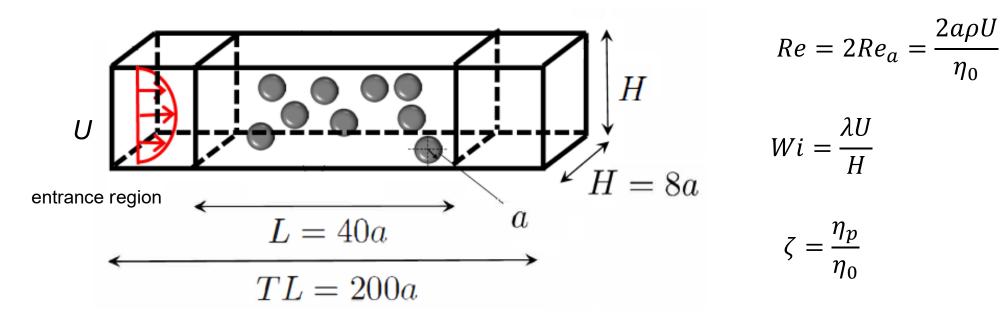


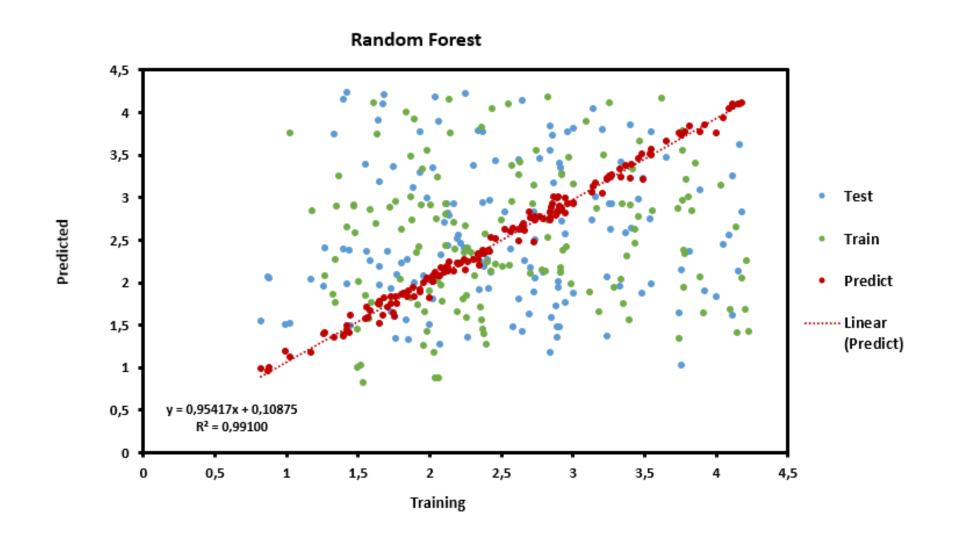
Digital-twin for particle-laden viscoelastic fluids: ML-Based models to predict the drag coefficient of random arrays of spheres <u>C. LOIRO¹</u>, C. FERNANDES¹, G. H. MCKINLEY,² S. A. FAROUGHI^{3,*}

INTRODUCTION

- The dependence of normalized average fluid-particle force F on solid volume fraction and on the rheology of non-Newtonian fluids needs to be characterized.
- Direct numerical simulations (DNS) were performed to obtain the drag coefficient of random arrays of monodisperse spherical particles translating in shear-thinning viscoelastic fluids, described by the Giesekus model.
- The normalized average fluid-particle force F is obtained as a function of the volume fraction of dispersed solids 0 ≤ Ø ≤ 0.2, Reynolds number Re ≤ 50, Weissenberg number 0 ≤ Wi ≤ 4, retardation ratio 0 < ζ < 1 and mobility parameter 0 < α ≤ 0.5.
- The numerical results obtained from the large-scale computations enable us to develop a meta-model, based on Machine Learning (ML) models, specifically, Random Forest [1], Deep Neural Network [2] and XGBoost [3], for the fluid-particle drag force to be used in particle-laden viscoelastic flows.



- The model that best suits our case study is the XGBoost Model with the highest value of R^2 and lowest RMSE.
- The table shows that the ML models are accurate (R²≥ 0.98 in all cases) with low error values.
- We show the tested values (blue points), training values (green points) and the predicted values (red points) and regression line (red line) for each model.



