By default, the monitor starts in the Inactive state. After observing the activator message, it transitions

to the Active-0 state, in which it listens both for precondition and behaviour messages. In this case,

a precondition happens to be observed first, causing the transition to the Active-1 state. The monitor

now contains ‘/high_priority_cmd {data: 1.0}’ in its message log. A second precondition message,

‘/high_priority_cmd {data: 0.8}’, is registered, causing a transition to the Active-2 state. However,

more than 100 milliseconds pass, since the first precondition, until the next message. The passage of

time triggers an update to the message log, causing ‘/high_priority_cmd {data: 1.0}’ to be discarded,

and the monitor reverts to the Active-1 state. Finally, the monitor observes a behaviour message, which

must contain the same data as the single entry on the log, i.e., the value 0.8. This is not the case, and a

verdict of ⊥ is produced.

6.4.5 Response Properties (Without Variable References)

The monitors for Response properties (without variable references) implement the state machine shown in

Figure 61.

By this point, we can see that all monitors, regardless of their pattern, share a number of common

states and traits. To avoid repetition, we will skim over the similarities and focus on the differences.

Response properties are binary liveness properties, stating that a stimulus (or precondition) event leads

to an eventual response (or behaviour) event, e.g., ‘/bumper causes /stop within 100 ms’. This pattern
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Figure 61: State machine monitoring for the Response pattern (without variable references).

enforces an ordering over messages, which allows monitoring to be sequential. The response event only

needs to be monitored after (and if) a stimulus event has been observed. Intuitively, to detect a violation,

we must observe a stimulus message for which no response message is observed afterwards (at all, or, at

least, within the specified time window). As shown in the diagram, this state machine is composed of three

non-final states.

The main novelty in this state machine is that the Inactive state transitions to a Safe state, rather than

an Active state. This is due to the aforementioned ordering over messages. We are only at risk of violating

a property after a stimulus message is observed. In the Active state, observing further stimuli (besides the

first one) has no effect because the first stimulus will always be the one with the oldest timestamp, and the

one with the shortest time remaining on the associated timer. Upon observing a message that matches

the response, the monitor transitions back to the Safe state – one response suffices to match all previous

stimuli.

The usual optimisations apply here. Removing the activator turns Inactive into a final state with a verdict

of ⊤. Removing only the terminator or only the timeout does not yield much of an improvement. Removing

both (globally or after scope with no specified timeout), however, collapses the whole state machine

into a loop between Safe and Active that never reaches any verdict. In other words, monitoring unbounded

liveness properties (e.g., ‘globally: /a causes /b’), is pointless, as previously discussed.
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Figure 62: Monitoring example for the Response pattern (without variable references).

As an example of a Response monitor, consider the following property of the Fictibot system,

1 globally: /bumper {not data = 0} causes /normal_priority_stop within 200 ms

And the following trace of messages, which constitutes invalid behaviour.

1 @100ms /bumper {data: 1}

2 @400ms /normal_priority_stop {}

The resulting sequence of monitor states is shown in Figure 62.

By default, the monitor starts in the Safe state, since the scope activator is implicit. After observing the

stimulus message, it transitions to the Active state, in which it awaits a response message. The response

message is not observed within the time window, leading the monitor to a verdict of ⊥.

6.4.6 Response Properties (General Case)

The monitors for Response properties (with variable references) implement the state machine shown in

Figure 63.

The intuition for Response properties with variable references, e.g., ‘/a as A causes /b {data =

@A.data} within 100 ms’, is the same as in the simple case. To detect a violation, we must observe a

stimulus message, but not a matching response message (at all or, at least, within the specified time

window). But, in this case, we must maintain internal state across states, i.e., we must log stimulus

messages, just like we had to log precondition messages in the Precedence pattern. Also in similar fashion

to the Precedence pattern, this state machine is composed of a dynamic number of states, depending on

how many unmatched stimuli have been observed.

Every stimulus message has to be recorded individually, along with its timestamp, for the specified

duration. If this duration runs out, we have detected a property violation. If the duration is left unspecified,

log entries have to be kept until the end of the scope. Again, there are concerns regarding space efficiency,

but we can optimise logging by storing just the data fields that have been directly referenced in the property.

In addition, observing a valid response message enables us to remove all matching stimuli entries from the

message log.

As an example of a Response monitor, with variable references, consider the following property of the

Fictibot system,

1 after /state {data > 0} until /state {not data > 0}: /high_priority_cmd as CMD
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Figure 63: State machine monitoring for the Response pattern (with variable references).

2 causes /controller_cmd {data = @CMD.data} within 100 ms

And the following trace of messages, which constitutes a violation.

1 @100ms /state {data: 1}

2 @200ms /high_priority_cmd {data: 1.0}

3 @210ms /high_priority_cmd {data: 0.8}

4 @250ms /controller_cmd {data: 0.8}

The resulting sequence of monitor states is shown in Figure 64. There is nothing surprising in this

example. The monitor enters the scope and receives two stimulus messages. However, only the second

stimulus, with data = 0.8, received a response, causing the monitor to report a violation regarding the

first stimulus.

6.4.7 Prevention Properties

At last, we present the monitors for Prevention properties. Since there is little novelty at this point, there

is little need to separate the cases with and without variable references. The state machine in Figure 65

corresponds to the simple case, whereas the state machine in Figure 66 covers the general case.
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Figure 64: Monitoring example for the Response pattern (with variable references).

The Prevention pattern is a binary safety property that is very similar to the Response pattern, regarding

monitoring. The main difference is that a stimulus event leads to the absence of a response event, e.g.,

‘/bumper forbids /cmd within 100 ms’. While in the Active state, observing a response produces a

verdict of ⊥; responses must not be observed in this state. In the case that the original property includes a

timeout, once the specified duration elapses, the monitor simply transitions back to the Safe state; the

observed stimuli up to that point are no longer valid. The timer starts counting from the moment the

monitor enters this state, i.e., after the stimulus message that caused the transition. Observing further

stimuli restarts the timer.

For Prevention properties with variable references, as in the previous binary patterns, we must log

stimulus messages (or their relevant data fields) along with the respective timestamp for the specified

duration. If this duration runs out, the entry can be safely dropped from the log.

As an example of a Prevention monitor with variable references consider the following property of the

Fictibot system,

1 after /state {data > 0} until /state {not data > 0}: /high_priority_cmd as CMD

2 forbids /controller_cmd {not data = @CMD.data} within 100 ms

And the following trace of messages, which constitutes a violation.

1 @100ms /state {data: 1}

2 @200ms /high_priority_cmd {data: 1.0}

3 @210ms /high_priority_cmd {data: 0.8}

4 @250ms /controller_cmd {data: 0.8}

After observing the activator message, a stimulus message eventually arrives, causing a transition

to the Active-1 state. The monitor now contains ‘/high_priority_cmd {data: 1.0}’ in its message log.

A second stimulus message, ‘/high_priority_cmd {data: 0.8}’, is registered, causing a transition to

the Active-2 state. When the monitor observes a behaviour message, ‘/controller_cmd {data: 0.8}’,

it matches as a response to the second stimulus message. Thus, a verdict of ⊥ is produced; such a

behaviour message would have to wait another 60 milliseconds before it could be published.
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Figure 65: State machine monitoring for the Prevention pattern (without variable references).

Figure 66: State machine monitoring for the Prevention pattern (with variable references).
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6.5 Summary

In this chapter we have presented our first approach to check whether a ROS system complies with

its behavioural specification. Contrary to previous chapters, we have deviated from static analyses. We

proposed an approach based on Runtime Verification, in which runtimemonitors are automatically generated

from a specification and an architectural model. Monitors are then deployed as ROS nodes that passively

observe exchanged messages and produce a message of their own, containing a verdict regarding the

property.

Even though this approach is not one of the core contributions of this thesis, it is an utility on its own,

and a building block for other approaches, such as the one we present in Chapter 7. Besides, this is the

first Runtime Verification approach for ROS that is based on a high-level, pattern-oriented specification

language, that is able to capture both real-time constraints as well as cross-references between messages.
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P RO P E R T Y - B A S E D T E S T I N G F O R RO S A P P L I C A T I O N S

Showing that a system behaves as expected, with concrete evidence, is not an easy problem to solve. One

method that stands out in the software industry for its efficiency and typically shallow learning curve, to

the point of being almost mandatory, is software testing [136]. Testing is capable of improving the rate of

early failure detection, and the overall quality assurance of a system, with relatively little effort. It does not

suffer from being an undecidable problem, as some static analysis techniques do, but it only proves the

presence of faults, not their absence.

There is a long tradition of building tests by hand, by choosing test cases that seem interesting to the

eye of the developer. However, manual software testing is hard to maintain for any non-trivial project. The

number and complexity of tests quickly becomes unmanageable. Automated test case generation, on the

other hand, is able to explore a large space of the input domain and detect subtle bugs, at the cost of some

kind of specification – cf. Specification-based Testing [25], Model-based Testing [53] or Property-based

Testing [64] (PBT).

Specification-based Testing and Property-based Testing are of particular interest to us. The former deals

with the generation of test strategies from formal specifications of a system in terms of its input and output.

The latter handles input space exploration and test execution for general properties (often in the form of

assertions), rather than testing by example. The appeal of these testing techniques is evident, given our

context.

In Chapter 4 we propose a property specification language with formal semantics that (i) can serve

as a basis to generate tests, and (ii) alleviates the main burden of Property-based Testing – i.e., to write

properties of the system’s behaviour. Furthermore, both techniques favour a black-box testing approach,

which pairs well with HAROS, as it builds architectural models (Chapters 3 and 5) that define the system’s

inputs and outputs (ROS topics, in this case).

In this chapter, we propose a new approach to provide evidence that a system’s behaviour complies

with its behavioural specification. Inspired in Specification-based Testing, we will identify various test

strategies for each property type. Each test strategy boils down to an input trace schema – an abstract

trace of messages with constraints, intended to stimulate the system under test (SUT). Then, we use a

PBT tool to automatically instantiate the schema, exercise the SUT with a variety of examples and report

counterexamples. To detect whether a property is violated with the instantiated input trace, we rely on our

Runtime Verification approach, described in Chapter 6.

152
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This mixed approach, combining elements of Specification-based Testing, Property-based Testing and

Runtime Verification, is implemented as a HAROS plug-in that we also present in this chapter. The plug-in,

which is essentially a test generator, takes an architectural model and a behavioural specification as inputs.

For each specified property, it determines the appropriate input trace schemas and generates a ROS PBT

node, using metaprogramming and source code templates. Each node, in turn, contains data generators

for the PBT tool to instantiate schemas, and is able to deploy the SUT and the appropriate runtime monitors.

An early prototype of this approach, focusing just on the Property-based Testing and test execution part,

has been published in [150]. The specification language had not yet been designed at that stage, meaning

that the tests did not target any property in particular right out-of-the-box, nor did they follow a specific test

strategy. The current approach, in comparison, is much more mature. An evaluation of its current form in

presented in Chapter 8.

7.1 State of the Art

The domain of Software Testing is known to be vast, with a multitude of approaches and techniques

being proposed since the early times of software development. They range in scope (e.g., Unit Testing

versus Integration Testing and System Testing), in generation method (manual versus automated) and

assumptions about the system under test (white-box testing versus black-box testing), for example. In this

section we can only skim the surface of this research topic, by discussing the work that relates the most

to our own approach. Namely, we focus on Specification-based Testing and Property-based Testing, two

testing techniques that, so far, have not yet been explored in the domain of ROS.

7.1.1 Specification-based Testing

Specification-based Testing, also known as Behaviour-based Testing, is a testing technique that is based on

a formal specification of the system’s behaviour in terms of its inputs and outputs (i.e., requirements). The

specifications are based on mathematical semantics such as temporal logic. The main goal of this technique

is to provide a systematic way of deriving test cases (a testing strategy), based on the characteristics of the

inputs – for instance, by partitioning the specified inputs in different categories. Describing a system in

terms of its inputs and outputs means that it is a black-box testing technique, i.e., implementation details

are left out of the specification.

Note: The term Specification-based Testing is sometimes used interchangeably with the

term Property-based Testing. In this thesis, we assume different definitions, as seen, for

instance, in [11]. Both techniques are based on desired properties of a program, but, as

we will see, there is a subtle difference between the two. Specification-based Testing has

a notion of identifying relevant input or test classes from the specification. Property-based

Testing works closer to the execution level; properties are more akin to program assertions,

and input exploration does not necessarily follow a strategy.
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The testing approach that we take draws significant inspiration from Specification-based Testing. Like

other Specification-based Testing approaches, we also automatically generate tests from a specification

with mathematical semantics (see Chapter 4), treating systems as black-boxes with inputs and outputs.

Only, in this case, inputs and outputs are ROS messages sent over topics, rather than, e.g., function calls.

We are not aware of existing work in Specification-based Testing for Metric First-Order Temporal Logic

specifications, but some approaches based on the simpler Linear Temporal Logic [12, 31, 125, 128, 161]

provide the foundations of our test generation method.

Tan et al. [161] propose a property-coverage metric that measures how well a given LTL property is

tested by the test suite. This metric, which is based on requirement mutation, drives their approach,

as it is used to convert the original formula into a finite set of formulae characterising non-trivial tests.

Formulae are fed to a model checker whose counterexamples are then used to generate concrete test

cases. Although the number of tests is finite, witnesses from the model checker may have infinite length, if

they contain loops. Their second contribution is a method of exploiting the infinite-length test structures,

and boil them down to equivalent, finite tests.

Michlmayr et al. apply Specification-based Unit Testing to Java publisher-subscriber applications [125].

In the specification phase, the Java programs are annotated with LTL pre-conditions, post-conditions

and invariants. Aiming to test components in isolation (the Unit Testing aspect of their approach), they

replace the actual publisher-subscriber infrastructure with a mock. The execution traces are sequences of

state snapshots of the tested component, rather than sequences of published/received messages. Such

snapshots are obtained at runtime, by the mock infrastructure, by using Java’s reflection capabilities –

which, arguably, goes against the black-box testing principles. There are no timed updates in this approach,

snapshots are only built after publish or notify events. In addition, their approach is limited in terms

of specification; it evaluates safety properties but not liveness properties. Despite being an interesting

approach, it is not applicable to our context for three reasons:

1. we do not focus on testing components in isolation, but rather on a testing approach that handles

black-box systems of any size;

2. ROS applications are composed of multiple processes and not amenable to introspection via

reflection, as opposed to Java in-memory objects;

3. it is straightforward to capture exchanged messages in a ROS system without replacing the whole

publisher-subscriber infrastructure with a mock.

The usefulness of Specification-based Testing in the context of black-box reactive systems has been

noted multiple times [12, 31, 128], but Bloem et al. deem requirements to be too abstract to fully predict

the behaviour of these systems [31]. They argue that generated test cases have to adapt to the system

behaviour at runtime, and should follow fault-based testing techniques (such as mutation testing). The

argument in favour of fault-based testing is their ability to catch all faults of a given class. Thus, their

approach asks the user for a system specification and a fault model defining coverage goals (rather than

a behaviour model), both specified in LTL. These artefacts make the basis for their reactive synthesis

process, which works with partial information while providing strong guarantees. One such guarantee is
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that if the synthesis process is successful and tests run long enough, they reveal all faults defined in the

given fault model.

As in our approach, Bloem et al. resort to Runtime Verification to build a test oracle, and the adaptive

test strategies are based on state machines, where the goal is to explore different paths to a target state. A

distinctive characteristic of their contribution is that, by default, the generated test cases are able to detect

and categorise faults along four categories:

1. Once for faults that happen at least once;

2. Repeatedly for faults that happen multiple times during test execution;

3. From some point on for faults that happen after a certain triggering point, possibly multiple times;

4. Permanently for faults that happen in all cases.

The generated tests aim for the weakest category first, i.e., they try to falsify the requirements at least

once. Then, they progressively move towards the stronger categories, by trying to replicate the faults

multiple times in the same trace and to find their scope, until no further progress is achieved and the final

fault category is determined. In addition to the four listed categories, users are also allowed to define new

categories using LTL formulae.

The trend of online testing for reactive systems, i.e., the execution of test cases as they are generated,

continues in the work of Arcaini et al. [12]. This approach is more similar in concept to the one we propose

in this chapter. From a given LTL specification over sequences of method calls in Java programs, they start

by generating an online monitor based on Büchi automata. The generated monitor serves two purposes:

• to detect violations in runtime, i.e., to play the role of an oracle;

• to provide an automaton whose states are used to generate test cases.

The online tests dynamically generate sequences of inputs that visit the different monitor states using

either a random walk or a guided walk. In addition, they propose the following coverage criteria based on

the monitor automata.

• State Coverage: each state of the monitor is visited.

• Method Coverage: each Java method that exits a given state is visited.

• Transition Coverage: each state transition is visited; this is not the same as Method Coverage

because transitions may involve various methods, and a single method may be part of multiple

transitions.

• Atomic Proposition Coverage: each atomic proposition of a transition’s formula is visited.

• n-Transition Coverage: Transition Coverage, done 𝑛 times in the same trace.

• n-Atomic Proposition Coverage: Atomic Proposition Coverage, done 𝑛 times in the same trace.

Note that the coverage criteria are hierarchical. Method and Transition coverage subsume State coverage;

Atomic Proposition coverage subsumes both Method and Transition coverage; and the 𝑛 variants naturally

subsume their singleton counterparts.
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The goal of this procedure is to generate test sequences until full coverage is achieved for a given

criterion. Using a random walk, as implied by the name, the criterion is the stopping rule of the process,

while the steps of the automaton visit are chosen at random. Using a guided walk the criterion itself is

used to select the visit paths. In the event that a goal is too difficult (or impossible) to achieve, a limit of

retries is also fed to the generator after which it gives up. Some weaknesses of this approach include its

disregard for method parameters, its inability to report which LTL property has been violated once a failure

is detected and its focus on safety properties.

Lastly, Narizzano et al. build upon the approach of Arcaini et al [12] but target a more general class

of properties [128]. Namely, co-safety properties (“something good will happen”), a proper subclass

of liveness properties is also considered. This approach takes in a LTL specification and from it builds

corresponding Büchi automata. As in the previous approach, the automata are visited to generate the

concrete sequences of input and output pairs that constitute test cases. The proposed methodology

consists in the following steps.

1. Start the visit from the Büchi automaton’s initial state.

2. Generate a sequence of inputs to feed the black-box reactive system and obtain the corresponding

sequence of outputs from the system.

3. Compare the input and output pairs with what the sequences predicted by the automaton; the

absence of a corresponding state for an input-output pair produced by the system constitutes a

violation.

These three steps are iterated, for different sequences of inputs and outputs, until either:

• an acceptance state is reached with a sequence of length equal to or greater than a given minimum;

or

• an acceptance state cannot be reached with sequences of length equal to, or lesser than, a given

maximum.

The whole process is then iterated to obtain multiple tests that visit each reachable transition at least

once, thus achieving coverage.

7.1.2 Property-based Testing

Property-based Testing [64] (PBT) is the construction of test cases that check whether a piece of code

(function, program, etc.) conforms with a certain property. This technique feeds the tested code data from

a large corpus, possibly dynamically generated, possibly dependent on the results of execution on previous

data, in an attempt to make it fail and reveal underlying problems. For instance, given any list 𝑥𝑠, it should
be true that reversing the list twice yields the original list, i.e., reverse(reverse(𝑥𝑠)) = 𝑥𝑠. This general
property is the test case, for which a PBT library would generate a number of input lists, of varying sizes

and contents, in an attempt to find a counterexample. We know in advance that this property should be
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true, so the expected outcome is for the PBT library to give up after a reasonable number of examples that

are unable to falsify the property.

Note: To further distinguish Specification-based Testing and Property-based Testing, we

can take a closer look at the previous property example. From the requirements point of

view alone, we know that the property “reversing a list twice yields the original list” should

be valid for any list. As such, there is only one input category, the category containing all

lists. A naïve Specification-based Testing approach would take this fact and generate only

one test, for a random list, since all lists are treated equally. A naïve Property-based Testing

approach, on the other hand, would disregard this fact entirely, and operate on a generator

of lists. It would test a (possibly large) number of lists, in an attempt to find corner cases of

the implementation (e.g., empty lists) that violate the property.

Property-based Testing was made popular with the QuickCheck tool [48] for the Haskell programming

language. In fact, this technique is sometimes informally defined as “what QuickCheck does” [113]. A

number of other implementations, heavily inspired in QuickCheck, has emerged since for other programming

languages, e.g., [14, 112]. The Hypothesis tool [112, 114] is of particular interest in this chapter.

Section 7.3 contains a brief introduction to it.

A common feature among Property-based Testing tools and libraries is called shrinking. Once a

counterexample is found, the testing tool attempts to shrink it, in order to present the user something that

is as close to a minimal counterexample as possible – an invaluable aid in debugging. For instance, by

default, in Hypothesis:

• Boolean parameters shrink towards False (i.e. shrinking will replace True with False where

possible);

• integers shrink towards zero, and negative values also shrink towards positive (i.e., −𝑛 may be

replaced by +𝑛);
• lists shrink by trying to remove elements from the list, and by shrinking each individual element of

the list (in no particular order, possibly both at the same time); and

• dictionaries shrink by trying to remove keys from the generated dictionary, and by shrinking each

generated key and value (also in no particular order, and possibly all at the same time).

PBT has been applied with great success in various contexts. An interesting example is as a teaching

tool [69], where it was used to evaluate student projects in concurrency. Concurrency is notorious for

being hard to get right, especially without the right high-level primitives. In this study, students were being

taught such high-level concurrency primitives, and were asked to implement shared resource specifications

for an automatic warehouse with robots. Simply put, the idea is that a number of robots move with cargo

from warehouse to warehouse using shared corridors. Each corridor only has space for one robot at a time,

and each warehouse has a cargo weight limit. The final project submissions were automatically evaluated,

both with a hand-crafted test suite and with the PBT tool Quviq QuickCheck1 [14]. Quviq QuickCheck was

1 http://www.quviq.com/products/erlang-quickcheck/

http://www.quviq.com/products/erlang-quickcheck/
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used to model a state machine that, in turn, is able to generate test cases. The PBT specifications aimed

to exercise tests to find:

1. a warehouse that admits a new robot and goes beyond the weight limit, or a corridor that admits a

robot even when already occupied by another robot;

2. function calls that the model permits but the implementation blocks;

3. multiple concurrent calls, to find concurrency bugs (a combination of tests 1 and 2).

While many project submissions passed the hand-crafted test suite without an issue, the authors found

that more than half failed with Quviq QuickCheck.

Property-based Testing has seen successful industrial application as well [14, 86]. In a paper introducing

Quviq QuickCheck [14], Arts et al. used PBT to test an implementation of a telecommunications

protocol. They took a black-box testing approach, using Quviq QuickCheck to send messages to the

telecommunications system and assert that its replies were valid, according to the protocol. Message

generators were manually put together, and then validated, over multiple iterations, using Quviq QuickCheck

itself. The system was tested both with a positive testing strategy – to check that it behaves as expected

for valid input – and with a negative testing strategy – to assert that it responds with an error for invalid

input. They were able to find errors that the original test team had also found, manually, but in a fraction

of the time the original team spent. In addition, an older version of the system was also tested, under the

same circumstances, to estimate how much Property-based Testing would have helped, in terms of bug

detection, had it been used earlier. With an investment of just six hours, they were able to uncover nine

faults, some of which corresponded to trouble reports in the developer’s records. The authors estimate

that PBT could detect at least half of the faults associated with all trouble reports, as well as additional

faults that had not yet shown as trouble reports. In an interesting concluding remark, the authors state

that not only is PBT beneficial for its earlier bug detection, it also forces users to formalise restrictions that

would otherwise go undocumented.

John Hughes, one of the authors of QuickCheck, has also published a report [86] of their experiences

and lessons learned with QuickCheck and Quviq QuickCheck, applied to industrial case studies over 15

years. In particular, they go over two industrial case studies in which QuickCheck was used to detect a

large number of bugs. The first case study tested the AUTOSAR Basic Software that runs in every processor

of Volvo Cars vehicles. With about 20 000 lines of QuickCheck specifications, they were able to test a

million lines of C code and find more than 200 problems, of which more than half were inconsistencies or

ambiguities in the AUTOSAR standard itself. The second case study helped detect a bug in Mnesia2, the

databse system that is distributed with the Erlang environment. This bug had been notoriously hard to

find, as it is related to a race condition when accessing records. Where experts spent more than six weeks

hunting for the bug and ending up with no clue as to what the cause might be, QuickCheck was able to

find a minimal counterexample (in about 10 minutes of runtime) that, then, lead to a fix within a single day

– demonstrating the value of shrinking in PBT. Some of the valuable learned lessons are as follows.

1. The same property can find many different bugs.

2 https://erlang.org/doc/man/mnesia.html

https://erlang.org/doc/man/mnesia.html
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2. QuickCheck finds discrepancies – most errors are in the model, not the implementation.

3. Having minimal failing examples makes debugging easier.

4. Formulating specifications is hard and many developers struggle with it.

5. Working with concrete examples is far simpler than to work with general properties, but it is

impracticable to test everything by example.

Duregard [57] considers Property-based Testing to be easy to learn, but hard to master. PBT requires

little more than boolean functions to get started. One of the main challenges of PBT is to define adequate

data generators for user-defined data types. To address this, they propose a few algorithms (implemented

in Haskell) to derive generators automatically. Another issue is to ensure good test quality – the absence

of a counterexample does not mean that there is none to be found. To address this significant problem,

they introduce a black-box variant of mutation testing. By using higher-order functions (easily achievable

in Haskell and functional programming), they are able to mutate the system’s functions without access

to the source code. Then, by checking whether a test suite can detect the mutated bug, they are able to

estimate property strength – i.e., how accurate and precise a property is, or how close the specification

is to the implementation. Properties can range from tautologies (weak properties) to full specifications

(strong properties), although they find that most properties are somewhere in between; they specify part

of the behaviour. While a combination of black-box Mutation Testing and Property-based Testing is less

rigorous than a white-box variant, it is found to be much more efficient.

Another drawback of Property-based Testing is that input generation is mostly random. An enhanced

variant of PBT, called Targeted Property-based Testing (tPBT) [109] overcomes this problem by using

a guided input search strategy, rather than the traditional random generators. In essence, each input

is attributed a score (based on the respective output), which states how close it was to falsifying a

property. Then, the search strategy dynamically generates inputs that aim to maximise this score, using a

neighbouring function over the input domain (a function that produces the next input in a desired direction).

But this trades one problem for another, as for tPBT to work the user needs to specify the search strategy

and also supply all ingredients that the search strategy requires. This is laborious and makes tPBT less

attractive. However, Löscher and Sagonas propose a tool with an automated search strategy [110], aiming

to overcome this problem. The Hypothesis tool also provides experimental support for this approach.

Perez and Nilsson apply Property-based Testing in the context of Functional Reactive Programming

(FRP) [138] – a functional programming paradigm that is often used in interactive applications, such as

games and graphical user interfaces. Interactive systems are challenging to test. They lack reproducibility,

and generating suitable test data might be hard. To alleviate this issue, a variant of this paradigm, called

Pure Arrowized FRP, separates data processing from all side effects and time sampling code, in an attempt

to remain true to the principles of pure functional programming. This approach makes runs deterministic

and, thus, easier to test and debug. The authors use a causal subset of LTL to extend FRP programs with

temporal assertions, an evaluation function to express properties, and the ability to record and reproduce

input traces. QuickCheck is then used as a generator – starting from a real user trace, QuickCheck takes

a prefix of the trace and produces the subsequent input randomly. In other words, given an interactive
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application, such as a game, and a prefix for an input trace (so that the application is lead to a specific

state), QuickCheck is essentially able to play the game.

Alzahrani et al. try a combination of Property-based Testing andModel Checking for property verification [7].

Their proposed workflow starts with an informal specification of the system, which is properly encoded in a

formal modelling language, such as TLA+ [100]3. Temporal properties are verified on this model, using

standard model checkers or theorem provers. The formal temporal models are, then, translated into a

Scala extension, so that they obtain an executable model of the system. PBT is applied not directly to the

system, but rather to the executable model, in order to find defects.

Closer to the domain of robotics and cyber-physical systems, Löscher et al. apply Property-based Testing

to sensor networks [111]. Specifications are operational, written in Erlang. To avoid dealing with hardware

for the purposes of testing a software system (an issue that is also meaningful in robotics), they rather test

the network within a simulated environment. With this approach, they are able to test both properties of

individual functions (unit testing) as well as network-global properties (a sort of integration testing).

7.2 Prel iminaries

Our approach is based on Specification-based Testing and Property-based Testing principles, as previously

mentioned. We use the former to convert formal properties into specialised test strategies, here called

input trace schemas. We use the latter to automatically explore the input space and test the system with a

variety of valid inputs. Combining the two, we are able to nudge the PBT input generators in a direction that

is more likely to reveal counterexamples. In this section we define some core concepts to our approach

that we will reference throughout the remainder of the chapter.

7.2.1 Open Topics and Open Subscriptions

An open subscription (or open subscribed topic) is any ROS topic in the architectural model that the

system subscribes, but for which there are no corresponding publishers. Consider the Computation

Graph in Figure 67 as an example. It contains three subscriptions: /planner subscribes /position, while

/control subscribes /intent and /sensors. Only /position and /sensors (depicted in blue) are open

subscriptions; there are no publishers on these topics. The other topics have corresponding publishers,

and, thus, do not fit into this definition.

Open subscribed topics represent the inputs of the systems we test. They are the intended interfaces to

integrate with the system and to stimulate it, since there is no other purpose for the existence of subscribers

that lack their respective publishers. Topics for which there are already some corresponding publishers

within the system are closed (from the point of view of our approach). That is, even though they are

technically usable by external components (such as test drivers or runtime monitors), they are treated as

3 https://lamport.azurewebsites.net/tla/tla.html

https://lamport.azurewebsites.net/tla/tla.html
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Figure 67: Example ROS Configuration with open subscribers.

internal communication channels of the system. We do not tamper with them by publishing additional

messages, because the system is likely not designed to expect the additional publishers.

7.2.2 Input Traces and Schemas

An input trace is a finite sequence of generated messages, annotated with timestamps, that the test driver

should replay on open subscribed topics to stimulate the system under test. Note that this is distinct from

the observed trace, the actual sequence of events that makes a particular run of the system. All events

of the input trace are part of the observed trace, but not the other way around. Whereas the input trace

only lists inputs, the observed trace lists all observed messages regardless of their origin. It includes the

messages sent by the test driver as well as those generated by the system under test.

An input trace schema is an abstraction for a certain category of input traces. Input traces contain

concrete messages and timestamps, with concrete values assigned to all data fields. For instance,

considering the architecture in Figure 67, the following sequence of messages and timestamps is a valid

input trace.

1 @50ms /sensors {bumper: 0, laser: 255}

2 @100ms /position {x: 0.0, y: 0.0}

3 @150ms /sensors {bumper: 0, laser: 255}

4 @200ms /position {x: 2.5, y: 0.5}

5 @250ms /sensors {bumper: 0, laser: 128}

A schema, on the other hand, describes a general sequence of events using abstract messages and

durations, annotated with their respective constraints. It can contain constraints over message fields or

constraints over time. Input traces are, thus, instances of a schema. For instance, the following would be

a valid schema containing the previous trace.
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1 forbid /position

2 +50..150: publish /position {x >= 0.0 and y >= 0.0}

3 forbid /position

4 forbid /sensors {bumper > 0 or laser < 200}

5 +50..: publish /position {x > 1.0 and y >= 0.0}

6 forbid /position

7 forbid /sensors {bumper > 0 or laser > 200}

The notation is simple; a schema is interpreted line by line, each line representing general constraints

over topics (forbid) or mandatory events of interest (publish). The syntax following either keyword is the

syntax used in our specification language, i.e., it expects a topic name, followed by predicates over the

message’s fields.

The forbid statement imposes restrictions over the (zero or more) random messages an input trace

is allowed to instantiate within a segment of the trace. It applies from the instant immediately following

the previous mandatory event until (but not including) the next mandatory event. If there are no previous

events, as is the case in the first line of this example, the restrictions apply from the system’s start-up event

until the next event. If there are no follow-up events, as is the case in the last two lines, the restrictions

apply until the end of the trace. In the first line, the schema states that there should be no messages on

/position (one of the two open subscribed topics) at first. There are no restrictions on /sensors before

the first publish statement, meaning that any number of messages is valid in this interval, regardless of

their contents. The second and third forbid statements apply in between the two publish statements.

The last two forbid statements apply indefinitely, after the second publish event.

The publish statement is composed of an interval and of constraints over a topic, with a colon symbol

separating the two. It denotes a single mandatory message, published exactly at the time of the event. The

event itself can happen at any of the timestamps contained in the interval. Each interval is denoted by the

plus sign followed by the interval limits (in milliseconds). The plus sign is used to denote that intervals

are relative to the previous event. In this case, ‘+50..150’ denotes [50, 150) counting from the previous

publish event, or from the system’s start-up event if there are no previous publish events. A possibly

infinite interval is denoted simply with its lower bound, e.g., ‘+50..’ denotes [50, ∞). Intervals with an

open lower bound, i.e., +..t, are not accepted. The first publish event happens sometime between the

50 millisecond mark of runtime and the 150 millisecond mark; there are no previous events, so it counts

from the system’s start-up event. At the time of the event, the test driver should publish a message on

/position such that x ≥ 0 and y ≥ 0. In addition, this event lifts the previous forbid restrictions (and is

not affected by them). The second publish event happens at least 50 milliseconds after the first one, with

no imposed upper bound. It lifts the restrictions of the second and third forbid statements, and enables

the following two, right after its message is published.

We can see how the previous trace is an instance of this schema. The trace contains only two messages

on /position at the 100 and 200 millisecond marks. These correspond to the two mandatory events in

the schema. The relative delays for both events were instantiated as 100. The first event counts from the

system’s start-up event, so the final timestamp is exactly 100 milliseconds. The second event happens 100
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milliseconds after, resulting in the @200ms timestamp. The x and y fields uphold their respective restrictions

too. There are no further messages on this topic, satisfying the three forbid /position constraints (before

the first message, after the second message and in between messages). The input trace contains additional

messages on /sensors, at 50, 150 and 250 milliseconds, which are not prohibited by the schema. There

are no constraints on /sensors before the first publish, so anything is allowed. In between publish

statements, the input trace cannot contain /sensors messages such that ‘bumper > 0 or laser < 200’.

There is a message on this topic, but it is not a match for the predicate, so it is allowed. The same logic

applies for the final message, after the second publish statement.

Formally speaking, schemas could be interpreted as a set of Metric First-Order Temporal Logic constraints

over temporal first-order structures (see Chapter 4).

Definition 7. An input trace schema is a set of formulae over a signature 𝑆.

Definition 8. Let 𝑆 be a signature, 𝑣 be a valuation and Γ be an input trace schema over 𝑆. A temporal

first-order structure (𝐷, 𝜏) over 𝑆 is said to be an instance of Γ if and only if, for all 𝜑 ∈ Γ, it is true that
(𝐷, 𝜏, 𝑣, 0) ⊨ 𝜑.

The previous definition allows us to determine whether a temporal first-order structure (an infinite trace)

is a instance of a schema. But the input traces we generate are finite. We need to define in which cases

can an input trace be considered an instance of a schema.

Definition 9. An input trace of length 𝑘 is a 𝑘-prefix of a temporal structure over a signature 𝑆, for some
𝑘 ∈ ℕ0.

Definition 10. Let 𝑆 be a signature, 𝑣 be a valuation and Γ be an input trace schema over 𝑆. Let

𝑘 ∈ ℕ0 and (𝐷[0,𝑘), 𝜏[0,𝑘)) be a 𝑘-prefix of a temporal structure over 𝑆. The 𝑘-prefix (𝐷[0,𝑘), 𝜏[0,𝑘))
is said to be an instance of Γ if and only if, for all (𝐷′, 𝜏′) temporal structures over 𝑆, (𝐷[0,𝑘), 𝜏[0,𝑘)) is
a 𝑘-prefix of (𝐷′, 𝜏′), and it is true that (𝐷′, 𝜏′, 𝑣, 0) ⊨ 𝜑, for all 𝜑 ∈ Γ.

