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Abstract In this paper we revisit the work of Miller and Good, which de-
scribes an uniform JWKB type of approximation to the solution of quantum
problems. This paper, very well known in atomic physics in the 70’s 80’s of
the last century, did not attract the same attention from the condensed mat-
ter community. Contrary to the usual JWKB approach, Miller and Good’s
method yields wave functions that do not diverge at the classical turning
points. We apply the method in the context of two-dimensional excitons, an
important condensed matter system. In particular, we apply our results to
excitons in hexagonal boron nitride, solving the corresponding Wannier equa-
tion. We compare the semiclassical results with others from the literature and
find good agreement.

Keywords JWKB · 2D Materials · Excitons

1 Introduction

The JWKB approximation, after Jeffreys, Wentzel, Kramers, and Brillouin
[1–3] (see also [4,5]) is commonly used as an approximated method to find the
eigenvalues of a given one-dimensional potential and to determine the tun-
nelling probability of a particle through a barrier. This is particularly useful
for potentials where analytical solutions are non-existent. The corresponding
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Braga, Portugal
E-mail: peres@fisica.uminho.pt

J. C. G. Henriques
Department and Centre of Physics, and QuantaLab, University of Minho, Campus of Gual-
tar, 4710-057, Braga, Portugal



2 J. C. G. Henriques, N. M. R. Peres

wave functions, on the other hand, are known to be problematic, and require
the use of special functions for analysing their behaviour in the vicinity of the
classical turning points, where the total energy equals the potential energy.
Moreover, the JWKB wave functions suffer from a major drawback: they di-
verge at the classical turning points. Therefore, they are not uniform across
the spatial range of the real axis. Although this sounds like a severe limitation,
they still find their use in applications [6–9].

In order to overcome this difficulty, Miller and Good [10,11] developed an
uniform description, in the same spirit of the JWKB approximation, that does
not suffer from divergences at the classical turning points. In their approach,
the wave function is a product of two spatial dependent functions. One of the
functions, A(x), is explicitly dependent on the position, whereas the second
function, φ[ξ(x)], depends on ξ(x), which has an implicit dependence on the
position. The function φ(ξ) obeys a differential equation termed the compari-
son equation, and whose solution is known. The function A(x) plays the same
role as the amplitude of the JWKB, with the extra bonus of being regular at
the classical turning points. The semiclassical approximation appears when the
unknown function ξ(x) is expanded in positive powers of the reduced Planck
constant. In a subsequent publication [12], Good extended the method to the
solution of the three dimensional Schrodinger equation with radial symmetry.
The extension to two dimensions was made by Berry and Ozorio de Almeida
[13].

In this paper we revisit the method of Miller and Good in the context of
the calculation of energy levels and wave functions of two-dimensional (2D)
excitons [14]. This class of excitons has been found in two dimensional semi-
conductors, such as transition metal dichalcogenides (TMDs) [14,15], and in-
sulators, like hexagonal boron nitride (hBN) [16–18], and is currently a subject
of great interest. Due to its simplicity, we will focus our study on the hBN,
but the extension to TMDs is not difficult.

Excitons are bound states of electrons and holes created by the interaction
of the electrons in the valence band with an external electromagnetic field. If
the energy of the incoming photon is of the order of the band gap, an electron
is removed from the valence band and placed in the conduction band, leaving
a hole behind. The created electron and the hole have opposite charges and
can bind together via the electrostatic interaction, thus creating a kind of a
“hydrogen atom” inside a solid.

Two dimensional excitons were recently discovered in 2D-materials [14].
They show much larger binding energies than their counterparts in three di-
mensional semiconductors due to their reduced dimensionality. Indeed, since
2D materials are essentially a surface and the electrostatic interaction is three
dimensional, most of the field lines lie outside the material and are, therefore,
not screened, thus leading to larger binding energies. In addition, and at odds
with excitons in three dimensions, the electrostatic interaction between the
two opposite charges in the exciton is not the usual Coulomb interaction but
is described rather by the Rytova-Keldysh potential [20,21].
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The goal of the paper is twofold: (i) to revisit the method of Miller and
Good, and (ii) to determine the binding energy of the excitons and their wave
functions, which results from the solution of the Wannier equation. The latter
is a highly desirable result, since accurate binding energies are often only
obtained trough computationally demanding approaches [22].

