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Abstract

This thesis presents results of theoretical consideration of three distinct problems of light interaction

with solid-state nanostructures. Each of these problems is related to the concept of polaritons, mixed

excitations resulting from coupling of photons to certain quasiparticles in the condensed matter. This

concept is described in the Introduction and each of the specific problems considered is presented in a

separate chapter.

In the first of these chapters, polaritonic effects in a structure containing an antiferromagnet (MnF2)

and a graphene sheet are studied. The dispersion relations are studied both for TE and TM polarizations.

Comparisons are made between the system with only antiferromagnet, only graphene sheet and the full

system, in order to study the effect of each part of the system on the dispersion relation. The variations

of the absorbance, reflectance and transmittance with the angle of incidence of a plane wave are also

studied. A perfect metal is added to the system in order to study the effect of the extra confinement on

the dispersion relations.

In the following chapter, a system consisting of a 2D transition metal dichalcogenide (TMD) layer,

namely a monolayer of MOS2, embedded in a cylindrical microcavity made of Si3N4, is studied. The

focus is on studying the formation of exciton-polariton modes and their effect on the dispersion relation,

as well as on the local density of states. A study of the enhancement of the total and local density of

states is conducted with respect to both the frequency and the position in the cylinder. A point-emitter

can then be placed at the spots of maximum intensity to take advantage of the distribution of energy

inside the cavity.

In the last part of this work, the eigenmodes of a microsphere are studied in order to predict the

distribution of energy from external excitation of these modes by incidence of plane waves on the micro-

sphere. For this, the effect of the local density of states is combined with the distribution of the incident

rays as their travel inside the sphere in order to estimate the distribution of light on the microcavity.

As in the previous chapter, a point-emitter can be placed in the position of higher enhancement to take

advantage of the distribution of energy inside the cavity.

The last chapter of the thesis is devoted to discussion of some physical aspects and potential applica-

tions of the solved problems.
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Resumo

Esta tese apresenta resultados teóricos de três problemas distintos de interação de luz com nanoestru-

turas de matéria condensada. Cada um deste problemas está relacionado com o conceito de polaritões,

excitações mistas resultantes do acoplamento de fotões a determinadas quasi-part́ıculas na matéria con-

densada, e este conceito é abordado na introdução e cada um dos problemas estudado tem um caṕıtulo

dedicado ao mesmo.

No primeiro destes caṕıtulos, são estudados os efeitos polaritónicos numa estrutura que contém um

antiferromagnete (MnF2) e uma folha de grafeno. As relações de dispersão são estudadas para ambas as

polarizações posśıveis, ’transverse magnetic’ (TM) e ’transverse electric’ (TE). Comparam-se os sistemas

com apenas o antiferromagnete, apenas a folha de grafeno e o sistema completo, de forma a estudar o

efeito que cada componente tem na relação de dispersão. Também é estudada a variação da absorbância,

refletância e transmitância com o ângulo de incidência de uma onda plana. É adicionado um metal

perfeito ao sistema de forma a estudar o efeito do confinamento adicional nas relações de dispersão.

No caṕıtulo seguinte, é estudado um sistema com uma monocamada de um metal de transição di-

calcogeneto (TMD), nomeadamente MOS2, embutido numa microcavidade ciĺındrica de Si3N4. O foco

está no estudo da formação de polaritões excitónicos e os seus efeitos na relação de dispersão do sistema,

assim como na densidade local de estados. É levado a cabo um estudo do aprimoramento das densidades

de estado totais e locais com a variação da frequência eletromagnética e da zona do cilindro. Sabendo os

resultados destas variações é posśıvel colocar um emissor pontual num dos locais de máxima intensidade

para tomar partido da distribuição de energia dentro da cavidade.

Na parte final deste trabalho, estudam-se os modos próprios eletromagnéticos de uma microesfera de

forma a prever a distribuição de energia resultante da excitação externa destes modos por incidência de

ondas planas. Para tal, o efeito da densidade local de estados tem de ser combinado com a distribuição de

raios incidentes dentro da esfera à medida que os mesmos se propagam no interior. Tal como no caṕıtulo

anterior, é posśıvel colocar um emissor pontual no interior da esfera na posição de maior aprimoramento

para tomar partido da distribuição de energia dentro da cavidade.

O caṕıtulo final desta tese é dedicado à discussão de alguns aspetos f́ısicos e potenciais aplicações dos

problemas resolvidos.
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1
Introduction

1.1 Scope of this thesis

Light-matter interaction is responsible for a broad variety of phenomena and is in the heart of important

fields of applications, such as microscopy, optoelectronics, photonics and renewable energy production.

The development of materials technology led to new possibilities of using and controlling light, making

optoelectronic devices that are much smaller than the wavelength of the light they work with, and the

emergence of new areas of research, such as nanophotonics [1]. For example, in a recently published work

[2], almost total light absorption in a nearly-atomic thick semiconductor layer incorporated in a specially

designed photonic structure was demonstrated. This thesis work was inspired by such achievements. It is

devoted to theory and modelling of several photonic structures where strong light-matter interaction leads

to the formation of composite excitations called polaritons and strongly influences the optical properties

of these structures.

The two most important particles in electromagnetism are the photon and the electron. [3] This

work will explore two physically distinct ways in which the electron can be affected by a photon. To be

more precise, ways in which a collective excitation of a system with multiple electrons can be created

with the energy gained from absorbing a single photon. The interaction of the electromagnetic field of

a photon with charged particles in any crystalline structure is called a polariton. [4, 5] Graphene is a

material where this interaction can occur. In graphene, the charged particles that interacts with photons

are electrons, but collective excitations of larger charged particles can occur in solids, specially at high

temperatures. These excitations are called phonons because they are the basis of sound waves, and when

the particles that oscillate are charged, these phonons can interact with electromagnetic waves to form

phonon-polaritons (Sec 4.6., [6]). A graphene layer is a one atom thick layer of carbon atoms arranged

in an hexagonal lattice. [7] In a graphene layer, electrons can oscillate when excited by an oscillating

electromagnetic wave. [8] These charge oscillations generate their own electromagnetic field. This state

of interaction can be considered as a collective excitation of the graphene electrons, normally called

plasmon. [9] Graphene plasmons create an evanescent electromagnetic field, which decays exponentially

with distance to the graphene sheet. The combination of the charge oscillations and the evanescent EM

field is called the surface plasmon polariton (SPP). SPPs have their own dispersion relations, different
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from those of any of the single electrons, plasmons or of the original photons. [9]

An analogous phenomenon can happen with spin carriers, such as atoms with total spin in an antifer-

romagnet. These spin carriers are affected by the magnetic field and when their spin changes direction it

generates another magnetic field which influences the neighbouring spin carriers. These spin oscillations

are called magnons and they too have their dispersion relations and act as particles, having properties

that can be derived from dispersion relations such as effective mass (which is defined as the inverse of

the second derivative of the energy with respect to the momentum, and its value indicates the effect that

the other particles in the material are having on the response of a given particle to the application of a

force [10]). [11] These oscillations, of electrical or magnetic nature, are a way in which electrons can be

affected by a photon in a system with more than one medium. Such a system will be studied in chapter

2.

In chapter 3 the discussion will shift to a different system, a micro-cavity with an embedded 2D

semiconductor layer. [12] An optical micro-cavity is any closed cavity with partially or totally reflecting

boundaries, with dimensions of the order of micro-meters, hence the name micro-cavity. [13] And a

semiconductor is a material that has a small gap between the valence band, which is the highest energy

band within the material where electrons will still be present, which is completely filled with electons,

at zero temperature, and the conduction band, which is the band immediately above where electrons

can travel across the material. [10] The conventional definition of a semiconductor is a material whose

valence-conduction band gap is larger than 0 eV but smaller than 4 eV. [14] In chapter 3, the interaction

studied is physically different. It involves a semiconductor material with essentially two energy bands,

where the electron can go from the valence band to the conduction band if it absorbs a photon with a

sufficient energy. The collective effect of all but one electron present in the valence band is equivalent

to the presence of a positive charge in the place of the hole the electron leaves in the valence band. [15]

This electron will ’attract’ the hole (in reality, it is repelling all the electrons left in the valence band).

Nevertheless, this electron-hole system can be treated as a particle similar to an hydrogen atom, although

the masses of its charged particles are the same. This electron-hole pair is called an exciton (because it

comes from the excitation of the electron from the valence to the conduction band) and it has bound states

that have some similarity with the hydrogen atom states. [16] The effect of exciton-photon interaction

studied in chapter 3 is not the physical oscillations of these excitons, but rather their oscillations in

and out of existence, successively creating and destroying photons. These oscillations are made possible

within the micro-cavity if the energies of the photons allowed within it are similar to the energies of

the gaps between the valence and conductions bands of the semiconductor material inserted. [15] This

process of successive creation and destruction of an exciton can be referred to as an exciton-polariton and

it too can be thought of as a particle (’pseudo-particle’) with its own dispersion relation and associated

properties. [15] It is therefore interesting to study how these dispersion relations differ from the dispersions

of the empty micro-cavity and if the effect of the exciton-polaritons can be used to control the emission

properties of said cavity. [4]

Finally, in chapter 4, pure photonic states in a spherical micro-cavity will be studied. The goal will

be to present the spatial distribution of intensity of the combined electromagnetic field of all the possible

states of the system. The system of interest consists of point emitters embedded in a relatively large

(micrometric) sphere made of a transparent dielectric material, which acts as a spherical cavity and

influences the point emitters. This is known as the Purcell effct [17]. The Purcell factor is calculated
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for the cavities of chapters 3 and 4. The Purcell factor is a measure of the level of enhancement of the

spontaneous emission rate of a material when it is part of a given cavity or system, compared to the

spontaneous emission rate it would display in an homogeneous isotropic environment. [17] In both these

chapters the Purcell factor is calculated as a function of the local density of states of electromagnetic

cavity modes. Calculation of the Purcell factor and its spatial variation allows to predict where the most

intense spots of radiation will occur if photons of a particular energy reside in the micro-cavity or an

emitter is placed at a given spot. [18] The study mentioned so far is only focused on the eigenstates of the

system and not on the means of excitation of these states. Furthermore, a simple model of geometrical

optics will be applied in order to deduce the effect of an incidence of plane waves on the cavity and

mathematically account for the radial probabilistic distribution of incident photons that enter the cavity

in a similar fashion to the rainbow theory. [19] The main results obtained in this work are summarized

in chapter 5. Some of these results have been published [12,20].

1.2 Materials used in the systems studied

The first two systems under study incorporate three different materials that allow for the creation of

different types of polaritons. These materials will be introduced in this section.

Graphene

As previously mentioned, graphene sheets are one atom thick layers of carbon atoms arranged on a

hexagonal lattice. Graphene is a semi-metal with a zero band gap. [21] Graphite, which is what pencils

are made of, is a collection of stacked graphene layers bound by weak van der Walls forces. [22] Creating

graphene is simply a matter of isolating a single layer from these stacks. This material is extremely

interesting because it exhibits Dirac electrons. These electrons have a linear dispersion relation (close

to the Dirac points [9]) and therefore their effective mass is zero. The Dirac points those where the

upper band touches the lower band. [23] Because their effective mass is zero, the Dirac electrons all

must behave like light inside the graphene layer, having a constant fixed velocity. This characteristic

is common of all Dirac semimetals, but graphene has the longest mean free path at room temperature,

features clear quantum Hall effects (half integral and fractional) and has the highest mobility. [24] These

characteristics, along with its’ light weight, make it a very intriguing material to study for a range

of technological applications. [9] However, electronics applications are difficult to accomplish with pure

graphene. For pure graphene, the bandgap is zero and therefore it is very difficult to build transistors

out of this material. [9] The Fermi energy is defined as the energy range of the electrons at absolute

zero temperature. By changing this energy, the bandgap can be controlled. Graphene can be doped

in various ways to change the Fermi energy, creating either p-type graphene, which has the Fermi level

below zero acting similar to a semiconductor, or n-type graphene, which has the Fermi level above zero

acting similar to a metal. [9,24] The band structure of graphene has been calculated with a tight-binding

model resulting in the expression [25]:

E±(k) = ±t
√

3 + f(k)− t′f(k). (1.1)
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Figure 1.1: Electronic band structure of graphene showing the linear dispersion relation that characterizes

Dirac electrons at the Dirac points, as given by (1.1). The dirac points are the points where the upper

band touches the lower band. [23] The electrons’ effective mass is zero, near these points. [9] Because

their effective mass is zero, the Dirac electrons all must behave like light inside the graphene layer, having

a constant fixed velocity. The dispersion is shown in units of t with numerical values of t = 2.7 eV and

t′ = −0.2t. [21]

Graphene can support surface plasmon polaritons when the density of Dirac electrons oscillates along

with an oscillating electromagnetic field. [9] This field is exponentially decaying away from the graphene

sheet. For the same frequency, the wave number of the polariton is much larger than that of the free-space

photon, which leads to the aforementioned exponential decay. [8] The SPPs in graphene are localized on a

scale lower than its wavelength and this is generally referred to as subwavelength optical confinement. [26]

This precise localization is very alluring for optical devices and it is the property sought after in various

fields such as optical data storage, spectroscopy, microscopy, integrated photonics, lithography, biological

photonics, chemical studies, etc... [27] The conductivity of graphene under typical doping levels can be

modelled by the Drude-like expression [9]:

σ(ω) =
e2

π~
EF

~γ − i~ω
, (1.2)

where γ is a damping rate. This expression is used throughout chapter 2 as the graphene optical conduc-

tivity. Equation (1.2) is valid with both temperature and nonlocal effects can be ignored.

1.2.1 Uniaxial antiferromagnets

The second material featured in the system studied in chapter 2 is an uniaxial antiferromagnet, namely

MnF2. This material features antiferromagnetism in a single direction, that is, it contains layers of spins

in which all the spins in the layer are aligned with each other but anti-aligned with the spins in the

layers above and below. [20,28] Figure 2.1 illustrates this arrangement. When acted upon by a magnetic

field, the spins will precess around it as shown in figure 1.2, and their collective behaviour can form an

excited state called the magnon. [11] Magnons are quantized spin waves, and they can occur both in

ferromagnets and antiferromagnets. Without the magnetic field, the ground state of a layer of spins in an

antiferromagnet consists of the spins all oriented in the same direction. The first excited state corresponds
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to the inversion of one of the spins, and it is this inversion that creates a magnon because the effect of

this inversion will spread as a wave around the original inverted spin. [11] The precession frequency of

the individual spins is what determines the energy of a single magnon:

Emagnon = ~ωprec. (1.3)

Figure 1.2: Depiction of the precession of the spin of a particle that takes place in the presence of an

external magnetic field.

However, in ferromagnets the only factor at play is the magnetic anisotropy, which is much smaller

than the interplay of exchange and anisotropy that occurs in antiferromagnets. [20] The choice for an

uniaxial antiferromagnet to interact with the graphene layer is due to the fact that these magnons caused

by the interplay of exchange and anisotropy have energies in the same spectral range as the energies

of the SPPs in graphene (THz). [29] Spintronics, as opposed to electronics, is the manipulation of spin

transport instead of charge transport in order to create devices for communication of information. [30]

Antiferromagnets are also more useful for spintronic applications than ferromagnets. This is mainly

because antiferromagnets have zero net angular momentum, which means they are much less affected

by external electromagnetic fields. The spin transport in antiferromagnet as only been found to be

reliable over a few nanometres [31] However, exploitation of the Hall effect allows for long-distance spin

transport. [32] These uniaxial antiferromagnets can host surface and bulk magnon polaritons, which can

be described as the result of interactions of photons with magnons. This is possible because the photon’s

magnetic field can couple to the spins in the antiferromagnets and generate magnons. However, the

magnon’s oscillating spins generate a magnetic field which corresponds to new photons. This back and

forth creations of magnons and photons is what is described as a magnon-polariton. [29] Bulk magnon

polaritons occur inside the antiferromagnetic material, where the boundary with the dielectric material is

sufficiently far away. However, close to this boundary we have surface polaritons, whose electromagnetic

fields decay exponentially away from the interface. [28]

1.2.2 Transition metal dichalcogenides

Transition metal dichalcogenides (TMD) are semiconductor materials that allow for some strong light-

matter coupling. [33] A single layer of this material consists in a triangular lattice of a transition metal in
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the middle of two triangular lattices of a chalcogen atom (S, Se or Te). [34] This structure is illustrated

in figure 1.3. There are many photoelectronic applications of TMDs (for example, photodetection and

lasing) [34–36]. The strong light-matter coupling that takes place is through the possibility of the

formation of excitons. [15, 33]

Figure 1.3: Structure of a transition metal dichalcogenide (TMD) monolayer. The black spheres represent

the transition metal atoms (Mo, W, etc) and the blue spheres the smaller chalcogen atoms (S, Se, or

Te) [37]. A single layer of this material consists in a triangular lattice of a transition metal in the middle

of two triangular lattices of a chalcogen atom (S, Se or Te). (a) Side view, a layer with a thickness of only

three atoms. (b) Top view, the repeating pattern of the monolayer on the plane with which it is aligned.

An exciton is a quasiparticle that arises from the combination of an electron on the conduction band of

the semiconductor and the hole that it leaves behind in the valence band. [13] In TMDs, the excitons are

very robust, with binding energy of the order of 0.5 eV and a very small effective Bohr radius. [33] Bound

excitons can therefore be found at room temperature and 3D confinement of the exciton is possible. At

the K and K ′ points of the Brillouin zone there are strong dipole optical transitions, for these are the

points with the smallest gaps between the conduction and valence bands. [33] The electronic states are

nearly two dimensional and this results in highly anisotropic emission. Furthermore, there are specific

selection rules with (circular-) polarization-valley correlation. Compared to traditional semiconductor

quantum wells, mono- or few-layer TMDs can more easily be combined with other 2D materials such as

graphene and h-BN to make van der Waals heterostructures, [38] as well as be coupled to other quantum

emitters [39–41] or plasmonic nanostructures. [42–45]. Recently, integration of an electroluminescent van
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José Gomes

der Walls heterostructure containing a TMD layer cladded by h-BN and graphene layers into a monolithic

optical micro-cavity was demonstrated, leading to a strong increase and a modification of the angular

distribution of the electrically pumped emission from the TMD layer. [46]

TMD layer interacting with microcavity EM modes

The combination of the TMD layer exciton with the electromagnetic eigenmodes of a microcavity is the

exciton-polariton. [13, 15] Inserting the TMD layer in the microcavity greatly enhances the light-matter

coupling as compared to having the layer interact with incident radiation in free space. [13, 15] In the

strong coupling regime, the exchange of energy between excitons and photons becomes reversible, yield-

ing a number of interesting and potentially useful effects owing to the formation of collective excitations

called exciton-polaritons. [13,15] It has been possible to modify the energy spectrum of these cavities with

the light-matter coupling. This has been done for a variety of structure including Fabry-Perot cavities

with Bragg reflectors as mirrors, micropillars, photonic crystals and plasmonic surfaces and nanostruc-

tures [47]. The strong coupling regime was studied theoretically and demonstrated experimentally for

usual Fabry-Perot [35, 48–50] and the so called Tamm-type micro-cavities, [51] and also for a cylindrical

whispering gallery mode (WGM) resonator. [52] Integrating van der Waals heterostructures with optical

waveguides has recently been reviewed. [53]

The encouraging results obtained in these experimental work include high Rabi splittings (compa-

rable to the best GaAs and II-VI MCs), the existence of exciton-polaritons at room temperature, and

2D-exciton-mediated lasing. The latter was achieved with a WGM microdisk resonator containing an

embedded WS2 monolayer. [52] Such a closed geometry ensures better confinement of light (smaller mode

volume) and, potentially, can provide a stronger exciton-photon coupling compared to the traditional

Fabry-Perot type of cavity.

1.3 Plasmon-polaritons and Magnon-polaritons

The system studied in chapter 2 is a composite system made of a semi-infinite antiferromagnet and a

graphene layer placed above at a certain distance. As discussed above, the antiferromagnet supports the

creation of magnon-polaritons and the graphene layer supports the creation of plamon-polaritons. In

this system, hybrid modes are possible, where the plasmons interact with the magnons to create stable

eigenmodes of the system. [20] The graphene sheet therefore allows for tunability of the properties of the

antiferromagnet, mainly the dispersion relation of the electromagnetic modes present in the system. The

dispersion relations for TE and TM modes will be calculated for evanescent waves propagating parallel to

both the graphene sheet and the antiferromangnet. This is accomplished by application of electromagnetic

boundary conditions derived from Maxwell’s equations and appropriate constitutive relations. [54] The

scattering of incident plane waves is also studied, where there is an incident wave, and the boundary

conditions are used to determine the reflectance and transmittance of the system. The results from these

two calculations are related and this relation will be shown by comparing the loss functions (imaginary

part of the reflectivity) of the propagating modes to the dispersion relations of the evanescent modes.

Since the loss function should display peaks along the dispersion relation curves, [9] this comparison helps

to confirm the validity of the calculations. Finally, the study is repeated for a system where a perfect

metal is placed at the bottom of the antiferromagnet, effectively introducing another distance parameter:
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the thickness of the antiferromagnet. In this case, it is possible to create a slightly larger gap between

the first two bands of the TM modes. This distance parameter is another way to control the dispersion

relation of these hybrid modes.

1.4 Microcavity polaritons

Polaritons arising in microcavities are also studied, as mentioned before, in chapters 3 and 4. These

polaritons and their properties can be studied theoretically with linear optics by applying macroscopic

Maxwell’s equations. [55] The electrical permittivities of the materials in the cavity and their dimensions

determine the optical spectra. Experimentally, these modes can be studied with an array of techniques

such as infrared spectroscopy or Raman scattering. [55] Polaritons arise in these structures as interactions

of the vibrations of the transient dipoles associated with certain particles (for example semiconductor

excitons or phonons) with electromagnetic fields that can be either external or generated by the vibrations

of said particles. A simple example of a system displaying polaritons is given in [55]. This system is a

’diatomic isotropic crystal with an ion-covalent type of the interatomic bond (of the cubic ZnS type)’,

and the permittivity of this material can be written as:

ε(ω) = ε∞ + (ε0 − ε∞)
ω2
TO

ω2
TO − ω2

, (1.4)

where ωTO stands for the frequency of transverse optical phonons and ε∞ and ε0 are just the high and

low frequency limits, respectively. This model allows for bulk polaritons obeying the dispersion relation

k2c2

ω2
= ε(ω). (1.5)

Each different type of polariton will have a different dielectric permittivity function ε(ω). As such, the

dispersion relation is determined by calculating the correct ε(ω) dependency for the polariton in question.

In this work, the problems of determining the conductivity of a graphene sheet (caused by plasmons) and of

a sheet of 2D semiconductor material (caused by excitons) will be tackled and these conductivities will be

used to determine the dispersion relations of systems where these materials are embedded. Theoretically,

bulk polaritons are described by propagating electromagnetic fields in the direction perpedicular to the

surface of the materials and surface polaritons are characterised by evanescent fields. However, this

distinction is not available to an experimentalist that simply analyses the spectrum results. As such, it

is a considerable challenge for experimentalists to separate the contributions of surface modes from those

of bulk modes [55]. The most typical Fabry-Perot cavities use dielectric Bragg mirrors, also reffered to as

Distribution Bragg Reflectors (DBR). These are pairwise layers of materials with alternating refractive

index. The higher the contrast of the refractive index and the higher the number of pairs, the higher

the finesse of the cavity. [13] Microcavities with a semiconductor-metal interface can have a significant

Schottky barrier height. The Schottky barrier height is the potential energy above which the interface

can conduct electricity. For metal/n-type interface, this will correspond to the difference between the

conduction band mininum and the Fermi level of the metal. And for a metal/p-type interface, this will

correspond to the difference between the valence band maximum and the Fermi level. [56] It is possible

to take advantage of this barrier for photodetection and laser control. [55] Surface polaritons can be

turned from non-radiative to radiative by the insertion of an attenuated total internal reflection prism

8
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(ATR) above the crystal. [57] The function ε(ω) of some systems can be modelled theoretically, and from

that function the observable properties like the reflectance R(ω), transmittance T (ω) and absorbance

A(ω) can be determined. Conversely, when experimentalists measure the response of a system they can

place the system on a metal, making T (ω) = 0, and obtain values for A(ω), which uniquely determines

R(ω) = 1 − A(ω) (ignoring scattering) and then from the integral Kramers-Kronig relations they can

use the reflectance spectrum R(ω) to obtain an estimate for the function ε(ω). [55] Alternatively, the

thermal emission spectrum of the system can be measured and compared to the blackbody spectrum at

that temperature. [55] The difference between them allows to determine the polariton spectrum of the

system being studied, if there is no significant process other than polariton formation at that temperature.

Approximately cylindrical shape cavities can be obtained by etching a planar one with Bragg reflectors.

In these structures the lateral confinement is provided by planar microcavities whereas DBR mirrors

provide the vertical confinement. Such a structure (shown in Fig. 1.4) is called a pillar micro-cavity. A

cavity like this is suitable for incorporating a 2D semiconductor layer [35]. A similar pillar micro-cavity

with one dielectric material and a 2D semiconductor layer is studied in chapter 3.

Figure 1.4: ’Pillar microcavity from an etched planar DBR semiconductor microcavity (left), with emission

mode spectrum (right), from Gérard et al. (1996).’ Figure 1.10 from [13].
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2
Polaritonics of antiferromagnets with graphene

Uniaxial antiferromagnets typically exhibit resonant frequencies in the THz range, which is much higher

than the GHz range of ferromagnetic materials. [20] These higher frequencies are much closer to the

spectral range of graphene surface plasmon polaritons, and thus a coupling between magnon-polaritons

at the antiferromagnet and plasmons in the graphene sheet can lead to hybrid polaritons. [20] Our goal

is to study these hybrid polaritons by calculating the dispersion relations of a system consisting of a

graphene sheet placed a distance d from a semi-infinite antiferromagnet. Figure (2.1) illustrates the

system under consideration. The goal is to study the effect of the graphene sheet on the polaritonic

modes of the antiferromagnet. To achieve this, one needs to model the magnetic permeability of the

antiferromagnet first.

2.1 Magneto-optic response of an easy-axis antiferromagnet with no

static field

An antiferromagnetic medium exhibits a relative magnetic permeability tensor ←→µ r which characterizes

its interaction with the magnetic fields through

B =←→µr ·H. (2.1)

This tensor must be determined in order to correctly calculate the response fields B in the system. The

antiferromagnetic material considered will be MnF2. Bellow the Néel temperature, this material can be

treated as a set of alternating spin lattices [58], as figure 2.2 illustrates. Hence, each Mn point in the

lattice can be modelled as a point magnetic dipole and the total magnetization (with no external field)

is zero.
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Figure 2.1: Scheme of the system under study, with the antiferromagnet a distance d away from the

graphene sheet. Medium 1 is the AFM, medium 2 is below the graphene sheet, and medium 3 is above

the graphene sheet. Evanescent waves decaying in the z direction, and propagating parallel to the

graphene sheet will be studied, as well as propagating waves incident from medium 3, which generally is

the vacuum or air.