As to how to convert schemas into MFOTL formulae, let us start by defining an atomic variable 𝑒0 for

the initial instant of the trace and atomic variables 𝑒𝑖 for each publish event in a schema. Each atomic

variable 𝑒𝑖 is true only at the instant when the 𝑖th publish event happens, i.e., at the exact instant the

specified message is published. In MFOTL terms, after normalising open intervals +𝛿.. to [𝛿,∞), given
statements of the form

1 +𝑎𝑖..𝑏𝑖: publish topic {𝜑}

We have that, for all 𝑖 ∈ ℕ:

• �(𝑒𝑖 → e(�¬𝑒𝑖))
i.e., once 𝑒𝑖 happens, it will not happen again;

• �(𝑒𝑖 → (∃𝑥 ∶ topic(𝑥) ∧ 𝜑))
i.e., at the instant 𝑒𝑖 happens, there is a message on topic such that 𝜑.
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The first step is to schedule all mandatory events. Let 𝑛 ∈ ℕ0 be the number of mandatory events in

a schema. Then, for all 𝑖 ∈ ℕ such that 𝑖 ≤ 𝑛:

�(𝑒𝑖−1 → ♦[𝑎𝑖,𝑏𝑖)𝑒𝑖)

After ensuring that all mandatory events happen, we translate the constraints given by forbid statements.

For each statement,

1 forbid topic {𝜑}

If the statement is placed in between events 𝑒𝑖 and 𝑒𝑖+1, it is true that:

�(𝑒𝑖 → e((¬∃𝑥 ∶ topic(𝑥) ∧ 𝜑) 𝒲 𝑒𝑖+1))

The eoperator is necessary to ensure that the restrictions do not apply at the instant of the publish

event corresponding to 𝑒𝑖. Rather, they start immediately afterwards. The weak-until operator, 𝒲, ensures

that the restrictions do not apply at the instant of the following publish event corresponding to 𝑒𝑖+1.

Also, note that consecutive logical instants can be attributed the same timestamp. Imposing restrictions

immediately after a publish statement does not imply different timestamps.

If there are no events preceding a forbid statement, the resulting formula is as follows.

(¬∃𝑥 ∶ topic(𝑥) ∧ 𝜑) 𝒲 𝑒1

If there are no events succeding a forbid statement, the resulting formula is as follows.

�(𝑒𝑖 → e(�(¬∃𝑥 ∶ topic(𝑥) ∧ 𝜑)))

If there are no mandatory events in the schema, a forbid statement is translated as:

�(¬∃𝑥 ∶ topic(𝑥) ∧ 𝜑)

Thus, given our previous example, with two publish statements and five forbid statements, we would

have the following set of formulae. For readability, consider 𝜑1 and 𝜑2 as the message predicates of each

publish statement, while 𝜓1 and 𝜓2 represent the forbid restrictions on /sensors.

• �(𝑒1 → e(�¬𝑒1)), i.e., 𝑒1 only happens once.

• �(𝑒2 → e(�¬𝑒2)), i.e., 𝑒2 only happens once.

• �(𝑒1 → (∃𝑥 ∶ position(𝑥) ∧ 𝜑1)), i.e., at 𝑒1 the specified message is published.

• �(𝑒2 → (∃𝑥 ∶ position(𝑥) ∧ 𝜑2)), i.e., at 𝑒2 the specified message is published.

• �(𝑒0 → ♦[50,150)𝑒1), i.e., 𝑒1 happens within the first 50 to 150 milliseconds.

• �(𝑒1 → ♦[50,∞)𝑒2), i.e., 𝑒2 happens at least 50 milliseconds after 𝑒1.

• (¬∃𝑥 ∶ position(𝑥)) 𝒲 𝑒1, i.e., the first forbid statement.

• �(𝑒1 → e((¬∃𝑥 ∶ position(𝑥)) 𝒲 𝑒2)), i.e., the second forbid statement.

• �(𝑒1 → e((¬∃𝑥 ∶ sensors(𝑥) ∧ 𝜓1) 𝒲 𝑒2)), i.e., the third forbid statement.
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• �(𝑒2 → e(�(¬∃𝑥 ∶ position(𝑥)))), i.e., the fourth forbid statement.

• �(𝑒2 → e(�(¬∃𝑥 ∶ sensors(𝑥) ∧ 𝜓2))), i.e., the fifth forbid statement.

7.2.3 Testable Properties

Every property defined with our specification language is monitorable, as previously established in Chapter 6.

However, for our current approach, only a subset of the language is deemed testable. In this context,

and for our current approach, we consider a testable property to be any property for which we can have

complete control of its scope and preconditions. In practice, this translates to a property such that:

• its activator event is either unspecified or a message on an open subscribed topic;

• its terminator event is either unspecified or a message on an open subscribed topic;

• its behaviour event is a message published by the system, i.e., a message not on open subscribed

topics;

• for Precedence properties, its precondition event is a message on open subscribed topics;

• for Response and Prevention properties, its stimulus event is a message on open subscribed topics;

• predicates over the fields of activator, terminator, precondition or stimulus messages do not contain

arithmetic or quantified expressions.

The rationale behind these limitations is simple to understand. The only messages produced by the

system (i.e., the only outputs) are behaviour events. If all other events are inputs of the system, rather than

outputs, the test driver can dictate the pace of the test. More importantly, tests are active and reproducible.

By controlling the activator (resp. terminator) event, the input trace schema dictates when the scope should

start (resp. end). By controlling also stimuli events (if applicable), the input trace schema dictates when

behaviours should be triggered.

It is always possible to close more topics in a property (or replace open subscribers with open publishers)

and still perform tests. In fact, it is a planned future improvement for our approach. But, in doing so, tests

become passive and rather uninteresting. The more we depend on messages produced by the system

(e.g., to open scopes or to trigger behaviours), the more linear test schemas become; there are less events

under the control of the test driver. At the limit, all topics referenced in a property are controlled by the

system. In that case, testing a property is, essentially, just monitoring the system. The main difference is

that the test driver can still produce messages on open subscribed topics not referenced by the property (if

there are any). As such, we opt not to support test generation for such properties. We focus, instead, on

the most interesting problem, using the aforementioned restrictions over topics, which involves a variety of

input trace schemas and carefully designed data generators.

The restriction on predicates containing quantifiers or arithmetic expressions is more of a technical one.

Simply put, arithmetic makes data generation much harder to implement. In general, it is possible to specify

a system of equations (or inequations) such that message fields are cross-referenced in multiple places

and hold various relations with other fields of the same message, or even with fields of past messages.

We could brute force data generation. For instance, we could generate numbers randomly until one is
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generated such that the predicates hold. For obvious reasons, this could turn out to be very slow, and

even unfeasible, especially if the given predicate is unsatisfiable. Instead, we (automatically) produce data

generators that select inputs from an appropriate domain right from the start, as we will see later in this

chapter. Coming up with smart generators for general arithmetic expressions would require the use of

additional tools, such as SMT solvers (Satisfiability Modulo Theories, e.g., Z3 [54]) or symbolic computing

libraries (e.g., SymPy [123]) to figure out appropriate domains (i.e., to solve equations and inequations). A

similar reasoning applies to quantified expressions. We leave the exploration of these problems for future

work.

7.2.4 Axioms

Axioms are properties such that all events refer to open subscribed topics, i.e., all events are system inputs.

By definition, these properties are not testable. We use axioms as global constraints over the input trace

schemas for testable properties, and to invalidate tests whose actual input traces do not conform with

the axioms. That is, given axioms Φ1,… ,Φ𝑛, in order to test a property Ψ, the generated input trace

schemas should conform with Φ1,… ,Φ𝑛, in addition to any relevant constraints of Ψ. As an example,

consider again the architecture of Figure 67, with its open subscribed topic /position. The property

‘globally: no /position {x < -10.0 or x > 10.0}’ is a valid axiom. It is a property solely over open

subscribed topics, and is, thus not testable. This axiom can be used to force all /position messages, in

all input trace schemas for other properties, to contain x ∈ [-10, 10]. In the same fashion, axioms can

also be used to express causality (causes), to set messages apart from each other for a given period (e.g.,

‘/position forbids /position within 100 ms’), or to express any other property. As we will explain

later, axioms will be used to refine general input trace schemas, narrowing down the domain of valid inputs

by construction.

7.3 Approach Overview

Our approach to automatically test whether a ROS application violates a given property combines Specification-

based Testing, Property-based Testing and Runtime Verification. Inspired in Specification-based Testing

techniques, especially [12, 128], we are able to convert formal properties into state machines, and then

develop input trace schemas based on the state machines. Using the schemas, we are able to restrict the

semi-random inputs produced by the PBT library to a domain that is more relevant to the tested property.

In this section, we discuss the overall workflow of this approach, the semantics of the testing procedure,

and the technologies behind it. A more in-depth discussion about the schemas for each type of property is

given in Section 7.4. Concrete details of the implementation are given in Section 7.5.
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7.3.1 Workflow

Our approach to automatically test whether a ROS application violates a given property involves a few steps,

as we previously stated: (i) deriving input trace schemas from a specification; (ii) instantiating concrete

input traces from the schemas; and (iii) replaying input traces to the SUT while it is monitored for violations.

Point (i) is based on Specification-based Testing principles. For each type of property, we will identify

the different categories of traces that could potentially lead the SUT into erroneous behaviour. Points (ii)

and (iii) are based on Property-based Testing principles. For the former, we must provide adequate data

generators. In this case, we require generators of input traces that comply with constraints over time and

data. The final point is more straightforward. It involves putting together a typical PBT test driver that,

in addition to setting up the SUT, also deploys the required runtime monitors alongside the system (see

Chapter 6 for the Runtime Verification approach). Then, the test driver must ensure that the generated

input trace is dispatched to the SUT at the right times, based on the timestamps of each message.

In practice, point (i) can be implemented with a test generator. It only needs to be done once (for each

version of the system and the specification), not every time the system is tested. Given a ROS Configuration

and a specification, we start by identifying all testable properties. The Configuration is necessary for this

step in order to be able to tell which topics are open subscriptions. Open subscribed topics, as stated

previously, determine which properties are axioms, which are testable properties and which are non-testable

properties. Once all properties are labelled, for each testable property, the generator should produce a

number of schemas, based on the target property itself as well as on the applicable axioms. Some types of

axioms are used to refine the default schemas automatically, as we will see in Section 7.4. Axioms that we

cannot integrate directly into the schemas will be monitored in runtime.

To instantiate schemas as concrete traces of ROS messages, and to address point (ii), each computed

schema should be translated into a number of adequate data generators for a Property-based Testing

library. To accomplish it, we require information about the message types associated with each topic, so

that the data generators reference the correct data types and populate the messages with the expected data

fields. Using metaprogramming and a template engine (much like we did to generate runtime monitors in

Chapter 6), the generator should plug the data generators into a test script template.

The generated test scripts constitute the PBT drivers that will, repeatedly, test the SUT with semi-randomly

generated traces, addressing point (iii). Each testable property yields one test script. Each test script

tests a single property, but can (optionally) monitor additional properties to take further advantage of the

time spent testing. In addition, each test driver is itself a ROS node. This is not surprising, given that

the driver must be able to publish messages to the system. At the same time, the driver must deploy

runtime monitors to observe the system, and be able to gather a verdict from the monitors. Monitors

are themselves ROS nodes, so the test driver must also subscribe to the verdict topics. Unlike runtime

monitors, however, tests must terminate and define what to do in the event that a monitor verdict has not

been reached. In general, as we will see, inconclusive monitor verdicts translate into passing tests.

In Figure 68 we illustrate the actual Computation Graph running for each test, including testing and

monitoring nodes, using the example architecture of Figure 67. Note that, for the purposes of this approach,
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Figure 68: Runtime perspective of the proposed testing approach.

Figure 69: Workflow of the proposed Property-based Testing HAROS plug-in.

it makes no difference whether we test a single node at a time, or a full system. The SUT is a black-box

with topics, for all intents and purposes.

Given our requirement on Configurations, specifications and message type information to achieve test

generation, we have opted to implement the proposed test generator as a HAROS plug-in. HAROS is

capable of providing all the necessary input, allowing us to focus the implementation effort on the generator

logic. The workflow we just described, from properties to tests, is depicted in Figure 69.

In terms of technologies, for our template engine we rely on Jinja. For the Property-based Testing

infrastructure we rely on Hypothesis [112, 114], given that it is among the most powerful free, industrial-

strength and open source PBT libraries.
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7.3.2 Semantics

Software Testing is only useful to demonstrate the presence of faults, not to prove their absence. Property-

based Testing, in particular, embraces this philosophy well. Given a property of the system under test,

it tries a variety of inputs with the goal of falsifying the property, i.e., aiming to find a counterexample.

Typically, the user sets an upper limit on the number of examples that the PBT tool is allowed to try, before

giving up. If no counterexamples are found, then the property is probably true.

We have already defined semantics for the specification language (Chapter 4) and for the Runtime

Verification aspect of this approach (Chapter 6). However, both work with a notion of infinite traces. Tests

are inherently finite and often establish a deadline for each test case. After this deadline, the SUT and the

test driver are brought down, and a verdict is produced. This means that, in practice, we are only testing

bounded properties (even if the specification is unbounded).

To be able to produce a verdict for all tests, we will adopt a weak version of the semantics for traces.

That is:

• if the runtime monitors produce a verdict of ⊥ before the test reaches its deadline, the verdict of

the test is ⊥;

• if the runtime monitors produce a verdict of ⊤ before the test reaches its deadline, the verdict of

the test is ⊤;

• otherwise (i.e., the monitor did not produce a verdict before the deadline), the verdict of the test is

⊤.

An immediate result of these semantics is that tests will never report a property as false, unless the

monitors do so as well. Another consequence is that it is useless to test unbounded liveness properties, in

the same sense that it is useless to monitor them. As an example, suppose we want to test ‘globally:

some /velocity’. There are two possible scenarios; either a message on /velocity is observed within

the test’s duration or it is not. If a message is observed every time (for every input Hypothesis tries), then

the verdict is ⊤, without a doubt. If, for at least one of the examples, the message is not observed, the

monitor’s verdict would have been inconclusive. By our semantics, this also translates to a test result of

⊤. In other words, it is impossible for the test infrastructure to come up with a counterexample for this

property.

This limitation is intended. As previously stated, the goal of testing, and PBT in particular, is to falsify

properties and come up with counterexamples. By choosing a weak semantics, we avoid a number of false

positives and bogus counterexamples that would send developers in a hunt for faults that might not exist.

On the other hand, we are more open to false negatives and a false sense of reliability. How accurate the

test results are depends on the given parameters for the test deadlines, and the maximum number of

examples Hypothesis tries for a single property, but such is the nature of testing.

One of the advantages of Property-based Testing (and of Hypothesis) is that, by default, it attempts

to minimise both false positives as well as false negatives. False positives and false negatives can be

introduced by the non-deterministic and non-real-time nature of ROS. Nodes can publish messages in a
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given order, and subscribers (such as monitors) can observe messages in a different order. The network

layer might also cause sporadic delays that go beyond the specified time bounds (e.g., ‘within 100 ms’).

However, when a specific input causes the test to fail, Hypothesis repeats it multiple times, to ensure (with

some degree of confidence) that it is, indeed, a counterexample. In a similar fashion, repeating tests over

and over, for a large enough number of times, will cause the likelihood of a false negative going unnoticed

to reduce drastically.

7.3.3 A Short Introduction to Hypothesis

Hypothesis is a multilingual library, but its Python variant (the one we use) is the most mature and

developed one. Overall, writing Hypothesis tests is relatively straightforward. Its syntax is not very intrusive

or different from regular Python programs. Tests are, in fact, regular Python functions decorated with

a special annotation, @given, as seen in Listing 7.1. When the test_addition_is_commutative or the

test_reversing_twice_gives_same_list functions are called, Hypothesis handles the PBT logic in the

background. That is, a call to the annotated function will not run the function once, as expected, but

rather call it multiple times (the exact number is configurable) with various generated arguments, until a

counterexample is found or Hypothesis exhausts its examples. The @given annotation also assigns data

generators to each of the input parameters of the annotated function (x and y in the first case, xs in the

second). In Hypothesis jargon, data generators are called strategies, a term that stems from the more

general term input search strategy.

1 from hypothesis import given

2 from hypothesis.strategies import integers, lists

3

4 @given(x=integers(), y=integers())

5 def test_addition_is_commutative(x, y):

6 assert x + y == y + x

7

8 @given(xs=lists(integers()))

9 def test_reversing_twice_gives_same_list(xs):

10 # This will generate lists of arbitrary length (usually between 0 and

11 # 100 elements) whose elements are integers.

12 ys = list(xs)

13 ys.reverse()

14 ys.reverse()

15 assert xs == ys

Listing 7.1: Trivial example of using Hypothesis.

Hypothesis provides strategies for most built-in types with parameters to constrain or adjust the generated

values, as well as higher-order strategies that can be composed to generate more complex types. The basic

example of Listing 7.1 features only the strategy to generate integers, with the default arguments, and the

strategy to generate lists, given only its first positional argument which is a strategy for the elements of

the list. The integers strategy accepts optional arguments to define a minimum value and a maximum

value. Examples from this strategy will shrink towards zero, and negative values will shrink towards positive
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(i.e., −𝑛 may be replaced by +𝑛). The lists strategy can be customised in terms of its minimum length,

maximum length and whether all elements must be unique. Examples from this strategy shrink by trying to

remove elements from the list, and by shrinking each individual element of the list, in no particular order,

and possibly both at the same time.

Overall, Hypothesis provides strategies for byte sequences, booleans, integers, floating-point numbers,

text strings, complex numbers, fractions, dates, lists, tuples, dictionaries, sets, email addresses, among

others. It provides strategies to choose elements from a limited (and known) input domain, to emulate

enumerations. It provides ways to build strategies from other strategies, recursively or given functions to

transform data, e.g., via mapping or filtering. When none of the above suffices, or to generate custom data

types (as is our case), Hypothesis provides the @composite strategy.

1 from collections import namedtuple

2 from hypothesis.strategies import composite, floats, text

3

4 Location = namedtuple('Location', ['name', 'latitude', 'longitude'])

5

6 @composite

7 def locations(draw):

8 name = draw(text())

9 latitude = draw(floats(min_value=-90.0, max_value=90.0))

10 longitude = draw(floats(min_value=-180.0, max_value=180.0))

11 return Location(name, latitude, longitude)

Listing 7.2: Using Hypothesis strategies to build ROS messages.

As seen in Listing 7.2, @composite allows the user to define strategies using arbitrary code and core

strategies. We use it, in this example, to create a strategy for geographic locations containing a textual

name and floating-point latitude and longitude coordinates. For names we draw a value (an example)

from the text strategy, without any of its optional arguments. By default, text can generate strings of

any length from the full unicode range, excluding surrogate characters. Examples shrink towards shorter

strings, and with the characters in the text shrinking as per the provided alphabet strategy (if any, not

in this case). For coordinates, we use the float strategy, and we delimit the generated values using

the self-explanatory parameters min_value and max_value. As for how floating-point numbers shrink, we

should quote Hypothesis’ documentation4:

Examples from this strategy have a complicated and hard to explain shrinking behaviour,

but it tries to improve “human readability”. Finite numbers will be preferred to infinity and

infinity will be preferred to NaN.

Putting it all together, with the locations strategy we are able to build Location objects, properly populated

with a textual name, and floating-point latitude and longitude. Since @composite is used to build arbitrary

objects with an arbitrary number of other strategies (possibly also composite strategies), there is only one

sensible shrinking behaviour. Examples from this strategy shrink by shrinking the output of each draw call.

4 https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.floats

https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.floats
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In this case, locations shrink by shrinking name, latitude and longitude. Again, Hypothesis is free to

decide order and combinations. It might try to shrink one field at a time, or a combination of some. Following

this logic, the (most likely) minimal example Hypothesis might try would be Location('', 0.0, 0.0).

There are only two more concepts worth discussing regarding Hypothesis. The first is the assume

function, that works similarly to assert. When the condition given to assume does not hold, Hypothesis

marks the generated example as invalid, rather than failing the test, and tries to avoid similar examples in

the future. This confirms that the input space exploration of Hypothesis is not truly random. The second

concept is the @settings annotation. This annotation is used to wrap a test function (like @given) and

define a number of settings for that test case, such as the maximum number of examples, the test deadline

or whether to use a fixed seed with random number generators, so that tests are reproducible.

7.4 Pattern-based Trace Schemas

Based on Specification-based Testing techniques, especially [12, 128], we transform testable properties

into state machines, and then use the state machines to identify different test schemas. We will refer to

the state machines we presented in Chapter 6 as our basis. Naturally, considering that the main goal of

Property-based Testing is to falsify properties, we will explore all paths of the various state machines that

lead to a verdict of ⊥. Our goal is to construct schemas that exercise such paths.

In some cases, state machines contain loops, such as entering and exiting a scope multiple times (with

after-until). When they do, there is an infinite number of paths that we must consider, in theory. But

testing is inherently finite, and so should be the schemas we identify. To illustrate our approach, we only

go up to a limit of two loops, i.e., we will unroll the state machine paths and consider entering the scope

once, twice or thrice within a single execution.

With a limit of up to three scopes for a single test, it stands to reason that:

• tests with a single scope will focus on making the SUT fail on that scope;

• tests with two or more scopes will focus on making the SUT fail on the last scope, and assume

other tests of shorter length to focus on the initial scopes.

But note that we can simply focus on schemas for exactly three scopes. With careful manipulation of the

allowed messages and durations for each scope, there is a subsumption relation in place. By schema

subsumption, we mean that every fault a schema with a single scope can reveal, can also be captured by

a schema with two scopes, and so on.

A schema with a single scope is a schema that publishes an activator message, and may or may not

publish a terminator message, but never publishes a second activator message within the test deadline. If

we allow for the intervals between activators and terminators to exceed the test deadline, any schema of

two or three scopes can also be instantiated with a prefix such that only a single scope can be reproduced

within the test deadline. In practice, the longer schemas achieve the same effect as the shorter schema. A

schema for three scopes can, thus, subsume schemas of one or two scopes. To illustrate this concept,

consider the following simple schema with three scopes. The timelines on the right side show three possible
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instances of the schema; in the first two only the first scope starts within the test’s deadline, while in the

third example two full scopes are included (by choosing lower values for the message timestamps). Also,

note that, even if the generated input trace (for three scopes) could be fully reproduced within the deadline,

it is possible for the SUT to fail early, within the first or second scopes.

1 +0..: publish activator {𝜑}

2 +0..: publish terminator {𝜓}

3 +0..: publish activator {𝜑}

4 +0..: publish terminator {𝜓}

5 +0..: publish activator {𝜑}

6 +0..: publish terminator {𝜓}

Despite focusing on the relatively low number of three scopes, it should suffice to reveal a large number

of faults, according to the small scope hypothesis [10, 90]. Besides, it would be trivial to parameterise this

value and repeat the same approach for a higher number of loop iterations. With three scopes, however, we

can show some degree of complexity, while striving for readable schemas. Our presentation will focus on

the after-until scope, since it is the most interesting of the four, overall. Other scopes are not reentrant,

limiting schemas to a single scope. As a bonus, we can simply reuse the state machines already presented

in Chapter 6, for the same scope type; the diagrams had no transitions to ⊤, so we can focus just on the

transitions to ⊥.

At the end of this section, after presenting the general schemas for each property pattern, we discuss

an orthogonal problem – how to refine schemas using axioms.

7.4.1 Absence Properties

In order to devise schemas for Absence properties, we can take the same state machine that we used for

Runtime Verification (Figure 70) as our starting point.

There is only one transition to ⊥, via a Behaviour message in the Active state. Behaviour messages are

produced by the SUT, so our test strategy boils down to finding paths, with two loop unrolls, that lead to

Active. Omitting the system’s start-up event for readability, we can identify the following paths:

1. Activator → Terminator → Activator → Terminator → Activator;

2. Activator → Terminator → Activator → Timeout → Terminator → Activator;

3. Activator → Timeout → Terminator → Activator → Terminator → Activator;

4. Activator → Timeout → Terminator → Activator → Timeout → Terminator → Activator.

Timeout transitions cannot be translated to schema events in the same way that message-based

transitions can. Instead, they are converted into time constraints, affecting the intervals of the following



7.4. Pattern-based Trace Schemas 174

Figure 70: State machine monitoring for the Absence pattern.

messages. In this case, timeouts are always followed by terminator transitions. If a path contains ‘Timeout

→ Terminator’, we should produce a schema such that the relative interval pertaining to the terminator

has a lower bound greater than the specified timeout, i.e.:

1 ...

2 +t..: publish terminator {𝜓}

3 forbid activator {𝜑}

4 ...

Considering the four alternative paths in the state machine, we have the following four schemas.

Schema 1

1 forbid activator {𝜑}

2 +0..: publish activator {𝜑}

3 forbid terminator {𝜓}

4 +0..t: publish terminator {𝜓}

5 forbid activator {𝜑}

6 +0..: publish activator {𝜑}

7 forbid terminator {𝜓}

8 +0..t: publish terminator {𝜓}

9 forbid activator {𝜑}

10 +0..: publish activator {𝜑}

11 forbid terminator {𝜓}

Schema 2

1 forbid activator {𝜑}

2 +0..: publish activator {𝜑}

3 forbid terminator {𝜓}

4 +0..t: publish terminator {𝜓}

5 forbid activator {𝜑}

6 +0..: publish activator {𝜑}

7 forbid terminator {𝜓}

8 +t..: publish terminator {𝜓}

9 forbid activator {𝜑}

10 +0..: publish activator {𝜑}

11 forbid terminator {𝜓}
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Figure 71: State machine monitoring for the Existence pattern.

Schema 3

1 forbid activator {𝜑}

2 +0..: publish activator {𝜑}

3 forbid terminator {𝜓}

4 +t..: publish terminator {𝜓}

5 forbid activator {𝜑}

6 +0..: publish activator {𝜑}

7 forbid terminator {𝜓}

8 +0..t: publish terminator {𝜓}

9 forbid activator {𝜑}

10 +0..: publish activator {𝜑}

11 forbid terminator {𝜓}

Schema 4

1 forbid activator {𝜑}

2 +0..: publish activator {𝜑}

3 forbid terminator {𝜓}

4 +t..: publish terminator {𝜓}

5 forbid activator {𝜑}

6 +0..: publish activator {𝜑}

7 forbid terminator {𝜓}

8 +t..: publish terminator {𝜓}

9 forbid activator {𝜑}

10 +0..: publish activator {𝜑}

11 forbid terminator {𝜓}

The schemas alternate between activators and terminators, switching the permissions on each topic as

either is published. Initially, activators are not allowed, until the designated time for the first activator, but

other messages can be sent on this topic (e.g., activator {not 𝜑}). After the first activator is published the
permissions are switched. The activator topic is now allowed any random messages, while the terminator

topic must avoid matching the terminator’s predicate. In the third block, everything is mirrored – we

publish a terminator message and allow anything on the terminator topic, while the activator topic must

avoid matching activator messages. This back and forth goes on for as many scopes as we require. What

changes is the intervals regarding the publication of terminator messages, in accordance with the specific

path we are pursuing.

7.4.2 Existence Properties

Runtime monitoring for Existence properties is given by the state machine in Figure 71.
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There are two transitions to a verdict of ⊥, one via a terminator message and another via timeout, when

the state machine is in the Active state. More specifically, disregarding loops for the moment, schemas

should focus on the following two path suffixes.

1. Activator → Terminator;

2. Activator → Timeout.

We can see how liveness properties (such as Existence) work in contrast with safety properties (such as

Absence). Whereas, previously, a behaviour message led to a violation of the property, now such messages

are expected from the SUT. The listed path suffixes translate into the following schema suffixes.

Path 1 (via Terminator)

1 ...

2 +0..t: publish terminator {𝜓}

3 forbid activator {𝜑}

Path 2 (via Timeout)

1 ...

2 +t..: publish terminator {𝜓}

3 forbid activator {𝜑}

One can argue that the path via Terminator might be unfair for the system; it gives the SUT no time

to react to the activator, and almost trivially falsifies the property. But this is one of the strengths of our

approach. The system developers might not have been foreseen such a possibility, even though it could

happen, in theory.

We must now discuss what happens with the initial scopes leading to the test’s focus, the loops in the

state machine. This is another stark contrast between safety and liveness properties. While, for Absence

properties, the test driver had control over scope loops, for Existence properties the loop only happens if the

system publishes a behaviour message. However, we cannot build schemas that include SUT messages;

we can only specify inputs.

The best solution for this problem is not to address it at all. We will construct schemas assuming that

the system behaves well (i.e., publishes the behaviour message) in the first round of scopes, and that any

terminator timestamp is acceptable. Note that these are safe assumptions to make. If the assumptions

are confirmed in practice, then we will have successfully prepared the SUT with a certain prefix, to proceed

into the most interesting part of the test – the last scope. If, on the other hand, the assumptions turn out

to be false, it means that the system will have failed early. This would reveal a problem and falsify the

property, aligning perfectly with our end goal.

Having gone through the major considerations for Existence properties, we are now able to look at the

schemas for the general case. We have, essentially, the same four alternatives we had for initial scopes in

the Absence pattern, times the two possible suffixes we have just discussed, totaling 4×2= 8 schemas.

We will provide only two as an example, each following one of the two suffixes.
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Figure 72: State machine monitoring for the Precedence pattern.

Schema 1 (via Terminator)

1 forbid activator {𝜑}

2 +0..: publish activator {𝜑}

3 forbid terminator {𝜓}

4 +0..t: publish terminator {𝜓}

5 forbid activator {𝜑}

6 +0..: publish activator {𝜑}

7 forbid terminator {𝜓}

8 +t..: publish terminator {𝜓}

9 forbid activator {𝜑}

10 +0..: publish activator {𝜑}

11 forbid terminator {𝜓}

12 +0..t: publish terminator {𝜓}

13 forbid activator {𝜑}

Schema 2 (via Timeout)

1 forbid activator {𝜑}

2 +0..: publish activator {𝜑}

3 forbid terminator {𝜓}

4 +0..t: publish terminator {𝜓}

5 forbid activator {𝜑}

6 +0..: publish activator {𝜑}

7 forbid terminator {𝜓}

8 +t..: publish terminator {𝜓}

9 forbid activator {𝜑}

10 +0..: publish activator {𝜑}

11 forbid terminator {𝜓}

12 +t..: publish terminator {𝜓}

13 forbid activator {𝜑}

7.4.3 Precedence Properties

Runtime monitoring for Precedence properties, in general, is given by the state machine in Figure 72.

This type of property is similar to the Absence case; they are both safety properties, and they both fail

when the SUT publishes an unexpected behaviour message. Given that this is a binary property pattern,

we have to deal with additional paths (and internal loops) caused by precondition messages. To avoid a
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scenario in which we would have to generate an infinite number of schemas, we collapse all Active-n states

into one and unroll loops up to one (mandatory) precondition message. In effect, we consider only two

alternative paths, each targeting one of the Behaviour transitions in the diagram.

1. Active-0
𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟−−−−−−→ ⊥

2. Active-n
𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟−−−−−−→ ⊥

The looping transitions from Active-n to itself, via precondition messages and timeouts, will be delegated to

the random messages the input trace generator is allowed to instantiate. That is, our scopes will contain

either zero precondition messages, or at least one precondition message (not forbid-ing further messages).

Path 1 (zero preconditions)

1 ...

2 +0..: publish activator {𝜑}

3 forbid precondition {𝛼}
4 forbid terminator {𝜓}

5 ...

Path 2 (multiple preconditions)

1 ...

2 +0..: publish activator {𝜑}

3 forbid terminator {𝜓}

4 +0..: publish precondition {𝛼}
5 forbid terminator {𝜓}

6 ...

This branching pattern multiplies over the number of scopes, so that we have all possible combinations:

1. 0 Preconditions → 0 Preconditions → 0 Preconditions;

2. >0 Preconditions → 0 Preconditions → 0 Preconditions;

3. 0 Preconditions → >0 Preconditions → 0 Preconditions;

4. 0 Preconditions → 0 Preconditions → >0 Preconditions;

5. >0 Preconditions → >0 Preconditions → 0 Preconditions;

6. >0 Preconditions → 0 Preconditions → >0 Preconditions;

7. 0 Preconditions → >0 Preconditions → >0 Preconditions;

8. >0 Preconditions → >0 Preconditions → >0 Preconditions.

On top of this, there are also the alternatives between short and long initial scopes, when visiting the

Active-n state, as we have seen previously. For the sake of illustration, the following is a schema for the

case with preconditions in the first and last scopes.
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1 forbid activator {𝜑}

2 +0..: publish activator {𝜑}

3 forbid terminator {𝜓}

4 +0..: publish precondition {𝛼} (at least one precondition)

5 forbid terminator {𝜓}

6 +0..t: publish terminator {𝜓} (short scope)

7 forbid activator {𝜑}

8 +0..: publish activator {𝜑}

9 forbid precondition {𝛼} (zero preconditions)

10 forbid terminator {𝜓}

11 +0..: publish terminator {𝜓} (no timeout available in Active-0)

12 forbid activator {𝜑}

13 +0..: publish activator {𝜑}

14 forbid terminator {𝜓}

15 +0..: publish precondition {𝛼} (at least one precondition)

16 forbid terminator {𝜓}

7.4.4 Response Properties

Response properties are monitored with the state machine shown in Figure 73.

This is another liveness pattern, similar to the Existence pattern. From the diagram, we can see that,

besides the activator message, at least one stimulus message is required to enable the transition to ⊥.

This rules out any schemas that do not contain any stimulus messages, overall, but note that only the last

scope is required to contain at least one stimulus.

In contrast with the previous Precedence pattern, we must forbid further stimuli beyond the publish

event. This is because in Precedence properties we do not control the transition to ⊥. In Response

properties we do, and we want to have a fixed point in the schemas from which no further stimuli are

published, so that we can start the timer to exercise either the Terminator transition or the Timeout

transition.

To illustrate one of the possibilities, the following schema shows how we would approach a case of zero

stimulus messages, followed by two scopes with at least one message.
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Figure 73: State machine monitoring for the Response pattern.

1 forbid activator {𝜑}

2 +0..: publish activator {𝜑}

3 forbid stimulus {𝛼}
4 forbid terminator {𝜓}

5 +0..: publish terminator {𝜓} (zero stimuli)

6 forbid activator {𝜑}

7 +0..: publish activator {𝜑} (stimuli not forbidden)

8 forbid terminator {𝜓}

9 +0..: publish stimulus {𝛼} (mandatory stimulus)

10 forbid stimulus {𝛼}
11 forbid terminator {𝜓}

12 +t..: publish terminator {𝜓} (long scope)

13 forbid activator {𝜑}

14 +0..: publish activator {𝜑}

15 forbid terminator {𝜓}

16 +0..: publish stimulus {𝛼} (mandatory stimulus)

17 forbid stimulus {𝛼}
18 forbid terminator {𝜓}

19 +0..t: publish terminator {𝜓} (short scope)

20 forbid activator {𝜑}
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Figure 74: State machine monitoring for the Prevention pattern.

7.4.5 Prevention Properties

Runtime monitoring for the Prevention pattern is given by the state machine in Figure 74.

There is not much to discuss at this point. The Prevention pattern is a safety property that has a mixed

structure resembling the Response and the Absence patterns. As in the Absence pattern, detecting a

violation depends on the system producing a specific message. The messages that cause a violation,

however, are sent in response to previous stimuli. Therefore, following suit with the Response pattern, we

will be interested in the cases with at least one stimulus in the final scope.

To illustrate one of the possible schemas for this type of property, we will consider an initial scope

containing zero stimulus messages, and the last two scopes containing at least one, just like in the Response

case, for easier comparison. The only difference is the lack of a terminator at the end.
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1 forbid activator {𝜑}

2 +0..: publish activator {𝜑}

3 forbid stimulus {𝛼}
4 forbid terminator {𝜓}

5 +0..: publish terminator {𝜓} (zero stimuli)

6 forbid activator {𝜑}

7 +0..: publish activator {𝜑} (stimuli not forbidden)

8 forbid terminator {𝜓}

9 +0..: publish stimulus {𝛼} (mandatory stimulus)

10 forbid stimulus {𝛼}
11 forbid terminator {𝜓}

12 +t..: publish terminator {𝜓} (long scope)

13 forbid activator {𝜑}

14 +0..: publish activator {𝜑}

15 forbid terminator {𝜓}

16 +0..: publish stimulus {𝛼} (mandatory stimulus)

17 forbid stimulus {𝛼}
18 forbid terminator {𝜓}

7.4.6 Schema Refinement

We have seen how to build schemas for the various property patterns. However, as mentioned in the

overview and workflow of our testing approach, properties do not exist in isolation. Axioms play an important

role in the whole process, notably in terms of establishing valid data and valid trace structure. The simple

approach to axioms is to let the data generators of the PBT library produce inputs blindly, according to

the general schemas, and then discard invalid examples (not in accordance with axioms) via runtime

monitoring. And this is what we do in most instances. But, in some cases, we can analyse the axioms

statically to refine our trace schemas before the test generation step takes place. This way, we narrow

down the examples that the test script is capable of producing to a set that contains (ideally) only the

intended inputs or, at least, considerably less invalid examples.

