
Universidade do Minho
Escola de Engenharia

Vladyslav Reznikov

Creating tailored OS images for embedded
systems using Buildroot

dezembro de 2019U
M

in
ho

 |
 2

01
9

Vl
ad

ys
la

v
Re

zn
ik

ov
C

re
at

in
g

ta
ilo

re
d

O
S

im
ag

es
 fo

r
em

be
dd

ed

sy
st

em
s

us
in

g
B

ui
ld

ro
ot

Vladyslav Reznikov

Creating tailored OS images for embedded
systems using Buildroot

Dissertação de Mestrado
Engenharia Eletrónica Industrial e Computadores

Trabalho efetuado sob a orientação do
Professor Doutor Jorge Cabral

Universidade do Minho
Escola de Engenharia

dezembro de 2019

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras

e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos

conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não

previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da

Universidade do Minho.

Atribuição-NãoComercial-CompartilhaIgual
CC BY-NC-SA

https://creativecommons.org/licenses/by-nc-sa/4.0/

ii

Acknowledgements

I would like to thank Professor Jorge Cabral for giving me the chance to develop this project, and for all

the guidance throughout the development of this work. Also i would like to thank Professor Matjaz Colnaric

from Univerza v Mariboru who guided me during my Erasmus+ mobility in the first semester where the

theoretical research for this Dissertation was made. Thank you everyone from ESRG for the help and

support.

To my family for always being my side no matter the choice i made. To my mom and my little brother,

for being my inspiration. A huge thanks to my Dad for the incentive. To my grandmother for trying to help

and understand what i was developing although not having any bases in the area. To my stepmother and

my sister for being cheerful with every minor improvement of mine.

A huge thanks to Rafael for being my partner and part of this journey since the very beginning, and

never leaving me behind. A special thanks to Rafaela for being the best friend i could have during this past

times and always supporting me no matter what. To Miguel for all the friendship and support. To Afonso

and João for never letting me quit. To my Royal Pomba friends for never letting me down. To my friends

from OPUM DEI for refreshing my mind. To all of my colleagues and friends from NEEEICUM and AAUM

for constantly teaching me new things. To my friends from Erasmus for showing me that it doesn’t matter

where you are from to achieve great things.

A big thank you to Beatriz for all the patience and care given through these last few months. For being

the best person i could’ve met and always guiding me to the right direction. Without your love and support

none of this would be possible.

Thank you to everyone who has crossed paths with me and contributed to making me the person i am

today.

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

iv

Resumo

Criação de SO customizáveis para um ambiente embebido utilizando o Buildroot

A evolução dos sistemas embebidos tem sido cada vez mais notória durante os últimos anos, em-

barcando nas mais diversas áreas e necessidades dos seres humanos. Hoje em dia, as tecnologias

embebidas são responsáveis pelas capacidades sensoriais de uma grande maioria de dispositivos mod-

ernos, quer a nível do consumidor, quer a nível industrial. De modo a operar no ambiente embebido, o

dispositivo tem de possuir um sistema operativo adequado. Estes sistemas operativos diferenciam-se dos

SO regulares, pois garantem que o sistema opere confiável e eficientemente através da manipulação de

recursos hardware e software. De modo a facilitar o desenvolvimento, uma camada de abstração também

é fornecida. O hardware que corre num sistema embebido é, normalmente, limitado nos seus recursos

como a RAM (Random Access Memory) e a ROM (Read-only Memory), fazendo com que estes sistemas

sejam desenhados com o propósito de garantir a sua eficiência. Desta troca advém, naturalmente, uma

perda de outras funcionalidades.

De modo a escolher quais são as funções do sistema que devem prevalecer para que este opere cor-

retamente, é necessário customizar o sistema operativo. Atualmente, existem ferramentas que permitem

construir imagens personalizadas para os sistemas operativos, como é o caso do Buildroot. O Buildroot

permite que o sistema seja construído apenas com os recursos necessários para o cumprimento da final-

idade de um sistema embebido, fazendo com que este sistema seja mais compacto e determinístico. A

personalização da imagem é feita através de um menu de texto , que tem como base a manipulação de

ficheiros de configuração e shell scripts.

O menu de texto disponiblizado pelo Buildroot tem uma vasta coleção de ferramentas disponíveis que

são adicionadas a um ficheiro de configurações gerais, mediante a arquitetura desejada. A imagem do

SO final, apesar de ser adequada para o sistema embebido em questão, não está configurada de uma

forma minimalística. O tópico desta dissertação é entender a funcionalidade do back end do Buildroot de

v

modo a criar uma ferramente que permite a criação de imagens com conteúdo mínimo através de um

menu gráfico de fácil compreensão.

Palavras-chave: Buildroot, Compute Module, Raspberry Pi Sistema Embebido, Sistema Operativo.

vi

Abstract

Creating tailored OS images for embedded environment using Buildroot

The embedded systems progression is noticeable throughout the last years. Today, embedded tech-

nologies are responsible for the intellectual capabilities of most modern devices, both consumer and

industrial. To operate in an embedded environment, a device must own an embedded operating system.

This OS differentiates itself from a regular OS by insuring it operates in an efficient and reliable manner

by managing hardware and software resources, providing an abstraction layer to simplify the process of

developing higher layers of software. The hardware running an embedded system can be very limited in

resources such as RAM and ROM, making these systems designed for resource efficiency that comes at

the cost of losing some functionalities. Hence, the operating system must be tailored in order to achieve

desired operations under these circumstances.

The customization and build of the image can be done with Buildroot tool, which allows the user to build

an image only with needed features and packages, making the system more compact and deterministic.

The customization is done through a front end menu interface which back end manipulates configuration

files and shell scripts.

The configuration through menu interface has an extensive range of available features that are built

on a template file with additional general configurations. The final images, although being suitable for

embedded devices, are not minimally tailored. This Dissertation understands the back end functionality of

Buildroot in order to create a tool that creates minimalistic images for embedded usage based on a minimal

default image and the configuration is done through a perceptive GUI, running in all type of environments.

Keywords: Buildroot, Computed Module, Embedded Systems, Operating System, Raspberry Pi.

vii

Table of Contents

Resumo vi

Abstract vii

Table of Contents viii

List of Figures xi

List of Listings xiv

Acronyms List xiv

1 Introduction 1

1.1 Contextualization . 2

1.2 Motivation . 3

1.3 Objectives . 4

1.4 Dissertation Structure . 5

1.5 Methodoly . 6

2 State of the Art 7

2.1 Basic concepts . 7

2.1.1 Operating System . 8

2.1.2 Buidroot . 11

2.1.3 Output . 16

2.2 Linux From Scratch (LFS) . 17

2.3 OpenWRT . 18

2.4 Yocto Project . 21

2.4.1 OpenEmbedded . 22

viii

2.4.2 Poky . 23

2.4.3 Toaster . 24

2.5 COSMOS . 25

2.6 Remastersys/Respin . 27

2.7 Linux Live Kit . 28

2.8 Ubuntu Imager . 28

2.9 Debian Live . 32

2.9.1 Debootstrap . 33

2.10 KIWI . 33

2.11 Conclusion . 34

3 System Specification 36

3.1 System Requirements . 36

3.2 System Architecture . 37

3.3 Hardware Specification . 39

3.3.1 Raspberry Pi 3 model B . 39

3.3.2 Compute Module 3 . 40

3.4 Software Specification . 41

3.4.1 Qt . 41

3.4.2 Docker . 42

4 Implementation 44

4.1 Minimal configuration . 45

4.2 Initial configuration of the System . 45

4.3 Customization . 51

4.4 Integration with Docker . 54

4.4.1 Dockerfile . 55

4.5 Conclusion . 57

5 Tests and Results 58

5.1 Minimal image tests . 58

5.2 Python tests . 59

ix

5.3 IoT tests . 60

5.4 Docker tests . 63

6 Conclusions and Future Work 65

6.1 Conclusions . 65

6.2 Future Work . 66

References 68

x

List of Figures

1.1 Embedded Systems Elements. 2

2.1 Kernel layout . 8

2.2 Monolithic kernel and microkernel overview . 9

2.3 Buildroot overview . 11

2.4 Config.in file . 13

2.5 OpenWRT workflow . 20

2.6 Yocto Project overview . 22

2.7 Yocto Project workflow . 23

2.8 Analysis Mode workflow . 25

2.9 Build Mode workflow . 25

2.10 COSMOS workflow. 26

3.1 Generic embedded system architecture, showing where this Dissertation’s final applica-

tion will act . 38

3.2 System’s architecture . 39

3.3 Docker container vs VMs . 42

4.1 GUI QDialog window created with Qt Design . 45

4.2 GUI for the Installation / Configuration of Buildroot and its dependencies 48

4.3 System initialization flowchart . 49

4.4 Check root permission flowchart . 50

4.5 Application’s working directory structure . 51

4.6 Customization GUI . 52

4.7 Custom password GUI . 53

4.8 Customization flowchart . 54

xi

5.1 Minimal image running on Raspberry Pi . 59

5.2 Minimal image size on GParted . 59

5.3 Testing a python script with generated OS . 60

5.4 Running setup.py script that creates an IoT client 61

5.5 IoT Server/Client data exchange . 62

5.6 Output from the build of the Dockerfile. 63

5.7 Running the project inside of a Docker container . 64

xii

List of Listings

4.1 QProcess for root recognition. 46

4.2 Passing the password as an argument to a shell script. 46

4.3 Installing pre requisites for Buildroot. 47

4.4 Downloading the most recent version of Buildroot. 47

4.5 Unpacking the Buildroot. 47

4.6 Creating additional folders for external processes. 47

4.7 Setting an external build path to Buildroot. 48

4.8 Sending script’s terminal output through SIGNALS 49

4.9 Creating a Qt Project File. 54

4.10 Making a Qt Project platform-specific. 54

4.11 Dockerfile’s base image. 55

4.12 Dockerfile: installation of the requirements example. 55

4.13 Final Dockerfile of the project . 56

5.1 Command to run GUI on host display from a docker container. 63

5.2 Running a docker container. 63

xiii

Acronyms List

BSP Board Support Package.

CD Compact Disk.

CDFS Compact Disk File System.

CM Compute Module.

COSMOS C# Open Source Managed Operating System.

CPU Central Processing Unit.

DHCP Dynamic Host Configuration Protocol.

DIY Do It Yourself.

FS File System.

GNU GNU’s Not Unix.

GPIO General-purpose input/output.

GUI Graphical User Interface.

HAL Hardware Abstraction Layer.

IoT Internet of Things.

IPC Inter Process Communication.

MB Mega byte.

MOC Meta-Object Compiler.

xiv

OS Operating System.

POSIX Portable Operating System Interface.

QEMU Quick Emulator.

RAM Random Access Memory.

ROM Read-only Memory.

Rpi Raspberry Pi.

SD Secure Digital.

SDK Software Development Kit.

SoC System on Chip.

USB Universal Serial Bus.

VM Virtual Machine.

xv

Chapter 1

Introduction

Embedded systems are everywhere around us. As the world has become more technological, embed-

ded system also followed the growth and became indispensables. Nowadays we use embedded systems

in our smartphones, cars and at home without even knowing we are using them. Due to real-time con-

straints, these systems were initially used in time-critical application domains where failures could lead to

huge consequences. However, as the cost for processing power and memory decreased alongside the

ability to design low cost SoCs (System on Chip), the range of application environments for embedded

systems enlarged. Their dependence and growth led to new techniques and to the emergence of a strong

industry that develop and use this kind of systems.[1]

Embedded systems , as the name suggests, are systems that are embedded in a larger one by having

a dedicated function. An embedded system can be defined as any computer system contained within a

product that is not identified as a computer. As any electronic system, an embedded system requires a

hardware platform to run, which is usually a microcontroller. On the other side, there must be a specific

software written for embedded systems to perform a particular function. It is possible to conclude that

these systems are a combination of hardware and software that are usually developed simultaneously since

the software components can take advantage of special hardware features in order to improve performance

and the hardware components, on the other side, can simplify the design of a module by implementing

certain functionality in software.

By comparing embedded systems to generic ones, some major differences can be observed. Em-

bedded systems focus essentially on cost, power consumption and predictability as generic systems only

consider the cost and average speed. In order to achieve predictability and to not waste any computing

power, the run-time of an embedded system must be fixed while generic systems follow the faster the

1

Chapter 1. Introduction 2

better approach. Embedded system’s application is known during the design time because the system is

being designed for a specific function while generic systems have a wide range of applications as we can

observe in any desktop.

In order to make embedded devices smarter and capable of doing multiple jobs in less time, the need

for an OS (Operating System) emerged. An Operating System supports enough memory for multi tasking,

can be reusable and is also stable with more software updates. Nevertheless, General-Purpose Operating

Systems are not suitable for an embedded environment, creating the need for an Embedded Operating

System.