Figure 2.2: Crystalline structure of MnF2 with overlapping lattices. For temperatures under the Néel

temperature, this material can be treated as a set of alternating spin lattices. [58]

The magnetization M must obey the relation:

B = H + 4πM. (2.2)

A semi-classical approach will be used to determine the magnetization. An oscillating magnetic field

induces spin precession, and this precession occurs in the positive direction for positive spins and negative

direction for negative spins, as shown in figure 1.2. Firstly, one writes the torque applied to a magnetic
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dipole m in the presence of an external field:

τ = m×Hext. (2.3)

Considering the wavelength is much larger than the distance between the lattice dipoles, the torque

equation for the sublattice i (2D) reads:

τi = Mi ×Hef , (2.4)

where Hef is the applied effective field felt by the sublattice and Mi is its magnetization. Classicaly, the

torque is defined as [59]

τ =
dL

dt
, (2.5)

where L is the angular momentum. The gyromagnetic ratio γ relates the angular momentum to the

magnetization by γL = M. This means that for the sublattice:

τi =
1

γ

dMi

dt
. (2.6)

The gyromagnetic ratio for electrons is given by [54]

γ =
q

2m
, (2.7)

with q and m being the charge and mass of the electron. The magnetization is determined by:

1

γ

dMi

dt
= Mi ×Hef . (2.8)

In the abscence of an external static field, the efective field Hef will be modelled by three terms:

1. The anisotropy field, which aligns the spins in the preferential direction of the antiferromagnet -

BA,

2. An exchange field, which models the interaction between the sublattices of opposing spins and drives

the spins in opposite directions - BE ,

3. And finally the external oscillating fields - H.

The anisotropy fields field by sublattices 1 and 2 will thus take the form:H
(1)
A = BAẑ

H
(2)
A = −BAẑ

. (2.9)

Furthermore, the exchange fields will be:H
(1)
E = −BE M2

|M2|

H
(2)
E = −BE M1

|M1|

. (2.10)

If the external field is small compared with the other fields, one can assume the magnetization on the

easy-axis of the sublattices to be unaffected, which means for the easy-axis aligned with z, µzz = 1. It
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is also known the components of the magnetization along this axis for the different sublattices must be

symmetric. Thus, we define:

MS = M1z = −M2z, (2.11)

where the sublattice 1 is the one whose spins are oriented in the +z direction and the sublattice 2 in −z
direction. Following the assumption of small external field, it is also possible to write, approximately, the

exchange fields as: H
(1)
E = −BE M2

MS

H
(2)
E = −BE M1

MS

. (2.12)

Due to the symmetry in xy, it suffices to consider only the component Hx of the external field. Thus,

the effective field becomes:

H
(1)
ef = x̂

(
Hx −BE

M2x

MS

)
− ŷ

(
BE

M2y

MS

)
+ ẑ (BA +BE) . (2.13)

H
(2)
ef = x̂

(
Hx −BE

M1x

MS

)
− ŷ

(
BE

M1y

MS

)
− ẑ (BA +BE) . (2.14)

One can now write the components of equation (2.8) considering a harmonic field with time dependence

e−iωt and using (2.11):
−iω
γ
M1x = M1y (BA +BE) +BEM2y, (2.15)

−iω
γ
M1y = MSHx −M2xBE −M1x (BA +BE) , (2.16)

−iω
γ
M2x = −M2y (BE +BA)−BEM1y, (2.17)

−iω
γ
M2y = −MSHx +M1xBE +M2x (BA +BE) , (2.18)

where A ≡ −iωγ . Now we reduce the system to only two equations, summing equations (2.15) and (2.17)

and subtracting equations (2.16) and (2.18), yielding:

AMx = BA (M1y −M2y) , (2.19)

A (M1y −M2y) = −Mx (BA + 2BE) , (2.20)

where Mx = M1x + M2x. The next step is to multiply (2.19) by A and (2.20) by BA and subtract the

two equations to obtain:

Mx = M1x +M2x =
2BAMSHx

A2 +B2
A + 2BABE

. (2.21)

Now we go back to the system of equations (2.15)-(2.18) and subtract equations (2.15) and (2.17) and

sum equations (2.16) and (2.18), yielding:

A (M1x −M2x) = My (2BE +BA) , (2.22)

AMy = − (M1x −M2x)BA, (2.23)

where My = M1y +M2y. Now we multiply (2.22) by BA and (2.23) by A and subtract the two equations

to obtain:

My = 0. (2.24)
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Replacing A ≡ −iωγ in equation (2.21):

Mx = M1x +M2x =
2BAMSHx

B2
A + 2BABE − ω2/γ2

. (2.25)

Equation (2.24) shows that the non-diagonal elements of the permeability are zero (µxz = 0). From

equation (2.25) we can write:

µxx(ω) = 1 + 4π
Mx

Hx
= 1 +

8πMSBA
2BEBA +B2

A − ω2/γ2
, (2.26)

which is equivalent to:

µxx(ω) = 1 +
8πΩ2

S

Ω2
0 − ω2

, (2.27)

where ΩS is the frequency given by:

ΩS = γ
√
MSBA, (2.28)

Ω0 is the magnon ressonance frequency:

Ω0 = γ
√

2BEBA +B2
A. (2.29)

Relation (2.27) can be used to model the permeability of an antiferromagnet in any system with an

oscillating electromagnetic field and no constant external magnetic field. This formula will be applied in

sections 2.3 and 2.4 to study the system depicted in figure 2.1. For the permeability function given by

(2.27)-(2.29), the values of the quantities that determine it were given by Table I of [60]. These values

are:

BE = 55× 104 G, (2.30)

BA = 7.87× 103 G, (2.31)

MS = 6.0× 102 emu/cm3. (2.32)

Or, in SI units:

BE = 55 T, (2.33)

BA = 0.787 T, (2.34)

MS = 6.0× 105 A/m. (2.35)

2.2 Magneto-optic response of an easy-axis antiferromagnet in the pres-

ence of a static field

In the presence of a static magnetic field aligned with the easy-axis, (z) the effective fields become:

H
(1)
ef = x̂

(
Hx −BE

M2x

MS

)
− ŷ

(
BE

M2y

MS

)
+ ẑ (BA +BE +H0) , (2.36)

H
(2)
ef = x̂

(
Hx −BE

M1x

MS

)
− ŷ

(
BE

M1y

MS

)
− ẑ (BA +BE −H0) . (2.37)
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With this external field of modulus H0, the z component of the effective field is no longer symmetric with

respect to the two sublattices of opposing spins. This symmetry break leads to non-diagonal terms in the

magnetic permeability of the crystal. For this case, one solves again the components of equation (2.8):

−iω
γ
M1x = M1y (BA +BE +H0) +M2yBE , (2.38)

−iω
γ
M1y = MSHx −M2xBE −M1x (BA +BE +H0) , (2.39)

−iω
γ
M2x = −M2y (BA +BE −H0)−M1yBE , (2.40)

−iω
γ
M2y = −MSHx +M1xBE +M2x (BA +BE −H0) . (2.41)

Since the external oscillating field is chosen to be in x, the component My must be determined in order

to calculate µxy and the component Mx determines the diagonal element µxx. In appendix A, equations

(2.38)-(2.41) are manipulated to obtain:

My = iHxΩ2
S

(
1

Ω2
0 − (ω + γB0)

2 −
1

Ω2
0 − (ω − γB0)

2

)
(2.42)

and

Mx = HxΩ2
S

(
1

Ω2
0 − (ω + γB0)

2 +
1

Ω2
0 − (ω − γB0)

2

)
. (2.43)

Hence, the non-diagonal term of the permeability is:

µyx = 4π
My

Hx
= 4πiΩ2

S

(
1

Ω2
0 − (ω + γB0)

2 +
1

Ω2
0 − (ω − γB0)

2

)
(2.44)

and the diagonal term is:

µxx = 1 + 4π
Mx

Hx
= 1 + 4πΩ2

S

(
1

Ω2
0 − (ω + γB0)

2 +
1

Ω2
0 − (ω − γB0)

2

)
. (2.45)

Since the medium is symmetrical in xy the matrix must be hermitian.

µ =

 µxx iµyx 0

−iµyx µxx 0

0 0 1

 , (2.46)

2.3 Optical conductivity of graphene

In this section, we deduce the optical conductivity of graphene semi-classically from the Boltzmann

transport equation. The result will then be used for the graphene conductivity in the remainder of this

thesis. The Boltzmann equation reads [10]:

∂f

∂t
+∇kf ·

∂k

∂t
+∇f · ∂r

∂t
=
∂f

∂t
|col (2.47)
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where f stands for the distribution function of the system, which can be written as f = f0 + gk where

f0 stands for the Fermi-Dirac distribution. ∇k is the gradient with respect to the wave vector k. The

second term of (2.47) is

∇kf ·
∂k

∂t
=

F

~
· ∇kf =

−eE
~
· ∇kf0 (2.48)

where F is the force the system is subject to and E is the electric field. Also,

∇kf0

~
= vk

∂f0

∂ε
(2.49)

where vk = vF (cos θ, sin θ) is the velocity of the electrons. The collision term of (2.47) must cause the

distribution g to relax toward thermal equilibrium. The relaxation time approximation [10] consists on

considering the simplest collision term with this property:

∂f

∂t
|coll = −gk

τ
(2.50)

where τ is the relaxation time. Assuming f is homogeneous in the real space, equation (2.47) yields

− ∂gk
∂t

+ eE · vk
∂f0

∂ε
=
gk
τ
. (2.51)

Now we write gk = e−iωtk ·A, where A is an auxiliary field, and (2.51) becomes

vk ·
(
eE

∂f0

∂ε
+ iω

k

vF
A

)
= vk ·

(
k

τvF
A

)
. (2.52)

From this system we have to determine Ax and Ay. Doing so yields:

Ax =
E

(f)
x

k(1− iωτ)
vF τ (2.53)

Ay =
E

(f)
y

k(1− iωτ)
vF τ (2.54)

where EF = vF~kF the Fermi energy. Also, E
(f)
x(y) = eEx(y)

∂f0
∂ε . We can now obtain gk from:

gk = e−iωtk ·A, (2.55)

gk =
e−iωtvF τ

1− iωτ
[cos θE(f)

x + sin θE(f)
y ] (2.56)

The current density vector is given by

J = − e

π2

∫
vkgk(k, ω)dk (2.57)

where vk = vF (cos θ, sin θ). The degeneracy factor is 4, due to the two possible spin orientations and two

valleys of the Brillouin zone K and K’. At T = 0, ∂f0∂ε = −δ(E−EF ). Solving for the x component of the

current density yields

Jx =
e2τvF kF

π~
e−iωt

1− iωτ
Ex. (2.58)

Since J =←→σ E, the conductivity xx element will be

σxx =
e2EF
π~2

1

γe − iω
, (2.59)

Here, γe is the mean collision rate given by 1
τ . This expression describes the intra-brand conductivity of

graphene in the THZ and mid-IR range and for typical values of doping (EF ∼ 0.2− 0.5 eV). (Sec 2.3.2.

of [9])
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2.4 Antiferromagnet-graphene system - Dispersion relations, transmit-

tance, reflectance and absorbance

2.4.1 TE modes

Evanescent waves

Transverse electric evanescent wave solutions to Maxwell’s equations can be written in the form:
E(1) = E1e

β1zeiqxŷ

E(2) =
[
E+eβ2z + E−e−β2z

]
eiqxŷ

E(3) = E3e
−β3(z−d)eiqxŷ

. (2.60)

The superscripts refer to the media 1,2 and 3 in figure 2.1. All the wavenumber components have to obey

the dispersion relations in each media:ω2 = c2

µ1
(q2 − β2

1)

ω2 = c2(q2 − β2
2) = c2(q2 − β2

3)
(2.61)

To obtain the magnetic fields, we need to apply the relevant Maxwell equation (Faraday’s law of induc-

tion):

− 1

c
∂tB = ∇×E, (2.62)

i
ω

c
B = −∂zEyx̂+ ∂xEy ẑ. (2.63)

This means the magnetic field can be written as:
B(1) = E1e

β1zeiqx cω
[
iβ1x̂+ qẑ

]
B(2) = eiqx cω

[
iβ2

(
E+eβ2z − E−e−β2z

)
x̂+ q

(
E+eβ2z + E−e−β2z

)
ẑ
]

B(3) = E3e
−β3(z−d)eiqx cω

[
− iβ3x̂+ qẑ

] . (2.64)

To obtain the dispersion relation we apply boundary conditions at z = 0 and z = d. Starting by z = 0,

these conditions read [61]:

ẑ ·
(
B(2) −B(1)

)
|z=0 = 0, (2.65)

ẑ ×
(
E(2) −E(1)

)
|z=0 = 0, (2.66)

ẑ ×
(
B(2) − B(1)

µ1

)
|z=0 = 0. (2.67)

Equations (2.65) and (2.66) both become:

E1 = E+ + E−, (2.68)

and equation (2.67) becomes:
β1

µ1
E1 = β2

(
E+ − E−

)
. (2.69)
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Cancelling E1 from these equations yields:

β1

µ1

(
E+ + E−

)
= β2

(
E+ − E−

)
(2.70)

(
β2 +

β1

µ1

)
E− =

(
β2 −

β1

µ1

)
E+. (2.71)

On the other hand, the boundary conditions at z = d read:

ẑ ·
(
B(3) −B(2)

)
|z=d = 0, (2.72)

ẑ ×
(
E(3) −E(2)

)
|z=d = 0, (2.73)

ẑ ×
(
B(3) −B(2)

)
|z=d =

4π

c
σ(ω)E‖|z=d, (2.74)

where σ(ω) is the conductivity of the graphene sheet, given by (2.59). Equations (2.72) and (2.73) both

become:

E3 = E+eβ2d + E−e−β2d, (2.75)

and equation (2.74) becomes:

β3E3 + β2

(
E+eβ2d − E−e−β2d

)
= iω

4π

c2
σ(ω)E3. (2.76)

Cancelling E3 from these equations we obtain:

β2

(
E+eβ2d − E−e−β2d

)
=
(
iω

4π

c2
σ(ω)− β3

)(
E+eβ2d + E−e−β2d

)
(2.77)

E+e2β2d
(
β2 + β3 − iω

4π

c2
σ(ω)

)
= E−

(
β2 − β3 + iω

4π

c2
σ(ω)

)
. (2.78)

Combining equations (2.71) and (2.78) the dispersion relation is obtained:

e2β2d

(
β2 + β3 − iω

4π

c2
σ(ω)

)(
β2 +

β1

µ1

)
=

(
β2 − β3 + iω

4π

c2
σ(ω)

)(
β2 −

β1

µ1

)
. (2.79)

In figure 2.3 the results of calculating this dispersion relation are shown with the graphene conductivity

σ(ω) being modelled by the Drude model and the permeability of the antiferromagnet µ1(ω) being

modelled by equation (2.27). Equations (2.81) are also used. It is noticeable that for a high enough Fermi

energy of the doped graphene sheet, the group velocity of these hybrid polaritons becomes negative and

their energies become higher than the resonant frequency of the antiferromagnet.

Propagating waves

It is also of interest to study the scattering of propagating waves incident on the system depicted in figure

2.1. For transverse electric propagating modes, the electric field can be written as:
E(1) = te−ik1zeiqxŷ

E(2) =
[
E+eik2z + E−e−ik2z

]
eiqxŷ

E(3) =
[
e−ik3(z−d) + reik3(z−d)

]
eiqxŷ

. (2.80)
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Figure 2.3: Dispersion relation for evanescent TE waves generated by surface magnon-plasmon polaritons,

for different values of the Fermi energy EF . Ω0 is the antiferromagnet ressonance frequency (2.29). qc

is the corresponding wavenumber in vacuum qc = Ω0

c . The level of doping of the graphene sheet affects

the nature of the dispersion. The group velocity is negative for EF = 0.4 eV, shifting from the positive

group velocity associated with lower EF . These are the solutions to equation (2.79). The value of d,

the separation between the graphene sheet and the antiferromagnet, is 0.5 µm. For the antiferromagnet

permeability function given by (2.27)-(2.29), the values of the quantities that determine it were given by

Table I of [60] and can also be consulted in equations (2.33)-(2.35). The value of the loss coefficient in

(2.59) is γe = 0 eV. Ignoring losses at the graphene sheet is valid when dealing with low temperatures. [20]
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All the wavenumber components have to obey the dispersion relations in each media:ω2 = c2

µ1
(q2 + k2

1)

ω2 = c2(q2 + k2
2) = c2(q2 + k2

3)
(2.81)

The magnetic fields are obtained by applying the appropriate Maxwell equation (Faraday’s law of induc-

tion):

− 1

c
∂tB = ∇×E, (2.82)

i
ω

c
B = −∂zEyx̂+ ∂xEy ẑ. (2.83)

Thus, the magnetic fields read:
B(1) = te−ik1zeiqx cω

[
k1x̂+ qẑ

]
B(2) = −k2cω

[
E+eik2z − E−e−ik2z

]
eiqxx̂+ qc

ω

[
E+eik2z + E−e−ik2z

]
eiqxẑ

B(3) = −k3cω
[
reik3(z−d) − e−ik3(z−d)

]
eiqxx̂+ qc

ω

[
reik3(z−d) + e−ik3(z−d)

]
ẑ

. (2.84)

To obtain the dispersion relation, boundary conditions must be applied at z = 0 and z = d. Starting

with z = 0, the conditions read [61]:

ẑ ·
(
B(2) −B(1)

)
|z=0 = 0, (2.85)

ẑ ×
(
E(2) −E(1)

)
|z=0 = 0, (2.86)

ẑ ×
(
B(2) − B(1)

µ1

)
|z=0 = 0. (2.87)

These conditions become:

t = E+ + E−, (2.88)

k1t = −k2µ1

(
E+ − E−

)
. (2.89)

Using the transmission coefficient t from (2.88) in (2.89) yields:

k1

(
E+ + E−

)
= −k2µ1

(
E+ − E−

)
, (2.90)

E−
(
k2µ1 − k1) = E+

(
k2µ1 + k1

)
. (2.91)

Now it is convenient to define a variable α to be able to write:

E− = αE+, (2.92)

with

α =
k2µ1 + k1

k2µ1 − k1
. (2.93)

The boundary conditions at z = d read:

ẑ ·
(
B(3) −B(2)

)
|z=d = 0, (2.94)

ẑ ×
(
E(3) −E(2)

)
|z=d = 0, (2.95)
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ẑ ×
(
B(3) −B(2)

)
|z=d =

4π

c
σ(ω)E‖|z=d. (2.96)

where σ(ω) is the conductivity of the graphene sheet. These equations become:

1 + r = E+eik2d + E−e−ik2d, (2.97)

k2

[
E+eik2d − E−e−ik2d

]
− k3

[
r − 1

]
= ω

4π

c
σ(ω)

[
1 + r

]
. (2.98)

It is possible to use equation (2.97) together with (2.92) to obtain the factor E+ as a function of r:

E+ =
1 + r

eik2d + αe−ik2d
. (2.99)

Finally we insert this last equation in (2.98) to obtain:

r =
ω 4π
c2 σ(ω)− k3 −A

A− k3 − ω 4π
c2 σ(ω)

, (2.100)

with

A =
k2e

ik2d − k2αe
−ik2d

eik2d + αe−ik2d
, (2.101)

α =
k2µ1 + k1

k2µ1 − k1
. (2.102)

The corresponding loss function (=(r)) is plotted in figure (2.4). This helps confirm the validity of the

calculations of the dispersion relations that were performed in the previous section (figure 2.3). Equation

(2.99), along with (2.92), can be inserted into (2.88) to obtain the relation between t and r:

t =
1 + r

eik2d + αe−ik2d
(1 + α). (2.103)

Now, to obtain the transmittance, or transmission coefficient, we consider the ratio between the trans-

mitted intensity (medium 1, fields terms in (2.80) and (2.84)) and the incident intensity (medium 3, field

terms with no r in (2.80) and (2.84)).

T =
|I(1)|
|I(3)

i |
. (2.104)

The reflectance is the ratio between the reflected intensity (medium 1, field terms in in (2.80) and (2.84))

and the incident intensity (medium 3, field terms with r in (2.80) and (2.84)).

R =
|I(3)

r |
|I(3)

i |
. (2.105)

The relevant electromagnetic intensity (the one that interacts with the surfaces) in medium n (I(n))

relates to the fields via the z (normal) component of the time-averaged Poynting vector [62]:

I(n) =
c

4π
〈S(t) · ẑ〉 =

ω

2π

∫ 2π/ω

0

(
S(n)(t) · ẑ

)
dt, (2.106)

where S(n)(t) is the Poynting vector in medium n, defined as:

S(n)(t) = <
(
E(n)(t)

)
×<

(
H(n)(t)

)
. (2.107)
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Figure 2.4: Comparison between the loss function (=(r)) from (2.100) for propagating TE modes and the

dispersion relation from (2.79) for evanescent TE waves generated by surface magnon-plasmon polaritons.

The loss function is higher close to the energies of the evanescent modes.Ω0 is the antiferromagnet

resonance frequency (2.29). qc is the corresponding wavenumber in vacuum qc = Ω0

c . The value of d,

the separation between the graphene sheet and the antiferromagnet, is 0.5 µm. For the antiferromagnet

permeability function given by (2.27)-(2.29), the values of the quantities that determine it were given by

Table I of [60] and can also be consulted in equations (2.33)-(2.35).. The value of the loss coefficient in

(2.59) is γe = 0 eV. Ignoring losses at the graphene sheet is valid when dealing with low temperatures. [20]
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Now we can apply (2.107) and (2.106) to (2.104) and (2.105), using the fields (2.80) and (2.84) to obtain:

T =

∣∣∣∣ t2k1

µ1k3

∣∣∣∣, (2.108)

and

R = |r|2. (2.109)

Figures 2.9-2.10 depict these quantities for different parts of the spectrum.

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

Angle of incidence (degrees)

TE waves

ω=0.9 Ω0
EF=0.03 eV

Reflectance

Transmittance

Absorbance

Figure 2.5: Reflectance, Transmittance and Absorbance, as defined by equations (2.109), (2.108) and

A = 1− R − T for propagating TE waves incident from medium 3 on the system depicted in figure 2.1,

for the frequency ω = 0.90 Ω0. For the antiferromagnet permeability function given by (2.27)-(2.29),

the values of the quantities that determine it were given by Table I of [60] and can also be consulted in

equations (2.33)-(2.35). The loss coefficient used in (2.59) was γe = 0.1 eV.
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Figure 2.6: Reflectance, Transmittance and Absorbance, as defined by equations (2.109), (2.108) and

A = 1− R − T for propagating TE waves incident from medium 3 on the system depicted in figure 2.1,

for the frequency ω = 1.10 Ω0. For the antiferromagnet permeability function given by (2.27)-(2.29),

the values of the quantities that determine it were given by Table I of [60] and can also be consulted in

equations (2.33)-(2.35). The loss coefficient used in (2.59) was γe = 0.1 eV. When the angle of incidence

is higher than about 75 degrees, the value of q, the x component of the wave-vector, becomes so high

that the wave cannot propagate inside the antiferromagnet, thus the sharp decline of the transmittance.

2.4.2 TM modes

Evanescent waves

Transverse magnetic evanescent wave solutions to Maxwell’s equations can be written in the form:
B(1) = B1e

β1zeiqxŷ

B(2) =
[
B+eβ2z +B−e−β2z

]
eiqxŷ

B(3) = B3e
−β3(z−d)eiqxŷ

. (2.110)

To obtain the electric fields, we need to apply the relevant Maxwell equation (Ampère’s law):

εµ

c
∂tE = ∇×B, (2.111)

− iεµω
c
E = −∂zByx̂+ ∂xBy ẑ. (2.112)

Which means the electric field can be written as:
E(1) = −B1

c
ε1µ1

eβ1zeiqx 1
ω

[
iβ1x̂+ qẑ

]
E(2) = − c

ε2
iβ2

ω

[
B+eβ2z −B−e−β2z

]
eiqxx̂− c

ε2

q
ω

[
B+eβ2z +B−e−β2z

]
eiqxẑ

E(3) = −B3
c
ε3
e−β3(z−d)eiqx 1

ω

[
− iβ3x̂+ qẑ

] . (2.113)

To obtain the dispersion relation we apply boundary conditions at z = 0 and z = d. Starting by z = 0,

these conditions read [61]:

ẑ ·
(
B(2) −B(1)

)
|z=0 = 0, (2.114)
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ẑ ×
(
E(2) −E(1)

)
|z=0 = 0, (2.115)

ẑ ×
(
B(2) − B(1)

µ1

)
|z=0 = 0. (2.116)

Equation (2.114) is always fulfilled. Equation (2.115) becomes:

β1

ε1µ1
B1 =

β2

ε2

(
B+ −B−

)
, (2.117)

and equation (2.116) becomes:
1

µ1
B1 = B+ +B−. (2.118)

Cancelling B1:
β2

ε2

(
B+ −B−

)
=
β1

ε1

(
B+ +B−

)
, (2.119)(

β2

ε2
− β1

ε1

)
B+ =

(
β2

ε2
+
β1

ε1

)
B−. (2.120)

On the other hand, the boundary conditions at z = d read:

ẑ ·
(
B(3) −B(2)

)
|z=d = 0, (2.121)

ẑ ×
(
E(3) −E(2)

)
|z=d = 0, (2.122)

ẑ ×
(
B(3) −B(2)

)
|z=d =

4π

c
σ(ω)E‖|z=d. (2.123)

where σ(ω) is the conductivity of the graphene sheet, given by (2.59). Equation (2.121) is always fulfilled.

Equation (2.122) becomes:
β3

ε3
B3 = −β2

ε2

(
B+eβ2d −B−e−β2d

)
(2.124)

and equation (2.123) becomes:

B3 −
(
B+eβ2d +B−e−β2d

)
= −iB3

β3

ωε3
4πσ(ω) (2.125)

We can now cancel B3 to obtain:(
B+eβ2d +B−e−β2d

)
= −

(
i
4π

ω
σ(ω) +

ε3
β3

)(
B+eβ2d −B−e−β2d

)β2

ε2
, (2.126)

B+e2β2d
[
1 +

ε3β2

ε2β3
+ i

β2

ε2ω
4πσ(ω)

]
= B−

[
i
β2

ε2ω
4πσ(ω) +

ε3β2

ε2β3
− 1
]
. (2.127)

Combining equations (2.120) and (2.127) the dispersion relation is obtained:

e2β2d
[
1 +

ε3β2

ε2β3
+ i

β2

ε2ω
4πσ(ω)

](β2

ε2
+
β1

ε1

)
=
[
i
β2

ε2ω
4πσ(ω) +

ε3β2

ε2β3
− 1
](β2

ε2
− β1

ε1

)
. (2.128)
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Figure 2.7: Dispersion relation for evanescent TM waves generated by surface magnon-plasmon polaritons,

for the Fermi energy EF = 0.03 eV. Ω0 is the antiferromagnet ressonance frequency (2.29). qc is the

corresponding wavenumber in vacuum qc = Ω0

c . The presence of the antiferromagnet splits the dispersion

into a lower and upper branch. These are solutions to equation (2.128). The value of d, the separation

between the graphene sheet and the antiferromagnet, is 0.5 µm. For the antiferromagnet permeability

function given by (2.27)-(2.29), the values of the quantities that determine it were given by Table I of [60]

and can also be consulted in equations (2.33)-(2.35).. The value of the loss coefficient in (2.59) is γe = 0

eV. Ignoring losses at the graphene sheet is valid when dealing with low temperatures. [20]

Propagating waves

As was done for TE modes, the scattering of propagating waves incident on the system depicted in figure

2.1 will be studied. For transverse magnetic propagating modes, the magnetic field can be written as:
B(1) = te−ik1zeiqxŷ

B(2) =
[
B+eik2z +B−e−ik2z

]
eiqxŷ

B(3) =
[
e−ik3(z−d) + reik3(z−d)

]
eiqxŷ

. (2.129)

The electric fields are obtained by applying the appropriate Maxwell equation (Ampère’s law):

µε

c
∂tE = ∇×B, (2.130)
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− iµε
c
ωE = −∂zByx̂+ ∂xBy ẑ. (2.131)

Thus, the electric fields read:
E(1) = − c

ε1µ1
te−ik1zeiqx 1

ω

[
k1x̂+ qẑ

]
E(2) = c

ε2
k2
ω

[
B+eik2z −B−e−ik2z

]
eiqxx̂− c

ε2

q
ω

[
B+eik2z +B−e−ik2z

]
eiqxẑ

E(3) = c
ε3
k3
ω

[
reik3(z−d) − e−ik3(z−d)

]
eiqxx̂− c2

ε3

q
ω

[
reik3(z−d) + e−ik3(z−d)

]
ẑ

. (2.132)

To obtain the dispersion relation, boundary conditions must be applied at z = 0 and z = d. Starting

with z = 0, the conditions read [61]:

ẑ ·
(
B(2) −B(1)

)
|z=0 = 0, (2.133)

ẑ ×
(
E(2) −E(1)

)
|z=0 = 0, (2.134)

ẑ ×
(
B(2) − B(1)

µ1

)
|z=0 = 0. (2.135)

These conditions become:
k1

ε1µ1
t = −k2

ε2

(
B+ −B−

)
, (2.136)

t

µ1
= B+ +B−. (2.137)

Cancelling the coefficient t:
k1

ε1

(
B+ +B−

)
= −k2

ε2

(
B+ −B−

)
, (2.138)

B+
(k1

ε1
+
k2

ε2

)
= B−

(
k2

ε2
− k1

ε1

)
. (2.139)

Now it is convenient to define a variable α to quickly write:

B− = αB+, (2.140)

with

α =
k2ε1 + k1ε2
k2ε1 − k1ε2

. (2.141)

The boundary conditions at z = d read [61]:

ẑ ·
(
B(3) −B(2)

)
|z=d = 0, (2.142)

ẑ ×
(
E(3) −E(2)

)
|z=d = 0, (2.143)

ẑ ×
(
B(3) −B(2)

)
|z=d =

4π

c
σ(ω)E‖|z=d. (2.144)

where σ(ω) is the conductivity of the graphene sheet, give by (2.59). These equations become:

k3

ε3
(r − 1) =

k2

ε2

(
B+eik2d −B−e−ik2d

)
. (2.145)

1 + r −
(
B+eik2d +B−e−ik2d

)
= (1− r) k3

ε3

4π

ω
σ(ω) (2.146)

27
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It is possible to use equation (2.145) together with (2.140) to obtain the factor B+ as a function of r:

B+ =
r − 1

eik2d − αe−ik2d
ε2k3

ε3k2
. (2.147)

Finally we insert this last equation in (2.146) to obtain:

r =
A−B + 1

A−B − 1
, (2.148)

with

A =
1 + αe−2ik2d

1− αe−2ik2d

ε2k3

ε3k2
, (2.149)

B =
k3

ε3

4π

ω
σ(ω), (2.150)

α =
k2ε1 + k1ε2
k2ε1 − k1ε2

. (2.151)

The corresponding loss function (=(r)) is plotted in figure (2.8).
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Figure 2.8: Comparison between the loss function (=(r)) from (2.148) and the dispersion relation from

(2.128) for TM modes generated by surface magnon-plasmon polaritons. Ω0 is the antiferromagnet

resonance frequency (2.29). qc is the corresponding wavenumber in vacuum qc = Ω0

c . The value of d,

the separation between the graphene sheet and the antiferromagnet, is 0.5 µm. For the antiferromagnet

permeability function given by (2.27)-(2.29), the values of the quantities that determine it were given by

Table I of [60] and can also be consulted in equations (2.33)-(2.35). The value of the loss coefficient in

(2.59) is γe = 0 eV. Ignoring losses at the graphene sheet is valid when dealing with low temperatures. [20]
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Equation (2.147), along with (2.140), can be inserted into (2.137) to obtain the relation between t

and r:

t =
ε2k3

ε3k2

r − 1

eik2d − αe−ik2d
(1 + α). (2.152)

Now, to obtain the transmittance, or transmission coefficient, we consider the ratio between the trans-

mitted intensity (medium 1, fields terms in (2.129) and (2.132)) and the incident intensity (medium 3,

field terms with no r in (2.129) and (2.132)).

T =
|I(1)|
|I(3)

i |
. (2.153)

The reflectance is the ratio between the reflected intensity (medium 1, field terms in in (2.129) and

(2.132)) and the incident intensity (medium 3, field terms with r in (2.129) and (2.132)).

R =
|I(3)

r |
|I(3)

i |
. (2.154)

The relevant electromagnetic intensity (the one that interacts with the surfaces) in medium n (I(n))

relates to the fields via the z (normal) component of the time-averaged Poynting vector [62]:

I(n) = 〈S(t) · ẑ〉 =
ω

2π

∫ 2π/ω

0

(
S(n)(t) · ẑ

)
dt, (2.155)

where S(n)(t) is the Poynting vector in medium n, defined as:

S(n)(t) = <
(
E(n)(t)

)
×<

(
H(n)(t)

)
. (2.156)

Now we can apply (2.156) and (2.155) to (2.153) and (2.154), using the fields (2.129) and (2.132) to

obtain:

T =

∣∣∣∣ t2k1

µ2
1k3

∣∣∣∣, (2.157)

and

R = |r|2. (2.158)

Figures 2.9-2.10 depict these three quantities for different parts of the spectrum.
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Figure 2.9: Reflectance, Transmittance and Absorbance, as defined by equations (2.158), (2.157) and

A = 1− T −R for propagating TM waves incident from medium 3 on the system depicted in figure 2.1.

qlim = ω/c is the maximum value of q that maintains k3 real, for which we can say we have incident light

from medium 3. k1 is always real for ω < Ω0 since µ1 > 1, which means the trasmittance only goes to

zero at the limit q = qlim where k3 = 0. The loss coefficient used in (2.59) was γe = 0.1 eV.
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Figure 2.10: Reflectance, Transmittance and Absorbance, as defined by equations (2.109), (2.108) and

A = 1− T −R for propagating TM waves incident from medium 3 on the system depicted in figure 2.1.

qlim = ω/c is the maximum value of q that maintains k3 real, for which we can say we have incident light

from medium 3. k1 becomes zero when q = ω/c
√
µ1 and imaginary for higher values of q. From that

point on the trasmittance is zero since there is no propagating light in medium 1. The loss coefficient

used in (2.59) was γe = 0.1 eV.
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2.5 Adding a perfect metal

It could be of interest to study a system with more confinement. For that, a perfect metal can be added

either to the bottom of the system or to the top. The system depicted in figure 2.11, with a metal on the

bottom, will be studied. The boundary conditions on the interface with a perfect metal are [61]:

ẑ ×E = 0, (2.159)

and

ẑ ·B = 0. (2.160)

Figure 2.11: Scheme of the system with a graphene sheet a distance d from the antiferromagnet, of

thickness a over a perfect metal. Evanescent waves decaying in the z direction, and propagating parallel

to the graphene sheet will be studied, as well as propagating waves incident from medium 3, which

generally is the vacuum or air.