To see how axioms can have an effect on the input trace schemas, let us consider the following example

Existence property.

1 after /bumper {data = 0} until /bumper {data > 0}:

2 some /controller_cmd within 100 ms

Recall that we have to consider eight alternative paths in the Existence state machine, alternating

between short and long scopes. With two loop iterations and a short final scope, the minimal input trace

for this type of property gives us an obvious (and almost trivial) counterexample, in which the SUT has no

time to react and publish its expected message.
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1 @0ms /bumper {data: 0} (scope activator)

2 @0ms /bumper {data: 1} (scope terminator)

3 @0ms /bumper {data: 0} (scope activator)

4 @0ms /bumper {data: 1} (scope terminator)

5 @0ms /bumper {data: 0} (scope activator)

6 @0ms /bumper {data: 1} (scope terminator)

Obvious counterexamples such as this are telltale signs of a problem with the specification. If a rapid

sequence of activator and terminator messages is possible in the real system, then the property is not

true to begin with (i.e., the specification is incorrect). If such a sequence should not happen, users

can augment the specification with axioms to rule out this scenario (i.e., the system is underspecified).

Ultimate judgement is left for the user, as is always the case with Property-based Testing. Let us assume an

underspecified system. The following pair of axioms forbids scopes starting before the first 100 milliseconds

of runtime and imposes a minimum scope duration of 10 milliseconds.

1 globally: no /bumper within 100 ms

2 globally: /bumper forbids /bumper within 10 ms

The conjunction of these restrictions gives a new shape to the schema. The axioms effectively provide a

lower bound for the activator and terminator messages, while the property’s timeout provides the upper

bounds (where applicable).

1 forbid /bumper {data = 0}

2 +100..: publish /bumper {data = 0}

3 forbid /bumper {data > 0}

4 +10..: publish /bumper {data > 0}

5 forbid /bumper {data = 0}

6 +10..: publish /bumper {data = 0}

7 forbid /bumper {data > 0}

8 +10..: publish /bumper {data > 0}

9 forbid /bumper {data = 0}

10 +10..: publish /bumper {data = 0}

11 forbid /bumper {data > 0}

12 +10..100: publish /bumper {data > 0}

13 forbid /bumper {data = 0}

In the general case, though, axioms are not always easy to integrate. Note that even the refined schema

is not foolproof, relative to the second axiom. The input trace generator is free to include additional spam

/bumper messages, so long as they do not clash with the schema’s forbid constraints (i.e., so long and

the spam messages do not match the forbidden predicates over message fields). If it does include such

messages, the interval lower bound of 10 milliseconds is no longer enough. Consider, for example, the

following sequence of messages.
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1 @100ms /bumper {data: 0} (activator)

2 @110ms /bumper {data: 0} (spam)

3 @115ms /bumper {data: 1} (terminator)

4 ...

In this example, the timestamp for the terminator message, which has to be at least 10 milliseconds

greater than the activator’s, was instantiated as 15 milliseconds. However, in between the two messages,

a random message was produced. This is no longer valid input, since it violates the minimal 10 millisecond

delay between /bumper messages. In short, even with some refinement taking place, we would have to

deploy runtime monitors.

Our implementation only takes into account two types of axioms for automatic schema refinement at

static time, namely the following Absence properties.

1 globally: no topic within 100 ms

2 globally: no topic {predicate}

Other types of axioms are currently unhandled; i.e., the generators behave as in the general case, and

delegate validation to runtime monitors. Regardless, here we discuss potential approaches to handle each

axiom pattern.

A b s e n c e A x i om s We automatically integrate global-scoped Absence properties that impose either

temporal constraints or data constraints. The former can be integrated as we have just shown, by increasing

the lower bound of the first relevant interval. The latter is automatically built into the data generators,

which is part of the reason why we do not handle expressions containing arithmetic or quantifiers. Mixing

both types of constraints requires more complex analyses. We would have to determine, at compile time,

whether there is overlap between property and axiom predicates, to decide whether the intervals should be

affected. This path is set aside in our current approach, delegated to runtime monitoring. We also set

aside scopes other than globally, which require similarly complex analyses.

E x i s t e n c e A x i om s This type of axiom requires that the input trace must contain a certain type of

message. Depending on the scope, the specified message may be placed anywhere in the trace or it might

be confined to a specified scope. A best-effort approach (not yet implemented) would likely generate the

input trace in two passes: the first following the general schema, and the second identifying the appropriate

scopes to generate (and insert) the axiom-related messages.

P r e c e d e n c e A x i om s A best-effort approach for this type of axiom would have to ensure that

precondition messages occur within a certain time window (to the past) of behaviour messages. This could

be done again in, at least, two passes. The first pass generates messages as per the general schema.

The second pass evaluates whether the generated messages satisfy the axiom and, if not, whether some

messages could be moved closer together (or reordered) to satisfy time constraints. If there are no available
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messages, new precondition messages would have to be generated for each behaviour in the preliminary

trace, or behaviours would have to be removed.

R e s p o n s e A x i om s As in the case of Existence axioms, these require the insertion of messages

into the preliminary trace, but only if the trace already contains the stimulus message. In that regard, these

might be easier to satisfy, since, if there are no stimuli, nothing needs to be done. In their simplest form,

‘globally: /a causes /b within T ms’, these properties can be integrated in the schemas by setting

an upper limit of T on some intervals (or possibly decreasing an upper bound already in place).

P r e v e n t i o n A x i om s These axioms work in contrast with the previous. In the presence of stimuli,

messages have to be removed, or set apart from each other for a minimum delay, which might end

up interfering with the remaining constraints. The simplest forms of these axioms, though, such as

‘globally: /a forbids /b within T ms’, are relatively easy to integrate, as we have shown, even though

they are not currently implemented. They just increase the lower bounds of some intervals to T in the

schema.

7.5 Implementat ion

In this section we will go over the implementation details behind our approach, starting with the test

generation plug-in, moving into the Hypothesis data generators for input traces, and down to the test driver

function. As we have previously mentioned, our implementation is not capable of handling everything the

specification language is able to express. Arithmetic and quantified expressions are not supported for open

subscribed topics, for instance. We will identify current limitations at appropriate points of the discussion.

7.5.1 Test Generation Plug-in

The plug-in itself does not warrant much discussion. Even though it performs a number of computations,

most of its steps are relatively straightforward. The overall process of the plug-in is summarised in

Listing 7.3.

1 def make_tests(configuration):

2 open_subscribed_topics = get_open_subscribed_topics(configuration)

3 all_properties = configuration.hpl_properties

4 testable_properties = get_testable_properties(all_properties,

5 open_subscribed_topics)

6 axioms = get_axioms(all_properties, open_subscribed_topics)

7 rendered_templates = make_test_templates(open_subscribed_topics,

8 testable_properties, axioms)

9 write_test_files(rendered_templates)

Listing 7.3: Top-level function to generate test scripts from annotated Configurations.
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One of its first steps is to identify open subscribed topics, given a HAROS Configuration, as shown in

Listing 7.4. Determining this set of topics will, in turn, determine which properties are axioms and which

properties are testable, according to our previous definitions.

1 def get_open_subscribed_topics(configuration):

2 ignored = plugin_settings.get("ignored", ())

3 topics = {} # topic -> TypeToken

4 for topic in configuration.topics.enabled:

5 if topic.subscribers and not topic.publishers:

6 if topic.unresolved or topic.type == "?":

7 log_warning("Skipping unresolved topic {} ({}).".format(

8 topic.rosname.full, configuration.name))

9 elif topic.rosname.full in ignored:

10 log_warning("Skipping ignored topic {} ({}).".format(

11 topic.rosname.full, configuration.name))

12 else:

13 topics[topic.rosname.full] = get_type_token(topic.type)

14 return topics

Listing 7.4: Function to identify open subscribed topics in a Configuration.

The most complex step of the overall process is the make_test_templates function, which is broken

down into a number of steps itself, as shown in Listing 7.5. For each testable property, it starts by building

data generators for Hypothesis (lines 5-7), so that input traces can be instantiated, according to a number

of schemas. The schemas are determined based on the type of property and its state machine, as we have

seen in the previous section. Then, the plug-in builds other necessary pieces of information for the general

test script template, and gathers everything under a data dictionary (line 11). For instance, it collects the

names of runtime monitors to deploy, roslaunch and rosrun commands to deploy the SUT, necessary

Python package dependencies, and general test settings, such as the test deadline. Lastly, the collected

information is passed on to the Jinja template engine, to produce the source code for an executable ROS

PBT node (line 12).

1 def make_test_templates(open_topics, properties, axioms):

2 tests = []

3 for p in properties:

4 try:

5 strategies = build_input_trace_strategies(p)

6 py_input_trace = render_template(

7 "input_trace_strategies.python.jinja", strategies)

8 except SchemaError:

9 log_warning("Cannot produce a test for:\n'{}'\n\n{}".format(p, e))

10 continue

11 data = {} # py_input_trace, monitors, ROS launch commands, etc.

12 py_test_case = render_template("test_case.python.jinja", data)

13 tests.append(py_test_case)

14 return tests

Listing 7.5: Function to build test scripts using schemas and code templates.

The remaining parts of the plug-in are mostly related to the implementation of the build_input_trace_-

strategies function. This makes for some quite extensive blocks of source code that we will omit, for
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readability purposes. The plug-in starts by performing a number of (very simple) static analysis checks

over the properties and axioms. First, with static analysis, we are able to discard obvious contradictions on

the predicates over message fields (e.g., ‘x > 0 and x < 0’) and still report them at compile-time, rather

than failing at runtime. Second, we are able to narrow down some of the possible values for Hypothesis

strategies, e.g., given an integer ‘x > 0’, we are able to use Hypothesis’ integers(min_value=1), as

we will see. Once this is done, the plug-in determines appropriate schemas for the given property and

generates all the necessary Hypothesis strategies. This includes strategies for mandatory events (e.g.,

activator messages), strategies for spam messages over the various phases of an input trace, and also a

strategy for the input trace itself.

With the details about the plug-in itself out of the way, next we will delve into the details of Hypothesis

strategies for ROS messages and input traces.

7.5.2 Input Trace Data Generators

Basic Messages and Data Types

We start off by creating strategies for all basic data types a ROS message can contain, such as 8-bit, 16-bit,

32-bit and 64-bit integers (signed and unsigned), 32-bit and 64-bit floating-point numbers, strings and

fixed-length or variable-length arrays of such values. Listing 7.6 illustrates this with the resulting strategy

for 8-bit signed integers.

1 from hypothesis.strategies import integers

2

3 INT8_MIN_VALUE = -(2 ** 7)

4 INT8_MAX_VALUE = (2 ** 7) - 1

5

6 def ros_int8(min_value=INT8_MIN_VALUE, max_value=INT8_MAX_VALUE):

7 if (min_value < INT8_MIN_VALUE or min_value > INT8_MAX_VALUE

8 or max_value < INT8_MIN_VALUE or max_value > INT8_MAX_VALUE

9 or min_value > max_value):

10 raise ValueError('values out of bounds: {}, {}'.format(min_value, max_value))

11 return integers(min_value=max(min_value, INT8_MIN_VALUE),

12 max_value=min(max_value, INT8_MAX_VALUE))

Listing 7.6: Hypothesis strategy for 8-bit signed integers.

On top of these strategies for basic data types, we are able to build default strategies for all message

types the test requires. Since ROS messages are custom data types, that Hypothesis knows nothing about,

we will use the previously presented @composite strategy. To build default strategies for all message types,

we follow three steps.

1. Identify all open subscribed topics in the architectural model.

2. Create type tokens for the message types of all open subscriptions and their transitive dependencies

(get_type_token function, line 13 in Listing 7.4). A type token is a data structure that lists all the

fields the message type is supposed to contain, and their respective types.
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3. Create a strategy for each message type, using the default strategies for the data types of each

field. Listing 7.7 shows an example for the geometry_msgs/Twist message, a standard message

to express velocities in free space, broken into their linear and angular parts.

1 @composite

2 def ros_geometry_msgs_Twist(draw):

3 msg = geometry_msgs.Twist()

4 msg.linear = draw(ros_geometry_msgs_Vector3())

5 msg.angular = draw(ros_geometry_msgs_Vector3())

6 return msg

7

8 @composite

9 def ros_geometry_msgs_Vector3(draw):

10 msg = geometry_msgs.Vector3()

11 msg.x = draw(ros_float64())

12 msg.y = draw(ros_float64())

13 msg.z = draw(ros_float64())

14 return msg

Listing 7.7: Strategy for geometry_msgs/Twist messages.

Messages With Constraints

The following step is to generate message strategies with constraints. This is where we must take into

consideration any provided axioms, as well as the specific property pattern we are testing. We must ensure

that specific messages such as activators and preconditions have their own strategies, complying both

with user-defined predicates and with axioms regarding message contents. Even random messages must

have several strategies, because, depending on where the message is to be positioned in the trace, in

some cases we have to avoid matching activators, while in other cases we avoid matching terminators or

stimulus.

As an example of message strategies conforming with predicates, consider the following Response

property.

1 globally: /laser {not data > 50} causes /stop_cmd within 200 ms

From the previous state machine and schema analysis, we know that the resulting trace must contain a

/laser message such that ‘not data > 50’. When possible, our approach builds these predicates directly

into the message generators, via static analysis, so that we only generate valid values from the start. In

part, this is why we impose so many restrictions over testable properties, such as avoiding arithmetic.

Naturally, some predicates are beyond the capabilities of static analysis (or beyond reasonable computation

effort), in which case we must resort to random values and validation at runtime. Listing 7.8 shows the

generated strategy for the example property.

At this point, we should also make a short note regarding axioms (and message predicates, in general).

Powerful as they are, specifying axioms comes at the cost of degraded test performance. Axioms are, in

practice, additional constraints that must hold for the generated inputs. While we are able to optimise for
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1 @composite

2 def cms1_std_msgs_Int8(draw):

3 msg = std_msgs.Int8()

4 msg.data = draw(ros_int8(max_value=50))

5 return msg

Listing 7.8: Strategy for std_msgs/Int8 messages such that data ≤ 50.

some cases, via static analysis of the properties themselves, for most expressible properties we can only

evaluate the generated inputs after generation. Thus, if the axioms are hard to satisfy, we are at risk of

having to generate inputs repeatedly until one is finally valid.

Our current implementation only optimises for global Absence properties. Axioms such as ‘globally:

no /laser {data < 0 or data > 7}’ can be automatically built into the data generators, so that only

satisfying inputs are generated. All other axioms are evaluated dynamically before running the test example.

If an axiom is violated, the test example is discarded and marked as invalid (using the assume function

from Hypothesis).

Input Traces

The last step is to group messages together under a single trace, and this is where we must take schemas

and timing constraints into account. How the strategy for an input trace looks depends largely on the

selected schema. The exact amount of (optional) messages that the generated traces contain, or the delays

between messages, are some examples of variables that we leave for Hypothesis to explore. The order

in which spam messages are allocated throughout the trace is also variable, to an extent. For illustrative

purposes, we show in Listing 7.9 a (simplified) generated trace strategy for the previous Response property,

based on the following schema. Note the absence of scope activators and terminators, a consequence of

the globally keyword.

1 forbid /laser {not data > 50}

2 +0..: publish /laser {not data > 50} (single stimulus)

3 forbid /laser {not data > 50}

As we can see, the trace strategy starts by generating the timestamp for the first mandatory event. Then,

it generates random messages (lines 8-16) for irrelevant topics (/bumper and /wheel). By default, the

trace generator aims for relatively short traces. Whenever random messages are allowed in a trace, it

adds up to three random messages per topic, possibly none. This decision is based on the small scope

hypothesis [10, 90], which states that testing a program for all inputs within a relatively small scope is

enough to make a high number of faults manifest.

In lines 17-21, the messages are sorted randomly (shuffle) and then, for each message, we draw

a random relative delay of zero or more milliseconds (relative_delay), up to the value of the initial

timestamp. The relative delays set the waiting time between one message and the next. Once we have

all messages, they can be easily converted into absolute timestamps. A delay of zero means that the

respective message is sent at the same time as the previous message in the trace.
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1 @composite

2 def traces(draw):

3 trace = Trace()

4 r = draw(randoms())

5 delay_strategy = integers(min_value=0, TEST_DEADLINE)

6 first_delay = draw(delay_strategy)

7 # Spam Messages #######################################

8 random_msgs = []

9 elems = ros_std_msgs_Int8()

10 msgs = draw(lists(elems, min_size=0, max_size=3))

11 for msg in msgs:

12 random_msgs.append((msg, "/bumper"))

13 elems = ros_std_msgs_Int8()

14 msgs = draw(lists(elems, min_size=0, max_size=3))

15 for msg in msgs:

16 random_msgs.append((msg, "/wheel"))

17 r.shuffle(random_msgs)

18 delay_strategy = integers(min_value=0, max_value=first_delay+1)

19 for msg in random_msgs:

20 relative_delay = draw(delay_strategy)

21 trace.append(msg, relative_delay)

22 assume(trace.duration < first_delay)

23 # Stimulus Message ####################################

24 msg = (draw(cms1_std_msgs_Int8()), "/laser")

25 trace.append(msg, first_delay)

26 return trace

Listing 7.9: Example strategy to generate message traces.

This first segment of code (lines 7-22) handles the initial phase of the schema, from the SUT’s launch

until the stimulus event; there is no scope activator for the globally scope. The second segment of the

presented function (lines 23-25) generates the mandatory /laser message such that data ≤ 50, for the

stimulus event. Again, due to being a globally scope, there are no terminators, nor further scopes besides

the one.

Shrinking

In our current approach, as we could see from the various strategy examples shown so far, shrinking is left

for Hypothesis to handle. We use the default roster of strategies provided by Hypothesis whenever possible

(integers, lists, etc.), which implies the default shrinking behaviour. By default, Hypothesis will shrink

traces along three axes:

• reduce the number of messages in the trace (lists of random messages tending towards zero

elements);

• reduce the time it takes to replay the trace (delays between messages tending towards the minimum

value);

• shrink the contents of each individual message (shrinking data fields as per @composite rules).

As we have seen, it could try any of the three approaches, or a combination of the above. This

implementation makes no effort to override Hypothesis’ shrinking heuristics. In part, this is because it is
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not clear what the best shrinking behaviour should be. It is not clear whether we should prioritise traces

with a smaller number of messages, traces with shorter delays between messages, or traces with smaller

values in the various message fields. The first and third options are better for debugging purposes, to help

users understand reported failures. The second option (and the first, to a lesser extent) helps in reducing

the total time needed to replay an input trace.

Following one of the alternatives above the others might actually increase the time it takes to test a

property. Suppose a complex counterexample is found. The shrinking phase begins, opting, for instance,

to reduce the number of messages in the trace. It would try to remove all optional messages, starting with

one at a time, then two, and so on, until it exhausts all possibilities. If the actual counterexample requires

all messages, but can be shrunk in the individual message fields, all the investment in prioritisation would

have gone to waste. A mixed approach might be the most performant, on average.

We opt to leave this problem (which is likely more complex than it appears to be) for future work, and

trust in the years of research and experience behind Hypothesis.

7.5.3 Hypothesis Test Driver

Given a trace generator that satisifes all the previous requirements, the test driver itself is relatively

straightforward. Some low-level details, such as deploying the SUT between tests will be left out, as they

are mostly boilerplate code. Listing 7.10 shows a simplified version of the code for the main test function.

1 @given(trace=traces())

2 def test_properties(self, trace):

3 self.eval_trace(trace)

4 self.setup_test()

5 self.setup_sut()

6 try:

7 for msg, topic, delay in trace:

8 rospy.sleep(delay)

9 for monitor_verdict in self.verdicts:

10 assert monitor_verdict

11 self.publishers[topic].publish(msg)

12 # after replaying all messages in the input trace:

13 rate = rospy.Rate(100) # hz

14 while not self.safe_to_terminate:

15 for monitor_verdict in self.verdicts:

16 assert monitor_verdict

17 rate.sleep()

18 finally:

19 self.teardown_sut()

Listing 7.10: Main Hypothesis test function.

The input for the test function is a concrete input trace. It includes messages up front for however many

scopes we will be testing within a single test case. In other words, traces are not generated online; we

do trace generation beforehand. The main reason for this is a concern for non-functional performance.

Sometimes, traces might include very small delays between messages, and possibly a considerable number
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of simultaneous messages. Some ROS messages are quite large and complex, and it takes time to produce

them. Considering also that we have to uphold a number of constraints, if we opted for online generation,

it would be likely that we would miss deadlines, and our messages would no longer be published at the

intended timestamps.

The first thing we do within the test function is trace validation. The eval_trace function takes in an

input trace to evaluate, dynamically, whether the given trace satisfies all axioms. Evaluating a trace is

faster than waiting for its replay and monitoring, which contributes to an overall shorter testing period. This

is another point in favour of offline generation of traces.

As we move on, the first and last few lines handle the test infrastructure. The setup_test function

initialises internal variables, publishers, subscribers, timers and runtime monitors. The setup_sut function

launches the ROS system under test, using functions directly from the ROS tools. It then blocks until all

required nodes and topics are detected. Monitors with an implicit activator are notified of the system’s

launch at this point. The teardown_sut is the dual function that shuts down the system under test. Recall

that the test_properties function is executed multiple times by Hypothesis. As such, we can see that the

system is launched and shut down with every example. This takes a significant toll on execution time, as

we will see in Chapter 8, but it is the only way to ensure that the system is started from a clean state with

every test.

Regarding the core of the function’s body, we can see a simple loop, using rospy.sleep() to ensure

that we meet the desired publishing frequency. The simplified code omits optimisations that can take place

at this point, to skip the sleep instruction entirely if the delay between messages is zero. Within this loop,

we also check whether any monitor has detected a property violation so far, and abort the test early if so.

Finally, after the trace is fully replayed, there is a new check to ensure that no property has been violated.

It is repeated periodically, until it is safe to deem the test case complete. By default, it runs until a given

deadline. In some cases, we can terminate early – for instance, if the input trace ends with a terminator

message.

7.6 Summary

This chapter presents our Property-based Testing approach based on Runtime Verification for ROS systems.

The main goal of this work is to leverage the benefits of automatic testing techniques, such as Specification-

based Testing and Property-based Testing, in this case, while lowering the specification effort. The

specification language we presented in Chapter 4 is used as an entry point for the automatic generation of

test scripts specifically designed for a given system architecture. We realise the proposed approach as a

HAROS plug-in, since the framework is already capable of automatic extraction of the required architectural

models. One of the advantages of this approach is that users get feedback as to whether a concrete system

implementation complies with a specification, as well as a counterexample in the case that it does not. In

addition, the use of Property-based Testing tools ensures that there is an effort to shrink counterexamples.

Rather than presenting the first encountered counterexample for a property, this approach strives to provide

the user a minimal counterexample; an invaluable aid in the debugging effort.
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C A S E S T UD I E S A ND E V A L U A T I O N

In the previous chapters we have proposed the two major components of our general approach to ROS-

specific analyses of software systems. The first component is an architecture model extraction technique

that captures both static artefacts, such as packages and files, and the runtime entities that compose

the system’s ROS environment, such as nodes and topics. Relying on this system model, and on a

domain-specific property specification language, the second component is able to generate automated

property-based tests that explore a vast range of the input space and are able to detect non-compliant

behaviour. Both components have their respective implementation integrated within the HAROS analysis

framework, and, in this chapter we evaluate their performance on two distinct case studies. For the whole

evaluation process, we use a virtual machine running 64-bit Linux Xubuntu 18.04.1 and ROS Melodic. This

virtual machine was given 2 cores of a Intel(R) Core(TM) i7 2630QM (2.00 GHz) and a base memory of 2

GB DDR3 RAM (665 MHz).

8.1 Case Studies

8.1.1 TurtleBot2

TurtleBot is one of the most iconic ROS robots. It is a low-cost, personal robot kit with open-source software

that was designed in collaboration with the original makers of ROS, Willow Garage. Its main purpose is to

provide an entry-level platform for roboticists to build applications with. It is a platform to learn, explore

and research with ROS, and, thus, it is more of an academic case study.

TurtleBot21 (Figure 75) is the second generation of the TurtleBot, following within the ROS Enhancement

Proposal (REP) 119 specification2. This REP – a document that describes a ROS design issue, or provides

general guidelines or information to the ROS community – outlines compatibility definitions for TurtleBot

compatible platforms, such as hardware and software requirements. This second generation personal

robot is equipped with a Kobuki robot base (essentially a repurposed robot vacuum cleaner), and various

off-the-shelf consumer electronics, such as a standard dual-core netbook, a RGBD sensor and a gyroscope,

1 http://www.turtlebot.com/turtlebot2/

2 https://www.ros.org/reps/rep-0119.html
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Figure 75: The TurtleBot2 robot.

in order to keep costs low. The TurtleBot is a specific product, but it is an Open Hardware Design released

under the FreeBSD Documentation License.

TurtleBot2 provides for an interesting case study, since its source code has been relatively well maintained,

and it includes some uncommon features, such as conditional topic subscriptions, that our tools should be

able to handle. Besides, it has been implemented with extensibility and customisation in mind, featuring

tens of different launch files and configurations out-of-the-box. Another compelling factor is the richness of

online tutorials, videos, sample code and other documentation that is easily available. The existence of

these artifacts makes the evaluation of our tools easier, since we know what is the expected architecture

and behaviour of the system without relying too much on reading the robot’s source code. For the purposes

of our evaluation, we will focus on two configurations of the TurtleBot2.

The first configuration is called the Random Walker Controller configuration. This configuration launches

all the core components of the Kobuki mobile base, and then adds a Random Walker Controller node,

that, as implied by its name, moves the robot around in randomly chosen directions. In addition, two

other key nodes of the TurtleBot2 design are launched, the Safety Controller node, responsible for reacting

to dangerous sensor readings, and the Multiplexer node, that allows only the highest priority velocity

commands to be processed. A diagram of this architecture is shown in Figure 76.

The second configuration is called the AMCL3 Navigation configuration. While the core components are

the same as in the previous configuration, the Random Walker Controller is replaced by a proper navigation

stack. Given a previously known map, an initial location estimate and a destination point, the robot is

capable of identifying its location and move towards its goal, avoiding both static and dynamic obstacles

along the way. Besides sending destination goals, users are also allowed to integrate teleoperation in the

3 AMCL stands for Adaptive (or KLD-sampling) Monte Carlo localisation, the robot localisation algorithm used in this configuration.
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Figure 76: The Random Walker Controller configuration.

Figure 77: The AMCL Navigation configuration.

configuration. For the purposes of navigation, additional nodes to process camera signals are required.

Figure 77 shows a diagram of the architecture.

8.1.2 AgRob V16

AgRob V164 is a modular robotic platform for hillside agriculture, adapted to sloping and uneven terrains

(see Fig. 78). It is designed for monitoring, precision spraying, pruning and selective harvesting, particularly

in steep slope vineyards. Among other innovative features, this robotic platform is equipped with an

advanced navigation system that allows it to estimate its location even when GPS is not fully available. Its

modularity makes it able to integrate various types of payload, both in the form of sensors and actuators.

The main driver behind this project is to provide commercial solutions for hillside vineyards capable of

4 http://agrob.inesctec.pt/

http://agrob.inesctec.pt/
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Figure 78: The AgRob V16 agriculture robot monitoring a slope vineyard.

autonomously executing operations of Monitoring and Logistics. Such features will help winemakers make

important decisions, increasing wine quality and production.

There are a few appealing factors in AgRob V16 that make it an interesting case study for us.

• It is a real industrial robot that heavily relies on ROS, a sharp contrast with TurtleBot2, which is

more of an academic case study.

• It is a more complex system in every sense, from the hardware components to the dimension of its

software.

• A large part of its software comes from integrated third-party packages that provide mapping and

localisation, among other features, while TurtleBot2 was mostly implemented from the ground up in

earlier versions of ROS.

• The coding styles of both robots are vastly different, despite both being programmed in C++.

• TurtleBot2 was made with open source in mind, and it has received contributions and reviews from

the community over the years, while AgRob V16 is mostly a closed source system (at the time of

writing).

• The developers and maintainers of AgRob V16 belong to a robotics research group from our research

institution, allowing for personal meetings, e-mail exchanges and, overall, an easier understanding

of the system’s inner workings and intended behaviour.

For the purposes of our evaluation, we consider two very similar configurations. The first is the Basic

configuration, which allows a user to alternate between teleoperation and autonomous navigation using a

joystick. The second is the Path Planning configuration, which is mostly the same as the Basic configuration,

except for adding a specialised path planning node that is adapted to sloping terrain. The diagram of

Figure 79 shows the overall architecture for both configurations. The Path Planning component is shown

in dashed lines.
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Figure 79: The AgRob V16 Basic and Path Planning configurations, the latter in dashed.

Both configurations share a relatively large set of nodes, including mobile base controllers, laser sensors,

cameras, map servers, and, most importantly, custom Joystick Controller, Supervisor and Safety Controller

nodes. The Safety Controller node, in a similar fashion to the TurtleBot2 case, is responsible for reading

the various sensors (lasers, IMU, cameras) and determining the current state of the robot (e.g., safe,

caution or danger). The Supervisor node is (in concept) a glorified variant of TurtleBot2’s Multiplexer. It

receives velocity commands from multiple sources (e.g., joystick, autonomous navigation) and selects the

appropriate command to pass down to the mobile base, according to the state reported by the Safety

Controller node. In addition, it also ensures that all velocity commands are within dynamic maximum and

minimum velocity limits (that also depend on the safety state). The Joystick Controller converts joystick

commands into velocity commands and changes the robot’s mode of operation (via a message sent to

the Supervisor) depending on whether certain buttons are pressed. Lastly, the Path Planning component

implements an extension of the A* algorithm, specifically designed to navigate in steep slope vineyards, that

is aware of the robot’s distance to vine trees. The algorithm behind this component has been published

in [152].
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8.2 Evaluat ion of the Model Extractor

The process of evaluating a model extraction (or reverse engineering) tool is not standard, and is very

dependent on the application area and main goal of the model. In our case, we have to evaluate how

accurate are the architectural models of a ROS system extracted with HAROS. These models include

several types of complex entities, both from the file system layer (e.g., Packages and Files) as well as the

system’s runtime (i.e., the ROS Computation Graph). Our objective is to assess how many entities of the

actual system are captured by the model, and to what level of detail.

Intuitively, we know that capturing all system entities but providing no details about them (such as types,

full names, etc.) is not the same thing as capturing just a few, but with all attributes completely determined.

Since the extraction of file system entities is relatively straightforward, requiring little more than a traversal

of directories, we decided to leave these out of the evaluation, in order to avoid bias. Thus, we focus this

evaluation on the ROS Computation Graph, i.e., in HAROS’s ability to correctly parse and interpret launch

files as well as C++ source code.

In quantitative approaches, the selected metrics vary, depending on the application area and main

purpose of the model. However, the metrics of Precision, Recall and the F-score (in particular, the F1-score)

are among the most common for performance measurement. We use these metrics, in conjunction with

the number of required extraction hints, as our evaluation goals. In this section we define each of the

metrics and explain our measurement process.

8.2.1 Core Performance Metrics

In binary classification problems, such as testing whether a person has contracted a disease, whether a

piece of software is faulty, or, more generally, whether a datum is correctly labelled, observations fall under

the following four categories.

TRUE POSITIVE (TP) The test reports positive for a truly positive case; e.g., a faulty piece of software is

deemed faulty.

TRUE NEGATIVE (TN) The test reports negative for a truly negative case; e.g., a correct piece of software is

deemed correct.

FALSE POSITIVE (FP) The test wrongly reports positive for a negative case; e.g., a correct piece of software is

deemed faulty.

FALSE NEGATIVE (FN) The test wrongly reports negative for a positive case; e.g., a faulty piece of software is

deemed correct.

It is clear that we want to maximise true positives and true negatives, while minimising false positives

and false negatives. In the example of detecting software bugs, false positives are an annoyance – they set

the maintainer on a search for a problem that does not exist, lowering trust on the detection mechanism.
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False negatives, on the other hand, are a more serious problem – bugs slip by undetected, bolstering trust

at first, but possibly manifesting under unfavourable circumstances at a later point.

These four metrics are often combined, so as to achieve a single metric that reflects perceived

performance. The naïve (and most intuitive) approach is to calculate the Accuracy (ACC) metric [158]. It is

the ratio of correct predictions over the total number of observations, and is defined as:

ACC =
TP + TN

TP + TN + FP + FN

The main problem with this metric is that it favours trivial implementations for asymmetrical datasets.

For instance, when detecting software bugs in safety-critical systems, a detector can assume that most of

the software is correct, and thus report every observation as correct, i.e., everything is a negative. Naturally,

this yields a low number of false negatives, and thus a high accuracy metric, but the cost of a single false

negative is high. So, optimising for Accuracy is not always the best choice, and the metrics of Precision

and Recall tend to be favoured instead.

Precision (PRE) can be informally defined as the ratio of how many of the positive reports are actually

positive cases, and Recall (REC) can be informally defined as the ratio of how many of the actual positives

are reported as positive. They are defined as follows.

PRE =
TP

TP + FP
REC =

TP

TP + FN

Depending on the application, one metric might be preferable over the other. For instance, in e-mail

spam detection, optimising for precision is more desirable because the cost of a false positive is high.

A false positive means that a regular e-mail is incorrectly flagged as spam, which might lead to a user

losing important e-mails. In software bug detection, we witness the converse situation, in which recall

is the optimal metric. The cost of a false negative, i.e., letting a bug go undetected, is higher than the

cost of reporting correct software as faulty. Note that, for relatively complex classification problems, these

metrics tend to be inversely proportional. To achieve maximum precision, the safest course of action is to

refrain from making any judgement – if there are no reported positives, there are no false positive reports.

However, to achieve maximum recall, one wants to label everything as positive, to ensure that no actual

positives are disregarded.

The F-score (or F-measure) is the harmonic mean between Precision and Recall [43, 55, 159]. Its main

purpose is to achieve a single performance metric, in the range of [0, 1], that strikes a balance between
the two metrics, yet is more useful for uneven data distributions than Accuracy; the F-score does not focus

on true negatives, and works better than Accuracy if the costs of false positives and false negatives are not

equal. The most common variant of this metric is the F1-score (F1), a function that weighs precision and

recall evenly. Other common variants are the F2-score and the F0.5-score, which emphasize recall over

precision and precision over recall, respectively. The definition of F1 is as follows.

F1 = 2 ×
PRE × REC

PRE + REC
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8.2.2 Performance Metrics for Complex Entities

In our case, we are not dealing with a binary classification problem, so the notions of positive and negative

become blurred. We are extracting entities that, when compared with a ground truth, can sit anywhere

in the spectrum of completely different to completely correct, with various levels of partial correctness

in between. How to address such complex comparisons and convert them into Precision and Recall

values is not straightforward. We found the modern approaches used in the Named Entity Recognition and

Classification (NERC) sub-domain of Natural Language Processing [44, 154] to be among the best fits for

this purpose, as we explain here.

In NERC applications, the intent is to process a source text, written in natural languages such as English,

extract relevant named entities and classify them (e.g., people, organisations, locations). Entities are often

characterised by their string boundaries (start and end index of the substring in the main text) and the

type of the entity. Our problem shares a few traits with NERC, but with added complexity. In our case,

the source text is source code, split among various files and written in different programming languages.

Our entities do not have string boundaries, but they do have traceability information, i.e., a location in

the source text that marks the start of the entity’s occurrence. Lastly, besides a type, our entities have a

number of other attributes, such as the ROS name. Contrary to NERC, though, our extraction process does

not always assign a value to each entity attribute; we allow data fields to be labelled as unknown, resulting

in more opportunities for partial correctness.

A number of ranking and evaluation systems emerged over the years to provide a fair score to an

evaluated system at the entity level (as opposed to evaluating at the token level), when comparing its output

to that of a human linguist (i.e., comparing automated output to a ground truth). For the evaluation of our

model extractor, we adapted the process used in the 2013 International Workshop on Semantic Evaluation

(SemEval-2013) [154], which is in turn based on other processes, such as the one used in the Conference

on Message Understanding (MUC) [44]. This process is illustrated in the diagram of Figure 80.

In the SemEval-2013 evaluation process, there is not a single performance metric, but rather four sets

of performance metrics (with Precision, Recall and F1 for each), associated with different measurement

modes.

