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A B S T R A C T   

Steroid estrogens namely 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) and antibiotics including sulfa-
methoxazole (SMX) are pharmaceutically active compounds (PhAC) of emerging concern due to their environ-
mental and human health impacts even at ppb range concentrations. These compounds usually flow to 
wastewater treatment plants (WWTP) and are released to the aquatic systems due to inefficient removal in 
conventional biological systems. In this work, a sequencing batch reactor (SBR) with aerobic granular sludge 
(AGS) was operated in the presence of E2, EE2 and SMX. SVI5, SVI30/SVI5 ratio, VSS, and TSS of mature AGS (in 
absence of PhAC), as well as in the presence of PhAC (0.221 mg L− 1 of E2, 0.278 mg L− 1 of EE2 and 0.290 mg L− 1 

of SMX), were successfully predicted with multilinear regression (MLR) using morphological and structural 
parameters of floccular and granular fractions of AGS obtained from quantitative image analysis (QIA). Good 
prediction models were obtained for the SVI5 (R2 of 0.976), floccular VSS (R2 of 0.949) and TSS (R2 of 0.934), 
granular VSS (R2 of 0.930) and TSS (R2 of 0.916), SVI30/SVI5 ratio (R2 of 0.917) and density (R2 of 0.889). These 
results emphasize the usefulness of this methodology for monitoring dysfunctions in AGS in the presence of the 
studied PhAC.   

1. Introduction 

Concerns about pharmaceutically active compounds (PhAC), 
including 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and sulfa-
methoxazole (SMX) have been increasing in the recent years, mainly due 
to their environmental impact and human health effects even in trace 
concentrations [1]. It is recognized that these compounds could be 
found covering a wide range of concentrations in different environ-
mental compartments [2]. It is also known that these compounds inflow 
to wastewater treatment plants (WWTP) and are released into the 
environment as a result of inadequate removal during treatment. In fact, 
E2, EE2, and SMX can be found both in domestic and industrial waste-
waters [1,3], with their impact in the biological treatment aggregates 
being far from negligible [4,5]. These three compounds were selected 
for this work based on the impacts that these substances can cause on the 

environment, biological wastewater treatment systems and microbial 
aggregates structure. 

Activated sludge (AS) is one of the most common biological waste-
water treatments, but it is expected to be largely replaced by aerobic 
granular sludge (AGS) mainly due to the improved aggregated biomass 
structural features. Aerobic granules are a self-immobilized type of 
biofilm, much more compact and denser than AS, more resistant to 
shock loads and toxic compounds, and with improved settling properties 
[6]. Furthermore, the balance between the sludge floccular and granular 
fractions is considered critical for AGS stability [7], with the AGS density 
being used for the assessment and control of AGS systems [8,9]. It is 
known that steroid estrogens, namely E2 and EE2, can cause an increase 
in the sludge volume index (SVI) and a decrease in the SVI30/SVI5 ratio 
in AGS systems [10]. However, other reference found in literature re-
ported no effects on the granules’ size during the treatment of EE2 in 
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AGS [11]. Regarding the treatment of antibiotics containing wastewa-
ters, it has been referred that the presence of SMX and trimethoprim 
(200 µg L− 1 each) allowed maintaining good settling properties for the 
AGS, although the structural integrity of the aerobic granules was 
affected [12]. 

The use of quantitative image analysis (QIA) has been growing for 
the AS morphological and structural assessment, including the identi-
fication of different types of bulking [13]. QIA has already been used for 
anaerobic granular sludge monitoring and, more recently, in mature 
AGS assessment [14–16]. It is known that QIA requires proficiency in 
microscopy techniques, in predicting the AGS settleability, suspended 
solids and density by the use of structural and morphological parame-
ters. In fact, the standard methods for these parameters’ determination 
could be considered more time consuming when compared to the pre-
sented methodologies. The amount of data provided by QIA commonly 
requires the use of chemometric tools to organize the gathered data. 
Accordingly, QIA coupled to chemometric tools could be considered a 
complementary monitoring tool in wastewater treatment systems 
allowing to establish correlations between the aggregates’ structure and 
the operational parameters [17,18]. In this regard, the use of principal 
component analysis (PCA), partial least squares (PLS), neural networks 
(NN), and multilinear regression (MLR), among others, are commonly 
reported in literature [19]. In this respect, MLR can provide for the most 
immediately perceptive information regarding the relationships be-
tween the dependent and independent variables when compared to the 
other techniques [20]. 

NN has been used to predict performance in AGS reactors treating 
industrial flowback water [21], while MLR predicted the biochemical 
oxygen demand (BOD) removal efficiency in different biological 
wastewater treatment systems [20,22] from the fruit and vegetable 
processing industry [23]. In constructed wetlands, MLR was previously 
used for the prediction of trace organic compounds’ removal efficiency 
[24,25]. Moreover, MLR was also used to predict the suspended solids 
(SS) and SVI of mature and stable granules [16]. However, the predic-
tion of such operational parameters in AGS in the presence of E2, EE2, 
and SMX remained unexplored so far. 

Considering the above, the main objective of this research work was 
to predict the AGS density, stability, and settling ability, as well as SS in 
floccular and granular fractions, in the presence of environmentally 
relevant concentrations of PhAC, using MLR to analyze both AGS frac-
tions morphological and structural data, obtained by QIA. In this work, 
innovative aspects include the use of QIA based morphological and 
structural parameters, for both the floccular and granular fractions of 
the sludge, for the prediction of AGS density, stability, and settling 
ability in the presence of PhAC. To the author’s knowledge, this is also 
the first work presenting the prediction of the biomass density in the 
presence of E2, EE2 and SMX. Additionally, the successfulness of the 
proposed methodology, combining QIA and chemometric tools, in the 
present case study, opens the door for extending its usefulness in analog 
studies for other systems. 