1.1 Contextualization

Embedded systems continuous growth is noticeable. As the production cost of SoC decreases, the

number of applications for embedded systems flourishes alongside the amount of embedded engineers.

The embedded systems are known for being an integration between the hardware and software. This

way, it is possible to discern two different parts, the Embedded Hardware - which is a combination of

the microchip and several electronic components, and the Embedded Software - which is able to perform

operations and tasks on the hardware. The individual existence of each of this elements does not bring

any advantage to the world. The structure of and embedded system can be seen in the Figure 1.1

Figure 1.1: Embedded Systems Elements.

The embedded systems’ appliance in the market has grown to multi-core technologies, making a single

chip behave like it has a logic of 2 or more processors, driving the electronic devices to be smarter and

urging to create connectivity between them with the emergence of the IoT (Internet of Things). Furthermore,

Chapter 1. Introduction 3

industries like the automotive require an embedded graphic systems.[2] This led to the requirement for a

proficient software modified for the target’s purpose.

Embedded developers bump into loads of obstacles in order to develop an embedded system. While

desktop developers can safely ignore everything that happens before the first line of application code in

main() or similar, the embedded developers have plenty of issues to overpass before starting the code.

Setting up the board specific devices, initiating the processor work, configuring stack pointers and address-

ing RAM (Random Access Memory) are just some of them. Happily, the market has tools to automate this

process by generating an image for the Embedded OS depending on user’s choice through a text based

interface.

Using Buildroot it is possible to configure the necessary features for a Linux-based OS and generate

all the necessary files to run it on the desired architecture. This tool, although simplifying the process,

still requires some knowledge in order to choose from a vast variety of available packages to suit the final

OS image to fulfill the needs of the embedded system. The modifications on kernel’s level require even a

steeper learning curve as the majority of OS images are built upon a default kernel configuration which is

still overweight.

By abstracting the user from all the necessary knowledge and Buildroot’s operations it is possible do

increase the range of developers using embedded systems and making the embedded developers to save

time when creating OS specific to their needs. Building the OS features upon a lighter default image and

having a minimal configuration for kernel makes the final OS more specific and unloads the processor.

1.2 Motivation

One of the demands of the Embedded Systems master course was to develop a project on a Raspberry

Pi board recurring to the usage of an Embedded Operating System. In order to suit the needs of the

project, the OS image was created with the assistance of Buildroot. After studying the basis of Buildroot,

an image was generated for Raspberry Pi 3 architecture by following simple steps on what to choose in

the text based configuration menu. By the end it was known how the Embedded Systems work and what

is their role as well how to develop a project with real time constraints. Every part made itself clear except

Chapter 1. Introduction 4

what comes before the beginning of the project and how can the Operating Systems be customized in the

embedded environment.

First of all it was important to understand that the OS generated by Buildroot were based on Linux. It

is not possible to install and run Linux on embedded devices for the reason that Embedded Systems:

• may be based on different processors and support different peripherals;

• boot from flash instead of hard drives;

• don’t support BIOS;

• are resource constrained and hence can’t run bulky OS;

• are low power devices;

• require real time performance.

Therefore, Embedded Linux was created to satisfy these requirements. In order to understand how it

works and to tailor it for a specific need, a deep knowledge about Kernel is indispensable. Running the

generated Linux-based OS on a platform is only possible by having a BSP (Board Support Package) that

contains all the necessary drivers for the OS to function in a particular hardware environment.

Despite all the hard work, the embedded systems are clearly conquering the market and it is no longer

possible to imagine a world where the embedded systems do not exist. But what if creating an OS for a

specific embedded environment was easier and saved more time?

1.3 Objectives

Taking in consideration the motivation, it is the aim of this Dissertation to simplify the creation of

Embedded OS images by abstracting the user from all the hard work, and making them even more specific

to the project, fulfilling one of the main constraints: low size. The target platforms for this Dissertation are

the boards used in the laboratory by other students of the development team.

The objectives of this Dissertation are:

• Understand the Embedded Linux and Kernel;

Chapter 1. Introduction 5

• Study Buildroot and analyse its features;

• Create a minimal configuration OS image for Raspberry Pi family;

• Automate the OS image creation;

• Abstract the user from all the hard work;

• Grant portability across machines;

• Make it easy to scale for other architectures.

1.4 Dissertation Structure

This document is split in six chapters, and its structure follows a logical order according to the devel-

opment process that occurred during this Master’s Thesis.

The first chapter introduces the topic of this Dissertation, referring the context and motivation for its

development, as well as what is aimed to achieve and how.

The chapter two starts by introducing the basic concepts needed for a deeper understanding of this

Dissertation. It also explores the market offers to overcome the problem that this project tries to solve.

The third chapter gives an overview of the system, its requirements and constraints as well as a deeper

specification of the target platforms.

In the chapter four a brief explanation on how the project was implemented is given, segregating each

path taken in order to achieve the aim of the project.

Chapter five shows the tests that were made alongside some considerations about the obtained results.

In the sixth chapter, the main conclusion of this project is presented beside the possible future im-

provements that can be made.

Chapter 1. Introduction 6

1.5 Methodoly

Before starting the development of this Disseration’s final application, the market needs had to be

analyzed deeply in order to make a project that doesn’t lack what others try to achieve.

Firstly, it was necessary to analyze the tools that already create custom OS and two different types were

found:

• Applications that create custom General Purpose Operating Systems;

• Applications that create custom Embedded Operating Systems;

These two groups will be analyzed in the next chapter, pointing to the main differences and finding the

best combination to work with in order to develop an application that can be used for everyone.

The user needs and the most common features of an Embedded Project will also be taken into account

in order to create an user friendly environment.

Chapter 2

State of the Art

In order to have a greater vision on what can be done it is crucial to scan the market to understand

what has been done so far. Having access to the tools that are already popular and used for similar works

can be enlightening for the project development and have direct impact on it.

Considering the goals and objectives of this dissertation, it is important to make the first step and un-

derstand the range of the project and its audience necessities. Understanding that the desired application

of this dissertation is to obtain tailored final images for an OS to run on an Embedded System, makes it

urgent to find out why do the existing distributions do not fulfill this request and what is missing to achieve

this goal. Also it is indispensable to learn about tools that customize the final image and what are their

suitable environments for deployment and future work.

But first it is necessary to understand the theoretical basis on which this dissertation stands. This

chapter also gives the theoretical background, explaining some crucial concepts and how they work.

2.1 Basic concepts

In this section, some crucial concepts to this dissertation will be briefly explained. This way, all the

subsequent explanation on how the thesis was implemented will be clearer.

7

Chapter 2. State of the Art 8

2.1.1 Operating System

2.1.1.1 Kernel

Kernel is a program that constitutes the central core of a computer OS, it is the lowest level of easily

replaceable software that interfaces with the hardware, having complete control over everything that occurs

in the system. Kernel itself does not interact directly with the user but rather with the shell and other

programs as well as with hardware devices on the system as it can be observed in the figure 2.1.

Figure 2.1: Kernel layout (adapted from [3]).

Kernel is the first part of the OS to load into memory during the startup, and it remains there for the

entire duration of the session. Because of its critical nature, kernel code is loaded into a protected area

of memory preventing it to be overwritten. Hence, the executed tasks are similarly divided into kernel

space - which carries the processes executions and handles interruptions, and user space - running user

applications that can’t have access to kernel directly. This separation prevents user data and kernel data

from interfering with each other and thereby reducing the performance level or causing the system to

become unstable.

Chapter 2. State of the Art 9

Kernel provides basic services for all the other parts of the Operating System, including the manage-

ment of memory, processes, files and I/O devices.

Kernel’s trivial components are:

• Scheduler - determines how the various processes share kernel’s processing time;

• Supervisor - grants use of the computer to each process when it is scheduled;

• Interrupt Handler - handles all requests from the various hardware devices that compete for the

kernel service;

• Memory manager - allocates the system address spaces.

Kernels can be classified in various different categories. The most used are monolithic and microkernel.

Monolithic kernel was built having all the basic system services like process and memory manage-

ment and interrupt handling packaged into a single module in kernel space. This architecture is character-

ized by the huge size of kernel and poor maintainability. The modern approach to monolithic architecture

allows different modules to be dynamically loaded and un-loaded, permitting to manage every module

individually, increasing the maintainability of the project.

Microkernel resolves the problem of ever growing size of kernel code. This architecture provides only

minimal services such as defining memory address spaces, inter process communication and process

management. All other functions like driver management, protocol stack and filesystem run in user space.

Using this method, the kernel code size is reduced and the security and stability are increased as only a

minimum code runs in kernel space. The differences between these 2 types of kernel can be visualized

in the figure 2.2.

Figure 2.2: Overview of Monolithic Kernel (on the left) and Microkernel (on the right) (adapted
from [4]).

Chapter 2. State of the Art 10

2.1.1.2 Linux Kernel

Linux Operating system’s kernel is monolithic, which means large size and great complexity. As it

was referred before, in this type of kernel not only the CPU (Central Processing Unit), memory and IPC

(Inter Process Communication) but also services like device drivers, filesystem management and system

server calls are included in kernel space. This approach, although facilitating the communication between

processes and allowing a more direct access to hardware, is unable do handle the general underlying desire

to keep the kernel configuration as simple as possible. Monolithic’s characteristic of being easy to design

was the main reason to opt by this type and using this advantage some of the flaws were successfully

overhauled by Linux kernel developers by creating kernel modules that can be loaded and unloaded in

run time, meaning the possibility to add and remove features on the fly.[5] These kernel modules are

also known as Loadable Kernel Module (LKM) which function is to add functionalities to the base kernel

for things like devices, filesystems, and system calls. Additionally, unlike standard monolithic kernel, the

device drivers can be preempted under certain conditions in order to handle hardware interrupts correctly.

Linux kernel is the most flexible OS in the market having over 7 million lines of code. Due to its

malleability it can be tuned for a wide range of different systems. Using LKM it is possible to customize

kernel for a specific environment, creating Operating Systems with different focus. For example, it is

possible to remove support for the many different networked filesystems from an embedded device that

has no networking support.[3]

2.1.1.3 Embedded Operating System

No specific kernel is available for embedded systems. Nevertheless, there are kernels specially config-

ured/tailored for specific embedded hardware configurations.

Using these commonly configured kernels it is possible to create OS for embedded environments.

These OS are specified to perform a particular task for a device that is not a computer and run the code

for the device to do its job. The idea behind embedded systems is to be compact. Being limited in terms

of functions, these systems may only run a single application, making every process crucial for the device

operations. Hence, an embedded OS must be reliable and run the applications regarding constraints on

memory, size and processing power.

Chapter 2. State of the Art 11

What makes embedded systems so different is their diversity.[6] Embedded devices’ hardware vary in

both design and capability and these platforms contain a fair amount of custom, closed-source software

which is not packaged by any distributor. In order to make the core functionality of the OS to work on

a specific hardware, a BSP engineer must modify the low-level code. Also, getting all the necessary

software components together to generate a Linux distribution for a particular embedded product can be

a nightmare. Combining the effects of this hardware and software diversity, embedded systems present

themselves as unique and extremely demanding systems. It is highly difficult to design a distribution

which is simultaneously general enough to be useful and targeted to be efficient across a wide range of

embedded platforms.

In order to simplify kernel’s customization, various approaches are being developed by a number of

embedded Linux projects generating a set of tools which may be brought to bear on a particular project

according to its needs. These configurable build architectures have the capacity and flexibility to let the

developer select, configure and build the sources by hand using a framework that hides details until the

developer needs them. Buildroot is perhaps the simplest build framework project that automates the

process of building a cross-compiling toolchain and a root fileystem for an embedded system.

2.1.2 Buidroot

Buildroot is a build system that allows embedded Linux developers to generate a working embedded

Linux system almost from scratch. This tool is a set of makefiles that automate the process of downloading,

configuring, compiling and installing all the available software packages. The dependencies are managed

and cross-compiling issues already solved for most of the platforms.

Buildroot has the capability to automatically build the required cross-compilation toolchain, create a

root filesystem, compile Linux kernel image and generate a bootloader for the target embedded system,

as it can be observed in 2.3.

Figure 2.3: Buildroot overview. (Adapted from [7]).

Chapter 2. State of the Art 12

This build system was designed having simplicity in mind and it is best suited for small to medium-

sized embedded systems. In the general root filesystem, Buildroot doesn’t track which source packaged

installed what. A full clean up is necessary in order to rebuild the file system.

This section will approach Buildroot’s components and give a brief explanation about general files that

make the customization of embedded OS possible.

