Abstract. A semigroup S is called generalized F-semigroup if there exists a group-congruence on S, such that the identity-class contains a greatest element with respect to the natural partial order \leq_S of S. Using the concept of anticone all partially ordered groups, which are epimorphic images of a semigroup $(S,.,\leq_S)$, are determined. It is shown that a semigroup S is a generalized F-semigroup if and only if S contains an anticone, which is a principal order ideal of (S,\leq_S). Also a characterization by means of the structure of the set of idempotents resp. by the existence of a particular element in S is given. The generalized F-semigroups in the following classes are described: monoids, semigroups with zero, trivially ordered semigroups, regular semigroups, bands, inverse semigroups, Clifford-semigroups, inflations of semigroups, and strong semilattices of monoids.

1. Introduction

A semigroup (S,\cdot) is called F-inverse if S is inverse and for the least group-congruence σ on S, every σ -class has a greatest element with respect to the natural partial order \leq_S of S (see [16] or [10] for a detailed treatment of this class of semigroups). This concept appeared originally in [19]. A construction of such semigroups was given in [12] by means of groups acting on semilattices with identity obeying certain axioms.

Dropping the condition that the semigroup is inverse we will call a semigroup S an F-semigroup if for some group-congruence ρ on S every ρ-class of S contains a greatest element with respect to the natural partial order \leq_S of S. Recall that for any semigroup S, \leq_S is defined by

$$a \leq_S b \text{ if and only if } a = xb = by , xa = a \text{ for some } x, y \in S^1$$

(see [13]). Note that for $e, f \in E(S), e \leq_S f$ iff $e = ef = fe$. In this paper we will more generally study generalized F-semigroups, which are semigroups S for which there exists a group-congruence ρ such that the identity-class (only) has a greatest element with respect to the natural partial order \leq_S of S (equivalently, there exists a homomorphism of S onto a group G such that the preimage of the identity element of G has a greatest element with respect to \leq_S). Thus we are dealing with semigroups, which are extensions of a subsemigroup T with greatest element by a group (the semigroups of type T were first characterized in [18]). The particular case of F-semigroups will be considered in a subsequent paper.

This generalization of F-inverse semigroups is motivated by a class of partially ordered semigroups (i.e., semigroups S endowed with a partial order \leq which is compatible with multiplication): (S,\cdot,\leq) is called Dubreil-Jacotin semigroup if there exists an isotone semigroup-homomorphism of (S,\cdot,\leq) onto a partially ordered group (G,\cdot,\preceq) such that the preimage of the negative cone of G is a principal order ideal of (S,\leq). This concept was introduced in [6] (see also [4],

\footnote{Research supported by the Portuguese Foundation for Science and Technology through the research program POCTI.}
Specializing the partial order \(\leq \) given on \(S \) to the natural partial order \(\leq_S \) and dropping the compatibility condition for \(\leq_S \) (which is not satisfied, in general) it turns out that in this case the partial order \(\preceq \) given on \(G \) reduces to the equality relation, so that the negative cone of \(G \) consists of the identity element of \(G \) alone. Thus we arrive at the concept of generalized \(F \)-semigroup.

In Section 2 we determine all partially ordered groups, which are isotone semigroup-homomorphic images of an arbitrary semigroup \(S \) - with \(S \) considered as partially ordered by its natural partial order. In the particular case that \(S \) is inverse this question was dealt with in [3], where the greatest such partially ordered group was considered. For this purpose we use the concept of anticone of \(S \) defined in [2] (see also [4]). In Section 3 we specialize the concept of anticone to be principal in the sense that it is also a principal order ideal of \((S, \leq_S)\). In analogy with \(F \)-inverse semigroups we show that for generalized \(F \)-semigroups \(S \) the congruence \(\rho \) appearing in the definition is the least group-congruence on \(S \). Characterizations by the existence of a principal anticone, of a particular element, and by properties of the set of all idempotents are provided. Also, generalized \(F \)-semigroups, which are regular or contain an identity, are considered. The characterization of the latter allows a construction of all generalized \(F \)-inverse monoids. In Section 4 the generalized \(F \)-semigroups in the following classes are described: semigroups with zero, trivially ordered semigroups, bands, inflations of semigroups, and strong semilattices of monoids (in particular, Clifford-semigroups).

2. Epimorphic partially ordered groups

Throughout the paper, \(S \) stands for an arbitrary semigroup, unless specified otherwise, and \(\leq_S \) for the natural partial order defined on \(S \). No other partial order on \(S \) will be considered.

Since we are interested in homomorphic images of a semigroup \(S \) onto groups, we first observe that for any group \(G \) and every homomorphism \(\varphi : S \rightarrow G \), \(a \leq_S b \) implies \(a\varphi = b\varphi \), i.e., \(\varphi \) is trivially isotone.

In this Section we give a method for constructing all groups \(G \) and all partial orders on \(G \) such that the partial ordered group \(G \) is a semigroup and order homomorphic image of \(S \). For this purpose we follow the account given in [4, Section 24] using the concept of anticone in a partially ordered semigroup introduced in [2]. Since the natural partial order of \(S \) need not be compatible with multiplication, the theory developed in [4] cannot be applied directly to our case. At several stages other proofs have to be given in order to establish the corresponding results needed in the sequel.

