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Abstract
In this paper we describe R-unipotent semigroups being regular extensions of a left regular
band by anR-unipotent semigroup T as certain subsemigroups of a wreath product of a left
regular band by T . We obtain Szendrei’s result that each E-unitaryR-unipotent semigroup is
embeddable into a semidirect product of a left regular band by a group. Further, specialising
the first author’s notion of λ-semidirect product of a semigroup by a locally R-unipotent
semigroup, we provide an answer to an open question raised by the authors in [Extensions
and covers for semigroups whose idempotents form a left regular band, Semigroup Forum
81 (2010), 51-70].
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1 Introduction

It is well known, due to O’Carroll [7], that each regular extension of a semilattice by a group
G, i.e., each E-unitary inverse semigroup with greatest group homomorphic image G, is
embeddable into a semidirect product of a semilattice by G. Szendrei [8] extended this result
to the class of E-unitaryR-unipotent semigroups, i.e., E-unitary regular semigroupswith left
regular band of idempotents. It is the aim of this paper to establish a similar result for regular
extensions of left regular bands by an arbitrary R-unipotent semigroup T , i.e., R-unipotent
semigroups S admitting an idempotent pure congruence ρ such that S/ρ ∼= T .

In Sect. 3 we describe extensions of left regular bands by an R-unipotent semigroup T
as certain subsemigroups of a wreath product of a left regular band by T . Some of the ideas
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presented by the author in [1], for the embedding of extensions of regular orthogroups by
inverse semigroups, were relevant to our research. For an arbitraryR-unipotent semigroup S,
we form an inverse semigroupC(S) of injective partial right translations of S and consider the
subsemigroupC∗(S) = 〈C(S) ∪ {ϕs : s ∈ S}〉 of the semigroup of all partial transformations
of S, where s �→ ϕs, s ∈ S, is the right regular representation of S. We show that C∗(S) is an
R-unipotent semigroup and use it to prove that S can be embedded in a semidirect product
of a left regular band by S/ρ, for every idempotent pure congruence ρ on S. If the semigroup
S is E-unitary and R-unipotent, the least group congruence on S is idempotent pure and so
Szendrei’s embedding result for E-unitary R-unipotent semigroups follows from ours.

In Sect. 4 we specialize the first author’s notion of λ-semidirect product [1,3] and we
present an example of an extension of a left regular band by an R-unipotent semigroup T
that is not embeddable into a λ-semidirect product of a left regular band by T . This answers
an embeddability question raised by the authors in [4].

2 Preliminaries

In this section we recall the notions and summarize the results that are needed in this paper.
For standard notation in semigroup theory, defined notations and basic results we refer the
reader to the books of Howie [5], Lawson [6] and Petrich [7]. In particular, for a semigroup
S, E(S) denotes the subset of idempotents of S and V (a) denotes the set of inverses of an
element a ∈ S.

A band B is called left regular if e f e = e f for all e, f ∈ B. Any left regular band B is a
semilattice of left zero semigroups. In particular, Green’s relation L is the least semilattice
congruence on B.

The following characterizations for semigroups whose subset of idempotents forms a left
regular band are well known, see [9, Theorem 1].

Proposition 2.1 The following statements about a regular semigroup S are equivalent:

(1) E(S) is a left regular band;
(2) each R-class of S contains exactly one idempotent;
(3) (∀e ∈ E(S)) (∀a ∈ S) (∀a′ ∈ V (a)) aea′a = ae;
(4) (∀a ∈ S) (∀a′, a′′ ∈ V (a)) aa′ = aa′′;
(5) (∀a ∈ S) (∀a′, a′′ ∈ V (a)) (∀e ∈ E(S)) aea′ = aea′′;
(6) (∀e, f ∈ E(S)) Se ∩ S f = Se f = S f e.

As a consequence of the equivalence (1) ⇔ (2) above, regular semigroups whose set of
idempotents is a left regular band are called R-unipotent. Clearly, a regular subsemigroup
of an R-unipotent semigroup S is necessarily R-unipotent, as is the homomorphic image.
Further, S is orthodox, whence V (b)V (a) ⊆ V (ab), V (e) ⊆ E(S), for any a, b ∈ S,
e ∈ E(S), and the least inverse semigroup congruence γ on S is given by

a γ b ⇔ V (a) = V (b).

Note that γ is idempotent pure, i.e., s γ e implies s ∈ E(S), for all s ∈ S and e ∈ E(S).
A simple but useful observation is the following.

Proposition 2.2 Let S be an R-unipotent semigroup, and let a, b, ab, a′, a′′, b′, (ab)′ ∈ S
be such that aa′a = a = aa′′a, bb′b = b, ab(ab)′ab = ab, i.e., a′, a′′ are pre-inverses of a,
b′ is a pre-inverse of b, and (ab)′ is a pre-inverse of ab. Then the following hold:
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(1) aa′ = aa′′,
(2) abb′a′ = ab(ab)′.

Proof

(1) Since aa′, aa′′ ∈ E(S) and E(S) is left regular,

aa′ = aa′′aa′ = aa′′aa′aa′′ = aa′′aa′′ = aa′′.