2.5.1 TE modes

Evanescent waves

The electric field profiles in the different media are:
E(1) = E1

[
eβ1z + αe−β1z

]
eiqxŷ

E(2) =
[
E+eβ2(z−a) + E−e−β2(z−a)

]
eiqxŷ

E(3) = E3e
−β3(z−a−d)eiqxŷ

. (2.161)
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It is now possible to determine the magnetic field from Faraday’s law:

− 1

c
∂tB = ∇×E, (2.162)

i
ω

c
B = −∂zEyx̂+ ∂xEy ẑ. (2.163)

With this equation, one can write the magnetic fields as:
B(1) = E1e

iqxc
( [
eβ1z − αe−β1z

]
iβ1

ω x̂+
[
eβ1z + αe−β1z

]
q
ω ẑ
)

B(2) = iβ2

ω c
[
E+eβ2(z−a) − E−e−β2(z−a)

]
eiqxx̂+ q

ω c
[
E+eβ2(z−a) + E−e−β2(z−a)

]
eiqxẑ

B(3) = E3e
−β3(z−a−d)eiqx cω

[
− iβ3x̂+ qẑ

] . (2.164)

Starting with condition (2.160), α is determined:

B(1)
z |z=0 = 0, (2.165)

1 + α = 0, (2.166)

α = −1. (2.167)

As such, the fields can be written as:
E(1) = E1 sinh(β1z)e

iqxŷ

E(2) =
[
E+eβ2(z−a) + E−e−β2(z−a)

]
eiqxŷ

E(3) = E3e
−β3(z−a−d)eiqxŷ

. (2.168)


B(1) = E1e

iqxc
(

cosh(β1z)
iβ1

ω x̂+ sinh(β1z)
q
ω ẑ
)

B(2) = iβ2

ω c
[
E+eβ2(z−a) − E−e−β2(z−a)

]
eiqxx̂+ q

ω c
[
E+eβ2(z−a) + E−e−β2(z−a)

]
eiqxẑ

B(3) = E3e
−β3(z−a−d)eiqx cω

[
− iβ3x̂+ qẑ

] . (2.169)

The next step is the application of boundary conditions at z = a and z = d+ a. Starting with z = a, the

boundary conditions are [61]:

ẑ ·
(
B(2) −B(1)

)
|z=a = 0, (2.170)

ẑ ×
(
E(2) −E(1)

)
|z=a = 0, (2.171)

ẑ ×
(
B(2) − B(1)

µ1

)
|z=a = 0. (2.172)

Equations (2.170) and (2.171) both yield:

E1 sinh(β1a) = E+ + E−, (2.173)

whereas condition (2.172) gives:

β1

µ1
cosh(β1a)E1 = β2

(
E+ − E−

)
. (2.174)

Cancelling E1 from these equations, one gets:

β1

µ1
coth(β1a)

(
E+ + E−

)
= β2

(
E+ − E−

)
. (2.175)
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(
β2 +

β1

µ1
coth(β1a)

)
E− =

(
β2 −

β1

µ1
coth(β1a)

)
E+. (2.176)

Now for the boundary conditions at z = a+ d [61]:

ẑ ·
(
B(3) −B(2)

)
|z=a+d = 0, (2.177)

ẑ ×
(
E(3) −E(2)

)
|z=a+d = 0, (2.178)

ẑ ×
(
B(3) −B(2)

)
|z=a+d =

4π

c
σ(ω)E‖|z=a+d. (2.179)

σ(ω) is the conductivity of the graphene sheet, given by (2.59). Equations (2.177) and (2.178) both yield:

E3 = E+eβ2d + E−e−β2d, (2.180)

and equation (2.179) gives:

β3E3 + β2

(
E+eβ2d − E−e−β2d

)
= iω

4π

c2
σ(ω)E3. (2.181)

Inputting (2.180) into (2.181):

β2

(
E+eβ2d − E−e−β2d

)
=
(
iω

4π

c2
σ(ω)− β3

)(
E+eβ2d + E−e−β2d

)
(2.182)

E+e2β2d
(
β2 + β3 − iω

4π

c2
σ(ω)

)
= E−

(
β2 − β3 + iω

4π

c2
σ(ω)

)
. (2.183)

Finally, one can combine equations (2.176) and (2.183) to solve the dispersion relation:

e2β2d

(
β2 +β3−iω

4π

c2
σ(ω)

)(
β2 +

β1

µ1
coth(β1a)

)
=

(
β2−β3 +iω

4π

c2
σ(ω)

)(
β2−

β1

µ1
coth(β1a)

)
. (2.184)

The effect of decreasing the distance of the graphene sheet to the AFM (d) in the dispersion relations

is to very slightly increase the effect of the graphene sheet on the modes of the system. The effect of

making the AFM smaller (bringing the metal closer or decreasing a) is to lower the energies of all the

modes. There is a peak separation for a given a, depending slightly on d. A plot of the ’Mode distances’

between modes of EF = 0.4 eV and modes of EF = 0 eV defined by:∑
n

(ωn|EF=0.4 − ωn|EF=0), (2.185)

is presented in figure 2.12.
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Figure 2.12: Plot of the result of (2.185), which measures the overall difference between the energies of

the modes with a graphene sheet of Fermi energy EF = 0.4 eV and the energies of modes with a graphene

sheet of Fermi energy EF = 0 eV. The distance between the graphene sheet and the antiferromagnet is

d = 0.05 µm. The ’mode distances’ between the modes are measured as a function of a, the width of the

antiferromagnet. This is a way to find the value of a which maximizes the effect of the graphene sheet on

the energies of the modes of the system. Ω0 is the antiferromagnet resonance frequency (2.29). For the

antiferromagnet permeability function given by (2.27)-(2.29), the values of the quantities that determine

it were given by Table I of [60] and can also be consulted in equations (2.33)-(2.35). The value of the loss

coefficient in (2.59) is γe = 0 eV. Ignoring losses at the graphene sheet is valid when dealing with low

temperatures. [20]
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Figure 2.13: Dispersion relation for TE modes (2.184) solved for the values of a and d that maximize

the ’mode distance’ between the EF = 0 eV scenario and the EF = 0.4 eV scenario. The definition of

’mode difference’ used was
∑
n ∆ωn where ∆ωn is the difference between the solution number n with

EF = 0.4 and the solution number n with EF = 0, and the sum is over all solutions plotted. For these

values of a and d, the effect of the graphene sheet on the dispersion relation is maximized. Ω0 is the

antiferromagnet resonance frequency (2.29). qc is the corresponding wavenumber in vacuum qc = Ω0

c .

For the antiferromagnet permeability function given by (2.27)-(2.29), the values of the quantities that

determine it were given by Table I of [60] and can also be consulted in equations (2.33)-(2.35). The value

of the loss coefficient in (2.59) is γe = 0 eV. Ignoring losses at the graphene sheet is valid when dealing

with low temperatures. [20]

Propagating waves

For propagating waves, the field profiles will be:
E(1) = t

[
e−ik1z + αeik1z

]
eiqxŷ

E(2) =
[
E+eik2(z−a) + E−e−ik2(z−a)

]
eiqxŷ

E(3) =
[
e−ik3(z−a−d) + reik3(z−a−d)

]
eiqxŷ

. (2.186)

It is now possible to determine the magnetic field from Maxwell’s equations:

− 1

c
∂tB = ∇×E, (2.187)

i
ω

c
B = −∂zEyx̂+ ∂xEy ẑ. (2.188)

Thus,
B(1) = teiqxc

( [
e−ik1z − αeik1z

]
k1
ω x̂+

[
e−ik1z + αeik1z

]
q
ω ẑ
)

B(2) = −k2ω c
[
E+eik2(z−a) − E−e−ik2(z−a)

]
eiqxx̂+ q

ω c
[
E+eik2(z−a) + E−e−ik2(z−a)

]
ẑ

B(3) = −k3ω c
[
reik3(z−a−d) − e−ik3(z−a−d)

]
eiqxx̂+ q

ω c
[
reik3(z−a−d) + e−ik3(z−a−d)

]
ẑ

. (2.189)

With condition (2.171) one can determine α:

B(1)
z |z=0 = 0, (2.190)
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α = −1. (2.191)

Thus, the fields can be written as:
E(1) = t sin(k1z)e

iqxŷ

E(2) =
[
E+eik2(z−a) + E−e−ik2(z−a)

]
eiqxŷ

E(3) =
[
e−ik3(z−a−d) + reik3(z−a−d)

]
eiqxŷ

. (2.192)


B(1) = teiqx

(
cos(k1z)

ik1
ω x̂+ sin(k1z)

q
ω ẑ
)

B(2) = −k2ω
[
E+eik2(z−a) − E−e−ik2(z−a)

]
eiqxx̂+ q

ω

[
E+eik2(z−a) + E−e−ik2(z−a)

]
ẑ

B(3) = −k3ω
[
reik3(z−a−d) − e−ik3(z−a−d)

]
eiqxx̂+ q

ω

[
reik3(z−a−d) + e−ik3(z−a−d)

]
ẑ

. (2.193)

The boundary conditions at z = a are [61]:

ẑ ·
(
B(2) −B(1)

)
|z=a = 0, (2.194)

ẑ ×
(
E(2) −E(1)

)
|z=a = 0, (2.195)

ẑ ×
(
B(2) − B(1)

µ1

)
|z=a = 0. (2.196)

These conditions yield:

t sin(k1a) = E+ + E−, (2.197)

− ik1t cos(k1a) = k2µ1

(
E+ − E−

)
. (2.198)

Combining these two equations:

− ik1 cot(k1a)
(
E+ + E−

)
= k2µ1

(
E+ − E−

)
, (2.199)

E−
(
k2µ1 − ik1 cot(k1a)) = E+

(
k2µ1 + ik1 cot(k1a)

)
. (2.200)

For simplicity of writing, a variable η will be defined as such:

E− = ηE+, (2.201)

η =
k2µ1 + ik1 cot(k1a)

k2µ1 − ik1 cot(k1a)
. (2.202)

Now for the boundary conditions at z = a+ d [61]:

ẑ ·
(
B(3) −B(2)

)
|z=a+d = 0, (2.203)

ẑ ×
(
E(3) −E(2)

)
|z=a+d = 0, (2.204)

ẑ ×
(
B(3) −B(2)

)
|z=d =

4π

c
σ(ω)E‖|z=a+d. (2.205)

σ(ω) is the conductivity of the graphene sheet, given by (2.59). These equations yield:

1 + r = E+eik2d + E−e−ik2d, (2.206)

k2

[
E+eik2d − E−e−ik2d

]
− k3

[
r − 1

]
= ω

4π

c2
σ(ω)

[
1 + r

]
. (2.207)
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Now using equation (2.206) together with (2.201) one can obtain the factor E+ as a function of r:

E+ =
1 + r

eik2d + ηe−ik2d
. (2.208)

Finally, this equation can be inserted in (2.207) to yield:

r =
ω 4π
c2 σ(ω)− k3 −A

A− k3 − ω 4π
c2 σ(ω)

, (2.209)

with

A =
k2e

ik2d − k2ηe
−ik2d

eik2d + ηe−ik2d
, (2.210)

η =
k2µ1 + ik1 cot(k1a)

k2µ1 − ik1 cot(k1a)
. (2.211)

2.5.2 TM modes

Evanescent waves

The magnetic field for TM modes can be written as:
B(1) = B1

[
eβ1z + αe−β1z

]
eiqxŷ

B(2) =
[
B+eβ2(z−a) +B−e−β2(z−a)

]
eiqxŷ

B(3) = B3e
−β3(z−a−d)eiqxŷ

. (2.212)

It is now possible to determine the electric field from Ampère’s law:

εµ

c
∂tE = ∇×B, (2.213)

− iεµω
c
E = −∂zByx̂+ ∂xBy ẑ. (2.214)

With this equation, one can write the electric fields as:
E(1) = −B1e

iqx c
ε1µ1ω

( [
eβ1z − αe−β1z

]
iβ1x̂+

[
eβ1z + αe−β1z

]
qẑ
)

E(2) = − c
ε2
iβ2

ω

[
B+eβ2(z−a) −B−e−β2(z−a)

]
eiqxx̂− c

ε2

q
ω

[
B+eβ2(z−a) +B−e−β2(z−a)

]
eiqxẑ

E(3) = −B3
c
ε3
e−β3(z−a−d)eiqx 1

ω

[
− iβ3x̂+ qẑ

] . (2.215)

Applying condition (2.159), α can be determined:

E(1)
x |z=0 = 0, (2.216)

α = 1. (2.217)

Thus, the fields can be written as:
B(1) = B1 cosh(β1z)e

iqxŷ

B(2) =
[
B+eβ2(z−a) +B−e−β2(z−a)

]
eiqxŷ

B(3) = B3e
−β3(z−a−d)eiqxŷ

. (2.218)
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Figure 2.14: Comparison between the loss function (=(r)) from (2.209) and the dispersion relation from

(2.184) for TE modes generated by surface magnon-plasmon polaritons. Ω0 is the antiferromagnet res-

onance frequency (2.29). qc is the corresponding wavenumber in vacuum qc = Ω0

c . The value of d, the

separation between the graphene sheet and the antiferromagnet, is 0.5 µm. The value of a, the thickness

of the antiferromagnet, is 50 µm. For the antiferromagnet permeability function given by (2.27)-(2.29),

the values of the quantities that determine it were given by Table I of [60] and can also be consulted in

equations (2.33)-(2.35). The value of the loss coefficient in (2.59) is γe = 0 eV. Ignoring losses at the

graphene sheet is valid when dealing with low temperatures. [20]
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E(1) = −B1e

iqx c
ε1µ1ω

(
sinh(β1z)iβ1x̂+ cosh(β1z)qẑ

)
E(2) = − c

ε2
iβ2

ω

[
B+eβ2(z−a) −B−e−β2(z−a)

]
eiqxx̂− c

ε2

q
ω

[
B+eβ2(z−a) +B−e−β2(z−a)

]
eiqxẑ

E(3) = −B3
c
ε3
e−β3(z−a−d)eiqx 1

ω

[
− iβ3x̂+ qẑ

] . (2.219)

Boundary conditions at z = a read [61]:

ẑ ·
(
B(2) −B(1)

)
|z=a = 0, (2.220)

ẑ ×
(
E(2) −E(1)

)
|z=a = 0, (2.221)

ẑ ×
(
B(2) − B(1)

µ1

)
|z=a = 0. (2.222)

These equations yield:
β1

ε1µ1
sinh(β1a)B1 =

β2

ε2

(
B+ −B−

)
, (2.223)

cosh(β1a)

µ1
B1 = B+ +B−. (2.224)

Combining these two equations:

β2

ε2
coth(β1a)

(
B+ −B−

)
=
β1

ε1

(
B+ +B−

)
, (2.225)(

β2

ε2
coth(β1a)− β1

ε1

)
B+ =

(
β2

ε2
coth(β1a) +

β1

ε1

)
B−. (2.226)

Now for the boundary conditions at z = a+ d [61]:

ẑ ·
(
B(3) −B(2)

)
|z=a+d = 0, (2.227)

ẑ ×
(
E(3) −E(2)

)
|z=a+d = 0, (2.228)

ẑ ×
(
B(3) −B(2)

)
|z=d =

4π

c
σ(ω)E‖|z=a+d. (2.229)

σ(ω) is the conductivity of the graphene sheet, given by (2.59). These equations yield:

β3

ε3
B3 = −β2

ε2

(
B+eβ2d −B−e−β2d

)
(2.230)

B3 −
(
B+eβ2d +B−e−β2d

)
= −iB3

β3

ωε3
4πσ(ω), (2.231)

which implies: (
B+eβ2d +B−e−β2d

)
= −

(
i
1

ω
4πσ(ω) +

ε3
β3

)(
B+eβ2d −B−e−β2d

)β2

ε2
, (2.232)

B+e2β2d
[
1 +

ε3β2

ε2β3
+ i

β2

ε2ω
4πσ(ω)

]
= B−

[
i
β2

ε2ω
4πσ(ω) +

ε3β2

ε2β3
− 1
]
. (2.233)

Now, combining (2.226) with (2.233) the eigenmode equation is found:

e2β2d
[
1 +

ε3β2

ε2β3
+ i

β2

ε2ω
4πσ(ω)

](β2

ε2
coth(β1a) +

β1

ε1

)
=

[
i
β2

ε2ω
4πσ(ω) +

ε3β2

ε2β3
− 1
](β2

ε2
coth(β1a)− β1

ε1

)
.

(2.234)
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Figure (2.15) shows the value of the gap between the first two modes as a function of a for a fixed

d = 0.05 µm, for Fermi energies EF = 0.03 eV and EF = 0.07 eV. The values of a in figure (2.16) were

chosen accordingly to maximize the gap size. These plots show that for a distance of the order of 0.05 eV

maximum splitting is achieved up to three decimal places. Further narrowing of d will not increase the

third decimal place of the splitting while quickly rendering this model inaccurate due to the distances of

the order of a few nanometers becoming closer to the atomic radius of the carbon atoms, invalidating the

classical electromechanical theory. Furthermore, increasing d has a very small effect on the dispersion.

Also, increasing a (bringing the metal away from the AFM surface, thus increasing the AFM size) moves

the dispersion to the left (the gap happens at smaller q values). Figure (2.7) shows the gap happening

at q = 1.6 qc for the system with a→∞, in contrast with the gap just before q = 1.8 qc for a = 231 µm

seen in figure (2.16).
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Figure 2.15: Values of the gap ∆ between between the lower and upper bands of TM modes for a

separation between the antiferromagnet and the graphene sheet of d = 0.05 µm, as a function of a, for

Fermi energies of EF = 0.03 eV and EF = 0.07 eV. Ω0 is the antiferromagnet resonance frequency (2.29).

For the antiferromagnet permeability function given by (2.27)-(2.29), the values of the quantities that

determine it were given by Table I of [60] and can also be consulted in equations (2.33)-(2.35). The value

of the loss coefficient in (2.59) is γe = 0 eV. Ignoring losses at the graphene sheet is valid when dealing

with low temperatures. [20]
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Figure 2.16: Dispersion relation for TM modes (2.184) solved for different values of AFM width a,

different metal distances d and Fermi energy of the graphene sheet EF = 0.03 eV. The values of a are

chosen to maximize the splitting energy ∆. Ω0 is the antiferromagnet resonance frequency (2.29). qc is

the corresponding wavenumber in vacuum qc = Ω0

c . For the antiferromagnet permeability function given

by (2.27)-(2.29), the values of the quantities that determine it were given by Table I of [60] and can also

be consulted in equations (2.33)-(2.35). The value of the loss coefficient in (2.59) is γe = 0 eV. Ignoring

losses at the graphene sheet is valid when dealing with low temperatures. [20]

Propagating waves

For propagating TM waves, the field profiles are:
B(1) = t

[
e−ik1z + αeik1z

]
eiqxŷ

B(2) =
[
B+eik2(z−a) +B−e−ik2(z−a)

]
eiqxŷ

B(3) =
[
e−ik3(z−a−d) + reik3(z−a−d)

]
eiqxŷ

. (2.235)

The electric field is obtained with Ampère’s law:

εµ

c
∂tE = ∇×B, (2.236)

− iεµω
c
E = −∂zByx̂+ ∂xBy ẑ. (2.237)

Thus,
E(1) = − c

ε1µ1ω
teiqx

( [
e−ik1z − αeik1z

]
k1x̂+

[
e−ik1z + αeik1z

]
qẑ
)

E(2) = c
ε2
k2
ω

[
B+eik2(z−a) −B−e−ik2(z−a)

]
eiqxx̂− c

ε2

q
ω

[
B+eik2(z−a) +B−e−ik2(z−a)

]
eiqxẑ

E(3) = c
ε3
k3
ω

[
reik3(z−a−d) − e−ik3(z−a−d)

]
eiqxx̂− c

ε3

q
ω

[
reik3(z−a−d) + e−ik3(z−a−d)

]
ẑ

. (2.238)
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Applying condition (2.159) at z = 0, α is obtained:

E(1)
x |z=0 = 0, (2.239)

α = 1. (2.240)

So, the fields can be written as:
B(1) = t cos(k1z)e

iqxŷ

B(2) =
[
B+eik2(z−a) +B−e−ik2(z−a)

]
eiqxŷ

B(3) =
[
e−ik3(z−a−d) + reik3(z−a−d)

]
eiqxŷ

. (2.241)


E(1) = − c

ε1µ1ω
teiqx

(
− sin(k1z)ik1x̂+ cos(k1z)qẑ

)
E(2) = c

ε2
k2
ω

[
B+eik2(z−a) −B−e−ik2(z−a)

]
eiqxx̂− c

ε2

q
ω

[
B+eik2(z−a) +B−e−ik2(z−a)

]
eiqxẑ

E(3) = c
ε3
k3
ω

[
reik3(z−a−d) − e−ik3(z−a−d)

]
eiqxx̂− c

ε3

q
ω

[
reik3(z−a−d) + e−ik3(z−a−d)

]
ẑ

. (2.242)

Boundary conditions at z = a read [61]:

ẑ ·
(
B(2) −B(1)

)
|z=a = 0, (2.243)

ẑ ×
(
E(2) −E(1)

)
|z=a = 0, (2.244)

ẑ ×
(
B(2) − B(1)

µ1

)
|z=a = 0. (2.245)

These conditions yield:
ik1

ε1µ1
sin(k1a)t =

k2

ε2

(
B+ −B−

)
, (2.246)

t

µ1
cos(k1a) = B+ +B−. (2.247)

Combining these equations one obtains:

k1

ε1

(
B+ +B−

)
=
k2

ε2
cot(k1a)

(
B+ −B−

)
, (2.248)

B−
(
k2

ε2
cot(k1a)− k1

ε1

)
= B+

(k1

ε1
+
k2

ε2
cot(k1a)

)
. (2.249)

We can write this as:

B− = ηB+, (2.250)

where

η =
k2ε1 cot(k1a) + k1ε2
k2ε1 cot(k1a)− k1ε2

. (2.251)

Now, the boundary conditions at z = a+ d read [61]:

ẑ ·
(
B(3) −B(2)

)
|z=d = 0, (2.252)

ẑ ×
(
E(3) −E(2)

)
|z=d = 0, (2.253)

ẑ ×
(
B(3) −B(2)

)
|z=d =

4π

c
σ(ω)E‖|z=d. (2.254)
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σ(ω) is the conductivity of the graphene sheet, given by (2.59). These equations yield:

k3

ε3
(r − 1) =

k2

ε2

(
B+eik2d −B−e−ik2d

)
. (2.255)

1 + r −
(
B+eik2d +B−e−ik2d

)
= (1− r) k3

ε3

4π

ω
σ(ω) (2.256)

Now one can use equation (2.255) together with (2.250) to obtain the factor B+ as a function of r:

B+ =
r − 1

eik2d − αe−ik2d
ε2k3

ε3k2
. (2.257)

Substituting this equation in (2.256) yields:

r =
B −A− 1

B −A+ 1
, (2.258)

with

A =
1 + ηe−2ik2d

1− ηe−2ik2d

ε2k3

ε3k2
, (2.259)

B =
k3

ε3

4π

ω
σ(ω), (2.260)

η =
k2ε1 cot(k1a) + k1ε2
k2ε1 cot(k1a)− k1ε2

. (2.261)

By placing a metal surface below the antiferromagnet, limiting the antiferromagnet to a width a, there

is a value of a that maximizes the effect of the graphene sheet on the TE dispersion relation. Figure 2.12

shows the average separation of the EF = 0 eV and EF = 0.4 eV modes. At a → ∞ we get the result

from the previous study, with a semi-infinite antiferromagnet. However, for the optimal value a = 55 µm,

the negative group velocity at EF = 0.4 eV is no longer observed. The group velocity for EF = 0.4 eV

is positive for smaller a, and becomes negative for larger a, being approximately zero at the a = 55 µm

distance. As for the TM modes, the addition of the metal, at the right distance (figure 2.15), can slightly

increase the gap between the lower and upper modes.
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Figure 2.17: Comparing the imaginary part of the reflectivity (2.258) (Loss function) with the dispersion

relation for evanescent TM modes calculated in the previous section (2.234) generated by surface magnon-

plasmon polaritons. Ω0 is the antiferromagnet resonance frequency (2.29). qc is the corresponding

wavenumber in vacuum qc = Ω0

c . The value of d, the separation between the graphene sheet and the

antiferromagnet, is 0.5 µm. The value of a, the thickness of the antiferromagnet, is 346 µm. The Fermi

energy of the graphene sheet is EF = 0.07 eV. For the antiferromagnet permeability function given by

(2.27)-(2.29), the values of the quantities that determine it were given by Table I of [60]. The value of

the loss coefficient in (2.59) is γe = 0 eV. Ignoring losses at the graphene sheet is valid when dealing with

low temperatures. [20]. The loss function peaks at energies corresponding to the evanescent modes.
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3
Exciton-Polaritons of a 2D TMD layer embedded in a cylin-
drical microcavity

This chapter will study the formation of polaritons by adding a TMD semiconductor layer placed in the

symmetry plane (perpendicular to the axis) of a perfect cylindrical microcavity, in order to enhance the

excitonic coupling to the electromagnetic field. The system just described is depicted in figure (3.1). The

exciton-polariton density of states projected onto the photonic subspace will be compared to the density

of states of the empty cavity system (removing the TMD layer). For a cylinder of finite height with

a dielectric interface on its surface, Maxwell’s equations cannot be solved analytically. Thus, the focus

will be on a cylindrical microcavity with perfect confinement. As such, the interface will be considered

as perfectly conducting, as if the dielectric cylinder were covered by a thin perfectly metallic material.

The validity of this approximation will be examined in the L → ∞ case. The exciton-polariton modes

will be calculated exactly with a classical model, and with an approximate quantum model, the Hopfield

coefficients [16] will be determined for each mode. These coefficients measure the fraction of exciton and

photon in a polariton mode. Finally, the emission enhancement on a point emitter on the TMD plane

will be studied for specific angular momenta as well as for the general case where all angular momenta are

considered. For such an emitter, we shall assume a weak coupling regime and analyze how its emission is

enhanced or inhibited (the Purcell effect [17]) due to the polaritonic background of the microcavity with

embedded TMD layer.

In the next section we consider excitons confined to a 2D disk and derive the electric susceptibility

of the TMD layer, which determines the coupling effects of the excitons with the electromagnetic field

of the cavity modes. In section 3.3, we study coupled (polariton) modes in such a cavity using both

semiclassical and quantum approaches. Employing these results, in section 3.4 we evaluate the total and

projected densities of states (DOS) showing the possibility of strong enhancement of the local photonic

DOS modified due to the presence of the TMD layer in the cavity. In addition, in section 3.5, we provide

a theoretical analysis of the Purcell factor of a point emitter located in the vicinity of the TMD layer.
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Figure 3.1: Sketch of the system under study in chapter 3: a TMD monolayer inserted in a dielectric

cylindrical cavity of length L with relative permittivity ε. The electrical permittivities of the materials in

the cavity and their dimensions, as well as the TMD layer conductivity caused mainly by the formation

of exciton-polaritons, will determine the optical spectra.

3.1 Excitonic susceptibility of the 2D semiconductor layer on the cavity

To calculate the eigenmodes of the system, it is necessary to model the susceptibility and conductivity of

the embedded layer of TMD. For this, firstly the pure excitonic and photonic states must be characterized.