Let \(X \subseteq S \) and \(a, b \in S \). Define

\[
X : a = \{ x \in S | ax \in X \} \quad \text{and} \quad X : a = \{ x \in S | xa \in X \}.
\]

It is readily seen that

\[
X : ab = (X : a) : b \quad \text{and} \quad X : ab = (X : b) : a.
\]

Say that \(X \neq \emptyset \) is reflexive if \(ab \in X \) implies \(ba \in X \) \((a, b \in S)\). If \(X \) is reflexive then \(X : a = X : a \) for any \(a \in S \), in which case we will use the notation
X : a. Say that X is neat if X is reflexive and X : c \neq \emptyset for all c \in S. If X is a reflexive subsemigroup of S, define

\[I_X = \{ x \in S | X : x = X \}. \]

Call a subsemigroup H of S an anticone of S if \(I_H \cap H \neq \emptyset \) and both H and \(I_H \) are reflexive and neat. As we will see later, this definition is equivalent to the definition given in [4] in the context of partially ordered semigroups.

A subset \(T \) of a semigroup S is called unitary in S if (i) \(t, ta \in T \) implies that \(a \in T \), and (ii) \(ta, at \in T \) implies that \(a \in T \) (see [5]). If T is reflexive then (i) and (ii) are equivalent.

Proposition 2.1. Let H be an anticone of S. Then \(I_H \) is a maximal unitary subsemigroup of S contained in H. In particular, \(I_{I_H} = I_H \) is also an anticone of S, and \(I_H = H \) if and only if H is unitary in S.

Proof. Clearly, by the definition of anticone, \(I_H \neq \emptyset \). That \(I_H \) is a unitary subsemigroup follows easily from the fact that \(H : xy = (H : x) : y = (H : y) : x \) for all \(x, y \in S \). If \(x \in I_H \) then \(H : x = H \) and so \(xH \subseteq H \). Let \(k \in I_H \cap H \). Then \(xk \in H \), i.e., \(x \in H : k = H \). Thus \(I_H \subseteq H \).

Next consider any unitary subsemigroup K of S such that \(I_H \subseteq K \subseteq H \). Let \(u \in K \). Since \(I_H \) is neat, choose \(v \in S \) such that \(uv \in I_H \). But K is unitary, so \(v \in K \). If \(z \in H : u \) then \(uz \in H \), so \(vu \in H \), giving \(z \in H : vu \). Since \(I_H \) is reflexive and \(uv \in I_H \), \(vu \in I_H \). Thus \(H : vu = H \) and so \(z \in H \). Since \(H \subseteq H : u \), we get \(H : u = H \), proving \(u \in I_H \). Hence \(K \subseteq I_H \) and so \(I_H \) is a maximal unitary subsemigroup of S contained in H. We now show that \(I_{I_H} = I_H \).

As \(I_H \) is unitary, \(I_{I_H} \subseteq I_H \). If \(x \in I_H \) and \(y \in I_H : x \) then \(xy \in I_H \) and so, since \(I_H \) is unitary, \(y \in I_H \). Since \(I_H \) is a subsemigroup of S, it follows that \(I_H : x = I_H \), that is \(x \in I_{I_H} \). That \(I_H \) is an anticone is now immediate. The assertion follows and the proof is complete.

Let \(H \) be an anticone. Since \(H \) is reflexive, we can define the Dubreil equivalence \(RH \) on S by

\[(a, b) \in RH \iff H : a = H : b.\]

Following the proof in [4, Section 24] we obtain that \(S/R_H \) is a group whose identity is \(I_H \). Also, the binary relation on \(S/R_H \) given by

\[aR_H \leq bR_H \iff H : b \subseteq H : a \]

is a partial order which is compatible with multiplication. Hence \(G = (S/R_H, \cdot, \leq) \) is a partially ordered group. Moreover, following the arguments given in [4, pages 250-251], \(H \) is the pre-image, under the natural homomorphism, of the set \(\{ xR_H \in S/R_H | xR_H \leq I_H \} \), called the negative cone of \(S/R_H \).
Remark 2.2. 1. Notice that any anticone H of (S, \leq_S) is an order ideal of (S, \leq_S). In fact, if $h \in H$ and $x \in S$, then hR_H belongs to the negative cone of S/R_H and

$$
\begin{align*}
x \leq_S h & \implies x = th = tx \text{ for some } t \in S \\
& \implies xR_H = tR_H.hR_H = tR_H.xR_H \\
& \implies xR_H = hR_H \preceq I_H \\
& \implies x \in H.
\end{align*}
$$

2. From the observation of the beginning of this Section, it follows that the natural homomorphism $\phi : S \to S/R_H$ is isotone.

3. Since I_H is a subsemigroup of H (Proposition ??) and H is an order ideal of S, the definition of anticone that we have given is equivalent to the definition given in [4] in the context of partially ordered semigroups.

We summarize the previous results in the following

Theorem 2.3. Let S be a semigroup and H an anticone. Then S/R_H, partially ordered by the relation \preceq defined by $aR_H \preceq bR_H \iff H : b \subseteq H : a$, is an (isotone) homomorphic group image of S under the natural homomorphism such that H is the preimage of the negative cone of $(S/R_H, \preceq)$.

The next result shows that every partially ordered group, which is an (isotone) homomorphic image of a semigroup S, arises in this way, i.e., is given by an anticone of S.

Theorem 2.4. Let S be a semigroup, G a group with compatible partial order \leq and $\varphi : S \to G$ an (isotone) epimorphism. Let $H = \{x \in S : x\varphi \leq 1_G\}$. Then H is an anticone and $\psi : S/R_H \to G$, given by $xR_H \mapsto -x\varphi$, is an isomorphism such that ψ and ψ^{-1} are order preserving.

Proof. To justify that H is an anticone of S we can apply the arguments given in [4, Section 24] since compatibility of the partial order given on S is not used in those arguments. By Theorem ??, S/R_H is a partially ordered group, where R_H denotes the Dubreil equivalence with respect to H and \preceq is the partial order given above. Following the proof of Theorem 24.1 in [4], we obtain that the mapping $\psi : S/R_H \to G$, $(xR_H)\psi = x\varphi$ is an isomorphism such that ψ and ψ^{-1} are order preserving.