2. Materials and methods 

2.1. Experimental survey: reactor set-up 

In this work, a 5 L lab scale SBR inoculated with mature granules 
from a full-scale WWTP, was operated at room temperature (18–23 ◦C), 
with AGS for the treatment of a synthetic effluent [26] containing 5.168 
g L− 1 of C2H3O2Na⋅3H2O (as carbon source), 0.887 g L− 1 of 
MgSO4.7H2O, 0.35 g L− 1 of KCl, 0.596 g L− 1 of Na2HPO4, 0.286 g L− 1 of 
KH2PO4 (as P sources) and 1.894 g L− 1 of NH4Cl. A volume of 10 mL L− 1 

of a trace elements solution was added containing 1.5 g L− 1 of 
FeCl3.6H20, 0.15 g L− 1 of H3BO3, 0.03 g L− 1 of CuSO4.5H2O, 0.18 g L− 1 

of KI, 0.12 g L− 1 of MnCl2.4H2O, 0.06 g L− 1 of Na2MoO 0.2 H2O; 0.12 g 
L− 1 of ZnSO4.7H2O and 0.15 g L− 1 of CoCL2.6H2O. The composition of 
the synthetic wastewater was chosen to simulate a high strength 

(industrial) wastewater [27]. The SBR operational cycles lasted for 6 h, 
encompassing 120 min of feeding, 232 min of aeration, 3 min of settling 
and 5 min of effluent withdrawal, and a hydraulic retention time of 12 h. 
The sludge retention time (SRT) was not controlled during the experi-
ments. Air was supplied at 7.50 L min− 1 resulting in a superficial air 
velocity above 1.8 cm s− 1 during the monitoring period. 

Before the experiments with PhAC, the reactor was operated in 
absence of PhAC acting as a control (CONT). The experiments with PhAC 
were conducted operating the SBR in the presence of environmentally 
relevant concentrations of E2, EE2, and SMX, namely 0.221 mg L− 1, 
0.278 mg L− 1 and 0.290 mg L− 1, in average, respectively [28], added 
every week to the system during the experiments. Care was taken to 
allow the AGS attaining somewhat similar characteristics, mainly in 
terms of the overall removal performance and granular biomass (frac-
tion and large granules size), in the beginning of the monitoring period 
for all experiments (CONT, E2, EE2, and SMX). For that purpose, the 
AGS was allowed to recover to the initial steady-state conditions, be-
tween experiments and for a period of roughly one month without any 
PhAC addition. 

2.2. Analytical methods 

Chemical oxygen demand (COD), ammonium nitrogen (NH4
+–N), 

nitrite (NO2
––N), nitrate (NO3

––N), and phosphorus (P) concentrations 
were determined by Hach Lange cell tests. The total inorganic nitrogen 
(TIN) concentration in the influent was assumed to be equal to the 
ammonium concentration, while the TIN in the effluent was determined 
as the sum of NH4

+–N, NO2
––N and NO3

––N concentrations. COD, ni-
trogen species and P concentrations were determined both in the 
influent and in the effluent of the SBR. 

The total and volatile suspended solids for the overall (TSStotal and 
VSStotal), floccular (TSSfloc, VSSfloc), and granular (TSSgran, VSSgran) 
biomass fractions, as well as the sludge volume index at 5 min (SVI5) and 
at 30 min (SVI30), were determined according to standard methods [29]. 
The aggregates density was determined with Blue dextran by the method 
described by [30]. E2, EE2, and SMX concentrations were assayed using 
a Shimadzu Corporation apparatus (Tokyo, Japan) consisting of an 
UHPLC (Nexera) with a multi-channel pump (LC-30 CE), an autosampler 
(SIL-30AC), an oven (CTO-20AC), a diode array detector (M-20A), and a 
system controller (CBM-20A) with built-in software (LabSolutions), ac-
cording to [31,32]. 

2.3. Sludge sampling methodology 

A volume of 600 mL of sludge was collected at mid-point depth in the 
reactor, to obtain homogeneous and representative biomass samples, at 
the beginning of the aeration phase. This volume sample was kept under 
moderate agitation conditions to avoid settling and promote the mixture 
between the solid and liquid phases to collect the corresponding aliquots 
of 35 mL for the CONT and E2 experiment and 10 mL for the EE2 and 
SMX experiments. After this aliquots collection the remaining amount of 
sludge was returned to the AGS-SBR. A 500 µm sieve was next employed 
to separate the granular and suspended (floccular) fractions of these 
aliquots according to [16]. For this purpose, care was taken to avoid the 
formation of a “filtration cake”, as much as possible, so that the smaller 
aggregates passage though the sieve would not be impaired by larger 
ones. Furthermore, the retained granules were carefully picked up by 
rising distilled water [33]. 

Images of the entire set of granules present in the sieved volumes 
were acquired with a Petri dish in an Olympus SZ 40 (Olympus, Shin-
juku, Japan) and in a Leica S8AP0 (Leica, Wetzlar, Germany) stereo-
microscope at a total magnification of 15 × for the CONT, E2 and EE2 
experiments and of 16 × for the SMX experiment. Regarding the floc-
cular fraction, images were acquired in an Olympus BX51 (Olympus, 
Shinjuku, Japan) and in a Nikon Eclipse Ci-L (Nikon Corporation, Tokyo, 
Japan) in bright field at a total magnification of 40 × for the CONT and 
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the E2 experiments and 100 × for the EE2 and SMX experiments. A total 
of 150 images (50 images per 10 µL of sample by triplicate) were ac-
quired according to [13]. 