2.1.2.1 Bootloader

The bootloader is a piece of code that runs before the Operating System. This code, usually small

in size, has the specifications of target board and processor, preparing the necessary initialization for

Operating System to come in. It usually starts from the flash memory (ROM).

Generally the bootloader is written to empower a controller with self-burning capabilities. The bootloader

program has access to any of inbuilt peripherals like USB, USART, SPI, etc. Its first task is to map RAM

to predefined addresses and after this function is done, the Stack Pointer is set up. ”On a PC, it is

used to boot the OS. In case of a microcontroller’s bootloader, it enriches its capabilities and makes it a

self-programmable device.” [8]

Using Buildroot, the bootloader is controlled by config.txt and cmdline.txt which are files that teach the

bootloader where to find kernel and which parameters to pass.

2.1.2.2 Makefile

Make file, typically designated as Makefile contains a set of directives used by a make build automation

to generate a target/goal. It is a guide on how to compile and link a particular program. Buildroot’s

toplevel makefile handles the configuration and general composition of the build. Parallel execution of this

Makefile is disabled because it changes the packages building order, that can be a problem due to package

dependencies and in case two packages manipulate the same file in the target directory.

What does Buildroot’s makefile do:

• Defines bash as shell;

• Sets output path (O=/path);

Chapter 2. State of the Art 13

• Checks if current BR executions meets all the prerequisites. If not, buildroot will take care of it;

• Includes some helper macros and variables;

• Makes sure .config is overridden;

• Determines the userland (32bit or 64bit) the system is running on;

• Manages external trees.

The kernel is built with a system of individual makefiles that are all linked together when the kernel is

built, forming a large makefile. The individual makefiles do not look like any standard makefile, but instead

follow a special format that is unique to the kernel build process. The makefile needs to build only the

necessary files, depending on the configuration options enabled, in the proper format.[9]

2.1.2.3 Configuration files

The configuration files are what defines the generated embedded operating system. The inmost config-

uration is kernel’s and it is managed with KBuild. Kernel configurations divide themselves through modules

and packages, meaning that each package has its own configuration foled, usually stored as Config.in.

There is one main configuration file that sources all the necessary chain dependencies. In case of an

external tree, its configuration file is also included. The Config.in file can be visualized in 2.4.

Figure 2.4: Main Config.in file showing how all dependencies are included.

Chapter 2. State of the Art 14

After kernel configurations, general configure file step in. The .config file holds all the options for the

final image of the OS. The .config is big and hard to read, meaning it is necessary to recur to alternatives

in order to modify it.

The first option is to create it from scratch using themenuconfig graphical window available in Buildroot

in order to choose the desired options and tailor the final image. The process is not as simple as it

sounds considering the vast range of options handed by Buildroot. It is necessary to specify the system’s

architecture, processor, CPU features and kernel options before building de image. A full and correct

process requires knowledge and consumes time.

Another alternative is to build the image from default configurations available in Buildroot for a great

range of architectures. These files, denominated as defconfig have the general architecture specifications

for each board and also include some minimal features that do not have a default value. Using make

technology, by just running make BOARD_defconfig, the pre selected options instantly overwrite .config,

defining the features and packages included in the final image. This process is very simple as the hardest

part is finding the architecture that suits the project, but the problem is the user do not have control over

the defconfig file. The Operating System is committed to have the options specified in the file. It also

possible to write your own defconfig file and include it to the list, yet this brings down the initial problem

of advanced knowledge and time consuming.

2.1.2.4 BusyBox

BusyBox is a project initiated in 1996 to help the build of install disks for the Debian distributor. It was

revived in 1999 by uClibc maintainer and since then it can be found in most of embedded Linux systems

and all embedded Linux distributors.

Busybox is a collection of standard Linux utilities (e.g Shell, Init, etc.) optimized for lowmemory footprint

systems. It contains everything that is needed in order to boot and verify if the system is working properly.

The only missing link to being considered an OS is Kernel.

Busybox implements most Unix commands through a single execution file that has usually less than 1

MB (MegaByte). This executable acts as desired command by checking the name by which it was called.

When a command is typed during the system’s normal operation, BusyBox is invoked via the symbolic

Chapter 2. State of the Art 15

link. In turn, it determines the actually invoked command using the name being used to run it. E.g if the

BusyBox is invoked through a symlink called ls then will act like ls.

Using BusyBox, users save enormous amount of space and, since it is not necessary to configure and

build the sources of each tool, less time is consumed and not so great amount of knowledge is required.

Configurating the BusyBox:

• make menuconfig: text based interface for choosing the desired options;

• make defconfig: generic configuration enabling the most common options;

• make allnoconfig: configures only a strict minimum of options.

2.1.2.5 Shell Scripts

A script is a sequence of instructions that is interpreted or carried out by another program rather than

by the processor, without being compiled. Shell scripts are POSIX (Portable Operating System Interface)

compliant, meaning they follow a number of standards about how commands are executed in the shell.

This ensures that the results of scripts used in OS can be predicted reliably and their behavior is kept

within POSIX parameters.

Buildroot besides using make
config mechanism, also makes use of shell scripts to configure and

customize the generated target filesystem, essentially using two scripts: post-build.sh and post-image.sh.

The post-buid.sh, as the name indicates, is a shell script that is run after Buildroot builds all the

necessary packages but before rootfs files are assembled. Using this script it is possible to remove or

modify any file in the target filesystem, however it should not be used to fix packages which either have

unneeded files or were wrongly generated. Post-build script is run with Buildroot main tree as current

working directory and can be enabled by setting BR2_ROOTFS_POST_BUILD_SCRIPT in the configuration

file, specifying the path (may it be absolute or relative to the root of the Buildroot tree).

The post-image.sh are used to perform actions after the image has been created. It can be used to au-

tomatically extract the root filesystem into a chosen directory or to create specific firmware images that bun-

dles the root file system or any other action specific to project. This script also run in the main Buildroot tree

as current working directory and is set by the configuration option BR2_ROOTFS_POST_IMAGE_SCRIPT

Chapter 2. State of the Art 16

, specifying the path. The post-image script will be executed, similarly to Buildroot, as not root. Therefore,

actions requiring root permissions need special handling which is left to the developer.

2.1.3 Output

Buildroot is based on KBuild and Make technologies. As explained before, KBuild is responsible for

kernel build and configurations. Make, in its turn, is responsible for the direct interaction with the user.

The menu configuration windows and configuration files are run with make command. Make beholds the

ability to build the entire system with all the previously chosen options.

After running make command, following steps will be performed:

• Download source files;

• Configure, build and install the cross-compilation toolchain, or simply import and external one;

• Configure, build and install selected target packages;

• Build a kernel image;

• Build a bootloader image;

• Create a root file system in selected formats.

All the outputs originated from make command are stored in an /output directory generated after this

process, containing several subdirectories.

• images/ where all the files that are necessary to place on the target system (kernel, bootloader

and filesystem images) are stored;

• build/ where all the components are built, containing one subdirectory for each of them;

• staging/ that contains headers and libraries of the cross-compilation toolchain and all the userspace

packages selected for the target;

• target/ which contains practically the complete root filesystem for the target. However, it should

not be used on the target system.

• host/ contains the installation of tools compiled for the host that are crucial for the proper execution

of Buildroot, including the cross compilation toolchain.

Chapter 2. State of the Art 17

2.2 Linux From Scratch (LFS)

Linux From Scratch is a project that provides step-by-step instructions for building a custom Linux-

based Operating System, entirely from source code created by Gerrard Beekmans and managed by Bruce

Dubbs. This process is naturally a longer process than installing a pre-compiled distro but the advantages

to this method are a compact, flexible and secure system. Also a greater understanding of how the Linux

system works internally is granted. As it is said on the official website ”Building LFS could be compared to

a finished house. LFS will give you the skeleton of a house, but it’s up to you to install plumbing, electrical

outlets, kitchen, bath, wallpaper, etc. You have the ability to turn it into whatever type of system you need

it to be, customized completely for you.” [11]

LFS is not intended to be used by any kind of user, it takes some existing knowledge of Unix system

administration in order to resolve problems and correctly execute the listed commands. Unlike installing

a regular distribution which often comes with a lot of programs that won’t ever be used but still take up

precious disk space, the LFS system can be fully customized and produced as a very compact Linux

System. The OS often have less than 100 MB and some deep tests show that with further stripping it is

possible to bring the OS down to 5 MB.

The LFS system is built using an already installed Linux distribution. The existing Linux system will act

as host and will be used as a starting point to provide necessary programs, including a compiler, linker and

a shell to build the new system. It is assumed by selecting ”development” option during the installation in

order to have access to these tools. The host system is meant to have a completely blank hard disk with

no existing partitions to start.

The primary target architectures of LFS are the AMD/Intel x86 (32-bit) and x86_64(64-bit) CPUs [12],

although it is also known to work, with some modifications, with Power PC and ARM CPUs. It is also

important to note that a 32-bit distribution can be installed and used as a host system on 64-bit AMD/Intel

computer.

The LFS can have different focuses and create OS with different features based on the end-user’s

needs. With this purpose, many different projects were created under LFS.

• Beyond LFS - created in order to keep LFS small and compact. The instructions book presents the

best way on how further develop the basic Linux system created with LFS;

Chapter 2. State of the Art 18

• Cross LFS - focuses on cross-compile for headless or embedded systems that can run on Linux,

but lack the resources needed to compile it;

• Hardened LFS - focuses on security enhancements such as hardened kernel patches, mandatory

access control policies, stack-smashing protection and address space layout randomization.

• Automated LFS - designed to automate the process of creating a LFS system, aimed to reduce the

amount of work included in the process.

Although being a toolkit that allows the user to fully customize the desired Operating System by editing

its source code and also having focuses on different parts of an OS and making the user go through a

learning process while developing the final output, this tool is not for everyone. The precise fact of having

to edit the source code (what makes the final OS fully customized) is an obstacle as it reduces the scope

this project hits. Not knowing how Linux works and not having the basic programming skills excludes the

user right away.

2.3 OpenWRT

OpenWRT is an open source project for embedded systems based on Linux. Although the project

started to develop custom firmware for consumer routers and was primarly used to route network traffic

on embedded devices, the code was used as base for the creation of a Linux distributor that offers many

features not previously found in consumer-level routers. Instead of single and static firmware, it provides

a fully writable filesystem with package management. It was built from the ground up to be a full-featured,

easily modifiable OS for embedded devices.

OpenWRT can be configured through either command line, which is simplified by the set of scripts

provided by the project itself, or web-based interface (LuCI & Gargoyle) and has the ability to run on

various types of devices.

As it was previously mentioned, OpenWRT features a fully writable root filesystem which enables end-

users to modify any file and easily install additional software, unlike many other read-only firmware. This

malleability and customization is obtained by overlaying the read-only files compressed by SquashFS with

a writable JFFS2 using overlayfs, a union mount filesystem.

Chapter 2. State of the Art 19

The OpenWRT development environment and build system is based on Buildroot (but heavily modi-

fied). It is a set of Makefiles and patches that automates the process of building a complete Linux-based

OpenWRT system for an embedded device, using a cross-compilation toolchain. This toolchain is trivial

since embedded devices usually use a different processor from the one in the host computer. OpenWRT

build system makes it easy to port software and similarly to Buildroot uses kconfig (Linux Kernel menu-

config) for the configuration of desired features and although being designed for developers, the amount

of abstraction given by the Makefiles and patches makes it easy to use for inexperienced users to build

their own custom firmware.

OpenWRT owns a tool which is a pre-compiled environment suitable for creating custom images without

the need to go through the entire compilation process. The tool is named Image Generator and is

very useful for users that wish to fit more packages in a small flash size which is possible because the

packages are embedded directly into the SquashFS. Building minimal images without the web interface

saving manpower when flashing many devices by embedding packages and configuration files directly into

SquashFS are other reasons for using this tool. While creating firmware images with OpenWRT, Image

Generator is compulsorily created because it is needed to eventually create the image file. Fortunately, the

project has the archive which contains Image Generator available and it is possible to download it alone.

The workflow of OpenWRT can be visualized in the figure 2.5.

Chapter 2. State of the Art 20

Figure 2.5: OpenWRT image generation workflow. (Adapted from [13]).

In conclusion, OpenWRT presents itself as a strong Linux-based distribution for embedded systems. It

has plenty of user-friendly interfaces and also the possibility for users to follow a learning path by following

the command line customization. The main target are embedded systems, the generated images are small

in size but the focus of this project are mainly network. As it was created for router optimization even after

rewriting of the source code and forks into other projects that have the main goal to build customized OS,

the customization lie on networking features. So unless the user wish to develop a project that requires

deep network usage, it is possible to find more useful general purpose distros.