STRICT The string boundaries and type of the compared entities must be equal.

EXACT The string boundaries of the compared entities must be equal, but not their types.

PARTIAL The string boundaries of the compared entities must overlap, if they are not the same.

TYPE The types of the entities must match, even if the string boundaries are wrong.

For each of the previous measurement modes, extracted entities are matched against the ground truth

entities (called the golden standard in this context) by string boundaries. Each entity pair is counted under

one of five categories, depending on the measurement mode.

CORRECT (COR) The extracted entity and the golden entity are considered equal.
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Figure 80: The evaluation system used in SemEval-2013.

INCORRECT (INC) The extracted entity and the golden entity are different.

PARTIAL (PAR) The extracted entity and the golden entity match for some attributes.

MISSING (MIS) The golden entity does not have a match in the set of extracted entities.

SPURIOUS (SPU) The extracted entity does not have a match in the golden standard.

These measurements are then converted into Precision and Recall according to the following formulae.

The F1-score is calculated as per the traditional formula.

PRE =
COR + 0.5 × PAR

COR + INC + PAR + SPU
REC =

COR + 0.5 × PAR

COR + INC + PAR + MIS

8.2.3 Methodology

Our evaluation process is similar to the SemEval-2013, but adapted to our specific context. The first step

is to annotate each selected Configuration of the case studies with a ground truth model. This model is

built by hand, by reading and interpreting the code as the ROS environment would, and then using runtime

inspection tools for confirmation. To write the ground truth model, out of convenience and to strive for

consistency, we use the same YAML syntax that we previously defined in Chapter 3 for the model extraction

hints. As is the case with the extraction hints, this model contains the top-level entities that are spawned

by launch files (Nodes and Parameters), with the Links produced via C++ or Python code as attributes of

the Nodes. However, for evaluation purposes, we consider Links as independent entities because they are

also resources (first-class citizens) of the ROS computation graph. We treat them as if they were declared

at top-level, with an additional attribute defining their Node owner. Listing 8.1 shows a small example of

this syntax.
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1 nodes:

2 "/mobile_base":

3 node_type: kobuki_node/KobukiNodelet

4 args: "load kobuki_node/KobukiNodelet mobile_base_nodelet_manager"

5 remaps:

6 "/mobile_base/odom": "/odom"

7 "/mobile_base/joint_states": "/joint_states"

8 traceability:

9 {package: kobuki_node, file: launch/minimal.launch, line: 8, column: 3}

10 publishers:

11 - topic: "/odom"

12 original_name: "/mobile_base/odom"

13 msg_type: nav_msgs/Odometry

14 queue_size: 50

15 traceability:

16 {package: kobuki_node, file: src/library/odometry.cpp, line: 76, column: 20}

17 parameters:

18 ...

Listing 8.1: Excerpt of a ground truth model, illustrating a node with a publisher.

Note that, for a typical ROS system, much of its functionality comes from nodes and libraries that are

not built from scratch; reuse of freely distributed components made by other members of the community

is greatly encouraged. A large set of these components are what makes today the standard distributions of

ROS, and, in practice, these would not even be installed from source, but rather from pre-packaged binaries.

As mentioned in Chapter 5, when possible, HAROS resorts to a database of pre-parsed Nodes for such

standard components. To avoid this massive source of bias for the evaluation, we decided to drop out of

both the extracted models and the ground truth all the Links that such nodes create. Instead, we evaluate

just the extractor’s ability to detect that such Nodes are present in launch files, and evaluate the Node’s

specific attributes – e.g., in which namespace is the node launched, and with which name remappings. In

short, we evaluate our performance only for the entities that are truly unique to each Configuration.

Once the laborious process of building a ground truth is completed, we submit the extracted model and

the corresponding ground truth to an evaluation script that compares both and calculates Precision, Recall

and the F1-score. Again, out of convenience, the evaluation script is actually implemented as a HAROS

plug-in5; this way it has direct access to the models, and is able to use HAROS’s reporting mechanisms to

display the results. As to how the actual performance measurement is done, we illustrate the process in

the diagram of Figure 81.

The first step is to match the extracted entities with their counterparts from the ground truth. In this

case, it is not as simple as comparing string boundaries, and must take partial information into account as

well, such as unresolved names that stem from dynamic values. Thus, we try to mimic what a human

would likely do. When looking at the two models, especially if looking at their visual representation in the

HAROS visualiser, we assume that a human would try to match the models according to the following

criteria.

1. Match by Resource type; i.e., match Nodes with Nodes, Publishers with Publishers, etc.

5 https://github.com/git-afsantos/haros-plugin-model-ged

https://github.com/git-afsantos/haros-plugin-model-ged
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Figure 81: The evaluation algorithm we use to assess the model extractor’s performance.

2. Nodes and Parameters are independent resources, but, for Links, match only resources of the same

type that belong to the same Node; i.e., do not match publishers from node /robot with publishers

from node /laser.

3. Within the resources of the same type, match by ROS name; i.e., /robot and /robot are a match,

/? and /robot might be a match, and /laser and /robot are not a match.

4. If the match by ROS name is unclear, try to match by ROS type; i.e., a publisher of type geometry_-

msgs/Twist is likely not a match to a publisher of type sensor_msgs/LaserScan.

5. If the match by ROS name and type is still unclear, try to match the traceability information; i.e., the

source code location at which the entity occurs.

To implement the resource matching algorithm, we first build a full bipartite graph between resources

of the same type. Each edge of the graph is assigned a weight, based on the aforementioned heuristics

(lesser is better). Then, we use Karp’s algorithm [95] to produce a minimum weight matching of the graph.

A matching is a selection of edges from the graph such that no node appears twice, and all nodes are

included if possible. A minimum weight matching is a matching such that the combined weight of the

edges is the lowest possible, when compared to other possible matchings. In the case that one side of

the bipartite graph includes more nodes than the other, there will be leftover nodes, not included in the

matching (meaning that they have no suitable pair).

In Figure 82 we can see an example matching. On one side of the graph we have nodes A, B and C,

while on the other side we have nodes 1 and 2. A greedy and naïve strategy would likely match nodes A-1,

since the weight of this edge is 0, but that would leave no choices other than B-2 or C-2, which would

amount to a total weight of 10. If we select edges A-2 and B-1 we have a minimum weight of 6, with node
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Figure 82: Example of a minimum weight matching.

C as a leftover. Depending on whether C is a part of the extracted model or the ground truth, we consider

all its attributes as spurious or missing (respectively).

Once the entities are paired with the ground truth counterparts, we evaluate performance separately for

each attribute of a resource pair. This way, we can assess, for instance, HAROS’s performance regarding

the extraction of ROS names, or its performance regarding queue sizes for publishers and subscribers.

Another benefit of this approach, is that we can aggregate the metrics at higher levels of abstraction, to

have an idea of the overall performance for all Node attributes, or for all attributes of all entities in general

(achieving a single F1-score relative to a Configuration).

As is the case with NERC, each attribute pair is deemed Correct, Incorrect, Partial, Missing or Spurious.

For Missing entities (respectively, Spurious), all their attributes are automatically counted as Missing

(respectively, Spurious). We try to refrain from counting attributes as Partial, except for ROS names. With

ROS names, having partial data is a feature of our proposed approach, so we first convert the unresolved

name to a regular expression pattern. Only if the regular expression is compatible with the fully resolved

name of the ground truth do we count it as Partial. Otherwise, it is counted as Incorrect. With this setting,

there is little distinction between the measurement modes of the SemEval-2013 approach, so we conducted

our evaluation with this single mixed measurement mode.

For each of the case studies, and for each of the studied configurations, we present tables that show: (i)

how many attributes were measured, and under which categories (COR, INC, PAR, MIS, SPU); (ii) Precision,

Recall and F1-score according to the measurements of (i); and (iii) the measurements for each entity type,

as well as the overall figures. For readability purposes, we provide only tables for all attributes combined.

In addition, we detail how many attributes had to be specified via extraction hints afterwards, in order to

achieve perfect Precision and Recall.

8.2.4 Results for the TurtleBot2 Case Study

Random Walker Controller Configuration

For the Random Walker Controller configuration, we were able to achieve an F1-score of 93.5%, as shown

in the following table.
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All Attributes COR INC PAR MIS SPU Precision Recall F1-score

Node 36 0 0 0 0 1.000 1.000 1.000

Parameter 185 0 0 0 0 1.000 1.000 1.000

Topic Publisher 165 3 0 28 0 0.982 0.846 0.909

Topic Subscriber 123 2 1 6 0 0.980 0.943 0.961

Service Client 0 0 0 0 0 1.000 1.000 1.000

Service Server 0 0 0 5 0 1.000 0.000 0.000

Parameter Setter 0 0 0 12 0 1.000 0.000 0.000

Parameter Getter 104 4 0 18 0 0.963 0.832 0.893

Overall 613 9 1 69 0 0.985 0.890 0.935

In this case, we missed the extraction of Links that come from composite primitives, provided by

packages other than the base ROS client libraries (not yet included in the parsing capabilities of HAROS).

For instance, we missed Links (full entities, with multiple attributes) created by the tf, diagnostics and

dynamic_reconfigure packages. The dynamic_reconfigure case, in particular, is a recurrent issue that

lowers the metrics considerably, as the use of this package entails at the very least 5 different Links, with

a single line of C++ code. We also missed subscriptions of the multiplexer node, which are dynamically

created, in a loop, after reading subscriber data from a parameter YAML file. Lastly, we missed the default

values (attributes) for three parameters that are defined in constants of a C++ implementation file (not a

header) that is not part of the analysed source code (i.e., we only consider the binaries of that package).

All issues are related to C++ parsing; launch file parsing for this configuration was perfect.

In terms of extraction hints for this configuration, we ended up fixing 6 entities and creating 11 new

entities, as shown in the following table.

Extraction Hints Fixed Entities Created Entities YAML Lines

Topic Publisher 1 4 41

Topic Subscriber 1 1 12

Service Server 0 1 8

Parameter Setter 0 2 16

Parameter Getter 4 3 32

Overall 6 11 109

Note that the creation of a single entity via hints fixes multiple missed attributes in the previous table.

For instance, we can see from this table that we have created 4 Publishers. Each Publisher corresponds to

7 attributes, as we can see in the following example (topic, msg_type, queue_size, package, file, line,

column). Thus, 4 entities with 7 attributes each, yields a total of 28 missed attributes in the first table.
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1 publishers:

2 - topic: "/tf"

3 create: true

4 msg_type: tf2_msgs/TFMessage

5 queue_size: 100

6 traceability:

7 package: kobuki_node

8 file: src/library/odometry.cpp

9 line: 31

10 column: 1

AMCL Navigation Configuration

For the AMCL Navigation configuration, we were able to achieve an F1-score of 94.5%, as shown in the

following table.

All Attributes COR INC PAR MIS SPU Precision Recall F1-score

Node 126 0 0 0 0 1.000 1.000 1.000

Parameter 1208 2 0 0 0 0.998 0.998 0.998

Topic Publisher 158 3 0 42 0 0.981 0.782 0.871

Topic Subscriber 117 2 1 18 0 0.979 0.858 0.914

Service Client 0 0 0 0 0 1.000 1.000 1.000

Service Server 0 0 0 10 0 1.000 0.000 0.000

Parameter Setter 0 0 0 42 0 1.000 0.000 0.000

Parameter Getter 134 4 0 72 0 0.971 0.641 0.772

Overall 1743 11 1 184 0 0.993 0.901 0.945

A large part of this configuration is shared with the previous one, so the previous issues are also present.

In addition, there are a few more uses of dynamic_reconfigure, increasing the number of missed Links,

there are more subscribers to set up in the multiplexer node, and launch file parsing is no longer perfect.

We now have a parameter, defined in a launch file, whose value is the text output of a command-line

application that is supposed to run in place – xacro, a XML macro utility that is used in ROS to read XML

descriptions of physical robot models. HAROS does not support this feature of running arbitrary commands

during launch file interpretation, so it is not capable of determining the parameter’s value.

In terms of extraction hints for this configuration, we ended up fixing 7 entities and creating 30 new

entities, as shown in the following table.
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Extraction Hints Fixed Entities Created Entities YAML Lines

Parameter 1 0 3

Topic Publisher 1 6 61

Topic Subscriber 1 3 30

Service Server 0 2 16

Parameter Setter 0 7 56

Parameter Getter 4 12 104

Overall 7 30 270

8.2.5 Results for the AgRob V16 Case Study

Basic Configuration

For the AgRob V16 Basic configuration, we were able to achieve an F1-score of 91.8%, as shown in the

following table.

All Attributes COR INC PAR MIS SPU Precision Recall F1-score

Node 132 0 0 0 0 1.000 1.000 1.000

Parameter 503 2 0 0 0 0.996 0.996 0.996

Topic Publisher 54 1 1 14 0 0.973 0.779 0.865

Topic Subscriber 102 0 0 0 0 1.000 1.000 1.000

Service Client 5 0 0 0 0 1.000 1.000 1.000

Service Server 0 0 0 5 0 1.000 0.000 0.000

Parameter Setter 0 0 0 66 0 1.000 0.000 0.000

Parameter Getter 84 0 0 66 0 1.000 0.560 0.718

Overall 880 3 1 151 0 0.996 0.851 0.918

In a similar fashion to the TurtleBot2 case study, many of the extraction issues are actually missing

Links due to the use of the dynamic_reconfigure package. There is also a single parameter whose value

we able unable to determine, due to its value being the result of a dynamic call to the xacro utility. Lastly –

and a novelty in this case study – we have a ROS name for a publisher that we are no able to resolve fully.

The string is the result of a string concatenation, and one of the substrings is a dynamic value, set by a

ROS parameter. HAROS is unable to resolve this, in its current version. The purpose of this dynamic value

in code is to promote code reuse with different robot versions (by changing the dynamic value that is set

via ROS parameters).

In terms of extraction hints for this configuration, we ended up fixing 2 entities and creating 25 new

entities, as shown in the following table.
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Extraction Hints Fixed Entities Created Entities YAML Lines

Parameter 1 0 3

Topic Publisher 1 2 22

Service Server 0 1 8

Parameter Setter 0 11 88

Parameter Getter 0 11 88

Overall 2 25 209

Path Planning Configuration

For the Path Planning configuration, we were able to achieve an F1-score of 87.4%, as shown in the

following table.

All Attributes COR INC PAR MIS SPU Precision Recall F1-score

Node 138 0 0 0 0 1.000 1.000 1.000

Parameter 583 2 0 0 0 0.997 0.997 0.997

Topic Publisher 166 1 1 42 0 0.991 0.793 0.881

Topic Subscriber 156 0 0 0 0 1.000 1.000 1.000

Service Client 14 3 3 0 0 0.775 0.775 0.775

Service Server 0 0 0 15 0 1.000 0.000 0.000

Parameter Setter 0 0 0 156 0 1.000 0.000 0.000

Parameter Getter 339 9 0 156 0 0.974 0.673 0.796

Overall 1396 15 4 369 0 0.988 0.784 0.874

This configuration shares much of its code with the Basic configuration, so many of the issues are the

same. The use of dynamic_reconfigure, in particular, is even more prominent, resulting in 61 missed

Links (mostly parameter getters and setters). This configuration also has a few more ROS names that

HAROS was unable to resolve fully, due to the namespace part coming from member variables of a class.

For the moment, we assume that member variables can change anywhere in the code (especially if more

threads are involved), and treat the value as dynamic. There are also a number of parameter getters whose

default values are string concatenations – once again, beyond the current capabilities of the tool.

In terms of extraction hints for this configuration, we ended up fixing 14 entities and creating 61 new

entities, as shown in the following table.

Extraction Hints Fixed Entities Created Entities YAML Lines

Parameter 1 0 3

Topic Publisher 1 6 62

Service Client 3 0 6

Service Server 0 3 24

Parameter Setter 0 26 208

Parameter Getter 9 26 226

Overall 14 61 529
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8.3 Evaluat ion of the Onl ine Runtime Monitors

The domain on Runtime Verification is vast, and there are many available tools to perform this task, with

different levels of complexity of the underlying formalism, and different optimisation goals, as discussed in

Chapter 6. Despite the existing range of tools, we implemented our own approach to monitor the properties

defined by our property specification language (Chapter 4). The main reason for this decision is that most

of the existing tools lack at least one of the required features for our setting. Some tools are based on LTL

(or similar logics), and have no access to first-order predicates nor real-time operators. Others focus on

just one of these aspects, while lacking the other. However, there is one tool in particular that stands out

among the rest.

The MonPoly tool [18, 20] was designed to monitor a safety fragment of MFOTL formulae; the same

logic formalism that makes the foundation of our own approach. With its capability to monitor a vast array

of formulae and it being a general-purpose tool, rather than a ROS-based one, we expect its performance to

be worse than our custom implementation’s. On the other hand, it is implemented in OCaml, an industrial-

strength programming language with its own compiler, that is leagues faster and more efficient than any

equivalent (interpreted) Python script. Thus, in this section, we describe a prototype implementation to

integrate MonPoly with ROS, and compare it to our own monitoring approach.

8.3.1 Prototype MonPoly Implementation

Our proposed approach is based on asynchronous online monitors, for minimal intrusiveness, requiring no

instrumentation of the target system. Fortunately, MonPoly works with these conditions out-of-the-box. One

major obstacle for its direct adoption – besides the fact that it is ROS-agnostic – is that it is implemented

in OCaml. ROS does not provide any official bindings for the OCaml language. Thus, we face a choice

between unofficial bindings6 7, or using the tool externally. For the purposes of this evaluation, we opt for

the latter.

Simply put, our solution is to reuse much of the same Python code that makes the implementation of

our proposed monitors – namely, the entry point and the interface with ROS – replacing only the monitors

themselves with a child process that runs MonPoly. To avoid complex, platform-dependent features,

such as asynchronous input/output, for each MonPoly monitor we spawn an additional native thread that

continuously reads and parses the output of the tool. The ROS Python client automatically spawns a thread

per subscribed topic, so, as soon as a new message is received and processed, the subscriber thread can

convert the message into the MonPoly event format and pass it along to the child process. An internal

timer of the main script sends periodic empty events to MonPoly, so that it can update its data structures

and detect time-based violations earlier. Figure 83 illustrates this architecture.

Granted, there are some drawbacks to this implementation that might affect performance, in particular

the time it takes to register a violation. This is due to the communication between processes being slower

6 https://github.com/hlinhn/ocaml-ros

7 https://github.com/AestheticIntegration/imandra-ros

https://github.com/hlinhn/ocaml-ros
https://github.com/AestheticIntegration/imandra-ros
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Figure 83: Architecture of the MonPoly integration with a ROS system.

than shared memory within a single process, and due to each MonPoly monitor spawning an additional

thread to continuously parse the tool’s output. On the other hand, by reusing a significant part of our

own Python code base to abstract away the minutiae of managing ROS communications, we can put both

monitor implementations on the same grounds and compare just the time it takes for each monitor to

report a violation for the same message trace.

8.3.2 Methodology

In order to give a fair chance at both monitor implementations, we encoded a small catalogue of properties

covering different patterns. We use our language semantics, defined in Chapter 4, to convert properties

into MFOTL formulae, that we can then encode into MonPoly’s specification language. As mentioned,

MonPoly can only monitor a safety fragment of MFOTL, specifically formulae of the form �∀𝑥 ∶ 𝜑. In
some cases, this requires formula rewriting or simplification to fit this format.

In practice, MonPoly negates the input formula and searches the input trace for a match; i.e., a

counterexample. This implies that, unlike our implementation, MonPoly can only report violations. It is

unable to report early success for (bounded) liveness properties, e.g., ‘globally: some /bumper within

500 ms’. Thus, the focus of this evaluation is in terms of time taken for each monitor to report the same

violation.

For each property, we devise both valid and counterexample traces to be automatically reproduced,

once the monitoring systems are ready. The purpose of the counterexample traces is obvious – they allow

us to check whether both monitors are able to detect the violation, and measure the time it takes to do so.

The valid traces, on the other hand, serve us by reinforcing our confidence in the encoding of the properties

and in the correctness of both implementations. Also, each implementation is tested independently, so

that one does not interfere with another’s performance.
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Below we list our catalogue of properties, where /p is always the activator topic to enter a scope, /q is

the corresponding terminator topic, /a is the topic of stimulus (or precondition) messages, and /b is the

topic of all behaviour messages. All topics are of the type std_msgs/Int8, i.e., 8-bit signed integers.

1 globally: /a as A causes /b {data = @A.data} within 100 ms

2 globally: /a causes /b within 100 ms

3 globally: /b as B requires /a {data = @B.data} within 100 ms

4 globally: /b requires /a within 100 ms

5 after /p {data > 0}: /b as B requires /a {data = @B.data} within 100 ms

6 after /p {data > 0}: /b requires /a within 100 ms

7 after /p until /q: no /b within 100 ms

Most of the properties with global scopes are relatively straightforward to encode in MonPoly’s specification

language, in part due to how much we can simplify them. Properties such as the last one, using the

‘after /p until /q’ scope, are much harder to encode. The semantics of our language do not require /q

to happen, but MonPoly does not accept unbounded future-time operators. This requires that either (i) the

formula can be rewritten in such a way that /q does not appear in any unbounded future operators, or (ii)

we have to bound such future operators with an ad-hoc, sufficiently large timeout. In this case, we are able

to avoid /q in unbounded future operators, and, hence, never fall into the second scenario for any property.

For the sake of example, consider the third property in the catalogue. After translation to MFOTL,

negation of the formula and simplification, we end up with the following MonPoly encoding:

1 b__data(x) AND (PAST_ALWAYS[0, 100) (NOT (EXISTS y. a__data(y) AND x = y)))

Recall that MonPoly wraps the input formula with implicit operators, �∀𝑥 ∶ 𝜑, but actually monitors
the negated formula, to find a counterexample, i.e., ♦∃𝑥 ∶ ¬𝜑. We negated the formula beforehand, so
our encoding actually represents the ¬𝜑 part of the overall formula. The events b__data and a__data

refer to the data field in the /b and /a messages, respectively. Variable x in the encoding is captured by

the implicit quantifier. As such, the negated, simplified formula in MFOTL is:

♦∃𝑥 ∶ (b(𝑥) ∧ �[0,100)(¬∃𝑦 ∶ (a(𝑦) ∧ 𝑥 = 𝑦)))

This is a relatively simple case, in terms of encoding. Other properties, such as the last one, turn out

to be much more verbose. The simplified MFOTL formula, negated using MonPoly’s embedded formula

negation capabilities, is the following:

♦(((¬(((∄𝑥 ∶ 𝑝(𝑥)) ∨ ∃𝑦 ∶ 𝑞(𝑦)) ∨((¬ u
[0,∞)((¬�[0,∞]∃𝑦 ∶ 𝑝(𝑦))

∨((∄𝑧 ∶ 𝑝(𝑧))𝒮[0,∞)∃𝑦 ∶ 𝑞(𝑦)))) ∧ u
[0,∞)⊤))) ∧♦[0,100)∃𝑦 ∶ 𝑏(𝑦))

∧¬((∄𝑧 ∶ 𝑏(𝑧))𝒰[0,100)∃𝑦 ∶ 𝑞(𝑦)))

And the MonPoly encoding for this formula is:
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1 ((NOT

2 (((NOT EXISTS x. p(x)) OR EXISTS y. q(y))

3 OR

4 ((NOT PREVIOUS[0,*)

5 ((NOT ONCE[0,*) EXISTS y. p(y))

6 OR ((NOT EXISTS z. p(z)) SINCE[0,*) EXISTS y. q(y))))

7 AND PREVIOUS[0,*) 0 = 0)))

8 AND EVENTUALLY[0,100) EXISTS y. b(y))

9 AND NOT ((NOT EXISTS z. b(z)) UNTIL[0,100) EXISTS y. q(y))

Without a doubt, this sort of property shows how much more convenient it is to use a high-level specification

language, such as the one we propose. The property itself is rather simple. There are no constraints over

message fields, nor cross-references between messages. The use of the after-until scope, however,

makes the encoding process much more complex.

As for the example traces, when exercising counterexamples we try to violate properties in various ways.

Take property 1, for instance; a message on topic /a should lead to a subsequent message on topic /b,

containing the same 8-bit signed integer, no longer than 100 milliseconds afterwards. We can violate

this property in (at least) three different ways, even though the ultimate cause is always the lack of an

appropriate response for the stimulus.

1. The correct response is published, but too late, e.g., 200 milliseconds afterwards.

2. A response message is published within the allowed period, but its data differs from the stimulus

message.

3. No response message is published at all.

This categorisation of counterexamples is reflected in the trace schemas we presented in Chapter 7,

for the purposes of testing. Using such schemas as our basis, we have a systematic method to build a

relatively small number of traces that are all different in some meaningful aspect. For this specific property,

the first counterexample category, for instance, is given by the following schema.

1 +0..: publish /a as A

2 forbid /a

3 forbid /b {data = @A.data}

4 +100..: publish /b {data = @A.data}

As we can see, the last interval, +100.. guarantees that the response, ‘/b {data = @A.data}’, despite

being correct, is published too late, past the 100 millisecond limit. For the last property, however, we had

to impose a limit on the number of counterexample traces. Since the property’s scope is reentrant, the

number of counterexamples is infinite, in theory. We settled on six counterexample traces, covering both

cases with single scopes and with multiple scopes.



8.3. Evaluation of the Online Runtime Monitors 213

Table 3: Comparison of our custom monitor implementation versus MonPoly.

Property # Counterexample # Custom (ms) MonPoly (ms) Difference (ms) Gain (%)

1 1 152 220 68 30.91

1 2 156 1081 925 85.57

1 3 156 1023 867 84.75

2 1 153 221 68 30.77

2 2 152 1012 860 84.98

3 1 2 17 15 88.24

3 2 53 70 17 24.29

3 3 202 210 8 3.81

4 1 2 13 11 84.62

4 2 203 216 13 6.02

5 1 54 63 9 14.29

5 2 105 114 9 7.89

5 3 253 290 37 12.76

6 1 53 71 18 25.35

6 2 258 268 10 3.73

7 1 53 120 67 55.83

7 2 53 119 66 55.46

7 3 55 112 57 50.89

7 4 10 512 10 547 35 0.33

7 5 52 109 57 52.29

7 6 55 121 66 54.55

8.3.3 Comparison of Implementations

For each monitor implementation, we ran each example trace 10 times, and then took the averages of

the results. This is to rule out the possibility of performance spikes due to garbage collection, process

scheduling, or other interferences. Overall, we observed no false positives, and both implementations

found all counterexamples. For the seven listed properties, we have a total of 21 counterexamples. Every

trace has a delay of about one second at the end, before signaling the end of the trace. Table 3 shows how

each implementation fares in terms of average time to report a violation for each counterexample.

As we can see in Table 3, there is a consistent difference ranging from about 10 milliseconds to nearly

70 milliseconds between the two implementations, with our custom implementation being the fastest.

There are a few cases, such as counterexamples 2 and 3 for property 1 and counterexample 2 for property

2 for which MonPoly is unable to detect a violation until it reads the whole trace, thus the larger discrepancy

of nearly one second (the delay we introduce at the end of a trace). We will discuss these counterexamples

further.

Counterexample 2 for property 1 is given by the following trace.
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1 @50ms /a {data: 1}

2 @100ms /b {data: 2}

In this counterexample a response ‘/b {data: 2}’ is produced for the stimulus ‘/a {data: 1}’. However,

the property requires that ‘/b {data = @A.data} within 100 ms’, which is not the case. The data field

does not match, which is effectively the same as there being no response at all. In this case, our monitors

fail via a timeout transition, 100 milliseconds after observing the stimulus. The average time to report a

violation is 156 milliseconds, revealing that there are about 6 milliseconds of delay overall, likely due to

the ROS network layer and the precision of the monitor’s internal clock. MonPoly, on the other hand, is

only capable of reporting the violation after the artificial delay we introduce at the end, before signaling the

end of the trace. As explained in Chapter 6, this is because MonPoly expects further relevant events (/a

or /b) with a different timestamp, to be sure that, at the 100 millisecond mark, there is only the single

event ‘/b {data: 2}’. But the trace contains no more events. Only when we signal the end of the trace

can MonPoly evaluate the formula and be sure that more than 100 milliseconds have elapsed since the

stimulus message; it does not keep internal timers of its own.

For counterexamples 1.3 and 2.2 the story is similar. We are still dealing with Response properties, and

the counterexample trace is the same in both cases.

1 @50ms /a {data: 1}

We simply publish a stimulus. There are no messages, at all, on the response’s topic. Again, our monitors

report failure after the 100 millisecond response window, while MonPoly is unable to do so before the end

of the trace.

In terms of monitor creation time and memory consumption there are also discrepancies. The former is

simple to understand – our implementation creates an object in memory, while the MonPoly implementation

has to spawn a child process and establish communication between the two processes. On average, our

monitors took about 0.133 milliseconds to create, while the MonPoly ones took about 14.512 milliseconds.

Regarding memory consumption, we observed a consistent difference between implementations, with

MonPoly requiring an additional 6 megabytes of memory. We attribute this to the memory required by

MonPoly itself, as well as the additional threads and communication channels between processes.

In summary, our implementation appears to be competitive, in terms of performance, even though

we are not using MonPoly to its fullest, i.e., a full OCaml process compiled to machine code. Still, there

are numerous ways in which we can improve the performance of our own implementation. We used

the standard Python interpreter, CPython, but there are others, such as PyPy or Cython that are known

to be much faster (while having their own trade-offs). Alternatively, we could implement the monitors

themselves in C or C++ and use Python’s C and C++ extensions to import the resulting native code. It would

be interesting to pursue such optimisations in the future, and then re-evaluate how both monitors perform.
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8.4 Evaluat ion of the Property-based Tests

In Chapter 7 we proposed an approach to automate the testing of ROS systems based on the property

specification language we presented in Chapter 4. Simply put, this testing approach takes a system

specification and automatically generates property-based tests that try to falsify the given properties. In the

context of this approach, a ROS system can be composed of any number of nodes; it is treated as a pure

black-box with a publisher-subscriber interface. Properties are checked at runtime using our proposed

runtime monitoring approach, presented in Chapter 6 and evaluated in Section 8.3.

We have found that the evaluation of test automation tools is not entirely straightforward. The evaluation

criteria depend mainly on the target projects of the test automation tools, and the purpose of the evaluation

itself. For instance, businesses seeking to adopt test automation tools tend to use qualitative (and partly

subjective) criteria, such as:

• suitability for technical staff (e.g., developers and test automation experts);

• suitability for non-technical staff (e.g., business analysts and other non-programmers);

• quality and quantity of provided test templates;

• how effective the test automation tool is at identifying the right tests to prioritise.

On the other hand, researchers prefer objective, quantitative metrics, such as:

• number of (unique) test cases generated (see [166]);

• number of detected errors (see [141, 166]);

• mean time to failure (see [101]);

• diverse coverage metrics, e.g., model coverage, code coverage, state transition coverage (see [141,

166]).

We have not evaluated our testing approach, or the specification language, in terms of suitability for

technical and non-technical roles, although an empirical study would be a good addition to our plan of

future work. Our approach does not include any kind of prioritisation (all properties are given the same

importance), and we only provide templates for all possible combinations of property scopes and patterns

that our specification language allows. Thus, we evaluate our automated testing tool in terms of quantitative

criteria, and we present the observed results in the remainder of this section.

8.4.1 Methodology

Systems Under Test

We use the TurtleBot2 and the AgRob V16 as our systems under test (SUT), in order to evaluate our testing

approach. In particular, we aim to reuse the same configurations already used to evaluate the architecture

model extraction, defined in Section 8.2, namely:
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• TurtleBot2’s Random Walker Controller configuration;

• TurtleBot2’s AMCL Navigation configuration;

• AgRob V16’s Basic configuration; and

• AgRob V16’s Path Planning configuration.

There is one caveat, however. Our Property-based Testing tool must be able to reset the SUT multiple

times, to guarantee that, for each generated example, we run the SUT from a stable (and hopefully

deterministic) state. This series of resets occurs in rapid succession, and is entirely impractical if hardware

is involved. Thus, we opt to modify the aforementioned configurations slightly, first to remove any nodes

that directly control hardware (e.g., mobile bases or cameras), and second to remove any other nodes

that become pointless after the first pass (e.g., image processing, after removing camera nodes). An

alternative approach would be to use simulation nodes as a replacement for the hardware drivers, when

available. However, node removal turns out to be more beneficial than node replacement for testing

purposes, for two reasons: (i) the involvement of the simulator would have a considerable negative impact

on the performance of the tests; (ii) removing nodes opens up several topics that we can exploit as inputs,

versus a system that could, otherwise, be fully connected.

After removing nodes from all configurations, we notice that both pairs of configurations, from TurtleBot2

and AgRob V16, become very similar, retaining only a few small differences. In our opinion, these differences

are too small to be relevant, so we opt for another route. We test only one configuration from each system,

but, to compensate, we also test some nodes individually. For instance, in TurtleBot2 the Safety Controller

node is a central component of the system. Instead of simply writing a specification for the full configuration,

we first write a specification for this node, test it, and then proceed to the integrated environment. Not

only does this reflect a more natural testing process adopted during development, it also helps us coming

up with properties to write. Depending on the target system and on the specific nodes we are testing,

some of the node’s properties might convert, more or less directly, either to properties of the full system

or to axioms that we want to assume for other tests. Note that, despite the additional work in writing the

specifications, from the perspective of the testing tool there is no difference between testing individual

nodes or entire systems – the SUT is always treated as a black-box, with input and output message topics.

Writing specifications

One of the main characteristics of Property-based Testing is that, in addition to the SUT, it also requires a

(possibly partial) system specification. In this regard, we already face a limitation. While our specification

language provides a comfortable array of features and operators, our test generator implementation is

not able to support them all, at the time of writing. The most notable handicap is the lack of support

for quantifiers, which makes writing predicates over arrays all the more daunting. Another limitation is

the absence of arithmetic expressions, as these have the potential of making static checks for message

generators hard to implement.
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Another of trait of Property-based Testing, that is a consequence of the first one, is that all it does

is finding discrepancies between implementation and specification [86]. Judgement on whether such

discrepancies are an error in the system or in the specification is left to the user.

We have spent a considerable amount of time studying the implementations of our target systems, and,

from the limited documentation sources that we have, we assume that they are relatively stable, with

correct functional behaviour for the most part. This is a crucial assumption, as we are writing specifications

mostly based on the actual (and expected) behaviour of the implementation. Given that PBT focuses on

discrepancies, our evaluation process involves two types of testing, positive testing and negative testing.

Positive testing is the act of testing properties that we know to be true in advance. The main purpose of

positive testing is simply to confirm that the implementation does not introduce false positives – i.e., that it

does not report an error if there is none to report, regardless of the number of examples that we allow it to

run. These are the first tests that we conduct. Albeit time-consuming, they reinforce our confidence that

the properties we write describe the system’s behaviour accurately.

Negative testing, on the other hand, is the act of testing properties that we know to be false in advance.

In this case, the tool should be able to find at least one counterexample, for most properties – i.e., it

should be able to detect discrepancies between specification and implementation. For complex or contrived

counterexamples, it is possible that the tool does not hit the error unless we raise the limit of how many

examples it can test for a given property; such is the nature of Property-based Testing.

Considering this, we need specifications that include both true and false properties. Instead of simply

writing arbitrary properties, we follow a systematic method to write specifications. We start by writing a

catalogue of true properties and axioms (assumptions) for each system. Since the goal of testing these

properties is to rule out the presence of false positives, we opt for variety rather than quantity – i.e., we try

to cover all the different types of scopes and patterns that our specification language allows for, rather than

trying to be exhaustive. Then, we apply the principles of specification mutation [8, 28, 40, 91, 131, 163] to

generate mutants (i.e., variants) from the initial catalogue of true properties. Mutations are often relatively

small changes, such as changing a single operator or a variable. If the initial properties are as precise as

we can write them, any small change introduced by the mutation process should end up generating a false

property. However, this still implies a validation step to discard duplicates, trivial properties and equivalent

mutants (properties that, despite being altered, remain true). We validate mutants manually, since the

detection of equivalent mutants is an undecidable problem [163].

The existing literature provides many rules by which one can mutate specifications, depending on the

underlying language and logic. The following list includes some common mutations, from which we draw

inspiration.

• Operand Replacement Operator. Replace an operand, that is, a variable or constant, with

another syntactically legal operand that does not result in a trivial expression (e.g., 𝑥 = 𝑥). Replacing
numbers should be avoided, as it may lead to a very large number of mutants.

• Expression Negation Operator. Replace an expression with its negation.