2.4. QIA and chemometric analysis 

Previously in house developed image processing programs were used 
to determine the QIA based data, both for the floccular and granular 
biomass [34]. The floccular (F) and granular (G) fractions data was 
further divided into 3 classes considering its equivalent diameter (Deq): 
F1 (<25 µm), F2 (25–250 µm), and F3 (>250 µm); and G1 (<0.25 mm), 
G2 (0.25–2.5 mm), and G3 (>2.5 mm). It is worth mentioning though, 
that the floccular biomass fraction passing through the 500 µm sieve 
overwhelmingly (>99%) presented aggregates below 250 µm in diam-
eter [33]. On the other hand, with respect to the granular fraction, in 
some cases a significant percentage (around 15.5%) consisted on ag-
gregates with an equivalent diameter below 250 µm trapped in the sieve 
[33]. This was mainly due to two reasons: i) smaller aggregates impaired 
in their passage by larger ones; and ii) granules eccentricity meaning 
that the larger dimension (length) of these granules could impair their 
passage through the sieve. 

The F1-F3 fractions of sludge have been previously used for activated 
sludge classifications purposes [13], while the G1-G3 size classifications 
were previously used for anaerobic granular sludge systems’ monitoring 
purposes [16,28]. Detailed information on the employed morphological 
and structural parameters for the sludge floccular and granular fractions 
can be found elsewhere [33,34]. 

MLR is a multilinear technique suited to determine the most 
important predictors for a given response variable, among a number of 
potential explanatory variables [35]. In the current study, MLR was 
employed to obtain linear model fits for TSS and VSS (both for the 
floccular and granular biomass), SVI5, SVI30/SVI5 ratio and biomass 
density (Y dataset) from the QIA based data (X dataset). Due to the 
inexistence of density data regarding the mature AGS experiment, the 
parameters prediction was obtained both using the mature AGS dataset 
(excluding density) and the biomass density dataset (excluding the 
mature AGS). Thus, it should be stressed, that the mature AGS dataset 
(MAGS) includes the CONT experiment data and the PhAC experiments 
data excluding the density parameter. On the other hand, the biomass 
density dataset (BD) only includes the PhAC experiments data and in-
cludes all of the studied parameters (and, thus, the density parameter as 
well). In all cases two thirds of the collected data were used for training 
purposes and one third for validation purposes. 

Raw data was fed into the multilinear regression (MLR), meaning 
that the absolute values of each studied dependent (Y) and independent 
(X) variables varied significantly. Therefore, the value of the X variables 
coefficients (and, hence, their exponents) differed accordingly, and are 
not directly correlated with their importance, but with their absolute 
scale. With respect to the most appropriate model Y variables selection, 
an iterative process was employed for the prediction of each studied X 
variable, with a stepwise MLR running on all remaining parameters at 
each step. This technique allowed for the sequentially determination of 
each statistically significant (p < 0.01) parameter at each step, until no 
further significant variable could be added. 

The obtained prediction abilities were evaluated considering the 
ensemble (training and validation) data, by the coefficient of determi-
nation (R2), p-value (p), root mean square error (RMSE), and residual 
predictive deviation (RPD, reflecting the ratio between the population 
standard deviation – SD, and the prediction standard error of cross 
validation – SECV). An RPD value above 3 is recommended for screening 
purposes [36]. 

All QIA routines and MLR analyses were performed in Matlab 7.3 
(The Mathworks, Inc. Natick, USA). 

3. Results and discussion 

3.1. Overall biomass structure evolution 

The overall biomass structure regarding the floccular and granular 
sludge fractions, assessed by QIA, was found to be crucial for the pre-
diction of the sludge settleability, density, and SS. Considering the 
floccular fraction, the evolution of the main overall parameters is pre-
sented in Fig. 1. 

The overall flocs contents (Fig. 1(a)) ranged between 298 and 
17,253 mm2 mL− 1 during the monitoring period, presenting the largest 
values during the E2 experiment, and showing a similar trend to the 
floccular fraction TSS and VSS evolution (presented in the next section). 
With respect to the overall flocs morphology (in terms of robustness and 
convexity, see Fig. 1(b) and (d)), the E2 experiment also led (from day 
82 onwards) to the most constant and regular floccular structures, in 
accordance with the larger TSS and VSS. On the other hand, the overall 
flocs size (in terms of diameter) ranged from an average 14–42 µm, with 
the largest values (except for day 61) found at the beginning of the 
CONT experiment, relating to the largest SVI5 and SVI30/SVI5 values 
(lower sludge settling ability and stability). 

In a similar way, the granular fraction structure was also assessed by 
QIA, with the evolution of the main overall parameters presented in  
Fig. 2. 

The overall granules contents (Fig. 2(a)) ranged between 64 and 
487 mm3 mL− 1 during the monitoring period, presenting the largest 
values during the EE2 and SMX experiments, the two experiments pre-
senting the larger granular fraction TSS and VSS (presented in the next 
section). The granular fraction presented a relatively stable overall 
biomass in terms of its morphology (assessed by the robustness and 
convexity presented in Fig. 2(b) and (d)), though a degrading trend is 
apparent throughout the SMX experiment. 

Regarding the granules size (in terms of diameter in Fig. 2(c)) the 
overall granular biomass ranged from an average 0.77–2.69 mm during 
the monitoring period, with the largest values obtained at the end of the 
CONT and throughout the EE2 experiments. On the other hand, the E2 
and SMX experiments led to a decrease on the overall granules’ average 
diameter values. 

3.2. Prediction of the AGS floccular and granular fractions contents 

The prediction of the floccular and granular fractions for VSS and 
TSS was performed by MLR considering the biomass (filamentous, 
floccular, and granular) contents and structure assessed by QIA. Given 
that the stability of AGS systems is dependent on the balance between 
the suspended and granular fractions, the prediction of VSS and TSS was 
performed separately for both fractions. Moreover, two different models 
were studied in each case, including either the mature aerobic granular 
sludge (MAGS) or the biomass density (BD) datasets. Considering that no 
biomass density could be obtained for the mature biomass (CONT 
experiment), the use of one of these two datasets led to the exclusion of 
the other. 