Chapter 2. State of the Art 21

2.4 Yocto Project

Yocto Project is an Open Source project kept by Linux Foundation. It is essentially a collection of recipes,

configuration values and dependencies used to create a custom Linux runtime image tailored do user’s

specific needs. The project provides interoperable tools, metadata and processes that enable the rapid

and repeatable development of Linux-based embedded systems, allowing to customize every aspect of the

process. Yocto Project combines the convenience of a ready-to-run Linux distribution with the flexibility of a

custom Linux OS stack and, although being roughly analogous to a Desktop Linux distribution it isn’t one, it

creates a custom one for embedded environment instead. In traditional desktop Linux distribution models,

the installation is generally done from a CD or USB key and then the additional package installations and

configurations are performed in the running target systems. The Yocto workflow differentiates itself by

executing a full build on the Host, the output of which is an image containing the entire target system.

With a bit of care, it is possible to eliminate most, if not all, of the configuration steps required in the

running target allowing for a more predictable software load and reducing the number of dimensions in

test matrix which to base their activities as a function of their needs.

Yocto has its uniqueness because of the Yocto Layer Infrastructure which is an integral part of its model.

All the functionalities are divided into different layers and added to build only when required. This process

reduces the complexity of each layer and also grants the opportunity of developing each one individually

at its own pace. The layers are added with priority ordering which allows the hierarchically higher layers

to override and modify the base layers. Another advantage of using this model is the logical separation

made in build stage as building every feature in the same layer can seem easier and more perceptive, the

separation shortens future customization and reuse.

As mentioned before, Yocto Project is a colletion of tools to generate a tailored Linux-based OS. A

key part of this is the OpenEmbedded build system, which enables developers to create their own Linux

distribution specific to their environment. Yocto Project and OpenEmbedded share maintainership of the

main parts of the OpenEmbedded build system: the build engine - BitBake- and the core metadata

- OpenEmbedded-Core. It is also provided a reference implementation called Poky, containing the

OpenEmbedded build system plus a large set of recipes, arranged in a hierarchical system of layers that

can be used as fully functional template for a customized embedded OS.

The Yocto Project’s structure can be visualized in the figure 2.6.

Chapter 2. State of the Art 22

Figure 2.6: Yocto Project content. (Adapted from [14]).

2.4.1 OpenEmbedded

OpenEmbedded is a build automation framework and cross-compile environment used to create Linux

distributions for embedded systems. It is the build system of the Yocto Project, consisted of some crucial

components associated to the workflow of the system.

BitBake is a core component of the Yocto Project used by OpenEmbedded system to build images

with special focus on embedded Linux cross-compilation. It is a generic task execution engine that allows

shell and Python task to be run efficiently and simultaneously while working within complex inter-task

dependency constraints. BitBake is composed of recipes which store metadata and specify how each

package is built. It also has descriptive information about the package, existing dependencies and is

where the source code resides.

OpenEmbedded-Core is a common layer of metadata, containing base layer of recipes, classes and

associated files, used by OpenEmbedded-derrived systems, which includes Yocto Project.

Yocto’s workflow can be observed in the following figure 2.7.

Chapter 2. State of the Art 23

Figure 2.7: Yocto Project workflow. (Adapted from [14])

2.4.2 Poky

Poky is a reference distribution of the Yocto Project and is composed of collection of tools and meta-

data. It is platform-independent and performs cross-compiling using BitBake and OpenEmbedded-Core,

mentioned before, and a default set of metadata. In other words, Poky is a base specification of the func-

tionality needed for a typical embedded system as well as the components from the Yocto Project that

allow the user to build a distribution into a usable binary image. The main objective of Poky is to provide

all the features an embedded developer needs.

Poky is sometimes mentioned as being a ”default configuration”. It is possible to use Poky to create an

Chapter 2. State of the Art 24

image ranging from a shell-accessible minimal image all the way up to a Linux Standard Base-compliant

image. One of the most powerful properties of Poky is that every aspect of a build is controlled by the

metadata. It is possible to use metadata to augment these base image types by adding metadata layers

that extend functionality. These layers can provide, for example, an additional software stack for an image

type, add a BSP for additional hardware or even create a new image type.

There is fairly steep learning curve with Yocto. The terminology can be daunting as the difference

between components can be unclear. The number of options for configuring the target can make it difficult

to assess the best choices. Creating a basic default system can be achieved quickly by following the

tutorials. However, understanding what changes must be done for a particular design may require a

nontrivial amount of research and investigation.

2.4.3 Toaster

In order to offload the end user and make the system more perceptive, a web interface to OpenEm-

bedded and BitBake was created. This build system, used by Yocto Project, allows the user to configure

and run builds, and provides information and statistics about the build process.

Toaster can be used in either Analysis or Build Mode.

• Analysis Mode: It is possible to record builds and statistics. In this mode, the bitbake command

used to build images, is directly accessed by initiating the build using bitbake command from the

shell. Analysis Mode is capable of keeping track of recipes and packages installed to the final

image; browsing the directory structure of the image; accessing the values of all variables in the

build configuration and performance information such as build time, task time, CPU usage, and

disk I/O. The figure 2.8 shows this mode’s workflow.

Chapter 2. State of the Art 25

Figure 2.8: Analysis Mode workflow

• Build Mode: Toaster handles the build configuration, scheduling and execution. In this mode, all

interactions with the build system happen through the web interface and bitbake command isn’t

directly accessed. Using this mode the build is configured and started within Toaster’s GUI. In Build

Mode, Toaster is capable of browsing layers listed in the various layer sources that are available;

import and manage custom layers; set configuration variables; select one or multiple targets to

start the build. This mode’s workflow can be observed on the following figure 2.9.

Figure 2.9: Build Mode workflow

2.5 COSMOS

C# Open Source Managed Operating System (COSMOS) is a toolkit for building Operating Systems in

an user-friendly way using any .NET language. This toolkit uses Microsoft Visual studio as development

environment in which the Operating System source code is customized and the OS is created following

the normal application process.

Chapter 2. State of the Art 26

Cosmos is available in two different kits: development kit (dev-kit) and user-kit. The dev-kit might be

thought as COSMOS SDK (Software Development Kit), designed for users to work with COSMO. It is a

consistently updated open source code. The user-kit is a stable but not often updated version designed to

build an Operating System as an application using Visual Studio, it is a part of COSMOS designed to make

it easier for developers to use. It adds a new project type called COSMOS project to Visual Studio which is

a modified version of a console application with the compiler and bootup already added. Its workflow can

be analyzed in the following figure 2.10.

Figure 2.10: COSMOS workflow.

Debugging is a major issue to consider while developing an Operating System [10]. By integrating

COSMOS and the Visual studio it is possible to debug the OS using breakpoints. Since the debugger uses

the serial port to communicate, debugging only works with virtualization environments that support serial

ports such as VMWare and QEMU (Quick Emulator).

COSMOS uses its own developed compiler - IL2CPU - to translate Common Intermediate Language

(CIL) into machine code (x86 opcode mostly). This compiler, when invoked, systematically scans through

all the application’s CIL code , converting it into assembly language for the selected processor architecture.

COSMOS invokes the selected assembler to convert the assembly language into native CPU opcode. Finally

the desired output option is activated producing an ISO disk image file.

Chapter 2. State of the Art 27

2.6 Remastersys/Respin

Remastersys is a free and open-source program for Debian, Ubuntu-based, Linux Mint or derivative

software systems. With its usage it is possible to create a customized LIVE CD (Compact Disk)/LIVE USB

(Universial Serial Bus) of Debian and its derivatives by cloning your current system.

Remastersys is intended to be an easy way to create a customized Ubuntu-based OS on a CD/DVD.

After installing all the necessary packages (and getting rid of all the unnecessary ones by running aptitude

clean or remastersys clean) the remastersys dist is ready to run. Using this simple distributor it is possible

to customize only a small portion of the OS within an interface provided by the program. Before running

the command to create the OS it is advised to update the system and remove any unnecessary applications

to save room. The generated OS will not have all the personal data included on the disk as anything in

/home will be excluded. Any desired files should be moved to the respective folder in /usr/share. All the

further customization can be done by editing the .config file.

After choosing and customizing the features, a CDFS (Compact Disk Filesystem) is created which

eventually is converted into a dist ISO that can be tested using a virtual machine before burning it on any

CD. The generated OS are not meant for embedded use and their size can go up 4GB.

In April 2013 the originator’s direct development has ceased but a group of developers forked this

project into Respin in order to continue the development. This toolkit is only available for Debian users

though. The process of building the OS is very similar to Remastersys as the final output will be an ISO

file of the Debian system.

The procedure is to download all the required packages and install Respin and its dependencies. After

the installation and customization of the OS, several options for backup and iso creation are availabe:

• repsin backup to make a live CD/DVD iso called ”custom.iso”;

• respin backup custom.iso to create a live CD/DV of the system;

• respin dist to create a live CD/DVD of the system - filesystem only;

• respin dist cdfs to make a distributable iso, but only if cdfs exists; content...

Chapter 2. State of the Art 28

2.7 Linux Live Kit

Linux Live Kit present itself as the most innovative toolkit available to generate customized Operating

Systems. It is a set of shell scripts that turn the existing pre installed OS distribution into a Live Kit. It is

possible to make a Live Kit out of the main installation on the PC but it is recommended to install a new

OS to start. Although Debian is the recommended OS, any distribution can be used for this process.

After choosing the desired distribution, its installation must be done to disk partition. Some packages

and kernel modules are required such as aufs, that combines multiple directories into one that appears to

contain their combined content, and squashfs for file compressing. Since the generated live distro have

the same content as the one installed it is necessary to proceed to the removal of all the unnecessary files

so the final image is kept as small as possible.

Following the customization of the OS, it is required to download the Linux Live Kit fro GitHub. All the

downloaded files must be stored in /tmp. The next step is simply running the shell script as root user,

generating two types of images:

• .iso file - which can be burnt to a CD or tested from a Virtual Machine;

• bootable usb flash - that must be unzipped to an USB flash drive which is made bootable by running

the bootinst.sh shell script.

2.8 Ubuntu Imager

Distroshare Ubuntu Imager is another project that creates an installable Ubuntu Live ISO from a pre

installed Ubuntu or derivative distribution. It is developed by Distroshare which is a website for sharing

customized open source operating system distributions. The developers main idea is to assist users that

intend to run a customized open source OS to work correctly on their machines.

Similarly to Remastersys and its forks, Ubuntu Imager decided to automate the process by putting it

all into a bash script that does the bulk of the work. With minimal configuration it is possible to create a

live environment with as little as editing a text file and running a shell script.

Chapter 2. State of the Art 29

The Distroshare Ubuntu Image script is hosted on GitHub and can be cloned from its official repository.

After downloading and unpacking the zip, the process is ready to use.

From all the downloaded files it is important to focus ./distroshare-ubuntu-imager.config that contains

all the configurations of the system. By editing this .config file it is possible to customize the OS by

specifying the kernel version, directory of the final output image and other parameters. The lines of the

.config file are self explanatory and it takes no effort for the end user to understand and customize it in

the way he wants.

Next it is needed to run the script as root user. The script will read the configuration details that were

specified in the .config file and all necessary directories will be created as well as the required software

will be installed. Then, the temporary files are cleared and the ubiquity is removed from the system

compressing the new filesystem and putting it into an ISO file.

The final ISO image that has been created can be burned onto a CD, mounted to a virtual machine or

run directly from grub. It is also possible to copy the image to a USB drive using dd.

\{}section{COSMOS} \{}par C\{}# Open Source Managed Operating System (COSMOS) is a toolkit for

building Operating Systems in an user-friendly way using any .NET language. This toolkit uses Microsoft

Visual studio as development environment in which the Operating System source code is customized and

the OS is created following the normal application process.

\{}par Cosmos is available in two different kits: development kit (dev-kit) and user-kit. The dev-kit might

be thought as COSMOS SDK (Software Development Kit), designed for users to work with COSMO. It is a

consistently updated open source code. The user-kit is a stable but not often updated version designed to

build an Operating System as an application using Visual Studio, it is a part of COSMOS designed to make

it easier for developers to use. It adds a new project type called COSMOS project to Visual Studio which is

a modified version of a console application with the compiler and bootup already added. Its workflow can

be analyzed in the following figure \{}ref{fig:cosmosforkflow}. \{}begin{figure}[h!] \{}centering \{}include-

graphics[width=1\{}linewidth]{/Images/StateOfTheArt/cosmosworkflow.png} \{}caption{COSMOSworkflow.}

\{}label{fig:cosmosforkflow} \{}end{figure} \{}par Debugging is a major issue to consider while developing

an Operating System \{}cite{cosmos}. By integrating COSMOS and the Visual studio it is possible to debug

the OS using breakpoints. Since the debugger uses the serial port to communicate, debugging only works

with virtualization environments that support serial ports such as VMWare and QEMU (Quick Emulator).