• Logical Operator Replacement. Replace a logical operator with another logical operator.
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• Relational Operator Replacement. Replace a relational operator with any other relational

operator, except its opposite (as this is covered by the negation rule).

• Missing Condition Operator. Delete conditions (only simple expressions) from conjunctions,

disjunctions, and implications.

• Shifting Timing Constraints. Shift existing timing bounds either by increasing or decreasing

their values.

• Exchanging Input/Output Actions (from Timed Automata specifications). Exchange an input/output

action of a transition with another valid action.

Most of these rules are applicable to our language, to some extent. However, applying them blindly

generates a large number of equivalent mutants. By refining the mutation ruleset, we can achieve a

systematic process that yields far less equivalent mutants. Take, for instance, the following property as an

example.

1 after /p {phi} until /q {psi}: /b {data > 0} requires /a {data < 0}

One of the rules that we can consider is the elimination of predicates, entirely. We can replace the

activator event ‘/p {phi}’ with a weaker version of it, ‘/p’. That is, if the original property states that the

scope should only start after a specific message such that ‘phi’ is true, stating, instead, that the scope

should start after any message on that same topic is likely false – save for the exceptional case in which all

messages can only have ‘phi’ be true.

The same principle applies to the behaviour message. Knowing that ‘/b {data > 0}’ requires a specific

message ‘/a {data < 0}’, does not imply that this remains true for any other message on ‘/b’. In fact, if

the property describes the implementation’s behaviour as accurately as possible, the mutant is likely false.

Applying the predicate elimination rule to ‘/q {psi}’ or ‘/a {data < 0}’ is not as straightforward.

Weakening the predicates on these events yields a property that is likely to remain true, only more vague

than the initial property. For instance, if ‘/b {data > 0} requires /a {data < 0}’ is true, it is also true

that ‘/b {data > 0} requires /a’. Put another way:

∃𝑥 ∶ a(𝑥) ∧ (∃𝑦 ∶ data(𝑥, 𝑦) ∧ 𝑦 < 0) implies ∃𝑥 ∶ a(𝑥)

In a way, we face a similar challenge as in specifying program contracts in Hoare logic. We should strive

for describing the weakest precondition and the strongest post-condition. Strengthening preconditions and

weakening post-conditions yields mutants that cannot be killed. For this particular example, if we consider

‘/a {data < 0}’ to be our post-condition, weakening it will never achieve a non-equivalent mutant. What

we can do is replace the predicate with another class of values (e.g., ‘/a {data > 0}’), or strengthen

the predicate (e.g., ‘/a {data < 0 and data > -2}’). Thus, we propose the following list of mutation

operators.

• Operand Replacement Operator. Replace an operand in an expression with another syntactically

valid operand of the same type. Avoid replacing number or string literals with other arbitrary literals,
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as this could lead to too many mutants. Whether the resulting mutant is equivalent to the original

property must be evaluated on a case by case basis. Not applicable to the provided example.

• Expression Negation Operator. Replace an expression with its negation. In general, this rule

can always be applied. E.g., ‘/p {phi}’ becomes ‘/p {not phi}’.

• Logical Operator Replacement. Replace a logical operator (and, or) with another logical

operator. Replacing or with and in scope activators, stimuli messages (causes and forbids patterns)

or behaviour messages (no and requires patterns) always produces equivalent mutants. Replacing

and with or in precondition messages (requires pattern) or behaviour messages (some, causes and

forbids patterns) always produces equivalent mutants. Not applicable to the provided example.

• Relational Operator Replacement. Replace a relational operator with another relational operator,

except its opposite. E.g., ‘/a {data < 0}’ becomes ‘/a {data > 0}’ or ‘/a {data = 0}’.

• Missing Predicate Operator. Delete a predicate from an activator event, stimulus event or

behaviour event (for requires properties only), as per the previous discussion. E.g., ‘/p {phi}’

becomes ‘/p’.

• Shifting Time Constraints. Widen or shorten existing time constraints of a property, for instance

by halving or doubling the specified time amount. Absence and Prevention properties (no, forbids)

widen existing time constraints, while the remaining patterns (some, requires, causes) should

shorten time constraints. Not applicable to the provided example.

• Adding Time Constraints. Adds a time bound to a property without one. The time constraint

should be based on a sensible value, such as the publishing frequency of the SUT, to avoid generating

a large number of examples. Liveness properties (some, causes) must always be bounded, so this

rule is not applicable. Applying time constraints to absence and prevention patterns (no, forbids)

always yields equivalent mutants. This mutation is only applicable to requires properties. E.g.,

‘/b {data > 0} requires /a {data < 0}’ becomes ‘/b {data > 0} requires /a {data < 0}

within 100 ms’.

• Topic Replacement Operator. Exchange a published (resp. subscribed) topic with another

published (resp. subscribed) topic of the same message type. E.g., ‘/a {data < 0}’ becomes

‘/c {data < 0}’.

• Scope Widening Operator. Widen a scope by removing events, down to the global scope.

Applying this operator to liveness properties (some, causes) always yields equivalent mutants. E.g.,

‘after /p {phi} until /q {psi}’ becomes ‘after /p {phi}’, or ‘until /q {psi}’ or ‘globally’.

• Pattern Replacement Operator. Replace a property pattern with another pattern. Replacing

unary patterns with binary patterns (and vice-versa) always retains the behaviour event. In the

former case, a suitable precondition/stimulus topic should be chosen from the open subscribed

topics of the SUT. E.g., ‘/b {data > 0} requires /a {data < 0}’ becomes ‘no /b {data > 0}’

or ‘/a {data < 0} forbids /b {data > 0}’.
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Evaluation Criteria

After we generate a catalogue of property mutants as per the previous ruleset, we do a manual check

to discard equivalent, trivial and duplicate mutants. The final catalogue of properties can be found in

Appendix D. Then, we run the PBT tool on each mutated property twice. For each property mutant, we are

interested in gathering the following metrics (or the averages of the two runs):

• number of required examples until a test fails for the first time;

• number of required examples until the final test result (includes the shrinking phase);

• number of invalid examples (discarded due to being unable to satisfy assumptions);

• required time to run each example (both from start to end, including launching the SUT, and to

replay the example trace);

• size of the produced counterexample trace.

With these metrics we are able to calculate aggregate metrics to provide an overview of the tool’s

performance. For instance, we are able to calculate:

• average number of examples needed to find a failure;

• average number of examples needed to report the final result;

• mean time to failure;

• excess messages in the counterexample input trace (i.e., how close it is to truly being a minimal

counterexample);

• specification coverage [8], a metric that assigns a score to a test suite and tells how effective it is at

exercising the given specification.

The penultimate metric involves a manual step. For each false property, we have to figure out a minimal

counterexample and write down the size of its input trace, so that we can compare it to the one produced

by the tool.

The considered criteria make for a fairly standard evaluation profile for a testing tool, with the notable

exception that we lack code coverage metrics. The absence of code coverage is due to the fact that we are

performing black-box testing. We refrain from altering the system’s implementation, since code coverage is

not the primary goal of our Property-based Testing approach. Despite this, an alternative evaluation using

instrumented implementation code would be a good addition to our work, to assess how effective PBT truly

is in exploring different program paths. Model and transition coverage, as seen in Model-based Testing,

are not directly applicable in this setting. Instead, we consider specification coverage, a metric that is, in

essence, a mutation score, i.e., the ratio of mutants that the testing suite kills. The major difference is that,

instead of creating mutants of the implementation, we should mutate specifications, as per the process we

described.
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8.4.2 Results for the TurtleBot2 Case Study

We used an altered version of the TurtleBot2 Random Walker Controller configuration for our tests. In this

case study, we test 3 key nodes individually besides the full system, namely the Safety Controller node, the

Random Walker Controller node and the Multiplexer node. Most of the results show nothing out of the

ordinary, and the observed numbers tend to follow the same patterns in all cases. To avoid repetition, we

will present here our main observations for the Safety Controller node and the overall system. The results

for the remaining two nodes can be found in Appendix E. No false positives have been observed, in any of

the systems under test.

Safety Controller Node

For the Safety Controller node, we wrote a specification consisting of 12 axioms and 6 properties, as shown

in Appendix D.1. Out of these properties, we were able to generate 59 useful mutants, while 40 mutants

were discarded. The following table shows the distribution of the various language features in the final

specification.

Language Feature Axioms Properties Mutants

globally 12 4 36

after - - 1

until - 1 11

after …until - 1 11

no 9 2 17

some - - 5

causes - 2 22

forbids 3 1 10

requires - 1 5

within …ms 3 3 40

There are no existence properties (some) for this node due to the fact that its behaviour is reactive. If

there are no incoming events from the base’s sensors, the Safety Controller node remains silent for its

entire execution.

In terms of test results, we achieved a near-perfect mutant score, failing to kill a single mutant with

a limit of 200 examples. The mutant that we failed to kill requires a specific timing and interaction of

messages, in an input trace that is, at least, 4 messages long. The original property and its mutant are

given by the following statements.

1 The original property:

2 after /mobile_base/events/wheel_drop {state = DROPPED and wheel = LEFT}

3 until /mobile_base/events/wheel_drop {state = RAISED and wheel = LEFT}:

4 no /cmd_vel_mux/safety_controller {not linear.x = 0.0}

5
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Figure 84: Hypothetical counterexample trace for the observed false negative.

6 The property's mutant:

7 after /mobile_base/events/wheel_drop {state = DROPPED and wheel = LEFT}

8 until /mobile_base/events/wheel_drop {state = RAISED and not wheel = LEFT}:

9 no /cmd_vel_mux/safety_controller {not linear.x = 0.0}

Simply put, the property states that from the moment that the robot detects a wheel drop until the

moment that the same wheel is raised back to a normal level, no movement messages other than stop

messages (linear velocity of zero) should be published. This is true because the Safety Controller node

emits stop messages once it detects a wheel drop until both wheels are back up, and the wheel drop

sensors have precedence over all other sensors. The mutant property introduces a single negation operator,

‘not wheel = LEFT’, stating that only stop messages are permitted from the moment that one wheel drops

until the moment that the other wheel is raised back up. The counterexample input trace, thus, includes

four messages, two of which are the activator and the terminator, as seen in Figure 84.

Figure 84 shows both the input trace that we should generate and the sequence of messages produced

by the Safety Controller node. The node evaluates its internal state and publishes a new command every

100 milliseconds. The scope activator message, sending a drop signal for the left wheel, is the first message

of the input trace. This message leaves the node in a state such that it can only publish stop messages,

as shown at the 100 millisecond mark. The last message of the input trace, shows the corresponding

scope terminator message, a raise signal for a wheel that is not the left wheel. Between those messages,

we must send a raise signal for the wheel that activated the scope (in this case, the left wheel, depicted

in blue), so as to cancel the zero-only state. Then, still within the scope, we must publish a message on

another sensor, such as a bumper press (in blue) that triggers a non-zero linear velocity on the next update

of the Safety Controller node (shown at the 200 millisecond mark). The scope must not terminate too early,

and Hypothesis has to figure out the two messages to send within the scope. Plus, they must be processed

by the node still within the scope, and allow it enough time to reply back. It is not a trivial counterexample,

by any means.
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Regardless, the tool was able to detect errors for other similar examples of the same counterexample

length, so we believe that this instance is not beyond the tool’s capabilities, but is, rather, a matter of

allowing it a greater number of examples. Out of the 58 killed mutants, 2 were reported as flaky tests, i.e.,

the results were not deterministic. Sometimes the same example was able to falsify the property, other

times it was not. In this case, flaky tests happen with mutants that require timing interactions, such as

falsifying the property via time bounds. For example, one of the mutants is the following property:

1 globally: some /cmd_vel_mux/safety_controller {not linear.x = 0.0} within 100 ms

Hypothesis found a counterexample (probably non-optimal, including random messages) for which, in

some cases, the behaviour message is observed within the 100 millisecond window, while, in other cases,

it is not observed in time. In general, this property is false, and the minimal counterexample is simply an

empty trace – the node is reactive and will not publish any messages if not given the proper stimulus.

The table below summarises the registered results.

Value

Mutants 59

Flaky Tests 2 (3.390%)

False Negatives 1 (1.695%)

Mutant Score 0.98305

Regarding other performance criteria, as per the following table, we did not observe anything out of the

ordinary. On average, each mutant requires between 21 and 38 examples to falsify (including the shrinking

phase). The tool tends to find an error for the first time relatively early (with less than 10 examples). For

most mutants, no invalid examples were generated. Each example takes about 3.6 seconds to execute,

and most of this time (2.6 seconds) is spent on launching and tearing down the SUT between examples.

In total, this means that the average time to kill a mutant and obtain a counterexample is between one

minute and three minutes. If a SUT could be reliably reset programatically (without killing the process and

launching a new one), it would take about half a minute instead. Despite the relatively long execution time,

there are only 3 mutants for which the tool uses more messages than necessary. One of these is the false

negative, and another one is a flaky test, which might have misled the Hypothesis search strategy.

Metric Mean Std. Deviation Median

Number of examples 38 43 21

Examples to failure 9 29 1

Invalid examples 2 8 0

Shrink attempts 29 27 20

Time per example (s) 3.596 1.238 3.192

Trace duration (s) 1.015 1.055 0.623

Setup/Teardown time (s) 2.581 0.183 2.569

Input trace size (messages) 2 3 1

Excess Messages 0 3 0
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Random Walker Configuration

For the full Random Walker configuration, we wrote a specification consisting of 14 axioms and 5 properties,

as shown in Appendix D.4. These axioms are a combination of the axioms for the Safety Controller and the

Random Walker Controller nodes. Out of these properties, we were able to generate 45 useful mutants,

while 34 mutants were discarded. The following table shows the distribution of the various language

features in the final specification.

Language Feature Axioms Properties Mutants

globally 14 4 35

after - - 1

until - - -

after …until - 1 9

no 11 2 15

some - 1 5

causes - 1 14

forbids 3 - 5

requires - 1 6

within …ms 3 2 26

In terms of test results, we achieved a perfect mutant score. Out of the 45 killed mutants, only 2 were

reported as flaky tests, with one of them being essentially the same property that led to false negatives in

the Safety Controller and Random Walker Controller nodes. The table below summarises these results.

Value

Mutants 45

Flaky Tests 2 (4.444%)

False Negatives 0

Mutant Score 1.0

Regarding other performance criteria, as per the following table, we did not observe anything out of the

ordinary. The performance metrics seem to be on par with the tests for individual nodes. On average, each

mutant requires about 20 examples to falsify (including the shrinking phase), considering the median of

16 and the mean of 22, although the tool tends to find an error for the first time relatively early (within

the first 3 examples). Each example takes about 4.0 seconds to execute, and most of this time (3.2

seconds) is spent on launching and tearing down the SUT between examples. In total, this means that

the average time to kill a mutant and obtain a counterexample is about 80 seconds. If a full ROS system

could be reliably reset programatically (without killing the processes and launching new ones), it would

take about 16 seconds instead. Despite the relatively long execution time, there are only 2 mutants for

which the tool uses one message more than necessary. Curiously, in this case neither of the non-minimal

counterexamples is associated with the two flaky mutants.
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Metric Mean Std. Deviation Median

Number of examples 22 23 16

Examples to failure 3 9 1

Invalid examples 3 12 0

Shrink attempts 19 17 15

Time per example (s) 3.967 1.602 3.309

Trace duration (s) 0.800 1.068 0.308

Setup/Teardown time (s) 3.167 0.535 3.001

Input trace size (messages) 1 1 1

Excess Messages 0 0 0

8.4.3 Results for the AgRob V16 Case Study

We used an altered version of the AgRob V16 Basic configuration for our tests. In this case study, we test

3 key nodes individually besides the full system, namely the Safety Controller node, the Supervisor node

and the Joystick Controller node. Most of the results show nothing out of the ordinary, and the observed

numbers tend to follow the same patterns in all cases. To avoid repetition, we will present here our main

observations for the Supervisor node and the overall system. The results for the remaining two nodes can

be found in Appendix E. No false positives have been observed, in any of the systems under test.

Supervisor Node

For the Supervisor node, we wrote a specification consisting of 10 axioms and 4 properties, as shown in

Appendix D.6. One of the properties turned out to reveal two errors in the system (that have been reported

to the developers and promptly fixed), so we consider it separately. Out of the remaining 3 properties, we

were able to generate 36 useful mutants, while 30 mutants were discarded. The following table shows the

distribution of the various language features in the final specification.

Language Feature Axioms Properties Mutants

globally 10 2 8

after - - 1

until - - 2

after …until - 2 25

no 9 3 13

some - 1 7

causes - - 8

forbids 1 - 4

requires - - 4

within …ms 1 1 26
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Figure 85: Error report for the error found in the AgRob V16 Supervisor.

There are no response, prevention or precedence properties (causes, forbids, requires) for this node

due to the fact that they require axioms beyond our current tool’s capabilities. Namely, some messages

should not be produced too often, on multiple topics, and with the current implementation and input trace

strategy approach, this just leads to the tests taking too long, or the tool giving up after a certain number of

failed attempts at generating a valid input trace.

The property that led to us uncovering system errors is the following.

1 globally: no /husky_velocity_controller/cmd_vel {angular.z < -0.5 or angular.z > 0.5}

This property states that the Supervisor does not allow any velocity commands whose angular velocities

(the speed at which the robot turns) are higher than 0.5 meters per second. Negative velocities turn to the

left, positive velocities turn to the right. This value is set via ROS parameters, and 0.5 meters per second

happens to be the value used in the AgRob V16 configurations; we replicate the same parameters for the

individual node testing. The error (whose report is shown in Figure 85) happens in the following piece

of C++ code, which is meant to fix the maximum velocities of a velocity message, should it surpass the

intended limit.

1 // agrob_cmd is the velocity message to be published to the robot base

2 if (agrob_cmd.twist.linear.x > max_values[0]) { // max. forward velocity

3 agrob_cmd.twist.linear.x = max_values[0];

4 } else if (agrob_cmd.twist.linear.x < max_values[1]) { // max. backward velocity

5 agrob_cmd.twist.linear.x = max_values[1];

6 } else if (agrob_cmd.twist.angular.z > max_values[2]) { // max. angular velocity

7 agrob_cmd.twist.angular.z = max_values[2];

8 }
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The first error is the use of else if, instead of if, for the last statement. Fixing the linear and angular

velocities should be independent steps. As it stands, a message that contains both linear and angular

velocities beyond the limits would have its linear component correctly set to the maximum, but the angular

component would remain unchecked. In practice, this would lead to the robot turning around too fast. In

terms of safety, considering the size of the robot, the fact that it can incorporate a robotic arm, and that it

operates in sloping terrain, the effects could be disastrous.

The second error is that the condition only checks for positive angular velocities (i.e., to turn right). The

robot is allowed to turn left at speeds beyond the intended limit. The fix would be to compare the absolute

value of the incoming velocity with the limit, rather than the raw value, or to add an additional if statement

for negative velocities.

In terms of test results, we achieved a near-perfect mutant score, failing to kill two mutants with a limit of

200 examples. The mutants that we failed to kill are related to the same property (although irrelevant) and

require very specific messages to detect the counterexample, in input traces that are, at least, 3 messages

long. The original property and its mutants are given by the following statements.

1 The original property:

2 'x in y, z' is syntactic sugar for 'x = y or x = z'

3 after /agrob/safe_mode

4 {safe_modes in {"003", "009", "013", "019", "090", "092", "093", "099", "100",

5 "102", "103", "109", "110", "112", "113", "119", "190", "192", "193", "199"}}

6 until /agrob/safe_mode {safe_modes in {"000", "002", "010", "012"}}:

7 no /husky_velocity_controller/cmd_vel {linear.x > 0.0}

8

9 The property's mutants:

10 after /agrob/safe_mode

11 until /agrob/safe_mode {safe_modes in {"000", "002", "010", "012"}}:

12 no /husky_velocity_controller/cmd_vel {linear.x > 0.0}

13

14 after /agrob/safe_mode

15 {not safe_modes in {"003", "009", "013", "019", "090", "092", "093", "099", "100",

16 "102", "103", "109", "110", "112", "113", "119", "190", "192", "193", "199"}}

17 until /agrob/safe_mode {safe_modes in {"000", "002", "010", "012"}}:

18 no /husky_velocity_controller/cmd_vel {linear.x > 0.0}

Simply put, the property states that from the moment that any of those 20 safety states is registered

until the moment that one of the other 4 safety states is registered, there should be no forward movement.

The former safety states are all related to nearby obstacles detected by the laser sensors. The latter set of

states denotes relative safety, in which forward movement should be allowed.

The first mutant drops the whole predicate of the activator message, meaning that any message on that

topic should enter the state in which forward movement is forbidden. The counterexample involves sending

one of the safe states (the same that can be seen for the terminator message), and then triggering forward

movement, which requires a joystick velocity message with a timestamp that is less than one second old,



8.4. Evaluation of the Property-based Tests 228

Figure 86: Counterexample trace for the first observed false negative.

relative to the current time at which the Supervisor node is running its processing iteration (once every 25

milliseconds). Figure 86 shows a possible counterexample.

The second mutant property introduces a single negation operator in the activator message, meaning

that the activator should not be one of the dangerous safety states. This, combined with an axiom

that enumerates all valid safety states, means that the second mutant can be killed with the same

counterexample as the first one, shown in Figure 86.

The tool was able to detect errors for other mutants with similar counterexamples, in terms of length and

structure, so we believe that these cases are not beyond the tool’s capabilities, but are, rather, solvable

with a larger number of examples. Out of the 34 killed mutants, 7 were reported as flaky tests, i.e., the

results were not deterministic. Sometimes the same example was able to falsify the property, other times

it was not. In all cases, flaky tests are related to timing. In particular, regarding the same issue as with the

false negative mutants – that some messages must contain timestamps within a certain range. The table

below summarises these results.

Value

Mutants 36

Flaky Tests 7 (19.444%)

False Negatives 2 (5.556%)

Mutant Score 0.94444

Regarding other performance criteria, as per the following table, we did not observe anything out of the

ordinary, except for the larger number of examples required to falsify properties. On average, each mutant

requires about 19 examples to falsify (including the shrinking phase), although the tool tends to find an

error for the first time relatively early (within the first 6 examples). Each example takes about 6 seconds to

execute, and half of this time is spent on launching and tearing down the SUT between examples. This

means that the average time to kill a mutant and obtain a counterexample is two minutes or less. We

registered 7 outliers for the Supervisor node, taking between 200 and 400 examples to provide a verdict,

and influencing the mean value. Most of these are either flaky tests or false negatives. There are only two

mutants for which the tool uses more messages than necessary, and one of them is a flaky test.
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Metric Mean Std. Deviation Median

Number of examples 81 130 19

Examples to failure 25 91 1

Invalid examples 25 62 2

Shrink attempts 56 99 17

Time per example (s) 8.005 9.718 5.760

Trace duration (s) 4.708 7.077 2.789

Setup/Teardown time (s) 3.297 2.642 2.971

Input trace size (messages) 2 1 2

Excess Messages 0 1 0

AgRob V16 Basic Configuration

For the full AgRob V16 configuration, we wrote a specification consisting of 52 axioms and 4 properties, as

shown in Appendix D.8. The axioms are essentially a collage of all axioms for individual nodes. Out of the

4 properties, we were able to generate 48 useful mutants, while 32 mutants were discarded. The following

table shows the distribution of the various language features in the final specification.

Language Feature Axioms Properties Mutants

globally 52 2 21

after - 1 16

until - 1 11

after …until - - -

no 52 2 8

some - - 4

causes - - 13

forbids - 1 8

requires - 1 15

within …ms - 1 27

The lack of response properties (causes) is mostly due to the same reason as in the Joystick Controller

case, shown in Appendix E. Most properties depend on joystick input, and there is no rate limit for joystick

messages. A message can be sent immediately after the stimulus, cancelling its effects, before the system

has a chance to respond.

In terms of test results, our scores were much lower than in previous cases. Overall, the tool was unable

to kill 11 mutants with a limit of 200 examples. Although the surviving mutants are related to different

properties, the respective counterexamples share a common structure and require a specific message

ordering, in input traces that are 3 or 4 messages long.

Most mutants start with a sensor message (either an activator or a stimulus) that represents a potentially

dangerous scenario, e.g., too high a roll in a IMU message, or the camera detecting a person in front
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Figure 87: Counterexample trace structure for the observed false negatives.

of the robot. Then, either (i) they forbid forward movement messages, or (ii) they require another safe

sensor message before a forward movement message is published. To falsify such mutants, the first thing

to do is to produce another sensor message that cancels the first one, i.e., a sensor message, on the

same topic, that asserts that the environment is safe. This is to prevent the Supervisor from discarding

forward movement messages. The second thing we must do is to provide the actual joystick messages

that translate to forward movement commands. This is done in two steps, as shown in Figure 87. The

first message sets the button at index 0 to a value of 1 (indicating that the user pressed that specific

button); this tells the Joystick Controller that the user wants to teleoperate the robot. The second message

must contain a positive floating-point value, between 0 and 1, at the index 1 of the axes array; this is

the joystick axis that is used for teleoperation. Considering that there are 8 axes and 11 buttons, the

counterexample turns out to be a very specific combination of messages. Nonetheless, Hypothesis was

able to find counterexamples following this structure for 3 other mutants.

Out of the 37 killed mutants, 4 were reported as flaky tests, i.e., the results were not deterministic.

Sometimes the same example was able to falsify the property, other times it was not. In all cases, flaky

tests are related to timing interactions. The table below summarises these results.

Value

Mutants 48

Flaky Tests 4 (8.333%)

False Negatives 11 (22.917%)

Mutant Score 0.77083

Regarding other performance criteria, as per the following table, our results match the same scenarios

as with testing the individual nodes, with a relatively large number of examples required to falsify properties.

On average, each mutant requires about 18 examples to falsify (including the shrinking phase), although

the tool tends to find an error for the first time relatively early (within the first 2 examples). Each example

takes about 6 seconds to execute, and half of this time is spent on launching and tearing down the SUT

between examples. This means that the average time to kill a mutant and obtain a counterexample is

two minutes or less. We registered 5 outliers (besides the false negatives), taking about 400 examples

to provide a verdict and raising the mean number of examples to 93. Two of the outliers are flaky tests.

There are only four mutants for which the tool uses more messages than necessary, and two of them are

flaky tests.
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Metric Mean Std. Deviation Median

Number of examples 93 139 18

Examples to failure 41 64 1

Invalid examples 0 0 0

Shrink attempts 53 129 13

Time per example (s) 7.094 2.893 5.903

Trace duration (s) 4.073 2.083 2.965

Setup/Teardown time (s) 3.021 0.810 2.937

Input trace size (messages) 2 2 1

Excess Messages 0 1 0

8.4.4 Overview and Discussion

Overall, we have observed a consistently good performance of our Property-based Testing approach. Having

exercised more than 300 tests, almost evenly split across two robotic systems, and with a relatively low limit

of maximum examples, only 18 property mutants have survived (about 5.6%). The system performed better

with the TurtleBot2 case study, which is simpler in terms of code design and message interactions. The

two most glaring drawbacks of our approach are the required time to execute the tests, and the limitations

of the specification language.

In total, the tests for TurtleBot2 took 5 hours and a half to complete one round. Since we ran each

property twice, this amounts to 11 hours. The tests for AgRob V16 took considerably longer, with nearly

30 hours to complete one round. Putting everything together, we have a total runtime of 71 hours.

In the remainder of this section we show the observed results for both systems combined, and discuss

some specification challenges that we faced.

Global Overview

For both systems combined, we wrote a specification consisting of 148 axioms and 33 properties, as

shown in Appendix D. Out of these properties, we were able to generate 322 useful mutants, while 233

mutants were discarded. The following table shows the distribution of the various language features in the

final specification.
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Language Feature Axioms Properties Mutants

globally 148 19 168

after - 2 35

until - 6 55

after …until - 6 64

no 136 15 89

some - 4 34

causes - 6 100

forbids 12 3 44

requires - 5 55

within …ms 12 12 196

As we can see from this table, our axioms are fairly limited, mostly in the form of ‘globally: no ...’,

i.e., constructive axioms that specify what we expect from the values of input messages. We also have

some forbids axioms, used to specify publishing rates when they are fixed and known in advance, e.g.,

‘/a forbids /a within 100 ms’. As for the properties themselves, we can see an emphasis on global

properties and absence properties. This is expectable, as these kinds of properties are often easier to

identify. Causal relations between messages are more subtle, both because of the publisher-subscriber

paradigm itself – which, as opposed to the client-server paradigm, does not dictate that every input should

have an output – and because of the existence of obvious counterexamples, as we have discussed. Although

some features have more coverage than others, we can see from the mutant column that no feature in

particular is notably underrepresented.

In terms of test results, as aforementioned, our scores were mostly consistent across the various systems.

Overall, the tool was unable to kill 18 mutants with a limit of 200 examples. Although the surviving mutants

are vastly different, the respective counterexamples share a certain level of complexity and subtlety that

make them unlikely to be found via random exploration with such a low maximum example limit. In

some cases, the tool was able to find counterexamples for mutants with similar characteristics, leading

us to believe that the current set of false negatives is not beyond the tool’s capabilities, had we given it a

sufficiently large margin to work with.

Out of the 304 killed mutants, 39 were reported as flaky tests, i.e., the results were not deterministic.

Sometimes the same example was able to falsify the property, other times it was not. In many cases, flaky

tests are related to timing interactions, which seems to be a weak spot of the current implementation. In a

future version, we might explore the concept of simulated time in ROS. Just like robot simulators have the

ability of speeding up or slowing down the clocks used in the ROS environment, we might harness this

capability to manipulate time more meticulously. This would allow us to send messages at precise instants

and craft traces that easily expose such subtle errors. The table below summarises the observed results.
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Value

Mutants 322

Flaky Tests 39 (12.112%)

False Negatives 18 (5.590%)

Mutant Score 0.94410

Regarding other performance criteria, the following table shows the observed average results. On

average, each mutant requires about 18 examples to falsify (including the shrinking phase), although the

tool tends to find an error for the first time relatively early (within the first 6 examples). Each example takes

about 5 seconds to execute, and at least half of this time is spent on launching and tearing down the SUT

between examples. This means that the average time to kill a mutant and obtain a counterexample is two

minutes or less. We registered 22 outliers (excluding the false negatives), taking upwards of 200 examples

to provide a verdict and raising the mean number of examples to 67. There are 29 mutants for which the

tool uses more messages than necessary, and about half of them are flaky tests.

Metric Mean Std. Deviation Median

Number of examples 67 128 18

Examples to failure 16 48 1

Invalid examples 2 9 0

Shrink attempts 50 117 16

Time per example (s) 5.385 5.888 4.625

Trace duration (s) 2.357 3.170 2.017

Setup/Teardown time (s) 3.029 2.718 2.608

Input trace size (messages) 2 2 1

Excess Messages 0 1 0

Specification Challenges

Although we do not have an evaluation process specifically dedicated to the specification language we

proposed in Chapter 4, the evaluation of our Property-based Testing approach required a fair amount of

specification. This gives us an opportunity to assess how useful the language is, in practice, to describe

the behaviours of real robot systems, at least in qualitative terms.

Overall, the language was apt to describe the behaviours and coding patterns that we commonly observe

in ROS nodes and systems. As stated in the original specification patterns paper by Dwyer et al. [58, 59],

the proposed patterns and scopes suffice to capture most use cases. However, in the context of ROS

and publisher-subscriber systems, we felt that there is plenty of room for future work, and that a few key

patterns are not yet expressible with the current language.

First, we had to discard a good number of potential properties due to the lack of an exception statement.

With exception we mean to specify a message that cancels further monitoring of the pattern, but without

leaving the scope, especially in patterns that imply a sequence of messages, such as the response (causes)
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and prevention (forbids) patterns. For instance, a common pattern in ROS – observed in the Safety

Controller nodes of both the TurtleBot2 and the AgRob V16 systems – is to have message callbacks copy

interesting fields of the most recent message to an internal state field that is to be processed at a later

time. In the case of TurtleBot2, bumper, cliff and wheel drop sensor messages have their fields copied to

the internal state of the node, which is evaluated once every 100 milliseconds. Intuitively, we tend to write

properties such as the following.

1 globally: /mobile_base/events/bumper {state = PRESSED}

2 causes /cmd_vel_mux/safety_controller {not linear.x > 0} within 100 ms

The property above states that receiving a bumper message with a pressed bumper causes the Safety

Controller to publish a velocity command that is either zero (a full stop) or negative (backward movement)

within at most 100 milliseconds (the rate at which it runs its internal loop). But this is not true. It has

an obvious counterexample, that our testing tool is quickly able to find. If a second bumper message is

received immediately after the first one, cancelling it (i.e., stating that the bumper is no longer pressed),

then, the node will never publish the expected velocity command. When it gets to its next iteration, it

will see that the bumper is released, because the two previous messages were received too close to one

another, and both before an iteration of the main loop. If we had an unless or except keyword, we could

state that the causes relation holds within the specified time period, unless another message is received in

the meantime (in this case, the message releasing the bumper). The final property would be:

1 globally: /mobile_base/events/bumper {state = PRESSED}

2 causes /cmd_vel_mux/safety_controller {not linear.x > 0} within 100 ms

3 unless /mobile_base/events/bumper {state = RELEASED}

Alternatively, we can specify axioms stating that bumper messages are only published every 100

milliseconds. This prevents the issue and allows for the original property to hold, but might not correspond

to the real system behaviour anymore.

1 globally: /mobile_base/events/bumper forbids /mobile_base/events/bumper within 100 ms

2

3 globally: /mobile_base/events/bumper {state = PRESSED}

4 causes /cmd_vel_mux/safety_controller {not linear.x > 0} within 100 ms

The second major limitation that we faced was the lack of topic disjunctions, i.e., ‘/a requires /b

or /c’. There are cases, both in TurtleBot2 and AgRob V16, where the same behaviour is triggered by

different stimulus messages. For instance, in the TurtleBot2 Safety Controller node, backward movement

is issued both for bumper and cliff sensors. We cannot simply state that backward movement requires a

bumper message.

1 globally: /cmd_vel_mux/safety_controller {not linear.x > 0}

2 requires /mobile_base/events/bumper {state = PRESSED}

This property is false, and the testing tool quickly shows the counterexample where the cliff sensor

triggers the behaviour instead of the bumper. We would really want to state that either message is the

precondition for this behaviour.
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1 globally: /cmd_vel_mux/safety_controller {not linear.x > 0}

2 requires /mobile_base/events/bumper {state = PRESSED}

3 or /mobile_base/events/cliff {state = CLIFF}

As it stands, both with this limitation and the previous one, we are restricted in what we can say about

the global behaviour of the Safety Controller node. The causality relation in the forward direction (causes)

is false, as we discussed, and so is the backward direction (requires).

The addition of disjunctions can, in a way, alleviate both issues. For the former property, with disjunctions,

we could state:

1 globally: /mobile_base/events/bumper {state = PRESSED}

2 causes /cmd_vel_mux/safety_controller {not linear.x > 0}

3 or /mobile_base/events/bumper {state = RELEASED} within 100 ms

The modified property is no longer testable, as per our previous definition, since its behaviour event is

now a disjunction of a published topic and an open subscribed topic. The approach would have to be

refined to allow behaviour events such that at least one of the topics is published by the system. The open

subscribed topics in the disjunction would be avoided in the generated input traces.

A final limitation is the specification of proper states of a state machine. We can approximate such

specifications with the provided language scopes, but they only work for one activation topic and one

termination topic at a time. Again, for states that are dependent on multiple variables, from different topics,

we are unable to write any properties. Having topic disjunctions, at least, would help circumvent the issue,

partially. We could use ‘after /a or /b’ to initiate the same scope from multiple entry points, and use

‘until /c or /d’ to terminate a scope with different messages as well. If we also had message sequences

– e.g., ‘after /a into /b’ – we would be able to cover most use cases. Alternatively, we could provide

explicit support to define states, in the fashion of traditional state machine specifications. States would be

entered and exited with messages, and we could define the appropriate behaviour while within a specific

state.

1 after /a until /b: /c enters STATE

2

3 globally: /d exits STATE

4

5 during STATE: /e requires /f

8.5 Summary

Over the course of this thesis, we have implemented tools for model extraction, runtime verification and

property-based testing. We have interweaved the tools under the HAROS framework, in a unified workflow

that takes a partial system specification from the user, and checks whether the robotic system complies

with the specification. We then evaluated the performance of the proposed tools at their respective tasks,

when applied to two distinct case studies: the TurtleBot2, a popular open source robot used to learn and
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research with ROS, and the AgRob V16, an agriculture robot, developed as part of a research project, with

the aim of becoming a commercial product. In this chapter, we presented the results of these evaluation

processes – which, in some cases, have shown near-optimal performance – and discussed the challenges

we faced, as well as the limitations of the current approaches.