Corollary 2.5. Let $\varphi : S \to G$ be an isotone epimorphism where G is a group with compatible partial order \leq. Then \leq is trivial if and only if the anticone $H = \{x \in S : x\varphi \leq 1_G\}$ is unitary in S.

Proof. By Theorem 2.4, since ψ is an isomorphism, $I_H = 1_G\varphi^{-1}$. If \leq is trivial then clearly $H = I_H$, by definition of H. Conversely, if $H = I_H$ and $a\varphi \leq b\varphi$ ($a, b \in S$) then, by Theorem ??, $aR_H \preceq bR_H$, i.e., $H : b \subseteq H : a$. Hence for any $x \in S$ such that $bx \in I_H$, $ax \in I_H$. So $(bx)\varphi = 1_G = (ax)\varphi$ giving $b\varphi = a\varphi$. Thus, \leq is trivial if and only if $H = I_H$, and this is equivalent to H be unitary, by Proposition ??.
Example 2.6. Let \(B \) be a band, \((G, \leq)\) a partially ordered group and let
\(S = B \times G \) be their direct product. Then the natural partial order on \(S \) is given by
\[
(e, a) \leq_S (f, b) \iff e \leq_B f \text{ and } a = b.
\]

Notice that \(\leq_S \) is not compatible with multiplication, in general. The projection \(\varphi : S \to G \), defined by \((e, a) \varphi = a\), is an isotone epimorphism. By Theorem ??, the set \(H = \{(e, a) \in S : a \leq 1_G\} \) is an anticone of \(S \) and the mapping \(\psi : S/R_H \to G \) defined by \(xR_H \mapsto x\varphi \) is an isomorphism such that \(\psi \) and \(\psi^{-1} \) are order preserving. By Corollary ??, the anticone \(H \) is not unitary if the partial order \(\leq \) on \(G \) is not trivial.

Example 2.7. Let \(S \) be an inverse semigroup. Then the natural partial order of \(S \) has the form:
\[
a \leq_S b \iff a = eb \text{ for some } e \in E_S \text{ (see [16]).}
\]

It was shown in [17] that \(H = \{h \in S : e \leq h \text{ for some } e \in E_S\} \) is the least anticone of \(S \) yielding the greatest isotone homomorphic group image of \(S \). The latter is given by the congruence \(\sigma \) on \(S \) defined by:
\[
a \sigma b \iff ea = eb \text{ for some } e \in E_S;
\]

in fact, \(R_H = \sigma \) by [3]. We show that \(H \) is unitary in \(S \). Let \(h, ha \in H \). Then
\[
e \leq_S h, f \leq_S ha \text{ for some } e, f \in E_S, \text{ whence } e = jh, f = iha \text{ for some } i, j \in E_S.
\]
Since the idempotents of \(S \) commute, we get \(jf = ijha = ie a \), where \(ie \in E_S \). Thus \(jf \leq_S a \) with \(jf \in E_S \); hence \(a \in H \) and so \(H \) is unitary.

We next introduce a class of semigroups, which contain (unitary) anticones: the class of \(E \)-inversive, \(E \)-unitary semigroups.

(i) A semigroup \(S \) is called \(E \)-inversive if for every \(a \in S \) there exists \(x \in S \) such that \(ax \in E_S \) (see [5], Ex. 3.2 (8)). In this case there also exists \(y \in S \) such that \(ay, ya \in E_S \). Examples are provided by periodic (in particular, finite) or regular semigroups (see [14]).

(ii) \(S \) is called \(E \)-unitary if \(E_S \) is unitary in \(S \), that is, if \(e, ea \in E_S \) implies that \(a \in E_S \), and if \(e, ae \in E_S \) implies that \(a \in E_S \). In fact, these two conditions on \(S \) are equivalent (see the beginning of Section 3, in [14]).

Let \(S \) be an \(E \)-unitary semigroup and \(a, b \in S \) such that \(ab \in E_S \). Then
\[
(ba)^3 = babab = b(ab)^2a = b(ab)a = (ba)^2
\]
and
\[
(ba)^4 = (ba)^2.
\]
Hence \((ba)^2 \in E_S \) and \((ba)(ba)^2 = (ba)^3 = (ba)^2 \in E_S \). It follows that \(ba \in E_S \). So \(E_S \) is reflexive.
If S is also E-inversive, easy calculations show that E_S is a neat subsemigroup of S and $I_{E_S} = E_S$. Hence E_S is an anticone of S. Also, if H is an anticone of S, then by Theorems ?? and ??, $H = \{x \in S : x \varphi \leq 1_G\}$, φ being the natural homomorphism $\varphi : S \to S/R_H = G$. Since, for every idempotent $e \in S$, $e \varphi = 1_G$, it follows that $E_S \subseteq H$. Thus we have the following

Proposition 2.8. Every E-inversive, E-unitary semigroup S has a (least) anticone, namely $H = E_S$.

Notice that since by Theorem ?? every anticone of a semigroup S gives rise to a group G, which is an isotone homomorphic image of S, the result of Proposition ?? is implicitly contained in [1] Theorem 3.1.

3. **Generalized F-semigroups**

We will now specialize our study to the case of semigroups S containing an anticone H with a greatest element, i.e., an anticone which (by Remark ??) is a principal order ideal of (S, \leq_S). Such an anticone will be called a **principal anticone**. This additional condition leads to the class of generalized F-semigroup. We call a semigroup **generalized F-semigroup** if there exists a group-congruence ρ on S such that the identity ρ-class $1_G \in G = S/\rho$ has a greatest element ξ. The element ξ will be called a **pivot** of S.

