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Abstract 

A key aspect that affect many deep underground mines over the world is the rockburst phenomenon, 

which can have a strong impact in terms of costs and lives. Accordingly, it is important their un-

derstanding in order to support decision makers when such events occur. 

One way to obtain a deeper and better understanding of the mechanisms of rockburst is through 

laboratory experiments. Hence, a database of rockburst laboratory tests was compiled, which was 

then used to develop predictive models for rockburst maximum stress and rockburst risk indexes 

through the application of soft computing techniques. 

The next step is to explore data gathered from in situ cases of rockburst. This study focusses on the 

analysis of such in situ information in order to build influence diagrams, enumerate the factors 

that interact in the occurrence of rockburst, and understand the relationships between them. In 

addition, the in situ rockburst data were also analyzed using different soft computing algorithms, 

namely artificial neural networks (ANNs). The aim was to predict the type of rockburst, that is, the 

rockburst level, based on geologic and construction characteristics of the mine or tunnel. 

One of the main observations taken from the study is that a considerable percentage of accidents 

occur as a result of excessive loads, generally at depths greater than 1000 m. In addition, it was 

also observed that soft computing algorithms can give an important contribution on determination 

of rockburst level, based on geologic and construction-related parameters.  
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1 INTRODUCTION 

Accidents and related problems can occur frequently in deep underground mines and other 

underground structures. Thus, it is essential to develop and implement risk analysis procedures 

to minimize their occurrence. Risk has a complex nature and results from the combination of 

two sets of factors: first, the events and their impacts; and second, the vulnerability factors that 

determine the probability of an event having a certain impact or consequence [1,2]. 

Many researchers have collected, analyzed, and published reports on accident cases that have 

occurred in tunnels during construction and exploration [1,3]. Rockburst is one example of an 

accident that can occur during tunneling. It is a result of overstress of the rock mass or of the 

intact brittle rock, and happens when stresses exceed the compressive strength of the material. 

The impacts of rockburst range from spalling to sudden and violent failure of the rock mass. 

Depth is an important factor in the occurrence of this phenomena, since the stress exerted on 

the rock increases with depth. 

In mining activities, other types of events have also been identified and classified, such as 

heat hazards and other events related to blasting cavities. Blasts, gas explosions, and fire are 

the most common hazardous events in China. In deep mining activities, major problems are 

also associated with large deformations and overstressing of the rock mass, which are caused 

by excavations at great depth, and which may result in rockburst. Comprehensive investigations 

of deep mining mechanics are thus of great interest [4]. 

Risk assessment can be managed with the aim of avoiding problems in underground con-

struction. Risk management procedures can be significantly improved by using systematic tech-

niques throughout the project’s life. By using such techniques, potential problems can be clearly 

identified such that appropriate risk mitigation measures can be implemented in a timely man-

ner. As a result, risk management became an integral part of most underground construction 

projects during the late 1990s [1,5]. 

During the construction of some of the underground structures of the Jinping II hydropower 

scheme in China, engineers were faced with the occurrence of several rockbursts [6]. As a result, 

a large study was conducted by the authorities to evaluate the accidents and to come up with 

mitigation measures and guidelines for construction under circumstances that are prone to rock-

burst. This study included the establishment of a database containing information regarding 

rockburst and a description of the events that had occurred, and led to the use of data mining 

(DM) techniques to determine the probability of occurrence of rockburst and its characteristics 

(i.e., type, location, depth and width, and time delay) [7]. 

We analyzed these events and concluded that the main mechanisms in rockburst are usually 

associated with local underground geometry, such as pillars and openings, and with the ground 

conditions [8]. Rockbursts are classified as strain bursts, pillar bursts, or fault slip bursts [9]. 

They usually occur during mining operations; however, they can also happen during the con-

struction of civil underground structures, such as deep tunnels. In these cases, the most common 

phenomenon is strainbursting, although buckling and face crushing may also take place. In ad-

dition, impact-induced rockburst created by blasting, caving, and adjacent tunneling should be 

considered for less stressed and deformed rock formations. 

