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Abstract

This work presents new semi-analytical solutions for the combined fully-developed electro-osmotic (EO)
pressure-driven flow in microchannels of viscoelastic fluids, described by the generalised Phan-Thien–Tanner
model (gPTT) recently proposed by Ferrás et al. [Journal of Non-Newtonian Fluid Mechanics, 269:
88-99, 2019]. This generalised version of the PTT model presents a new function for the trace of the
stress tensor - the Mittag-Leffler function - where one or two new fitting constants are considered in order to
obtain additional fitting flexibility. The semi-analytical solution is obtained under sufficiently weak electric
potentials that allows the Debye–Hückel approximation for the electrokinetic fields and for thin electric
double layers.

Based on the solution, the effects of the various relevant dimensionless numbers are assessed and
discussed, such as the influence of εWi2, of the parameters α and β of the gPTT model, and also of κ̄,
the dimensionless Debye–Hückel parameter. We conclude that the new model characteristics enhance the
effects of both εWi2 and κ̄ on the velocity distribution across the microchannels. The effects of a high zeta
potential are also studied numerically.

Keywords: generalised simplified PTT, Mittag-Leffler, electro-osmotic flow/pressure driven flows, steric
effect, high zeta potential

1. Introduction

Electro-osmosis (EO) is a flow forcing method suitable for flows through micro- and nano-devices that
is particularly useful for applications in medicine, biochemistry and miniaturised industrial processes. EO
relies on a basic electrokinetic phenomenon, where the flow of an electrolyte is driven by an external potential
difference between the inlet and outlet of the channel, acting on ions that are imbalanced in the near-wall
region of the fluid due to the interaction between the dielectric channel walls and the fluid. Specifically,
these are layers of higher concentration of counter-ions within the fluid, that move under the action of the
applied electric field, which then drags by viscous forces the neutral core as a solid body [1]. There is a vast
literature dealing with this topic for Newtonian fluids [2–9].

As reviewed by Zhao and Yang [10], there is also a fair amount of literature dealing with electro-osmotic
flows of non-Newtonian fluids (see also [11–14]).
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In this work, we are interested in viscoelastic materials described by differential constitutive equations
[15], which can describe accurately the real behaviour of polymer solutions. In order to reduce the compu-
tational effort needed to compute integral models, new differential model were proposed in the literature,
such as the generalised Phan-Thien–Tanner (gPTT) [16–18] model that uses the Mittag-Leffler function as a
function of the trace of the stress tensor (instead of the classical linear and exponential functions), together
with one or two new fitting parameters in order to obtain additional fitting flexibility.

This model was previously studied for Couette and pressure driven flows, in the absence EO [28, 29], there-
fore this work aims to assess the influence of the new model parameters for combined electro-osmotic/pressure
driven flows.

The remainder of this paper is organised as follows: the next section presents the governing equations,
followed by the new analytical solution in Section 3, the discussion of the results in Section 4 and the
conclusions of the paper in Section 5.

2. Formulation and governing equations

We consider a combined electro-osmotic/pressure-driven channel flow of a viscoelastic gPTT fluid in a
microchannel, as shown in Fig. 1. Here x, y and z, represent the streamwise, transverse and spanwise
directions, respectively, and the channel width is 2H. We consider that the channel size in the spanwise
direction is much larger than H, thus the flow can be assumed two-dimensional.

0

Figure 1: Schematic of the flow in a planar microchannel.

As schematically shown in Fig. 1, the ion separation arises due to the interaction between the walls and the
fluid. Here, the illustrated negatively charged walls of the microchannel attract counter-ions forming layers
of positively charged fluid near the walls and with the co-ions predominantly staying at the core. At such
dilute concentrations, the fluid core remains essentially neutral. Very thin layers of immobile counter-ions
remain at the walls, known as the Stern layers, followed by thicker more diffuse layers of mobile counter-ions;
the two layers near the wall form what is called the Electrical Double Layer (EDL).