If a semigroup S has a principal anticone H with greatest element ξ, i.e. $H = (\xi) = \{x \in S : x \leq_S \xi\}$, then R_H is a group congruence. Using the natural homomorphism of S onto the group S/R_H whose identity is I_H, we have

$$t, ta \in H \implies t, ta \leq_S \xi \implies tR_H.aR_H = \xi R_H = tR_H$$
$$\implies aR_H = 1_{S/R_H} = I_H$$
$$\implies a \in I_H \subseteq H. \quad \text{[by Proposition ??]}$$

Hence H is unitary and so, by Proposition ??, $H = I_H$. It follows that the identity R_H-class I_H has a greatest element. So S is a generalized F-semigroup with pivot ξ.

Conversely, let S be a generalized F-semigroup, ρ a corresponding group congruence on S and $\varphi : S \to G = S/\rho$ the natural epimorphism. Considering on G the identity relation for \leq we have by Theorem ??, that $H = \{x \in S : x \varphi = 1_G\}$ is an anticone of S. By hypothesis, the identity ρ-class $1_G \in S/\rho$, that is, $H = 1_G\varphi^{-1}$ has a greatest element ξ, say. Therefore H is a principal (hence unitary) anticone and $H = I_H = (\xi)$.

We have proved the following characterization:

Theorem 3.1. Let S be a semigroup. Then S is a generalized F-semigroup if and only if S has a principal (unitary) anticone H. In this case $H = I_H = (\xi)$, where ξ is a pivot of S.

Remark 3.2. 1. An unitary anticone is not necessarily principal. Indeed, consider any E-unitary inverse semigroup S. By Proposition ??, E_S is an unitary anticone and by [10] Proposition 7.1.3, E_S contains a greatest element if and only if S has an identity.
2. Since for any anticone H of a semigroup S, I_H is unitary (by Proposition ??), the natural partial order on I_H is just the restriction of \leq_S to I_H.

3. If S is a generalized F-semigroup then any group G appearing in the definition admits as a compatible partial order only the identity relation (by Theorem ?? and Corollary ??). Hence the negative cone of G consists of the identity alone.

Our next aim is to show that the group in the definition of generalized F-semigroup is unique. We show even more:

Theorem 3.3. Let S be a generalized F-semigroup and ρ a corresponding group congruence. Then ρ is the least group congruence on S. In particular, both the congruence and the pivot of S are uniquely determined.

Proof. Let τ be any group congruence on S and $a, b \in S$ be such that $a\rho b$. If $c \in (a\rho)^{-1} = (b\rho)^{-1}$ then $c\rho = (a\rho)^{-1}$ so that $(c\rho)(a\rho) = I_H$, the identity of S/R_H (H being the principal (unitary) anticone of S corresponding to ρ in Theorem ??). Therefore, $ca \in I_H = H = [\xi]$, by Theorem ??, that is, $ca \leq_S \xi$. Similarly, $cb \leq_S \xi$. If ψ denotes the natural homomorphism corresponding to τ, then it follows that $(c\psi)(a\psi) = \xi\psi = (c\psi)(b\psi)$ (see the beginning of Section ??). Therefore, $a\psi = b\psi$ (by cancellation), that is, $a\tau b$.

Due to the definition, the knowledge of semigroups T containing a greatest element is relevant to the study of generalized F-semigroups. A characterization of such semigroups T was given in [18]. Here we provide an independent proof. For this purpose, we show first

Lemma 3.4. Let S be a semigroup with greatest element ξ. Then $\xi^3 = \xi^2$ and $\xi^2 \in E_S$.

Proof. By hypothesis $\xi^2 \leq_S \xi$. If $\xi^2 = \xi$ then $\xi \in E_S$. If $\xi^2 <_S \xi$ then $\xi^2 = x\xi = \xi y = x\xi^2$ for some $x, y \in S$. Thus $\xi^3 = x\xi^2 = \xi^2$ and so $\xi^2 \in E_S$. ■

Theorem 3.5. ([18]) A semigroup S admits a greatest element if and only if S is one of the following types:

(i) S is a band with identity;

(ii) $S = T \cup \{\xi\}$, where T is a band with identity e such that $\xi^2 = e$ and $a\xi = \xi a = a$ for every $a \in T$.

Proof. If S is a semigroup of type (i) then the identity $e \in S$ is the greatest element of S. Also, if S is of type (ii) then $a\xi = \xi a = a$ for every $a \in T$ implies that $a \leq \xi$ (since $a \in E_S$). Thus ξ is the greatest element of S.

Conversely, let S be a semigroup with greatest element ξ. Then, for every $a \in S$, $a \leq \xi$. If $\xi \in E_S$, it follows by [15], Lemma 2.1, that $a \in E_S$. Hence S is a band with identity ξ, i.e., S is of type (i). If $\xi \notin E_S$ then we have
1. \(T = S \setminus \{ \xi \} \) is a subsemigroup of \(S \):

Let \(a, b \in T \); then \(a \leq_S \xi \) and so \(a = x\xi = \xi y = xa \) for some \(x, y \in S \). Assume that \(ab \notin T \). Then \(ab = \xi \) and

\[
a = x\xi = xa.b = ab = \xi ,
\]
a contradiction. Thus \(ab \in T \).

2. \(a\xi = a\xi^2 \), \(\xi a = \xi^2 a \) for every \(a \in S \):

If \(a = \xi \) then by Lemma ??

\[
a\xi = \xi^2 = \xi^3 = \xi.\xi^2 = a\xi^2
\]
and similarly \(\xi a = \xi^2 a \).

If \(a \neq \xi \) then \(a <_S \xi \) and so \(a = x\xi = \xi y = xa \), for some \(x, y \in S \). It follows by Lemma ?? that

\[
a\xi = x\xi.\xi = x\xi^2 = x\xi^3 = x\xi.\xi^2 = a\xi^2
\]
and similarly \(\xi a = \xi^2 a \).