The focus of this paper is on rockburst risk assessment, on the different types of rockburst 

events, and on their consequences to underground mining and construction. Two rockburst da-

tabases that were assembled by these authors are discussed. The first consists of a collection of 

rockburst laboratory experiments that were performed at the State Key Laboratory for 
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GeoMechanics and Deep Underground Engineering (SKL-GDUE) in Beijing and that were the 

object of a publication in the journal of Engineering Geology for geological and geotechnical 

hazards [5]. The second consists of worldwide in situ cases of rockburst that occurred during 

mining and deep underground construction. The latter database was analyzed, and a list of fac-

tors that interact and influence the occurrence of rockburst was determined, along with the re-

lationships between these factors. Finally, different DM techniques were applied to the 

rockburst databases with the aim of developing predictive models of rockburst index and type. 

The results are presented in detail in Sections 3, and the different techniques are compared. 

2 DATA MINING MODELING IN GEOENGINEERING 

The prediction of geotechnical formation behavior in geoengineering is complex, particu-

larly during excavations in mining engineering. This complexity is related to uncertainties in 

the rock mass characterization. In important projects, a large amount of geotechnical data can 

assist in reducing uncertainties concerning the establishment of design values for the parameters 

[10]. In the case of rockburst occurrence, the problems are even more difficult to evaluate. 

Such data can hold information on trends and patterns that can be used in decision-making 

and to optimize processes. Therefore, it is necessary to define standard ways of collecting, or-

ganizing, and representing data. DM techniques are automatic tools from artificial intelligence 

and pattern-recognition fields that enable the discovery of potential knowledge [11,12]. DM is 

an area of computer science that lies at the intersection of statistics, data management and da-

tabases, machine learning, artificial intelligence, pattern recognition, and other areas. 

The formal and complete analysis process is called knowledge discovery from databases 

(KDD). KDD establishes the main procedures for transforming data into knowledge. The KDD 

process follows the steps indicated in Figure 1 [11]: collection of a target dataset, data ware-

housing, transformation of the data into adequate forms for the DM process, selection of a DM 

tool, relationship identification of DM (classes, clusters, associations), interpretation of results, 

and consolidation of discovered knowledge. 

 

 

Figure 1: DM and the knowledge-discovery process [11]. 

Several DM techniques exist, each with its own purposes and capabilities. These include 

decision trees (DTs) and rule induction, neural networks, fuzzy modeling, support vector ma-

chines (SVMs), k-nearest neighbors (k-NN), instance-based algorithms, and learning classifier 

systems, among others [13,14]. 

Studies using a formal KDD framework are still uncommon in rock mechanics-related ac-

tivities; however, when applied, they can provide important insight into the most influential 

parameters in the behavior of rock masses. An important example of such applications is a study 
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done for the Deep Underground Science and Engineering Laboratory, which is located at the 

former Homestake gold mine in the United States [15]. Here, innovative regression models 

using different DM techniques were developed to analyze the strength and deformability of the 

host rock mass and to determine geomechanical indexes for the project [16]. One of the most 

important tasks in the KDD process is the DM step, which consists of choosing a learning al-

gorithm for training and ultimately building a model that represents the data. Once the training 

phase is completed, the obtained model is evaluated using a test dataset that was not used during 

the learning process. The results consist of several different models; there is no universal model 

that can be used to efficiently solve all the problems. 

A brief overview of the most relevant algorithms applied in previous studies is presented 

here. A DT is a tree-like graph that represents a set of rules for classifying data. These rules can 

be learned by using a class-labeled training dataset. Artificial neural networks (ANNs) are a 

deep-learning technique that is modeled after the way in which neurons operate within the hu-

man brain [16]. ANNs are formed by groups of artificial neurons connected in layers; signals 

travel from the first (input) layer to the last (output) layer, forming a structure that is similar to 

that of brain neurons. These networks, which can be learned from data, are particularly useful 

in complex applications to recognize patterns and predict future events. SVMs are supervised 

learning models that are normally used for data classification and regression analysis. Given 

categorized training data, SVMs determine an optimal plane that defines the decision bounda-

ries, that is, the distance between classes [10]. 

Rockburst is affected by different factors. The influence diagram in Figure 2 [1] lists the 

factors that affect the probability of a rockburst and its potential consequences. Influence dia-

grams such as this are very important in the design of DM models for the analysis of accidental 

events such as rockburst. 