3.1.1 Exciton confinement

For exciton states, the very small Bohr radius (of the order aex ∼ 1 nm [33], where the 2D disk’s radius

is R and is of the order 1 µm) means that it is a reasonable approximation to disregard the exciton’s

internal structure in what concerns its confinement in the radial direction, treating the exciton as a point-

like particle confined in a circular potential well of radius R. Considering an infinite potential well, the

point-like exciton will obey Schrödinger’s equation:

− ~2

2Mex
∇2

2DΨex(r) = (E − Eex)Ψex(r), (3.1)

where r is a 2D radius-vector, ∇2D is the Laplacian operator in the plane of the TMD, Mex the excitonic

mass and Eex the binding energy for an infinite 2D layer cladded by the MC dieletric material. To solve

this equation, we write it in polar coordinates as:

a

(
1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂2

∂φ2

)
Ψex(r) + ∆EΨex(r) = 0, (3.2)
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where a = ~2

2Mex
and ∆E = E − Eex. Now multiplying by r2 and dividing by a, this equation takes the

form: (
r
∂

∂r
+ r2 ∂

2

∂r2
+

∂2

∂φ2

)
Ψex(r) + r2 ∆E

a
Ψex(r) = 0. (3.3)

It is noticeable that this equation is separable. Assuming a separable wavefunction

Ψex(r) = Φ(φ)R(r), (3.4)

and dividing the equation by the entire wavefunction on both sides, leads to:(
r
∂R(r)

∂r
+ r2 ∂

2R(r)

∂r2

)
1

R(r)
+
∂2Φ(φ)

∂φ2

1

Φ(φ)
+ r2 ∆E

a
= 0, (3.5)

because the equation contains only separate terms that depend only on one variable. The part of the

equation that only depends on φ must be a constant of symmetric value to the rest of the equation (that

depends only on r). We attribute the value −m2 to this constant, effectively splitting this equation in

two:
∂2Φ(φ)

∂φ2

1

Φ(φ)
= −m2 (3.6)

for φ, and (
r
∂R(r)

∂r
+ r2 ∂

2R(r)

∂r2

)
1

R(r)
−m2 + r2 ∆E

a
= 0 (3.7)

for r. Now, equation (3.6) has the set of solutions:

Φ(φ) = e±imφ, (3.8)

and equation (3.7) can be recognized as the Bessel differential equation [63], supporting Bessel functions

of the first and second kinds as solutions:

Rm(r) = CmJm(qr) +BYm(qr), (3.9)

where

q =

√
∆E

a
. (3.10)

However, because the exciton is present inside the circular area, the point r = 0 would present a divergence

to infinity for the function of second kind Ym. For this reason, solutions with B 6= 0 are not valid and we

are left with:

Rm(r) = CmJm(qr). (3.11)

Finally, applying the boundary condition R(R) = 0 (due to the infinite potential well) the values of q

and, as a consequence, of the energy E become quantized:

qm,n =
ξm,n
R

, (3.12)

where ξm,n is the n-th zero of the Bessel function Jm. In conclusion the wavefunctions will be

Ψ±m,n(r) = Cm,nJm(qm,nr)e
±imφ, (3.13)
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where m ≥ 0 is the angular momentum number and n ≥ 0 the radial quantum number. qm,n =
ξm,n
R is

the radial wavenumber. Cm,n is the normalization constant, and it must be computed by ensuring the

probability of finding the exciton somewhere inside the disk is 1. This is expressed as the integral over

the disk: ∫
disk

|Ψ±m,n(r)|2rdrdφ = 1, (3.14)

2π|Cm,n|2
∫ R

0

J2
m(ξm,nr/R)rdr = 1. (3.15)

The integral’s result is known to be R2

2 J
′(ξm,n)2 [?] and the expression becomes:

π|Cm,n|2R2J ′m(ξm,n)2 = 1 (3.16)

The normalization constant is thus shown to be

Cm,n = 1/(
√
πR|J ′m(ξm,n)|). (3.17)

Finally, squaring both sides of (3.10) while using (3.12), the energies take the form

Em,n = Eex +
~2ξ2

m,n

2MexR2
. (3.18)

Due to the relatively high value of R, this can be approximated to:

Em,n ' Eex. (3.19)

3.1.2 Empty cavity photon modes

The other part of the composite system in figure 3.1 is the empty cylindrical microcavity. This cavity

harbours confined electromagnetic modes which must obey Maxwell’s equations. As stated before, perfect

confinement will be assumed as an approximation (’ideal cavity’ approximation) which had been used

by many authors, for example in Ref. [64]. A more elaborate treatment of photonic eigenmodes in a

cylindrical microcavity considering a finite dielectric constant outside of the cavity (and, consequently,

imperfect confinement of the fields inside it) has been presented in Ref. [65] using approximate decoupling

of the degrees of freedom along and perpendicular to the z direction and the cavity modes are evaluated

as a function of radius according to a self-consistent procedure. However, because we are interested in

analytical solutions, we will stick to the ’ideal cavity’ approximation, the validity of which is studied in

appendix B, where the field profiles as well as the eigenfrequencies are compared with the exact solution,

in the case of a very long cylinder (L → ∞). To determine these modes one must solve the Helmholtz

equation in cylindrical coordinates:

∇2E− k2E = 0. (3.20)

The method to find solutions will be to start by solving the z component of the equation:

∇2Ez = k2Ez. (3.21)

This equation can be separated in the same way as in the solution to (3.1), with the addition of the z

part, yielding: (
r
∂R(r)

∂r
+ r2 ∂

2R(r)

∂r2

)
1

R(r)
+
∂2Φ(φ)

∂φ2

1

Φ(φ)
+
∂2Z(z)

∂z2

r2

Z(z)
+ k2r2 = 0, (3.22)
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with

Ez = E0R(r)Z(z)Φ(φ). (3.23)

This leads to the same development of the previous section, except now we also have

∂2Z(z)

∂z2

1

Z(z)
= −k2

z , (3.24)

leading to a solution of the form:

Ez = E0Jµ(qµ,νr)(Ae
ikzz +Be−ikzz)ei(µφ−ωt), (3.25)

where k2−k2
z = q2

µ,ν and qµ,ν =
ξµ,ν
R . Now, Farady law and Ampère’s law can be written for the transverse

components:

− iωε

c

(
Er

Eφ

)
=

(
1
r
∂Hz
∂φ −

∂Hφ
∂z

∂Hr
∂z −

∂Hz
∂r

)
, (3.26)

iω

c

(
Hr

Hφ

)
=

(
1
r
∂Ez
∂φ −

∂Eφ
∂z

∂Er
∂z −

∂Ez
∂r

)
. (3.27)

Plugging (3.25) into the equations for the transverse components of H (3.27):(
Hr

Hφ

)
=

c

iω

(
iµE0

Jµ(qµ,νr)
r (Aeikzz +Be−ikzz)eiµφ − ∂Eφ

∂z
∂Er
∂z − E0qµ,νJ

′
µ(qµ,νr)(Ae

ikzz +Be−ikzz)eiµφ

)
. (3.28)

J ′(qµ,νr) denotes the derivative of the Bessel function with respect to its argument. Now, we will limit

our scope to those solutions which are TM modes (Hz = 0). This allows us to solve for the transverse

components of E (3.26) by plugging the results in (3.28) along with Hz = 0, yielding:

− iω2ε

c2

(
Er

Eφ

)
=

(
i∂

2Er
∂z2 + E0kzqµ,νJ

′
µ(qµ,νr)(Ae

ikzz −Be−ikzz)eiµφ

iµE0kz
Jµ(qµ,νr)

r (Aeikzz −Be−ikzz)eiµφ + i
∂2Eφ
∂z2

)
(3.29)

Now, in order for these to be self-consistent, the second derivatives in z of each of the components must

match the component itself and the term Aeikzz−Be−ikzz. As such, this term must be the z dependence

of these components. Applying this information and k2 = ω2ε
c2 the equations become:

(
−ik2 + ik2

z

)(Er
Eφ

)
=

(
E0kzqµ,νJ

′
µ(qµ,νr)(Ae

ikzz −Be−ikzz)eiµφ

iµE0kz
Jµ(qµ,νr)

r (Aeikzz −Be−ikzz)eiµφ

)
. (3.30)

Application of boundary conditions (2.159)-(2.160) at z = L/2 and z = −L/2 can now lead to:AeikzL = B

Ae−ikzL = B
, (3.31)

which means: e2ikzL = 1

A = B
. (3.32)
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With this, we conclude that the z dependence on these components is a sine wave because A = B and

kz = l πL with l = 1, 2, 3, ... For reasons of convenience that will become clear in the section about exciton-

polaritons, the shift z → z − L
2 will be introduced. Taking into account as well that k2

z − k2 = −q2
µ,ν the

components become: (
Er

Eφ

)
=

(
− kz
qµ,ν

J ′µ(qµ,νr)

−iµ kz
q2µ,ν

Jµ(qµ,νr)
r

)
E0 sin(kz(z − L/2))eiµφ. (3.33)

Knowing the sine function is odd, we can express this as:(
Er

Eφ

)
=

(
kz
qµ,ν

J ′µ(qµ,νr)

iµ kz
q2µ,ν

Jµ(qµ,νr)
r

)
E0 sin(kz(L/2− z))eiµφ. (3.34)

Now it is necessary to return to equations (3.28) and plug the results from (3.34), along with the shift in

z, which yields:(
Hr

Hφ

)
=

c

iω

 iµ
Jµ(qµ,νr)

r + iµ
k2z
q2µ,ν

Jµ(qµ,νr)
r

− k2z
qµ,ν

J ′µ(qµ,νr)− qµ,νJ ′µ(qµ,νr)

E0 cos(kz (L/2− z))eiµφ. (3.35)

Now it is possible to use k2
z = ω2ε

c2 − q
2
µ,ν in both equations to obtain:(

Hr

Hφ

)
=

(
µ ωε
cq2µ,ν

Jµ(qµ,νr)
r

iε ω
cqµ,ν

J ′µ(qµ,νr)

)
E0 cos(kz (L/2− z))eiµφ. (3.36)

As such, the full EM fields (3.25),(3.34),(3.36) have been calculated and can be written as

Ez(r, φ, z, ω) = E0Jµ(qµ,νr) cos(kz(L/2− z))ei(µφ−ωt), (3.37)

Er(r, φ, z, ω) = E0
kz
qµ,ν

J ′µ(qµ,νr) sin(kz(L/2− z))ei(µφ−ωt), (3.38)

Eφ(r, φ, z, ω) = iµE0
kz
q2
µ,ν

Jµ(qµ,νr)

r
sin(kz(L/2− z))ei(µφ−ωt), (3.39)

Hr(r, φ, z, ω) = µE0
ωε

cq2
µ,ν

Jµ(qµ,νr)

r
cos(kz (L/2− z))ei(µφ−ωt) (3.40)

Hφ(r, φ, z, ω) = iE0
ωε

cqµ,ν
J ′µ(qµ,νr) cos(kz (L/2− z))ei(µφ−ωt), (3.41)

where: 
kz = πl/L, l = 1, 2, 3, ...

qµ,ν = ξµ,ν/R,

k2 = ω2ε
c2 = k2

z + q2
µ,ν .

(3.42)

ξµ,ν is the zero number n of the Bessel function Jmu. The eigenfrequencies are thus given by the formula:

ω(µ, ν, kz) =
c√
ε

√
k2
z + q2

µ,ν . (3.43)
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For L→∞ (a waveguide), kz can be arbitrary, while for a cavity with perfectly reflecting bases kz = πl/L

(l = 1, 2, 3, ...). In order to completely characterize a single photon inside the empty microcavity, E0 must

be calculated. The EM energy of this photon will be [3]:

~ω =
1

4π

∫
d3r (εE ·E∗ + H ·H∗) . (3.44)

From this equation, E0(µ, ν, kz) can be expressed in a form analogous to that for a photon in vacuum

as [3]:

E0(µ, ν, kz) =

√
2π~ω(µ, ν, kz)

εΩ(µ, ν, kz)
, (3.45)

where Ω(µ, ν, kz) is generally referred to as the ’mode volume’ and corresponds to:

Ω(µ, ν, kz) =
1

2ε

∫
d3r

(
ε
E ·E∗

E2
0

+
H ·H∗

E2
0

)
. (3.46)

Inserting the fields (3.37)-(3.88) and omitting all indexes this takes the form:

Ω(µ, ν, kz) =
1

2ε

∫ R

0

∫ L/2

−L/2

∫ 2π

0

[
cos2(kz(L/2− z))

(
εJ2(qr) + µ2 k

2ε

q4

J2(qr)

r2
+
k2ε

q2
J ′(qr)2

)
+

ε sin2(kz(L/2− z))
(
k2
z

q2
J ′(qr)2 + µ2 k

2
z

q4

J2(qr)

r2

)]
rdφdzdr

. (3.47)

The integral in φ is simply 2π and the integrals in z are:∫ L/2

−L/2
cos2(kz(L/2− z))dz =

∫ L/2

−L/2

1 + cos(kz(L− 2z))

2
dz = L/2− sin(kz(L− 2z))

4kz

∣∣∣∣L/2
−L/2

= L/2 +
sin(2kzL)

4kz

(3.48)

and ∫ L/2

−L/2
sin2(kz(L/2− z))dz =

∫ L/2

−L/2

1− cos(kz(L− 2z))

2
dz = L/2 +

sin(kz(L− 2z))

4kz

∣∣∣∣L/2
−L/2

= L/2− sin(2kzL)

4kz

. (3.49)

To simplify the writing, we will define

f(±) = L/2± sin(2kzL)

4kz
. (3.50)

Finally, the integrals of J ′(qr)2r can be modified by the use of integration by parts with v′ = J ′(qr) and

u = J ′(qr)r, which gives:∫ R

0

J ′(qr)2rdr =
1

q2

∫ qR

0

J ′(x)2xdx =
1

q2

[
J ′(x)J(x)x

∣∣qR
0
−
∫ qR

0

J(x) (J ′′(x)x+ J ′(x)) dx

]
. (3.51)

qµ,νR = ξµ,ν which is a zero of the Bessel function. Also,

J ′′(x)x+ J ′(x) =
µ2

x
J(x)− xJ(x) (3.52)
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by Bessel’s differential equation. Using these facts equation (3.51) becomes:∫ R

0

J ′(qr)2rdr = − 1

q2

∫ qR

0

(
µ2 J

2(x)

x
− J2(x)x

)
dx. (3.53)

Inserting (3.48),(3.49) and (3.53) into equation (4.40), along with the integral in φ being 2π, yields

Ω(µ, ν, kz) =
π

q2

∫ qR

0

[
f(+)

(
J2(x)x+ µ2 k

2

q2

J2(x)

x
− k2

q2
µ2 J

2(x)

x
+
k2

q2
J2(x)x

)
+

f(−)

(
k2
z

q2
J(x)2x− k2

zµ
2

q2

J2(x)

x
+ µ2 k

2
z

q2

J2(x)

x

)]
dx

, (3.54)

where x = qr. This of course simplifies to

Ω(µ, ν, kz) =
π

q2

(
f(+)

(
1 +

k2

q2

)
+ f(−)

k2
z

q2

)∫ qR

0

J2(x)xdx (3.55)

The integral is the same as (3.15) in the previous section and the result is known [?]. It is also possible

to simplify with k2 = q2 + k2
z and obtain

Ω(µ, ν, kz) =
π

q2

(
f(+)

(
2 +

k2
z

q2

)
+ f(−)

k2
z

q2

)
q2R

2

2
J ′(qR)2. (3.56)

Ω(µ, ν, kz) = π

(
f(+)

(
2 +

R2k2
z

ξ2
µ,ν

)
+ f(−)

R2k2
z

ξ2
µ,ν

)
R2

2
J ′(ξµ,ν)2. (3.57)

This is the analytical form of the mode volume for a general kz. Considering perfectly reflecting boundaries

at z = ±L/2 the condition kz = πl
L applies and this becomes:

Ω(µ, ν, l) =
πR2L

2

[
1 +

π2l2R2

ξ2
µ,νL

2

]
J ′(ξµ,ν)2. (3.58)

Figure 3.2 depicts this mode volume for two different values of µ and for l = 1 as a function of the

discrete values of energy ~ω(µ, ν, 1) corresponding to the different modes (values of ν).
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Figure 3.2: Mode volume (3.58) as a function of the energies of the modes for µ = 0, 10. It is clear that

for higher energy modes the angular momentum number µ does not influence the mode volume as much

as for lower energy modes. The cylinder radius is R = 3 µm and height L = 0.3 µm. Furthermore, these

values are much smaller than for a planar cavity due to the field confinement in all directions.

3.1.3 Susceptibility and optical conductivity

The exciton-photon interaction can be modelled with the dipole approximation. This corresponds to

assuming a potential of interaction of the form:

Vint = − (dCV ·E) , (3.59)

where dCV is the dipole matrix element between the valence and conduction bands [66] and E is the elec-

tric field associated with the empty cavity photon, whose constant is determined by equations (3.45) and

(3.58). Assuming the most realistic case of having the dipole moment in the plane of the semiconductor

material, we can write the basis of circular polarization:dCV = dCV√
2

(x̂± iŷ) ;

dCV = vF ~e
Eex

.
(3.60)

The dipole moment dCV is written in terms of the Fermi velocity vF and the energy of the exciton level

that is being considered. ± apply to the K and K ′ points of the Brillouin zone [67]. This dipole moments
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can be written in terms of the polar coordinates basis vectors r̂ and φ̂. Knowing that [?]x̂ = r̂ cos(φ)− φ̂ sin(φ)

ŷ = r̂ sin(φ) + φ̂ cos(φ)
(3.61)

dCV becomes

dCV =
dCV√

2

(
r̂(cos(φ)± i sin(φ)) + φ̂(− sin(φ)± i cos(φ))

)
(3.62)

dCV =
dCV√

2
e±iφ

(
r̂ ± iφ̂

)
(3.63)

The potential energy (3.59) is the operator that governs the transition from a vacuum state to the state

corresponding to one exciton of angular momentum m and radial number n at the cost of one photon of

angular momentum µ, radial number n and z wavenumber kz. This transition matrix element is then:

M(µ, ν;m,n) = 〈m,n| − dCV ·E(µ, ν, kz)|0〉. (3.64)

|0〉 is the [68] state of excitonic vacuum which can be written as

|0〉 = δ(re − rh), (3.65)

where re is the position of the electron and rh the position of the hole left by it on the valence band of

the 2D TMD disk (see Fig. 3.1). The excitonic state |m,n〉 can be written as:

|m,n〉 = Φ(re − rh)Ψm,n(r). (3.66)

Here, Φ(~re − ~rh) is the part of the excitonic wavefunction that represents its internal structure. Its

magnitude in the origin can be evaluated using the hydrogen-like model [69] †

|Φ(0)|2 =
2

πa2
exc

. (3.67)

Ψm,n(r) is the part of the wavefunction corresponding to the movement of the centre of mass of the

exciton. This is given by equation (3.13). One can now use (3.63) and the electric fields given by (3.25)

and (3.34) together with (3.58) to obtain:

(dCV ·E(µ, ν, kz)) |z=0 =

E0(µ, ν, kz)dCV√
2

kz
qµ,ν

sin(kzL/2)ei(µ±1)φ
(
r̂ ± iφ̂

)
·
(
J ′µ(qµ,νr)r̂ + iµ

Jµ(qµ,νr)

qµ,νr
φ̂

)
(3.68)

with E0(µ, ν, kz) given by (3.45) and (3.58). Thus,

(dCV ·E(µ, ν, kz)) |z=0 =
E0(µ, ν, kz)√

2

kz
qµ,ν

dCV sin(kzL/2)ei(µ±1)φ

(
J ′µ(qµ,νr)∓ µ

Jµ(qµ,νr)

qµ,νr

)
. (3.69)

†Excitons in TMDs are described by the electrostatic electron and hole interaction of V (ρ) = πe2r−1
0 [H0(ρ/r0) −

N0(ρ/r0)], where H0(x) and N0(x) are the Struve and Neuman functions, respectively, ρ = |(~re − ~rh)| and r0 takes

into account the non-local screened attractive interaction of two charges in the slab [68, 70]. Using the 2D effective mass

approximation, this potential provides a non-hydrogenic Rydberg series for the exciton energies in correspondence with

experimental results. [71] For the evaluation of Eq. (??) it is useful to approximate the exciton in the 2D TMD by a

modified 2D Wannier-Mott model where the exciton Bohr radius for each state n, is chosen to fit the exciton energy values

obtained from experiment, such that aexc 7→ an. [72]
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Note that the Bessel function recurrence relations state

J ′µ(x)∓ µJµ(x)

x
= ∓Jµ±1(x) (3.70)

Now we can use this and sum over the two possible polarizations, ±, and write the total interaction

potential as:

(dCV ·E(µ, ν, kz)) |z=0 =
E0(µ, ν, kz)√

2

kz
qµ,ν

dCV sin(kzL/2)
(
ei(µ−1)φJµ−1(qµ,νr)− ei(µ+1)φJµ+1(qµ,νr)

)
.

(3.71)

With this we can go back to the equation for the matrix element we were looking for (3.64):

M(µ, ν;m,n) =
E0(µ, ν, kz)√

2

kz
qµ,ν

dCV sin(kzL/2)

∫
re−rh

∫
r

δ(re − rh)Φ(re − rh)Ψm,n(r)(
ei(µ+1)φJµ+1(qµ,νr)− ei(µ−1)φJµ−1(qµ,νr)

)
d(re − rh)dr

(3.72)

M(µ, ν;m,n) =
E0(µ, ν, kz)√

2

kz
qµ,ν

dCV sin(kzL/2)∫ R

0

∫ 2π

0

Φ(0)Ψm,n(r)
(
ei(µ+1)φJµ+1(qµ,νr)− ei(µ−1)φJµ−1(qµ,νr)

)
rdrdφ

(3.73)

Now using the wavefunction of the exciton’s centre of mass (3.13) we get

M(µ, ν;m,n) = Φ(0)
E0(µ, ν, kz)√

2

kz
qµ,ν

dCV sin(kzL/2)∫ R

0

∫ 2π

0

1√
πR|J ′m(ξm,n)|

Jm(qm,nr)
(
ei(m+µ+1)φJµ+1(qµ,νr)− ei(m+µ−1)φJµ−1(qµ,νr)

)
rdrdφ

(3.74)

This simplifies to

M(µ, ν;m,n) = dCV Φ(0)
E0(µ, ν, kz)√

2π
kzπR

2 sin(kzL/2)Iµ,ν;m,n(δµ+1,m − δµ−1,m) (3.75)

Iµ,ν;m,n are coefficients defined by:

Iµ,ν;m,n =
2

ξµ,ν |J ′m(ξm,n)|

∫ 1

0

xJm(ξm,nx)Jm(ξµ,νx)dx . (3.76)

The presence of sin(kzL/2) means that, for a perfectly confined cavity, only modes which are odd with

respect to Ez (with the number l odd in kz = πl/L) can couple to the exciton. Angular momentum

conservation is expressed by the kronecker symbols in (3.75). They guarantee that a transition is only

possible if the resulting exciton has the spin of the photon absorbed (which is positive for left circular po-

larization and negative for right circular polarization) added to its angular momentum. The susceptibility

tensor will have two equal components (xx and yy) and no zz component because the dipole moment

vector lies in the xy plane. It is convenient to consider two-dimensional (sheet) susceptibility defined as

the dipole moment per unit are per unit field. The component that we want to calculate can be obtained

using second order perturbation theory similar to the derivation of the atomic polarizability [73]. The

energy of the semiconductor disk polarized by an electromagnetic mode (µ, ν, kz) is:

E =
1

2
χ2D

∫
disk

(E⊥ ·E∗⊥)|z=0dr =
∑
m,n

|M(µ, ν;m,n)|2

Em,n − ~ω
, (3.77)
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where E⊥ refers to the in-plane components of the electric field (3.85) and (3.86). Notice this integral

has been solved before as part of the mode volume calculation (3.58). It corresponds to the factor of f(−)

and as such its result is the same, removing the factor 1
2f(−):∫

disk

(E⊥ ·E∗⊥)|z=0dr =
επR4k2

z

2ξ2
µ,ν

J ′µ(ξµ,ν)2 (3.78)

Solving equation (3.77) for the susceptibility thus yields

χ2D =
2

πR2Bµ,ν,kz

∑
m,n

|M(µ, ν,m, n)|2

Em,n − ~ω
, (3.79)

where

Bµ,ν,kz = |E0(µ, ν, kz)|2
(
kzR

ξµ,ν

)2 [
J ′µ(ξµ,νR)

]2
. (3.80)

From Green’s function formalism, there would follow a non-resonant term [74] which is obtained by

replacing ω → −ω. Substitution of (3.75) yields:

χ2D(ω;µ, ν) =
|dCV Φ(0)|2ξ2

µ,ν[
J ′µ(ξµ,νR)

]2 ∑
m,n

|Iµ,ν;m,n|2

Em,n − ~ω − iδ
(δµ+1,m + δµ−1,m) , (3.81)

where a small imaginary part iδ is added to avoid the singularity. In this equation we assume only one

type of exciton with energy Em,n that can be approximated to Eex (3.19). Spin-orbit interaction in TMDs

results in two types of excitons, A and B, with a splitting of 100-200 meV [33]. To consider these two

types one would simply need to sum the contribution of the other type. However, the calculations done

will be limited to the type A of energy Eex = 1.9 eV. The next section will apply the optical conductivity

in Maxwell’s boundary conditions. The optical conductivity is

σ2D(ω;µ, ν) = −iωχ2D(ω;µ, ν). (3.82)

3.2 Microcavity exciton-polaritons

3.2.1 Semiclassical theory

In order to determine the allowed states, given this interaction, it is necessary to plug in the following

boundary conditions [5] H+
r −H−r = 4π

c σ2D(ω;µ, ν)Eφ|z=0

H+
φ −H

−
φ = − 4π

c σ2D(ω;µ, ν)Er|z=0 .
(3.83)

Here the +(−) sign stands for the fields at z ≥ 0 (z ≤ 0). We write the fields above and below the TMD

layer in the form:

E±z (r, φ, z, ω) = ±E0Jµ(qµ,νr) cos

[
kz(ω)

(L
2
∓ z
)]
ei(µφ−ωt) . (3.84)

This is the reason for the shift z → z − L/2 in the last section. In this way, we can introduce the

discontinuity needed to obey (3.83) and compare these modes to the corresponding empty cavity modes

(3.37). Using (3.84) and looking at (3.85)-(3.88), the rest of the EM fields will become

E±r (r, φ, z, ω) = E0
kz
qµ,ν

J ′µ(qµ,νr) sin(kz(L/2∓ z))ei(µφ−ωt), (3.85)
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E±φ (r, φ, z, ω) = iµE0
kz
q2
µ,ν

Jµ(qµ,νr)

r
sin(kz(L/2∓ z))ei(µφ−ωt), (3.86)

H±r (r, φ, z, ω) = ±µE0
ωε

cq2
µ,ν

Jµ(qµ,νr)

r
cos(kz (L/2∓ z))ei(µφ−ωt) (3.87)

H±φ (r, φ, z, ω) = ±iE0
ωε

cqµ,ν
J ′µ(qµ,νr) cos(kz (L/2∓ z))ei(µφ−ωt), (3.88)

Equations (3.83) can thus be written as

2µE0
ωε

cq2
µ,ν

cos(kzL/2) =
4π

c
σ2D(ω;µ, ν)iµE0

kz
q2
µ,ν

sin(kzL/2) (3.89)

2iE0
ωε

cqµ,ν
cos(kzL/2) = −4π

c
σ2D(ω;µ, ν)E0

kz
qµ,ν

sin(kzL/2) (3.90)

Note that modes for this system must have kz 6= πl/L for if the kz were the same as for the empty cavity

these boundary conditions would not hold. Both these equations yield

2πσ2D(ω;µ, ν)kz tan(kz
L

2
) = −iωε . (3.91)

This equation is the polariton dispersion relation and, together with equation (3.43), permits to obtain

the allowed values of kz (they are, of course, different from those of the empty cavity, but will be labelled

by the same index l) and the corresponding ω for each pair of quantum numbers µ and ν

ω(µ, ν, l) =
c√
ε

√
k2
z(µ, ν, l) +

(
ξµ,ν
R

)2

. (3.92)

The polariton ”dispersion curves” for two angular momentum values are shown in Fig. 3.3, which presents

the eigenfrequencies calculated by Eqs. (3.91) and (3.92) versus the radial index, ν, for the lowest kz

(l = 1).
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Figure 3.4: (Color online) Separations between the upper and lower polariton modes calculated within the

classical picture, corresponding to Fig. 3.3(red balls) and using the quantum formalism (blue squares),

for µ = 0 (connected by solid lines) and 10 (connected by dashed lines). The parameters are the same as

in Fig. 3.3.
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Figure 3.3: (Color online) Uncoupled exciton (dashed line), MC photon (dashed line with black balls)

and polariton dispersion curves for µ = 0 and 10 (red balls and blue squares, respectively). The radial

index takes only integer values but the points are connected to improve visibility. The parameters are:

cylinder radius R = 2 µm, height L = 0.235 µm, dielectric constant of the MC material ε = 3.4, Fermi

velocity vF = 5.5× 105 m/s, exciton energy Eex = 1.9 eV , and Bohr radius aex = 0.8 nm.

3.2.2 Quantum picture

Quantum-mechanical interaction between two bosonic fields can be considered by applying a unitary

transformation proposed by Hopfield. As in Ref. [49], we denote by P(... ) (P †(... )) and A(... ) (A†(... ))

the annihilation (creation) operators for photons and excitons, respectively, where (. . . ) stands for the

appropriate quantum numbers. The interaction term in the Hamiltonian is a sum over all these quantum

numbers, with the interaction constant, in our case, equal to the matrix element (3.75). In a Fabry-Perot

MC, the in-plane quantum numbers are replaced by m,n → ~q for excitons and µ, ν → ~k for photons.

Because of the uniformity of the system in any direction perpendicular to z, the interaction matriz

element in a planar microcavity contains the Kronecker symbol δ~k, ~q . By virtue of this, the Hamiltonian

of interacting excitons and MC photons, in the Fabry-Perot case reduces to the form [49] Ĥ =
∑
~q Ĥ~q

with

Ĥ~q = ~ω(~q)P †~qP~q + Eex(~q)A†~qA~q + g(~q)P †~qA~q + H.C. , (3.93)

where g(~q) is the coupling constant for the cavity mode ~q (for a certain l). Therefore, the Hopfield

transformation can be applied to diagonalize this Hamiltonian, for each ~q separately.

Now, for the case of cylindrical cavity, the coupling constant (for a certain kz), g(µ, ν, kz;m,n) is given

by equation (3.75) and we have only Kronecker deltas involving the quantum numbers m and µ and there

are no restrictions on ν and n. If we include all possible combinations of ν and n in the Hamiltonian,

we will not be able to write down a tractable Hopfield transformation. And even if we include only

forms with |ν − n| = 0,±1 there will be seven Hopfield coefficients and the diagonalization will become

impossible to perform analytically. We shall make the following (seemingly crude) approximation, n = ν.

In appendix C, the calculation of Iµ,ν;m,n from (3.76) is performed to show that for a given ν it is biggest

for n = ν. Later, the dispersion relation resulting from this approximation will be compared to the

classical dispersion relation obtained in the last chapter in figure 3.3, in which the sum was performed

from n = 1 to n = 200. The values of kz here will be pertaining to the empty cavity system only. As
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such, they are back to being kz = πl/L. In the following we will consider the lowest branch with l = 1.

We can write the Hamiltonian as

Ĥ =
∑
µ,ν

[
~ω(µ, ν)P †µ,νPµ,ν + EexA

†
µ±1,νAµ±1,ν + (g±µ,νA

†
µ±1,νPµ,ν + H.C.)

]
≡
∑
µ,ν

Ĥµ,ν , (3.94)

where

g±µ,ν = ±dCV Φ(0)
πS

L
√

2π

√
2π~ω(µ, ν, kz)

εΩ(µ, ν, kz)
Iµ,ν;µ±1,ν .