9

CONC LU S I O N

Robots are here to stay. The world population of service and industrial robots is increasing at a rapid rate, and

the Robot Operating System is an established backbone of robotic software development. Initiatives such

as the ROSIN EU Horizon 2020 project1 and the ROS Quality Assurance Working Group2 are fundamental

steps in promoting established software engineering practices, such as Model-driven Engineering. However,

despite their efforts, adoption by the general ROS community is still a slow work in progress. Traditional,

code-first development processes are the norm, with software models nowhere to be seen.

In a fast developing world of robotic software where source code is the major (and, in some cases, the

only) artefact one can work with, dependability cases become a useful mechanism to show that a system

satisfies a given critical property, using evidence from various analysis techniques. Thus, we set out to

answer the following research question.

How can existing software analysis techniques (such as Model Checking, Runtime Verification,

etc.) and tools be used by non-experts, to improve the quality of ROS applications and to

provide the basis for dependability cases?

In the final chapter of this dissertation, we restate our thesis and summarise our contributions in this

regard. We briefly discuss their practical impact in the community, so far, and opportunities for collaboration

that presented themselves along the way. Lastly, we finish by recalling some of the shortcomings of our

current approach, and setting out prospects for future work on this topic.

9.1 Summary

Over the course of this dissertation, we have provided evidence to support our thesis.

Standard software analysis techniques can be employed behind an interface that caters

to ROS roboticists. Namely, an interface that (i) takes source code as input, (ii) reverse

engineers (formal) models as needed, and that (iii) uses a high-level property specification

language that addresses ROS concepts directly.

1 https://www.rosin-project.eu/

2 https://discourse.ros.org/c/quality/
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We have discussed a number of approaches to safety property verification in the literature that work

well, to an extent, but are not really an answer to our original question. We have seen approaches in

Specification-based Testing that target safety properties specified in Linear Temporal Logic [12, 128], but

neither is this logic expressive enough to capture the full complexity of ROS systems, nor is it a friendly

approach for non-experts. A similar situation happens in the domain of Runtime Verification. There are

plenty of powerful tools [5, 18, 51, 67, 84, 85], some even working with more expressive logics than LTL,

but they present a steep learning curve to non-experts or are simply not capable of verifying certain key

properties. On the other end of the spectrum, some authors recognise the need to build architectural

models of ROS applications [127, 142, 156, 170], as we do, in a user-friendly fashion. Their work, however,

is limited to publishers and subscribers only, in some cases, and does not build upon the extracted models

to check safety properties that address behaviour, rather than structure.

Our proposed approach combines the best of both worlds – ease of use by non-experts and verification of

complex safety properties – in a single workflow. In this regard, we have made the following contributions:

1. a study on how ROS features are used in practice [149];

2. a metamodel for ROS applications [151];

3. an automatic procedure to build models from source code [151];

4. a specification language to annotate models with behavioural properties [41];

5. a property-based test generator [150];

6. the HAROS framework [148] for the analysis of ROS systems.

The first contribution is straightforward. It does not have a direct impact towards improving the quality

of ROS applications, but it helped us prioritise certain features over others. For instance, our decision to

base the property specification language around ROS publishers and subscribers was based on this study.

Establishing a metamodel is definitely the first step towards enabling ROS-specific analyses. The ROS

community has not proposed an official metamodel, and the benefits of model-based approaches are

too good to pass up. At the same time, it allows us to work at a convenient abstraction level of Nodes,

Topics and other ROS resources, rather than work only with low-level source code entities. But source

code entities are not completely disregarded either. Our metamodel includes such entities, in order to

establish a traceability relation between source code entities and ROS computation graph resources. This

is a distinguishing feature that we have not seen in other approaches, in spite of its usefulness in terms of

lowering maintenance effort – i.e., issues can be traced back to a concrete source code artefact.

To complement the proposed metamodel, we put together an automatic model extraction procedure

based on static analysis. The choice of static analysis benefits from ease of use and earlier detection, at

the cost of increased complexity. In some cases, it might not be able to fully extract all entities. We address

this limitation by presenting the incomplete entities up front, and allowing the user to provide the missing

pieces of information. On top of these models, we are able to verify a large range of structural properties –

e.g., “all Topics have, at most, a single publisher”, or “there is only one Topic for laser scan messages”.

More importantly, being a mostly automated process, it is immediately usable by non-experts.
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Our next contribution comes in to address a limitation of the model extraction process, as well as a

shortcoming of ROS systems in general: the lack of behaviour properties. While automatic extraction of

behaviour properties with static analysis is possible, it requires extensive effort and is, more than likely,

very limited in terms of what it can deliver. Instead, we propose a specification language, designed around

the exchange of ROS messages.

The language is minimalistic, yet capable of expressing many common properties. It is based on Metric

First-Order Temporal Logic, in order to be able to capture real-time constraints as well as the full structure

of message data. Its formal semantics enable us to reuse state of the art knowledge in property verification,

while its syntax masks the details and lowers the barrier to adoption. In addition, this language is based on

established specification patterns [58, 59] that capture a large portion of use cases. One of its drawbacks,

in its current form, is its sole focus on Topics, leaving out Services and Parameters. This was a deliberate

decision, given our time constraints. The decision to prioritise Topics over the other primitives was, as

mentioned, based on our empirical study.

Our penultimate contribution shows one of the many applications of architectural models annotated with

behavioural properties. We are able to generate black-box tests that target each of the specified properties,

and rely on runtime monitors as oracles. From the architectural models, we know which topics to observe,

and what message types are associated with each topic. From the property patterns we build test strategies

that attempt to falsify the property. This approach is built on a Property-based Testing tool, that handles

input space exploration and minimisation of the counterexamples it finds – yet another major step towards

reducing maintenance effort. Our evaluation shows this technique to be effective at finding faults and

providing minimal counterexamples – it has even uncovered a previously unknown fault in AgRob V16, a

robotic platform for hillside agriculture. Its major drawback is the time it requires to run all generated tests.

Piecing together all contributions, as our final contribution, we achieved a workflow that has been fully

integrated in the HAROS framework – a ROS-specific analysis tool, initially built as part of the Master’s

thesis that preceeded this work, that is progressively gaining traction among the ROS community.

9.2 Impact and Col laborat ions

Our work and our contributions (our technical contributions, in particular) are not purely academic. HAROS

and our newly proposed workflow have gathered a fair number of users and supporters, especially in the

ROS-Industrial community. They were featured multiple times, in talks and tutorials, in events hosted by the

ROS-Industrial Consortium Europe, such as the ROS-Industrial Conference3, for instance. HAROS has been

used by a small number of companies, and is often used by researchers (both in the domains of Robotics

and Software Engineering). It has also been promoted multiple times by the ROS Quality Assurance Working

Group as one of the main, readily available tools to analyse ROS systems. More importantly, this line of

research has opened up opportunities for a few interesting collaborations that we detail in this section.

3 https://rosindustrial.org/events/2016/11/3/2016-ros-industrial-conference

https://rosindustrial.org/events/2017/12/12/ros-industrial-conference-2017

https://rosindustrial.org/events/2018/12/11/ros-industrial-conference-2018

https://rosindustrial.org/events/2016/11/3/2016-ros-industrial-conference
https://rosindustrial.org/events/2017/12/12/ros-industrial-conference-2017
https://rosindustrial.org/events/2018/12/11/ros-industrial-conference-2018
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ROBUST – ROS Bug Study

We start with our longest-running collaboration effort, with members of the ROSIN European project, that is

also the least directly related to this thesis. One of the objectives of the ROSIN project is to raise the overall

quality of ROS robotics software. They aim to contribute to this goal by developing code scanners that

continuously and automatically analyze ROS software, and detect, as well as report, programming errors

and quality issues in the code. In this regard, tools such as HAROS are of great importance to the project.

In order to figure out what kind of analysis capabilities are needed – both to extend HAROS and to

build other independent tools – we first need to understand what kind of errors ROS developers often

make and what kind of code quality issues they often have. To this end, we systematically harvested 266

real documented bugs from a representative collection of ROS code repositories4. We then analysed this

collection, classified each fault and failure according to a number of categories, and gathered various

relevant statistics. The gathered observations will guide the subsequent development of new analysis tools

in the ROSIN project.

Another goal of this study, besides collecting error reports, is to provide a repository of historically

reproducible errors. Analysis and automated repair of historical bugs often requires access to the build

and runtime environments in which those bugs were first identified and later fixed. Reproducing such

historical environments is challenging, especially with ROS, due to the complex dependencies between

ROS versions, tool versions and operating system versions. To accomplish this task, we built a series of

tools that aid in tracking down the correct versions. Then, we build Docker5 images of the environment

and ROS application as they were at the time of the error report. In addition, we include test scripts within

the reproduction image that show precisely the reported failure. The tests fail for the faulty version of the

ROS repository, but pass for the fixed version. The work required to build test scripts for all cases proved to

be quite a burden, which turned out to be an additional motivation for our test generator approach. Not all

kinds of errors can be captured by our approach, because not all of them are related to software behaviour

(e.g., build errors, missing dependencies, etc.), but it can be used to automate in a small number of cases.

At the time of writing, this work has only been presented at ROSCon 20196. We are in the process of

documenting our findings and preparing a submission to a top Software Engineering journal.

Model Extraction for ROS Python Code

Our architectural model extraction procedure, as previously stated in Chapter 5, was only implemented for

the C++ ROS client library. C++ code makes up a large portion of the existing ROS ecosystem, being the go-to

choice to implement low-level or performance-critical components, such as drivers and controllers. Python,

on the other hand, is a common choice for high-level components, such as planners and orchestrators;

components whose performance is not favoured over using an easier programming language. Automated

4 https://github.com/robust-rosin/robust

5 https://www.docker.com/

6 https://roscon.ros.org/2019/talks/roscon2019_188_bugs_later.pdf

https://vimeo.com/378916121

https://github.com/robust-rosin/robust
https://www.docker.com/
https://roscon.ros.org/2019/talks/roscon2019_188_bugs_later.pdf
https://vimeo.com/378916121
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extraction of models for Python Nodes turned out to be a much-requested feature by HAROS users, and,

eventually, it was proposed as a topic for a Master’s thesis.

Davide Laezza, a Master’s student of the SQUARE group7 at the IT University of Copenhagen, under the

supervision of professor Andrzej W�sowski – group leader and one of the heads of the ROSIN project –

picked up this task and replicated our model extraction approach for the ROS Python client library. Davide

defended his thesis in April 2019, and his contribution is now a part of the current HAROS release.

Bootstrapping Model-Driven Engineering in ROS

Our metamodel for ROS applications, and the respective model extraction procedure, was the catalyst

for a second collaborative work, this time with members of the Fraunhofer Institute for Manufacturing

Engineering and Automation IPA8. The aim of this work is to promote Model-driven Engineering practices in

the ROS community. In particular, it shows how modelling can be a complement, rather than an alternative,

to manually written code. One way to achieve this is to build system models from existing source code –

the same premise that backs our thesis. However, this research initiative does not rely solely on static

analysis to build its models.

Its first contribution is an approach that merges information gathered at static time with information

gathered at runtime. We handled the static analysis model extraction with HAROS, while the runtime part

was implemented by members of Fraunhofer IPA. A second contribution is an easy-to-use web infrastructure

that performs model extraction using this approach (to alleviate the burden on end users), while, at the

same time, building a database of models extracted from various open source projects.

The main objective of this tooling, publicly available both as-a-service9 and as source code10, is to lower

the MDE barrier for practitioners and leverage models to:

• improve the understanding of manually written code;

• perform correctness checks; and

• systematize the definition and adoption of best practices through large-scale generation of models

from existing code.

This work, and a case study of its application on Care-O-bot 411 (a commercial mobile robot assistant

to actively support humans in domestic environments), has been published at the MODELS 2019

conference [73]. An improved version of this work has been submitted [74] to the Software and Systems

Modeling journal.

7 https://square.itu.dk/

8 https://www.ipa.fraunhofer.de/en.html

9 http://153.97.4.193/

10 https://github.com/ipa320/ros-model

11 https://www.care-o-bot.de/en/care-o-bot-4.html

https://square.itu.dk/
https://www.ipa.fraunhofer.de/en.html
http://153.97.4.193/
https://github.com/ipa320/ros-model
https://www.care-o-bot.de/en/care-o-bot-4.html
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HAROS Model Checking Plug-in

Lastly, Renato Carvalho, a student at our institution, worked on a new plug-in for HAROS as part of

his Master’s thesis. This thesis builds on our property specification language, but, rather than building

tests, it is used for model checking purposes. Its main goal is to verify system-wide properties in ROS

applications, i.e., properties that span a whole Configuration, rather than single Node behaviour. The

proposed technique [41] is based in the formalisation of architectural models and node behaviour in

Electrum12 [35], over which system-wide specifications are subsequently model checked.

The overall workflow is essentially the same one we propose for automated testing.

1. The user annotates Nodes and Configurations, defined in a HAROS project file, with behavioural

properties written in our proposed specification language (Chapter 4).

2. HAROS extracts the system’s architecture, including the Computation Graph.

3. The model checking plug-in uses the system architecture, the user specification and the ROS

message definitions to generate a Electrum model.

4. The model checker tries to falsify the model’s assertions.

5. In the case that Electrum finds a counterexample for the property, the counterexample is presented

to the user via the HAROS interface.

One of the main differences is that, since this approach is based on system-wide properties, node

properties are used as axioms of the formalised model, while the system-wide properties are converted

to assertions. Another difference is that Electrum is unable to handle real time. The current approach

ignores real-time constraints and focuses on finding counterexamples only via classes of values or invalid

sequences of messages.

This plug-in has been applied not only to the AgRob V16 case sutdy, but also to an internal case study

provided by the VORTEX Colab13 – a Collaborative Laboratory in Cyberphysical Systems and Cybersecurity.

This second case study is a ROS prototype for an Advanced Driver-Assistance System.

9.3 Prospect for Future Work

We have established a workflow for the analysis and verification of safety properties for ROS applications.

The techniques we rely on have some limitations that pose interesting research problems. Furthermore,

our approach is not strictly tied to any particular verification technique. Its foundation, based on static

analysis and model extraction, provides a great deal of freedom to build on top of. As we have seen, we

can verify structural properties on the extracted models themselves, or we can use the models to generate

property-based tests, or even to perform model checking. There are a number of other techniques that we

can integrate in this workflow. In this section, we discuss some directions for future work that we are likely

to explore.

12 http://haslab.github.io/Electrum/

13 http://www.vortex-colab.com/

http://haslab.github.io/Electrum/
http://www.vortex-colab.com/
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On Static Analysis and Model Extraction

The first step of our proposed workflow is based on static analysis of source code. Without it, we have

no access to models, and, thus, are incapable of verifying any properties of the target system. This, of

course, depends on the availability of the source code in the first place. While it is often not an issue for

systems under development, in many cases ROS developers tend to reuse off-the-shelf components. If

such components are installed as binaries, rather than being built from source, they become opaque to our

analysis. One of the measures we take to alleviate this problem, is to integrate within HAROS a database

of hard-coded models from popular components of the standard ROS distribution. Maintaining such a

database, however, is laborious, and is never going to cover all cases, in practice. This limitation is also

one of the arguments that is often used in favour of dynamic analyses, rather than static analyses.

A massive improvement to this workflow, that would eliminate this initial limitation and make our

approach feasible for any ROS system, would be to extend our static analysis techniques to also incorporate

binary static analysis, i.e., analysing compiled binaries without executing them. This is based on state of the

art techniques from the domain of reverse engineering, and is commonly used for security purposes [24,

94, 155, 162]. In this case, we would be using it to find calls to the ROS primitives, and reconstruct the

architectural model. Powerful reverse engineering tools are freely available, e.g., Radare214, and could be

used as a basis for this approach.

Binary static analysis could be seen as extending our static analysis capabilities in breadth. On the

other hand, we can extend them in depth, using techniques from control flow analysis and data flow

analysis. Inspired in previous works for ROS [142, 156], we can extend our metamodel to incorporate

additional information about a Node’s behaviour. Classifying publishers as proactive, reactive, periodic or

rate-independent, we get some insights into the message flow of the system. Moreover, we can explore

symbolic execution to determine predicates and properties about published data. This, in turn, would

enable us to:

• automatically annotate Nodes with behavioural properties, using our specification language;

• verify behavioural properties in static time (making, e.g., model checking easier), rather than

dynamically.

At the level of the models, we can also take various courses of action. One such course is based in the fact

that many ROS Configurations are slight variations of one another. We have anecdotally seen this in multiple

systems, and we have also mentioned this in Chapter 8 of this thesis. TurtleBot2 has numerous instances

of very similar configurations, where the difference is in the presence or absence of a single node, such as

the safety controller, or keyboard teleoperation, for instance. Even in AgRob V16, many configurations

just change initialisation parameters, such as the map to be loaded or the maximum velocity limits. By

extracting and comparing models across all configurations, we can find common denominators, build

Feature Models and identify Software Product Lines, and their points of variability [34, 118, 119, 132, 173].

14 https://rada.re/n/index.html

https://rada.re/n/index.html
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Another course of action is to identify issues in the extracted architecture models – i.e., differences

between the designed architecture and the implemented architecture [164] – and provide suggestions for

architecture repair. This can be achieved in various forms, for instance by defining general architectural

guidelines [115] or by using our extraction hint system, with hints being used to repair systems, rather

than simply fix the models.

Last, but not least, we have proposed in Chapter 3 an extension to the metamodel itself, to incorporate

high-level concepts provided by libraries, such as Actions and Dynamic Reconfiguration. Granted, these

concepts are implemented on top of the basic building blocks of ROS (Topics, Services and Parameters).

Even if the metamodel itself is not extended, we can, at least, improve the static analysis step to understand

these compound primitives, and convert them into the respective low-level resources.

On Property Specification and Verification

As we have discussed in Chapter 8, there are a few ways to improve the property specification language

itself. The most immediate improvements are the inclusion of event disjunctions, e.g., ‘/a or /b’, and the

specification of state machines. Other less straightforward enhancements would be the inclusion of other

ROS resources, besides Topics, i.e., the inclusion of Services and Parameters. The other resources have

fundamentally different mechanics from Topics, which would pose a challenge to specify their semantics.

In particular, we anticipate Parameters, which are subject to concurrency and can change at any time

without notification, to be the most challenging aspect to formalise.

In terms of Runtime Verification, the addition of Services and Parameters would require new monitoring

approaches. Topics can be observed by any Node in the network, without restrictions. Services and

Parameters, on the other hand, are based on one-to-one connections and cannot be externally observed

without interfering with the system. In this regard, we have two main paths that we could follow.

1. Replace the ROS Master node and/or the client libraries with a modified version. Implementing a

debug version of the core communication infrastructure of ROS would allow us to inject observers

that would monitor Service or Parameter connections. This approach is transparent to the system

under test and still allows for treating the system as a black box.

2. Instrument the target system, so that it monitors all calls to Services and Parameters, and relays the

events to a central monitor. This approach does not require tampering with the main infrastructure

of ROS, but requires building a separate, instrumented version of the target system. It is easier to

adopt in a production environment, but it becomes challenging if the system’s source code is not

available.

In terms of Property-based Testing, as also discussed in Chapter 8, we believe that using simulated

time in ROS would be benefitial to uncover hard-to-find timing interactions. However, such carefully crafted

scenarios might hardly happen in a real environment, with real time. Furthermore, Nodes are not required

to use the ROS-provided clocks, any Node can use real-time clocks instead (thus invalidating the use of

simulated time). As such, this technique should be used as a complement, rather than as a substitute for
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the current approach. In addition, counterexamples provided by exploiting simulated time would have to be

considered with extra care. The exploited timing interactions might not be possible in a real environment

for a multitude of reasons, with the most obvious being performance limitations – e.g., being impossible

for a Node to produce multiple large messages within less than one millisecond of one another.

Other improvements to the Property-based Testing approach, as suggested in Chapter 7, are mainly

concerned with being able to test more properties, and using smarter data generation. Our current approach

requires that all topics referenced in a property (except for the behaviour message) be open subscribed

topics. As we have discussed, this restriction can be alleviated, making tests more passive and more reliant

on runtime monitors. Regarding data generation, we have proposed some best-effort approaches to analyse

axioms statically and to automatically refine test schemas; these have not been implemented yet. We have

also proposed the use of SMT solvers (Satisfiability Modulo Theories, e.g., Z3 [54]) or symbolic computing

libraries (e.g., SymPy [123]) to embed arithmetic and quantified expressions directly into Hypothesis

strategies. In addition, it is also worth experimenting with custom shrinking approaches to generated input

traces, to aim for shorter tests overall.

On Technical Improvements

Lastly, on a technical side, and covering the whole workflow, our approach can naturally be extended to

support ROS2. As more companies and researchers transition to the new version of ROS, for its improved

communication infrastructure and real-time capabilities, this feature has been requested multiple times for

HAROS. Some of the differences between ROS and ROS2 are minimal. For instance, to extract architectural

models from C++ source code, it requires little more than searching for different function names in the

parsed Abstract Syntax Tree. However, other changes have a significant impact in the overall approach,

with launch files being a notorious one. The original launch files were deemed to be rather inflexible,

despite allowing composition, conditional statements and namespace grouping. In ROS2, launch files were

replaced by Python scripts. This change alone greatly diminishes the usefulness of static analysis. It is

likely that, in the event that we are not able to fully parse the launch script, we would have to ask the user

for parsing hints. Alternatively, we would have to move away from static analysis and run the script itself in

a sandbox environment.

On a lighter note, ROS2 provides support to implement Nodes that follow a standardised life cycle.

This is something that can be leveraged to enhance the extraction of both the system’s architecture as

well as the behaviour. Furthermore, it represents an out-of-the-box mechanism to reset a system’s state

without shutting it down and bringing it back up, which is one of the major performance obstacles for our

Property-based Testing approach, as we have seen in Chapter 8.
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A
F I C T I B O T ’ S S OU RC E COD E

This appendix chapter contains the source code of our Fictibot running example, so as to provide a reference

version that will not change over time and to make the document self-contained.

a.1 Fict ibot Driver Package

Figure 88: The fictibot_drivers package tree.

1 <?xml version="1.0"?>

2 <package>

3 <name>fictibot_drivers</name>

4 <version>0.1.0</version>

5 <description>The fictibot_drivers package</description>

6

7 <maintainer email="andre.f.santos@inesctec.pt">Andre Santos</maintainer>

8 <license>MIT</license>

9 <author email="andre.f.santos@inesctec.pt">Andre Santos</author>

10

11 <buildtool_depend>catkin</buildtool_depend>

12 <build_depend>roscpp</build_depend>

13 <build_depend>std_msgs</build_depend>

14 <run_depend>roscpp</run_depend>

15 <run_depend>std_msgs</run_depend>

16 </package>

Listing A.1: The package.xml file.
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1 cmake_minimum_required(VERSION 2.8.3)

2 project(fictibot_drivers)

3

4 find_package(catkin REQUIRED COMPONENTS roscpp std_msgs)

5 catkin_package(INCLUDE_DIRS include CATKIN_DEPENDS roscpp std_msgs)

6 include_directories(include ${catkin_INCLUDE_DIRS})

7

8 add_executable(fictibot_driver

9 src/driver_node.cpp

10 src/sensor_manager.cpp

11 src/motor_manager.cpp

12 )

13

14 add_dependencies(fictibot_driver

15 ${${PROJECT_NAME}_EXPORTED_TARGETS}

16 ${catkin_EXPORTED_TARGETS}

17 )

18

19 target_link_libraries(fictibot_driver ${catkin_LIBRARIES})

Listing A.2: The CMakeLists.txt file.
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1 #ifndef MOTOR_MANAGER_H_

2 #define MOTOR_MANAGER_H_

3

4 #include <ros/ros.h>

5 #include <std_msgs/Empty.h>

6 #include <std_msgs/Float64.h>

7

8 class MotorManager {

9 public:

10 MotorManager(ros::NodeHandle& n, double hz);

11 ~MotorManager(){};

12 void spin();

13 private:

14 int teleop_priority_, stop_cycles_;

15 double command_, velocity_;

16 ros::Subscriber teleop_subscriber_, controller_subscriber_,

17 stop_subscriber_;

18

19 void teleop_callback(const std_msgs::Float64::ConstPtr& msg);

20 void controller_callback(const std_msgs::Float64::ConstPtr& msg);

21 void stop_callback(const std_msgs::Empty::ConstPtr& msg);

22 void apply_commands();

23 };

24

25 #endif /*MOTOR_MANAGER_H_*/

Listing A.3: The include/fictibot_drivers/motor_manager.h file.



A.1. Fictibot Driver Package 265

1 #ifndef SENSOR_MANAGER_H_

2 #define SENSOR_MANAGER_H_

3

4 #include <ros/ros.h>

5

6 class SensorManager {

7 public:

8 SensorManager(ros::NodeHandle& n, double hz);

9 ~SensorManager(){};

10 void spin();

11 private:

12 ros::Publisher bumper_publisher_, laser_publisher_,

13 wheel_drop_publisher_;

14 int8_t read_bumper();

15 int8_t read_laser();

16 int8_t read_wheels();

17 };

18

19 #endif /*SENSOR_MANAGER_H_*/

Listing A.4: The include/fictibot_drivers/sensor_manager.h file.
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1 #define _USE_MATH_DEFINES

2

3 #include <math.h>

4 #include "fictibot_drivers/motor_manager.h"

5

6 MotorManager::MotorManager(ros::NodeHandle& n, double hz)

7 : teleop_priority_(0)

8 , stop_cycles_(0)

9 , command_(0)

10 , velocity_(0) {

11 uint32_t queue_size = (uint32_t) hz * 2 + 1;

12 stop_subscriber_ = n.subscribe("stop_cmd", queue_size,

13 &MotorManager::stop_callback, this);

14 teleop_subscriber_ = n.subscribe("teleop_cmd", queue_size,

15 &MotorManager::teleop_callback, this);

16 controller_subscriber_ = n.subscribe("controller_cmd", queue_size,

17 &MotorManager::controller_callback, this);

18 }

19

20 void MotorManager::spin() {

21 ros::spinOnce();

22 apply_commands();

23 }

24

25 void MotorManager::teleop_callback(const std_msgs::Float64::ConstPtr& msg) {

26 command_ = msg->data;

27 teleop_priority_ = 5;

28 }

29

30 void MotorManager::controller_callback(const std_msgs::Float64::ConstPtr& msg) {

31 if (teleop_priority_ < 0) { command_ = msg->data; }

32 }

33

34 void MotorManager::stop_callback(const std_msgs::Empty::ConstPtr& msg) {

35 stop_cycles_ = 50;

36 }

Listing A.5: The src/motor_manager.cpp file (part 1 of 2).
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1 void MotorManager::apply_commands() {

2 teleop_priority_--;

3 stop_cycles_--;

4 if (stop_cycles_ >= 0) {

5 velocity_ -= 0.125;

6 if (velocity_ < 0) { velocity_ = 0; }

7 return;

8 }

9 if (command_ > M_PI / 8 || command_ < -M_PI / 8) {

10 velocity_ -= 0.125;

11 if (velocity_ < 0) { velocity_ = 0; }

12 if (velocity_ == 0) {

13 if (command_ < 0) {

14 command_ += M_PI / 64;

15 if (command_ > 0) { command_ = 0; }

16 } else {

17 command_ -= M_PI / 64;

18 if (command_ < 0) { command_ = 0; }

19 }

20 }

21 } else {

22 if (command_ < 0) {

23 command_ += M_PI / 64;

24 if (command_ > 0) { command_ = 0; }

25 } else {

26 command_ -= M_PI / 64;

27 if (command_ < 0) { command_ = 0; }

28 }

29 }

30 if (command_ == 0) {

31 velocity_ += 0.0625;

32 if (velocity_ > 0.5) { velocity_ = 0.5; }

33 }

34 }

Listing A.6: The src/motor_manager.cpp file (part 2 of 2).
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1 #include <cstdlib>

2 #include <std_msgs/Int8.h>

3 #include "fictibot_drivers/sensor_manager.h"

4

5 SensorManager::SensorManager(ros::NodeHandle& n, double hz) {

6 uint32_t queue_size = (uint32_t) hz * 2 + 1;

7 bumper_publisher_ = n.advertise<std_msgs::Int8>("bumper", queue_size);

8 laser_publisher_ = n.advertise<std_msgs::Int8>("laser", queue_size);

9 wheel_drop_publisher_ = n.advertise<std_msgs::Int8>("wheel", queue_size);

10 }

11

12 void SensorManager::spin() {

13 std_msgs::Int8 bumper_msg;

14 bumper_msg.data = read_bumper();

15 bumper_publisher_.publish(bumper_msg);

16 std_msgs::Int8 laser_msg;

17 laser_msg.data = read_laser();

18 laser_publisher_.publish(laser_msg);

19 std_msgs::Int8 wheel_msg;

20 wheel_msg.data = read_wheels();

21 wheel_drop_publisher_.publish(wheel_msg);

22 }

23

24 int8_t SensorManager::read_bumper() {

25 // left[0,1] | center[0,1] | right[0,1]

26 return (int8_t) (std::rand() % 8);

27 }

28

29 int8_t SensorManager::read_laser() {

30 return (int8_t) (std::rand() % 128);

31 }

32

33 int8_t SensorManager::read_wheels() {

34 // left[0,3] | right[0,3]

35 return (int8_t) (std::rand() % 16);

36 }

Listing A.7: The src/sensor_manager.cpp file.
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1 #include <ros/ros.h>

2 #include "fictibot_drivers/sensor_manager.h"

3 #include "fictibot_drivers/motor_manager.h"

4

5 int main(int argc, char **argv) {

6 ros::init(argc, argv, "fictibot_driver");

7 ros::NodeHandle n;

8 SensorManager sensor_man(n, 10 /*Hz*/);

9 MotorManager motor_man(n, 10 /*Hz*/);

10 ros::Rate loop_rate(10 /*Hz*/);

11 while (ros::ok()) {

12 sensor_man.spin();

13 motor_man.spin();

14 loop_rate.sleep();

15 }

16 return 0;

17 }

Listing A.8: The src/driver_node.cpp file.

a.2 Fict ibot Control ler Package

Figure 89: The fictibot_controller package tree.
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1 <?xml version="1.0"?>

2 <package>

3 <name>fictibot_controller</name>

4 <version>0.1.0</version>

5 <description>The fictibot_controller package</description>

6

7 <maintainer email="andre.f.santos@inesctec.pt">Andre Santos</maintainer>

8 <license>MIT</license>

9 <author email="andre.f.santos@inesctec.pt">Andre Santos</author>

10

11 <buildtool_depend>catkin</buildtool_depend>

12 <build_depend>roscpp</build_depend>

13 <build_depend>std_msgs</build_depend>

14 <build_depend>fictibot_msgs</build_depend>

15 <run_depend>roscpp</run_depend>

16 <run_depend>std_msgs</run_depend>

17 <run_depend>fictibot_msgs</run_depend>

18 <run_depend>fictibot_drivers</run_depend>

19 </package>

Listing A.9: The package.xml file.

1 cmake_minimum_required(VERSION 2.8.3)

2 project(fictibot_controller)

3

4 find_package(catkin REQUIRED COMPONENTS roscpp std_msgs fictibot_msgs)

5 catkin_package(INCLUDE_DIRS include CATKIN_DEPENDS roscpp std_msgs fictibot_msgs)

6 include_directories(include ${catkin_INCLUDE_DIRS})

7

8 add_executable(fictibot_controller

9 src/controller_node.cpp

10 src/random_controller.cpp

11 )

12

13 add_dependencies(fictibot_controller

14 ${${PROJECT_NAME}_EXPORTED_TARGETS}

15 ${catkin_EXPORTED_TARGETS}

16 )

17

18 target_link_libraries(fictibot_controller ${catkin_LIBRARIES})

Listing A.10: The CMakeLists.txt file.
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1 #ifndef RANDOM_CONTROLLER_H_

2 #define RANDOM_CONTROLLER_H_

3

4 #include <ros/ros.h>

5 #include <std_msgs/Int8.h>

6 #include <fictibot_msgs/Custom.h>

7

8 class RandomController {

9 public:

10 RandomController(ros::NodeHandle& n, double hz);

11 ~RandomController(){};

12 void spin();

13 private:

14 bool stop_;

15 bool laser_proximity_;

16 bool bumper_left_pressed_;

17 bool bumper_center_pressed_;

18 bool bumper_right_pressed_;

19 bool wheel_left_dropped_;

20 bool wheel_right_dropped_;

21 double stop_cycles_, stop_counter_;

22 ros::Publisher stop_publisher_, command_publisher_;

23 ros::Subscriber laser_subscriber_, bumper_subscriber_,

24 wheel_drop_subscriber_, custom_subscriber_;

25

26 void laser_callback(const std_msgs::Int8::ConstPtr& msg);

27 void bumper_callback(const std_msgs::Int8::ConstPtr& msg);

28 void wheel_callback(const std_msgs::Int8::ConstPtr& msg);

29 void custom_callback(const fictibot_msgs::Custom::ConstPtr& msg);

30 };

31

32 #endif /*RANDOM_CONTROLLER_H_*/

Listing A.11: The include/fictibot_controller/random_controller.h file.
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1 #define _USE_MATH_DEFINES

2

3 #include <math.h>

4 #include <cstdlib>

5 #include <std_msgs/Empty.h>

6 #include <std_msgs/Float64.h>

7 #include "fictibot_controller/random_controller.h"

8

9 RandomController::RandomController(ros::NodeHandle& n, double hz)

10 : stop_(false)

11 , laser_proximity_(false)

12 , bumper_left_pressed_(false)

13 , bumper_center_pressed_(false)

14 , bumper_right_pressed_(false)

15 , wheel_left_dropped_(false)

16 , wheel_right_dropped_(false)

17 , stop_counter_(0) {

18 stop_cycles_ = 2 * hz + 1;

19 uint32_t queue_size = (uint32_t) hz * 2 + 1;

20 std::string some_param;

21 n.param<std::string>("param", some_param, "nothing");

22 n.setParam("set_param", some_param);

23 command_publisher_ = n.advertise<std_msgs::Float64>("controller_cmd", 1);

24 stop_publisher_ = n.advertise<std_msgs::Empty>("/stop_cmd", 0);

25 laser_subscriber_ = n.subscribe("laser", queue_size,

26 &RandomController::laser_callback, this);

27 bumper_subscriber_ = n.subscribe("bumper", queue_size,

28 &RandomController::bumper_callback, this);

29 wheel_drop_subscriber_ = n.subscribe("wheel", queue_size,

30 &RandomController::wheel_callback, this);

31 if (some_param == "nothing") {

32 custom_subscriber_ = n.subscribe("custom_noparam", queue_size,

33 &RandomController::custom_callback, this);

34 } else {

35 custom_subscriber_ = n.subscribe("custom_w_param", queue_size,

36 &RandomController::custom_callback, this);

37 }

38 }

39

40 void RandomController::laser_callback(const std_msgs::Int8::ConstPtr& msg) {

41 laser_proximity_ = msg->data <= 50;

42 }

43

44 void RandomController::custom_callback(

45 const fictibot_msgs::Custom::ConstPtr& msg) {

46 ROS_INFO("Received custom message!");

47 }

Listing A.12: The src/random_controller.cpp file (part 1 of 2).
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1 void RandomController::spin() {

2 ros::spinOnce();

3 bool prev_stop = stop_;

4 stop_counter_--;

5 stop_ = laser_proximity_ || bumper_left_pressed_ || bumper_center_pressed_

6 || bumper_right_pressed_ || wheel_left_dropped_ || wheel_right_dropped_;

7 if (!prev_stop && stop_) {

8 std_msgs::Empty stop_msg;

9 stop_publisher_.publish(stop_msg);

10 stop_counter_ = stop_cycles_;

11 std_msgs::Float64 vel_msg;

12 vel_msg.data = (double) (std::rand() % 360 - 180) * M_PI / 180.0;

13 command_publisher_.publish(vel_msg);

14 }

15 if (stop_ && stop_counter_ < 0) {

16 stop_counter_ = stop_cycles_;

17 std_msgs::Float64 vel_msg;

18 vel_msg.data = (double) (std::rand() % 360 - 180) * M_PI / 180.0;

19 command_publisher_.publish(vel_msg);

20 }

21 }

22

23 void RandomController::bumper_callback(const std_msgs::Int8::ConstPtr& msg) {

24 int left = msg->data & 4;

25 int center = msg->data & 2;

26 int right = msg->data & 1;

27 if (left) { bumper_left_pressed_ = true; }

28 else { bumper_left_pressed_ = false; }

29 if (center) { bumper_center_pressed_ = true; }

30 else { bumper_center_pressed_ = false; }

31 if (right) { bumper_right_pressed_ = true; }

32 else { bumper_right_pressed_ = false; }

33 }

34

35 void RandomController::wheel_callback(const std_msgs::Int8::ConstPtr& msg) {

36 int left = msg->data & 12;

37 int right = msg->data & 3;

38 if (left == 3) { wheel_left_dropped_ = true; }

39 else if (left == 2 && right >= 1) { wheel_left_dropped_ = true; }

40 else if (left < 2) { wheel_left_dropped_ = false; }

41 if (right == 3) { wheel_right_dropped_ = true; }

42 else if (right == 2 && left >= 1) { wheel_right_dropped_ = true; }

43 else if (right < 2) { wheel_right_dropped_ = false; }

44 }

Listing A.13: The src/random_controller.cpp file (part 2 of 2).
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1 #include <ros/ros.h>

2 #include "fictibot_controller/random_controller.h"

3

4 int main(int argc, char **argv) {

5 ros::init(argc, argv, "fictibot_controller");

6 ros::NodeHandle n;

7 RandomController controller(n, 10 /*Hz*/);

8 ros::Rate loop_rate(10 /*Hz*/);

9 while (ros::ok()) {

10 controller.spin();

11 loop_rate.sleep();

12 }

13 return 0;

14 }

Listing A.14: The src/controller_node.cpp file.