The prediction of the floccular fraction VSS, using the MAGS dataset, 
led to a R2 value of 0.919 (p < 0.01, RMSE of 0.216 g L− 1 (8.6% of the 
studied range), and RPD of 3.50), was obtained for the prediction model 
shown in Eq. (1), based on the overall and small flocs contents, inter-
mediate flocs fraction, intermediate and large flocs size, and overall flocs 
morphology. Furthermore, the predictions obtained in the presence of 
PhAC were also compared with previous models for MAGS under PhAC 
free conditions (Leal et al., 2020b), to bring new insights regarding the 
influence of the studied PhAC. Thus, while in MAGS under PhAC free 
conditions, the most important parameters for the prediction of the 
floccular fraction VSS were related to the intermediate and large flocs 
morphology and overall flocs contents, the presence of PhAC led to the 
inclusion of a more class stratified size and contents parameters. These 
results point out how the resulting differences in the flocs classes, from 
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the presence of PhAC, have impacted on the floccular biomass VSS. 
Taking also in consideration the higher R2 (0.986), and lower RMSE 
value (0.06 g L− 1 – 4.7% of the studied range), obtained for the MAGS 
under PhAC free conditions, it can be inferred that the prediction of 
floccular VSS in the presence of PhAC becomes more challenging. 

VSSflocMAGS = − 3.09 + 8.35 × 10− 5( TAfloc
)
+ 6.40 × 10− 4(%NbF2)

2

+ 6.48
(
Robfloc

)
− 8.56 × 10− 8(NbF1) − 5.84 × 10− 8(AreaF2)

2

+ 1.98 × 10− 11(AreaF3)
2
+ 1.34 × 10− 3(DiamF2)

2
+ 9.29

× 10− 2(DiamF2)

(1) 

On the other hand, when using the BD dataset, shown in Eq. (2), the 
most important parameters were found to be related with the overall and 
large flocs contents, large flocs fraction, overall, intermediate and large 

Fig. 1. Evolution of main QIA parameters regarding the overall floccular fraction: a) Total flocs area per sample volume (TAfloc), b) Robustness (Rob), c) Diameter 
(Diam), and d) Convexity (Conv). The dashed lines separate the different operational periods (CONT, E2, EE2, and SMX). 

Fig. 2. Evolution of main QIA parameters regarding the overall granular fraction: a) Total granules volume per sample volume (TVgran), b) Robustness (Rob), c) 
Diameter (Diam), and d) Convexity (Conv). The dashed lines separate the different operational periods (CONT, E2, EE2, and SMX). 
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flocs size, and overall flocs morphology. For this prediction a R2 value of 
0.940 (p < 0.01, RMSE of 0.205 g L− 1 (8.2% of the studied range), and 
RPD of 3.93) was obtained. 

VSSfloc BD = 0.578 + 1.02x10− 4( TAfloc
)
+ 2.84x10− 7( Areafloc

)2

− 6.10x10− 9(AreaF2)
2
− 2.11x10− 10(NbF3)

− 1.16x10− 3( Convfloc
)2 (2) 

Regarding the prediction of the floccular fraction TSS, using the 
MAGS dataset, a R2 value of 0.908 (p < 0.01, RMSE of 0.243 g L− 1 

(9.0% of the studied range) and RPD of 3.28) was obtained for the 
prediction model presented in Eq. (3), based on the overall and small 
flocs contents, small, intermediate and large flocs size, and overall and 
large flocs morphology. On a similar way to the VSS, the flocs TSS have 
also been assessed previously for MAGS in PhAC free conditions [16]. 
Again, some changes in the model could be inferred by the presence of 
PhAC. While, for MAGS under PhAC free conditions, the intermediate 
flocs contents, and large and overall flocs morphology, were found to be 
crucial for TSS prediction, in the presence of PhAC the most important 
variables again included a larger set of class stratified size and contents 
parameters. These findings reveal, once again, how the presence of the 
studied PhAC have impacted the different flocs classes and the floccular 
biomass TSS. Again, taking also in consideration the higher R2 (0.971), 
and lower RMSE value (0.10 g L− 1 – 7.2% of the studied range), ob-
tained for the MAGS under PhAC free conditions, it can be inferred that 
the prediction of floccular TSS in the presence of PhAC also becomes 
more challenging. 

TSSflocMAGS = − 11.9 + 1.09x10− 4( TAfloc
)
+ 6.98x10− 5(AreaF1)

2

+ 7.36
(
Robfloc

)
− 1.05x10− 3(TAF1) − 1.03x10− 3(AreaF2)

+ 1.53x10− 1(DiamF2) + 6.08x10− 6(AreaF3) + 1.57(EccF3)
2

(3) 

Again, the floccular fraction of TSS was also predicted using the BD 
dataset, with the most important parameters being related to the overall 
and large flocs contents, overall and intermediate flocs size, and overall 
flocs morphology. The obtained results are presented in Eq. (4) and 
revealed a R2 value of 0.934 (p < 0.01, RMSE of 0.219 g L− 1 (8.2% of 
the studied range) and RPD of 3.89). 

TSSflocBD = 1.13 + 1.20x10− 4( TAfloc
)
+ 3.25x10− 7( Areafloc

)2

− 9.21x10− 9(AreaF2)
2
− 3.53x10− 10(NbF3) − 1.61x10− 3( Convfloc

)2 (4) 

As expected, the floccular TSS and VSS models show a high simili-
tude, and a direct dependency on the overall flocs’ contents, size and 
morphology. Indeed, it could be inferred that higher floccular VSS and 
TSS values were (mostly) positively correlated with larger and more 
regular flocs. It could also be inferred that the use of the biomass density 
data (and exclusion of the MAGS data), in both VSS and TSS predictions 
for the floccular fraction, resulted in an increase in the models quality, 
taking in consideration the higher R2 and RPD values, and lower RMSE. 
The obtained RPD values, being above 3 in all cases, confirm the models’ 
adequateness for screening purposes, with error (RMSE) values around 
or below 9.0% (below 8.2% for the inclusion of the biomass density 
data). No significant differences were found with respect to the accuracy 
of the VSS regarding to the TSS prediction by the use of the QIA data. 