If we diagonalize the Hamiltonian Ĥµ,ν using a 3× 3 Hopfield transformation, it will take the form

Ĥµ,ν =

3∑
i=1

Ei(µ, ν)α(i)†
µ,ν α

(i)
µ,ν , (3.95)

where Ei (i = 1 − 3) are the energies of the three polaritonic branches and the new operators α(i) are

linear combinations of the operators A and P :

α(i)
µ,ν = κ

(i)
+ (µ, ν)Aµ+1,ν + κ

(i)
− (µ, ν)Aµ−1,ν + κ

(i)
phPµ,ν , (i = 1− 3) . (3.96)

In (3.96), κ are the Hopfield coefficients, they constitute the 3×3 Hopfield transformation matrix and

are obtained by the diagonalization procedure of the Hamiltonian Ĥµ,ν . To diagonalize the Hamiltonian

(3.94) we write it in matrix form

Ĥµ,ν =
(
A†µ+1,ν A†µ−1,ν P †µ,ν

) Eex 0 g+
µ,ν

0 Eex g−µ,ν
(g+
µ,ν)† (g−µ,ν)† ~ω(µ, ν)


Aµ+1,ν

Aµ−1,ν

Pµ,ν

 (3.97)

The eigenvalues are

E1(µ, ν) = Eex ;

E2,3(µ, ν) =
Eex + ~ω(µ, ν)

2
±

√[
Eex − ~ω(µ, ν)

]2
4

+ |g−(µ, ν)|2 + |g+(µ, ν)|2 ,
(3.98)

Now we want to obtain the Hopfield coefficients, which will be the elements of the eigenvectors of each

of the modes with the energies in (3.98). The equations to determine the eigenvectors will beEex − Ei 0 g+
µ,ν

0 Eex − Ei g−µ,ν
(g+
µ,ν)† (g−µ,ν)† ~ω(µ, ν)− Ei


κ

(i)
+

κ
(i)
−

κ
(i)
ph

 = 0 (3.99)

This yields the Hopfield coefficients, which can be normalized such that |κ(i)
+ |2 + |κ(i)

− |2 + |κ(i)
ph|2 = 1

(skipping the indices µ and ν for clarity):

|κ(1)
ph |

2 = 0 , |κ(1)
± |2 =

|g∓|2

|g+|2 + |g+|2
;

|κ(2,3)
ph |

2 =

(
Eex − E2,3

)2(
Eex − E2,3

)2
+ |g+|2 + |g−|2

, |κ(2,3)
± |2 =

|g±|2(
Eex − E2,3

)2
+ |g+|2 + |g−|2

.

(3.100)
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Figure 3.5: (Color online) Hopfield coefficients corresponding to the MC photon (red symbols and dash-

lines) and two excitons (µ±1) (green and blue symbols and dash-lines) for the upper and lower polariton

modes with µ = 0 and 10. The parameters are the same as in Fig. 3.3.

As seen from Eqs. (3.98) and (3.100), the first mode is purely excitonic, while E2,3(µ, ν) correspond to

two polariton branches. As we can see from Fig. 3.4, the polariton eigenmode energies obtained within the

reduced quantum model reproduce qualitatively quite well those calculated within the classical picture

including all exciton-photon interactions, even thogh the former underestimates the separation between

the upper and lower polariton branches. The minimum separation, i.e. the Rabi splitting is approximately

equal to 100 mEv and almost independent of µ (see Fig. 3.4). This is somewhat smaller than the value

calculated for a TMD layer with the same parameters inserted in a planar MC [49] but closer to the

experimentally measured values. [52]

The dependence of the Hopfield coefficients on ν is shown in Fig. 3.5 for µ = 0 and 10. For µ = 0 the

two Hopfield coefficients measuring the fraction of excitons with m = ±1 are equal, while for µ = 10 the

contributions of µ = 9 and µ = 11 are slightly different below the crossing point of the dispersion lines of

the uncoupled photons and excitons.
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3.3 Polariton Densities of States

3.3.1 Total and Projected Densities of States

The angular momentum, µ, still is a well-defined quantum number for polariton modes and, owing to our

approximation, so is the radial number ν. The density of polariton states (DOS) with a certain angular

momentum µ (and for the lowest kz) can be defined as

ρ(µ)(E) =
∑
ν, i

δ(Ei(µ, ν)− E) , (3.101)

where i stands for the three polaritonic branches. The same definition (without sum over i) can be

used for purely photonic modes in empty cavity. It is interesting to compare the latter to the polariton

DOS projected onto the photonic subspace, which is calculated by weighting each polariton mode by the

corresponding (photon) Hopfield coefficient:

ρ
(µ)
ph (E) =

∑
ν, i

|κ(i)
ph(µ, ν)|2δ(Ei(µ, ν)− E) . (3.102)

The projected density of states (PDOS), ρ
(µ)
± (E), for excitons with angular momenta µ± 1, respectively,

is defined similar to (3.102). Note that the sum of the three PDOS functions gives the total density of

states, i.e. ρ(µ) = ρ
(µ)
ph + ρ

(µ)
+ + ρ

(µ)
− . The dependencies of the functions ρ

(µ)
ph , ρ

(µ)
± (coinciding for µ = 0)

on E are displayed in Figs. 3.6 along with the DOS for uncoupled cavity photons and excitons.
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Figure 3.6: (Color online) Dependence of the DOS, ρ(µ), for empty cavity (defined similar to Eq. (3.101)

but without sum over i, red curve) and DOS for cavity with TMD layer projected over photonic (ρ
(µ)
ph ,

Eq. (3.102), blue curve) and excitonic (green curve) subspaces for µ = 0. Also shown is the uncoupled

exciton peak. All densities of states are shown normalized to unity, i.e. divided by
∫
ρ(µ)(E)dE. The

inset shows a zoom into the energy interval near the avoided crossing.

From Fig. 3.6 it can be seen that the function ρ
(0)
ph follows the trends of ρ(0) for pure photons in a broad

range of energy values below the crossing point (E <1.8 eV). Close to the crossing point (1.9 eV), the

polaritons are an almost equal-fraction admixture of MC photons and two exciton species with angular
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momenta µ±1. It results in a non-zero photonic PDOS within the ”gap” of photon DOS with µ = 0. For

E > 2.0 eV, the upper polariton branch is almost photon (see Fig. 3.5), therefore, ρ
(0)
ph and the empty

cavity DOS again are similar.

3.3.2 Local Density of States

The local density of states (LDOS), i.e. space resolved DOS of photons is important since it determines

the variation of the spontaneous decay rate of a point emitter placed in the cavity; it is defined by

weighting each photon mode with squared local magnitude of the electric field. [1] Here we deal with

mixed photon-exciton modes, therefore, it makes sense to consider the local density of states projected

onto the photon subspace defined as follows:

ρ
(µ)
loc (E; r, z) =

∑
ν, i

|~E(µ, ν; r, φ, z)|2|κ(i)
ph(µ, ν)|2δ(Ei(µ, ν)− E) . (3.103)

The electric field amplitude in (3.103) corresponds to one photon and is expressed through the mode

volume according to Eq. (3.45). Employing Eq. (3.44) it follows that the integration of ρ
(µ)
loc (E; r, φ, z)

over the MC volume yields the total energy of the photonic subsystem with angular momentum µ,

therefore, we have
ε

2πE

∫
ρ

(µ)
loc (E; r, z)d3r = ρ

(µ)
ph (E) . (3.104)

For the implementation that we have in mind, discussed below, it is particularly interesting to cal-

culate LDOS at the TMD layer, i.e. for z = 0. In Fig. 3.7 it is shown the dependence of the LDOS,

πR2ρ
(µ)
loc (E; r, z = 0), upon r and energy in the vicinity of the crossing point. As it can be seen from the

plots, the local density of states depends strongly on both the energy and the radial position and it is

redistributed owing to the presence of the TMD layer.

3.4 Point Emitter Attached to the TMD Layer: the Purcell effect

In the polariton framework, the exciton does not decay radiatively, instead, the strongly coupled system

oscillates between the state with and without exciton and the energy is reversibly transferred from the

exciton to photon and vice versa, the effect usually referred to as vacuum Rabi oscillations. [15] Yet,

in a real cavity some photons escape (and, accordingly, some radiative decay of excitons does occur)

giving rise to polariton photoluminescence, which can been observed experimentally. However, studies of

MC-embedded semiconductor quantum wells (QWs) showed that this emission mechanism is inefficient

and the luminescence is dominated by excitons bound to impurities or defects, with the QW emission

line redshifted with respect to the polariton modes. [15]

Here we shall consider a point emitter (PE) located within the TMD layer or very close to it, however,

without any direct interaction with the TMD excitons. We can think of a trapped exciton in TMD [75] or

a point defect in an h-BN layer [76] attached to the TMD layer or even a nanocrystal quantum dot (QD)

placed on top of it. [41,77] We shall assume that it yields an optical transition at energy, ~ω0, sufficiently

close but not coinciding with Eex. The emitter interacts with the MC photon modes, which are affected

by the strong coupling to the 2D excitons and it should influence emitter’s properties. We shall assume

that the PE is in the so called weak coupling regime. [13,78]
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Figure 3.7: (Color online) Dependence of the local density of states, ρ
(µ)
loc (E; r, z = 0) × V (where

V = πR2L), on the normalized radius r/R, for empty cavity and for cavity with TMD [where it is the

polariton photon-projected LDOS, Eq. (3.103)], for µ = 0 (left) and 10 (right). The lower panels highlight

the redidstribution of LDOS due to the TMD layer for the energies near the avoided crossing point. The

parameters are the same as in Fig. 3.3.

The spontaneous emission rate of a point emitter located within a homogeneous infinite dielectric

with refractive index η =
√
ε is [1, 78]

Γ0 =
4ω3

0d
2
0

3~c3
η (3.105)

where d0 is the dipole moment matrix element of the PE optical transition and and ω0 is the emission

frequency. In the weak coupling regime, the spontaneous emission rate placed in an ideal photonic

microcavity is enhanced or inhibited depending on the photonic LDOS value in the position of the

emitter, [1]

Γ(~r) =
4π2ω0d

2
0

~
ρ
||
loc(~ω0, ~r) , (3.106)

where ρ0(~ω0) = ω2
0η

3/(π2~c3) is the photon DOS in an infinite homogeneous dielectric medium and

ρ
||
loc(E;~r) =

∑
µ, ν

|~u(µ, ν; r, φ, z) · ~nd|2δ(~ω(µ, ν)− E) (3.107)

is the local projected density of photon states (LPDOS). Here ~nd is the unit vector along the emitter’s

dipole moment, ~d0, ω(µ, ν) is the frequency of the cavity mode with certain µ and ν (for simplicity we

consider only modes with the lowest kz), and

~u(µ, ν; r, φ, z) =
η√

2π~ω(µ, ν)
~E(µ, ν; r, φ, z)

(notice that it is normalized to unity). The electric field amplitude, ~E corresponds to one photon and is

expressed through the mode volume according to Eq. (??). Note that we removed the factor 1/3 in Eq.
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(3.106) and, correspondingly, the factor of 3 in the LDOS definition in Eq. (3.103), compared to Ref. [1]

Taking average over possible orientations of the dipole moment yields:

〈
|~u(µ, ν; r, φ, z) · ~nd|2

〉
=
εp−1(µ, ν; r, φ, z)

2π~ω(µ, ν)
|~E(µ, ν; r, φ, z)|2

where p is a numerical factor (e.g. p = 1 if the dipole moment is aligined with the considered mode and

p = 3 if its orientation is isotropic in 3D space). Let p̄−1 = 〈p−1(µ, ν; r, φ, z)〉 be its average value over

all its arguments, a number of the order of unity. Then we can express the local emission rate through

the usual local density of states (LDOS) as follows:

Γ(~r) = Γ0
3εp̄−1ρ

||
loc(~ω0, ~r)

2π~ω0ρ0(~ω0)
. (3.108)

Equation (3.108) expresses the so called the Purcell effect, [17] which can be controlled by manipulating

the photonic LDOS in nanostructures. [79,80] Nowadays it finds applications in nano-optical spectroscopy,

nanolasers, or broadband single-photon sources. [81]

If the emitter is located at z = 0, the relevant LDOS is written as follows:

ρ
||
loc(~ω0; r) =

2π~ω0

ε

∑
µ, ν

Ω−1(µ, ν)

(
kz
qµν

)2 {[
J ′µ(qµνr)

]2
+ [µJµ(qµνr)/(qµνr)]

2
}
δ(~ω(µ, ν)− ~ω0) ,

(3.109)

(Ω is the EM mode volume). Taking into account losses due to imperfect mirrors (with the loss rate

γloss), the δ-function in (3.109 is replaced by a Lorentzian function according to [78]

δ(~ω(µ, ν)− ~ω0)→ 2

π

1

~ω0

Q

1 + 4Q2 [ω(µ, ν)/ω0 − 1]
2 , (3.110)

where Q = γloss/ω0 and the δ-function is recovered in the limit Q→∞.

Noting that

2π~ω0ρ0(~ω0) = 16π2

(
η

λ0

)3

(3.111)

where λ0 is the emission wavelength in vacuum, we can rewrite Eq. (3.108) as follows:

Γ(r)

Γ0
=
∑
µ̄,ν̄

[
3Q

4π2
Ω−1(µ̄, ν̄)

(
λ0

η

)3
]
p̄−1ϕ(µ̄, ν̄; r) , (3.112)

where we have assumed exact resonance between the emission frequency and a cavity mode µ̄, ν̄, so that

the sum is over all modes obeying the relation ω(µ̄, ν̄) = ω0, and

ϕ(µ̄, ν̄; r) =

(
kz
qµ̄ν̄

)2 {[
J ′µ̄(qµ̄ν̄r)

]2
+ [µ̄Jµ̄(qµ̄ν̄r)/(qµ̄ν̄r)]

2
}
.

Therefore, the emission rate is proportional to the quality factor, Q, and inversely proportional to the

(resonance) mode volume, while its spatial dependence is determined by the function ϕ(µ̄, ν̄; r). The factor

p̄−1 takes into acount the emission polarization properties of the emitter. The term in square brackets in

Eq. (3.112) is called the Purcell factor (originally introduced by Purcell [17] with the cavity volume, V , in

place of the mode volume, Ω) and it measures the maximum spontaneous emission acceleration that can
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be achieved by placing the emitter in a cavity, in the weak coupling regime. The Purcell factor has been

generalized to take into account the effects such as photon confienement, absorption and MC material’s

dispersion, [81] so Eq. (3.112) can be seen as a generalization taking into account the cylindrical geometry.

For a cavity with embedded TMD layer, the local emission rate is expressed through the local polari-

tonic density density of states projected onto the photon subspace, defined in the previous section [Eq.

(3.103)] as follows:

Γ(~r) = Γ0

3εp̄−1
∑
µ ρ

(µ)
loc (~ω0, ~r)

2π~ω0ρ0(~ω0)
. (3.113)

Figure 3.8 illustrates how the local emission rates changes with energy and emitter’s position within the

z = 0 plane inside either an empty cavity or a cavity with inserted TMD layer.

Figure 3.8: (Color online) Energy and position dependence of the local emission rate of a point emitter

located in the z = 0 plane calculated for empty cavity and for cavity with TMD. The right panel highlights

the region near 1.87 eV where the Purcell effect enhancement due to the TMD layer is seen. We assumed

p̄−1 = 1 and other parameters are the same as in Fig. 3.3.

From this figure we can see that local emission rate is redistributed both in energy and in space due to

the presence of the TMD layer in the cavity. Such an engineering of Γ(~r) can be useful for stimulating a

point emitter tuned to a particular wavelength while pumping it through a cavity mode. If it is a trapped

exciton in the TMD layer, the red shift of the photon-projected polariton LDOS with respect to the bare

2D exciton energy (1.9 eV in our example) is desirable indeed. Excitation can be performed through the

upper polariton branch lying above 1.9 eV (see Fig. 3.3). The excitonic part of such a polariton can

be trapped by a defect or impurity. Angular momentum is not conserved for trapped excitons and their

emission, after being excited, can be proportional to the local photonic DOS irrespective of µ. Yet, as

Fig. 3.7 shows, LDOS, for the same energy, peaks at different distances from cavity’s centre and it will

enhance the emission of photons with certain angular momenta depending on the position of the emitter.
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4
Photonic states confined to a spherical microcavity

This chapter will consider the problem of electromagnetic modes in a microsphere with radius R of the

order of a few µ m. This microsphere is a dielectric with relative permittivity ε = 3.4. The goal is to

find eigenmodes (solutions to Maxwell equations), and then study their spatial distribution through the

photonic local density of states. This work was inspired by the nice observation by Prof. Adil Chahboun

of the University of Tanger, figure 4.1. [82] This figure shows that dielectric microspheres of 10 to 20

µm in size, uniformly doped with point emitters (dye molecules) during their growth, apparently emit

light only from a relatively thin shell when the whole system is irradiated uniformly and (some of) the

point emitters are excited. We attempted to explain this and other observations of this kind, presented

in chapter 5 of Nizar Bchellaoui’s thesis [83]. In short, the idea is that these molecules emit in resonance

with certain electromagnetic eigenmodes of the sphere that have large orbital (l) and radial (n) numbers

and l ∼ n, the so called whispering-gallery (WG) modes [13]. Although this qualitative explanation can

be plausible since the WG modes are said to be “quasiwaveguided” modes in spherical geometry [13], it is

interesting to demonstrate it with calculations by analyzing the spherical cavity modes in the same way

as we studied the cylindrical MC eigenmodes in the previous chapter.

The solutions to the Helmholtz scalar equation in spherical coordinates are well known (spherical

Bessel functions). As such, these solutions will be used to arrive at general solutions for the vectorial

Helmholtz equation. Calculations of dispersion and local density of states will be made for two types

of cavity: ideal cavity modes, with a perfect conductor acting as the surface of the sphere, and real

cavity modes, where the edge of the sphere is assumed to be a simple dielectric interface. The point

emitters are excited by radiation of a considerably shorter wavelength than their emission wavelength

and the absorption and emission events are separated in energy asnd in time and can be considered as

independent. For simplicity, the excitation of the emitters will be analysed using geometrical optics.

The absorption rate of such device will be estimated staring with results from Bohram and Huffman’s

book [19] and using some original calculations for a ray optics estimate of the distribution of rays in

each part of the sphere. This allows us to map the absorption rate by molecules inside the sphere as

it depends on its eigenmodes as well as on the characteristics of the incident light (direction, frequency,

etc...). With this ’map’ of absorption of the exiting radiation and the position-dependent Purcell factor

evaluated from the calculated photonic DOS at the emission wavelength
”

it is possible to estimate the
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most efficient region for such a point emitter in order to maximize its emission rate.

Figure 4.1: Photoluminescence of ZnO microspheres uniformly doped with point emitters (dye molecules

Rhodamine B) under uniform illumination [82].

4.1 Determination of the eigenmodes

4.1.1 Scalar Helmholtz equation

The general vector equation solutions will be obtained from those of the scalar Helmholtz equation, which

for a medium of relative permittivity ε has the form:(
∇2 − ε

c2
∂2

∂t2

)
u(r, t) = 0. (4.1)

Assuming harmonic time dependence e−iωt one obtains the Helmholtz equation:(
∇2 + k2

)
u(r) = 0, (4.2)

67
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where k2 = εω2/c2. Appendix D contains the detailed calculation of the solution, which is also done in

literature [63] , and can be written as:

ul,m(r, t) = ul,m(r)e−iωt = (Ajl(kr) +Byl(kr))P
m
l (cos θ)ei(mφ−ωt), (4.3)

where jl and yl are the spherical Bessel functions of first-kind and second-kind, respectively, of order l.

A and B are constants generally determined by boundary conditions (B = 0 if the medium contains the

origin, because yl(kr) diverges at r = 0) and Pml is the associated Legendre polynomial.

4.1.2 Vectorial Helmholtz equation

Now, the focus is turned to the Helmholtz vectorial equation, which must be obeyed by both electric and

magnetic fields:

∇2u(r) + k2u(r) = 0. (4.4)

Knowing the scalar solutions, one may attempt to write u(r) as a function of u(r). Electric fields, for

harmonic waves, can be written as the curl of the magnetic fields, and vice-versa. As such, u(r) can be

written as the curl of some vector function with scalar part Ψ(r) and direction A(r):

u(r) = ∇×
[
Ψ(r)A(r)

]
. (4.5)

Equation (4.4) becomes

∇2
[
∇×

[
Ψ(r)A(r)

]]
+ k2∇×

[
Ψ(r)A(r)

]
= 0. (4.6)

Now property (5.82) can be employed to obtain

∇×
[
∇2
[
Ψ(r)A(r)

]]
+ k2∇×

[
Ψ(r)A(r)

]
= 0. (4.7)

Using (5.83) this can be written as (the dependence on r will be omitted to save space)

∇×
[
A∇2Ψ + 2 [∇Ψ · ∇]A + Ψ∇2A

]
+ k2∇× [ΨA] = 0. (4.8)

With the clever choice of A = r the second and third terms become:

∇× [2∇Ψ + Ψ (∇(∇ · r)−∇× (∇× r)] , (4.9)

and since ∇ · r = 3 and ∇× r = 0 these terms are equal to

2∇×∇Ψ = 0 (4.10)

according to (5.84). With all this, equation (4.8) is simply

∇×
[
r
(
∇2Ψ + k2Ψ

)]
= 0. (4.11)

Finally, if we choose the simple case of having ∇2Ψ + k2Ψ = 0, then the solutions of equation (4.4) are

determined by a potential function Ψ(r), which is given by (4.3). In conclusion, the solutions found for

the vectorial Helmholtz equation are of the form:

u(r) = ∇× (Ψ(r)r) , (4.12)

where Ψ(r) are the solutions to the scalar equation given by (4.3).
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4.1.3 Components of the electromagnetic fields

A general function fl(kr) will be introduced,

fl(kr) = Ajl(kr) +Byl(kr). (4.13)

Depending on the type of mode considered, either the electric or magnetic field will be proportional to

ul,m(r) = ∇×
[
fl(kr)P

m
l (cos θ)eimφr

]
. (4.14)

Explicit calculation of the curl yields the components of this vector:
u

(r)
l,m = 0

u
(θ)
l,m = imfl(kr)

Pml (cos θ)
sin θ eimφ

u
(φ)
l,m = −fl(kr)∂θPml (cos θ)eimφ

, (4.15)

One of the fields (electric or magnetic) will be proportional to the vector u(r) whereas the other field

will be proportional to the curl of u(r). As such, it will be useful to define

cl,m =
1

k
∇× ul,m. (4.16)

Again, explicit calculation yields:
c
(r)
l,m = fl(kr)

kr l(l + 1)Pml (cos θ)eimφ,

c
(θ)
l,m = ∂kr(krfl(kr))

kr ∂θP
m
l (cos θ)eimφ,

c
(φ)
l,m = i∂kr(krfl(kr))

kr m
Pml (cos θ)

sin θ eimφ

. (4.17)

4.1.4 TM-type and TE-type modes

Two types of modes can be studied separately. Modes with zero radial component of the magnetic field

are called electric or transverse magnetic (TM). If the same applies to the electric field, such modes are

called magnetic or transverse electric (TE). With these considerations we have defined the fields:H
(TM)
l,m =

√
εE

(TM)
0 ul,m(r)

E
(TE)
l,m = E

(TE)
0 ul,m(r)

, (4.18)

with ul,m(r) being given by (4.15). E
(TM)
0 and E

(TE)
0 are the electric field amplitudes of ’TM-type’ and

’TE-type’ modes, respectively. Ampère’s law and Faraday’s equation read:E = i√
εk
∇×H

H = − i
√
ε
k ∇×E

. (4.19)

Applying these two equations to (4.18) and using (4.16) yields the complete fields as:
H

(TM)
l,m =

√
εE

(TM)
0 ul,m(r)

E
(TM)
l,m = iE

(TE)
0 cl,m(r)

H(TE) = −i
√
εE

(TM)
0 cl,m(r)

E(TE) = E
(TE)
0 ul,m(r)

, (4.20)
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with u
(c)
l,m being given by (4.17). By substitution of (4.15) and (4.14) into (4.20), the explicit form of the

’TM-type’ modes will then read:
(E

(TM)
l,m )r = E

(TM)
0

fl(kr)
kr l(l + 1)Pml (cos θ)eimφ

(E
(TM)
l,m )θ = iE

(TM)
0

∂kr(krfl(kr))
kr ∂θP

m
l (cos θ)eimφ

(E
(TM)
l,m )φ = −E(TM)

0
∂kr(krfl(kr))

kr m
Pml (cos θ)

sin θ eimφ

, (4.21)


(H

(TM)
l,m )r = 0

(H
(TM)
l,m )θ = i

√
εE

(TM)
0 mfl(kr)

Pml (cos θ)
sin θ eimφ

(H
(TM)
l,m )φ = −

√
εE

(TM)
0 fl(kr)∂θP

m
l (cos θ)eimφ

. (4.22)

and the explicit form of the ’TE-type’ modes will read:
(E

(TE)
l,m )r = 0

(E
(TE)
l,m )θ = iE

(TE)
0 fl(kr)m

Pml (cos θ)
sin θ eimφ

(E
(TE)
l,m )φ = −E(TE)

0 fl(kr)∂θP
m
l (cos θ)eimφ

, (4.23)


(H

(TE)
l,m )r = −i

√
εE

(TE)
0

fl(kr)
kr l(l + 1)Pml (cos θ)eimφ,

(H
(TE)
l,m )θ = −i

√
εE

(TE)
0

∂kr(krfl(kr))
kr ∂θP

m
l (cos θ)eimφ

(H
(TE)
l,m )φ =

√
εE

(TE)
0

∂kr(krfl(kr))
kr m

Pml (cos θ)
sin θ eimφ

, (4.24)

4.2 Ideal cavity modes

The simplest system involving a spherical microcavity made of a dielectric material would be to consider

the microcavity to be surrounded by a spherical shell of a perfect metal (ε → −∞). This is the perfect

confinement ideal cavity scenario. The field must then be equal to zero outside of the cavity (medium

2). Also, the tangential components of the electric field and radial component of the magnetic field must

vanish at the interface. That is, the following boundary conditions must apply:

[r̂ ×El,m] |r=R = 0, (4.25)

and

[r̂ ·Hl,m] |r=R = 0. (4.26)

4.2.1 Dispersion relations

We can now apply conditions (4.25) and (4.26) to TM and TE-type modes to obtain their eigenenergies.

TM-type

According to (4.22), the condition for the magnetic field (4.26) is always met. So, only the application of

condition (4.25) to (4.21) remains, which yields:

[r̂ ×El,m] |r=R = 0, (4.27)
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(E
(TM)
l,m )θ|r=R = 0

(E
(TM)
l,m )φ|r=R = 0

. (4.28)

Both equations yield: [
∂kr
(
krjl(kr)

)]
|r=R = 0, (4.29)

which becomes:

jl(kR) + kRj′l(kR) = 0. (4.30)

TE-type

Now we can turn our attention to the TE-type modes. Firstly, using the expressions (4.23), the condition

for the electric field (4.25) is: (E
(TE)
l,m )θ|r=R = 0

(E
(TE)
l,m )φ|r=R = 0

, (4.31)

and both equations yield

jl(kR) = 0. (4.32)

Secondly, with the expressions (4.24) the condition for the magnetic field (4.26) is:

(H
(TE)
l,m )r|r=R = 0, (4.33)

and this equation also yields

jl(kR) = 0. (4.34)

Figure 4.2 presents some solutions of both TM-type (4.30) and TE-type (4.34) with energies, ~ω, in

eV, for different l. The radial number n is simply the sequential number of the root of the corresponding

dispersion equation. In the case of TE-type modes, the solutions are the n-th zeros of the spherical Bessel

function. So, by definition, the eigenfrequencies always increase with the mode number.
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Figure 4.2: Solutions (for an ideal cavity) of equation (4.30) for TM-type modes and equation (4.34) for

TE-type modes, with energy ~ω in eV for different l. The energies presented correspond to the visible

spectrum (1.65 to 3.1 eV). The radius of the sphere is R = 3 µm. The dielectric constant of the sphere’s

material is ε = 3.4.

4.2.2 Local density of states

The modes obtained in this work correspond to photonic distributions inside the cavity. The total density

of states can be written as the sum of all the partial densities of states for a given angular momentum

number l:

%(E) =

∞∑
l=1

ρ(l)(E), (4.35)

where

ρ(l)(E) = (2l + 1)

∞∑
n=1

δ (E − En,l) , (4.36)

where En,l are the eigenenergies of the system given by either (4.30) for TM-type modes or (4.34) for

TE-type modes, and depicted in figure 4.2. The factor 2l + 1 is the degeneracy of each mode of angular

momentum l.

The spatial distribution of the photonic modes studied in this work is given by the modulus squared

of the electric field. As such, one can define the local density of states as:

ρloc(r, E) =
∑
n,l,m

∑
σ=TM,TE

|E(σ)
l,m(r, E)|2δ(E − E(σ)

n,l ). (4.37)

As was done in the previous chapter, the electric field amplitude used in (4.37) must correspond to a

single photon confined to the interior of the microcavity, which corresponds to quantifying the energy ~ω
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pertaining to this photon:

~ω =
1

4π

∫
d3r
(
εE ·E∗ + H ·H∗

)
. (4.38)

The electric field amplitude can be written as:

E0(n, l,m) =

√
2π~ω
εΩn,l,m

, (4.39)

where:

Ωn,l,m =
1

2ε

∫
d3r
(
ε
E ·E∗

E2
0

+
H ·H∗

E2
0

)
, (4.40)

Ω is generally called the mode volume [3] and it is calculated in detail in appendix E. Its value for

’TM-type’ modes is given by:

Ω
(TM)
n,l,m =

2π(
k

(TM)
n,l,m

)3

2l(l + 1)(l +m)!

(2l + 1)(l −m)!

[
z (jl(z) + zj′l(z))

2
+ zj2

l (z)
[
z2 − l(l + 1)

]] ∣∣∣∣k
(TM)
n,l,mR

z=0

, (4.41)

where k
(TM)
n,l,m =

√
ε

~cE
(TM)
n,l,m , with E

(TM)
n,l,m representing the solutions to equation (4.30). The mode volume

of ’TE-type’ modes has a similar form:

Ω
(TE)
n,l,m =

2π(
k

(TE)
n,l,m

)3

2l(l + 1)(l +m)!

(2l + 1)(l −m)!