Chapter 2. State of the Art 30

\{}par COSMOS uses its own developed compiler - IL2CPU - to translate Common Intermediate Language

(CIL) into machine code (x86 opcode mostly). This compiler, when invoked, systematically scans through

all the application’s CIL code , converting it into assembly language for the selected processor architec-

ture. COSMOS invokes the selected assembler to convert the assembly language into native CPU opcode.

Finally the desired output option is activated producing an ISO disk image file.

\{}section{Remastersys/Respin}

Remastersys is a free and open-source program for Debian, Ubuntu-based, Linux Mint or derivative

software systems. With its usage it is possible to create a customized LIVE CD (Compact Disk)/LIVE USB

(Universial Serial Bus) of Debian and its derivatives by cloning your current system. \{}par Remastersys

is intended to be an easy way to create a customized Ubuntu-based OS on a CD/DVD. After installing all

the necessary packages (and getting rid of all the unnecessary ones by running \{}textit{aptitude clean} or

\{}textit{remastersys clean}) the \{}textit{remastersys dist} is ready to run. Using this simple distributor it is

possible to customize only a small portion of the OS within an interface provided by the program. Before

running the command to create the OS it is advised to update the system and remove any unnecessary

applications to save room. The generated OS will not have all the personal data included on the disk

as anything in /home will be excluded. Any desired files should be moved to the respective folder in

/usr/share. All the further customization can be done by editing the .config file.

After choosing and customizing the features, a CDFS (Compact Disk Filesystem) is created which

eventually is converted into a dist ISO that can be tested using a virtual machine before burning it on any

CD. The generated OS are not meant for embedded use and their size can go up 4GB.

\{}par In April 2013 the originator’s direct development has ceased but a group of developers forked

this project into \{}textbf{Respin} in order to continue the development. This toolkit is only available for

Debian users though. The process of building the OS is very similar to Remastersys as the final output will

be an ISO file of the Debian system. \{}par The procedure is to download all the required packages and

install Respin and its dependencies. After the installation and customization of the OS, several options

for backup and iso creation are availabe: \{}begin{itemize} \{}item \{}textit{repsin backup} to make a live

CD/DVD iso called ”custom.iso”; \{}item \{}textit{respin backup custom.iso} to create a live CD/DV of

the system; \{}item \{}textit{respin dist} to create a live CD/DVD of the system - filesystem only; \{}item

\{}textit{respin dist cdfs} to make a distributable iso, but only if cdfs exists; content... \{}end{itemize}

Chapter 2. State of the Art 31

\{}section{Linux Live Kit}

Linux Live Kit present itself as the most innovative toolkit available to generate customized Operating

Systems. It is a set of shell scripts that turn the existing pre installed OS distribution into a Live Kit. It is

possible to make a Live Kit out of the main installation on the PC but it is recommended to install a new OS

to start. Although Debian is the recommended OS, any distribution can be used for this process. \{}par

After choosing the desired distribution, its installation must be done to disk partition. Some packages

and kernel modules are required such as aufs, that combines multiple directories into one that appears to

contain their combined content, and squashfs for file compressing. Since the generated live distro have

the same content as the one installed it is necessary to proceed to the removal of all the unnecessary files

so the final image is kept as small as possible. \{}par Following the customization of the OS, it is required

to download the Linux Live Kit fro GitHub. All the downloaded files must be stored in /tmp. The next step

is simply running the shell script as root user, generating two types of images: \{}begin{itemize}

\{}item .iso file - which can be burnt to a CD or tested from a Virtual Machine; \{}item bootable usb

flash - that must be unzipped to an USB flash drive which is made bootable by running the bootinst.sh

shell script. \{}end{itemize}

\{}section{Ubuntu Imager} Distroshare Ubuntu Imager is another project that creates an installable

Ubuntu Live ISO from a pre installed Ubuntu or derivative distribution. It is developed by Distroshare

which is a website for sharing customized open source operating system distributions. The developers

main idea is to assist users that intend to run a customized open source OS to work correctly on their

machines. \{}par Similarly to Remastersys and its forks, Ubuntu Imager decided to automate the process

by putting it all into a bash script that does the bulk of the work. With minimal configuration it is possible to

create a live environment with as little as editing a text file and running a shell script. \{}par The Distroshare

Ubuntu Image script is hosted on GitHub and can be cloned from its official repository. After downloading

and unpacking the zip, the process is ready to use. \{}par From all the downloaded files it is important to

focus \{}textit{./distroshare-ubuntu-imager.config } that contains all the configurations of the system. By

editing this .config file it is possible to customize the OS by specifying the kernel version, directory of the

final output image and other parameters. The lines of the .config file are self explanatory and it takes no

effort for the end user to understand and customize it in the way he wants. \{}par Next it is needed to run

the script as root user. The script will read the configuration details that were specified in the .config file

and all necessary directories will be created as well as the required software will be installed. Then, the

Chapter 2. State of the Art 32

temporary files are cleared and the ubiquity is removed from the system compressing the new filesystem

and putting it into an ISO file. \{}par The final ISO image that has been created can be burned onto a CD,

mounted to a virtual machine or run directly from grub. It is also possible to copy the image to a USB

drive using dd.

2.9 Debian Live

Debian Live is a project by Debian team that produces tools to create official Debian Live images and

also maintains other packages that are used to build live images.

Although the existence of plenty Debian based live systems available in the market, none of them is

an official version. By that it is meant the lack of support and the vast majority is just a mix of different

distributions that only support i386 (32-bit AMD) and also have additional (and unofficial) patches on

kernel. Debian live on the other side uses only official and verified packages from Debian repository.

The requirements for generating a live OS with Debian is

• Root access;

• Up-to-date live-build;

• POSIX-compliant shell (bash or dash).

The first step is to install live-build which is a set of scripts to build live system images. The idea

behind live-build is a tool suite that uses a configuration directory to completely automate and customize

all aspects of building a Live image. Subsequently comes the customization that is done by editing the

auto/config script that allows the user to choose the desired configurations by writing the key words and

selecting the pretended options. After this step the config file is generated and the local package list

is populated automatically. The build comes subsequently, controlling the generatiion of live images for

further usage.

It is possible to optimize the image making use of tradeoffs between size and functionality. The default

generated image has approximately 192 MB. The minimal obtained size is 91 MB that presumes the

removal of documentation and other file packages. However it violates the integrity of those packages

Chapter 2. State of the Art 33

what has unforeseen consequences. In order to obtain a smaller image without forcing the system it is

needed to use an additional tool: minimal debootstrep.

2.9.1 Debootstrap

Debootstrap is a tool which installs Debian based systems into a sub directory of another already

installed system. It gives the user a simple and consistent way to cleanly setup machines by installing

packages straight into the filesystem directly from the repository. It installs Debian in a system without

using a installation disk but can also be used to run a different Debian flavor in a chroot environment.

This way you can create a full (minimal) Debian installation which can be used for testing purposes.

Once again, the main focus on this live image distributions isn’t the embedded systems. The control

over the features does not allow the image to be small and malleable in the pretended way.

2.10 KIWI

KIWI is an open source project that represents a back-end command line tool, written in Perl, with the

goal of building Linux-based images. It allows the user to configure, build, and deploy your own OS images

in a vast variety of formats. KIWI’s workflow is divided into 2 stages:

• Preparation: this is the stage where the root directory holding the contents of the new filesystem

is created, all the necessary packages are installed and the image description file is created and

optionally customized.

• Creation: in this stage the image itself is created using the unpacked root tree that was previously

generated. The image creation process does not require any user interaction but it can be tuned

by modifying the image.sh which is the script that is called during the creation option.

• Deployment: The final image can be deployed using various different methods, be it live CD or

USB flash drive.

KIWI holds different configuration files and shell scripts, being config.xml the main configuration file

containing the most important aspects of the image such as image type, base name and other options.

Chapter 2. State of the Art 34

The images.sh is a clean up script that runs before the image creation process is started, it removes files

that are only needed while the physical extent exists. Config.sh is the configuration script that is used to

tailor the final image. This script is executed at the end of image installation and is responsible for the

activation/deactivation of features.

As mentioned before, KIWI is a command line tool and all the configuration and customization is done

through shell scripts. Although being perceptive, this tool requires some additional knowledge and can be

an obstacle to certain users. In order to assist this back-end engine and increase the scope of this project,

SUSE developed a front-end image creator.

With the GUI (Graphical User Interface) designed by SUSE, user’s mission is facilitated as the image

customization, build and deployment are just one click away. When creating an image, the system allows

user to build it based on a template. Many templates with different focuses are available depending on the

OS final goal. For more advanced systems it is possible to tailor the OS and add/remove all the necessary

features by just selecting a checkbox with the respective name. After choosing the output path and the

image type, it is only necessary to wait for the image to be generated.

Using KIWI, the end-user has full control of the generated image by choosing the necessary features

to run in OS. In combination with openSUSE, the system can be easily tailored with no additional effort

from user. However, the generated OS is large in size as it is not suitable for embedded systems but only

for Desktop.

2.11 Conclusion

Having taken into consideration all the available solutions for the problem carried by this dissertation,

it is possible to evaluate its importance and novelty.

After examining plenty of options, the conclusions are that the current mechanisms available on the

market divide themselves into two different groups:

The first group consists of projects that are capable of generating and distributing images for an em-

bedded environment, but on the other side lack malleability and have a steep learning curve . It is possible

to build and deploy Operating Systems for embedded devices from different templates and choose only

Chapter 2. State of the Art 35

the features that are necessary for the system to run. However, this action isn’t done in a user-friendly

way and assumes that the user has some additional knowledge.

The tools from the second group offload any addition work from the end-user and permit a tailored

image creation within few clicks. Although a user-friendly environment to customize the Operating System

is granted, the final images are abundant in size and aren’t suitable for embedded environments. The

generated images fulfill the requirements for Desktop Operating Systems and can be used for this purpose

but aren’t capable of being compatible with hardware-dependent components on a embedded device.

This chapter is essential to understand the importance of this dissertation as it leans to combine the

advantages of both groups that have been identified. The final project should be able to generate tailored

images for embedded devices with a low learning curve, increasing the target audience of the project.

Chapter 3

System Specification

After having a theoretical insight on the concepts and aspects focused in this dissertation and analyzing

different tools that are used in the market to reach similar goals, it is possible to define the components

that will be part of the system.

First and foremost, it is important to outline that this dissertation’s goal is to create tailored images,

using Buildroot, for Raspberry Pi and its Compute Module family. However, the portability to other boards

can be easily done by creating default configuration files for requested architectures without making any

changes in code or structure of the application.

This chapter presents the design and specification of the system and target’s architecture as well as

constraints and requirements for the dissertation.

3.1 System Requirements

In order to properly design and conceive the system, it is necessary to define all the requirements and

constraints beforehand by visualizing the project from several points of view. It is crucial to define both

functional and non-functional requirements to fulfill them in the decision making process.

• Create embedded images for kernel, bootloader and root filesystem.

The systemmust be able to generate all the necessary images for the embedded OS to run properly.

The kernel image is usually compressed into a zImage binary file and the root filesystem format

can be chosen by the user.

36

Chapter 3. System Specification 37

• Tailor the embedded OS image

The user must be able to customize the desired OS in order to fulfill the embedded system’s

requirements.

• Have a minimal base image for the OS

All the user’s customization must be written upon a default OS image that is minimally configured

by choosing only the crucial components common to most of embedded systems.

• Suit the intended architecture.

The system’s final image must be suitable for the architecture chosen by the user.

• Be user friendly

The system must be user friendly by abstracting the final user from all the back-end processes such

as installing the necessary packages, configuring the system and scripting. The user’s only job is

to choose the desired features to include in the Operating System.

Having specified how the system should behave, it is important to understand the characteristics that the

final project should carry. Since the dissertation’s main goal is to abstract the user from all the back-

end procedures and to only choose the desired features through a graphical interface, the system must

contain Usability as non-functional requirement. The application developed by this dissertation must run

on every computer, independently of the architecture and containing OS, granting Portability. Although

the main focus is held on Raspberry Pi family, the transition for other architectures must be easy by only

editing the default configuration file and specifying all the necessary information - Scalability. Since this

Dissertation uses Buildroot as back end including all the features it has, Security is granted by Buildroot.

Other security issues are out of scope of this Dissertation.

3.2 System Architecture

As mentioned in previous chapters, the main goal of this dissertation is to create customized Operating

Systems for embedded environments that will later be used by developers for their specific projects. Taking

into account all the specifications and requirements of this dissertation, it is possible to define the field

where it will act.