The evolution of the predicted and experimentally determined sus-
pended solids (SS) values, regarding the AGS floccular fraction, in the 
monitoring period, is presented in Fig. 3. 

Regarding the VSS prediction for the granular fraction using the 
MAGS dataset, a R2 value of 0.930 (p < 0.01, RMSE of 1.99 g L− 1 (8.9% 
of the studied range) and RPD of 3.61) was obtained for the prediction 
model shown in Eq. (5), based on the small and large granules contents, 
intermediate granules size and overall and small granules morphology. 
With respect to the granular VSS prediction in the presence of PhAC, 
compared to MAGS under PhAC free conditions based on the 

intermediate and large granules contents and intermediate granules 
morphology, the model, although recognizing the importance of the 
large granules contents, shifted towards the inclusion of size, 
morphology and contents of a larger set of granules classes. These results 
point out how the resulting differences in the granules classes, from the 
presence of PhAC, have impacted on the granular biomass VSS. Taking 
also in consideration the higher R2 (0.984), and lower RMSE value 
(0.123 g L− 1 – 6.5% of the studied range), obtained for the MAGS under 
PhAC free conditions, it can be inferred that the prediction of granular 
VSS in the presence of PhAC becomes more challenging. This is in 
accordance with the increased challenges found in estimating also the 
floccular fraction VSS in the presence of PhAC. 

VSSgranMAGS = − 42.9 + 4.48x10− 2(TVG3) − 8.20x10− 3(DiamG2)

+ 7.13x101(RobG1) + 4.98x10− 4(DiamG2)
2
+ 8.93x104(TVG1)

− 3.77x101( Eccgran
)2

(5) 

In a similar way to the floccular fraction predictions, the granular 
fraction VSS was also predicted using the BD dataset, presented in Eq. 
(6), leading to a smaller R2 value of 0.874 (p < 0.01 RMSE of 1.59 g L− 1 

(8.3% of the studied range) and RPD of 2.84). The biomass density, 
overall and large granules contents, and intermediate and small granules 
size were found to be crucial for this prediction. 

VSSgran BD = − 53.3 + 0.137
(
Nbgran

)
+ 5.06x10− 2(Dens)

+ 2.92x10− 1(DiamG1) + 3.85x10− 1(NbG3) − 2.34x10− 9(VolG2)

(6) 

With respect to the granular TSS, using the MAGS dataset, a R2 value 
of 0.916 (p < 0.01, RMSE of 2.18 g L− 1 (9.6% of the studied range) and 
RPD of 3.44) was obtained for the prediction model presented in Eq. (7), 
based on the overall and large granules contents, large granules fraction 
and morphology and small granules size. Similar to VSS, the most 
relevant parameters for the prediction of granular TSS in MAGS under 
PhAC conditions, were related to intermediate and large granules con-
tents and intermediate granules morphology. However, in the presence 
of PhAC the model prediction again shifted towards the inclusion of size, 
morphology, and contents of a different set of granules classes (namely 

Fig. 3. Evolution of the predicted and experimental (real) SS values, with the 
MAGS and BD datasets, for the floccular fraction. a) VSS b) TSS. The dashed 
lines separate the different operational periods (CONT, E2, EE2, and SMX). 
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small and large granules). These findings reveal, once again, how the 
presence of the studied PhAC have impacted the different granules 
classes and the granular biomass TSS. Again, taking also in consideration 
the higher R2 (0.985), and lower RMSE value (0.13 g L− 1 – 6.6% of the 
studied range), obtained for the MAGS under PhAC free conditions, it 
can be inferred that the prediction of granular TSS in the presence of 
PhAC also becomes more challenging. Again, this is in accordance with 
the increased challenges found in estimating also the suspended fraction 
TSS in the presence of PhAC. 

TSSgranMAGS = 1500 + 1.95x10− 1( Nbgran
)
+ 1.73x10− 3(%VolG3)

− 5.33x10− 6(VolG1) + 8.82x10− 4(DiamG1)
2

+ 3.76x10− 5(TVG3) − 4.51x103(EccG3) + 3.25x103(EccG3)
2

(7) 

Regarding the TSS prediction for the AGS granular fraction, when the 
BD dataset was used (Eq. (8)), a decrease on the model prediction ability 
was perceived (R2 value of 0.874, p-value<0.01, RMSE of 1.63 g L− 1 

(8.7% of the studied range) and RPD of 2.75). It was found that the 
biomass density, overall, large, intermediate, and small granules con-
tents, small granules size and large granules morphology were crucial 
for the prediction. 

TSSgranBD = − 121 + 0.990
(
Nbgran

)
+ 5.79x10-2(Dens)

+ 2.27x10− 1(DiamG1) − 2.54x103(TVG1)
2
+ 9.35x101(RobG3)

− 7.86x10− 1(NbG2) − 1.56x10-2(NbG3)
2

(8) 

As expected, the granular VSS and TSS models show a high simili-
tude, and a direct dependency on the overall or (dominant) large 
granules contents and, again, the VSS could be predicted slightly more 
accurately than the TSS. Furthermore, it could be inferred that higher 
granular VSS and TSS values were positively correlated with the biomass 
density and that the exclusion of the MAGS data decreased the predic-
tion ability for both granular VSS and TSS. The obtained RPD values, 
being above 3 for the use of the mature AGS dataset, confirm these 
models’ adequateness for screening purposes, with error (RMSE) values 
around or below 9.6%. However, when the MAGS data was excluded, 
the RPD values dropped slightly below 3 (around 2.8), although the 
error (RMSE) values did not surpass a maximum of 8.7%. 