A DC potential difference between the two electrodes at the inlet and outlet generates an external electric
field that exerts a body force on the counter-ions of the EDL, which flow along the channel dragging the
neutral liquid core. The pressure difference that can also be applied between the inlet and outlet can act in
the same direction of the electric field or in the opposite direction. At the wall, the no-slip condition applies,
whereas at the centreplane the symmetry boundary condition is used. Since the flow is fully-developed, the
velocity and stress fields only depend on the transverse coordinate y [11, 12].

The equations governing the flow of an isothermal incompressible fluid are the continuity equation

∇ · u = 0, (1)
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and the momentum equation

ρ
Du

Dt
= −∇p+∇ · τ + ρeE, (2)

where u is the velocity vector, D
Dt is the material derivative, p is the pressure, t is the time, ρ is the fluid

density, τ is the extra-stress tensor, E is the electric field and ρe is the electric charge density in the fluid.

2.1. Constitutive equation

In order to achieve a closed system of equations, a constitutive equation for the extra-stress tensor, τ ,
is required. Recently, Ferrás et al. [18] proposed a new differential model based on the Phan-Thien–
Tanner constitutive equation [16]. This new model considers a more general function for the rate of
destruction of junctions, the Mittag-Leffler function, where one or two fitting parameters are included,
in order to achieve additional fitting flexibility [18].

The Mittag-Leffler function is defined as,

Eα,β (z) =

∞∑
j=0

zj

Γ (αj + β)
, (3)

with α, β being real and positive. When α = β = 1, the Mittag-Leffler function reduces to the exponential
function, and when β = 1 the original one-parameter Mittag-Leffler function, Eα is obtained.

The constitutive equation is given by:

K (τkk) τ + λ
�
τ = 2ηpD, (4)

where τkk is the trace of the stress tensor, λ is the a relaxation time, ηp is the polymeric viscosity coefficient,

D is the rate of deformation tensor and
�
τ represents the Gordon-Schowalter derivative defined as

�
τ =

∂τ

∂t
+ u · ∇τ − (∇u)

T · τ − τ · (∇u) + ξ (τ ·D+D · τ ) . (5)

Here ∇u is the velocity gradient and the parameter ξ accounts for the slip between the molecular network
and the continuous medium. The stress function, K (τkk), is given by a new formulation that imparts more
flexibility and accuracy to the model predictions, as discussed in [18]. Specifically, it is given by:

K (τkk) = Γ (β)Eα,β

(
ελ

ηp
τkk

)
, (6)

where ε represents the extensibility parameter, Γ is the Gamma function and the normalization Γ (β) is used
to ensure that K(0) = 1, for all choices of β.

2.2. Electric potential

We can relate the electrostatic field, E, with the electric potential, Φ, through:

E = −∇Φ (7)

where Φ is governed by:

∇2Φ = −ρe
ε

(8)

with ε representing the dielectric constant of the solution. The electric potential includes two different
contributions, Φ = φ+ ψ, where φ is generated by the electrodes, placed at the inlet and outlet of the flow
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geometry, and ψ is associated with the charge distribution near the walls. In this way, the imposed potential
is described by a Laplace equation, ∇2φ = 0, and the induced potential is described by a Poisson equation:

∇2ψ = −ρe
ε
. (9)

In some situations, such as when the flow and the ion distributions are fully-developed, the EDLs are thin
and do not overlap at the centre of the channel. Significant variations of ψ only occur in the transverse
direction, and a stable Boltzmann distribution of ions occurs in the EDL. Therefore, the net electric charge
density, ρe, for an electrolyte in equilibrium near a charged surface is given by the following Boltzmann
distribution [1]:

ρe = −2n0ez sinh

(
ez

kBT
ψ

)
, (10)

where n0 is the ion density, e the elementary charge, z the valence of the ions, T the absolute temperature
and kB the Boltzmann constant.
Combining Eq. (9) for the induced potential equation, that for fully-developed steady flow becomes,

d2ψ

dy2
= −ρe

ε
, (11)

with Eq. (10), leads to the Poisson-Boltzmann equation:

d2ψ

dy2
=
2n0ez

ε
sinh

(
ez

kBT
ψ

)
. (12)