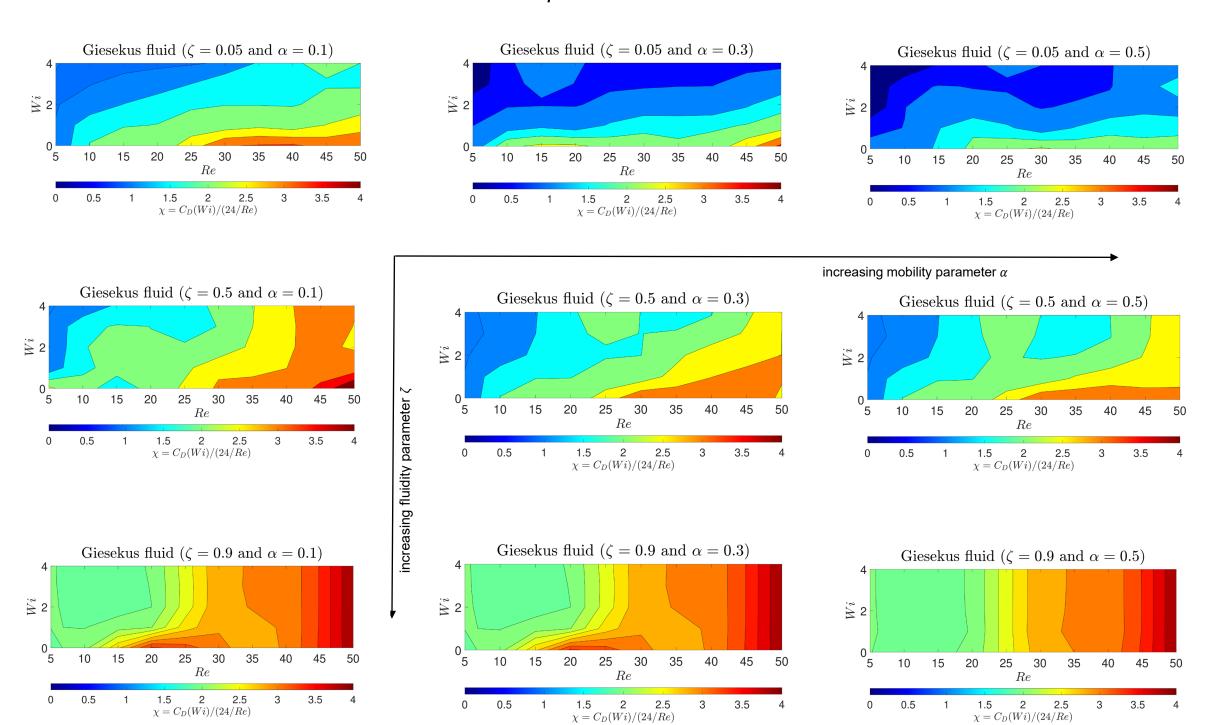
Neural Network

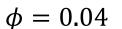
RESULTS AND DISCUSSION

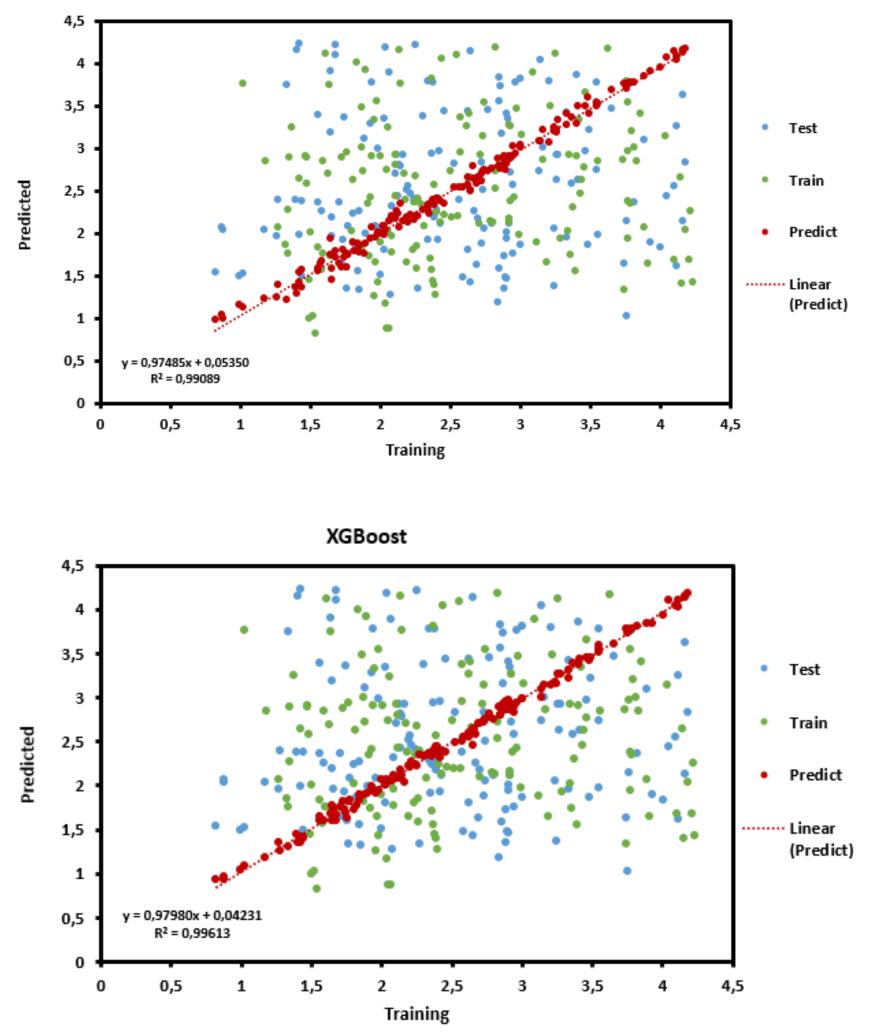
1. DNS RESULTS

• Direct numerical simulations of the viscoelastic drag correction factor, χ , for random arrays of spheres translating in the shear-thinning Giesekus viscoelastic fluid model, were performed.

 $\chi = C_D(Wi)/C_D(Wi = 0) = C_D(Wi)/(24/Re)$







CONCLUSIONS

• The ML models applied to predict the drag force of monodisperse spherical particles translating in shear-thinning viscoelastic fluids, described by the Giesekus model had good performance results. The model that best suits our

2. DATA DRIVEN MODELS

- In these models, Random Forest (RF) [1], Deep Neural Network (DNN) [2] and Extreme Gradient Boosting (XGBoost) [3] are considered. The dataset was divided into training and validation subsets and then compared with the predicted drag coefficient with a percentage 80/20, respectively.
- In order to train and compare the performance of this three models, the accuracy is evaluated with statistical indicators, RMSE (root-mean-square error), R^2 (R-squared) and MAPE (mean absolute percentage error).
- To evaluate the performance of the ML models, we present these indicators in the following table:

$$R^{2} = \frac{\sum_{i=1}^{n} (y_{i} - y_{i}^{*})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i}^{*})^{2}} , RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_{i} - y_{i}^{*})^{2}} , MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_{i}^{*} - y_{i}|}{y_{i}} * 100\%$$

where y_i^* are the observed values, \overline{y}_i^* is the mean of the observed values and y_i are the predicted values.

	Neural Network	XGBoost Model	Random Forest
RMSE	0.0786	0.0525	0.0823
R^2	0.9908	0.9961	0.9910
MAPE	3.0875	1.9935	2.9586