The evolution of the predicted and experimentally determined SS 
values, regarding the AGS granular fraction, in the monitoring period, is 
presented in Fig. 4. 

3.3. Prediction of the AGS density and settleability 

Opposite to the previous analysis, the biomass density, SVI5 and 
SVI30/SVI5 ratio were predicted including the ensemble floccular and 
granular fractions. Regarding the biomass density prediction (based on 
TSS) a R2 value of 0.889 (p < 0.01, RMSE of 11.6 g TSS L–1 biomass 
(8.8% of the studied range) and RPD of 3.02) was obtained for the 
prediction model shown in Eq. (9), based on the granular biomass and 
intermediate granules contents, large granules fraction and both large 
granules and flocs morphology. 

Density (TSS) = 659 + 0.164
(
TSSgran

)2
− 3.29(NbG2) + 1.34x103(ConvF3)

2

− 1.23x103(ConvF3) − 1.50x10-2(%NbG3)
2
− 4.59x102(RobG3)

2

(9) 

Similar results were obtained for the density prediction when based 
on VSS, presenting a R2 value of 0.882 (p < 0.01, RMSE of 11.6 g VSS. 
L–1 biomass (8.7% of the studied range) and RPD of 2.95) for the pre-
diction model shown in Eq. (10), based on the granular biomass and 
intermediate granules contents, small granules fraction and large flocs 
morphology. 

Density(VSS) = 337 + 1.28x10− 1( VSSgran
)2

− 6.59x10− 2(NbG2)
2

+1.32x103(ConvF3)
2
− 1.23x103(ConvF3) + 2.67x10− 2(%NbG1)

2 (10) 

As expected, the density prediction model based on either the VSS or 
TSS show a high similitude. Given the above results it can be inferred 
that the biomass density can be predicted based upon the granular 
biomass (directly dependent) and intermediate granules (inversely 
dependent) contents. Furthermore, the large flocs morphology was also 
found to be a key factor on the biomass density prediction (with con-
vexity values around 0.45 leading to lower density values). The obtained 
RPD values, around 3 in both cases, are on the threshold of confirming 
the models’ adequateness for screening purposes, with error (RMSE) 
values around or below 8.8%. 

These results could be inferred also by the evolution of the predicted 
and experimentally determined density values in the monitoring period, 
presented in Fig. 5. 

The use of the MAGS dataset the SVI5 prediction ability decreased to 
a R2 value of 0.965 (p < 0.01, RMSE of 2.37 mL g–1 VSS (4.6% of the 
studied range) and RPD of 5.38) for the prediction model shown in Eq. 
(11). The main parameters that allowed for this prediction ability 
included the granular and intermediate granules contents, apparent 

Fig. 4. Evolution of the predicted and experimental (real) SS values, with the 
MAGS and BD datasets, for the granular fraction. a) VSS b) TSS. The dashed 
lines separate the different operational periods (CONT, E2, EE2, and SMX). 

Fig. 5. Evolution of the predicted and experimental (real) density values, 
predicted by VSS and by TSS. The dashed lines separate the different opera-
tional periods (CONT, E2, EE2, and SMX). No biomass density values were 
determined for the CONT experiment. 
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floccular density, intermediate flocs fraction, overall flocs size, large 
granules and intermediate flocs morphology. 

SVI5(VSS)MAGS = 149 − 2.15(VSSgran) + 2.00x10− 2(%NbF2)
2

− 1.32x107( VSSfloc
/

TAfloc
)
− 3.00x102(ConvG3)

− 2.31x10− 2( Areafloc
)2

+ 2.61x10− 2(NbG2)
2

+ 4.81x102(ConvF2) − 2.84x102(ConvF2)
2

(11) 

The AGS settling properties, in terms of the SVI5, could also be suc-
cessfully predicted, by using either VSS or TSS. In the former case, the 
use of the biomass density dataset allowed for a R2 value of 0.976 
(p < 0.01, RMSE of 1.219 mL g–1 VSS (5.1% of the studied range) and 
RPD of 5.26) for the prediction model shown in Eq. (12). The main 
parameters that allowed for the SVI5 prediction were related to the 
overall and granular biomass contents, overall biomass density, overall 
flocs size and small granules fraction. 

SVI5(VSS)BD = 81.8 − 5.21(VSSgran) + 1.22x10-1(VSStotal)
2

− 1.22x10-6( Areafloc
)2

− 5.65x10-2(Dens) − 2.40x103(%VolG1)
2 (12) 

The SVI5 prediction, based on TSS, was performed using the MAGS 
dataset, shown in Eq. (13), with the main parameters found to be the 
granular biomass contents, overall flocs and filamentous bacteria con-
tents, overall granules, overall and large flocs size. This model presented 
a R2 value of 0.938 (p-value<0.01, RMSE of 3.32 mL g TSS− 1 (6.5% of 
the studied range) and RPD of 3.84). 

SVI5(TSS)MAGS = 41.9 − 2.17(TSSgran) + 1.22 (TL)2

+ 1.85x10-10(AreaF3)
2
− 2.22

(
TL

/
TSSfloc

)
+ 9.61x10-10(Volgran)

+ 6.01x10-4(TAfloc) + 3.49x10-2( TSSgran
)2

− 1.32x10-6( Areafloc
)2

(13) 

Regarding the SVI5 predictions based on TSS, the use of the biomass 
density dataset, shown in Eq. (14), presented a R2 value of 0.971 
(p < 0.01, RMSE of 1.14 mL g TSS− 1 (4.7% of the studied range) and 
RPD of 5.63). The most important parameters for the prediction were 
found to be related with the overall and granular biomass contents, 
overall biomass density, overall flocs size and small granules fraction. 

