Diversity of Planctomycetes associated with marine macroalgae

Bondoso, J.1, Viana, F.2, Torres, J.2, Abreu, R.2 and Lage, O. M.1,2
1. Centro Interdisciplinar de Investigação Marinha e Ambiental, Porto
2. Departamento de Botânica, Faculdade de Ciências da Universidade do Porto, Porto
joana.bondoso@fc.up.pt

Molecular microbial ecology studies repeatedly provided evidence that Planctomycetes are abundant in terrestrial and marine habitats, underlying their important role in the ecology of the ecosystems1. Knowledge of this group is still limited due to the relatively few species grown in pure culture, thus the great importance of isolation and cultivation studies for a better understanding of its ecological role. About 50 strains of Planctomycetes (OJF culture collection) were isolated from 12 different macroalgae sampled in diverse habitats regarding their geographic location and environmental conditions2. 16S rRNA gene sequences showed a wide relationship of the isolates to Rhodopirellula baltica, but some form independent new clusters that most probably are new species or even new genera. Fingerprinting techniques, like ARDRA and protein profiles, are being performed to achieve a better genomic characterisation of all the isolates. Our final goal is to achieve a correlation between the different Planctomycetes strains and the macroalgae, the geographic distribution and kind of ecosystem environment.


Monitoring activated sludge systems from wastewater treatment plants: automated image analysis procedures and their relation with operating parameters

Mesquita, D. P.1, Dias, O.1, Amaral, A. L.1,2 and Ferreira, E. C.3
1. IBB – Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga
2. Escola Superior de Tecnologia e de Gestão, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança
daniela@deb.uminho.pt

The activated sludge system is a biological process increasingly used in wastewater treatment plants. It is known that the activated sludge process efficiency is dependent on the aggregates physical properties, as well as on an adequate balance between the different types of bacteria in order to ensure good settling sludges. Furthermore, the biomass visualisation and inspection under an optical microscope coupled to automated image analysis methodologies is evermore used. That is so because this powerful tool can be used to identify and quantify biomass morphology and physiology changes and also their interactions with operational conditions. In this work, an image analysis programme was developed in Matlab environment, allowing the identification and morphological characterisation of microbial aggregates and filaments in three different wastewater treatment plants. Both aggregates and filaments contents were determined as well as Euclidian geometry parameters and the collected data was organized into three aggregates size classes. The developed image analysis methodology provided for a continuous monitoring of the activated sludge contents and aggregates morphology. Furthermore, the obtained results allowed for the assessment of suspended solids contents and settleability properties such as the SVI and settling velocity.