Successful applications of DM to different types of problems already exist in the field of 

geoengineering [10]. Concerning rockburst phenomena, DM techniques were successfully ap-

plied to a rockburst laboratory test database obtained from tests at SKL-GDUE, China [5]. The 

developed triaxial rock test machine used to model the rockburst is presented in Figure 3 [5]. 

This equipment forms a true triaxial testing scheme; during the test, one surface of the specimen 

can be immediately unloaded from the true triaxial compression condition. In this way, it is 

possible to simulate the stress condition of the rock mass at the free excavation boundary in an 

underground excavation [5]. 

The database included a total of 139 cases with samples from different rock types located in 

China, Italy, Canada, and Iran. Two indexes were developed and used: σRB, the rockburst max-

imum stress, and IRB, the rockburst risk index. The meaning of these indexes is described in 

detail in the publication of He et al. [5]. DM techniques were applied to the rockburst database 

to infer prediction models of the indexes σRB and IRB. σRB is the rupture stresses that are obtained 

in rockburst tests, while IRB is related to the rockburst critical depth [5]. New models were 

established using multiple regression (MR), ANNs, and SVM algorithms. 
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Figure 2: Influence diagram of rockburst [1]. 

 

 

Figure 3: Rockburst laboratory testing system. 

3 DATA MINING APPLIED TO IN SITU ROCKBURST DATABASE 

In situ cases of rockburst that have occurred during tunnel construction/mining were col-

lected via extensive research into publications and reports, and were organized into a database. 

The rockburst cases were classified according to their geometric characteristics, causes, and 



Joaquim Tinoco, Luis Ribeiro e Sousa, Tiago Miranda and Rita Leal e Sousa 

IPW2020 –18th International Probabilistic Workshop 6 

consequences. DM techniques were then applied to the database, with the aim of developing 

rockburst predictive models. In order to understand the circumstances in which rockbursts occur, 

their magnitude, and the different consequences of rockburst, we gathered as much information 

as possible on different aspects of the cases that could provide relevant information about the 

occurrence of the rockburst. For this purpose, a form was created that included eight fields, 

each with one or more variables. The eight fields included: a) rockburst occurrence, b) con-

struction procedure, c) tunnel shape or geometry, d) rock strength, e) in situ existing stresses, f) 

location and dimensions of the rockburst, g) severity and time delay, and h) damage in the 

tunnel and associated equipment. The database contains 60 cases—a relatively small number. 

However, we believe that it constitutes an important first step in the development of more com-

plex models in future. One important feature of the database is that most of the collected rock-

burst cases (91%) occurred during the construction of hydroelectric underground power 

schemes. It is important to emphasize that a large number of the cases in which rockburst took 

place were located in deep underground mines. The collected data is confined to drill-and-blast 

and tunnel-boring machine excavation methods, and the shapes of the tunnels where the rock-

burst cases occurred were either circular (67%) or horseshoe (33%). 

Different levels of rockburst were classified, as shown in Table 1, following the experience 

gained at the Jinping II hydropower scheme in China [6]. Figure 4 gives the distribution of 

cases in the database by rockburst type. In this figure, the Overbreak situation corresponds to 

levels C and D. Several DM techniques were applied to the database, including DT, k-NN, 

ANN, and SVM, with the aim of developing rockburst predictive models. The R environment 

[17] and the rminer package developed by Cortez [18] were used for the implementation of all 

DM techniques. 

 

 

Figure 4: Distribution of cases by rockburst type. 

 

Table 1: Margin settings. 