The paper is organized as follows: in Sec. II, we revisit the Miller-Good
uniform method in one dimension. This sets the stage to the two-dimensional
case. In Sec. III, we extend the method to two-dimensions and apply it to the
case of the 2D Hydrogen atom, where we recover the known analytical solution
for the binding energies. In Sec. IV, we apply the Miller-Good method to the
solution of Wannier equation describing excitons in 2D-materials. Finally, in
Sec. V we give the concluding remarks.

2 The uniform method of Miller and Good in one dimension

In this section we introduce the uniform method of Miller and Good in one
dimension. This approach consist, as does the JWKB, in an expansion of a
certain function in powers of h̄, the reduced Planck’s constant. On the other
hand, and contrary to the JWKB, the amplitude of the wave function is well
defined throughout the whole real axis. The introduction of a comparison
differential equation allows one to solve the problem near the classical turning
points. This treatment, as we shall see, removes the divergence of the wave
function at the classical turning points that are known to appear when the
JWKB is used. A similar method, based solely on Airy’s function, was applied
with success to the description of non-homogeneous wave guides [23,24].

The problem we aim to address is the solution of the eigenvalue problem
defined by the Schrodinger equation:

d2

dx2
ψ(x) +

2m

h̄2
[E − V (x)]ψ(x) = 0, (1)

where m is the mass, E is the energy and V (x) is the potential. It is well
known that the JWKB [3] wave function can be written as:

ψJWKB(x) =
C

4
√
p2(x)

exp

[
±i
∫ x

dx′
√
p2(x′)/h̄

]
, (2)

where p(x) reads:

p(x) =
√

2m [E − V (x)], (3)

and C is some constant. It is evident that at the classical turning points,
defined from the condition E − V (xc) = 0, the amplitude of the JWKB wave
function diverges. The method of Miller and Good copes with this difficulty,
defining a new starting point for the wave function. We now turn to a detailed
presentation of the method.
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To start developing the Miller and Good’s method, we write the wave
function as:

ψMG(x) = A(x)φ [ξ(x)] , (4)

where ξ(x), as we will shortly see, is an implicit function of the spatial co-
ordinate. Now, an auxiliary problem, termed comparison equation, with an
established solution is introduced:

d2

dξ2
φ(ξ) +

κ2(ξ)

h̄2
φ(ξ) = 0, (5)

where κ(ξ) is a known function, that should be chosen as close as possible
to p(x) (we will see that this requirement is not as stringent as it sounds).
Inserting Eq. (4) in Eq. (1), using the auxiliary problem and finally demanding
that the term proportional to φ′ [ξ(x)] must vanish we arrive at the function
A(x). In a more detailed manner, inserting Eq. (4) in Eq. (1) yields:

A′′(x)φ[ξ(x)] + φ′[ξ(x)][2A′(x)ξ′(x) +A(x)ξ′′(x)] +A(x)ξ′(x)2φ′′[ξ(x)]

+
p2(x)A(x)φ[ξ(x)]

h̄2
= 0, (6)

where the primes denote differentiation relative to x. Using the differential
equation for φ, the comparison equation, we eliminate φ′′ from the previous
expression:

A′′(x)φ[ξ(x)] + φ′[ξ(x)][2A′(x)ξ′(x) +A(x)ξ′′(x)]− A(x)[ξ′(x)]2κ2[ξ(x)]φ[ξ(x)]

h̄2

+
p2(x)A(x)φ[ξ(x)]

h̄2
= 0. (7)

The term proportional to φ′[ξ(x)] can also be eliminated if one demands that

2A′(x)ξ′(x) +A(x)ξ′′(x) = 0. (8)