SVI5(TSS)BD = 85.1 − 5.22(TSSgran) + 1.09x10-1(TSStotal)
2

− 1.29x10-6( Areafloc
)2

− 4.10x10-2(Dens) − 2.13x103(%VolG1)
2 (14) 

The obtained models were able to predict the SVI5, based upon the 
overall biomass density, granular contents and flocs size (all inversely 
dependent) and overall biomass contents (directly dependent). The ob-
tained models also revealed that the use of the biomass density data 
(excluding the MAGS data) led to better SVI5 prediction abilities, taking 
in consideration the obtained higher R2 and RPD values, and lower 
RMSE. Furthermore, no significant differences were found with relation 
to the use of VSS or TSS data. The obtained RPD values, largely above 
the value 3, confirm the models’ adequateness for screening purposes, 
with error (RMSE) values around or below 6.5% (below 5.1% for the 
inclusion of the biomass density data). 

The evolution of the predicted and experimentally determined SVI5 
values in the monitoring period is presented in Fig. 6. 

No SVI5 values were predicted in the MAGS under PhAC free con-
ditions study, however the SVI30 was predicted resulting in a R2 of 
0.975, and a RMSE value of 2.24 mL g TSS− 1 (6.7% of the studied 
range). Considering the equivalent model obtained for the presence of 
PhAC (data not shown) an increased model complexity (presenting six 
more variables) was obtained with somewhat comparable R2 (0.953) 
and RMSE value (3.06 mL g TSS− 1 – 5.9% of the studied range). Thus, 
and although also requiring an increased complexity of the prediction 
model, the prediction ability of the SVI seems to not be as strongly 
affected as for the SS. 

In any given AGS system, the sludge stability can be inferred by the 
ratio between the SVI30 and SVI5 [8]. Considering the above, the 
SVI30/SVI5 ratio was also predicted by using either the biomass density 

dataset or the mature granules dataset, and VSS or TSS. The SVI30/SVI5 
ratio based on VSS data was predicted using the mature AGS dataset, 
presented in Eq. (15), leading to a smaller R2 value of 0.737 (p < 0.01 
RMSE of 0.0242 (12.1% of the studied range) and RPD of 1.85). The 
floccular biomass contents, filamentous bacteria contents, small flocs 
fraction, large granules and small flocs size, and large flocs morphology 
were found to be crucial for this prediction. 

SVI30

/
SVI5(VSS)MAGS =  0.709 + 3.39x10− 2(TL)2

− 5.16x10− 5(AreaF1)
2

+ 1.16x10-2(DiamF1)
2
− 6.31x10-3( TL

/
VSSfloc

)

− 0.358(EccF3) − 8.88x10− 5(DiamG3)

− 1.07x10− 2( VSSfloc
)2

− 2.35x10− 3(%AreaF1)

(15) 

The biomass density dataset allowed for a R2 value of 0.917 
(p < 0.01, RMSE of 0.0045 (8.7% of the studied range) and RPD of 3.52) 
for the prediction model using VSS data shown in Eq. (16). The main 
parameters that allowed for the SVI30/SVI5 prediction were related to 
the floccular and large flocs contents, overall flocs size and morphology. 

SVI30

/
SVI5(VSS)BD = 1.04 − 3.40x10− 3(VSSfloc)

2

− 2.17x10− 8(Areafloc)
2
+ 4.00x10-5( Areafloc

)

+3.45x10-9(TAF3)
2
− 1.86x10− 5(TAF3) − 8.15x10− 2( Eccfloc

)
(16) 

The SVI30/SVI5 prediction, based on TSS, was performed using the 
MAGS dataset, and shown in Eq. (17), with the main parameters found 
to be the granular biomass contents, overall flocs and filamentous bac-
teria contents, overall granules, overall and large flocs size. This model 
presented a R2 value of 0.701 (p < 0.01, RMSE of 0.0248 (12.4% of the 
studied range) and RPD of 1.81). 

SVI30

/
SVI5(TSS)MAGS = 0.501 + 4.19x10− 2(TL)2

− 5.61x10− 5(AreaF1)
2
+ 1.28x10-2(DiamF1)

2

− 1.88x10-2( TL
/

VSSfloc
)
− 0.303(EccF3) − 7.01x10− 5(DiamG3)

− 8.33x10− 3( VSSfloc
)2

− 2.07x10− 3(%AreaF1)

(17) 

Regarding the SVI30/SVI5 ratio predictions based on TSS, the use of 
the BD, shown in Eq. (18), presented a R2 value of 0.874 (p < 0.01, 
RMSE of 0.0033 (6.4% of the studied range) and RPD of 4.78). The most 

Fig. 6. Evolution of the predicted and experimental (real) SVI5 values, with the 
MAGS and BD datasets. a) based on VSS b) based on TSS. The dashed lines 
separate the different operational periods (CONT, E2, EE2, and SMX). 
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important parameters for the prediction were found to be related with 
the overall floccular biomass contents, large granules and flocs contents, 
apparent floccular density, small and large flocs fraction and overall 
flocs size. 