 Level A Level B Level C Level D 

Description Slight Moderate Strong Very Strong 

Duration Sporadic exploration Long duration Fast  Sudden 

Block depth < 0.5 0.5 - 1.0 1.0 – 2.0 > 2.0 

Impact in excavation Small Certain impact Reasonable impact Large impact 
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Moderate

Overbreak

Slight

Rockburst type
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For the prediction of in situ rockburst type, a set of nine variables was considered: 

• L – Length of occurrence (m) 

• TESC – Type of excavation 

• TSUP – Type of support 

• UCS – Unconfined compressive strength (MPa) 

• E – Young’s modulus (GPa) 

• K – horizontal vs. vertical stresses ratio K0 

• FORM – Shape of the tunnel 

• Deq – Equivalent diameter (m) 

• Req – Equivalent radius (m) 

 

The aim of this analysis was to develop models that would allow the prediction of the type 

of rockburst, given certain conditions and characteristics related to the underground work. For 

validation purposes, a leave-one-out method [18]  was applied under 20 runs. The leave-one-

out method consists of sequentially using one case to test the model, while the remaining cases 

are used to determine the model’s structure. As a result, all data is used for training and testing. 

By using this method, N models are fitted, where N is the number of available data points. The 

final generalization estimate is evaluated by computing evaluation metrics for all N test samples. 

For the evaluation and comparison of the models, we used three classification metrics based 

on a confusion matrix (Figure 5): recall, precision, and F1 score.  

 

 

Figure 5: Establishment of a confusion matrix. 

 

The recall measures the ratio of how many cases of a certain class were properly captured 

by the model. In other words, the recall of a certain class is given by 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (1) 

 

On the other hand, the precision measures the correctness of the model when it predicts a 

certain class. More specifically, the precision 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (2) 

 



Joaquim Tinoco, Luis Ribeiro e Sousa, Tiago Miranda and Rita Leal e Sousa 

IPW2020 –18th International Probabilistic Workshop 8 

The F1-score represents a tradeoff between the recall and precision for a given class. It corre-

sponds to the harmonic mean of precision and recall, according to the following expression: 

 

𝐹1−𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

 

For all three metrics, a higher value indicates better predictions. Figure 6 shows and com-

pares the DM models’ performance for in situ rockburst prediction based on recall, precision, 

and F1-score. Except for the Moderate rockburst level, all models presented a very good response, 

with F1 scores very close to 100%. The low performance in predicting the Moderate class was 

expected, since only a few records were available for this class in the database for model train-

ing (around 7%, as shown in Figure 4). However, we are confident that it will be possible to 

improve the model’s response once more data for this class becomes available. 

Another outcome of the application of the abovementioned DM techniques is the possibility 

of obtaining the importance of each of the model variables through sensitivity analysis [19]. 

Hence, and according to the ANN model, the relevant variables are K, TSUP, and L, which 

have a total influence of around 57% (Figure 7). 

 

 

Figure 6: Comparison of DM models’ performance for in situ rockburst prediction based on recall, precision, 

and F1-score metrics. 

4 FINAL REMARKS 

Several effective design methods are available to deal with ground fall in mining. However, 

this is not the case for rockbursts or for seismicity-related mine design problems. Modeling 

analyses have become a fundamental tool for assessing potential undesirable events, and their 

cost is only a small fraction of the potential benefits to excavation operations. A large variety 

of numerical analysis methods can and have been applied to underground engineering in order 
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to assess the potential for the occurrence of rockburst. Monitoring of seismic events and visu-

alization techniques in deep tunnels and mining activities are very useful tools for predicting 

potentially hazardous situations in order to assist the construction team in time. 

Rockbursts are a type of event that can range from minor spalling to significant volumes of 

rock falling or being ejected with high energy, with devastating consequences. These phenom-

ena are commonly reported in deep underground mining structures, but can also occur in deep 

tunnels such as the Jinping II hydropower scheme. This paper emphasized the importance of a 

rockburst triaxial experimental system for the prediction of these types of events, both in mining 

and in other deep underground projects. In addition, a previous analysis of rockburst test results 

allowed these authors to develop predictive models to estimate rockburst maximum stress and 

risk indexes. 

A database of rockburst accidents that have occurred in mines and other underground works 

around the world, such as underground hydropower systems, was created for this study. Data 

analysis showed that a considerable percentage of accidents occur as a result of excessive loads, 

generally at depths greater than 1000 m. The application of various DM techniques yielded 

different predictive models that focused on the determination of rockburst level, given geologic 

and construction-related parameters. All the developed models showed a high accuracy rate, 

allowing the importance of the several parameters involved in the prediction of rockburst level 

to be identified. 

 

Figure 7: Relative importance of each variable according to the ANN model. 
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