This requirement implies:

A(x) =
1√
ξ′(x)

. (9)

Thus, the proposed wave function may be written as:

ψMG(x) =
1√
ξ′(x)

φ [ξ(x)] , (10)

where ξ(x) is yet to be determined. Up to this point the calculation is exact.
Now, we assume, similarly to the JWKB approach, that the function ξ(x) can
be expressed as a power series. Since Eq. (7) only depends on even powers of
h̄ we write:

ξ(x) = ξ0(x) + ξ2(x) + ξ4(x) + ... (11)
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where the sub-indexes refer to powers of h̄. Considering only the lowest order
term in ξ(x), that is ξ(x) ≈ ξ0(x), and neglecting the second derivative of A(x)
(since it will clearly be associated with higher order terms in h̄), we find:

−[ξ′0(x)]2κ2[ξ(x)] + p2(x) = 0, (12)

from where we obtain:

ξ′0(x) =

√
p2(x)

κ2 [ξ0(x)]
. (13)

Therefore, the approximate solution to the Schrodinger equation reads:

ψMG(x) =

(
κ2 [ξ(x)]

p2(x)

)1/4

φ [ξ(x)] , (14)

where κ, p and φ are known, and ξ is yet to be determined. This expression
clearly resembles that of the JWKB, however, in this case, κ2 [ξ(x)] is not
a constant, which is key aspect in making the wave function regular at the
classical turning points (note that in the JWKB approach, κ2 = 1). The
remaining task is to find ξ(x). This is readily done solving Eq. (13), that is∫ ξ(x)

ξc

√
κ2(ξ′)dξ′ =

∫ x

xc

√
p2(x′)dx′, (15)

where ξc = ξ(xc) is one of the classical turning points of κ, that is κ (ξc) = 0.
The choice of the lower integration limit guarantees that the wave function is
finite at the classical turning point, since when p2(x) vanishes so does κ2 [ξ(x)];
strictly speaking we get an indeterminacy which becomes finite in the sense
of a limit. This is the main advantage of the Miller and Good approach in
comparison with the usual JWKB.

3 The radial Schrodinger equation and the 2D Hydrogen atom

In this section we extend the methods of the previous one to problems with
radial symmetry in two dimensions. We will start by writing the Schrodinger
equation for the case of the 2D Hydrogen atom, from which a differential
equation defining the radial component of the wave function is obtained. Then,
the Miller and Good method presented in the previous section is applied.

The starting point is, once again, the Schrodinger equation, which, in
atomic units (a. u.), reads:

∇2ψ(r, θ) + 2 [E − V (r)]ψ(r, θ) = 0, (16)

where E < 0 is the energy, V (r) is the Coulomb potential (chosen to illustrate
the method for its importance):

V (r) = −1

r
, (17)
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and ∇2 is the two dimensional Laplacian:

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
. (18)

We now propose a wave function with separate radial and angular contribu-
tions, that is:

ψ(r, θ) = R(r)eimθ, (19)

where m is the angular quantum number. Since we will only be concerned with
s−states, that is states with m = 0, the wave function will only depend on the
radial coordinate. Plugging Eq. (19), with m = 0, into Eq. (16) we obtain:

d2

dr2
R(r) +

1

r

d

dr
R(r) + 2

(
E +

1

r

)
R(r) = 0. (20)

Traditionally, one would now introduce a variable change of the formR(r)
√
r =

P (r) and produce a new differential equation where the terms containing a first
derivative in r vanish. This change is equivalent to shifting the focus from the
probability density R(r) to the probability distribution P (r), which are equiv-
alent descriptions of the same problem. However, it is know that when P (r) is
used in a JWKB frame of work, problems appear. These problems prompted
Kramers to introduce an ad hoc modification to the potential, and Langer to
introduce a variable change (the Langer transformation) that produced the
desired results. Recently, it has been shown [26] that both of these approaches
are not necessary if one uses R(r) instead of P (r). In fact, the authors show
that a JWKB type of approach is always possible, in any dimension, as long
as the correct form of the differential equations is used. Moreover, Ref. [26]
also points out that the Langer transformation is nothing more than an al-
ternative representation of the problem when R(r) is used (which justifies the
correct results obtained by Langer). Although not strictly necessary based on
the aforementioned reasons, we will follow Langer’s approach since it allows
us to make an easier transition from the formalism presented in the previous
section to the present case of study.