3. \(\xi^2 \in T \) is the identity of \(T \):

Since \(\xi \notin E_S \), \(\xi^2 \in S \setminus \{ \xi \} = T \). Let \(a \in T \). Then \(a <_S \xi \) and so \(a = x\xi = \xi y = xa \) for some \(x, y \in S \). Therefore, by 2.,

\[
a\xi^2 = a\xi = x\xi.\xi = x\xi^2 = x\xi = a.
\]
Similarly, \(\xi^2 a = a \).

4. \(T = S \setminus \{ \xi \} \) is a band:

By 2. and Lemma ??, \(a <_S \xi \) for every \(a \in T \) implies that \(a \leq_S \xi^2 \). Since by Lemma ??, \(\xi^2 \in E_S \) it follows by [15], Lemma 2.1, that \(a \in E_S \). Hence by 1., \(T \) is a band.

We have shown that \(S = T \cup \{ \xi \} \), where \(T \) is a band with identity \(\xi^2 \) such that \(a\xi = a\xi^2 = a \) and \(\xi a = \xi^2 a = a \) for every \(a \in T \). Therefore, \(S \) is of type \((ii)\).

\[\square\]

Corollary 3.6. If \(S \) is a generalized \(F \)-semigroup with pivot \(\xi \) then either \((\xi) = E_S \) or \((\xi) = E_S \cup \{ \xi \} \) with \(\xi^2 \in E_S \) and \(e\xi = \xi e = e \) for all \(e \in E_S \).
Proof. By Theorem ?, $H = (\xi]$ is a principal anticone of S, hence a subsemigroup of S with greatest element ξ (note that by Remark ??. the natural partial order on H is the restriction of \leq_S to H). Therefore by Lemma ??, $\xi^2 \in E_S$. Since $e\varphi = 1_G$ for any $e \in E_S$, where φ is the corresponding natural homomorphism, we have $E_S \subseteq (\xi]$. The assertion now follows from Theorem ??.

This description of the identity class yields the following properties of a generalized F-semigroup.

Proposition 3.7. Every generalized F-semigroup S with pivot ξ is E-inversive. Furthermore, E_S is a subsemigroup of S with greatest element ξ^2.

Proof. By Corollary ??, either $(\xi] = E_S$ or $(\xi] = E_S \cup \{\xi\}$ where ξ^2 is the identity of E_S. By the proof of Theorem ??, $T = E_S$ is a subsemigroup of S. It follows that E_S contains a greatest element: ξ^2. We show now that S is E-inversive. Let $a \in S$ and $\varphi : S \to G = S/\rho$ the surjective homomorphism satisfying $1_G\varphi^{-1} = (\xi]$. Then we have

$$a\varphi \in G \implies (a\varphi)^{-1} = b\varphi \text{ for some } b \in S$$

$$\implies ab \in 1_G\varphi^{-1} = (\xi]$$

$$\implies ab \in E_S \text{ or } ab = \xi$$

$$\implies ab \in E_S \text{ or } abab = \xi^2 \in E_S.$$

Hence S is E-inversive.

The two properties given in Proposition ?? are not sufficient for a semigroup to be a generalized F-semigroup. For example, consider the multiplicative monoid S of natural numbers together with 0; then S is E-inversive and $E_S = \{0, 1\}$ is a subsemigroup with greatest element 1. If S was a generalized F-semigroup with pivot ξ then by Proposition ??, $\xi^2 = 1$ and so $\xi = 1$. Hence $(\xi] = \{0, 1\}$, which is not unitary, a contradiction (see Theorem ??).

The next theorem establishes a characterization of a generalized F-semigroup in terms of the idempotents of S. This result has several applications (see Section ??).

Theorem 3.8. Let S be a semigroup. Then S is a generalized F-semigroup with pivot ξ if and only if S is E-inversive, ξ is an upper bound of E_S and $E_S \cup \{\xi\}$ is unitary.

Proof. Necessity follows by Proposition ??, Corollary ?? and Theorem ??.

Conversely, let S be E-inversive, ξ be an upper bound of E_S and $E_S \cup \{\xi\}$ be unitary. Suppose first that $\xi \in E_S$. Then S is an E-inversive and E-unitary semigroup. It follows by Proposition ??, that $H = E_S$ is a (unitary) anticone with greatest element ξ. Thus by Theorem ??, S is a generalized F-semigroup with pivot ξ. Suppose now that $\xi \notin E_S$. We show that $H = E_S \cup \{\xi\}$ is a principal anticone of S.

1. H is a subsemigroup of S:
Let \(h,k \in H \). Since \(S \) is \(E \)-inversive, there exists \(x \in S \) such that \(hkx \in ES \subseteq H \). Since \(H \) is unitary, we then have, successively \(kx \in H \), \(x \in H \) and finally \(hk \in H \).

2. \(H \) is reflexive:

Let \(a,b \in S \) be such that \(ab \in H \). Consider first the case \(ab \in ES \). Then,

\[
(ba)^3 = b(ab)^2a = (ba)^2 \implies (ba)^2 \in ES \subseteq H.
\]

Since \((ba)(ba)^2 = (ba)^2 \in H \) and since \(H \) is unitary, we have that \(ba \in H \). Consider next the case \(ab = \xi \). By 1., \(H \) is a subsemigroup (with greatest element \(\xi \)). Thus by Lemma ??, \(\xi^3 = \xi^2 \),

\[
(ba)^4 = b(ab)^3a = b\xi^3a = b\xi^2a = (ba)^3
\]

and so \((ba)^3 \in ES \subseteq H \). Thus \((ba)^3(ba) = (ba)^3 \in H \); since \(H \) is unitary, it follows that \(ba \in H \).