[
z (jl(z) + zj′l(z))

2
+ zj2

l (z)
[
z2 − l(l + 1)

]] ∣∣∣∣k
(TE)
n,l,mR

z=0

, (4.42)

where k
(TE)
l,m =

√
ε

~cE
(TE)
n,l,m, with E

(TE)
n,l,m representing the solutions to equation (4.34). The integral only

needs to be calculated in one medium (inside the sphere), because we are dealing with a perfect cavity.

Notice the dispersion relations for both modes (equation (4.30) for TM-type modes and equation (4.34)

for TE-type modes) both show up in the definitions of the mode volume (equations (4.41) and (4.42)),

allowing for the simplification of both formulae:

Ω
(TM)
n,l,m = 2πR3 2l(l + 1)(l +m)!

(2l + 1)(l −m)!
j2
l

(
k

(TM)
n,l,mR

)1− l(l + 1)(
k

(TM)
n,l,mR

)2

 , (4.43)

Ω
(TE)
n,l,m = 2πR3 2l(l + 1)(l +m)!

(2l + 1)(l −m)!
j′l

(
k

(TE)
n,l,mR

)2

. (4.44)

So, the following equations define the local densities of states of TM-type (ρ
(TM)
l,m ) and TE-type (ρ

(TE)
l,m ):

k ≡ k(TM)
n,l,m =

√
ε

~cE
(TM)
n,l,m

|E(TM)
n,l,m |

2 =

|E(TM)
0 (n, l,m)|2

[[
jl (kr)

kr
l(l + 1)Pml (cos θ)

]2

+
[∂r (rjl (kr))]

2

(kr)
2

[
(∂θP

m
l (cos θ))

2
+

(
m
Pml (cos θ)

sin θ

)2
]] ,

(4.45)
k ≡ k(TE)

n,l,m =
√
ε

~cE
(TE)
n,l,m

|E(TE)
n,l,m|2 = |E(TE)

0 (n, l,m)|2j2
l (kr)

[
(∂θP

m
l (cos θ))

2
+
(
m
Pml (cos θ)

sin θ

)2
]

, (4.46)
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E

(TM)
0 (n, l,m) =

√
2πE

(TM)
n,l,m

εΩ
(TM)
n,l,m

E
(TE)
0 (n, l,m) =

√
2πE

(TE)
n,l,m

εΩ
(TE)
n,l,m

, (4.47)

where the Ω are given by (4.43) and (4.44) and finally, according to (4.37):ρ
(TM)
loc (r, E) =

∑
n,l,m |E

(TM)
n,l,m (r, En)|2δ

(
E − ~ω(TM)

n,l,m

)
ρ

(TE)
loc (r, E) =

∑
n,l,m |E

(TE)
n,l,m(r, En)|2δ

(
E − ~ω(TE)

n,l,m

) . (4.48)

In figures 4.3 and 4.4 some terms of the sum in (4.48) are presented, to show the difference in the angular

dependence of each different m value.

Figure 4.3: Evolution with respect to m of local densities of states for TM-type modes, given by the first

equation in (4.48). The l value used is l = 15 and the m values shown are, from left to right, m = 0,

m = 5, m = 10 and m = 15. The circle (x′, z) is any constant φ cross-section of the sphere. The radius

used was R = 2 µm, the energy at which the LDOS is calculated is 2 eV and only modes with 0 < ~ω < 4

(eV) were considered.
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Figure 4.4: Evolution with relation to m of local densities of states for TE-type modes, given by the

second equation in (4.48). The l value used is l = 15 and the m values shown are, from left to right,

m = 0, m = 5, m = 10 and m = 15. The circle (x′, z) is any constant φ cross-section of the sphere. The

radius used was R = 2 µm, the energy at which the LDOS is calculated is 2 eV and only modes with

0 < E < 4 (eV) were considered.

4.3 Modes for a real cavity with dielectric interface

The next step in the study is to consider a system where there is a spherical dielectric interface. The

interior of the sphere will have permittivity ε1 and the outside will have permittivity ε2, where ε2 = 1

(vacuum) on all calculations performed. Propagative harmonic modes with real frequencies are not

possible, because here the radial wavenumber is directly proportional to the frequency (k1 =
√
ε1
ω
c and

k2 =
√
ε2
ω
c ) and as such one can not have k1 being real and k2 imaginary, unless ε2 is negative. However,

solutions to the eigenmode equations with complex frequencies were found. These solutions diverge with

r due to the imaginary part of k, but also decay exponentially with t. All spherical Hankel functions

of the first-kind, for complex arguments, grow slower than exponentially at infinity. [63] Precisely, the
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amplitude squared at infinity decays with 1/r2 as it should for a spherical wave. This means that any

wave radiating from the interface, which has to be a superposition of these eigenmodes, will never have

time to diverge with r because it will decay exponentially with time. As such, these modes are possible,

but normalization to a single photon becomes complicated because the photon is not confined and the

integration can not be made up to infinity. The integrations for the normalization of the EM field has

been made up to a finite yet large radius RL = 300 µm. This corresponds to assuming that the photon

of the system is still inside this large volume of 4
3πR

3
L at the precise moment one reads the density of

states. Note that in this section the electric and magnetic fields will be labelled Ei,n,l,m where i refers to

either medium 1 or medium 2.

The complete electromagnetic boundary conditions, with no charges or currents, read:
[r̂ × (E2,n,l,m −E1,n,l,m)] |r=R = 0

[r̂ · (ε2E2,n,l,m − ε1E1,n,l,m)] |r=R = 0

[r̂ · (B2,n,l,m −B1,n,l,m)] |r=R = 0

[r̂ × (B2,n,l,m −B1,n,l,m)] |r=R = 0

, (4.49)

where E2,l,m and B2,l,m are the electric and magnetic fields outside the sphere (medium 2 with ε = ε2)

and E1,l,m and B1,l,m are the electric and magnetic fields inside the sphere (medium 1 with ε = ε1).

4.3.1 Dispersion relations

The spherical Hankel function of the first-kind hl ≡ h(1)
l = jl + iyl is the function combination (4.3) with

A = 1 and B = i chosen for the modes outside the cavity. These combinations represent modes that

propagate radially outwards. [63] The electric and magnetic fields for TM-type modes, inside and outside

the sphere, are:[
(E

(TM)
1,n,l,m)r = E

(TM)
1

jl(k1r)

k1r[
(E

(TM)
1,n,l,m)θ = iE

(TM)
1

∂r (rjl(k1r))

k1r[
(E

(TM)
1,n,l,m)φ = −E(TM)

1

∂r (rjl(k1r))

k1r

(H
(TM)
1,n,l,m)r = 0[

(H
(TM)
1,n,l,m)θ = i

√
ε1E

(TM)
1 jl(k1r)[

(H
(TM)
1,n,l,m)φ = −

√
ε1E

(TM)
1 jl(k1r)

(E
(TM)
2,n,l,m)r = E

(TM)
2

hl(k2r)

k2r

]
l(l + 1)Pml (cos θ)

(E
(TM)
2,n,l,m)θ = iE

(TM)
2

∂r (rhl(k2r))

k2r

]
∂θP

m
l (cos θ)

(E
(TM)
2,n,l,m)φ = −E(TM)

2

∂r (rhl(k2r))

k2r

]
m
Pml (cos θ)

sin θ

(H
(TM)
2,n,l,m)r = 0

(H
(TM)
2,n,l,m)θ = i

√
ε2E

(TM)
2 hl(k2r)

]
m
Pml (cos θ)

sin θ

(H
(TM)
2,n,l,m)φ = −

√
ε2E

(TM)
2 hl(k2r)

]
∂θP

m
l (cos θ)

,

(4.50)
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and the explicit form of the ’TE-type’ modes will read:

(E
(TE)
1,n,l,m)r = 0[

(E
(TE)
1,n,l,m)θ = iE

(TE)
1 jl(k1r)[

(E
(TE)
1,n,l,m)φ = −E(TE)

1 jl(k1r)[
(H

(TE)
1,n,l,m)r = −i

√
ε1E

(TE)
1

jl(k1r)

k1r[
(H

(TE)
1,n,l,m)θ = −i

√
ε1E

(TE)
1

∂r (rjl(k1r))

k1r[
(H

(TE)
1,n,l,m)φ =

√
ε1E

(TE)
1

∂r (rjl(k1r))

k1r

(
E

(TE)
2,n,l,m

)
r

= 0(
E

(TE)
2,n,l,m

)
θ

= iE
(TE)
2 hl(k2r)

]
m
Pml (cos θ)

sin θ(
E

(TE)
2,n,l,m

)
φ

= −E(TE)
2 hl(k2r)

]
∂θP

m
l (cos θ)(

H
(TE)
2,n,l,m

)
r

= −i
√
ε2E

(TE)
2

hl(k2r)

kr

]
l(l + 1)Pml (cos θ)(

H
(TE)
2,n,l,m

)
θ

= −i
√
ε2E

(TE)
2

∂r (rhl(k2r))

k2r

]
∂θP

m
l (cos θ)(

H
(TE)
2,n,l,m

)
φ

=
√
ε2E

(TE)
2

∂r (rhl(k2r))

k2r

]
m
Pml (cos θ)

sin θ

,

(4.51)

For TM-type modes (4.50), application of boundary conditions (4.49) yields the equations:ε1E
(TM)
1 jl(k1R) = ε2E

(TM)
2 hl(k2R)

E
(TM)
1 (jl(k1R) + k1Rj

′
l(k1R)) = E

(TM)
2 (hl(k2R) + k2Rh

′
l(k2R))

, (4.52)

where hl ≡ h(1)
l . Thus, the dispersion relation for TM-type modes reads:

ε2hl(k2R)
[
jl(k1R) + k1Rj

′
l(k1R)

]
= ε1jl(k1R)

[
hl(k2R) + k2Rh

′
l(k2R)

]
. (4.53)

For TE-type modes (4.51), application of boundary conditions (4.49) yields the equations:E
(TE)
1 jl(k1R) = E

(TE)
2 hl(k2R)

E
(TE)
1 (jl(k1R) + k1Rj

′
l(k1R)) = E

(TE)
2 (hl(k2R) + k2Rh

′
l(k2R))

. (4.54)

Thus, the dispersion relation for TE-type modes reads:

hl(k2R)
[
jl(k1R) + k1Rj

′
l(k1R)

]
= jl(k1R)

[
hl(k2R) + k2Rh

′
l(k2R)

]
(4.55)

The solutions ~ωn,l for TM-type modes (4.53) and TE-type modes (4.55) are shown in Figures 4.5 (real

part) and 4.6 (imaginary part). As it can be observed in Figure 4.6, these radiative (i.e. not confined)

modes are rather long lived, since the imaginary part of the eigenenergy is small for all of them. We also

notice that TE modes with smaller l have shorter lifetimes, while for TM modes the dependence is more

complex.
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Figure 4.5: Real part of the solutions to equations for TM-type modes (4.53) and TE-type modes (4.55).

The radius of the sphere is R = 2 µm, ε1 = 3.4 and ε2 = 1.
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Figure 4.6: Imaginary parts of the solutions to the equation for TM-type modes (4.53) on the left and

TE-type modes (4.55) on the right. Modes outside the visible range (1.65 to 3.1 eV) have been painted

black. Note that the higher the angular momentum l of a mode, the higher its lifetime. The radius of

the sphere is R = 2 µm, ε1 = 3.4 and ε2 = 1.
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4.3.2 Local density of states

The local density of states for real cavity modes must take into account the mode volume for a photon

that can be either inside or outside the cavity. The integration will be made up to RI = 300 µm. Also,

the approximation of considering only the real part of the eigenmodes will be made, to make k1 → <(k1)

and k2 → <(k2). As such, in this approximation:|h(z)|2 = j2(z) + y2(z)

|h′(z)|2 = j′(z)2 + y′(z)2
. (4.56)

The mode volume is then calculated by inputting equations (4.50) for TM modes and (4.51) for TE modes

into (4.40), which, according to the calculations performed in appendix B, yields:

Ω
(TM)
n,l,m = Ω

(TM)
1,n,l,m +

(
ε1jl(k1R)

ε2hl(k2R)

)2

Ω
(TM)
2,n,l,m, (4.57)

Ω
(TE)
n,l,m = Ω

(TE)
1,n,l,m +

(
jl(k1R)

hl(k2R)

)2

Ω
(TE)
2,l,m,n, (4.58)

where

Ω
(TM/TE)
1,l,m,n =

2π

k3
1

2l(l + 1)(l +m)!

(2l + 1)(l −m)!

[
z (jl(z) + zj′l(z))

2
+ zj2

l (z)
[
z2 − l(l + 1)

]] ∣∣k1R
0

, (4.59)

where R is the radius of the cavity. And for the outside, the integral up to a radius RI yields:

Ω
(TM/TE)
2,l,m,n =

2π

k3
2

2l(l + 1)(l +m)!

(2l + 1)(l −m)!

([
z (jl(z) + zj′l(z))

2
+ zj2

l (z)
[
z2 − l(l + 1)

]] ∣∣k2RI
k2R

+[
z (yl(z) + zy′l(z))

2
+ zy2

l (z)
[
z2 − l(l + 1)

]] ∣∣k2RI
k2R

)
.

, (4.60)

with k1 = k
(TM)
1,l,m,n and k2 = k

(TM)
2,l,m,n or k1 = k

(TE)
1,l,m,n and k2 = k

(TE)
2,l,m,n. The local density of states will

still be given by equation (4.37):

ρloc(r, E) =
∑
n,l,m

∑
σ=TM,TE

|E(σ)
l,m(r, E)|2δ(E − E(σ)

n,l ). (4.61)

but now the fields El,m are the real cavity fields (4.50) and (4.51), with the real cavity mode volumes

(4.57) and (4.58) used to determine the amplitude:
E

(TM)
1 (n, l,m) =

√
2πE

(TM)
n,l

εΩ
(TM)
n,l,m

E
(TE)
1 (n, l,m) =

√
2πE

(TE)
n,l

εΩ
(TE)
n,l,m

, (4.62)

In figures 4.7 and 4.8 some terms of the sum in (4.61) are presented, to show the difference in the angular

dependence of each different m value.
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Figure 4.7: Evolution with respect to m of local densities of states for TM-type modes, real cavity with

ε1 = 3.4 inside the sphere and ε2 = 1 outside. The local density of states (ρl,m) is calculated according

to equations (4.57)-(4.62) and using the electric field for real modes from equations (4.50). The l value

used is l = 15 and the m values shown are, from left to right, m = 0, m = 5, m = 10 and m = 15. The

circle (x′, z) is any constant φ cross-section of the sphere. The radius used was R = 2 µm, the energy at

which the LDOS is calculated is 2 eV and only modes with 0 < ~ω < 4 (eV) were considered.
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Figure 4.8: Evolution with respect to m of local densities of states for TE-type modes, real cavity with

ε1 = 3.4 inside the sphere and ε2 = 1 outside. The local density of states (ρl,m) is calculated according

to equations (4.57)-(4.62) and using the electric field for real modes from equations (4.51). The l value

used is l = 15 and the m values shown are, from left to right, m = 0, m = 5, m = 10 and m = 15. The

circle (x′, z) is any constant φ cross-section of the sphere. x′ is the value on the x axis rotated by the

angle φ. The radius used was R = 2 µm, the energy at which the LDOS is calculated is 2 eV and only

modes with 0 < ~ω < 6 (eV) were considered.

4.4 Microsphere with incorporated point emitters

4.4.1 Geometrical optics model for weakly absorbing sphere

The local density of states describes the spatial distribution of the EM fields of the cavity. This distribution

influences spontaneous emission of a molecule which is already in an excited state (the Purcell effect).

However, if one wishes to study how the system absorbs incident light and the molecules become excited,

the distribution of these incident photons must also be taken into account. It will be assumed that the

absorption is only due to the presence of the point emitters and these are evenly distributed among its

volume. Let us assume that the molecules are excited at a frequency well above their emission spectrum.
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This would be a typical situation with quantum dot emitters [84]. Absorbed photons create excitons

in quantum dots or molecules that relax toward the ground state and then recombine. The absorbed

light will then be re-emitted according to the density of states of the EM fields of the cavity. If the

absorption and emission events were coherent, one would have to solve the scattering problem for a

weakly absorbing sphere first and obtain the relevant cross-sections (the Mie problem [19]) rather than

just finding the LDOS of cavity modes. However, since such coherence does not exist, because of the

exciton relaxation, the absorption and emission processes may be considered separately and here we shall

analyse the emitters’ excitation by external light. If we assume further that the excitation wavelength is

short enough, a simple model of geometrical optics can be used as an approximation as already mentioned

in the introduction to this chapter. This should be valid for R � λ where R is the radius of the sphere

and λ the wavelength of the incident light.

We begin by considering the result from Bohren and Huffman’s book [19] for the total energy absorbed,

per unit time, by a sphere of small absorption coefficient α, which reads:

dWabs

dΘi
= Ii2πR

2T (Θi, n)

∞∑
j=0

[
R(Θi, 1/n)e−αξ

]j
(1− e−αξ) cos Θi sin Θi. (4.63)

Here, Ii is the incident beam intensity, T (Θi, n) and R(Θi, n) are the transmittance and reflectance,

respectively, for unpolarized incident light, Θi is the angle of incidence (see Fig. 4.9), ξ is the path length

between any two points (1-2 or 2-3 in figure 4.9) and α is the absorption coefficient. The infinite series

in (4.63) is just the geometric series, and the result is:

∞∑
j=0

[
R(Θi, 1/n)e−αξ

]j
=

1

1−R(Θi, 1/n)e−αξ
. (4.64)

If we assume a weakly absorbing sphere, then 1 − e−αξ ' αξ and 1
1−R(Θi,1/n)e−αξ

' 1
T (Θi,1/n) , since

R+ T = 1. Considering the reciprocal relations:R(Θt, 1/n) = R(Θt, n)

T (Θt, 1/n) = T (Θt, n)
(4.65)

this means that T (Θi, n) cancels with the infinite series in equation (4.63), yielding:

dWabs

dΘi
' 4πR3α

n
Ii cos Θi

√
n2 − sin2 Θi sin Θi, (4.66)

where n =
√
ε is the refractive index and Ii the incident irradiance. As we shall see, the absorption does

not occur uniformly inside the sphere, in particular, because typical rays avoid the sphere’s centre (notice

the factor sin Θi cos Θi in 4.66). The absorption does not occur uniformly, since transmitted light inside

the sphere will spend more time in some regions than in others. The plane of incidence formed by a

representative ray and the normal to the spherical surface in the point of incidence makes a diametral

cross-section of the sphere, a circle of sphere’s radius R, described by the equation φ = const, in spherical

coordinates. This means one only needs to examine the circle shown in Figure 4.9b.

4.4.2 Concentration of rays with respect to position

In this section, we will obtain the absorbed power with respect to positions in the circle of figure (4.9)

and this density will depend on the angle of incidence Θi. We start by tracing one of the partial paths of
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Figure 4.9: (a) Cross-section of a sphere with incident radiation of intensity Ii. The first two reflections

are depicted, (but there are more). Equation (4.66) takes into account all reflections. (b) Side view of

the sphere, showing projections of different diametric cross-sections onto zOx plane. All circles obeying

equation φ = const are similar and will exhibit the same distribution of transmitted radiation. This

symmetry means that it is only necessary to study one of these circles.

a representative ray in polar coordinates.

Figure 4.10: Schematic of the coordinate system used to determine the positions along the ray path.

In figure 4.10, x′ is the x axis rotated around the z axis by the angle φ. The ray travels at a constant

speed from point 1 to point 2 in figure 4.10. Point 1’s radius-vector is:

~r1(Θt) = −R cos(2Θt)x̂′ +R sin(2Θt)ẑ, (4.67)
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José Gomes

and point 2’s one is:

~r2 = Rx̂′. (4.68)

The radius-vector along the ray can therefore be written as:

~r(t,Θt) = ~r1(Θt) +
~r2 − ~r1(Θt)

t1,2
t, (4.69)

where t1,2 is the time it takes for the ray to travel between the two points. Now, the function we are

looking for is the fraction of the time t1,2 that is spent in the interval dr of distances to the centre of the

sphere. This is, by definition:
δt

t1,2
=

1

t1,2

dt

dr
dr. (4.70)

Since the speed of the ray is constant, δt
t1,2

= δξ
ξ . Therefore, the fraction of the path that lies in the

interval dr is:
1

ξ

dξ

dr
=

1

t1,2

dt

dr
. (4.71)

The calculation of this quantity is presented in appendix F, the result is:

<[
1

ξ

dξ

dr
] =

±
r

2R cos(Θt)
√
r2−R2 sin2(Θt)

, R sin(Θt) < r < R

0, r < R sin(Θt)
. (4.72)

The plus or minus signs have to do with whether the ray is on the first half (decreasing r) or the second

half (increasing r) of the journey from point 1 to point 2 in Figure 4.10. For the purpose of defining this

density this is irrelevant and we can sum the two cases to conclude that the density we are looking for is:

D(r,Θt) = 2|<[
1

ξ

dξ

dr
]| (4.73)

D(r,Θt) =


r

R cos(Θt)
√
r2−R2 sin2(Θt)

, r > R sin(Θt)

0, r < R sin(Θt)
. (4.74)

This quantity is such that: ∫ R

0

D(r,Θt)dr = 1, (4.75)

for each Θi. Since this quantity is only concerned with the variations over r values, this term would factor

out of the sum in (4.63). As such, the calculation for Wabs remains unaffected if we include this term in

each of the successive reflections, and it can be stated from (4.66) that:

dWabs(r)

dΘi
=

4πR3α

n
Ii cos Θi

√
n2 − sin2 Θi sin Θi

1

ξ
D(r,Θt) (4.76)

where Wabs(r) is the final distribution of energy absorbed, per unit time and unit length, that we are

looking for. It is related to the total energy absorbed per unit time Wabs by:∫ R

0

Wabs(r)dr = Wabs. (4.77)

By Snell’s law,

sin Θt =
sin Θi

n
. (4.78)

84
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We can perform the change of variable to the transmitted angle:

n cos ΘtdΘt = cos ΘidΘi, (4.79)

yielding:

Wabs(r) = 4πn2R3αIi

∫ sin−1 1
n

0

cos2 Θt sin ΘtD(r,Θt)dΘt. (4.80)

Inserting our calculated D(r,Θt) from (4.74) yields:

Wabs(r) = 4πn2R2rαIi

∫ sin−1 1
n

0

cos Θt sin Θt√
r2 −R2 sin2 Θt

H (r −R sin Θt) dΘt. (4.81)

H(x) is the Heaviside function. Now, by changing variables to x = sin Θt and rearranging the Heaviside

theta, this becomes:

Wabs(r) = 4πn2RrαIi

∫ 1
n

0

x√
r2

R2 − x2
Θ

(
r2

R2
− x2

)
dx. (4.82)

Wabs(r) =


4πn2RrαIi

∫ r
R

0
x√

r2

R2−x2
dx, r < R

n

4πn2RrαIi
∫ 1
n

0
x√

r2

R2−x2
dx. r > R

n

(4.83)

The integral is easy to solve (substitution u = r2

R2 − x2) and it yields either r/R or r
R −

√
r2

R2 − 1
n2 . The

previous expression thus becomes:

Wabs(r) =


4πn2αIir

2, r < R
n

4πn2αIir

(
r −

√
r2 − R2

n2

)
, r > R

n

. (4.84)

This is the distribution that we are looking for. This treatment is only concerned with the r distribution,

and a more complete description would need to include the term 1
ξ
dξ
dθ to account for the different absorption

rates at different θ. It would be in this function that the information about the direction of the incident

light would be contained. Namely, for smaller θ the absorption would be stronger since it is the left side

of the sphere (z axis in figure 4.9) that is receiving the incident light. In the weak absorption regime,

the absorption probability is the same in any part of the segment ξ because terms of order (αξ)2 are

neglected. Thus, assuming that the absorption is determined only by the ’time spent at some distance

from the centre (r)’, or, equivalently, by the fraction of path between points 1 and 2 (Fig. 4.10), δξ(r),

the angular variation of the distribution of absorbed energy will only be affected by the losses from each

reflection at the sphere’s boundary. However, if we were to consider uniform incidence from all angles,

this description remains accurate as it stands, since in that case the isotropic assumption would hold. In

a real experiment done with multiple spheres like this one, the incident light scatters from all the spheres

and on average the incidence in each of the individual spheres is isotropic. The radial distribution of

the absorbed energy given by Eq. 4.84 is shown in Fig. 4.11. As it can be observed in the figure, the

absorption peak shifts to a smaller r inside the sphere with the increase of its refractive index.
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Figure 4.11: Plot of the density distribution of energy absorbed, per unit time and unit length, from

equation (4.84) for two different n values. The point of maximum density occurs at r/R = 1/n. So, the

index of refraction of the sphere determines this point. However, the value of this peak goes with 1/n2.

4.4.3 Emission distribution inside the sphere

The combined effect on the overall intensity of light emitted will be proportional to both this distribution

and the local density of states:

I(r) ∝ Wabs(r)× ρl,m(r, x,E). (4.85)

4.4.4 Local emission rate

In order to excite the cavity modes studied a point emitter, like a Quantum Dot, can be placed at a point

r inside the sphere. Its transition dipole moment, d, is oriented according to general angles γ and ψ in

the local basis (x′, y′, z′). The electric field in the cavity is described by E(r), in the basis (x, y, z). The

vector of dipole moment d can be cast in terms of these angles:
dx = d sin γ cosψ

dy = d sin γ sinψ

dz = d cos γ

. (4.86)

The relevant matrix element is:

− (d ·E) = − (Ex sin γ cosψ + Ey sin γ sinψ + Ez cos γ) d. (4.87)

Averaging (d ·E)
2

over angles γ and ψ yields:

− 〈(d ·E)
2〉 =

1

3
d2
(
E2
x + E2

y + E2
z

)
=

1

3
d2E2. (4.88)

86
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Therefore for any direction of local electric field the averaging gives the usual factor of 1/3. The local

emission rate of an excited emitter is given by Eq. (3.113):

Γ(~r) = Γ0

3ε1p̄
−1
∑
n,l,m,σ ρ

(σ)
n,l,m(~ω0, ~r)

2π~ω0ρ0(~ω0)
, (4.89)

where σ = TM or TE and p̄−1 = 1/3. ρ0(~ω0) is the local density of states for free space at the energy

~ω0. This has been shown, in chapter 3 (3.111), to be:

ρ0(~ω0) =
8π

~ω0

(
η

λ0

)3

=
ε
3/2
1 (~ω0)2

π2(~c)3
. (4.90)

A few chosen terms of the (l,m, σ) sums in the local densities of states were studied with three objectives:

study the dependence of these modes on m, on the polarization σ, and most importantly the difference

between the perfect cavity approximation and the study of a real cavity. The ideal cavity LDOS is

studied in figures 4.3 and 4.4. The real cavity LDOS is studied in figures 4.7 and 4.8. From comparing

the magnitudes in these figures we can conclude that the difference between real and ideal cavities is

relevant and it is preferable to use the real cavity parameters, if possible. So, the attention will be turned

to the complete local density of states for real cavity modes (4.61).

ρloc(r, E) = ρ
(TM)
loc (r, E)+ρ

(TE)
loc (r, E) =

∑
n,l,m

(
|E(TM)
l,m (r, E)|2δ(E − E(TM)

n,l ) + |E(TE)
l,m (r, E)|2δ(E − E(TE)

n,l )
)
.

(4.91)

For both polarizations, it will be useful to define a function from the mode volume (4.57)-(4.58) that does

not depend on m:

Λ
(σ)
n,l ≡

(l −m)!

(l +m)!
Ω

(σ)
n,l,m. (4.92)

Now we use (4.62) and the fields (4.50)-(4.51) to write the terms in (4.91) as:

ρ
(TM)
loc (r, E) =

∑
n,l,m

(l −m)!

(l +m)!

2πE
(TM)
n,l

εΛ
(TM)
n,l

[(
jl(k1r)

k1r

)2

l2(l + 1)2Pml (cosx)2

+

(
∂r (rjl(k1r))

k1r

)2
(

(∂θP
m
l (cos θ))

2
+m2

(
Pml (cos θ)

sin θ

)2
)]

δ(E − E(TM)
n,l ).

(4.93)

ρ
(TE)
loc (r, E) =∑
n,l,m

(l −m)!

(l +m)!

2πE
(TE)
n,l

εΛ
(TE)
n,l

j2
l (k1r)

(
(∂θP

m
l (cos θ))

2
+m2

(
Pml (cos θ)

sin θ

)2
)
δ(E − E(TE)

n,l ).
(4.94)

The local density of states can not depend on the angle θ, and thus on x = cos θ, because of the spherical

symmetry of the system. We can therefore calculate ρloc for any given value of x and it must be the same

regardless of the value of x we used. A convenient value is x→ 1−. This will allow us to solve the entire

sum over all m analytically since it turns out that for x → 1− only the m = −1, 1 terms of the sums

survive. In appendix H this is shown and the sums over m are determined analytically. Using the results

from appendix H, (4.93) and (4.94) become:

ρ
(TM)
loc (r, E) =

∑
n,l

2πE
(TM)
n,l

εΛ
(TM)
n,l

[(
jl(k1r)

k1r

)2

l2(l + 1)2 +

(
∂r (rjl(k1r))

k1r

)2

l(l + 1)

]
δ(E − E(TM)

n,l ). (4.95)
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ρ
(TE)
loc (r, E) =

∑
n,l

2πE
(TE)
n,l

εΛ
(TE)
n,l

j2
l (k1r)l(l + 1)δ(E − E(TE)

n,l ). (4.96)
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Figure 4.12: Evolution with relation to l of the sums of local densities of states multiplied by the intensity

distribution Wabs(r) for TE modes on the left and TM modes on the right. The l values shown are, from

top to bottom, l = 1, l = 10 and l = 30. The circle (x′, z) is any constant φ cross-section of the sphere.

x′ is the value on the x axis rotated by the angle φ. The radius used was R = 2 µm, the energy at which

the LDOS is calculated is 2 eV and only modes with 0 < ~ω < 6 (eV) were considered.
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Figure 4.13: On the left, the normalized Purcell factor from (4.89), and on the right, the same factor

multiplied by the intensity distribution Wabs(r). The l values used ranged from l = 1 to lmax = 40. The

criterion applied was to only use modes whose energies were smaller than ~ω = 6 eV. The radius used

was R = 2 µm, the energies at which the LDOS is calculated are 2 and 2.5 eV.

From figure 4.13 we can conclude that, for a sphere of few microns in diameter one should expect an

emission pattern consisting of two concentric rings, caused by smaller and larger values of l.