Defining the radial function as R(r) = P (r)/
√
r, the previous equation

simplifies to:
d2

dr2
P (r) +

(
2E +

2

r
+

1

4r2

)
P (r) = 0. (21)

This one dimensional differential equation resembles the one used in the pre-
vious section when the Miller and Good formalism was introduced. Thus, one
may be tempted to promptly apply this method to Eq. (21). However, as was
pointed before, in its current form, this equation is troublesome. To deal with
this problem, we introduce Langer’s transformation, defined as:

r = ex, (22)

P (r) = ex/2X(x). (23)

The introduction of these definitions removes the singularities at the origin and
extends the domain of the problem across the whole real axis. Historically, this
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was the reason that Langer considered to be at the origin of problems he found.
Explicitly introducing this transformation in Eq. (21) we obtain:

X ′′(x) +
(
2Ee2x + 2ex

)
X(x) = 0. (24)

Note that exp(x/2) →
√
r, and thus describing the problem with X(x) is

nothing more than describing it with R(r) with a transformed variable. Al-
though historically motivated by wrong ideas, the Langer transformation pro-
duces a correct mathematical description of the problem. With Eq. (24) we
can promptly apply the Miller and Good approach to solve the 2D Hydrogen
atom problem.

In order to solve Eq. (24), we start by noting that the function 2Ee2x+2ex

in Eq. (24) vanishes at the classical turning point:

xc = ln

(
− 1

E

)
. (25)

The other classical turning point where the potential term vanishes occurs
at the origin, which in this new coordinate system corresponds to x → −∞.
These two turning points should be treated separately. To solve the problem
near the origin we note that in the limit r → 0 the solution to Eq. (20) is a
superposition of Bessel functions. Inspired by this behaviour we introduce the
following auxiliary equation [13]:

d2

dξ2
φ(ξ) + 2eξφ(ξ) = 0 (26)

which has a turning point when ξ → −∞ and whose solution reads:

φ(ξ) = c1J0

(
2
√

2
√
eξ
)

+ c2Y0

(
2
√

2
√
eξ
)
, (27)

where J0(x) and Y0(x) are Bessel functions of the first and second kind, re-
spectively. Since only J0(x) is finite at x = 0, we write X(x) as:

φ(ξ) = c1J0

(
2
√

2
√
eξ
)
. (28)

According to the Miller and Good approach, the solution near the origin reads:

X1(x) =

(
2eξ(x)

|2Ee2x + 2ex|

)1/4

J0

(
2
√

2
√
eξ(x)

)
, (29)

where the function ξ(x) is obtained from the relation:∫ ξ(x)

−∞

√
2eξ(x)/2dξ =

∫ x

−∞

√
2Ee2x + 2exdx (30)

2
√

2eξ(x)/2 = ex/2
√

2Eex + 2 +
2√
−2E

arcsin

(
ex/2
√
−2E√
2

)
. (31)
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Now, we move on to solve the problem in the vicinity of the classical turn-
ing point xc = ln(−1/E). To do so, we introduce the Airy equation as the
comparison equation:

d2

dξ2
φ(ξ)− ξφ(ξ) = 0, (32)

which has a turning point at ξ = 0 and whose solution is obviously:

φ(ξ) = c2Ai (ξ) .