Assuming the Debye-Hückel linearization principle, a valid approximation provided for small values of ψ
[11, 12, 32], the Poisson-Boltzmann equation (Eq. (12)) for the, 2D channel flow becomes,

d2ψ

dy2
= κ2ψ, (13)

where κ2 = 2n0e
2z2/εkBT is the Debye-Hückel parameter, which is related to the thickness of the Debye

layer, λD = 1/κ, also called the EDL thickness.
The boundary conditions for the Poisson-Boltzmann equation are the following: at the symmetry plane,
dψ
dy |y=0 = 0; the zeta potential at the wall is ψwall = ψ0. Integrating Eq. (13) and applying these boundary
conditions, leads to the following induced electric field, ψ:

ψ (y) = ψ0
cosh (κy)

cosh (κH)
, (14)

for 0 ≤ y ≤ H and ψ(H) = ψ0. The electric charge density, ρe is given by:

ρe = −εψ0κ
2 cosh (κy)

cosh (κH)
. (15)

It should be remarked that the non-dimensionalization of the Nernst-Planck equation which governs the
transport of ionic species shows that the relative contribution of the advective strength of the ionic species
compared to diffusive strength results in the ionic Peclet number, which can be expressed as

urefH
D , where

uref is reference velocity, H is reference length scale (the half width of the channel) and D is the ionic

diffusivity. For electro-osmotic flows, a typical velocity scale is uref ∼ εψ0Ex

ηp
. Taking a viscoelastic fluid as

a medium with ε ∼ 10−9 C/Vm, ηp ∼ 10−2 Pa.s, for an electric field of Ex ∼ 104 V/m and for ψ0 ∼ 20
mV, we obtain uref ∼ 10−8 m/s. Now, with a channel height of 2H ∼ 10 μm and D ∼ 10−8 m2/s (typical
values of ionic diffusivity), the ionic Peclet number is of order Pe ∼ 0.01, i.e., the contribution of advection
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on the space distribution of ionic charges can be neglected in the present analysis, when considering the
Debye–Hückel approximation.

More details regarding the derivation of these equations can be seen in Afonso et al. [11], Mondal et al.
[22] and Mukherjee et al. [23].

3. Analytical solution for the gPTT model

In this section, we derive the analytical solution for the gPTT model considering fully-developed
electro-osmotic/pressure-driven flow (cf. Fig.1).

The momentum equation, Eq. (2), becomes:

dτxy
dy

= Px − ρeEx, (16)

where Px ≡ dp
dx is the constant streamwise pressure gradient, τxy the shear stress and Ex ≡ dφ

dx is the
imposed constant streamwise gradient of electric potential. This equation is valid regardless of the rheological
constitutive equation.

Now, using Eq. (15) and considering that the shear stress at the centreline is zero, Eq. (16) can be
integrated leading to the following shear stress distribution:

τxy = εψ0Exκ
sinh (κy)

cosh (κH)
+ Pxy. (17)

The constitutive equation for the gPTT model for this flow (Section 2.1) can be further simplified, leading
to:

K(τkk)τxx = (2− ξ)(λγ̇)τxy, (18)

K(τkk)τyy = −ξ(λγ̇)τxy, (19)

K(τkk)τxy = ηpγ̇ + (1− ξ

2
)(λγ̇)τyy − ξ

2
(λγ̇)τxx, (20)

where the velocity gradient γ̇ is a function of y (γ̇(y) ≡ du
dy ) and τkk = τxx + τyy + τzz is the trace of the

stress tensor. Under these conditions τzz = 0.

3.1. Electro-Osmotic Flow with ξ = 0

In order to obtain closed form analytical solutions the slip parameter in the Gordon-Schowalter derivative
is set to ξ = 0.