3. \(H \) is neat:

This follows from 2. and the fact that \(S \) is \(E \)-inversive and \(ES \subseteq H \).

4. \(I_H = H \):

Since by 1., \(H \) is a subsemigroup of \(S \), \(H \subseteq H : x \) for any \(x \in H \). Also, because \(H \) is unitary, \(H : x \subseteq H \). Thus \(H = H : x \) for any \(x \in H \). Thus \(H \subseteq I_H \). Conversely, let \(a \in I_H \); then \(H : a = H \) and \(h \in H = H : a \implies ah \in H \implies a \in H \) (since \(H \) is unitary).

We have shown that \(H \) is an anticone. Since, by hypothesis, \(\xi \in H \) is an upper bound of \(ES \subseteq ES \cup \{\xi\} = H \), \(\xi \) is the greatest element of \(H \). Sufficiency now follows by Theorem ??.

Notice that in Theorem ?? the attribute ”with pivot \(\xi \)” is essential. In fact, consider the following example.

Example 3.9. Let \(T = \{0,1\} \) be the two element semilattice and let \(S = \{0,1,a\} \) with \(a0 = 0a = 0 \), \(a1 = 1a = 1 \), \(a^2 = 1 \) (see Theorem ??). Then \(a \in S \) is the greatest element of \(S \) and \(S \) satisfies the conditions of Theorem ?? with \(\xi = a \). Hence \(S \) is generalized \(F \)-semigroup with pivot \(\xi = a \). Now, 1 is also an upper bound of \(ES \), but \(ES \cup \{1\} = ES \) is not unitary in \(S \) since \(a.1 = 1 \in ES \), \(a \notin ES \). This means that \(S \) is not a generalized \(F \)-semigroup with pivot \(\xi = 1 \).

As an immediate consequence of Theorem ??, we give a characterization of those elements of a semigroup \(S \) which may serve as pivot of \(S \). Notice that by Theorem ?? there is at most one such element.
Corollary 3.10. Let S be a semigroup. Then S is a generalized F-semigroup with pivot ξ if and only if (i) ξ^2 is the greatest idempotent of S and $\xi^2 \leq_S \xi$, (ii) for any $a \in S$ there exists $a' \in S$ that $aa' \leq S \xi^2$, (iii) $E_S \cup \{\xi\}$ is unitary in S.

Note that the conditions of Corollary 3.10 also characterize those order ideals of a semigroup (S, \leq_S) which are (principal) anticones of S.

As a special case of Theorem 3.9, consider a semigroup S such that E_S has a greatest element. Then we obtain the following

Corollary 3.11. Let S be a semigroup containing a greatest idempotent e. Then S is a generalized F-semigroup with pivot e if and only if S is E-inversive and E-unitary.

The condition imposed on S in Corollary 3.11 is certainly satisfied if S has an identity. In this case it is easy to show that the identity, being a maximal element of (S, \leq_S), is the pivot of S. Thus, we obtain a characterization of generalized F-monoids:

Corollary 3.12. Let S be a monoid. Then S is a generalized F-semigroup if and only if S is E-inversive and E-unitary.

Next we study generalized F-semigroups which are regular. We begin with the more general situation where only the pivot of S is regular. First we show

Proposition 3.13. For a generalized F-semigroup with pivot ξ the following are equivalent:

(i) ξ is regular; (ii) ξ is (the greatest) idempotent; (iii) S is E-unitary.

Proof. By hypothesis, there exists a group G and a surjective homomorphism $\varphi : S \to G$ such that $1_G \varphi^{-1} = \{\xi\}$.

(i) \implies (ii). Let $\xi' \in S$ be such that $\xi = \xi \xi' \xi$. Since $\xi \xi' \in E_S$, we have that $(\xi \xi') \varphi = 1_G$ so that $\xi \xi' \in \{\xi\}$. Hence $\xi \xi' \leq_S \xi$ and so,

$$\xi \xi' = x \xi = \xi y = x \xi \xi'$$

for some $x, y \in S^1$. Thus $\xi = x \xi = \xi \xi' \in E_S$. (It follows by Theorem 3.9 that ξ is the greatest idempotent.)

(ii) \implies (iii). This follows from Corollary 3.11.

(iii) \implies (i). Since by Theorem 3.9, $\{\xi\}$ is a semigroup with greatest element ξ, $\xi^3 = \xi^2 \in E_S$ by Lemma 3.10. Thus, by hypothesis, $\xi^2 \xi \in E_S$ implies that $\xi \in E_S$. Hence ξ is regular.

As a consequence of Proposition 3.13, the conditions of Corollary 3.10 characterize the generalized F-semigroups with regular pivot. Also they yield a characterization of the regular generalized F-semigroups:

Theorem 3.14. Let S be a regular semigroup. Then S is a generalized F-semigroup if and only if S is an E-unitary monoid.
Proof. Let S be a regular semigroup. Then S is E-inversive. If S is an E-unitary monoid it follows from Corollary ?? that S is a generalized F-semigroup.

Conversely, if S is a regular generalized F-semigroup with pivot ξ then by Proposition ??, ξ is the greatest idempotent of S and S is E-unitary. Following the proof of Proposition 7.1.3 in [10], we show that ξ is the identity of S. Let $a \in S$ and $a' \in S$ be such that $a = aa'a$. Since $aa', a'a \in E_S$ we have by Corollary ??, that $aa', a'a \leq_S \xi$ and so $a'a\xi = a'a$ and $\xi aa' = aa'$. Hence, $a\xi = \xi a = a$ and so ξ is the identity of S.