case study is the XGBoost model with the highest value of $R^2(0.9961)$ and the lowest RMSE (0.0525).

• ML models can be a valuable predictive tool. Numerical simulations combined with ML techniques can coexist (e.g. Eulerian-Lagrangian viscoelastic solver where the drag coefficient $C_D(Re, Wi, \zeta, \alpha, \phi)$ is given by a ML model) for the development of new promising possibilities in computational science and engineering problems.

ACKNOWLEDGEMENT

This work is funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT (Portuguese Foundation for Science and Technology) under the projects UID-B/05256/2020, UID-P/05256/2020, APROVA (MIT-EXPL/TDI/0038/2019) - Aprendizagem PROfunda na modelação de escoamentos com fluidos de matriz Viscoelástica Aditivados com partículas (POCI-01-0145-FEDER-016665) and HPC-EUROPA3 (INFRAIA-2016-1-730897). The authors would like to acknowledge the Minho University cluster under the project NORTE-07-0162-FEDER-000086 (URL: http://search6.di.uminho.pt), the Minho Advanced Computing Center (MACC-cpca_a2_6052_2020) (URL: https://macc.fccn.pt) and Julich Super Computing Centre (jusuf-icei-prace-2020-0009) for providing HPC resources that have contributed to the research results reported within this poster.

REFERENCES

- [1] A. Liaw and M. Wiener. Classification and regression by random forest. R News, 2(3):18-22, 2002.
- [2] D. F. Specht. A general regression neural network. IEEE transactions on neural networks, 2(6):568-576, 1991.
- [3] T. Chen and C. E. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794, 2016.

¹Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Portugal <u>{b12374@dep.uminho.pt</u>, <u>cbpf@dep.uminho.pt</u>}}</u> ²Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA <u>{gareth@mit.edu}</u>}

³Petrolern LLC, Atlanta, USA <u>{faroughisalah@gmail.com}</u>