4.5 Continuous regime

If the size of the microspheres is large enough, the eigenmodes become compact in energy and tend to

form a continuous spectrum where all the energies are allowed. At dimensions of about 100 µm, as used

in [83], this regime starts to apply virtually. We will study the densities of states for this continuous

regimes. We wish to estimate the typical value of k for the modes in the continuous regime. If we

consider an energy of 2 eV, then:

k =
2 [eV ]

~c
, (4.97)

k = 10. [µm−1] (4.98)

For instance, for TE-type modes, kn,l =
ξn,l
R
√
ε
, where ξn,l are the zeros of the spherical Bessel function,

and so, for R = 100 µm,

ξn,l = 103
√
ε >> 1. (4.99)

So, the argument of the Bessel function, which can be written as ζ rR can be assumed to be large except

near r = 0. The asymptotic behaviour of the Bessel functions [63] reads:

jl(x) ' 1

x
cos(x− (l + 1)

π

2
), (4.100)

for x→∞. And therefore the zeros can be approximated by the zeros of the sinusoidal function:

ξn,l ' (n+
l

2
)π. (4.101)

Combining (4.99) and (4.101) we can conclude that modes with n and l values such that

(n+
l

2
)π ' 103

√
ε (4.102)

yield energies close to 2 eV.
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4.5.1 Total density of states

The total density of states is given in equations (4.35) and (4.36), and it reads:

ρ(E) =
∑
n,l

(2l + 1)δ(E − En,l). (4.103)

The Euler-MacLaurin formula can be used to evaluate nearly continuous sums [63]

b∑
n=a

f(n) '
∫ b

a

f(x)dx+
f(a) + f(b)

2
. (4.104)

Applying this to equation (4.103) we can write:

ρ(E) '
∑
n

∫ ∞
1

(2l + 1)δ(E − αξn,l)dl, (4.105)

where α = ~c√
εR
. Using (4.101), this becomes:

ρ(E) =
∑
n

∫ ∞
1

(2l + 1)δ (E − πα(n+ l/2)) dl, (4.106)

and using the Euler-MacLaurin formula again on n:

ρ(E) =
2

πα

∫ N

1

dn

[
4

(
E

πα
− n

)
+ 1

]
+

8

πα

E

πα
− 4

πα
N − 2

πα
, (4.107)

Solving the integral yields:

ρ(E) =
2

πα

[
4

(
E

πα
(N − 1)−N2/2 + 1/2

)
+N − 1

]
+

8

πα

E

πα
− 4

πα
N − 2

πα
, (4.108)

ρ(E) = −4
N2

πα
+N

(
8E

(πα)
2 −

2

πα

)
. (4.109)

The maximum possible value of n is N = E
πα −

1
2 , since it corresponds to the minimum value of l = 1.

Using this:

ρ(E) =
4E2

(πα)
3 −

2E

(πα)
2 +

1

πα
(4.110)

Since E >> πa, this is approximately equal to:

ρ(E) ' 4
E2

(πα)
3 = 4

E2

π3c3
ε3/2R3. (4.111)

Dividing by the volume:

ρ̄(E) =
1

4π
3 R

3
ρ(R) =

3ε3/2

π4c3
E2. (4.112)

This approximation is off by a factor of 6
π2 from the infinite space free density of states [10]:

ρ0(E) =
ε3/2

2π2c3
E2, (4.113)

but the approximation captures the E2 dependence.
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4.5.2 Local density of states

Now we will attempt to determine the local density of states in the same continuous regime approximation.

The mode volume (4.44) for TE-type modes reads:

Ω
(TE)
l,m = 2πR3 2l(l + 1)(l +m)!

(2l + 1)(l −m)!
j′l ((n+ l/2)π)

2
. (4.114)

Now, we can analyse the equations for the electric fields (4.46) together with (4.47) to find that they can

be written as:

|E(TE)
l,m |2 =

πα
(
n+ l

2

)
εR3

(2l + 1)(l −m)!

2l(l + 1)(l +m)!

j2
l

(
(n+ l/2)π r

R

)
j′l ((n+ l/2)π)

2[
(∂θP

m
l (cos θ))

2
+

(
m
Pml (cos θ)

sin θ

)2
]
.

(4.115)

Now, the local density of states (4.61) will be:

ρloc(E, r) =
∑
n,l,m

α (n+ l/2)

εR3

(2l + 1)

2l(l + 1)

j2
l

(
(n+ l/2)π r

R

)
j′l ((n+ l/2)π)

2

(l −m)!

(l +m)!

[
(∂θP

m
l (cos θ))

2
+

(
m
Pml (cos θ)

sin θ

)2
]
δ (E − πα(n+ l/2))

. (4.116)

We will attempt to evaluate the angular term

Θm
l (θ) ≡ (l −m)!

(l +m)!

[
(∂θP

m
l (cos θ))

2
+

(
m
Pml (cos θ)

sin θ

)2
]
. (4.117)

We will change variables to x ≡ cos(θ), so we can write this term as:

Θm
l (x) ≡ (l −m)!

(l +m)!

[(
−
√

1− x2∂xP
m
l (x)

)2

+
m2

1− x2
Pml (x)2

]
. (4.118)

The local density of states is not dependent on the angle θ, because, due to the spherical symmetry of

the system, no physical result can be asymmetric unless we had a source of asymmetry, such as incident

light rays from a given direction, for instance. As such, we can choose the most convenient angle for

the calculation. In appendix H, we choose to set θ = 0, so x = 1, and using an asymptotic formula for

x→ 1−, we concluded (5.159):
m=l∑
m=−l

Θm
l (x) =

l(l + 1)

2
. (4.119)

Using this result, the local density of states (4.116) will become:

ρloc(E, r) =
∑
n,l

~c (n+ l/2)

2ε3/2R4
(2l + 1)

j2
l

(
(n+ l/2)π r

R

)
j′l ((n+ l/2)π)

2 δ (E − πα(n+ l/2)). (4.120)

We evaluate this sum numerically using Lorentzian functions in place of the Dirac deltas for R = 100µm,

which includes many terms. The only approximation we will be making is to consider only modes

reasonably close to our chosen energy of E, such that, following from (4.102):

E

α
(1− Γ

E
) <

(
n+

l

2

)
π <

E

α
(1 +

Γ

E
), (4.121)
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where Γ is the width chosen for the Lorentzian functions, which will be Γ = 0.05 eV and E = 2 eV, and

so:

103
√
ε× 0.99 <

(
n+

l

2

)
π < 103

√
ε× 1.01. (4.122)

Taking the same ε as in [83], which was ε = 1.332, we get the range:

419 < n+
l

2
< 428. (4.123)

Also obeying the conditions l ≥ 1 and n ≥ 0. From figure 4.13 we can conclude that, for a sphere of few
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Figure 4.14: Variation of the Purcell factor defined by (4.89), which is a multiple of the complete local

density of states, with the distance from the center of the sphere, in the approximation of a large sphere

(4.120), for a constant E value of 2 eV. The total local density of states will be the sum of all possible n

values, in this case, all 428 possible values. The radius of the sphere is R = 100µm. The refractive index

is n =
√
ε = 1.33.

microns in diameter one should expect an emission pattern consisting of two concentric rings, caused by

smaller and larger values of l. The results presented in 4.14 and 4.15 show that for spheres of the order of

a hundred microns in size, where the EM eigenmodes distribution is nearly continuous, one can expect a

single peak in the radial distribution of the emission intensity, which lies about half-way from the centre

to the surface of the sphere. There are many spherical cavity modes contributing to this ’luminous ring’,

with large both orbital and radial numbers, i.e. the Whispering Gallery modes. The somewhat surprising

result is that this ring is not attached to the sphere’s surface.
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Figure 4.15: Variation of the Purcell factor defined by (4.89), multiplied by the incident ray distribution

factor (4.84), with the distance from the center of the sphere, in the approximation of a large sphere

(4.120), for a constant E value of 2 eV. The total local density of states will be the sum of all possible n

values, in this case, all 428 possible values. The radius of the sphere is R = 100µm. The permittivity is

ε = 1.33.
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5
Conclusion

This thesis has been dedicated to the study of electromagnetic modes in different contexts, namely, in the

form of plasmon-polaritons, magnon-polaritons, hybrid polaritons, exciton-polaritons, and pure photonic

modes inside dielectric cavities. These modes arise from the collective electrical or magnetic excitations

of multiple electrons. [4, 5] Graphene supports surface plasmons, which are oscillations of charge density

in the sheet [9]. Antiferromagnets allow for the production of magnons, which are oscillations of the spin

density. The spin carriers are affected by the magnetic field and when their spin changes direction it

generates another magnetic field which influences the neighbouring spin carriers. Magnon-polaritons can

be either bulk (inside the material) or surface (near the edge).

Interesting phenomena such as Rabi splitting or emission enhancement can be observed in microcav-

ities, specially when combined with a material that allows for the formation of some type of excitation

mentioned above. An optical micro-cavity is any closed space with partially or totally reflecting bound-

aries, with dimensions of the order of micro-meters, hence the name micro-cavity. [13] In chapter 2, a

semiconductor is inserted (theoretically) into a microcavity in order to study its effect on the possible

emission properties of the cavity. Semicondutors allow for the formation of excitons, which are pseudo-

particles comprised of an electron in an excited state and the hole that it leaves behind in the valence

band. The process of successive creation and destruction of excitons can be thought of as a particle called

the exciton-polariton. [15, 16] Characteristic dispersion relations for these hybrid modes that combine

photons and electrons were calculated in chapter 2, although involving different properties of the latter,

for the system with graphene and antiferromagnet, and in chapter 3 for a cavity with a 2D semiconductor

with exciton formation.

Firstly, in chapter 2, the properties of an antiferromagnetic material were combined with those of a

nearby graphene sheet in order to theoretically study new types of hybrid polaritons, both TE and TM

polarized, combinig the effects of collective spin precession (magnons) inside the antiferromagnet with the

effect of surface plasmon-polariton creation at the graphene sheet. It has been found that the doping of

the graphene sheet can control the direction of propagation of the TE modes (negative group velocity in

figure (2.3) for higher Fermi energies). Furthermore, when the scattering properties of this system were

studied, it was found that the graphene sheet absorbs at high angles of incidence, as expected, but the

absorption increases considerably for energies slightly above the antiferromagnet ressonance (figure 2.6).
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This can be explained by noting that waves with enough energy to cause ressonance in the antiferromagnet

allow the graphene sheet to receive more energy, and thus the two objects can work to enhance eachother’s

properties. For TM modes, the addition of the graphene sheet causes the magnon-polariton fundamental

mode to split into a lower mode and upper mode. The separation of these modes increases with the Fermi

energy of graphene. As such, by doping the graphene sheet one can control the gap. When it comes

to the scattering problem for TM modes, absorption at the graphene sheet remains low, both above

and below the antiferromagnet energy (figures 2.9 and 2.10). Manipulating the properties of magnons

can be useful for the purposes of spintronics, which is the creation of practical circuits through the

manipulation of currents of spins instead of charges. [85, 86]Even though this study is performed with a

bulk antiferromagnet, there have been discoveries of ferromagnetic and antiferromagnetic properties in 2D

layers as well [87–91] . Combining these materials with 2D layers of graphene can lead to the observation

of these effects but in the context of Van der Waals heterostructures. [20] The study of negative refraction

is also possible for an antiferromagnet that also contains metallic properties (negative permeability). At

energies lower than the resonance of the antiferromagnet the permeability can also be negative (2.27).

Chapter 3 has been dedicated to the properties of exciton-polaritons that arise due to strong coupling of

cylindrical cavity photon modes to 2D excitons confined in a TMD semiconductor layer placed inside the

cavity. Such a system is feasible and may be used in on-chip optoelectronics, [52] and has advantages in

comparison with planar MCs because of the lateral confinement of the EM field permitting to decrease

the mode volume and therefore enhance light matter interaction. This exciton-mediated coupling is

intrinsically strong enough for single- and few-layer TMDs and its enhancement by taking advantage of

the MC effect can make these structure competitive with the traditional semiconductor materials used

in optoelectronics. [35,50,51] The cylindrical geometry allows, in principle, for separate excitation of the

cavity modes with different angular momenta (µ), which have distinct radial distribution of the EM field.

For large µ, so called whispering gallery modes can be formed with the field amplitude peaking near the

lateral walls; such modes have been observed in semiconductor micropillars. [18,92] The eigenfrequencies

of polariton modes with different angular momenta and radial number ν have been obtained and presented

in the form of dispersion curves and DOS. Also, we showed that the simplified quantum model of the

polariton modes taking into account coupling of a photon cavity mode with certain µ and ν only to two

excitons with the (centre of mass) quantum numbers m = µ ± 1 and the n = ν, providing a reasonable

description of them and yielding an explicit form of the Hopfield coefficients.

The coupling with the 2D layer causes a strong enhancement of the photonic density of states in the

cavity, as we have demonstrated by calculating the photon-projected (i.e. weighted by the corresponding

Hopfield coefficient) DOS for certain energies. In particular, it peaks near the exciton resonance energy

(see Fig. 3.7) that, for a micrometer-diameter cavity is practically independent of m and n. The local

photon-projected DOS shows a similar behaviour as a function of energy and it testifies the µ-dependent

spatial distribution of the photonic field outlined above. This quantity determines the spontaneous

emission rate of a quantum emitter placed in the cavity, so the photoluminescence intensity of such an

emitter will depend on its position or, seen from another point of view, on the direction of the light beam

exciting the microcavity (by selecting cavity polariton modes with different µ). Such effects have been

observed for micropillar cavities made of a bulk semiconductor, using either point defects [92] or QDs [18]

as emitters. Fot 2D materials, such an emitter can be a trapped exciton in the TMD layer (emission

energy below the free exciton one, Eex or in a nearby h-BN layer [93] (emission above Eex, in which case
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an upconversion process [84, 94] is required for the excitation). We hope that the presented calculated

results will help devising such experiments for microcavities with TMDs, in particular, aimed at building

controllable single photon emitters. Single photon emission has been observed for various TMDs [75]

and also from h-BN [93], presumably originated from the radiative recombination of excitons trapped on

material defects. [93, 95] The location of such an emitter is random and, depending on the position it

will couple to polariton modes with different angular momenta. This feature may be used to excite the

emitters space-selectively. On the other hand, emitters with a relatively large absorption cross-section

(such as QDs [84]) placed in the system in a controlled way may be used to criate exciton-polaritons

as suggested in Refs. [39, 77] or, in the case of cylindrical cavity, a particular class of them with certain

angular momenta.

In chapter 3, the system under study is a simple spherical microcavity made of a dielectric material.

Firstly, the dispersion relations for a perfect cavity (a dielectric sphere surrounded by a perfect metal, thus

perfectly confined) and a ’real’ cavity (a sphere of a dielectric material with another dielectric material

surrounding it) were determined. It has been found, as expected, that higher energies arise from higher

angular momenta of the modes. Furthermore, ’TE-type’ modes (modes with no radial component of the

electric field) have slightly higher energies than their ’TM-type’ (modes with no radial component of the

magnetic field) counterparts. This can be found in figure 4.2. As for real cavities, in the range of low

radial numbers used (the first few solutions found for each angular momentum), the ’TE-type’ modes

have higher energies for low angular momenta but the ’TM-type’ modes have higher energies for higher

angular momenta. The crossover happens between angular momenta of about l = 25, depending on the

radial number. This is found in figure 4.5. The real cavity modes have complex wavenumbers, and as such

are subject to time decay. The study of the decay constants (figure 4.6) shows that the first few modes

decay very slowly, and are thus more prevalent. For higher energy modes, the decay constant converges

regardless of angular momentum at about 0.04 eV for ’TM-type’ modes and 0.03 eV for ’TE-type’ modes.

The analysis of the local densities of states shows that in both cases the higher momentum modes are

more concentrated near the surface and the low momentum modes near the center, and that the number

m is responsible for the angular distribution of the modes. In fact, if we sum over all possible m we

get a local density of states that is independent of the angular direction and only depends on the radial

direction. Using methods similar to those used in chapter 2 (determination of eigenmodes, application

of boundary conditions, determination of the local density of states and finally calculation of the Purcell

factor) the expected distribution of light intensity inside the sphere, when illuminated by all sides, was

calculated. The knowledge of the local densities of states, together with a simple ray optics calculation to

determine the density of rays passing through a given area, allows us to determine the overall distribution

of intensity of light, when the sphere is illuminated from the exterior. This calculation shows that the

highest intensity is to be expected near the edge of the sphere, and the modes of higher angular momentum

(whispering gallery modes) are the main contributors to this intensity. As with the cylindrical cavity, a

quantum dot can be placed inside the sphere at the optimal location (calculated through the local Purcell

factor) to enhance its emission with the help of the cavity confinement.
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Appendices

A. Magnetization of an easy-axis antiferromagnet

In chapter 2, the system of equations (2.38)-(2.41) arises in the calculation of the magnetization of an

easy-axis antiferromagnet in the presence of a static field. The system reads:

−iω
γ
M1x = M1y (BA +BE + µ0H0) +M2yBE , (5.1)

−iω
γ
M1y = MSµ0Hx −M2xBE −M1x (BA +BE + µ0H0) , (5.2)

−iω
γ
M2x = −M2y (BA +BE − µ0H0)−M1yBE , (5.3)

−iω
γ
M2y = −MSµ0Hx +M1xBE +M2x (BA +BE − µ0H0) . (5.4)

To simplify writing, we shall introduce the variables
A = −iω

γ

B− = BA +BE − µ0H0

B+ = BA +BE + µ0H0

. (5.5)

We now reduce the system to two equations by writing only the equations for M1y (5.2) and M2y (5.4)

multiplied by A and with AM1x replaced by equation (5.1) and AM2x replaced by equation (5.3):

A2M1y = AMSµ0Hx −BE (−M2yB− −BEM1y)− (M1yB+ +M2yBE)B+, (5.6)

A2M2y = −AMSµ0Hx + (M1yB+ +M2yBE)BE + (−M2yB− −M1yBE)B−. (5.7)

Organizing these equations:

M1y

(
A2 −B2

E +B2
+

)
= AMSµ0Hx +M2yBE (B− −B+) , (5.8)

M2y

(
A2 −B2

E +B2
−
)

= −AMSµ0Hx +M1yBE (B+ −B−) . (5.9)

Noting that B− −B+ = −2µ0H0, inserting (5.9) into (5.8) yields:

M1y

(
A2 −B2

E +B2
+

)
= AMSµ0Hx − 2µ0H0BE

−AMSµ0Hx +M1yBE2µ0H0

A2 −B2
E +B2

−
, (5.10)
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José Gomes

and this allows us to obtain M1y:

M1y

(
A2 −B2

E +B2
+ +

(2µ0H0BE)
2

A2 −B2
E +B2

−

)
= AMSµ0Hx +

2µ2
0AMSBEH0Hx

A2 −B2
E +B2

−
. (5.11)

For M2y we insert (5.8) into (5.9), which yields:

M2y

(
A2 −B2

E +B2
−
)

= −AMSµ0Hx + 2µ0H0BE
AMSµ0Hx −M2yBE2µ0H0

A2 −B2
E +B2

+

, (5.12)

and now we isolate M2y:

M2y

(
A2 −B2

E +B2
− +

(2µ0H0BE)
2

A2 −B2
E +B2

+

)
= −AMSµ0Hx +

2µ2
0AMSBEH0Hx

A2 −B2
E +B2

+

. (5.13)

Now, multiplying (5.11) by A2 − B2
E + B2

− and (5.13) by A2 − B2
E + B2

+ makes the factors of M1y and

M2y become equal:

M1y

((
A2 −B2

E +B2
+

) (
A2 −B2

E +B2
−
)

+ (2µ0H0BE)
2
)

=(
A2 −B2

E +B2
−
)
AMSµ0Hx + 2µ2

0AMSBEH0Hx.
(5.14)

M2y

((
A2 −B2

E +B2
−
) (
A2 −B2

E +B2
+

)
+ (2µ0H0BE)

2
)

=

−
(
A2 −B2

E +B2
+

)
AMSµ0Hx + 2µ2

0AMSBEH0Hx.
(5.15)

Now we can sum (5.14) and (5.15) to obtain the total magnetization in y: (My = M1y +M2y)

My =
γ4
(
B2
− −B2

+

)
AMSµ0Hx + 4γ4µ2

0AMSBEH0Hx

γ4
(
A2 +B2

+ −B2
E

) (
A2 +B2

− −B2
E

)
+ (2γ2µ0H0BE)

2 . (5.16)

Now to simplify the expression, we start by the calculating B2
− −B2

+:

B2
− −B2

+ = (BA +BE − µ0H0)
2 − (BA +BE + µ0H0)

2
(5.17)

B2
− −B2

+ = −4 (BA +BE)µ0H0. (5.18)

Now we use this to simplify the numerator of (5.16):

N(My) = γ4AMSµ0Hx (−4 (BA +BE)µ0H0 + 4µ0H0BE) , (5.19)

N(My) = 4γ3iωMSµ0HxBAµ0H0, (5.20)

N(My) = 4iγωHxµ0H0Ω2
S , (5.21)

where ΩS = γ
√
µ0MSBA. Now we note thatB2

+ −B2
E = (BA +BE + µ0H0)

2 −B2
E

B2
− −B2

E = (BA +BE − µ0H0)
2 −B2

E ,
(5.22)

B2
+ −B2

E = (BA +BE)
2 −B2

E + µ2
0H

2
0 + 2 (BA +BE)µ0H0

B2
− −B2

E = (BA +BE)
2 −B2

E + µ2
0H

2
0 − 2 (BA +BE)µ0H0,

(5.23)
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γ2
(
B2

+ −B2
E

)
= Ω2

0 + γ2µ0H0 (µ0H0 + 2BA + 2BE)

γ2
(
B2
− −B2

E

)
= Ω2

0 + γ2µ0H0 (µ0H0 − 2BA − 2BE) ,
(5.24)

where Ω0 = γ
√

2BEBA +B2
A. As such

γ4
(
B2

+ −B2
E

) (
B2
− −B2

E

)
=
(
Ω2

0 + γ2µ2
0H

2
0

)2 − 4γ4µ2
0H

2
0 (BA +BE)

2
(5.25)

and

γ2
(
B2

+ −B2
E

)
+ γ2

(
B2
− −B2

E

)
= 2Ω2

0 + 2γ2µ2
0H

2
0 . (5.26)

Therefore, the denominator of (5.16) is:

D(My) = ω4 − ω2γ2
(
B2

+ −B2
E

)
− ω2γ2

(
B2
− −B2

E

)
+ γ4

(
B2

+ −B2
E

) (
B2
− −B2

E

)
+ 4γ4µ2

0H
2
0B

2
E , (5.27)

D(My) = ω4−2ω2
(
Ω2

0 + γ2µ2
0H

2
0

)
+
(
Ω2

0 + γ2µ2
0H

2
0

)2−4γ4µ2
0H

2
0 (BA +BE)

2
+4γ4 (µ0H0BE)

2
, (5.28)

D(My) = Ω2
0

(
Ω2

0 + 2γ2µ2
0H

2
0 − 2ω2

)
+ ω4 − 2ω2γ2µ2

0H
2
0 − 4γ2µ2

0H
2
0 Ω2

0 + γ4µ4
0H

4
0 , (5.29)

D(My) = Ω2
0

(
Ω2

0 − 2γ2µ2
0H

2
0 − 2ω2

)
+ ω4 − 2ω2γ2µ2

0H
2
0 + γ4µ4

0H
4
0 , (5.30)

D(My) = Ω2
0

(
Ω2

0 − 2γ2µ2
0H

2
0 − 2ω2

)
+
(
ω2 − γ2µ2

0H
2
0

)2
. (5.31)

Now we complete the square of the second and third terms and separate the square difference of the last

term:

D(My) = Ω2
0

(
Ω2

0 − 2 (ω + γB0)
2

+ 4γB0ω
)

+ (ω + γB0)
2

(ω − γB0)
2
, (5.32)

D(My) = Ω2
0

(
Ω2

0 − (ω + γB0)
2
)
− Ω2

0 (ω + γB0)
2

+ 4Ω2
0ωγB0 + (ω + γB0)

2
(ω − γB0)

2
, (5.33)

D(My) = Ω2
0

(
Ω2

0 − (ω + γB0)
2
)
− Ω2

0 (ω − γB0)
2

+ (ω + γB0)
2

(ω − γB0)
2
, (5.34)

and thus

D(My) =
(

Ω2
0 − (ω − γB0)

2
)(

Ω2
0 − (ω + γB0)

2
)
. (5.35)

Now, with the knowledge of (5.21) and (5.35), the y magnetization can be written as

My = iHxΩ2
S

4γωB0(
Ω2

0 − (ω − γB0)
2
)(

Ω2
0 − (ω + γB0)

2
) , (5.36)

and this can be separated into two fractions, by creating the square differences in the numerator, as such:

My = iHxΩ2
S

4γωB0 + Ω2
0 − Ω2

0 − ω2 + ω2 + γ2B2
0 − γ2B2

0(
Ω2

0 − (ω − γB0)
2
)(

Ω2
0 − (ω + γB0)

2
) , (5.37)

My = iHxΩ2
S

(
Ω2

0 − (ω − γB0)
2
)
−
(

Ω2
0 − (ω + γB0)

2
)

(
Ω2

0 − (ω − γB0)
2
)(

Ω2
0 − (ω + γB0)

2
) , (5.38)

My = iHxΩ2
S

(
1

Ω2
0 − (ω + γB0)

2 −
1

Ω2
0 − (ω − γB0)

2

)
. (5.39)
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Now we turn to Mx. The system (5.1)-(5.4) can be reduced to two equations (5.1) and (5.3) multiplied

by A, with the values of AM1y and AM2y given by equations (5.2) and (5.4), respectively. Equations

(5.1) and (5.3) then become:

A2M1x = B+ (MSµ0Hx −M2xBE −M1xB+) +BE (−MSµ0Hx +M1xBE +M2xB−) , (5.40)

A2M2x = −B− (−MSµ0Hx +M1xBE +M2xB−)−BE (MSµ0Hx −M2xBE −M1xB+) . (5.41)

Organizing these equations:

M1x

(
A2 +B2

+ −B2
E

)
= MSµ0Hx (B+ −BE) +BEM2x (B− −B+) , (5.42)

M2x

(
A2 +B2

− −B2
E

)
= MSµ0Hx (B− −BE) +BEM1x (B+ −B−) . (5.43)

Now we can insert (5.43) into (5.42) to obtain (B0 = µ0H0):

M1x

(
A2 +B2

+ −B2
E

)
= MSµ0Hx (BA +B0)− 2BEB0

MSµ0Hx (BA −B0) + 2B0BEM1x

A2 +B2
− −B2

E

, (5.44)

M1x

(
A2 +B2

+ −B2
E + 4

(BEB0)
2

A2 +B2
− −B2

E

)
= MSµ0Hx (BA +B0)− 2BEB0MSµ0Hx (BA −B0)

A2 +B2
− −B2

E

(5.45)

M1x =
γ4
(
A2 +B2

− −B2
E

)
MSµ0Hx (BA +B0)− 2γ4BEB0MSµ0Hx (BA −B0)

γ4
(
A2 +B2

+ −B2
E

) (
A2 +B2

− −B2
E

)
+ 4γ4B2

EB
2
0

, (5.46)

Now we turn to M2x, inserting (5.42) into (5.43) to obtain:

M2x

(
A2 +B2

− −B2
E

)
= MSµ0Hx (BA −B0) + 2B0BE

MSµ0Hx (BA +B0)− 2B0BEM2x

A2 +B2
+ −B2

E

, (5.47)

M2x

(
A2 +B2

− −B2
E + 4

(BEB0)
2

A2 +B2
+ −B2

E

)
= MSµ0Hx (BA −B0) + 2B0BEMSµ0Hx

BA +B0

A2 +B2
+ −B2

E

,

(5.48)

M2x =
γ4
(
A2 +B2

+ −B2
E

)
MSµ0Hx (BA −B0) + 2γ4B0BEMSµ0Hx (BA +B0)

γ4
(
A2 +B2

+ −B2
E

) (
A2 +B2

− −B2
E

)
+ 4γ4B2

EB
2
0

. (5.49)

The x component of the total magnetization is

Mx = M1x +M2x (5.50)

Mx = γ4MSµ0Hx

2
(
A2 −B2

E

)
BA +BA

(
B2
− +B2

+

)
+B0

(
B2
− −B2

+

)
+ 4B2

0BE

γ4
(
A2 +B2

+ −B2
E

) (
A2 +B2

− −B2
E

)
+ 4γ4B2

EB
2
0

. (5.51)

The denominator is the same as in (5.16) and it has been calculated, resulting in (5.35). The numerator

can be simplified further:

N(Mx) = BA

(
2A2 − 2B2

E + 2 (BA +BE)
2

+ 2B2
0

)
− 4B2

0 (BA +BE) + 4B2
0BE , (5.52)

N(Mx) = 2BA
(
A2 +B2

A + 2BABE +B2
0

)
− 4B2

0BA, (5.53)

N(Mx) = 2
BA
γ2

(
−ω2 + Ω2

0 − γ2B2
0

)
(5.54)
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N(Mx) =
BA
γ2

(
− (ω − γB0)

2
+ 2ωγB0 + Ω2

0 − (ω + γB0)
2 − 2ωγB0 + Ω2

0

)
, (5.55)

N(Mx) =
BA
γ2

(
Ω2

0 − (ω − γB0)
2

+ Ω2
0 − (ω + γB0)

2
)
. (5.56)

Now we write Mx using (5.56) and (5.35):

Mx = HxΩ2
S

Ω2
0 − (ω − γH0)

2
+ Ω2

0 − (ω + γH0)
2
)(

Ω2
0 − (ω + γB0)

2
)(

Ω2
0 − (ω − γB0)

2
) , (5.57)

which finally becomes:

Mx = HxΩ2
S

(
1

Ω2
0 − (ω + γB0)

2 +
1

Ω2
0 − (ω − γB0)

2

)
. (5.58)

In conclusion, in this appendix we obtained (5.58) and (5.39):

My = iHxΩ2
S

(
1

Ω2
0 − (ω + γB0)

2 −
1

Ω2
0 − (ω − γB0)

2

)
, (5.59)

B. Comparison of cylindrical cavity field profiles: ideal cavity vs exact

solution for infinite cylinder

The EM fields used in this work correspond to an ideal cavity with its boundaries being perfect mirrors.