SVI30

/
SVI5(TSS)BD = 0.869 − 5.29x10− 3(TSSfloc)

2
− 5.39x10− 8(Areafloc)

2

+1.51x10-9(TAF3) + 1.67x10-4( Areafloc
)
− 5.54x10− 2(%NbF3)

2

+2.02x10− 3(%AreaF1) + 1.43x104( TSSfloc
/

TAfloc
)
− 3.93x10− 5(NbG3)

2

(18) 

The models obtained using the BD allowed to predict, at some extent, 
the SVI30/SVI5 values, based upon mainly the overall floccular biomass 
contents (inversely dependent), the flocs size (with area values between 
1000 and 1500 µm3 leading to higher SVI30/SVI5 values) and overall 
flocs morphology. Besides the overall flocs, the large flocs morphology 
seemed also to affect the SVI30/SVI5 values. Furthermore, the use of VSS 
instead of TSS data, led to slightly better prediction abilities. The ob-
tained RPD values were above the value 3 for the models encompassing 
the biomass density dataset, confirming these models’ adequateness for 
screening purposes, presenting error (RMSE) values below of 8.7% 
(6.4% for the use of the TSS data). 

The evolution of the predicted and experimentally determined 
SVI30/SVI5 values in the monitoring period is presented in Fig. 7. 

Taking all the above results in consideration, it can be inferred that 
the floccular SS were affected mainly by the overall flocs contents, size 
and morphology, rising with the increase of these parameters, whereas 
the granular SS rise mainly by the increase on the overall granules 
contents and overall AGS density. Indeed, a direct dependency was 
found between the overall AGS density and the granular SS, which could 
be expected in AGS systems presenting a large granular fraction. Both 
parameters, as well as the overall flocs size, were negatively correlated 
with the sludge settling ability, with their increase leading to a decrease 
on the SVI5, and opposite to the effect of the overall SS. Indeed, it could 
be expected that the increase of the floccular fraction in AGS systems, 
and mainly of small flocs, could lead to worsen settling abilities. The 
SVI30/SVI5 ratio was affected mainly by the floccular biomass contents 
and size, though its relationship needs further enlightenment. 

4. Applicability and practical relevance of this work 

In this work, morphological and structural parameters of floccular 
and granular fractions biomass, obtained by QIA, combined with che-
mometric tools, were used to successfully predict the density, settle-
ability and SS of AGS in both absence and presence of PhAC (E2, EE2 and 
SMX). QIA application relies on sample preparation, survey and acqui-
sition, requiring basic equipment and knowledge of microscopy and 
image processing techniques. Approximately 4 h of man-work (on 
average) were needed to evaluate each sample set, including sample 
collection, sieving and mounting, microscopy survey and image acqui-
sition and QIA data retrieval. Taking into consideration that standard 
approaches for VSS, TSS, and SVI determination (the later one relying on 
SS determination), are far more time consuming, the use of the pre-
sented methodology can be considered of major interest in daily based 
operations for the above purposes. 

The obtained results allowed for a new insight, on an operational 
point of view, in AGS monitoring and contributed to process optimiza-
tion and granules stability in the presence of the studied PhAC. It is, thus, 
expected that this methodology may be used for monitoring full-scale 
AGS systems in the presence of PhAC in the near future, contributing 
to timely identification and control of dysfunctions in biomass 
morphology, structure and settleability in the presence of environmen-
tally relevant concentrations of E2, EE2, and SMX. 

5. Conclusions 

AGS processes stability is quite dependent on the balance between 

floccular and granular biomass contents, and the assessment of their 
contents, settling and density properties is of major interest. In accor-
dance, the prediction of parameters such as AGS density, SVI5, SVI30/ 
SVI5 ratio, VSS, and TSS in absence as well as in the presence of PhACs 
(E2, EE2, and SMX), was successfully studied by MLR techniques using 
data obtained by QIA. The use of the BD dataset increased the prediction 
abilities of the floccular fraction suspended solids concentrations, and 
the AGS settling ability and stability. On the other hand, the predictions 
regarding the granular fraction suspended solids, revealed an opposite 
behavior with a decrease in the prediction ability by the exclusion of the 
MAGS data. 

As expected, the overall flocs contents, size and morphology played a 
major role in predicting the floccular biomass, and the overall granules 
contents in predicting the granular biomass contents. Also, a clear de-
pendency between the sludge density and the granular biomass contents 
was found. The sludge settling ability was found to depend on the AGS 
density, granular biomass contents and overall flocs size, whereas the 
stability was related to the floccular biomass contents and size, though 
its relationship needs further enlightenment. 
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pany Águas do Tejo Atlântico, S.A. for supplying the granules. Cristiano 
Leal is recipient of a fellowship supported by a doctoral advanced 
training (call NORTE-69-2015-15) funded by the European Social Fund 
under the scope of Norte2020 - Programa Operacional Regional do 
Norte. A. Val del Rio is supported by Xunta de Galicia (ED418B 2017/ 
075) and program Iacobus (2018/2019). Cristiano Leal also thanks Renê 
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V. Marathe, Pharmaceutical industry wastewater: review of the technologies for 
water treatment and reuse, Ind. Eng. Chem. Res. 53 (2014) 11571–11592, https:// 
doi.org/10.1021/ie501210j. 

[4] M.K. Pholchan, J.C. de Baptista, R.J. Davenport, W.T. Sloan, T.P. Curtis, Microbial 
community assembly, theory and rare functions, Front. Microbiol. 4 (2013) 1–9, 
https://doi.org/10.3389/fmicb.2013.00068. 

[5] Y. Zhu, Y. Wang, X. Jiang, S. Zhou, M. Wu, M. Pan, H. Chen, Microbial community 
compositional analysis for membrane bioreactor treating antibiotics containing 
wastewater, Chem. Eng. J. 325 (2017) 300–309, https://doi.org/10.1016/j. 
cej.2017.05.073. 

[6] S. Bengtsson, M. de Blois, B.-M. Wilén, D. Gustavsson, A comparison of aerobic 
granular sludge with conventional and compact biological treatment technologies, 
Environ. Technol. 40 (2019) 2769–2778, https://doi.org/10.1080/ 
09593330.2018.1452985. 

[7] M. Hussain, Aqeel Weissbrodt, David Cerruti, S. Wolfaardt, M.Wilén Gidéon, 
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