The choice of the Airy equation as the comparison equation is based on its
simplicity and, as we will see, the quality of the results. Some intuition regard-
ing this choice can be gained if one expands the term inside the parenthesis
in Eq. (20) about the respective classical turning point. Once this is done, the
Airy equation (and another two terms) appears. Once again, using the Miller
and Good approach, we write:

X2(x) =

(
|ξ(x)|

|2Ee2x + 2ex|

)1/4

Ai [ξ(x)] , (33)

where the function ξ(x) is given by:∫ 0

ξ(x)

√
−ξdξ =

∫ xc

x

√
2Ee2x + 2exdx. (34)

At this point, we note that ξ(x) has different definitions above and bellow the
classical turning point, since the term inside the square root on the right hand
side will have different signs depending on where x sits relatively to xc. For
x < xc we have:

ξ(x) = −3

2

[
−ex/2

√
2Eex + 2− 2√

−2E
arcsin

(
ex/2
√
−2E√
2

)
+

π√
−2E

]2/3
,

(35)
and for x > xc:

ξ(x) = −3

2

[
ex/2
√
−2Eex − 2 +

2√
−2E

arcsinh

(
ex/2
√

2E√
2

)
− π√

2E

]2/3
.

(36)

Now, we observe that the obtained wave functions will only generate the
physically correct solutions for specific values of E, that is, for the eigenvalues
of the Schrodinger equation. In order to obtain these energies a quantisation
condition must be imposed. To obtain this condition, and thus the relevant
eigenenergies, we study the asymptotic behavior of X1(x) and X2(x) and force
the matching of these two functions in a region far from the classical turning
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points (x = −∞ and xc = ln(−1/E)). From the asymptotic behavior of the
Bessel function of Eq. (29) and the Airy function of Eq. (33), we obtain:

A cos

(∫ x

−∞

√
2Ee2x + 2exdx− π

4

)
= B cos

(
−
∫ xc

x

√
2Ee2x + 2exdx+

π

4

)
,

(37)
which implies:∫ x

−∞

√
2Ee2x + 2exdx −π4 = −

∫ xc

x

√
2Ee2x + 2exdx+ π

4 + nπ (38)∫ xc

−∞

√
2Ee2x + 2exdx = π

(
n+ 1

2

)
, (39)

with n = 0, 1, 2, ..., and An = (−1)nBn. This result is known as semiclassical
quantisation conditions [27,28], and is the same relation one would find with
the usual JWKB approach. Solving this last integral explicitly yields:

π√
−2E

= π
(
n+ 1

2

)
⇔ E = − 1

2(n+ 1
2 )

2 , (40)

which exactly reproduces the energy levels of the 2D Hydrogen atom [29].

4 Application to two-dimensional excitons

In this section we apply the methods previously developed to the study of
excitons in hexagonal Boron Nitride (hBN). We solve the Wannier equation,
essentially a Schrodinger equation and find the binding energies and the wave
functions of the states of zero angular momentum (the calculation for finite
values of angular momentum follows the same approach; we do not pursue this
path because these type of excitons are hardly observed). As we will see the
results are in excellent agreement with those obtained using a more complex
method based on the expansion of the wave function in terms of gaussians
and diagonalizing a large matrix. The method of Miller and Good allows us
to obtain quantitatively accurate results almost instantaneously.

To start calculations in this section, we introduce the Wannier equation,
the equivalent to the Schrodinger equation when dealing with excitons, in S.I.
units:

∇2ψ(r, θ) +
2µ

h̄2
[E − V (r)]ψ(r, θ) = 0, (41)

where µ is the reduced mass of the electron-hole system and V (r) is the Rytova-
Keldysh potential:

V (r) = − e2

4πε0

π

2

1

r0

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
, (42)

with r0 a screening parameter characteristic of the 2D material and κ the
mean dielectric constant of the media above and below the hBN monolayer
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(in our case we take them to be air and quartz, respectively); H0 is the Struve
function and Y0 the Bessel function of the second kind. This potential is the
solution of the Poisson equation for a thin film embedded in a medium (see
[20] and [21]). Contrary to the previous section, we write this equation in S.I.
units to allow us to compare our results with others present in the literature
[18].