(2) Since a′abb′ ∈ E(S),

abb′a′ab = aa′abb′a′abb′b = aa′abb′b = ab,

whence the assertion follows from (1) ��
In R-unipotent semigroups, the natural partial order has the following characterization:

(∀a, b ∈ S) a ≤ b ⇔ ∃e ∈ E(S) : a = be.

Proposition 2.3 On an R-unipotent semigroup S the least inverse semigroup congruence γ

is given by

(∀a, b ∈ S) a γ b ⇔ a = eb, b = f a, for some e, f ∈ E(S).

Proof We have

a γ b ⇔ V (a) = V (b) ⇒ a = ab′a = ab′bb′a
= ab′bb′ab′b, since b′a ∈ E(S)

and E(S) is a left regular band
= ab′b, with ab′ ∈ E(S).

By symmetry of γ it follows b = ba′a with ba′ ∈ E(S).
On the other hand, ea = b, f b = a for some e, f ∈ E(S) trivially implies a γ b. ��
We recall some facts about injective partial right translations and permissible subsets of

an inverse semigroup.
A one-to-one partial right translation of a semigroup S is a one-to-one partial transfor-

mation ρ which satisfies

– dom ρ is a left ideal of S;
– ∀x ∈ S,∀y ∈ dom ρ, x(yρ) = (xy)ρ.

Proposition 2.4 ([7, Lemma V.2.2]) For any inverse semigroup S, the set of all one-to-one
partial right translations is an inverse subsemigroup of I(S).

A nonempty subset H of an inverse semigroup S is called permissible if it is an order
ideal of S, in relation to the natural partial order, and satisfies

a, b ∈ H ⇒ ab−1, a−1b ∈ E(S).

For any nonempty subsets H and K of an inverse semigroup S, define

HK := {hk : h ∈ H , k ∈ K } and H−1 := {h−1 : h ∈ H}. (∗)

Proposition 2.5 ([7, Lemma V.2.6]) For any inverse semigroup S, the set of all permissible
subsets of S is an inverse semigroup under the multiplication defined by (∗), in which H−1

is the inverse of H and the natural partial order coincides with inclusion.
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Theorem 2.6 ([7, Theorem V.2.8]) Let S be an inverse semigroup. The assignment H �→ ρ,
where ρ is defined by

– dom ρ = {a ∈ S : a−1a = hh−1, for some h ∈ H},
– ∀a ∈ dom ρ, aρ = ah, where h ∈ H is such that a−1a = hh−1,

is an isomorphism from the inverse semigroup of all permissible subsets of S onto the inverse
semigroup of all one-to-one partial right translation of S.

Proposition 2.7 Let S be an inverse semigroup and H a nonempty subset of S satisfying

h1, h2 ∈ H ⇒ h1h
−1
2 , h−1

1 h2 ∈ E(S).

Then the set

H := { f h : f ∈ E(S), h ∈ H}
is a permissible subset of S generated by H.

Proof By definition, H is the order ideal of the inverse semigroup S generated by H . Since
the natural partial order is compatible with both multiplication and the unary operation
x �→ x−1, given any f1h1, f2h2 ∈ H , we obtain, from f1h1 ≤ h1 and f2h2 ≤ h2, that
( f1h1)( f2h2)−1 ≤ h1h

−1
2 and ( f1h1)−1( f2h2) ≤ h−1

1 h2 which, by hypothesis, imply that
( f1h1)( f2h2)−1, ( f1h1)−1( f2h2) ∈ E(S). Therefore, H is the permissible subset of S gen-
erated by H . ��

Some of the results presented in this paper generalizework done on E-unitaryR-unipotent
semigroups. A regular semigroup S is called E-unitary if it satisfies, for all a ∈ S,

ae ∈ E(S) and e ∈ E(S) ⇒ a ∈ E(S).

An E-unitary regular semigroup is also orthodox. It is well known that in an E-unitary regular
semigroup S, for all a, b ∈ S, ab ∈ E(S) if and only if ba ∈ E(S). It is also well known that
in any E-unitary regular semigroup, the least group congruence σ is idempotent pure.

The notion of extension of a set by a semigroup plays an important role in the study
pursued in this paper. A semigroup S is said to be an extension of H ⊆ S by a semigroup
T if there exists a surjective homomorphism φ : S → T such that E(T )φ−1 = H . If
E(T )φ−1 = E(S), we say that S is an idempotent pure extension of H(= E(S)). This
notion arises naturally in group theory, where a group G is an extension of any of its normal
subgroups H by the quotient group G/H . In this paper we are interested in extensions of left
regular bands by R-unipotent semigroups.

Each R-unipotent semigroup S is an idempotent pure extension of the left regular band
E(S)by the inverse semigroup S/γ via the canonical epimorphism (γ )�, sinceγ is idempotent
pure.