Assuming ξ = 0 Eq. (19) implies that τyy = 0, and the trace of the stress tensor becomes τkk = τxx.
Dividing Eq. (18) by Eq. (20), K(τxx) cancels out, and an explicit relationship between the streamwise
normal stress and the shear stress is found:

τxx = 2
λ

ηp
τ2xy. (21)

Now combining Eqs. (20), (21), (17) and (6) the following velocity gradient profile is obtained,

γ̇(y) =
Γ(β)

ηp
Eα,β

(
2ελ2

η2p

(
εψ0Exκ

sinh (κy)

cosh (κH)
+ Pxy

)2
)(

εψ0Exκ
sinh (κy)

cosh (κH)
+ Pxy

)
. (22)

The dimensionless velocity gradient becomes:

5



dū

dȳ
= Γ(β)Eα,β

(
2εWi2

κ̄2

(
Υȳ − κ̄ sinh (κ̄ȳ)

cosh (κ̄)

)2
)(

Υȳ − κ̄ sinh (κ̄ȳ)
cosh (κ̄)

)
, (23)

where Wi = λκush is the Weissenberg number and ush is the Helmholtz-Smoluchowski electro-osmotic
velocity, defined as ush = − εψ0Ex

ηp
, ū = u

ush
, ȳ = y

H and κ̄ = κH. The non-dimensional parameter

Υ = − H2

εψ0

(
Px

Ex

)
represents the ratio of pressure to electro-osmotic driving forces.

Eq. (23) has an analytical solution only for pure electro-osmotic (EO) flow and provided further assumptions
are made, whereas for the combined situation with a pressure gradient (EO+PD) the solution is obtained
numerically. Next, we obtain the analytical solution for pure EO, discuss its validity in Section 4, where the
combined solution (EO+PD) is also discussed.

For pure EO flow, Υ = 0, therefore the velocity profile can be obtained integrating the velocity gradient
profile, subjected to the no-slip boundary condition at the top (+) or bottom (-) walls, ū (ȳ = ±1) = 0.
Simplifying Eq. (23), the equation to be integrated is:

ū (ȳ) = −
∫ 1

ȳ

⎛
⎝−Γ(β)κ̄ ∞∑

j=0

(
2εWi2

)j ( sinh (κ̄z)
cosh (κ̄)

)2j+1
1

Γ (αj + β)

⎞
⎠ dz. (24)

In order to compute the integral in (24) we consider sinh (κ̄ȳ) ≈ 1
2 exp (κ̄ȳ) which is usually accurate

because in most micro-devices, the thickness of the EDL is very small, about 1 to 3 orders of magnitude
smaller than the width of the micro channel, so κ̄ is a large value. However, close to the centreline the
approximation (ȳ ∼ 0) becomes less adequate (in this case we can use the trapezoidal rule, leading to the
Crank-Nicolson method to obtain the approximate solution of the differential equation).
Assuming sinh(κ̄z) ≈ 1

2 exp(κ̄z), z ∈ (ȳ, 1), the integration (Eq. (24)) gives the following velocity profile:

ū (ȳ) ≈ − Γ (β)

2 cosh (κ̄)

∞∑
j=0

(
εWi2

2 cosh2 (κ̄)

)j ((exp (κ̄ȳ))2j+1 − (exp (κ̄))
2j+1

)
2j + 1

1

Γ (αj + β)
. (25)

When we consider α = β = 1, Eq. (25) reduces to the one presented in Ferrás et al. [12] for pure EO
flow of an exponential PTT fluid:

ū(ȳ) ≈
√

π
2

(
erfi

[
B
√
A exp(κ̄)√

2

]
− erfi

[
B
√
A exp(κ̄|ȳ|)√

2

])
2κ̄
√
A

, (26)

where erfi (z) = −ierf (iz) with erf (.) denoting the error function, A = εWi2

κ̄2 and B = κ̄
cosh(κ̄) .
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3.2. Electro-Osmotic Flow with ξ 	= 0

When parameter ξ 	= 0 the behaviour of the solution is different and the EO flow may become unstable
at a critical shear rate as previously shown by Dhinakaran et al. [32]. The system of differential equations
are nonlinear and the velocity profile must be obtained numerically. By following the steps of Dhinakaran
et al. [32] (their equations (12)-(22)) one can obtain the velocity gradient:

du

dy
=

−Γ (β)Eα,β
[

1
χ

(
1−

√
1−

(
aλκush

sinh(κy)
cosh(κH)

)2
)]

κush
sinh(κy)
cosh(κH)

1− 1
2

(
1−

√
1−

(
aλκush

sinh(κy)
cosh(κH)

)2
) (27)

where χ = ξ(2−ξ)
ε(1−ξ) and a = 2

√
ξ(2− ξ).