However, in reality the contrast of the dielectric constant at the boundaries is finite. We shall compare

these field profiles obtained within the ideal cavity model to exact solution of Maxwell’s equations in the

case of infinite cylinder where analytical solution is possible considering finite dielectric constant (and

therefore non-zero field amplitudes) outside of the cylinder.

The equations that relate the transverse to the longitudinal components of the vector fields are

− iωε

c
~ET =

(
1
r
∂Hz
∂φ −

∂Hφ
∂z

∂Hr
∂z −

∂Hz
∂r

)
;

iω

c
~HT =

(
1
r
∂Ez
∂φ −

∂Eφ
∂z )

∂Er
∂z −

∂Ez
∂r

)
. (5.60)

Due to the translational and axial symmetry of the cylindrical microcavity in Fig. 3.1, the electromagnetic

fields ~E and ~H can be cast as

~E(r, φ, z) = ~E(r)Ψ(φ, z) ; ~H(r, φ, z) = ~H(r)Ψ(φ, z) , (5.61)

with Ψ(φ, z) = ei(mφ+kzz). For the z-components it is possible to choose the solutions

E(j)
z = A(j)f (j)

µ (qjr)Ψ(φ, z) ; H(j)
z = B(j)f (j)

µ (qjr)Ψ(φ, z) ; (j = 1, 2) , (5.62)

where q2
j = εiω

2/c2 − k2
z , ε1(ε2) is the inner (outer) dielectric constant. In Eq. (5.62) f

(1)
µ is the Bessel

function Jµ(q1r) for 0 ≤ r ≤ R and if q2
2 > 0 (q2

2 = −κ2 < 0), f
(2)
m is the Hankel function of the first kind,

H(1)
µ (q2r) (MacDonald function Kµ(|q2|r))for r ≥ R), both defined in Ref. [96].

Using Eqs. (5.60), the field transverse components are given by[
E(j)
r (r), E

(j)
φ (r)

]
=

1

qi2 − k2
z

[
− ωµ

cr
B(j)f (j)

µ + ikzqjA
(j)f

′(j)
µ ,−iωqj

c
B(j)f

′(j)
µ − µkz

r
A(j)f (j)

µ

]
; (5.63)
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Figure 5.1: Comparison of the field components’ profiles Ez and Dr from exact solution, Eq. (5.65)

(dashed lines) and from the ideal cavity model, Eq. (5.66) (full red lines) for ckz = 4 eV. The radius of

the cylinder R = 3 µm, ε1 =1, ε2 =3.4, and the height L = 0.3 µm.

[
H(j)
r (r), H

(j)
φ (r)

]
=

1

q2
j − k2

z

[
εjωµ

cr
A(j)f (j)

µ + ikzqjB
(j)f

′(j)
µ , i

εjωqj
c

A(j)f
′(j)
µ − µkz

r
B(j)f (j)

µ

]
. (5.64)

It is possible now to determine the eigenmodes by imposing appropriate boundary conditions. The normal

component of the electric induction vector, ~D, the electric field components [Er, Eφ] and the magnetic field

vector, ~H, should be continuous at the interface r = R, i.e. ε1E
(1)
r (R) = ε2E

(2)
r (R), E

(1)
φ (R) = E

(2)
φ (R),

E
(1)
z (R) = E

(2)
z (R) and ~H(1)(R) = ~H(2)(R). Using Eqs. (5.63) and (5.64) and assuming q2

j = −κ2, we

obtain the dispersion relation

(qκR)2
[
κKµJ

′
µ + qJµK

′
µ

][
ε1κKµJ

′
µ + qε2JµK

′
µ

]
= (µKµJµ)2ω

2k2
z

c2
(ε1 − ε2)2 . (5.65)

For a given µ and kz, Eq. (5.65) provides a set of solutions, which we wish to compare to those of our

”ideal cavity” model. An ideal cavity mode is one where the tangential components of the electric field

and Hr vanish at the interface. We can imagine that the walls of the ideal cavity are made of a perfect

metal. Then Er is discontinuous at the interface and so are Hz and Hφ. Therefore, an ideal cavity TM
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mode has the components thata are non-zero only inside the cavity:

Ez1 = CµJµ(qr) ,

Er1 =
kz
q1
CµJ

′
µ(q1r) . (5.66)

So, the boundary conditions reduce to Jµ(q1R) = 0. In Fig. 5.1 we compare the exact field profiles Ez

and Dr with fields (5.66). As an example, it shows the ν = 9 mode, which corresponds to ~ω = 1.866

eV for ideal cavity of R = 3µm and demonstrates a reasonable qualitative agreement between the field

distributions inside the cylinder. where the excitons are confined.

C. Semiconductor on a cylindrical cavity: exciton-photon matrix ele-

ments Iµ,ν;m,n

The integral Iµ,ν;m,n in the matrix element (??) is written as

Iµ,ν;m,n =
2

ξµ,ν |J ′m(ξm,n)|

∫ 1

0

xJm(ξm,nx)Jm(ξµ,νx)dx . (5.67)

Using the Bessel functions’ properties, [96] the integral is equal to:

Iµ,ν;m,n =
2

ξµ,ν |J ′m(ξm,n)|
ξm,nJm+1(ξm,n)Jm(ξµ,ν)− ξµ,νJm(ξm,n)Jm+1)(ξµ,ν)

ξ2
m,n − ξ2

µ,ν

, (5.68)

and, since the second term is zero, we obtain:

Iµ,ν;m,n =
2

ξµ,ν |J ′m(ξm,n)|
ξm,nJm+1(ξm,n)Jm(ξµ,ν)

ξ2
m,n − ξ2

µ,ν

= − 2

ξµ,ν |J ′m(ξm,n)|
ξm,nJ

′
m(ξm,n)Jm(ξµ,ν)

ξ2
m,n − ξ2

µ,ν

. (5.69)

Therefore, the integral squared is given by:

|Iµ,ν;m,n|2 = 4
ξ2
m,n

ξ2
µ,ν

J2
m(ξµ,ν)

(ξ2
m,n − ξ2

µ,ν)2
. (5.70)

As an example, the squared values of the integrals (5.70) for µ = 0 and m = 1 are given in Table 1.

Table 1. Values of |I0,ν;1,n|2.

ν/n 1 2 3 4

1 3.5× 10−2 4.8× 10−3 2.0× 10−3 1.1× 10−3

2 9.0× 10−4 2.1× 10−3 2.9× 10−4 1.2× 10−4

3 1.6× 10−5 2.9× 10−4 5.0× 10−4 6.6× 10−5

4 1.5× 10−6 9.5× 10−6 1.2× 10−4 1.8× 10−4
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D. Solution of the Helmholtz equation with spherical coordinates

Expressing the Helmholtz equation (4.2) in spherical coordinates leads to:

1

r2
∂r
[
r2∂ru(r)

]
+

1

r2 sin2 θ

[
sin θ∂θ

[
sin θ∂θu(r)

]
+ ∂2

φu(r)

]
+ k2u(r) = 0. (5.71)

Applying the method of separation of variables we can express the solution as:

u(r) = R(r)Θ(θ)Φ(φ). (5.72)

Multiplying (5.71) by sin2(θ)r2/(RΘΦ) yields:

sin2 θ

R
∂r
[
r2∂rR

]
+

sin θ

Θ
∂θ
[

sin θ∂θΘ
]

+
1

Φ
∂2
φΦ + sin2(θ)k2r2 = 0. (5.73)

There is a term that only depends on φ and others that involve r and θ. As such, the term that only

depends on φ must be a constant. We call this constant −m2 and thus are able to write:

1

Φ
∂2
φΦ = −m2, (5.74)

Φ(φ) = eimφ. (5.75)

The number m must be an integer to allow the solution to be periodic for φ→ φ+ 2π. Equation (5.73)

can be written as:
1

R
∂r
[
r2∂rR

]
+ k2r2 +

1

Θ sin θ
∂θ
[

sin θ∂θΘ
]
− m2

sin2 θ
= 0. (5.76)

Now there is one term that varies only with θ and another that varies only with r. As such, both terms

must be constant. The constant for the θ term will be defined according to:

1

Θ sin θ
∂θ
[

sin θ∂θΘ
]
− m2

sin2 θ
= −l(l + 1). (5.77)

Thus, using x ≡ cos θ this equation is:

∂x
[
(1− x2)∂xΘ(x)

]
+
[
l(l + 1)− m2

1− x2

]
Θ(x) = 0 (5.78)

This is the associated Legendre equation, whose solutions are the associated Legendre polynomials:

Θ(x) = Pml (x), (5.79)

or,

Θ(θ) = Pml (cos θ). (5.80)

m takes values in the range −l < m < l, and must also be an integer. Finally, we deal with the radial

part of equation (5.76), which becomes:

∂r
[
r2∂rR

]
+
[
k2r2 − l(l + 1)

]
R = 0. (5.81)

This is the spherical Bessel equation, whose solutions are spherical Bessel functions of first and second

kind.
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E. Properties of vectorial calculus

The following properties are useful in chapter 3 and can be consulted in [97]:

∇2 [∇×A] = ∇×
[
∇2A

]
, (5.82)

∇2 [ΨA] = A∇2Ψ + 2 [∇Ψ · ∇]A + Ψ∇2A, (5.83)

∇×∇Ψ = 0, (5.84)

∇× (ΨA) = Ψ(∇×A) +∇Ψ×A, (5.85)
(∇×A)r = 1

r sin θ (Aφ sin θ)θ − 1
r sin θA

φ
θ

(∇×A)θ = 1
r sin θA

φ
r − 1

r (rAφ)r

(∇×A)φ = 1
r (rAθ)

r − 1
rA

θ
r

, (5.86)

where superscripts indicate partial differentiation and subscripts indicate the component of a vector.

F. Mode volume for a spherical cavity

To normalize the spherical photon field to a single photon, it is necessary to determine the integral (4.40),

given by:

Ω =
1

2ε

∫
d3r
(
ε
E ·E∗

E2
0

+
H ·H∗

E2
0

)
. (5.87)

TM-type

The electromagnetic fields for TM-type modes are given by equations (4.21)-(4.22:
(E

(TM)
l,m )r = E

(TM)
0

fl(kr)
kr l(l + 1)Pml (cos θ)eimφ

(E
(TM)
l,m )θ = iE

(TM)
0

∂kr(krfl(kr))
kr ∂θP

m
l (cos θ)eimφ

(E
(TM)
l,m )φ = −E(TM)

0
∂kr(krfl(kr))

kr m
Pml (cos θ)

sin θ eimφ

, (5.88)


(H

(TM)
l,m )r = 0

(H
(TM)
l,m )θ = i

√
εE

(TM)
0 mfl(kr)

Pml (cos θ)
sin θ eimφ

(H
(TM)
l,m )φ = −

√
εE

(TM)
0 fl(kr)∂θP

m
l (cos θ)eimφ

. (5.89)

k will be taken to be a real number, because the imaginary parts of the frequencies have been neglected

in this study. Several indexes will be removed to facilitate reading. The integral Ω
(TM)
l,m will be calculated

over a general spherical shell ranging from R1 to R2, and for now fl(kr) will be assumed to be a real

function:

Ω =

∫ 2π

0

∫ π

0

∫ R2

R1

r2 sin(θ)

(∣∣∣∣f(kr)

kr

∣∣∣∣2l2(l + 1)2P (cos θ)2 +

[∣∣∣∣f(kr) + r∂rf(kr)

kr

∣∣∣∣2 + |f(kr)|2
]

[
(∂θP (cos θ))

2
+

m2

sin2 θ
P (x)2

])
drdθdφ,

(5.90)
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Ω =
2π

k3

∫ 1

−1

∫ kR2

kR1

[
f2(z)l2(l + 1)2P (x)2 +

(
(f(z) + zf ′(z))

2
+ z2f2(z)

)
((

1− x2
)

(∂xP (x))
2

+
m2

1− x2
P (x)2

)]
dzdx.

(5.91)

The orthogonality relations for Associated Legendre Polynomials of the same m and l read:∫ 1

−1

P (x)2dx =
2(l +m)!

(2l + 1)(l −m)!
, (5.92)

∫ 1

−1

P (x)2

1− x2
dx =

(l +m)!

m(l −m)!
. (5.93)

Looking back at Ω (5.91), the only integral in x not in these forms is:∫ 1

−1

(1− x2) (∂xP (x))
2
dx. (5.94)

However, integration by parts can simplify this integral if one considers u = (1 − x2)∂xP (x) and v′ =

∂xP (x) to obtain:∫ 1

−1

(1− x2) (∂xP (x))
2
dx =

[
(1− x2)P (x)∂xP (x)

]
|1−1 −

∫ 1

−1

P (x)
[
−2x∂xP (x) + (1− x2)∂2

xP (x)
]
.

(5.95)

The first term is null and in the second term is part of the Associated Legendre differential equation,

which reads:

(1− x2)∂2
xP (x)− 2x∂xP (x) =

(
m2

1− x2
− l(l + 1)

)
P (x). (5.96)

Plugging this relation into (5.95) one gets:∫ 1

−1

(1− x2) (∂xP (x))
2
dx =

∫ 1

−1

[
l(l + 1)P (x)2 − m2

1− x2
P (x)2

]
dx. (5.97)

Going back to (5.91), substitution of this integral along with usage of the orthogonality relation (5.92)

simplifies the result to:

Ω =
2π

k3

2l(l + 1)(l +m)!

(2l + 1)(l −m)!

∫ kR2

kR1

[
l(l + 1)f2(z) + (f(z) + zf ′(z))

2
+ z2f(z)2

]
dx. (5.98)

Now only the spherical Bessel integrals remain. The spherical Bessel differential equation reads:

z2f ′′(z) + 2zf ′(z) +
(
z2 − l(l + 1)

)
f(z) = 0. (5.99)

It is noticeable that the l(l + 1) part of this equation is present in the integrand of (5.98). Writing only

the integral of (5.98) and expanding the square, one has to solve:

If =

∫ kR2

kR1

[
l(l + 1)f2(z) + f2(z) + 2zf(z)f ′(z) + z2f ′(z)2 + z2f(z)2

]
dx (5.100)
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The terms with derivatives can be transformed with integration by parts. The first term, with u = 2zf(z)

and v′ = f ′(z), becomes:∫ kR2

kR1

2zf(z)f ′(z)dz = 2zf2(z)|kR2

kR1
− 2

∫ kR2

kR1

f(z) [f(z) + zf ′(z)] (5.101)

∫ kR2

kR1

2zf(z)f ′(z)dz = zf2(z)|kR2

kR1
−
∫ kR2

kR1

f2(z)dz. (5.102)

The second term, with u = z2f ′(z) and v′ = f ′(z), becomes:∫ kR2

kR1

z2f ′(z)2dz =
[
z2f ′(z)f(z)

]
|kR2

kR1
−
∫ kR2

kR1

f(z)
[
2zf ′(z) + z2f ′′(z)

]
dz, (5.103)

where part of the spherical Bessel equation (5.99) shows up in the last integral. Using (5.99) it is possible

to write this integral as:∫ kR2

kR1

z2f ′(z)2dz =
[
z2f ′(z)f(z)

]
|kR2

kR1
+

∫ kR2

kR1

[
z2 − l(l + 1)

]
f2(z)dz. (5.104)

Now it is a simple matter to substitute equations (5.102) and (5.104) into the integral (5.100), which

yields:

If = [zf(z) (f(z) + zf ′(z))] |kR2

kR1
+ 2

∫ kR2

kR1

z2f2(z)dz. (5.105)

Finally, the last integral has the simple analytical solution:∫
z2f2(z)dz =

z3

2

(
f2(z)− fl−1(z)fl+1(z)

)
. (5.106)

The spherical Bessel recurrence relations are:f ′(z) = fl−1(z)− l+1
z f(z)

f ′(z) = −fl+1(z) + l
z f(z)

. (5.107)

So, the solution (5.106) can be written as:∫
z2f2(z)dz =

z

2

[
f2(z)

[
z2 − l(l + 1)

]
+ zf ′(z) [f(z) + zf ′(z)]

]
. (5.108)

So,

If =
[
zf(z) (f(z) + zf ′(z)) + z

(
f2(z)

[
z2 − l(l + 1)

]
+ zf ′(z) [f(z) + zf ′(z)]

)]
|kR2

kR1
. (5.109)

If =
[
z (f(z) + zf ′(z))

2
+ zf2(z)

[
z2 − l(l + 1)

]]
|kR2

kR1
. (5.110)

The original integral (5.87) that needed to be solved can be written as:

Ω =
2π

k3

2l(l + 1)(l +m)!

(2l + 1)(l −m)!

[
z (f(z) + zf ′(z))

2
+ zf2(z)

[
z2 − l(l + 1)

]]
|kR2

kR1
. (5.111)
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TE-type

Again, the mode volume integral is:

Ω =
1

2ε

∫
d3r
(
ε
E ·E∗

E2
0

+
H ·H∗

E2
0

)
. (5.112)

For TE-type modes the fields (4.23)-(4.24) read:
(E

(TE)
l,m )r = 0

(E
(TE)
l,m )θ = iE

(TE)
0 fl(kr)m

Pml (cos θ)
sin θ eimφ

(E
(TE)
l,m )φ = −E(TE)

0 fl(kr)∂θP
m
l (cos θ)eimφ

, (5.113)


(H

(TE)
l,m )r = −i

√
εE

(TE)
0

fl(kr)
kr l(l + 1)Pml (cos θ)eimφ,

(H
(TE)
l,m )θ = −i

√
εE

(TE)
0

∂kr(krfl(kr))
kr ∂θP

m
l (cos θ)eimφ

(H
(TE)
l,m )φ =

√
εE

(TE)
0

∂kr(krfl(kr))
kr m

Pml (cos θ)
sin θ eimφ

, (5.114)

Inserting (5.113) and (5.114) into (5.112) yields:

Ω =

∫ 2π

0

∫ π

0

∫ R2

R1

r2 sin(θ)

(∣∣∣∣f(kr)

kr

∣∣∣∣2l2(l + 1)2P (cos θ)2 +

[∣∣∣∣f(kr) + r∂rf(kr)

kr

∣∣∣∣2 + |f(kr)|2
]

[
(∂θP (cos θ))

2
+

m2

sin2 θ
P (x)2

])
drdθdφ,

(5.115)

which is of the same form as (5.115). The difference between TE and TM will be the different k values

corresponding to their eigenenergies. Finally, if fl = h
(1)
l = jl + iyl, then:

|f |2 = j2 + y2, (5.116)

and

|f + krf ′|2 = |h+ krh′|2 = |j + iy + kr(j′ + iy′)|2, (5.117)

|f + krf ′|2 = (j + krj′)2 + (y + kry′)2. (5.118)

As such, equation (5.115) can be separated into the sum of the f = j case and the f = y case, each of

the terms yielding the result (5.111).

General mode volume

Summarising, the total expression for the mode volume integral for the inside of the sphere reads:

Ω1 =
2π

k3
1

2l(l + 1)(l +m)!

(2l + 1)(l −m)!

[
z (jl(z) + zj′l(z))

2
+ zj2

l (z)
[
z2 − l(l + 1)

]] ∣∣k1R
0

, (5.119)

where R is the radius of the cavity. And for the outside, the integral up to a radius RI yields:

Ω2 = 2π
2l(l + 1)(l +m)!

(2l + 1)(l −m)!

(
1

k3
2

[
z (jl(z) + zj′l(z))

2
+ zj2

l (z)
[
z2 − l(l + 1)

]] ∣∣k2RI
k2R

+

1

k3
2

[
z (yl(z) + zy′l(z))

2
+ zy2

l (z)
[
z2 − l(l + 1)

]] ∣∣k2RI
k2R

)
.

(5.120)
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For a real cavity, the E0 in (5.112) will be taken to be E1, the constant of the interior of the sphere, as

such, the mode volume for a real cavity will be:

Ω = Ω1 +
|E2|2

|E1|2
Ω2. (5.121)

Applying conditions (4.52) and (4.54), the mode volumes for TM-type modes and TE-type modes become:

Ω(TM) = Ω
(TM)
1 +

∣∣∣∣ ε1jl(k1R)

ε2hl(k2R)

∣∣∣∣2Ω
(TM)
2 , (5.122)

Ω(TE) = Ω
(TE)
1 +

∣∣∣∣ jl(k1R)

hl(k2R)

∣∣∣∣2Ω
(TE)
2 . (5.123)

G. Distribution of light rays inside a sphere according to geometrical

optics

The quantity that describes the density of transmitted radiation in a section dr of the sphere is:

1

ξ

dξ

dr
=

1

t1,2

dt

dr
. (5.124)

It is shown on section 1.1, that the radius-vector of the ray inside the sphere is:

~r(t,Θt) = ~r1(Θt) +
~r2 − ~r1(Θt)

t1,2
t. (5.125)

Using (4.67) and (4.68), this can be written as:

~r(t,Θt) = −R cos(2Θt)x̂
′ +R sin(2Θt)ẑ +

Rx̂′ +R cos(2Θt)x̂
′ −R sin(2Θt)ẑ

t1,2
t (5.126)

~r(t,Θt) = R

[
(1 + cos(2Θt))

t

t1,2
− cos(2Θt)

]
x̂′ +R

[
− sin(2Θt)

t

t1,2
+ sin(2Θt)

]
ẑ (5.127)

The distance from the centre r will be the modulus of this vector:

r = |~r| = R

√[
(1 + cos(2Θt))

t

t1,2
− cos(2Θt)

]2

+

[
− sin(2Θt)

t

t1,2
+ sin(2Θt)

]2

. (5.128)

Developing the squares, this equals:

r = R

√[
(1 + cos(2Θt))

2
+ sin2(2Θt)

] t2

t21,2
− 2 [1 + cos(2Θt)]

t

t1,2
+ 1, (5.129)

r = R

√
2 [1 + cos(2Θt)]

t2

t21,2
− 2 [1 + cos(2Θt)]

t

t1,2
+ 1, (5.130)

r = R

√√√√4 cos2(Θt)

[
t2

t21,2
− t

t1,2

]
+ 1. (5.131)
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To obtain 1
t1,2

dt
dr we can calculate t1,2

dr
dt :

t1,2
dr

dt
=

R2

2r(t,Θt)
4 cos2(Θt)

[
2
t

t1,2
− 1

]
. (5.132)

Evidently, we are forced to invert equation (5.131) to obtain t
t1,2

(r). From (5.131) we write:

r2

R2
= 4 cos2(Θt)

[
t2

t21,2
− t

t1,2

]
+ 1, (5.133)

t2

t21,2
− t

t1,2
+

1− r2/R2

4 cos2(Θt)
= 0, (5.134)

t

t1,2
=

1

2
±

√
1

4
− 1− r2/R2

4 cos2(Θt)
. (5.135)

Inserting this expression into (5.132) we obtain:

t1,2
dr

dt
= ±2R2

r
cos2(Θt)

√
1− 1− r2/R2

cos2(Θt)
, (5.136)

t1,2
dr

dt
= ±2R2 cos(Θt)

r

√
cos2(Θt)− 1 + r2/R2, (5.137)

t1,2
dr

dt
= ±2R cos(Θt)

r

√
r2 −R2 sin2(Θt), (5.138)

Thus, the quantity in equation (5.124) will be:

1

ξ

dξ

dr
=

1

t1,2

dt

dr
=

1

t1,2
dr
dt

, (5.139)

1

ξ

dξ

dr
= ± r

2R cos(Θt)
√
r2 −R2 sin2(Θt)

. (5.140)

This is only valid as a description of the density of transmitted radiation in values of r where the ray in

Figure 4.10 passes. Values where the ray does not pass will result in a negative argument in the square

root of equation (5.140). The minimum value of r is obtained by setting this argument to zero.

r2
min −R2 sin(Θt) = 0, (5.141)

rmin = R sin(Θt). (5.142)

This can be seen geometrically from Figure (4.10) since this corresponds to the mid-point of the ray’s path,

where the r-vector must be perpendicular to the path, causing a right triangle to form with sin(Θt) = r/R.

Thus, the real valued density is <[ 1
ξ
dξ
dr ]:

<[
1

ξ

dξ

dr
] =

±
r

2R cos(Θt)
√
r2−R2 sin2(Θt)

, r > R sin(Θt)

0, r < R sin(Θt)
. (5.143)
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H. Study of the angular term in the local density of states

Term in TE modes

We wish to study the behaviour of (4.118)

Θm
l (x) ≡ (l −m)!

(l +m)!

[(
1− x2

)
(∂xP

m
l (x))

2
+

m2

1− x2
Pml (x)2

]
. (5.144)

The function Θm
l (x), which is the angular part of the density of states, obeys the relation Θ−ml = Θm

l .

This is to be expected since nothing in the system studied breaks the symmetry z → −z and the m

angular momentum number represents the projection of angular momentum on the z axis. Therefore we

can consider only positive values of m and then multiply by 2 to add the contribution of the −m modes.

Furthermore, the density of states can not depend on the angle θ, and thus on x = cos θ, because of the

spherical symmetry of the system. We can therefore calculate Θm
l (x) for any given value of x and its sum

over all m must be the same regardless of the value of x we used. This will hopefully allow us to solve

the entire sum over all m analytically. A convenient value is x→ 1−. The starting point is to apply the

following asymptotic relation, valid for when x→ 1− [98, Eq. 14.8.2]

Pml (x) ∼ (−1)m
(l −m+ 1)2m

m!

(
1− x

2

)m/2
, (5.145)

where (l −m+ 1)2m denotes the Pochhamer’s symbol, or shifted factorial, defined by:

(a)n = a(a+ 1)(a+ 2)...(a+ n− 1). (5.146)

Now, taking just the bracketed part of (5.144) and using (5.145) we get, for x→ 1−:

pΘm
l (x) ≡

(
1− x2

)
(∂xP

m
l (x))

2
+

m2

1− x2
Pml (x)2 (5.147)

pΘm
l (x) ∼ m2(l −m+ 1)2

2m

2mm!2

(
1

4
(1− x)

m−2 (
1− x2

)
+

(1− x)m

1− x2

)
. (5.148)

Analysing (5.148) we can already conclude that for m = 2:

pΘ2
l (x) ∝ 1

4
(1− x2) + lim

x→1

(1− x)2

1− x2
, (5.149)

pΘ2
l (x) ∝ 1

4
(1− x2) + lim

x→1

(1− x)2

(1− x)(1 + x)
= 0 (5.150)

pΘ2
l (x) ∝ 1

4
(1− x2) + lim

x→1

(1− x)

(1 + x)
= 0 (5.151)

Simply looking at the (1− x) terms in (5.148) allows us to further conclude that:

pΘm
l (x) = 0 ,m ≥ 2. (5.152)

Now we only need to determine pΘm
l (x) for m = 0, 1. For m = 0, the leading factor of (5.148), with m2,

will be exactly 0, which ensures

pΘ0
l (x) = 0. (5.153)
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Finally, for the only surviving term m = 1:

pΘ1
l (x) =

l22
2

(
1

4
lim
x→1

1− x2

1− x
+ lim
x→1

1− x
1− x2

)
, (5.154)

and by using L’Hôpital’s rule:

pΘ1
l (x) =

l22
2

(
1

2
+

1

2

)
, (5.155)

pΘ1
l (x) =

l22
2
, (5.156)

pΘ1
l (x) =

l2(l + 1)2

2
. (5.157)

Taking this all together, we can conclude that:

m=l∑
m=−l

Θm
l (x) = Θ1

l (x) + Θ−1
l (x) = 2Θ1

l (x) =
(l − 1)!

(l + 1)!
l2(l + 1)2, (5.158)

m=l∑
m=−l

Θm
l (x) = l(l + 1). (5.159)

Extra term in TM modes

In the local density of states for TM modes, we have the additional term:

Φml (x) ≡ (l −m)!

(l +m)!
Pml (x)2, (5.160)

Again, using (5.145), this becomes, for x→ 1−:

Φml (x) ∼ (l −m)!

(l +m)!

(l −m+ 1)2
2m

m!2

(
1− x

2

)m
. (5.161)

This term will be 0 for all m except m = 0, in which case it will be:

Φ0
l (x) ∼ (l − 0)!

(l + 0)!

(l + 1)2
0

0!2
. (5.162)

Φ0
l (x) ∼ 1. (5.163)

Thus,
l∑

m=−l

Φml (x) = 1. (5.164)
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[33] Gang Wang, Alexey Chernikov, Mikhail M Glazov, Tony F Heinz, Xavier Marie, Thierry Amand,

and Bernhard Urbaszek. Colloquium: Excitons in atomically thin transition metal dichalcogenides.

Rev. Mod. Phys., 90:21001, 2018.

[34] L Britnell, R M Ribeiro, A Eckmann, R Jalil, B D Belle, A Mishchenko, Y.-J. Kim, R V Gorbachev,

T Georgiou, S V Morozov, A N Grigorenko, A K Geim, C Casiraghi, A H Castro Neto, and K S

Novoselov. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science,

340:1311, 2013.

[35] Xiaoze Liu, Tal Galfsky, Zheng Sun, Fengnian Xia, Erh-chen Lin, Yi-Hsien Lee, S Kéna-Cohen, and
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[92] Liaoxin Sun, Zhanghai Chen, Qijun Ren, Ke Yu, Lihui Bai, Weihang Zhou, Hui Xiong, Z Q Zhu,

and Xuechu Shen. Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion

in a ZnO Tapered Microcavity. Physical Review Letters, 100:156403, 2008.

[93] Toan Trong Tran, Kerem Bray, Michael J Ford, Milos Toth, and Igor Aharonovich. Quantum

emission from hexagonal boron nitride monolayers. Nature Nanotechnology, 11:37–41, 2016.

[94] J R Santos, Mikhail I Vasilevskiy, and Sergey A Filonovich. Cascade upconversion of photolumines-

cence in quantum dot ensembles. Phys. Rev. B, 78:245422, 2008.

[95] Y J Zheng, Y Chen, Y L Huang, P K Gogoi, M Y Li, L.-J. Li, P E Trevisanutto, Q Wang, S J

Pennycook, A T S Wee, and S Y Quek. The Origin of Single Photon Emission in 2D WSe2.

ArXiv181100221 Cond-Mat, 2018.

[96] M Abramowitz and I A Stegun, editors. Handbook of Mathematical Functions. Dover, New York,

1972.

[97] Jerrold E Marsden and A Tromba. Vector Calculus. W. H. Freedman and Company, Nova York,

2003.

[98] \it NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.26 of 2020-

03-15.

120



Bibliography José Gomes
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