Example 3.15. Let B be a band with identity 1_B, let G be a group with identity 1_G and let $S = B \times G$ be their direct product. Then S is a regular monoid with identity $(1_B, 1_G)$ and $E_S = \{(e, 1_G) \in S : e \in B\}$. Simple calculations show that S is E-unitary. Thus S is a generalized F-semigroup. The corresponding group is the given group G and $(1_B, 1_G)$ is the greatest element of its identity class since $\varphi : S \to G$, $(e, a) \varphi = a$, is a surjective homomorphism.

A construction of all regular generalized F-semigroups is given in [8].

4. Examples

In this section we characterize in several classes of semigroups those members which are generalized F-semigroups. Moreover, two types of constructions are investigated with the aim to produce generalized F-semigroups: inflations of semigroups and strong semilattices of monoids. The proofs concerning the last two ones are not given because they consist of extensive calculations.

1. Every group G is a (generalized) F-semigroup (the identity relation on G is the desired group congruence).

2. Every semigroup S with greatest element ξ is a generalized F-semigroup (the universal relation on S is the corresponding group congruence).

3. A band B is a generalized F-semigroup if and only if B has an identity (this is a consequence of 2. and of Theorem ??).

In the class of all monoids the generalized F-semigroups were characterized by Corollary ??). For a much bigger class of semigroups, we have

4. Let S be a semigroup containing a maximal element m, which is idempotent. Then S is a generalized F-semigroup if and only if S is E-inversive, E-unitary and has a greatest idempotent (this follows from Theorem ?? and Corollary ??).

5. Let S be a trivially ordered semigroup (i.e., the natural partial order of S is the identity relation). Then S is a generalized F-semigroup if and only if S is a group. (Necessity: Since by Theorem ??, S is E-inversive and $E_S = \{\xi\}$, S is regular by [14], Proposition 3; hence S is a group by [16], Lemma II.2.10.) Examples of trivially ordered semigroups S (without zero) are provided by weakly cancellative semigroups, right-(left-) simple semigroups, right-(left-) stratified semigroups, in particular, completely simple semigroups (see [7]).
6. Let \(S \) be a semigroup with zero. Then \(S \) is a generalized \(F \)-semigroup if and only if \(S \) has a greatest element (that is, \(S \) is of type \((i)\) or \((ii)\)) in Theorem 7.2. Note that 0\(\varphi \) is the zero of \(G = S/\rho \), whence \(|G| = 1 \).

In the class of all regular semigroups, the generalized \(F \)-semigroups were characterized by Theorem 7.2 as the \(E \)-unitary monoids. The inverse case deserves to be mentioned separately. Note that every \(E \)-unitary inverse semigroup is isomorphic to a McAlister \(P \)-semigroup \(P \), and that \(P \) has an identity if and only if \(Y \) has a greatest element (see [10] Theorem 7.1.1). Thus we obtain

7. Let \(S \) be an inverse semigroup. Then \(S \) is a generalized \(F \)-semigroup if and only if \(S \) is isomorphic to a \(P \)-semigroup \(P(Y,G;X) \) such that \(Y \) has a greatest element with respect to \(\leq X \).

Remark 4.1. This result provides a method for the construction of all generalized \(F \)-inverse semigroups. Take a lower directed partially ordered set \(X \) (see [16], Lemma VII.1.3), a principal order ideal \(Y \) of \(X \), which is also a subsemilattice, and a group \(G \) acting on the left by order-automorphisms on \(X \) such that \(G.Y = X \); then \(S = P(Y,G;X) \) is a generalized \(F \)-inverse semigroup. Conversely, every such semigroup can be constructed in this way. It is worth noting the difference of this construction with that of all \(F \)-inverse semigroups: by [11], Theorem 2.8, a semigroup \(S \) is \(F \)-inverse if and only if \(S \) is isomorphic to \(P(Y,G;X) \) constructed as above with \(X \) a semilattice instead of a lower directed partially ordered set (see also [16], Proposition VII.5.11).

In the following, for two constructions necessary and sufficient conditions on the ingredients are given, which allow to produce further examples of generalized \(F \)-semigroups.

8. Inflations of semigroups

Let \(T \) be a semigroup; for every \(\alpha \in T \) let \(T_\alpha \) be a set such that \(T_\alpha \cap T_\beta = \emptyset \) for all \(\alpha \neq \beta \) in \(T \) and \(T_\alpha \cap T = \{\alpha\} \) for any \(\alpha \in T \). On \(S = \cup_{\alpha \in T} T_\alpha \) define a multiplication by

\[
a.b = \alpha \beta \quad \text{if} \quad a \in T_\alpha, b \in T_\beta.
\]

Then \(S \) is a semigroup called an inflation of \(T \). If \(T \) satisfies the condition that for every \(\alpha \in T \) there exist \(\beta, \gamma \in T \) such that \(\alpha = \beta \alpha = \alpha \gamma \) (for example, if \(T \) has an identity or if \(T \) is regular), the natural partial order on \(S \) was characterized in [7]:

\[
a \leq_S b \ (a \in T_\alpha, b \in T_\beta) \quad \text{if and only if} \quad a = b \text{ or } a = \alpha \leq_T \beta.
\]

In particular, if \(a, b \in T_\alpha \) then \(a \leq_S b \) if and only if \(a = \alpha \).

As it can be expected, the structure of \(S \) depends heavily on that of \(T \), in particular, the property to be a generalized \(F \)-semigroup.

Theorem 4.2. Let \(S = \cup_{\alpha \in T} T_\alpha \) be an inflation of the semigroup \(T \) such that for every \(\alpha \in T \) there exist \(\beta, \gamma \in T \) with \(\alpha = \beta \alpha = \alpha \gamma \). Then \(S \) is a generalized \(F \)-semigroup if and only if

\((i)\) \(T \) is a generalized \(F \)-semigroup with pivot \(\xi \), say;
(ii) \(|T_\alpha| = 1\) for every \(\alpha \in T\) with \(\alpha <_T \xi\);
(iii) \(|T_\xi| \leq 2\).