The velocity gradient can be written in dimensionaless form as,

dū

dȳ
=

−Γ (β)Eα,β
[

1
χ

(
1−

√
1−

(
aWi sinh(κ̄ȳ)cosh(κ̄)

)2
)]

κ̄ sinh(κ̄ȳ)
cosh(κ̄)

1− 1
2

(
1−

√
1−

(
aWi sinh(κ̄ȳ)cosh(κ̄)

)2
) (28)

and then the velocity profile (ū(ȳ)) can be obtained by applying to Eq. (28) a fourth-order Runge-Kutta
method together with 20-30 parcels to approximate the Mittag-Leffler function.

The steric effects are presented in appendix.

4. Discussion of results

4.1. Pure electro-osmotic flow

Before performing a study on the influence of the different parameters on the fluid flow, we briefly discuss
the validity of the approximate analytical solution given by Eq. (25). We compare in Fig. 2 the results
obtained with this equation and the results obtained numerically by discretizing Eq. (24) with the Simpson’s
quadrature rule. For the approximation of the infinite series we performed numerical tests and observed
that the use of 20-40 terms would allow us to obtain an accurate sum up to the sixth decimal place.
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(a) (b)

Figure 2: Velocity profiles calculated using Eqs. (25) (symbols) and (24) (lines) for the pure EO flow considering εWi2 = 0.5
and different values of κ̄ for α = 1/4 and β = 1: (a) κ̄ = 10 and κ̄ = 30; (b) κ̄ = 2.5 and κ̄ = 5.

As expected, it can be seen that only for low values of κ̄, (κ̄ ≤ 4.5) the thin layer approximation of the
analytical solution fails to predict the correct velocity profile. Therefore, the values of κ̄ used along this
work will be greater or equal than 10.

We will now investigate the influence of the Mittag-Leffler function parameters α and β, on the velocity
profile distribution across the channel for different values of εWi2 and κ̄, and we compare the results with
those for the exponential PTT model.

Fig. 3 compares the velocity profiles obtained for EO flow considering two different εWi2 values and
different values of α (Fig. 3(a)) and β (Fig. 3(b)) at κ̄ = 10. In Fig. 3 (a) β = 1 and we observe that for
increasing εWi2 and decreasing α the flow rate increases, which is due to enhanced shear-thinning at the
shear rates prevailing within the EDL. In Fig. 3 (b) α = 1 and a similar qualitative behaviour is obtained,
i.e., on increasing εWi2 and decreasing β, the flow rate increases. However, there are quantitative differences
with the effect of β being stronger than the effect of α. Note that both α and β play a role similar to ε in the
classical PTT model, that is, increasing α and β, we are increasing the net rate of destruction of network
junctions in the physical model of the polymer, and therefore the fluid becomes more thinning, reducing the
friction between junctions [18]. The fact that β plays a stronger role on the thinning effect comes from the
fact that the new function of the trace of the stress tensor presents higher numerical values for β 
 1 when
the argument is smaller than ≈ 1 (the case of the EO flow presented here).
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(a) (b)

Figure 3: Velocity profiles calculated using Eq. (25) for the pure electro-osmotic flow considering different values of εWi2 and
different values of α and β for κ̄ = 10: (a) β = 1; (b) α = 1. The velocity profiles were obtained from Eq. (25) and the cases
for expPTT correspond to α = β = 1.

(a) (b)

Figure 4: The effect of κ̄ on transverse velocity profiles for EO at εWi2 = 0.5: (a) β = 1; (b) α = 1. The velocity profiles were
obtained from Eq. (25) and the cases with expPTT correspond to α = β = 1.