Chapter 3. System Specification 38

A generic embedded system presents the lower layer, where all the hardware is located; a mid layer

that contains the operating system that will process all the incoming information from the hardware; and

the top layer that represents the system’s direct interaction with the user. This system’s focus is in the

area between the lower and mid layer, right upon HAL (Hardware Abstraction Layer), in the lowest level

of easily replaceable software that interfaces with the hardware. Usually, the mid layer is the Operating

System that has all the necessary features to process the information coming from lower layer and send it,

in the pretended way, to the upper level. This layer obtained its capabilities from an OS creation process

previously done where all the necessary features where chosen and built alongside kernel and bootloader,

like it was exposed in the first chapter’s basic concepts (Figure 3.1).

Figure 3.1: Generic embedded system architecture, showing where this Dissertation’s final appli-
cation will act

A better understanding of how the system works can be visualized on the figure 3.2:

Chapter 3. System Specification 39

Figure 3.2: System’s architecture

3.3 Hardware Specification

After specifying the system requirements and and placing this project in a typical embedded system

architecture, it is possible to specify the hardware that was used in this Dissertation. Considering that

to achieve the main goal, no specific hardware components were used as all the objectives are fulfilled

through software, the only hardware that was used and can be specified are the target platforms.

3.3.1 Raspberry Pi 3 model B

The Raspberry Pi 3 model B is the third generation Raspberry Pi. This open-source, Linux based,

credit card sized computer board can be used for many applications and whilst maintaining the popular

board format of previous versions, it brings a more powerful processor which is 10x faster than the one

from the first generation. Additionally it adds wireless LAN and Bluetooth connectivity, making it the ideal

solution for powerful connected designs. This platform was chosen for the reason that it was frequently

used and it is a very known board. Previous projects developed on this board through the master course

demanded the creation of an OS with Buildroot, making it a recommendable choice for the initial tests and

the configuration of a minimal OS image.

Some of Raspberry Pi 3 model B characteristics are:

• Broadcom BCM2387 chipset;

Chapter 3. System Specification 40

• 1.2GHz Quad-core ARM Cortex-A53;

• 1GB Low-Power DDR SDRAM;

• 64-bit CPU;

• -20ºC to +60ºC temperature range.

3.3.2 Compute Module 3

The Compute Module is a Raspberry Pi in a more flexible form factor, intended for industrial application.

It contains the same processor and RAM as Raspberry Pi and additionally it has a 4GB eMMC flash device

that is the equivalent for the SD (Secure Digital) card. All of this is integrated on to a small 67.6mm x

31mm board.

Compute Module is designed for use in custom devices where the capabilities of RPi (Raspberry Pi)

are desired, but its size and layout are unwanted. With CM (Compute Module) it becomes possible to

design custom boards where the Raspberry Pi is just another component. That delivers an enormous

amount of flexibility as it gives access to a greater number of GPIO (General Purpose Input/Output). The

on-board eMMC eliminates the need for an external micro SD card, making the Compute Module perfect

for designing new products.[15]

This module is a sublime combination with the project that this Dissertation tries to the develop for the

reason that the chosen features for the embedded OS are supported by the customized hardware that is

added to the Compute Module. These reasons make this platform elected and predominant to test the

final project.

Specifications of Compute Module 3:

• Broadcom BCM2837 quad core Cortex A53 processor @ 1.2 GHz with Videocore IV GPU;

• 1GB LPDDR2;

• 4GB eMMC flash;

• 48x GPIO;

• 2 I2C, SPI and UART;

Chapter 3. System Specification 41

• 2.5V to 5V power supply;

• -25ºC to +80ºC temperature range.

3.4 Software Specification

After presenting all the hardware that will be used in the development of the project, this sections tends

to specify the software. Some other software tools crucial to the understanding of this Dissertation were

briefly explained in the State of the Art chapter. This sections aspire to analyze the software platforms that

will be used for the further implementations.

3.4.1 Qt

Qt is a cross-platform application development framework developed by the Qt Company for desktop,

embedded and mobile devices. It is also a free and open-source widget toolkit for creating graphical user

interfaces. It is important to note that Qt is not a programming language but rather it is a framework

that extends the C++ language with the usage of a preprocessor - MOC (Meta-Object Compiler). Before

stepping into compilation, the source files written in the C++ extended are parsed with MOC to generate

C++ compliant sources. Following this method, Qt is able to add important features to the programming

languages that will be used to develop this project. Despite the fact that any build system can be used, Qt

brings its own qmake - a cross-platform front-end platform build system like GNU (GNU’s Not Unix) Make,

Visual Studio and Xcode.

Qt Creator is the cross-platform integrated development environment which is part of the SDK for QT

and the version that was used is 5.12.3. It includes:

• an intelligent code completion;

• syntax highlighting;

• an integrated help system;

• a debugger;

• an integrated GUI layout and forms designer.

Chapter 3. System Specification 42

The reasons for opting by this software platform to develop the project for this Dissertation are: it is a very

well known platform that was used throughout the course; its extremely intuitive module for programming

GUI; and the cross-platform development that allows to run the code on most of embedded platforms.

Also, the C++ expanded framework allows the usage of some outstanding features like signals and slots.

This mechanism is used for communication between objects that is crucial for GUI development but that

was also used to send notifications between different processes started by another Qt feature - QProcess.

3.4.2 Docker

Docker is an open-source project that automates the deployment of software applications inside con-

tainers by providing an additional layer of abstraction and automation of OS-level virtualization on Linux. It

provides tools for simplifying the development process by creating lightweight virtual machines called con-

tainers. The containers provide an image-based deployment model that makes it very simple to share an

application or a set of services with all of their dependencies across multiple environments. This is possible

for the reason that Docker technology uses the Linux kernel and its features (E.g Cgroups, namespaces,

etc.) to segregate processes making it possible to run them independently [16].

Although sometimes the differences between Containers and Virtual Machines are not completely clear,

these two processes differ in many ways as it can be observed on the figure 3.3.

Figure 3.3: Visualization of differences between VM (Virtual Machine) and Docker. Adapted from
[16]

As it can be observed on the previous figure, Docker differ from a Virtual machine in several ways,

but the primary difference is that with the usage of containers, an OS is virtualized in a way that multiple

Chapter 3. System Specification 43

workloads are able to run upon a single OS instance. VMs, on the other hand, virtualize the hardware to

run multiple OS instances.

The Docker architecture is composed mainly of these elements:

• Image: a file used to execute code in a Docker container and each image contains the software

that is desired to run;

• Container: a running instance of an image using the Docker run command, including everything

needed to run an application: code, runtime, system tools, system libraries and settings;

• Dockerfile: a text file of Docker instructions used to assemble Docker’s image.

To conclude, with the usage of Docker the constraint of Portability is granted, allowing the final project

to be run on any environment. Since the Docker was never a topic in any subject during the course, the

learning curve is also important due to its increasing importance in the real world.

Chapter 4

Implementation

After defining the system requirements and constraints and representing the hardware and software

components, it was possible to proceed to the implementation of a system that fulfills the objectives of

this Dissertation.

For matters of contextualization, the project was developed using Qt 5.12.2 (x86_64-little_endian-lp64)

that run upon an Ubuntu 18.04.2 LTS. The Buildroot version’s that was used as a back end is Buildroot-

2019.02.1. For purposes of simplification, the implementation was divided into tree different sections.

The first section goal was to create a minimal initial configuration for the OS image by writing configu-

ration files for kernel, busybox and OS. These files included the minimal configurations for the system to

run, that were previously studied by exploring Buildroot and Kernel environment.

The second section made sure all the requirements to install Buildroot and all the necessary packages

were met and all the needed changes in the system were made.

In the third section, the OS was customized by the user in an perceptive way, creating the final image

with the selected features upon a minimal default configuration.

All of the steps of the installation and customization processes are saved into a log file in a status

variable. This way, when the system powers in, it knows where it exactly stopped.

44

Chapter 4. Implementation 45

4.1 Minimal configuration

The minimal OS image was a final result of the make build of the three configuration files. The mini-

mal_defconfig that had the basic features and the enabling of the external toolchain as well as the path

for kernel and busybox configuration files that were previously written for purposes of a minimalist config-

uration.

Theminimal_defconfig file specifies the kind of processor of the architecture that will run the generated

OS; gives the path for the previously created folders; enables and downloads an external toolchain; gives

the path for post-build and post-image scripts; specifies the kernel custom config file as well busybox’s; and

the final maximum size of the root filesystem and its formats are defined. All the following customization

will be written upon this file.

4.2 Initial configuration of the System

When the system first starts, it needs to make sure that all the necessary software packages and

dependencies are installed in order to proceed with the OS image customization. In case the system was

interrupted or canceled for some reason, the status is saved into a log file. Next time the system starts, it

knows were it previously stopped so the installation may continue instead of restarting. When the system

boots for the first time, the status variable is always 0.

The program that is started by QProcess is a shell script that runs all the necessary commands. The

script has different purposes depending on the arguments it receives.

The very first action is to ask the user for root permission with the usage of QInputDialog that asks

for the password and sends it as a parameter to the initialization script. The password is asked through a

GUI QDialog like it is observed in the figure 4.1.

Figure 4.1: GUI QDialog window created with Qt Design

Chapter 4. Implementation 46

sh_params<<param1<<sh_param2;
check_pw->setWorkingDirectory(QDir::currentPath());
check_pw->start(QCoreApplication::applicationDirPath()+"/initialization.sh",

sh_params);

if(!check_pw->waitForStarted()){
QMessageBox::information(this, "error","Error openning script");
qDebug()<<"error openning script";
}
check_pw->waitForFinished(-1);

Listing 4.1: QProcess for root recognition.

The initialization script is run by QProcess sending a QStringlist sh_params with two parameters:

• param1 that indicates the required action (checking the password)

• sh_param2 containing the root password that is going to be used.

If the terminal output shows an incorrect password, the process is restarted from the QInputDialog and

the parameters are cleared. The code for this action can be analyzed in 4.1.

The script then runs the command for the installation of Buildroot and its dependencies with sudo

having the password as an argument like it is observed in the following code listing 4.2

echo $2 | sudo -S -k apt-get install

Listing 4.2: Passing the password as an argument to a shell script.

When the process stops, the system invokes the ReadStdError(). If the output has an error, the password

is wrong and the user is once again asked to insert it. In contrast, if no error has occurred, the password

is wiped and the following steps start, informing the user of its state through a GUI.

In case of a correct password, the script will run a set of commands that represent the steps of this

process. When all the proceedings are done, the user should have on his working environment: all the

required tools for running buildroot and cross compile; a recent version of Buildroot; a configured external

toolchain with a customized output path and minimal configuration files. After each of the commands is

executed, the script updates the status in the log file.

• Step 1: Installing required packages

Chapter 4. Implementation 47

In order to run Buildroot, the installation of the tools listen in the 4.3 is mandatory.

gzip tar wget bash binutils file python3 bc libcurl4-gnutls-dev

libexpat1-dev gettext libz-dev libssl-dev git g++ minicom

Listing 4.3: Installing pre requisites for Buildroot.

The status is then updated to 1 in the log file, permitting the user to grant this as the new start

position in case any error occurs.

• Step 2: Downloading Buildroot

Once all the requirements are installed, the Buildroot can be downloaded from its official website

using wget command. The current up to date version was installed for this project - buildroot-

2019.05.1.tar.gz and the internet address for the download can be seen in the listing 4.4.

wget "https://buildroot.org/downloads/buildroot-2019.05.1.tar.gz"

Listing 4.4: Downloading the most recent version of Buildroot.

• Step 3: Unpacking Buildroot The download zipped file must then be unpacked by previously in-

stalled either gzip or tar tool. After executing this command, all Buildroot’s folders will be created

with the necessary files for using it to create standard embedded Operating Systems. The extraction

process is listed in 4.5.

tar -xzvf buildroot-2019.05.1.tar.gz

Listing 4.5: Unpacking the Buildroot.

• Step 4: Creating necessary folders: In order to have a better control and to enable the custom

configuration of the OS images, it is necessary to create additional folders for external build and

downloads and set the path for the next step to be executed properly. The commands for this

operation are listed in 4.6.

mkdir build

mkdir buildroot_dl

cd build

Listing 4.6: Creating additional folders for external processes.

Chapter 4. Implementation 48

The status variable is then incremented.

• Step 5: Configurations of external files The minimalist configuration files previously defined after

a deep study and analysis of Buildroot and Kernel’s features must be included in the process of

creating an OS image with Buildroot. This is done by running BR2_EXTERNAL command in the

terminal, setting the directory of the external build files and specifying the output directory. The

minimal configuration file, that is responsible for defining all the custom files and packages is

added to the standard /configs list for default configurations for different platforms. All is executed

in one single command and the status variable is actualized. The shell commands for defining an

external tree in Buildroot can be observed in the listing 4.7.