A particular case of inflations should be mentioned.

Corollary 4.3. Let \(G\) be a group and let \(S = \cup_{g \in G} T_g\) be an inflation of \(G\). Then \(S\) is a generalized \(F\)-semigroup if and only if \(|T_1| \leq 2\).

9. Strong semilattices of monoids

Let \(Y\) be a semilattice and for every \(\alpha \in Y\) let \(S_\alpha\) be a monoid (whose identity is \(1_\alpha\)) such that \(S_\alpha \cap S_\beta = \emptyset\) for all \(\alpha \neq \beta\) in \(Y\). For any \(\alpha, \beta \in Y\) with \(\beta \leq Y \alpha\), let \(\varphi_{\alpha, \beta} : S_\alpha \to S_\beta\) be a homomorphism such that \(\varphi_{\alpha, \alpha} = \text{id}_{S_\alpha}\) for every \(\alpha \in Y\) and \(\varphi_{\alpha, \beta} \circ \varphi_{\beta, \gamma} = \varphi_{\alpha, \gamma}\) for \(\gamma \leq Y \beta \leq Y \alpha\) in \(Y\). On \(S = \cup_{\alpha \in Y} S_\alpha\) define a multiplication by

\[a \cdot b = (a \varphi_{\alpha, \alpha})(b \varphi_{\beta, \alpha\beta})\text{ if } a \in S_\alpha, b \in S_\beta,\]

where \(\alpha\beta = \inf\{\alpha, \beta\}\) in \(Y\). The semigroup \(S\) is called strong semilattice of monoids and is denoted by \(S = [Y; S_\alpha, \varphi_{\alpha, \beta}]\). By [15], the natural partial order on \(S\) is characterized by

\[a \leq_S b \text{ (} a \in S_\alpha, b \in S_\beta \text{) if and only if } \alpha \leq Y \beta, a \leq_\alpha b \varphi_{\beta, \alpha},\]

where \(\leq_\alpha\) denotes the natural partial order on \(S_\alpha\) (\(\alpha \in Y\)).

Proposition 4.4. Let \(S\) be a strong semilattice of monoids. Then \(S\) is a generalized \(F\)-semigroup if and only if \(S\) is an \(E\)-inversive, \(E\)-unitary monoid.

Theorem 4.5. Let \(S = [Y; S_\alpha, \varphi_{\alpha, \beta}]\) be a strong semilattice of monoids. Then \(S\) is a generalized \(F\)-semigroup if and only if

(i) \(Y\) has a greatest element \(\omega\) and for every \(\alpha \in Y\), \(\varphi_{\omega, \alpha}\) is a monoid-homomorphism;
(ii) \(S_\alpha\) is \(E\)-unitary for any \(\alpha \in Y\) and \(\varphi_{\alpha, \beta}\) is idempotent pure, for all \(\beta \leq Y \alpha\) in \(Y\);
(iii) For every \(\alpha \in Y\) and \(a \in S_\alpha\) there exist \(\beta \leq Y \alpha\) in \(Y\) and \(x \in S_\beta\) such that \((a \varphi_{\alpha, \beta})x \in E_{S_\beta}\).

Remark 4.6. Concerning condition (iii) notice that it is possible that no component \(S_\alpha\) of \(S\) is \(E\)-inversive but that \(S\) is so. For example, let \(Y\) be a chain, unbounded from below, \(S_\alpha = (N, .)\) \((0 \notin N)\), \(\varphi_{\alpha, \alpha} = \text{id}_{S_\alpha}\) for every \(\alpha \in Y\), and for all \(\beta < Y \alpha, a \in S_\alpha, a \varphi_{\alpha, \beta} = 1_\beta\) (the identity of \(S_\beta\)). Then for any \(a \in S, a \in S_\alpha\) say, \(a 1_\beta = 1_\beta \in E_S\) whenever \(\beta < Y \alpha\).

Two particular cases of this construction should be mentioned.
Corollary 4.7. Let $S = [Y; S_\alpha, \varphi_{\alpha, \beta}]$ be a strong semilattice of unipotent monoids (i.e., $E_{S_\alpha} = \{1_\alpha\}$ for every $\alpha \in Y$). Then S is a generalized F-semigroup if and only if

(i) Y has a greatest element;
(ii) $\varphi_{\alpha, \beta}$ is idempotent pure for all $\beta \leq Y \alpha$ in Y;
(iii) for every $\alpha \in Y$ and $a \in S_\alpha$ there exists $\beta \leq Y \alpha$ in Y such that $(a \varphi_{\alpha, \beta})x \in E_{S_\beta}$.

The second particular case is a specialization of Corollary 4.7, supposing that every $S_\alpha (\alpha \in Y)$ is a group, that is, S is a Clifford-semigroup.

Corollary 4.8. Let $S = [Y; G_\alpha, \varphi_{\alpha, \beta}]$ be a strong semilattice of groups. Then S is a generalized F-semigroup if and only if Y has a greatest element and $\varphi_{\alpha, \beta}$ is injective for all $\beta \leq Y \alpha$ in Y.

References

E. Giraldes P. Marques-Smith H. Mitsch
UTAD Universidade do Minho Universität Wien
Dpto. de Matemática Centro de Matemática Institut für Mathematik
Quinta de Prados Campus de Gualtar Nordbergstrasse 15
5000 Vila Real 4700 Braga 1090 Wien
Portugal Portugal Austria
EGS@utad.pt psmith@math.uminho.pt heinz.mitsch@univie.ac.at