1 <launch>

2 <node name="fictibase" pkg="fictibot_drivers" type="fictibot_driver" />

3 <node name="ficticontrol" pkg="fictibot_controller" type="fictibot_controller" />

4 </launch>

Listing A.15: The launch/minimal.launch file.

1 <launch>

2 <node name="fictibase" pkg="fictibot_drivers" type="fictibot_driver" />

3 <node name="fictiplex" pkg="fictibot_multiplex" type="fictibot_multiplex" />

4 <node name="ficticontrol" pkg="fictibot_controller" type="fictibot_controller">

5 <remap from="controller_cmd" to="normal_priority_cmd" />

6 <remap from="/stop_cmd" to="normal_priority_stop" />

7 </node>

8 </launch>

Listing A.16: The launch/multiplexer.launch file.

a.3 Fict ibot Mult iplexer Package

Figure 90: The fictibot_multiplex package tree.
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1 <?xml version="1.0"?>

2 <package>

3 <name>fictibot_multiplex</name>

4 <version>0.1.0</version>

5 <description>The fictibot_multiplex package</description>

6

7 <maintainer email="andre.f.santos@inesctec.pt">Andre Santos</maintainer>

8 <license>MIT</license>

9 <author email="andre.f.santos@inesctec.pt">Andre Santos</author>

10

11 <buildtool_depend>catkin</buildtool_depend>

12 <build_depend>roscpp</build_depend>

13 <build_depend>std_msgs</build_depend>

14 <run_depend>roscpp</run_depend>

15 <run_depend>std_msgs</run_depend>

16 <run_depend>fictibot_drivers</run_depend>

17 </package>

Listing A.17: The package.xml file.

1 cmake_minimum_required(VERSION 2.8.3)

2 project(fictibot_multiplex)

3

4 find_package(catkin REQUIRED COMPONENTS roscpp std_msgs)

5 catkin_package(INCLUDE_DIRS include CATKIN_DEPENDS roscpp std_msgs)

6 include_directories(include ${catkin_INCLUDE_DIRS})

7

8 add_executable(fictibot_multiplex

9 src/multiplex_node.cpp

10 src/trichannel_multiplex.cpp

11 )

12

13 add_dependencies(fictibot_multiplex

14 ${${PROJECT_NAME}_EXPORTED_TARGETS}

15 ${catkin_EXPORTED_TARGETS}

16 )

17

18 target_link_libraries(fictibot_multiplex ${catkin_LIBRARIES})

Listing A.18: The CMakeLists.txt file.
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1 #ifndef TRICHANNEL_MULTIPLEX_HPP_

2 #define TRICHANNEL_MULTIPLEX_HPP_

3

4 #include <ros/ros.h>

5 #include <std_msgs/Empty.h>

6 #include <std_msgs/Int8.h>

7 #include <std_msgs/Float64.h>

8

9 class TriChannelMultiplexer {

10 public:

11 TriChannelMultiplexer(ros::NodeHandle& n, double hz);

12 ~TriChannelMultiplexer(){};

13 void spin();

14 private:

15 int channel_, priority_cycles_, inactivity_counter_;

16 ros::Publisher stop_publisher_, command_publisher_, state_publisher_;

17 ros::Subscriber high_cmd_subscriber_, high_stop_subscriber_,

18 normal_cmd_subscriber_, normal_stop_subscriber_,

19 low_cmd_subscriber_, low_stop_subscriber_;

20

21 void high_cmd_callback(const std_msgs::Float64::ConstPtr& msg);

22 void high_stop_callback(const std_msgs::Empty::ConstPtr& msg);

23 void normal_cmd_callback(const std_msgs::Float64::ConstPtr& msg);

24 void normal_stop_callback(const std_msgs::Empty::ConstPtr& msg);

25 void low_cmd_callback(const std_msgs::Float64::ConstPtr& msg);

26 void low_stop_callback(const std_msgs::Empty::ConstPtr& msg);

27 };

28

29 #endif /*TRICHANNEL_MULTIPLEX_HPP_*/

Listing A.19: The include/fictibot_multiplex/trichannel_multiplex.hpp file.
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1 #include <cstdlib>

2 #include "fictibot_multiplex/trichannel_multiplex.hpp"

3

4 #define LOW_PRIORITY -1

5 #define NORMAL_PRIORITY 0

6 #define HIGH_PRIORITY 1

7

8 TriChannelMultiplexer::TriChannelMultiplexer(ros::NodeHandle& n, double hz)

9 : channel_(LOW_PRIORITY)

10 , priority_cycles_(10)

11 , inactivity_counter_(0) {

12 uint32_t queue_size = (uint32_t) hz * 2 + 1;

13 command_publisher_ = n.advertise<std_msgs::Float64>("controller_cmd", queue_size);

14 stop_publisher_ = n.advertise<std_msgs::Empty>("stop_cmd", queue_size);

15 state_publisher_ = n.advertise<std_msgs::Int8>("state", queue_size);

16 high_cmd_subscriber_ = n.subscribe("high_priority_cmd", queue_size,

17 &TriChannelMultiplexer::high_cmd_callback, this);

18 high_stop_subscriber_ = n.subscribe("high_priority_stop", queue_size,

19 &TriChannelMultiplexer::high_stop_callback, this);

20 normal_cmd_subscriber_ = n.subscribe("normal_priority_cmd", queue_size,

21 &TriChannelMultiplexer::normal_cmd_callback, this);

22 normal_stop_subscriber_ = n.subscribe("normal_priority_stop", queue_size,

23 &TriChannelMultiplexer::normal_stop_callback, this);

24 low_cmd_subscriber_ = n.subscribe("low_priority_cmd", queue_size,

25 &TriChannelMultiplexer::low_cmd_callback, this);

26 low_stop_subscriber_ = n.subscribe("low_priority_stop", queue_size,

27 &TriChannelMultiplexer::low_stop_callback, this);

28 std_msgs::Int8 state_msg;

29 state_msg.data = (int8_t) LOW_PRIORITY;

30 state_publisher_.publish(state_msg);

31 }

32

33 void TriChannelMultiplexer::spin() {

34 inactivity_counter_--;

35 if (inactivity_counter_ < 0) {

36 channel_ = LOW_PRIORITY;

37 inactivity_counter_ = priority_cycles_;

38 std_msgs::Int8 state_msg;

39 state_msg.data = (int8_t) LOW_PRIORITY;

40 state_publisher_.publish(state_msg);

41 }

42 ros::spinOnce();

43 }

Listing A.20: The src/trichannel_multiplex.cpp file (part 1 of 3).
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1 void TriChannelMultiplexer::high_cmd_callback(const std_msgs::Float64::ConstPtr& msg)

{

2 command_publisher_.publish(msg);

3 channel_ = HIGH_PRIORITY;

4 inactivity_counter_ = priority_cycles_;

5 std_msgs::Int8 state_msg;

6 state_msg.data = (int8_t) HIGH_PRIORITY;

7 state_publisher_.publish(state_msg);

8 }

9

10 void TriChannelMultiplexer::high_stop_callback(const std_msgs::Empty::ConstPtr& msg) {

11 stop_publisher_.publish(msg);

12 channel_ = HIGH_PRIORITY;

13 inactivity_counter_ = priority_cycles_;

14 std_msgs::Int8 state_msg;

15 state_msg.data = (int8_t) HIGH_PRIORITY;

16 state_publisher_.publish(state_msg);

17 }

18

19 void TriChannelMultiplexer::normal_cmd_callback(const std_msgs::Float64::ConstPtr&

msg) {

20 if (channel_ != HIGH_PRIORITY) {

21 command_publisher_.publish(msg);

22 channel_ = NORMAL_PRIORITY;

23 inactivity_counter_ = priority_cycles_;

24 std_msgs::Int8 state_msg;

25 state_msg.data = (int8_t) NORMAL_PRIORITY;

26 state_publisher_.publish(state_msg);

27 }

28 }

29

30 void TriChannelMultiplexer::normal_stop_callback(const std_msgs::Empty::ConstPtr&

msg) {

31 if (channel_ != HIGH_PRIORITY) {

32 stop_publisher_.publish(msg);

33 channel_ = NORMAL_PRIORITY;

34 inactivity_counter_ = priority_cycles_;

35 std_msgs::Int8 state_msg;

36 state_msg.data = (int8_t) NORMAL_PRIORITY;

37 state_publisher_.publish(state_msg);

38 }

39 }

Listing A.21: The src/trichannel_multiplex.cpp file (part 2 of 3).
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1

2 void TriChannelMultiplexer::low_cmd_callback(const std_msgs::Float64::ConstPtr& msg) {

3 if (channel_ == LOW_PRIORITY) {

4 command_publisher_.publish(msg);

5 inactivity_counter_ = priority_cycles_;

6 }

7 }

8

9 void TriChannelMultiplexer::low_stop_callback(const std_msgs::Empty::ConstPtr& msg) {

10 if (channel_ == LOW_PRIORITY) {

11 stop_publisher_.publish(msg);

12 inactivity_counter_ = priority_cycles_;

13 }

14 }

Listing A.22: The src/trichannel_multiplex.cpp file (part 3 of 3).

1 #include <ros/ros.h>

2 #include "fictibot_multiplex/trichannel_multiplex.hpp"

3

4 int main(int argc, char **argv) {

5 ros::init(argc, argv, "fictibot_multiplex");

6 ros::NodeHandle n;

7 TriChannelMultiplexer multiplexer(n, 10 /*Hz*/);

8 ros::Rate loop_rate(10 /*Hz*/);

9 while (ros::ok()) {

10 multiplexer.spin();

11 loop_rate.sleep();

12 }

13 return 0;

14 }

Listing A.23: The src/multiplex_node.cpp file.

a.4 Fict ibot Messages Package

Figure 91: The fictibot_msgs package tree.
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1 <?xml version="1.0"?>

2 <package>

3 <name>fictibot_msgs</name>

4 <version>0.1.0</version>

5 <description>The fictibot_msgs package</description>

6

7 <maintainer email="andre.f.santos@inesctec.pt">Andre Santos</maintainer>

8 <license>MIT</license>

9 <author email="andre.f.santos@inesctec.pt">Andre Santos</author>

10

11 <buildtool_depend>catkin</buildtool_depend>

12 <build_depend>roscpp</build_depend>

13 <build_depend>rospy</build_depend>

14 <build_depend>geometry_msgs</build_depend>

15 <build_depend>message_generation</build_depend>

16 <run_depend>message_runtime</run_depend>

17 <run_depend>roscpp</run_depend>

18 <run_depend>rospy</run_depend>

19 <run_depend>geometry_msgs</run_depend>

20 </package>

Listing A.24: The package.xml file.

1 cmake_minimum_required(VERSION 2.8.3)

2 project(fictibot_msgs)

3

4 find_package(catkin REQUIRED COMPONENTS roscpp rospy geometry_msgs message_generation)

5 add_message_files(FILES Custom.msg)

6 generate_messages(DEPENDENCIES geometry_msgs)

7 catkin_package(CATKIN_DEPENDS roscpp rospy geometry_msgs message_runtime)

Listing A.25: The CMakeLists.txt file.

1 uint8 state

2 geometry_msgs/Pose2D pose

3 bool[3] bumpers

Listing A.26: The msg/Custom.msg file.
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This appendix chapter contains the JSON schema, in YAML notation, for the various entities we define in

the proposed metamodel for ROS applications (see Chapter 3). An up-to-date version can also be found

online1.

Common Defini t ions

1 %YAML 1.1

2 ---

3 $schema: "http://json-schema.org/draft-07/schema#"

4 $id: "https://github.com/git-afsantos/haros/tree/master/haros/schema/common.yaml"

5 title: Common Definitions

6 description: Common definitions for ROS entity specification.

7 type: object

8 additionalProperties: false

9 definitions:

10 package_name:

11 type: string

12 pattern: "^[a-zA-Z][a-zA-Z0-9_]*$"

13 file_name:

14 # this is a relative path within the package

15 type: string

16 pattern: "^[^/]+(/[^/]+)*$"

17 file_ref:

18 # this is "<pkg>/<relative-path>"

19 type: string

20 pattern: "^[a-zA-Z0-9_]+/[^/]+(/[^/]+)*$"

21 config_ref:

22 type: string

23 pattern: "^[a-zA-Z][a-zA-Z0-9_]*$"

24 ros_type:

25 # a "<pkg>/<type>" string

26 type: string

1 https://github.com/git-afsantos/haros/tree/master/haros/schema
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27 pattern: "^[a-zA-Z][a-zA-Z0-9_]*/[^/]+$"

28 ros_name:

29 # global, relative and private names allowed

30 type: string

31 pattern: "^[/~]?[a-zA-Z][0-9a-zA-Z_]*(/[a-zA-Z][0-9a-zA-Z_]*)*$"

32 global_ros_name:

33 type: string

34 pattern: "^/[a-zA-Z][0-9a-zA-Z_]*(/[a-zA-Z][0-9a-zA-Z_]*)*$"

35 person:

36 type: object

37 properties:

38 name:

39 type: string

40 minLength: 1

41 email:

42 oneOf:

43 - type: string

44 minLength: 3

45 - type: null

46 required:

47 - name

48 - email

49 source_tree:

50 oneOf:

51 - type: object

52 - type: null

53 param_type:

54 type: string

55 enum:

56 - bool

57 - int

58 - double

59 - str

60 - yaml

61 base_location:

62 type: object

63 properties:

64 package:

65 $ref: "#/definitions/package_name"

66 file:

67 $ref: "#/definitions/file_name"

68 line:

69 oneOf:

70 - type: integer

71 minimum: 1

72 - type: null

73 column:
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74 oneOf:

75 - type: integer

76 minimum: 1

77 - type: null

78 required:

79 - package

80 - file

81 - line

82 - column

83 source_location:

84 $ref: "#/definitions/base_location"

85 condition:

86 allOf:

87 - $ref: "#/definitions/base_location"

88 - properties:

89 statement:

90 type: string

91 enum:

92 - if

93 - unless

94 - switch

95 - case

96 - for

97 - while

98 expression:

99 oneOf:

100 - type: string

101 minLength: 1

102 - type: boolean

103 required:

104 - statement

105 - expression

106 control_path:

107 type: array

108 minItems: 1

109 items:

110 $ref: "#/definitions/condition"

111 control_flow_graph:

112 type: array

113 items:

114 $ref: "#/definitions/control_path"

115 advertise:

116 type: object

117 properties:

118 name:

119 $ref: "#/definitions/ros_name"

120 type:
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121 $ref: "#/definitions/ros_type"

122 queue_size:

123 type: integer

124 minimum: 0

125 latched:

126 type: boolean

127 traceability:

128 $ref: "#/definitions/source_location"

129 conditions:

130 $ref: "#/definitions/control_flow_graph"

131 required:

132 - name

133 - type

134 - queue_size

135 - traceability

136 subscribe:

137 type: object

138 properties:

139 name:

140 $ref: "#/definitions/ros_name"

141 type:

142 $ref: "#/definitions/ros_type"

143 queue_size:

144 type: integer

145 minimum: 0

146 traceability:

147 $ref: "#/definitions/source_location"

148 conditions:

149 $ref: "#/definitions/control_flow_graph"

150 required:

151 - name

152 - type

153 - queue_size

154 - traceability

155 advertise_service:

156 type: object

157 properties:

158 name:

159 $ref: "#/definitions/ros_name"

160 type:

161 $ref: "#/definitions/ros_type"

162 traceability:

163 $ref: "#/definitions/source_location"

164 conditions:

165 $ref: "#/definitions/control_flow_graph"

166 required:

167 - name
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168 - type

169 - traceability

170 service_client:

171 type: object

172 properties:

173 name:

174 $ref: "#/definitions/ros_name"

175 type:

176 $ref: "#/definitions/ros_type"

177 traceability:

178 $ref: "#/definitions/source_location"

179 conditions:

180 $ref: "#/definitions/control_flow_graph"

181 required:

182 - name

183 - type

184 - traceability

185 set_param:

186 type: object

187 properties:

188 name:

189 $ref: "#/definitions/ros_name"

190 type:

191 $ref: "#/definitions/param_type"

192 traceability:

193 $ref: "#/definitions/source_location"

194 conditions:

195 $ref: "#/definitions/control_flow_graph"

196 required:

197 - name

198 - type

199 - value

200 - traceability

201 allOf:

202 - if: { properties: { type: { const: bool }}}

203 then: { properties: { value: { type: [boolean, null] }}}

204 - if: { properties: { type: { const: int }}}

205 then: { properties: { value: { type: [integer, null] }}}

206 - if: { properties: { type: { const: double }}}

207 then: { properties: { value: { type: [number, null] }}}

208 - if: { properties: { type: { const: str }}}

209 then: { properties: { value: { type: [string, null] }}}

210 - if: { properties: { type: { const: yaml }}}

211 then: { properties: { value: { type: [object, array, null] }}}

212 get_param:

213 type: object

214 properties:
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215 name:

216 $ref: "#/definitions/ros_name"

217 type:

218 $ref: "#/definitions/param_type"

219 traceability:

220 $ref: "#/definitions/source_location"

221 conditions:

222 $ref: "#/definitions/control_flow_graph"

223 required:

224 - name

225 - type

226 - traceability

227 allOf:

228 - if: { properties: { type: { const: bool }}}

229 then: { properties: { default_value: { type: [boolean, null] }}}

230 - if: { properties: { type: { const: int }}}

231 then: { properties: { default_value: { type: [integer, null] }}}

232 - if: { properties: { type: { const: double }}}

233 then: { properties: { default_value: { type: [number, null] }}}

234 - if: { properties: { type: { const: str }}}

235 then: { properties: { default_value: { type: [string, null] }}}

236 - if: { properties: { type: { const: yaml }}}

237 then: { properties: { default_value: { type: [object, array, null] }}}

238 ros_resource:

239 type: object

240 properties:

241 ros_name:

242 description: The ROS name of this resource.

243 $ref: "#/definitions/global_ros_name"

244 configuration:

245 description: The configuration to which this resource belongs.

246 $ref: "#/definitions/config_ref"

247 required:

248 - ros_name

249 - configuration

250 publisher_link:

251 allOf:

252 - $ref: "#/definitions/advertise"

253 - properties:

254 name:

255 $ref: "#/definitions/global_ros_name"

256 original_name:

257 $ref: "#/definitions/ros_name"

258 subscriber_link:

259 allOf:

260 - $ref: "#/definitions/subscribe"

261 - properties:
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262 name:

263 $ref: "#/definitions/global_ros_name"

264 original_name:

265 $ref: "#/definitions/ros_name"

266 server_link:

267 allOf:

268 - $ref: "#/definitions/advertise_service"

269 - properties:

270 name:

271 $ref: "#/definitions/global_ros_name"

272 original_name:

273 $ref: "#/definitions/ros_name"

274 client_link:

275 allOf:

276 - $ref: "#/definitions/advertise_service"

277 - properties:

278 name:

279 $ref: "#/definitions/global_ros_name"

280 original_name:

281 $ref: "#/definitions/ros_name"

282 setter_link:

283 allOf:

284 - $ref: "#/definitions/set_param"

285 - properties:

286 name:

287 $ref: "#/definitions/global_ros_name"

288 original_name:

289 $ref: "#/definitions/ros_name"

290 getter_link:

291 allOf:

292 - $ref: "#/definitions/get_param"

293 - properties:

294 name:

295 $ref: "#/definitions/global_ros_name"

296 original_name:

297 $ref: "#/definitions/ros_name"
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Source Fi le

1 %YAML 1.1

2 ---

3 $schema: "http://json-schema.org/draft-07/schema#"

4 $id: "https://github.com/git-afsantos/haros/tree/master/haros/schema/source_file.yaml"

5 title: Source File

6 description: A Source File specification.

7 type: object

8 properties:

9 name:

10 description: The relative path of the file within the package.

11 $ref: "common.yaml#/definitions/file_name"

12 package:

13 description: The name of the ROS package this file belongs to.

14 $ref: "common.yaml#/definitions/package_name"

15 language:

16 description: |

17 The programming, configuration or data serialisation

18 language this file is written in.

19 type: string

20 enum:

21 - cpp

22 - python

23 - launch

24 - package

25 - cmake

26 - msg

27 - srv

28 - action

29 - cfg

30 - yaml

31 - unknown

32 source_tree:

33 description: An Abstract Syntax Tree of the file.

34 $ref: "common.yaml#/definitions/source_tree"

35 dependencies:

36 description: A set of dependencies on other files, e.g., included files.

37 type: array

38 uniqueItems: true

39 items:

40 $ref: "common.yaml#/definitions/file_ref"

41 required: [name, package, language]
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Package

1 %YAML 1.1

2 ---

3 $schema: "http://json-schema.org/draft-07/schema#"

4 $id: "https://github.com/git-afsantos/haros/tree/master/haros/schema/package.yaml"

5 title: Package

6 description: A ROS Package specification.

7 type: object

8 properties:

9 name:

10 description: The name of the ROS package.

11 $ref: "common.yaml#/definitions/package_name"

12 authors:

13 description: The set of authors of this package.

14 type: array

15 uniqueItems: true

16 items:

17 $ref: "common.yaml#/definitions/person"

18 maintainers:

19 description: The set of maintainers of this package.

20 type: array

21 uniqueItems: true

22 items:

23 $ref: "common.yaml#/definitions/person"

24 version:

25 description: The version number of this package.

26 type: string

27 minLength: 1

28 path:

29 description: The file system path pointing to the root of this package.

30 type: string

31 minLength: 1

32 is_metapackage:

33 description: Whether this is a metapackage.

34 type: boolean

35 dependencies:

36 description: A set of dependencies on other packages.

37 type: array

38 uniqueItems: true

39 items:

40 $ref: "common.yaml#/definitions/package_name"

41 project:

42 description: The name of the project this package belongs to.

43 type: string

44 repository:
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45 description: The name of the repository this package belongs to.

46 type: string

47 files:

48 description: A set of files that this package includes.

49 type: array

50 uniqueItems: true

51 minItems: 1

52 items:

53 $ref: "common.yaml#/definitions/file_name"

54 nodes:

55 description: |

56 A set of ROS nodes built from this package.

57 The set contains only the executable name,

58 since the package is always the same.

59 E.g., the 'move_base' package builds the 'move_base' node.

60 type: array

61 uniqueItems: true

62 items:

63 type: string

64 minLength: 1

65 required:

66 - name

67 - version

68 - path

69 - is_metapackage

70 - project

71 - files
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Repository

1 %YAML 1.1

2 ---

3 $schema: "http://json-schema.org/draft-07/schema#"

4 $id: "https://github.com/git-afsantos/haros/tree/master/haros/schema/repository.yaml"

5 title: Repository

6 description: A source code repository specification.

7 type: object

8 properties:

9 name:

10 description: The name of the repository.

11 type: string

12 minLength: 1

13 vcs:

14 description: The version control system used for this repository.

15 type: string

16 enum:

17 - git

18 - svn

19 - hg

20 path:

21 description: The file system path pointing to the root of this repository.

22 type: string

23 minLength: 1

24 version:

25 description: The version of the repository (e.g., 'master' branch).

26 type: string

27 minLength: 1

28 packages:

29 description: A set of ROS packages that this repository includes.

30 type: array

31 uniqueItems: true

32 minItems: 1

33 items:

34 $ref: "common.yaml#/definitions/package_name"

35 required: [name, vcs, version, path, project, packages]
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Node

1 %YAML 1.1

2 ---

3 $schema: "http://json-schema.org/draft-07/schema#"

4 $id: "https://github.com/git-afsantos/haros/tree/master/haros/schema/node.yaml"

5 title: Node

6 description: A ROS Node specification.

7 type: object

8 properties:

9 name:

10 description: The name of the ROS node.

11 type: string

12 minLength: 1

13 package:

14 description: The name of the ROS package this node belongs to.

15 $ref: "common.yaml#/definitions/package_name"

16 files:

17 description: A set of files that build this node.

18 type: array

19 uniqueItems: true

20 minItems: 1

21 items:

22 $ref: "common.yaml#/definitions/file_name"

23 source_tree:

24 description: An Abstract Syntax Tree of the node.

25 $ref: "common.yaml#/definitions/source_tree"

26 is_nodelet:

27 description: Whether this is a nodelet.

28 type: boolean

29 properties:

30 description: A list of behavioural properties that this node satisfies.

31 type: array

32 items:

33 type: string

34 ros_name:

35 description: The default ROS name of the node in runtime.

36 $ref: "common.yaml#/definitions/ros_name"

37 instances:

38 description: The set of runtime instances of this node.

39 type: array

40 uniqueItems: true

41 items:

42 type: string

43 advertise:

44 description: A list of publishers created by this node.
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45 type: array

46 items:

47 $ref: "common.yaml#/definitions/advertise"

48 subscribe:

49 description: A list of subscribers created by this node.

50 type: array

51 items:

52 $ref: "common.yaml#/definitions/subscribe"

53 service_client:

54 description: A list of service clients created by this node.

55 type: array

56 items:

57 $ref: "common.yaml#/definitions/service_client"

58 advertise_service:

59 description: A list of service servers created by this node.

60 type: array

61 items:

62 $ref: "common.yaml#/definitions/advertise_service"

63 set_param:

64 description: A list of parameter setters created by this node.

65 type: array

66 items:

67 $ref: "common.yaml#/definitions/set_param"

68 get_param:

69 description: A list of parameter getters created by this node.

70 type: array

71 items:

72 $ref: "common.yaml#/definitions/get_param"

73 required:

74 - name

75 - package

76 - files
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Project

1 %YAML 1.1

2 ---

3 $schema: "http://json-schema.org/draft-07/schema#"

4 $id: "https://github.com/git-afsantos/haros/tree/master/haros/schema/project.yaml"

5 title: Project

6 description: A ROS Project specification.

7 type: object

8 properties:

9 name:

10 description: The name of the ROS project.

11 type: string

12 minLength: 1

13 packages:

14 description: The set of packages that are part of this project.

15 type: array

16 uniqueItems: true

17 minItems: 1

18 items:

19 $ref: "common.yaml#/definitions/package_name"

20 configurations:

21 description: The set of configurations that are part of this project.

22 type: array

23 uniqueItems: true

24 items:

25 $ref: "common.yaml#/definitions/config_ref"

26 required:

27 - name

28 - packages
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Node Instance

1 %YAML 1.1

2 ---

3 $schema: "http://json-schema.org/draft-07/schema#"

4 $id:

"https://github.com/git-afsantos/haros/tree/master/haros/schema/node_instance.yaml"

5 title: Node Instance

6 description: A ROS Node Instance specification.

7 allOf:

8 - $ref: "common.yaml#/definitions/ros_resource"

9 - properties:

10 node_type:

11 description: The executable from which this node is spawned.

12 $ref: "common.yaml#/definitions/ros_type"

13 args:

14 description: Provided command-line arguments.

15 type: string

16 remaps:

17 description: Provided name remappings.

18 type: object

19 patternProperties:

20 # global ROS name

21 "^/[a-zA-Z][0-9a-zA-Z_]*(/[a-zA-Z][0-9a-zA-Z_]*)*$":

22 $ref: "common.yaml#/definitions/global_ros_name"

23 traceability:

24 description: |

25 Location where the `<node>` tag begins in the

26 respective launch file.

27 If spawned via `rosrun`, set to `null`.

28 oneOf:

29 - $ref: "common.yaml#/definitions/source_location"

30 - type: null

31 conditions:

32 description: Unresolved launch file conditions that affect this node.

33 $ref: "common.yaml#/definitions/control_flow_graph"

34 publishers:

35 description: A list of publishers created by this node.

36 type: array

37 items:

38 $ref: "common.yaml#/definitions/publisher_link"

39 subscribers:

40 description: A list of subscribers created by this node.

41 type: array

42 items:

43 $ref: "common.yaml#/definitions/subscriber_link"
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44 clients:

45 description: A list of service clients created by this node.

46 type: array

47 items:

48 $ref: "common.yaml#/definitions/client_link"

49 servers:

50 description: A list of service servers created by this node.

51 type: array

52 items:

53 $ref: "common.yaml#/definitions/server_link"

54 setters:

55 description: A list of parameter setters created by this node.

56 type: array

57 items:

58 $ref: "common.yaml#/definitions/setter_link"

59 getters:

60 description: A list of parameter getters created by this node.

61 type: array

62 items:

63 $ref: "common.yaml#/definitions/getter_link"

64 required:

65 - node_type

66 - traceability

67 - if: { properties: { traceability: { const: null }}}

68 then: { properties: { conditions: { const: [] }}}
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Topic

1 %YAML 1.1

2 ---

3 $schema: "http://json-schema.org/draft-07/schema#"

4 $id: "https://github.com/git-afsantos/haros/tree/master/haros/schema/topic.yaml"

5 title: Topic

6 description: A ROS Topic specification.

7 allOf:

8 - $ref: "common.yaml#/definitions/ros_resource"

9 - properties:

10 publishers:

11 description: A list of publishers connected to this topic.

12 type: array

13 items:

14 $ref: "common.yaml#/definitions/publisher_link"

15 subscribers:

16 description: A list of subscribers connected to this topic.

17 type: array

18 items:

19 $ref: "common.yaml#/definitions/subscriber_link"

20 required:

21 - publishers

22 - subscribers
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Service

1 %YAML 1.1

2 ---

3 $schema: "http://json-schema.org/draft-07/schema#"

4 $id: "https://github.com/git-afsantos/haros/tree/master/haros/schema/service.yaml"

5 title: Service

6 description: A ROS Service specification.

7 allOf:

8 - $ref: "common.yaml#/definitions/ros_resource"

9 - properties:

10 clients:

11 description: A list of clients connected to this service.

12 type: array

13 items:

14 $ref: "common.yaml#/definitions/client_link"

15 server:

16 description: The server that provides this service.

17 oneOf:

18 - $ref: "common.yaml#/definitions/server_link"

19 - type: null

20 required:

21 - clients

22 - server
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Parameter

1 %YAML 1.1

2 ---

3 $schema: "http://json-schema.org/draft-07/schema#"

4 $id: "https://github.com/git-afsantos/haros/tree/master/haros/schema/parameter.yaml"

5 title: Parameter

6 description: A ROS Parameter specification.

7 allOf:

8 - $ref: "common.yaml#/definitions/ros_resource"

9 - properties:

10 type:

11 description: The default type for this parameter.

12 $ref: "common.yaml#/definitions/param_type"

13 default_value:

14 description: The default value for this parameter, set at launch.

15 traceability:

16 description: "Location where the `<param>` or `<rosparam>` tag begins

17 in the launch file; `null` if set via command-line."

18 oneOf:

19 - $ref: "common.yaml#/definitions/source_location"

20 - type: null

21 conditions:

22 description: Unresolved launch file conditions that affect this parameter.

23 $ref: "common.yaml#/definitions/control_flow_graph"

24 setters:

25 description: A list of parameter writers.

26 type: array

27 items: { $ref: "common.yaml#/definitions/setter_link" }

28 getters:

29 description: A list of parameter readers.

30 type: array

31 items: { $ref: "common.yaml#/definitions/getter_link" }

32 required: [type, traceability]

33 - if: { properties: { type: { const: bool }}}

34 then: { properties: { default_value: { type: [boolean, null] }}}

35 - if: { properties: { type: { const: int }}}

36 then: { properties: { default_value: { type: [integer, null] }}}

37 - if: { properties: { type: { const: double }}}

38 then: { properties: { default_value: { type: [number, null] }}}

39 - if: { properties: { type: { const: str }}}

40 then: { properties: { default_value: { type: [string, null] }}}

41 - if: { properties: { type: { const: yaml }}}

42 then: { properties: { default_value: { type: [object, array, null] }}}
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Configurat ion

1 %YAML 1.1

2 ---

3 $schema: "http://json-schema.org/draft-07/schema#"

4 $id:

"https://github.com/git-afsantos/haros/tree/master/haros/schema/configuration.yaml"

5 title: Configuration

6 description: A ROS Configuration specification.

7 type: object

8 properties:

9 uid:

10 description: A unique identifier for the configuration.

11 $ref: "common.yaml#/definitions/config_ref"

12 name:

13 description: |

14 A human-readable name for the configuration.

15 Defaults to the `uid`.

16 type: string

17 minLength: 1

18 project:

19 description: The name of the project this configuration belongs to.

20 type: string

21 nodes:

22 description: A list of node instances that are part of this configuration.

23 type: array

24 items:

25 $ref: "node_instance.yaml#"

26 parameters:

27 description: A list of parameters that are part of this configuration.

28 type: array

29 items:

30 $ref: "parameter.yaml#"

31 launch_commands:

32 description: A list of launch commands required to start this configuration.

33 type: array

34 minItems: 1

35 items:

36 $ref: "#/definitions/launch_command"

37 properties:

38 description: A list of behavioural properties that this configuration

satisfies.

39 type: array

40 items:

41 type: string

42 environment:
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43 description: A mapping of necessary environment variables for this

configuration.

44 type: object

45 additionalProperties:

46 type: string

47 user_attributes:

48 description: A mapping of user-defined attributes.

49 type: object

50 required:

51 - uid

52 - project

53 - nodes

54 - parameters

55 - launch_files

56 definitions:

57 launch_command:

58 type: object

59 properties:

60 command:

61 type: string

62 enum: [roslaunch, rosrun]

63 args:

64 type: array

65 required:

66 - command

67 - args



C
P Y F LWOR P L UG - I N ’ S S OU RC E COD E

This appendix chapter contains the full source code of example plug-in based on the Pyflwor query engine,

so as to provide a reference version that will not change over time and to make the document self-contained.

An up-to-date version can also be found online1.

Listings C.1, C.2, C.3 and C.4 contain the source code for the plug-in itself. Listings C.5 and C.6 contain

the HAROS project file used as input.

1 %YAML 1.1

2 ---

3 name: haros_plugin_pyflwor

4 version: 0.1.0

5 rules:

6 query:

7 name: User-defined Query

8 description: "A user-defined query found a match."

9 tags:

10 - code-standards

11 - query

12 - pyflwor

13 - computation-graph

Listing C.1: The plugin.yaml file.