Fig. 4 compares transverse velocity profiles for the EO flow considering three different values of κ̄, at
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fixed εWi2 = 0.5: Fig. 4 (a) refers to fixed β = 1, and we observe the expected thinning of the EDL
with increasing κ̄. Similar trends are observed in Fig. 4 (b). The highest shear rates occur near the walls
and in this region the effects of α and β will be felt more strongly, as discussed in [18]. Smaller values of
these parameters mean that the rate of destruction of junctions increases, that is, the friction between the
molecules of the polymer solution decreases, leading to a less resistive flow (stronger shear-thinning). These
effects are qualitatively similar to those observed with other shear thinning fluids, even if quantitatively
different. For a constant viscosity fluid the ratio between the maximum velocity (taking place on the centre
plane) and the Helmholtz-Smoluchowski velocity is 1, for high κ̄, but on increasing shear-thinning effects,
this ratio increases, as shown in Fig. 5 (a), (b) and Fig. 6.

(a) (b)

Figure 5: Ratio between maximum velocity and ush as a function of the relevant dimensionless numbers: (a) κ̄ = 10; (b)
εWi2 = 0.5. The velocities were obtained from Eq. (25) and the cases with expPTT correspond to α = β = 1.
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Figure 6: Ratio between maximum velocity and ush as a function of εWi2 for different values of κ̄, α and β. The velocities
were obtained from Eq. (25) and the cases with expPTT correspond to α = β = 1.

4.1.1. Influence of the Polymer Concentration

We consider three polyethylene oxide (PEO) solutions in a glycerol-water Newtonian solvent. The solvent
viscosity is η = 0.002 Pa.s. The PEO has average molecular weight Mw = 4 MDa (Sigma-Aldrich) and the
aqueous PEO solutions considered have concentrations of c = 1 g/l, c = 3 g/l and c = 7 g/l [19]. The
experimental data (shear viscosity versus shear rate) from [19] and the fit obtained with the gPTT model
are shown in Fig. 7 (a). Note that for the higher concentration it is possible to see the shear-thinning effect
more noticeably.
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Figure 7: (a) Fit of the gPTT model to the experimental data obtained for three aqueous PEO solutions with concentrations
of c = 1 g/l, c = 3 g/l and c = 7 g/l. (b) Pure EO flow obtained for the three aqueous solutions.

Fig. 7 (a) also shows the values of the relaxation time λ and the zero-shear viscosity η0 obtained
experimentally. A good fit was possible to obtain by considering α = 0.95, β = 1, ε = 0.1 and three different
values of η0 (0.0043, 0.013 and 0.05 Pa.s).

We also plotted (Fig. 7 (b)) the velocity profiles obtained for the pure EO flow considering the rheological
parameters obtained from the fit to the experimental shear viscosity. It is interesting to see that the values
obtained for εWi2 are not increasing with the polymer concentration. This is due to the definition of Wi,
that takes into account the viscous and elastic effects. The values of parameters λ and η used in the definition
of Wi are those obtained experimentally, and shown in Fig. 7 (a). For such low values of εWi2 the velocity
profiles are all collapsed and the flow is Newtonian-like.

It should be remarked that the λ and η parameters obtained in [19] slightly differ from the ones in [21],
and therefore, the differences obtained in εWi2 should take this into consideration. For more experimental
results please see [23].

4.2. Electro-osmotic–pressure driven flow

In the case of mixed EO/PD flows (Υ 	= 0), Eq. (23) was solved numerically, using the Runge–Kutta
fourth-order order method in MATLAB software. The influence of the new model on the velocity profile
was assessed considering Υ = −1 and Υ = 1. Numerical solution of Eq. (23) for different values for α and
β are plotted in Fig. 8.
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Figure 8: Velocity profiles obtained numerically for mixed EO/PD flow with Υ = −1, Υ = 1, κ̄ = 100 and εWi2 = 0.5. The
velocity profiles were obtained numerically using Eq. (23) and the cases expPTT correspond to α = β = 1.

Fig. 8 shows velocity profiles obtained numerically for the EO+PD flow with Υ = −1 and Υ = 1,
using the gPTT constitutive model. When α = 1 and β = 1, the results match those presented in [12] for
the exponential PTT model. Note that negative values of Υ correspond to a favourable pressure gradient,
whereas Υ > 0 corresponds to adverse pressure forcing. We can also see the effect of other independent
dimensionless numbers on the transverse profile and the effect of parameters α and β in the velocity profiles.
The quantities that previously increased the dimensionless flow rate in pure EO are also seen to increase the
flow rate for EO+PD through enhanced shear-thinning effects, and in earlier works, much has been reported
and discussed about other shear-thinning viscoelastic models (e.g., refer to [11] for the sPTT model, and to
[32] for the PTT model).