BR2_EXTERNAL=~/Custom_OS_BR/Custom_OS_BR/minimal_raspberrypi_

droot-master/

WD -C ~/Custom_OS_W_BR/Custom_OS_BR/mnimal_raspberrypi_

droot-master/buildroot-2019.05.1/

mal_deconfig

Listing 4.7: Setting an external build path to Buildroot.

To let the user aware of the steps that are being executed, a QT Gui was created, having a progress

bar that is incremented with the mechanism that checks for the status that is altered after every step of

the initialization of the system. When the last command of the script is executed, the status is set to 100,

killing the process that runs the script and closing this graphic window and starting a new one, that will

step into the customization of the final embedded Operating System image. All the necessary installation

are showed to user via GUI like it can be observed in the figure 4.2.

Figure 4.2: GUI for the Installation / Configuration of Buildroot and its dependencies

Chapter 4. Implementation 49

This section overall workflow can be observed in the figure 4.3.

Figure 4.3: System initialization flowchart

After obtaining root permission, the shell script is run through a QProcess that is invoked through the

signals and slots feature available in kernel.The signal is sent with the usage of connect command and

the receiving slot is meant to read the terminal output every time it is updated.

connect(shell_script,

SIGNAL(readyReadStandardOutput()),

this,

SLOT(sh_output()));

connect(shell_script,

SIGNAL(readyReadStandardError()),

this,

SLOT(sh_output()))

Listing 4.8: Sending script’s terminal output through SIGNALS

Chapter 4. Implementation 50

The check_for_password’s workflow also must be specified as it is a crucial part of the system. The

majority of the commands written in the shell script must be run as root in order for further customization

and OS image creation. The workflow of this process can be visualized in the figure 4.4.

Figure 4.4: Check root permission flowchart

Chapter 4. Implementation 51

When all the preceding steps of this section are concluded, the working directory where the application

resides should be ready for the user to take over and start the customization. All the packages should

be installed and all the dependencies managed. The main folder will be the installed Buildroot which

will act as a back-end, having all the necessary files for the image build and deployment. The external

configuration files and scripts that were written must also be specified and linked to the main system in

order to provide the user the necessary environment to tailor the final OS image specific to his needs. The

working directory of the application will have an structure like the one represented in the figure 4.5.

Figure 4.5: Application’s working directory structure

4.3 Customization

After the last command of the shell script is run successfully, the status is updated to 100 meaning

that the initialization and preparation of the system is ready. This closes the first GUI developed by Qt

Design. A second graphic window then opens, allowing to activate some additional features in the final

Operating System using QCheckBoxes.

Chapter 4. Implementation 52

The GUI presented to the user divides itself it different elements:

In the upper part of the window it is possible to choose the target architecture to run the generated OS.

The scope of this Dissertation is to create OS images for Raspberry Pi and the Compute Module (that may

run with a custom board that was created in our university’s laboratory). Currently, only these platforms

will be presented.

In the center part of the window, the additional features may be chosen. Each selected checkbox will

add the respective package to the OS that will be generated in the end. The mechanism for adding the

features to the final image is similar for every checkbox, having some exceptions.

The lower part permits to choose the desired path for the output that will contain the generated image

iso file, compressed root filesystem, the bootloader and other components crucial to the OS functioning.

In this part, the user can also start the make process that will build all the files in the chosen directory.

This mechanisms are implemented using QtPushButtons.

All the customization and additional information is presented to the user through a text browser that

is also embedded in the window. The interaction window where all the customization is chosen can be

visualized in the figure 4.6.

Figure 4.6: Customization GUI

Each of the features that is presented as checkbox can be added to the OS by enabling the respective

package in the defconfig file that was previously created. This way, every check box has a configuration

Chapter 4. Implementation 53

line assigned that is written to the file upon selection.

When selecting SSH the bit for the configuration line must activated. The bit is enabling the

BR2_PACKAGE_DROPBEAR=y in the defconfig file when the make button is clicked. The same process

is applied for the others checkboxes, except the Password. If the user opts for having a root password in

his system, when selecting the box the password must be immediately provided through the

BR2_TARGET_GENERIC_ROOT_PASSWD=”rootpassword” configuration line. The password choice ap-

pears as a pop up window as it can be observed in the figure 4.7.

Figure 4.7: Customization GUI asking to set a root password for the Embedded Operating System

As it was explained, every checkbox feature has a bit associated that as activated upon selection. The

bits are assigned to the QStrings that contain the configuration lines that will be added.

When make is clicked, it triggers the config() function that receives the configuration line as an argu-

ment, in case that bit was set (meaning the checkbox was selected). This function opens the defconfig file

and adds all the configuration lines that were previously selected. The minimal default configuration file

is now altered tailoring the OS image according to user’s needs.

The next step of the customization section is to start a QProcess that will run the script with a different

argument notifying that the system is ready to be built. The first command to be run is make mini-

mal_defconfig that builds the options that were just altered in the default configuration file. After setting

the options, the command make is run that creates the entire system in the output/ directory, installing

all the selected target packages, building a kernel and a bootloader as well as the root filesystem.

Chapter 4. Implementation 54

The whole implementation of this section can be observed in the figure 4.8 that follows.

Figure 4.8: Customization flowchart

4.4 Integration with Docker

Before proceeding to the first step of integration with Docker - creation of a Dockerfile - it is necessary

to set the right environment for the Qt project and upload it to a github repository in order to make the

integration easier. Since all the Docker procedures are run from the Terminal, it is necessary to compile

the Qt project from the terminal also, using qmake. After deleting all the .pro and Makefile from the folder,

it is necessary to run the command listed in 4.9.

$ qmake -project

Listing 4.9: Creating a Qt Project File.

This command creates a Qt project file. After this step is completed, a little configuration to the .pro must

be made, adding all the necessary components. The next step is to make the project platform specific

and create a Makefile by running the following command listed in 4.10.

$ qmake ProjectName.pro

Listing 4.10: Making a Qt Project platform-specific.

Chapter 4. Implementation 55

In this way, the project environment is set for Docker as only the last step that creates the executable for

the application is missing, which will be completed later in the Dockerfile. Now it is possible to create a

github repository with the project.

In order to start the integration of the final project with Docker, it is trivial to proceed to the creation of

a Dockerfile - a script that contains the collection of the commands necessary to make the project work.

4.4.1 Dockerfile

The first step in order to create a Dockerfile is to find the right base image that must be used for building

a new image of our project. This image is introduced by the FROM command, at the top of the Dockerfile.

This instruction initializes a new build stage and sets the base image for subsequent instructions, specifying

the underlying OS architecture that is going to be used afterwards. Since this dissertation’s project was

formed using Ubuntu, that would be the base image to use. Many Ubuntu images can be found in the

Docker official repository. The Dockerfile starts with the following instruction listed in 4.11.

FROM ubuntu:latest

Listing 4.11: Dockerfile’s base image.

Once the base image is chosen, it is necessary to create the ideal environment for the program to

run. This is done by ensuring that all the required components are installed. The installation of the

requirements can now be made using commands from Ubuntu, since it was the chosen base image.

Terminal commands must be preceded by the Docker instruction RUN and followed by -y to automate the

answer ”yes” to any emerged questions. Buildroot requirements, Qt components and other software need

to be installed using the command listed in 4.12.

RUN apt-get install qt5-qmake -y; apt-get build-essentials -y;

Listing 4.12: Dockerfile: installation of the requirements example.

After setting up the environment for the Qt project, it can be cloned from a github repository recurring

once again to the RUN instruction. The last step of building the Qt project can now be made inside

Chapter 4. Implementation 56

the Docker in order to create the application’s executable to be later run. The next step is to give root

permissions to the project files and scripts using Ubuntu’s instruction chmod.

The complete Dockerfile is listed in 4.13.

FROM ubuntu:latest

RUN apt-get update -y;

RUN apt-get install locales -y; apt-get install sudo -y; apt-get install

cmake -y; apt-get install devscripts -y; apt-get install qt5-default -y;

apt-get install wget -y; apt-get install git-core -y; apt-get install

unzip -y; apt-get install texinfo -y; apt-get install gcc-multilib -y;

apt-get install build-essential -y; apt-get install gzip -y; apt-get

install tar -y; apt-get install bash -y; apt-get install binutilus -y;

apt-get install file -y; apt-get install python3 -y; apt-get install bc

-y; apt-get install libcurl4-gnutls-dev -y; apt-get install

libexpat1-dev -y; apt-get install gettext -y; apt-get install libz-dev

-y; apt-get install libssl-dev -y; apt-get install git -y; apt-get

install g++ -y; apt-get install minicom -y; apt-get install cpio -y;

apt-get install python -y; apt-get install rsync -y;

EXPOSE 22

VOLUME ["/data"]

COPY . /data

WORKDIR /root

RUN git clone https://github.com/vladreznikov/tailorOS.git

RUN make -C tailorOS

RUN chmod 777 tailorOS/initialization.sh

RUN chmod 777 tailorOS/make.sh

RUN locale-gen en_US.UTF-8

RUN export LC_ALL=en_US.UTF-8

RUN export LANG=en_US.UTF-8

Listing 4.13: Final Dockerfile of the project

Chapter 4. Implementation 57

4.5 Conclusion

The system implementation was divided into several different sections in order to facilitate the devel-

opment. The approach used in the development of this Dissertation’s project was iterative, finish each

section of the implementation completely in order to advance for the next one.

Firstly, it was important to create a minimal configuration file that allowed the system to boot in the

specified architecture. Subsequently it was necessary to make sure that the user will have the dependent

software tools and packages for this application to run correctly. To fulfill that purpose, a script that

automates the installations and manipulates the directories for the creation of the appropriate environment

was created. Once all the necessary modifications are done, it is possible to run the GUI that lets the user

tailor the OS image and build it to the selected directory. As last step, the system was integrated with

Docker in order to grant the application portability for every working environment.

Chapter 5

Tests and Results

When no additional packages are selected, it is possible to build the minimal image that is the template

and all the subsequent OS will be built upon it. The final result is a 2.4 MB Kernel and a 3.7 MB Root

filesystem compared to a standard 60 MB image generated by Buildroot. When adding the root password

tool and activating Ethernet driver in kernel in order to be able to use the SSH feature, the root filesytem

size increases to 8.6 MB and the boot partition has 6 MB. The image has a working HDMI and serial

console as well as Ethernet and Internal Wi-Fi with DHCP (Dynamic Host Configuration Protocol).

5.1 Minimal image tests

Before proceeding with development of the Dissertation, the minimal image of the OS had to be tested

carefully as it would serve as base image for the further builds.

The necessary features to be added and specified in this image are:

• Specify the processor: since the tests will be run upon boards of Raspberry Pi family, Cortex

A53 is specified.

• Specify the custom toolchain to be downloaded: an external toolchain is downloaded in

order to step up the whole process.

• Download the Kernel: the latest version of kernel is downloaded.

• Generate the image: making sure the iso of the image is generated.

58

Chapter 5. Tests and Results 59

The final OS must be able to boot and connect to a screen through HDMI. Since busybox regular

configuration is installed, Ubuntu basic commands can be run and the system must behave like a normal

Ubuntu (without most of the features).

The image shows the OS source, which is Buildroot that was used as backend in order to build the

image, and also the hardware architecture upon which the system is running. In addition it is possible to

observe the versions of Linux, Kernel and BusyBox respectively confirming the proper functioning of the

system. The root filesystem size is also displayed. This information can be observed in the figure 5.1

Figure 5.1: Minimal image running on Raspberry Pi

The final OS size can be confirmed using Gparted tool, where the information about the size of the SD

Card that has the OS image is shown. The final minimal sizes can be observed in 5.2.

Figure 5.2: Minimal image size on GParted

5.2 Python tests

Python is a language that is rising in the world of embedded applications. Although not being the best

candidate because of real time requirements that a typical embedded system demands, the day-by-day

Chapter 5. Tests and Results 60

improvement of hardware allows SoCs to run embedded Linux which can easily be adapted for python

scripts.

Python also has good data processing support which can be utilized when sensor data must be pro-

cessed. In addition, network modules, socket programming and web server hosting capabilities of Python

come handy for some applications. The online support and developers base have also arisen for boards

like Raspberry Pi.

In order to create an image with working Python, it is necessary to enable Python3 , Setuptools and its

dependencies. The result is a bootable 20.1 MB root filesystem. In order to test the OS, a simple Python

script was run using the proper command like it can be visualized in 5.3.

Figure 5.3: Testing a python script with generated OS

As it can be observed in the Figure 5.3, the OS running on a Raspberry Pi successfully runs a python

script that has the following test command.

print("Hello World")

After making sure the python tools are operating in a correct way, it is possible to proceed to testing more

advanced programs.