To solve this equation, an analogous procedure to the one employed in the
previous section to solve the Schrodinger equation for the 2D Hydrogen atom
is used; the only difference appears in the change of the Coulomb potential
to the Rytova-Keldysh potential. The differential equation, after the Langer
transformation, reads:

X ′′(x) +

(
2µ

h̄2
Ee2x − 2µ

h̄2
V (ex) e2x

)
X(x) = 0, (43)

From this point onward all the results derive directly from the ones obtained in
the previous section, substituting the terms inside the appropriate square roots
by the term inside the parenthesis on the left and side of Eq. (43). Contrary
to the Coulomb potential, where analytical expressions were found for every
integral, the Rytova-Keldysh, due to its increased complexity (represented in
terms of special functions), requires the integrals to be computed numerically
(this is, however, an easy task).

The energies are obtained from the quantization condition:

∫ xc

−∞

√
Ee2x − V (ex)e2xdx = π

(
n+

1

2

)√
h̄2

2m
, (44)

with xc given by E−V (exc) = 0. The results found for the binding energies of
the 2D exciton in hBN are shown in Table 1. There, we compare the energies
found using the Miller and Good approach with the ones obtained in a previous
work, where a semi-analytical method involving the diagonalization of a large
matrix was used. The results here obtained agree quite well (less than 10%
difference) with those published previously in the literature [18]. Moreover, we
observe that the results become increasingly more accurate as the principal
quantum number increases, as was expected in any semiclassical description
of a quantum problem (Bohr correspondence principle).

Finally, in Figure 1, we present the radial wave functions of the first three
s−states, and compare them with the ones obtained in Ref. [18]; all of the three
wave functions present a good agreement with the ones from the published
literature. It is worth noting that the Miller and Good wave function does not
diverge at the classical turning point, contrary to what would happen if the
standard JWKB frame of work was employed. Moreover the calculation for
both the binding energies and wave functions runs in an ordinary laptop in
just few seconds.
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Miller and Good Ref.[18] Relative Difference

n = 1 -0.911 -0.992 8.1%
n = 2 -0.248 -0.274 9.4%
n = 3 -0.116 -0.126 8.3%
n = 4 -0.067 -0.072 7.1%

Table 1 Binding energies of the first four s-states obtained using the Miller and Good
method with the Rytova-Keldysh potential. Also presented are the energies obtained in
Ref. [18]. The results computed in this work show a good agreement with the ones from
the literature with increasing accuracy as the principal quantum number increases. All the
energies are presented in eV. To compute these energies an r0 = 10 Å and κ = 2.4 were
used in the Rytova-Keldysh potential. The reduced mass was considered to be µ = m0/2,
with m0 the bare electron mass.

Fig. 1 First three s-states obtained using the Miller and Good method with the Rytova-
Keldysh potential compared with the ones obtained in the literature using a numerically
exact method [18]. A remarkable good agreement between the semiclassical calculation and
the numerically exact method is clearly seen.

5 Conclusions

In this paper we have revisited the uniform method of Miller and Good used
to obtain continuous wave functions through all the real axis of an arbitrary
one-dimensional potential. The method can cope with any state of angular
momentum, with the zero angular momentum case being the most delicate
(the one we treated in this paper). We have applied the method to the solution
of Wannier equation in two-dimension and found a good agreement for both
the binding energies and wave functions of excitons in hBN when compared
to other computationally more demanding methods. This simplicity of our
method allows one to study the dependence of the binding energy with different
parameters of the system with little effort. In the case of the 2D Coulomb
potential a full analytical solution is possible, which is expected since the
original problem also has an exact solution. For the Rytova-Keldysh potential
no exact solution is available, but the Miller-Good method provides a simple
and accurate approximation to the wave functions and binding energies of
this potential. As expected from any semiclassical method, the results are
progressively better for higher quantum numbers. Despite this, we still found
a good result to the binding energy of the ground state of the exciton. Although
we have chosen a particularly simple material as a text bed for the Miller and
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Good approach, the method can easily be extended to other systems, such has
excitons in transition metal dichalcogenides.
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