4.3. The Influence of ξ on the Flow Stability and Flow Characteristics

For ξ 	= 0 a non-monotonic behaviour of the shear stress curve is obtained beyond a critical shear rate.
By following the steps presented in [32] and [18] one obtains the following formula for the critical shear rate
(at the wall), γ̇c:

λγ̇c =
Γ(β)√
ξ(2− ξ)Eα,β

(
ε(1− ξ)
ξ(2− ξ)

)
(29)

A comparison between the different stability formulas obtained for the different functions of the trace of
the stress tensor is shown in [18].

To assess the influence of the ξ parameter on the fluid flow, we will now compare the results obtained
with the analytical solution for pure EO flow with the results obtained from the numerical integration of
Eq. (28). The numerical results were obtained using the Simpson’s quadrature rule to approximate the
integral and the Mathematica’s predefined routine to calculate the Mittag-Leffler function. We will consider
different values of Wi and ξ (ranging from 0.001 to 0.1).
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the dashed line is a guide to the eye for the solution obtained numerically (represented by the symbols). The inset shows the
results obtained for εWi2 = 0.5.

Fig. 9 shows the maximum velocity at the centre of channel as a function of the ξ parameter, for pure
EO flow with β = 1, α = 1/4, κ̄ = 10 and εWi2 = 1 and 0.5. The full line represents the solution obtained
for ξ = 0 and the dashed line is a guide to the eye for the solution obtained numerically. The inset shows
the results obtained for εWi2 = 0.5.

The influence of ξ on the maximum velocity increases both with ξ and εWi2, and very non-linearly with
the latter. Indeed, for the case of εWi2 = 1 we obtain increases in the maximum velocity up to 65% when
ξ increases from 10−3 to 10−1, whereas for εWi2 = 0.5 the maximum velocity is only 1% higher. This
difference is expected since the εWi2 has a strong influence on the flow rate.

4.4. The Debye–Hückel approximation

By following the works [26, 27], we have that

d2ψ̄

dȳ2
= κ̄2 sinh(ψ̄) (30)

leading to,

ψ̄ = 4arctanh
(
tanh(ψ̄0/4)e

κ̄(ȳ−1)
)
. (31)

The corresponding velocity profile can then be obtained by using a fourth-order Runge-Kutta method
together with 20-30 parcels to approximate the Mittag-Leffler function. The velocity profile for each ȳ ∈ [0, 1]
is given by,

ū(ȳ) = −
∫ 1

ȳ

⎛
⎜⎝−Γ (β)

ψ̄0

4κ̄ tanh
(
ψ̄0

4

)
eκ̄(z−1)

1− tanh2
(
ψ̄0

4

)
e2κ̄(z−1)

Eα,β

⎡
⎢⎣2εWi2

κ̄2ψ̄2
0

⎛
⎝ 4κ̄ tanh

(
ψ̄0

4

)
eκ̄(z−1)

1− tanh2
(
ψ̄0

4

)
e2κ̄(z−1)

⎞
⎠

2
⎤
⎥⎦
⎞
⎟⎠ dz (32)

We now compare in Fig. 10 the velocity profiles for a pure EO flow considering the Debye–Hückel
approximation and the full solution obtained by Eq. (32), considering a fourth-order Runge-Kutta method
together with 20-30 parcels to approximate the Mittag-Leffler function.
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Fig. 10 shows the velocity profiles obtained for the exponential PTT model considering ψ̄0 = 0.99 and
4. We consider the solutions obtained with and without (numerically solving Eq. (32)) the Debye–Hückel
approximation. It can be seen that for ψ̄0 = 0.99 the Debye–Hückel approximation is valid, while for ψ̄0 = 4
the two solutions become different, especially near the wall. Fig. 11 compares the velocity profiles obtained
with both the exponential (α = 1, β = 1) and gPTT models considering . The solutions were obtained
by numerically solving Eq. (32) with β = 1, α = 1, 0.8, 0.5, κ̄ = 5 and εWi2 = 0.2. It is remarkable
the influence of ψ0 on the effect of coefficient α for the gPTT model. At low ψ0 the maximum velocity
increases only 1% with the decreasing of α whereas for higher ψ0 there is a 50% increase in the maximum
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velocity(when compared with the velocity obtained for the exponential PTT model: α = β = 1).