1 https://github.com/git-afsantos/haros-plugin-pyflwor
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https://github.com/git-afsantos/haros-plugin-pyflwor
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1 import logging

2 import os

3 from haros.metamodel import Resource, RosPrimitive

4 from .pyflwor_monkey_patch import make_parser

5

6 log = logging.getLogger(__name__)

7

8 def configuration_analysis(iface, config):

9 query_data = config.user_attributes.get("haros_plugin_pyflwor", ())

10 if query_data:

11 pyflwor = _setup()

12 for query_datum in query_data:

13 name = query_datum["name"]

14 details = query_datum.get("details", None)

15 query = query_datum["query"]

16 matches = pyflwor.execute(query, config, name=name)

17 _report(iface, matches, name=name, details=details)

18

19 class QueryEngine(object):

20 QUERY_CONTEXT = {

21 "True": True, "False": False, "None": None, "abs": abs, "bool": bool,

22 "cmp": cmp, "divmod": divmod, "float": float, "int": int,

23 "isinstance": isinstance, "len": len, "long": long, "max": max,

24 "min": min, "pow": pow, "sum": sum, "round": round

25 }

26

27 def __init__(self, pyflwor):

28 self.pyflwor = pyflwor

29 self.data = dict(self.QUERY_CONTEXT)

30 self.data["is_rosglobal"] = QueryEngine.is_rosglobal

31

32 def execute(self, query, config, name=None):

33 self.data["config"] = config

34 self.data["nodes"] = config.nodes

35 self.data["topics"] = config.topics

36 self.data["services"] = config.services

37 self.data["parameters"] = config.parameters

38 location = config.location

39 try:

40 return self.pyflwor(query, self.data)

41 except SyntaxError as e:

42 if name:

43 log.error("SyntaxError on query (%s): %s", name, e)

44 else:

45 log.error("SyntaxError on unnamed query: %s", e)

46 return ()

47

48 @staticmethod

49 def is_rosglobal(name):

50 return name and name.startswith("/")

51

52 def _setup():

53 pyflwor_dir = os.path.join(os.getcwd(), "pyflwor")

54 os.mkdir(pyflwor_dir)

55 pyflwor = make_parser(pyflwor_dir)

56 query_engine = QueryEngine(pyflwor)

57 return query_engine

Listing C.2: The plugin.py file (part 1).
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1 RUNTIME_ENTITY = (Resource, RosPrimitive)

2 def _report(iface, matches, name="<unnamed>", details=None):

3 # `matches` can be of types:

4 # - pyflwor.OrderedSet.OrderedSet<object> for Path queries

5 # - tuple<object> for FLWR queries single return

6 # - tuple<tuple<object>> for FLWR queries multi return

7 # - tuple<dict<str, object>> for FLWR queries named return

8 n = 0

9 for match in matches:

10 value = None

11 runtime_entities = []

12 if isinstance(match, tuple):

13 # assume tuple<tuple<object>> for FLWR queries multi return

14 if len(match) == 1 and isinstance(match[0], tuple):

15 match = match[0]

16 for item in match:

17 if isinstance(item, RUNTIME_ENTITY):

18 n += 1

19 runtime_entities.append(item)

20 elif isinstance(match, dict):

21 # assume tuple<dict<str, object>> for FLWR queries named return

22 for key, item in match.items():

23 if isinstance(item, RUNTIME_ENTITY):

24 n += 1

25 runtime_entities.append(item)

26 elif isinstance(match, RUNTIME_ENTITY):

27 n = 1

28 runtime_entities.append(match)

29 if not n:

30 # literals and other return values

31 n = 1

32 value = match

33 if details:

34 msg = details.format(entities=runtime_entities, value=value, n=n)

35 else:

36 msg = "Query {} found {} matches:\n{}".format(

37 name, n, runtime_entities)

38 log.info("Query <%s> found %d matches.", name, n)

39 iface.report_runtime_violation("query", msg, resources=runtime_entities)

Listing C.3: The plugin.py file (part 2).
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1 from __future__ import unicode_literals

2 from builtins import str, bytes

3 import sys

4 from pyflwor.parser import Parser

5 from pyflwor.lexer import Lexer

6 from ply import lex, yacc

7

8 class MonkeyPatchLexer(Lexer):

9 def __new__(cls, pyflwor_dir, **kwargs):

10 self = super(Lexer, cls).__new__(cls, **kwargs)

11 self.lexer = lex.lex(object=self, debug=False, optimize=True,

12 outputdir=pyflwor_dir, **kwargs)

13 return self.lexer

14

15 class MonkeyPatchParser(Parser):

16 def __new__(cls, pyflwor_dir, **kwargs):

17 self = super(Parser, cls).__new__(cls, **kwargs)

18 self.names = dict()

19 self.yacc = yacc.yacc(module=self, debug=False,

20 optimize=True, write_tables=False,

21 outputdir=pyflwor_dir, **kwargs)

22 return self.yacc

23

24 def make_parser(pyflwor_dir):

25 if pyflwor_dir not in sys.path:

26 sys.path.insert(0, pyflwor_dir)

27 def execute(query, namespace):

28 lexer = MonkeyPatchLexer(pyflwor_dir)

29 parser = MonkeyPatchParser(pyflwor_dir)

30 qbytes = bytes(query, "utf-8").decode("unicode_escape")

31 qfunction = parser.parse(qbytes, lexer=lexer)

32 return qfunction(namespace)

33 return execute

Listing C.4: The pyflwor_monkey_patch.py file.
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1 %YAML 1.1

2 ---

3 project: haros_tutorials

4 packages:

5 - fictibot_drivers

6 - fictibot_controller

7 - fictibot_multiplex

8 - minimal_example

9 configurations:

10 missing_remap:

11 launch:

12 - fictibot_controller/launch/missing_remap.launch

13 type_check:

14 launch:

15 - fictibot_controller/launch/type_check.launch

16 multiplex:

17 launch:

18 - fictibot_controller/launch/multiplexer.launch

19 plugin_data:

20 haros_plugin_pyflwor:

21 - name: Query 1 - No Global ROS Names

22 details: "Found {n} Resources using global names - {entities}"

23 query: "topics/publishers[self.rosname.is_global] |

24 topics/subscribers[self.rosname.is_global] |

25 services/servers[self.rosname.is_global] |

26 services/clients[self.rosname.is_global] |

27 parameters/reads[self.rosname.is_global] |

28 parameters/writes[self.rosname.is_global]"

29 - name: Query 2 - No Conditional Communications

30 details: "Found {entities} under a conditional statement."

31 query: "topics/publishers[len(self.conditions) > 0] |

32 topics/subscribers[len(self.conditions) > 0] |

33 services/servers[len(self.conditions) > 0] |

34 services/clients[len(self.conditions) > 0]"

35 - name: Query 3 - Message Types Must Match

36 details: "Found two participants on the same topic with

37 mismatching message types - {entities}"

38 query: "for p in <nodes/publishers | nodes/subscribers>,

39 q in <nodes/publishers | nodes/subscribers>

40 where p.topic_name == q.topic_name and p.type != q.type

41 return p, q"

42 - name: Query 4 - No Unbounded Queues

43 details: "Found {n} topics with infinite queues - {entities}"

44 query: "topics/publishers[self.queue_size == 0] |

45 topics/subscribers[self.queue_size == 0]"

46 - name: Query 5 - Queues of Size 1

47 details: "Found {n} topics with queues of size 1 - {entities}"

48 query: "topics/publishers[self.queue_size == 1] |

49 topics/subscribers[self.queue_size == 1]"

50 - name: Query 6 - One Publisher Per Topic

51 details: "Found {n} publishers on a single topic - {entities}"

52 query: "topics[len(self.publishers) > 1]"

Listing C.5: Project file for Fictibot with Pyflwor queries (part 1).
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1 - name: Query 7 - No Disconnected Similar Topics

2 details: "Found two topics with similar names and type,

3 but they are not connected. It could be a missing

4 remapping. {entities}"

5 query: "for pub in <c/nodes/publishers[self.topic.is_disconnected]>,

6 sub in <c/nodes/subscribers[self.topic.is_disconnected]>

7 where pub.type == sub.type and

8 (pub.topic.id.endswith(sub.topic.name)

9 or sub.topic.id.endswith(pub.topic.name)

10 or pub.rosname.full == sub.rosname.full

11 or pub.rosname.full.endswith(sub.rosname.own)

12 or sub.rosname.full.endswith(pub.rosname.own)

13 or pub.rosname.given == sub.rosname.given)

14 return 'pub':pub, 'sub':sub"

15 - name: Query 8 - Uses of std_msgs/Empty

16 details: "Found {n} topics of type std_msgs/Empty - {entities}"

17 query: "topics[self.type == 'std_msgs/Empty']"

Listing C.6: Project file for Fictibot with Pyflwor queries (part 2).
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This appendix lists all the properties for the TurtleBot2 and the AgRob V16 systems that were considered

for the evaluation of our Property-based Testing approach. The property specification language is defined in

Chapter 4. The Property-based Testing approach is presented in Chapter 7. The results of the evaluation

are presented in Chapter 8, Section 8.4.

d.1 Turt leBot2 Safety Control ler Node

d.1.1 Axioms

1 globally: no /kobuki_safety_controller/reset

2 globally: no /kobuki_safety_controller/enable

3 globally: no /kobuki_safety_controller/disable

4 globally: no /mobile_base/events/bumper { not state in {PRESSED, RELEASED} }

5 globally: no /mobile_base/events/bumper { not bumper in {LEFT, CENTER, RIGHT} }

6 globally: /mobile_base/events/bumper forbids /mobile_base/events/bumper within 100 ms

7 globally: no /mobile_base/events/cliff { not state in {CLIFF, FLOOR} }

8 globally: no /mobile_base/events/cliff { not sensor in {LEFT, CENTER, RIGHT} }

9 globally: /mobile_base/events/cliff forbids /mobile_base/events/cliff within 100 ms

10 globally: no /mobile_base/events/wheel_drop { not state in {DROPPED, RAISED} }

11 globally: no /mobile_base/events/wheel_drop { not wheel in {LEFT, RIGHT} }

12 globally: /mobile_base/events/wheel_drop forbids /mobile_base/events/wheel_drop

within 100 ms

d.1.2 Properties

1 globally: no /cmd_vel_mux/safety_controller { linear.x > 0.0 }

2 after /mobile_base/events/wheel_drop { state = DROPPED and wheel = LEFT } until

/mobile_base/events/wheel_drop { state = RAISED and wheel = LEFT }: no

/cmd_vel_mux/safety_controller { not linear.x = 0.0 }

3 globally: /cmd_vel_mux/safety_controller { linear.x = 0.0 } requires

/mobile_base/events/wheel_drop { state = DROPPED }
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4 globally: /mobile_base/events/wheel_drop { state = DROPPED } causes

/cmd_vel_mux/safety_controller { linear.x = 0.0 and angular.z = 0.0 } within 100

ms

5 until /mobile_base/events/wheel_drop { state = DROPPED }: /mobile_base/events/bumper

{ state = PRESSED } causes /cmd_vel_mux/safety_controller { linear.x < 0.0 }

within 100 ms

6 globally: /mobile_base/events/wheel_drop { state = DROPPED } forbids

/cmd_vel_mux/safety_controller { not linear.x = 0.0 } within 100 ms

d.2 Turt leBot2 Random Walker Control ler Node

d.2.1 Axioms

1 globally: no /kobuki_random_walker_controller/enable

2 globally: no /kobuki_random_walker_controller/disable

3 globally: no /mobile_base/events/bumper { not state in {PRESSED, RELEASED} }

4 globally: no /mobile_base/events/bumper { not bumper in {LEFT, CENTER, RIGHT} }

5 globally: /mobile_base/events/bumper forbids /mobile_base/events/bumper within 100 ms

6 globally: no /mobile_base/events/cliff { not state in {CLIFF, FLOOR} }

7 globally: no /mobile_base/events/cliff { not sensor in {LEFT, CENTER, RIGHT} }

8 globally: /mobile_base/events/cliff forbids /mobile_base/events/cliff within 100 ms

9 globally: no /mobile_base/events/wheel_drop { not state in {DROPPED, RAISED} }

10 globally: no /mobile_base/events/wheel_drop { not wheel in {LEFT, RIGHT} }

11 globally: /mobile_base/events/wheel_drop forbids /mobile_base/events/wheel_drop

within 100 ms

d.2.2 Properties

1 globally: no /cmd_vel_mux/random_walker { linear.x > 0.1 }

2 after /mobile_base/events/wheel_drop { state = DROPPED and wheel = LEFT } until

/mobile_base/events/wheel_drop { state = RAISED and wheel = LEFT }: no

/cmd_vel_mux/random_walker { not linear.x = 0.0 }

3 until /mobile_base/events/wheel_drop { state = DROPPED }: /mobile_base/events/bumper

{ state = PRESSED } causes /mobile_base/commands/led1 { value = ORANGE } within

100 ms

4 globally: some /cmd_vel_mux/random_walker within 500 ms
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d.3 Turt leBot2 Mult iplexer Node

d.3.1 Axioms

1 globally: /cmd_vel_mux/safety_controller forbids /cmd_vel_mux/safety_controller

within 100 ms

2 globally: /cmd_vel_mux/random_walker forbids /cmd_vel_mux/random_walker within 100 ms

d.3.2 Properties

1 globally: /cmd_vel_mux/safety_controller as A causes /mobile_base/commands/velocity {

linear.x = @A.linear.x and angular.z = @A.angular.z } within 100 ms

2 until /cmd_vel_mux/safety_controller: /cmd_vel_mux/random_walker as A causes

/mobile_base/commands/velocity { linear.x = @A.linear.x and angular.z =

@A.angular.z } within 100 ms

d.4 Turt leBot2 Random Walker Configurat ion

d.4.1 Axioms

1 globally: no /kobuki_safety_controller/reset

2 globally: no /kobuki_safety_controller/enable

3 globally: no /kobuki_safety_controller/disable

4 globally: no /kobuki_random_walker_controller/enable

5 globally: no /kobuki_random_walker_controller/disable

6 globally: no /mobile_base/events/bumper {not state in {PRESSED, RELEASED}}

7 globally: no /mobile_base/events/bumper {not bumper in {LEFT, CENTER, RIGHT}}

8 globally: /mobile_base/events/bumper forbids /mobile_base/events/bumper within 100 ms

9 globally: no /mobile_base/events/cliff {not state in {CLIFF, FLOOR}}

10 globally: no /mobile_base/events/cliff {not sensor in {LEFT, CENTER, RIGHT}}

11 globally: /mobile_base/events/cliff forbids /mobile_base/events/cliff within 100 ms

12 globally: no /mobile_base/events/wheel_drop {not state in {DROPPED, RAISED}}

13 globally: no /mobile_base/events/wheel_drop {not wheel in {LEFT, RIGHT}}

14 globally: /mobile_base/events/wheel_drop forbids /mobile_base/events/wheel_drop

within 100 ms

d.4.2 Properties

1 globally: no /mobile_base/commands/velocity { linear.x < -0.1 }
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2 globally: /mobile_base/commands/velocity { linear.x = 0.0 } requires

/mobile_base/events/wheel_drop { state = DROPPED }

3 after /mobile_base/events/wheel_drop { state = DROPPED and wheel = LEFT } until

/mobile_base/events/wheel_drop { state = RAISED and wheel = LEFT }: no

/mobile_base/commands/velocity { not linear.x = 0.0 }

4 globally: /mobile_base/events/wheel_drop { state = DROPPED } causes

/mobile_base/commands/velocity { linear.x = 0.0 and angular.z = 0.0 } within 100

ms

5 globally: some /mobile_base/commands/velocity within 500 ms

d.5 AgRob V16 Safety Control ler Node

d.5.1 Axioms

1 globally: no /scan {not range_min = 0.01}

2 globally: no /scan {not range_max = 20.0}

3 globally: no /scan {not scan_time = 0.02}

4 globally: no /scan {not angle_min = -2.35619}

5 globally: no /scan {not angle_max = 2.35619}

6 globally: no /scan {not angle_increment = 0.785398}

7 globally: no /scan {not time_increment = 0.0028571428571429}

8 globally: no /scan {not len(ranges) = 7}

9 globally: no /scan {not len(intensities) = 7}

10 globally: no /scan {not ranges[3] in [0.01 to 20.0]}

11 globally: no /lidar1/scan {not range_min = 0.01}

12 globally: no /lidar1/scan {not range_max = 20.0}

13 globally: no /lidar1/scan {not scan_time = 0.02}

14 globally: no /lidar1/scan {not angle_min = -2.35619}

15 globally: no /lidar1/scan {not angle_max = 2.35619}

16 globally: no /lidar1/scan {not angle_increment = 0.785398}

17 globally: no /lidar1/scan {not time_increment = 0.0028571428571429}

18 globally: no /lidar1/scan {not len(ranges) = 7}

19 globally: no /lidar1/scan {not len(intensities) = 7}

20 globally: no /lidar1/scan {not ranges[3] in [0.01 to 20.0]}

21 globally: no /darknet_ros/bounding_boxes {not len(bounding_boxes) = 2}

22 globally: no /darknet_ros/bounding_boxes {not bounding_boxes[0].Class in {"person",

"other"}}

23 globally: no /darknet_ros/bounding_boxes {not bounding_boxes[1].Class in {"other",

"person"}}

24 globally: no /imu_um7/rpy {not vector.x in {0, 0.2181662, 0.436333}}

25 globally: no /imu_um7/rpy {not vector.y in {0, 0.1309, 0.2618}}

26 globally: no /imu_um7/rpy {not vector.z = 0.0}
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d.5.2 Properties

1 globally: no /agrob/safe_mode {not safe_modes in {"000", "002", "003", "009", "010",

"012", "013", "019", "090", "092", "093", "099", "100", "102", "103", "109",

"110", "112", "113", "119", "190", "192", "193", "199"}}

2 until /imu_um7/rpy {vector.x < 0.436333 and vector.y < 0.2618}: /imu_um7/rpy forbids

/agrob/safe_mode {not safe_modes in {"090", "092", "093", "099", "190", "192",

"193", "199"}}

3 until /imu_um7/rpy: no /agrob/safe_mode {safe_modes in {"090", "092", "093", "099",

"190", "192", "193", "199"}}

4 globally: some /agrob/safe_mode {safe_modes = "000"} within 3000 ms

5 after /imu_um7/rpy {not vector.x < 0.2181662 and not vector.y < 0.1309}:

/agrob/safe_mode {safe_modes = "000"} requires /imu_um7/rpy {vector.x = 0 and

vector.y = 0}

d.6 AgRob V16 Supervisor Node

d.6.1 Axioms

1 globally: no /astar_gps_goal

2 globally: no /agrob/target

3 globally: no /agrob/cmd_auto

4 globally: no /fix

5 globally: no /agrob_map/gps/filtered

6 globally: no /agrob_map/imu/rpy

7 globally: no /agrob/agrob_mode {not mode in {0, 1, 2, 3}}

8 globally: no /agrob/safe_mode {not safe_mode = 0}

9 globally: no /agrob/safe_mode {not safe_modes in {"000", "002", "003", "009", "010",

"012", "013", "019", "090", "092", "093", "099", "100", "102", "103", "109",

"110", "112", "113", "119", "190", "192", "193", "199"}}

10 globally: /agrob/safe_mode forbids /agrob/safe_mode within 25 ms

d.6.2 Properties

1 globally: no /husky_velocity_controller/cmd_vel {not linear.x in [-0.25 to 0.5]}

2 globally: no /husky_velocity_controller/cmd_vel {not angular.z in [-0.5 to 0.5]}

3 after /agrob/safe_mode {safe_modes in {"003", "009", "013", "019", "090", "092",

"093", "099", "100", "102", "103", "109", "110", "112", "113", "119", "190",

"192", "193", "199"}} until /agrob/safe_mode {safe_modes in {"000", "002", "010",

"012"}}: no /husky_velocity_controller/cmd_vel {linear.x > 0.0}

4 after /agrob/safe_mode {safe_modes in {"003", "009", "013", "019", "090", "092",

"093", "099", "100", "102", "103", "109", "110", "112", "113", "119", "190",
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"192", "193", "199"}} until /agrob/safe_mode {safe_modes in {"000", "002", "010",

"012"}}: some /husky_velocity_controller/cmd_vel {not linear.x > 0.0} within 50 ms

d.7 AgRob V16 Joyst ick Control ler Node

d.7.1 Axioms

1 globally: no /joy_teleop/joy {not buttons[0] in {0, 1}}

2 globally: no /joy_teleop/joy {not buttons[1] in {0, 1}}

3 globally: no /joy_teleop/joy {not buttons[2] in {0, 1}}

4 globally: no /joy_teleop/joy {not buttons[3] in {0, 1}}

5 globally: no /joy_teleop/joy {not buttons[4] in {0, 1}}

6 globally: no /joy_teleop/joy {not buttons[5] in {0, 1}}

7 globally: no /joy_teleop/joy {not buttons[6] in {0, 1}}

8 globally: no /joy_teleop/joy {not buttons[7] in {0, 1}}

9 globally: no /joy_teleop/joy {not buttons[8] in {0, 1}}

10 globally: no /joy_teleop/joy {not buttons[9] in {0, 1}}

11 globally: no /joy_teleop/joy {not buttons[10] in {0, 1}}

12 globally: no /joy_teleop/joy {not axes[0] in [-1.0 to 1.0]}

13 globally: no /joy_teleop/joy {not axes[1] in [-1.0 to 1.0]}

14 globally: no /joy_teleop/joy {not axes[2] in [-1.0 to 1.0]}

15 globally: no /joy_teleop/joy {not axes[3] in [-1.0 to 1.0]}

16 globally: no /joy_teleop/joy {not axes[4] in [-1.0 to 1.0]}

17 globally: no /joy_teleop/joy {not axes[5] in [-1.0 to 1.0]}

18 globally: no /joy_teleop/joy {not axes[6] in [-1.0 to 1.0]}

19 globally: no /joy_teleop/joy {not axes[7] in [-1.0 to 1.0]}

20 globally: no /joy_teleop/cmd_vel {not linear.x in [-0.4 to 0.4]}

21 globally: no /joy_teleop/cmd_vel {not angular.z in [-0.6 to 0.6]}

d.7.2 Properties

1 globally: no /agrob/agrob_mode {not mode in {0,1,2,3}}

2 globally: /agrob/agrob_mode {mode = 2} requires /joy_teleop/joy {axes[5] = -1.0 and

axes[2] = -1.0}

3 after /joy_teleop/joy {axes[5] > -1.0} until /joy_teleop/joy {axes[5] = -1.0}: no

/agrob/cmd_vel_joy {not twist.linear.x = 0.0}
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d.8 AgRob V16 Basic Configurat ion

d.8.1 Axioms

1 globally: no /astar_gps_goal

2 globally: no /agrob/target

3 globally: no /agrob/cmd_auto

4 globally: no /fix

5 globally: no /agrob_map/gps/filtered

6 globally: no /agrob_map/imu/rpy

7 globally: no /velodyne_points

8 globally: no /scan {not range_min = 0.01}

9 globally: no /scan {not range_max = 20.0}

10 globally: no /scan {not scan_time = 0.02}

11 globally: no /scan {not angle_min = -2.35619}

12 globally: no /scan {not angle_max = 2.35619}

13 globally: no /scan {not angle_increment = 0.785398}

14 globally: no /scan {not time_increment = 0.0028571428571429}

15 globally: no /scan {not len(ranges) = 7}

16 globally: no /scan {not len(intensities) = 7}

17 globally: no /scan {not ranges[3] in [0.01 to 20.0]}

18 globally: no /lidar1/scan {not range_min = 0.01}

19 globally: no /lidar1/scan {not range_max = 20.0}

20 globally: no /lidar1/scan {not scan_time = 0.02}

21 globally: no /lidar1/scan {not angle_min = -2.35619}

22 globally: no /lidar1/scan {not angle_max = 2.35619}

23 globally: no /lidar1/scan {not angle_increment = 0.785398}

24 globally: no /lidar1/scan {not time_increment = 0.0028571428571429}

25 globally: no /lidar1/scan {not len(ranges) = 7}

26 globally: no /lidar1/scan {not len(intensities) = 7}

27 globally: no /lidar1/scan {not ranges[3] in [0.01 to 20.0]}

28 globally: no /darknet_ros/bounding_boxes {not len(bounding_boxes) = 2}

29 globally: no /darknet_ros/bounding_boxes {not bounding_boxes[0].Class in {"person",

"other"}}

30 globally: no /darknet_ros/bounding_boxes {not bounding_boxes[1].Class in {"other",

"person"}}

31 globally: no /imu_um7/rpy {not vector.x in {0, 0.2181662, 0.436333}}

32 globally: no /imu_um7/rpy {not vector.y in {0, 0.1309, 0.2618}}

33 globally: no /imu_um7/rpy {not vector.z = 0.0}

34 globally: no /joy_teleop/joy {not buttons[0] in {0, 1}}

35 globally: no /joy_teleop/joy {not buttons[1] in {0, 1}}

36 globally: no /joy_teleop/joy {not buttons[2] in {0, 1}}

37 globally: no /joy_teleop/joy {not buttons[3] in {0, 1}}

38 globally: no /joy_teleop/joy {not buttons[4] in {0, 1}}

39 globally: no /joy_teleop/joy {not buttons[5] in {0, 1}}

40 globally: no /joy_teleop/joy {not buttons[6] in {0, 1}}
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41 globally: no /joy_teleop/joy {not buttons[7] in {0, 1}}

42 globally: no /joy_teleop/joy {not buttons[8] in {0, 1}}

43 globally: no /joy_teleop/joy {not buttons[9] in {0, 1}}

44 globally: no /joy_teleop/joy {not buttons[10] in {0, 1}}

45 globally: no /joy_teleop/joy {not axes[0] in [-1.0 to 1.0]}

46 globally: no /joy_teleop/joy {not axes[1] in [-1.0 to 1.0]}

47 globally: no /joy_teleop/joy {not axes[2] in [-1.0 to 1.0]}

48 globally: no /joy_teleop/joy {not axes[3] in [-1.0 to 1.0]}

49 globally: no /joy_teleop/joy {not axes[4] in [-1.0 to 1.0]}

50 globally: no /joy_teleop/joy {not axes[5] in [-1.0 to 1.0]}

51 globally: no /joy_teleop/joy {not axes[6] in [-1.0 to 1.0]}

52 globally: no /joy_teleop/joy {not axes[7] in [-1.0 to 1.0]}

d.8.2 Properties

1 globally: no /husky_velocity_controller/cmd_vel {not linear.x in [-0.25 to 0.5]}

2 globally: /darknet_ros/bounding_boxes {bounding_boxes[0].Class = "person"} forbids

/husky_velocity_controller/cmd_vel {linear.x > 0.0} within 2000 ms

3 until /joy_teleop/joy: no /husky_velocity_controller/cmd_vel {not linear.x = 0.0}

4 after /imu_um7/rpy {not vector.x < 0.2181662 and not vector.y < 0.1309}:

/husky_velocity_controller/cmd_vel {linear.x > 0.25} requires /imu_um7/rpy

{vector.x = 0 and vector.y = 0}
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e.1 Turt leBot2 Random Walker Control ler Node

For the Random Walker Controller node, we wrote a specification consisting of 11 axioms and 4 properties,

as shown in Appendix D.2. Out of these properties, we were able to generate 34 useful mutants, while 36

mutants were discarded. The following table shows the distribution of the various language features in the

final specification.

Language Feature Axioms Properties Mutants

globally 11 2 15

after - - 1

until - 1 9

after …until - 1 9

no 8 2 14

some - 1 4

causes - 1 12

forbids 3 - 4

requires - - -

within …ms 3 2 22

There are no precedence mutants (requires) for this node because they are all trivial or true properties.

Nine of the axioms are shared with the Safety Controller node.

In terms of test results, we achieved a near-perfect mutant score, failing to kill a single mutant with a

limit of 200 examples. The mutant that we failed to kill is basically the same mutant that survived in the

Safety Controller node, only for a different topic. It requires a specific timing and interaction of messages,

in an input trace that is, at least, 4 messages long. In fact, the same counterexample trace suffices in this

case. The tool was able to detect errors for other similar examples of the same counterexample length, so

we believe that this instance is not beyond the tool’s capabilities, but is, rather, a matter of allowing it a

greater number of examples. Out of the 33 killed mutants, 13 were reported as flaky tests, i.e., the results

were not deterministic. Once again, most of the time, flaky tests happen with mutants that require timing

interactions (e.g., falsifying the property via time bounds). The table below summarises these results.
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Value

Mutants 34

Flaky Tests 13 (38.235%)

False Negatives 1 (2.941%)

Mutant Score 0.97059

Regarding other performance criteria, as per the following table, we did not observe anything out of

the ordinary. On average, each mutant requires between 10 and 40 examples to falsify (including the

shrinking phase), although the tool tends to find an error for the first time relatively early (with 11 or less

examples). Each example takes about 3.8 seconds to execute, and most of this time (2.8 seconds) is

spent on launching and tearing down the SUT between examples. In total, this means that the average

time to kill a mutant and obtain a counterexample is between 38 seconds and three minutes. Despite

the relatively long execution time, there are only 4 mutants for which the tool uses more messages than

necessary. All of these are flaky tests that might have misled the Hypothesis search strategy.

Metric Mean Std. Deviation Median

Number of examples 40 67 10

Examples to failure 11 41 1

Invalid examples 5 15 0

Shrink attempts 29 53 7

Time per example (s) 3.800 1.711 3.249

Trace duration (s) 0.989 1.223 0.520

Setup/Teardown time (s) 2.811 0.487 2.729

Input trace size (messages) 2 2 2

Excess Messages 0 1 0

e.2 Turt leBot2 Mult iplexer Node

For the Multiplexer node, we wrote a shorter specification consisting of 2 axioms and 2 properties, as

shown in Appendix D.3. Out of these properties, we were able to generate 17 useful mutants, while 9

mutants were discarded. One of the main reasons for the shorter specification of this node is due to

language limitations. For instance, in some cases it would have helped to have a disjunction operator

for topics, e.g., ‘/b requires /a or /c’. Although this is a relatively trivial extension to the language, in

terms of syntax, semantics and implementation, it has been left for future work. The following table shows

the distribution of the various language features in the final specification.
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Language Feature Axioms Properties Mutants

globally 2 1 10

after - - -

until - 1 7

after …until - - -

no - - -

some - - -

causes - 2 14

forbids 2 - 2

requires - - 1

within …ms 2 2 17

There are no unary pattern mutants (no, some) for this node because the original properties are response

properties in which the behaviour message uses references to the stimulus message. If we dropped the

stimulus message to produce an unary pattern, the message predicate would be left with an undefined

reference. Removing all expressions with undefined references would lead to a mutation with multiple

changes, which goes against common practice and against our ruleset.

In terms of test results, we achieved a perfect mutant score. Out of the 17 killed mutants, 4 were

reported as flaky tests, i.e., the results were not deterministic. The table below summarises these results.

Value

Mutants 17

Flaky Tests 4 (23.529%)

False Negatives 0

Mutant Score 1.0

Regarding other performance criteria, as per the following table, we did not observe anything out of the

ordinary. On average, each mutant requires between 13 and 23 examples to falsify (including the shrinking

phase), although the tool tends to find an error for the first time right away with the first example. Each

example takes about 3.0 seconds to execute, and most of this time (2.6 seconds) is spent on launching

and tearing down the SUT between examples. In total, this means that the average time to kill a mutant

and obtain a counterexample is between 40 and 70 seconds. There are only 3 mutants for which the tool

uses one message more than necessary, all of which are marked as flaky tests.
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Metric Mean Std. Deviation Median

Number of examples 23 17 13

Examples to failure 1 1 1

Invalid examples 1 5 0

Shrink attempts 21 17 12

Time per example (s) 2.965 0.352 2.935

Trace duration (s) 0.392 0.179 0.347

Setup/Teardown time (s) 2.574 0.173 2.588

Input trace size (messages) 2 1 2

Excess Messages 0 0 0

e.3 AgRob V16 Safety Control ler Node

For the Safety Controller node, we wrote a specification consisting of 26 axioms and 5 properties, as shown

in Appendix D.5. Out of these properties, we were able to generate 54 useful mutants, while 31 mutants

were discarded. The following table shows the distribution of the various language features in the final

specification.

Language Feature Axioms Properties Mutants

globally 26 2 25

after - 1 14

until - 2 15

after …until - - -

no 26 2 9

some - 1 6

causes - - 12

forbids - 1 10

requires - 1 17

within …ms - 1 28

There are no response properties (causes) for this node due to the fact that, in general, most of them

are false, unless we specify an overwhelming amount of axioms that would make testing unfeasible.

In terms of test results, we achieved a perfect mutant score. Out of the 54 killed mutants, 3 were

reported as flaky tests, i.e., the results were not deterministic. Sometimes the same example was able

to falsify the property, other times it was not. We have checked that all three flaky tests happen with

mutants that are dependent on timing interactions (e.g., falsifying the property via time bounds) as well as

floating-point number exploration within a relatively narrow range (e.g., setting a value to exactly -1.0 for a

specific index of an array). The table below summarises these results.
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Value

Mutants 54

Flaky Tests 3 (5.556%)

False Negatives 0

Mutant Score 1.0

Regarding other performance criteria, as per the following table, we did not observe anything out of

the ordinary, other than the fact that, in comparison with TurtleBot2, we now require a larger number

of examples until the final verdict is given (especially in the shrinking phase). On average, each mutant

requires between 15 and 30 examples to falsify (including the shrinking phase), although the tool tends to

find an error for the first time relatively early (with less than 10 examples). The mean number of examples is

actually 75, but note that there is a substantial standard deviation. We do have 13 outliers, requiring about

150 examples or more, with one of them taking as long as 1045 examples – all shrink and reproduction

attempts, the failure was found at the first try. Each example takes about 4 seconds to execute, and half of

this time is spent on launching and tearing down the SUT between examples. In total, this means that the

average time to kill a mutant and obtain a counterexample is less than two minutes; for the outliers, it

takes about 15 minutes. Despite the relatively long execution time, there are only 4 mutants for which the

tool uses more messages than necessary. One of these (the highest one, using 8 messages rather than

the minimum of 2) is a flaky test, which might have misled the Hypothesis search strategy.

Metric Mean Std. Deviation Median

Number of examples 75 153 19

Examples to failure 10 24 1

Invalid examples 0 0 0

Shrink attempts 66 148 18

Time per example (s) 4.775 1.876 3.959

Trace duration (s) 2.774 1.509 2.038

Setup/Teardown time (s) 2.001 0.368 1.921

Input trace size (messages) 1 1 1

Excess Messages 0 1 0

e.4 AgRob V16 Joyst ick Control ler Node

For the Joystick Controller node, we wrote a specification consisting of 21 axioms and 3 properties, as

shown in Appendix D.7. The large number of axioms is due to the lack of full support for quantifiers in

our implementation, at the time of writing, and joystick messages involve arrays of values. With proper

quantifier support, we could write the same specification with just 4 axioms. Out of the 3 properties, we

were able to generate 29 useful mutants, while 21 mutants were discarded. The following table shows the

distribution of the various language features in the final specification.
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Language Feature Axioms Properties Mutants

globally 21 2 18

after - - 1

until - - -

after …until - 1 10

no 21 2 13

some - - 3

causes - - 5

forbids - - 1

requires - 1 7

within …ms - - 10

There are no relevant existence properties (some) for this node, because its behaviour is reactive. There

are no response or prevention properties (causes, forbids) due to the fact that they are mostly false. There

is no rate limit for incoming joystick messages, and most properties (as was the case with TurtleBot2’s

Safety Controller) have the obvious counterexample of sending a stimulus message and immediately after

sending another message that cancels it or makes it irrelevant, before the node has any time to respond.

In terms of test results, we achieved a very high mutant score, failing to kill three mutants with a limit

of 200 examples. The mutants that we failed to kill are not related to each other, but share the same

underlying problem: they all require producing specific floating-point values (exactly -1.0) in two specific

indexes of an array of size 8. These mutants are not different from many others that were successfully

killed, in any measure of significance. Thus, we believe that the cause was randomness; it just so happened

that Hypothesis did not explore these specific values for these mutants within the maximum number of

examples, while it did for other mutants.

Out of the 26 killed mutants, 4 were reported as flaky tests, i.e., the results were not deterministic. In

all cases, flaky tests are related to timing interactions. The table below summarises these results.

Value

Mutants 29

Flaky Tests 4 (13.793%)

False Negatives 3 (10.345%)

Mutant Score 0.89655

Regarding other performance criteria, as per the following table, this node required a significantly larger

number of examples to falsify properties. Only 12 mutants require less than 50 examples to kill (made

obvious with the median value of 47). Among these 12 mutants, the mean is 18 examples. The remaining

killed mutants require more than 150 examples, with 4 of them requiring more than 400 examples (with

the vast majority belonging to the shrinking phase). Each example takes about 4 seconds to execute, and

half of this time is spent on launching and tearing down the SUT between examples. This means that the

average time to kill a mutant and obtain a counterexample is a minute or less for the mutants in the lower
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range of examples, and 15 minutes or more for the larger ones. There are five mutants for which the tool

uses more messages than necessary, and two of them are flaky tests.

Metric Mean Std. Deviation Median

Number of examples 172 247 47

Examples to failure 25 49 2

Invalid examples 0 0 0

Shrink attempts 147 236 17

Time per example (s) 4.212 1.002 3.996

Trace duration (s) 2.280 0.789 2.123

Setup/Teardown time (s) 1.931 0.213 1.873

Input trace size (messages) 2 2 1

Excess Messages 0 1 0
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