5.3 IoT tests

In order to prove the correct functioning of this Dissertation, a more sophisticated utility had to be tested

using an OS generated by the developed application. Recurring to IoT projects previously elaborated in the

laboratory, it was possible to make a Python script that creates a Client inside an IoT Server and receives

packages through network.

Chapter 5. Tests and Results 61

The first step of this process is to run a setup.py script that installs the necessary packages in order to

start the IoT server/client data exchange. This process can be observed in the following figure 5.4.

Figure 5.4: Running setup.py script that creates an IoT client

Chapter 5. Tests and Results 62

After setting up the IoT server using previously commands, it is is possible to run another python script

that creates a client to exchange data with the the server. The Raspberry Pi running this script becomes

now part of a cluster where other similar boards are connected using the same IoT server and the exchange

is done between them. The proper functioning and the data transmission can be observed in the figure

5.5.

Figure 5.5: IoT Server/Client data exchange

Chapter 5. Tests and Results 63

5.4 Docker tests

In order to grant the portability of the final project of this Dissertation, it was necessary to create a

docker image from which the container would run, executing all the necessary actions.

The first step is to build the image using the previously mentioned Dockerfile. In the following figure

it is possible to observe the successful build of the last steps as well as the final image in the Repository

named tailoros. The output from the Dockerfile can be observed on the figure 5.6.

Figure 5.6: Output from the build of the Dockerfile.

The next is to run the container from the created docker image and operate inside it. In order to

recognize the host display to run the GUI, the command listed in 5.1 has to be run.

xhost +local:docker

Listing 5.1: Command to run GUI on host display from a docker container.

After that, it is possible to run the container, recurring to the run command of docker with some extras

that make the process operational. The command listed in 5.2 must be used:

docker run -ti --rm -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -v

/home:/new tailoros

Listing 5.2: Running a docker container.

Chapter 5. Tests and Results 64

After the previous command is executed, the system steps in into the docker container where all the

changes and runs can be made. When entering the container, it posses the Qt files that are necessary

to run the system that will download all the requirements as well as Buildroot and the external minimal

configuration that can be found on Github repository. The only step is to run the executable inside the

folder and proceed with the OS customization. This can be observed in the following figure 5.7. It can be

Figure 5.7: Running the project inside of a Docker container

noticed that the command line is operating inside the tag of the previously built docker image. The GUI is

started from this directory and all the process is executed correctly inside the docker container.

All the code necessary to run the application can be found on Github:

https://github.com/vladreznikov/tailorOS

As well as the minimal configuration necessary to run the application:

https://github.com/vladreznikov/minimal_raspberrypi_config

Chapter 6

Conclusions and Future Work

After the whole implementation and tests, conclusions can be made from the developed work. This

chapter aims to make an overview of the results obtained taking into account what is being developed in

this area nowadays and the problems the embedded developers face. It is also a goal of this chapter to

suggest further improvements that can be made in future implementations.

6.1 Conclusions

The conclusions are made based on all the tests that were made and all the objectives that were

imposed in the Introduction chapter, creating an application that allows developers to generate low-sized

embedded OS tailored to their needs without having a deep knowledge of the system and saving precious

time.

As it was previously explained in this Dissertation, an embedded system is always integrated in a bigger

system, usually having only one function that has strict constraints andmust be executed flawlessly. Hence,

the OS that is run on an embedded device normally doesn’t have the need to hold most of the features

as they aren’t used during the functioning of the system. As follows, the created OS can be even smaller

in size containing only necessary tools for the system with a specific function to run. Many systems with

different purposes were tested to confirm that it is possible to run an application with the same aim saving

a great a mount of precious space. An IoT client/server application using python scripts was successfully

run on a system generated by this Dissertation’s application proving its functionality. The IoT application,

previously executed on a Raspbian XXXXX MB is now auspiciously running in a XXX MB system using only

the needed features and packages

65

Chapter 6. Conclusions and Future Work 66

Moreover, this Dissertation overcomes another problem in generating an OS tailored to developer’s

needs - it doesn’t have a steep learning curve as everything is automated and simple for the user to

hold. In contrast with simply using Buildroot, the developer doesn’t have to worry about knowing the right

name of the package to enable in order to make a certain feature work or being concerned about the

dependencies that each package has. Everything is managed by the final application of this Dissertation

and the only job the user has in this process is selecting the desired platform and the checkboxes with the

needed features for the system to operate in a proper way.

6.2 Future Work

This Dissertation created an application for developers to generate OS tailored to their needs. The

architectures used for implementation and tests were the most common Raspberry Pi’s family boards that

are well known across the Embedded Systems course and used by most of the students.

Although the steps of tailoring and generating an OS are automated for these boards, some major mod-

ifications in the project structure have to be made in order to do the same process for other architectures.

One of the future work improvements would be to extend the amount of compatible architectures.

By now, the GUI of the application allows the user to choose from a limited list of features that were

considered the ones to have the most common uses across the embedded systems world. Most of the

embedded applications rely on these characteristics, but other more specific projects may as well require

other functions. In order to improve this topic, a future work improvement could list all the packages

from the Buildroot list and let the user choose by searching a name instead of having a limited number

of options as checkboxes. By the reason that the names of the packages aren’t often instinctive, other

improvement could be linking the desired features with the necessary packages and carrying the necessary

dependencies.

Finally, the last improvement would be to suggest which features and packages are necessary for the

user to choose based on a slight description of the project to be developed.

References

[1] Dimitrios Serpanos and Tilman Wolf. Architecture of Network Systems. 2011.

[2] Global Embedded Systems Market Growth 2019-2024. LP INFORMATION INC, Feb. 13, 2019.

[3] Karim Yaghmour and Jon Masters. Building Embedded Linux Systems, Second Edition. 2008.

[4] “Difference Between Monolithic Kernel and Microkernel”. In: Tech Differences (June 24, 2019).

[5] Justin Garrison. What is the Linux Kernel and What Does It Do? July 12, 2017. URL: https :

//www.howtogeek.com/howto/31632/what-is-the-linux-kernel-and-what-

does-it-do/.

[6] LWN. Tools and distributions for embedded Linux development. Apr. 27, 2010. URL: https://

lwn.net/Articles/384713/.

[7] Thomas Petazzoni. Getting Started with Buildroot. 2018.

[8] Magnus Unemyr. Why every Cortex-M developer should consider using a bootloader. Oct. 28, 2016.

URL: http://blog.atollic.com/why- every- cortex- m- developer- should-

consider-using-a-bootloader.

[9] Greg Kroah-Hartman. “The Kernel Configuration and Build Process”. In: Linux Journal ().

[10] Chad Z. Hower. “Introducing Cosmos”. In: CodeProject (2010).

[11] Gerard Beekmans. Linux From Scratch. URL: http://wiki.linuxfromscratch.org/lfs/.

[12] Gerard Beekmans. Linux From Scratch. 2000.

[13] Johnatan McCrohan. “An Embedded Linux Based Remote Control System”. B.A.I Engineering. Trin-

ity College Dublin, 2011.

[14] Alexandru Vaduva. Learning Embedded Linux Using the Yocto Project. 2015.

[15] Manolis Agkopian. Design Your Own Raspberry Pi Compute Module PCB. 2019. URL: https:

//www.instructables.com/id/Design- Your- Own- Raspberry- Pi- Compute-

Module-PCB/.

[16] Mike Raab. “Intro to Docker containers”. Mar. 2018.

67

https://www.howtogeek.com/howto/31632/what-is-the-linux-kernel-and-what-does-it-do/
https://www.howtogeek.com/howto/31632/what-is-the-linux-kernel-and-what-does-it-do/
https://www.howtogeek.com/howto/31632/what-is-the-linux-kernel-and-what-does-it-do/
https://lwn.net/Articles/384713/
https://lwn.net/Articles/384713/
http://blog.atollic.com/why-every-cortex-m-developer-should-consider-using-a-bootloader
http://blog.atollic.com/why-every-cortex-m-developer-should-consider-using-a-bootloader
http://wiki.linuxfromscratch.org/lfs/
https://www.instructables.com/id/Design-Your-Own-Raspberry-Pi-Compute-Module-PCB/
https://www.instructables.com/id/Design-Your-Own-Raspberry-Pi-Compute-Module-PCB/
https://www.instructables.com/id/Design-Your-Own-Raspberry-Pi-Compute-Module-PCB/

References 68

[17] Dedoimedo. Remastersys - Create custom Ubuntu (live) CD - Tutorial. 2008. URL: https://www.

dedoimedo.com/computers/remastersys.html.

[18] Make Tech Easier. How To Backup Your Ubuntu System With Remastersys. 2008. URL: https:

//www.maketecheasier.com/backup-ubuntu-with-remastersys/.

[19] Michael Reed. “Customize a Distro with Remastersys”. In: Linux Journal (2011).

[20] Bruce Byfield. “Custom Linux Installations”. In: Linux Magazine (year).

[21] Aseem Kishore. Make a Custom Live Linux Distro with Linux Live Kit. 2019. URL: https://

helpdeskgeek.com/linux-tips/make-a-custom-live-linux-distro-with-

linux-live-kit/.

[22] Make Tech Easier. Create Your Own Linux Distro with Ubuntu Imager. 2015. URL: https://www.

maketecheasier.com/create-linux-distro/.

[23] Ladislav Bodnar. Learnig with Linux From Scratch. 2004. URL: https://lwn.net/Articles/

85865/.

[24] Debian. Live Systems Manual. URL: https://live-team.pages.debian.net/live-

manual/html/live-manual/index.en.html.

[25] Matt Kraai. Debootstrap. 2000. URL: https://live-team.pages.debian.net/live-

manual/html/live-manual/index.en.html.

[26] Khalid Baheyeldin. “OpenWRT”. In: 2Bits (2014). URL: https://openwrt.org/start.

[27] Mike Jaret-Schachter, ed. OpenWRT for embedded development. Ohio LinuxFest 2017. 2017.

[28] Marcus Schäfer, ed. openSUSE-KIWI Imaga System. 2016.

[29] Drew Mosoley. “Why the Yocto Project for my IoT Project?” In: Embedded (2017).

[30] George Kroah-Hartman. Linux Kernel in a Nutshell.

[31] Demystifiying the Linux Kernel. May 11, 2015. URL: https://blog.digilentinc.com/

demystifiying-the-linux-kernel/.

https://www.dedoimedo.com/computers/remastersys.html
https://www.dedoimedo.com/computers/remastersys.html
https://www.maketecheasier.com/backup-ubuntu-with-remastersys/
https://www.maketecheasier.com/backup-ubuntu-with-remastersys/
https://helpdeskgeek.com/linux-tips/make-a-custom-live-linux-distro-with-linux-live-kit/
https://helpdeskgeek.com/linux-tips/make-a-custom-live-linux-distro-with-linux-live-kit/
https://helpdeskgeek.com/linux-tips/make-a-custom-live-linux-distro-with-linux-live-kit/
https://www.maketecheasier.com/create-linux-distro/
https://www.maketecheasier.com/create-linux-distro/
https://lwn.net/Articles/85865/
https://lwn.net/Articles/85865/
https://live-team.pages.debian.net/live-manual/html/live-manual/index.en.html
https://live-team.pages.debian.net/live-manual/html/live-manual/index.en.html
https://live-team.pages.debian.net/live-manual/html/live-manual/index.en.html
https://live-team.pages.debian.net/live-manual/html/live-manual/index.en.html
https://openwrt.org/start
https://blog.digilentinc.com/demystifiying-the-linux-kernel/
https://blog.digilentinc.com/demystifiying-the-linux-kernel/

	Resumo
	Abstract
	Table of Contents
	List of Figures
	List of Listings
	Acronyms List
	Introduction
	Contextualization
	Motivation
	Objectives
	Dissertation Structure
	Methodoly

	State of the Art
	Basic concepts
	Operating System
	Buidroot
	Output

	Linux From Scratch (LFS)
	OpenWRT
	Yocto Project
	OpenEmbedded
	Poky
	Toaster

	COSMOS
	Remastersys/Respin
	Linux Live Kit
	Ubuntu Imager
	Debian Live
	Debootstrap

	KIWI
	Conclusion

	System Specification
	System Requirements
	System Architecture
	Hardware Specification
	Raspberry Pi 3 model B
	Compute Module 3

	Software Specification
	Qt
	Docker

	Implementation
	Minimal configuration
	Initial configuration of the System
	Customization
	Integration with Docker
	Dockerfile

	Conclusion

	Tests and Results
	Minimal image tests
	Python tests
	IoT tests
	Docker tests

	Conclusions and Future Work
	Conclusions
	Future Work

	References