5. Conclusions

This work presented new analytical and semi-analytical solutions for electro-osmotic and mixed
electro-osmotic/pressure-driven flows of a viscoelastic fluid modelled by the gPTT model, respectively. From
these solutions, the influence of the model parameters on the velocity profile was assessed. The new model
allows a broader description of flow behaviour than the more classical descriptions, and therefore it can be
considered in modelling complex viscoelastic flows. Numerical solutions were also presented for high zeta
potential. The analytical and numerical solutions presented in this work are helpful for validating CFD
codes, and also allow a better understanding of the model behaviour in simple shear flows.
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Appendices

Appendix A. Finite Sized Ionic Species

Note that the Boltzmann distribution breaks down when taking into account finite-sized ionic species.
Therefore we obtained a new modified Poisson-Boltzmann equation for the ionic distribution [24–26] to take
these effects into account. The corrected distribution is given by:

d2ψ

dy2
=
2n0ez

ε

sinh
(

ez
kBT

ψ
)

1−Θ+Θcosh
(

ez
kBT

ψ
) . (A.1)

where Θ is the steric factor, representing the excluded volume effects owing to the finite size of the ionic
species. This is a nonlinear differential equation, and therefore, in order to obtain the induced potential
distribution the procedure used in [26] was followed.

By following the work of Mukherjee et al. [26], one can easily obtain the shear rate as a function of the
zeta potential:
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dū

dȳ
=
−Γ (β)
ψ̄0

dψ̄

dȳ
Eα,β

[
2εWi2

κ̄2ψ̄2
0

(
dψ̄

dȳ

)2
]
, (A.2)

where ψ̄0 =
ezψ0

kBT
.

For a low zeta potential, the size of the ionic species is negligible and the Debye–Hückel approximation
applies. We obtain the solutions derived previously.

For a high zeta potential [26, 27] we have that

d2ψ̄

dȳ2
=

κ̄2 sinh(ψ̄)

1−Θ+Θcosh(ψ̄)
≈ κ̄2

Θ
(A.3)

leading to (the boundary conditions are dψ̄
dȳ

∣∣∣
ȳ=0

= 0 and ψ̄(1) = ψ̄0),

ψ̄ = ψ̄0 +
κ̄2(ȳ2 − 1)

2Θ
. (A.4)

The corresponding velocity profile can then be obtained by using a fourth-order Runge-Kutta method
together with 20-30 parcels to approximate the Mittag-Leffler function. The velocity profile for each
ȳ ∈ [0, 1] is given by,

ū(ȳ) = −
∫ 1

ȳ

−Γ (β)
ψ̄0

κ̄2z

Θ
Eα,β

[
2εWi2

ψ̄2
0

( κ̄z
Θ

)2
]
dz (A.5)

Appendix B. The High Zeta Potential and Steric effect

The higher the steric factor, the lower will be the induced transverse EDL field, and thus, a lower
volumetric flow rate will be obtained. This effect is shown in Fig. B.12, where the velocity profiles obtained
for both the exponential and gPTT models are plotted (considering Θ = 0.2 and 0.25 and a high zeta
potential ψ̄0 = 4).
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Figure B.12: Velocity profiles obtained for both the exponential and gPTT models considering Θ = 0.2 and 0.25 and a high
zeta potential (ψ̄0 = 4). Dashed line: Pure EO flow with β = 1, α = 0.8; Full line: Pure EO flow with β = 1, α = 0.8. κ̄ = 1
and εWi2 = 0.5.
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As expected, the gPTT model allows one to obtain a higher flow rate due to the higher rate of destruction
of junctions in the polymer entanglements, resulting in a less restrictive fluid flow. Note also the nonlinear
increase of the flow rate with decreasing α at constant Θ, showing the complex combination of rate of
destruction of junctions and the size of the ions.
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