As referred to in Sect. 1, this paper is concerned with the embeddability of regular semi-
groups which are extensions of left regular bands by anR-unipotent semigroup T . In Sect. 3
we describe such extensions in terms of the wreath product of a left regular band by T . A
wreath product is a particular case of a semidirect product in the sense that it is a semidirect
product in which a special action is taken. More precisely, let A and T be semigroups. Con-
sider the semigroup AT of all mappings from T into A, under pointwise multiplication. The
mapping φ : T → End(AT ) defined by x[ f (sφ)] = (xs) f , for all s, x ∈ T , is a left action
of T on AT by endomorphisms. The action s �→ sφ is denoted by s f and so x s f = (xs) f .
The semidirect product AT ∗ T is called the wreath product of A by T and is denoted by
AWr T .
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3 Awreath product embedding

In this section we prove that anyR-unipotent semigroup S can be embedded into a semidirect
product of a left regular band by S/ρ, where ρ is an idempotent pure congruence on S.

Throughout this section S is an R-unipotent semigroup, for any x ∈ S, x ′ denotes an
inverse of x and γ denotes the least inverse semigroup congruence on S. We generalize the
definition of permissible subset for subsets of R-unipotent semigroups. A nonempty subset
H of S is said to be permissible if H = {h ∈ S : hγ ∈ H0} for some permissible subset H0

of S/γ .
We have the following characterization.

Proposition 3.1 A nonempty subset H of S is permissible if and only if

(1) ∀h1, h2 ∈ H , h1h′
2, h′

1h2 ∈ E(S) for some (whence all) h′
1 ∈ V (h1), h′

2 ∈ V (h2);
(2) ∀h ∈ H , ∀ f ∈ E(S)), f h ∈ H.

Proof Let H be a nonempty subset of S. Suppose that H is permissible. Then H = {h ∈
S : hγ ∈ H0} for some permissible subset H0 of S/γ . Now, for h1, h2 ∈ H , we have
(h1h′

2)γ = (h1γ ) (h2γ )−1 ∈ E(S/γ ), since h1γ, h2γ ∈ H0 and H0 is a permissible subset
of S/γ . It follows, by Lallement’s Lemma and since γ is idempotent pure that h1h′

2 ∈ E(S).
Similarly, h′

1h2 ∈ E(S). Moreover, for h ∈ H and f ∈ E(S), we have ( f h)γ = ( f γ )(hγ ),
where hγ ∈ H0 and f γ ∈ E(S/γ ), and so ( f h)γ ≤ hγ . Since H0 is an order ideal (H0 is
permissible) we obtain ( f h)γ ∈ H0, giving ( f h ∈ H .

Conversely, assume that (1) and (2) hold. We show that H is permissible. Let H0 := {hγ :
h ∈ H}. Clearly H = {h ∈ S : hγ ∈ H0}. We show that the subset H0 of S/γ is permissible.
For hγ ∈ H0 and aγ ∈ S/γ , we have

aγ ≤ hγ ⇒ aγ = (eγ )(hγ ), e ∈ E(S)

⇒ aγ = (eh)γ

⇒ a = f (eh), f ∈ E(S) [Proposition 2.3]
⇒ a = ( f e)h, f e ∈ E(S)

⇒ a ∈ H , by (2),

giving aγ ∈ Hγ . Further, let h1γ, h2γ ∈ H0. We show that

(h1γ )−1(h2γ ), (h1γ )(h2γ )−1 ∈ E(S/γ ).

We have

(h1γ )−1(h2γ ) = (h′
1γ )(h2γ ) = (h′

1h2)γ

and so, sinceh1, h2 ∈ H , it followsby (1) that h′
1h2 ∈ E(S). Thus, (h1γ )−1(h2γ ) ∈ E(S/γ ).

Similarly, (h1γ )(h2γ )−1 ∈ E(S/γ ). Hence, H0 is permissible. ��
Proposition 3.2 The set of all permissible subsets of S forms an inverse semigroup with
respect to set product where the inverse of any permissible subset H is H−1 = {h′ ∈
V (h) : h ∈ H}. Moreover, the assignment H �→ Hγ := {hγ ∈ S/ρ : h ∈ H} defines
an isomorphism from the inverse semigroup of all permissible subsets of S onto the inverse
semigroup of all permissible subsets of S/γ .

Proof Let H and K be permissible subsets of S. By definition, H = {h ∈ S : hγ ∈
H0} and K = {k ∈ S : kγ ∈ K0}, for some permissible subsets H0 and K0 of S/γ .
By Proposition 2.5, H0K0 is a permissible subset of the inverse semigroup S/γ . Thus,
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by definition, the set {l ∈ S : l ∈ H0K0} is a permissible subset of S. We show that
HK = {l ∈ S : lγ ∈ H0K0}. It is clear that HK ⊆ {l ∈ S : lγ ∈ H0K0}. Conversely, take
l ∈ S such that lγ = (hγ )(kγ ) = (hk)γ ) for some h ∈ H and k ∈ K . From lγ = (hk)γ
we obtain l = e(hk) = (eh)k, for some e ∈ E(S). Since H is permissible, it follows that
eh ∈ H and so that l ∈ HK . This shows that the set of all permissible subsets of S forms
a semigroup. It is clear by definition that the assignment defined in the proposition is a
mapping; denote it by 	. Let H = {h ∈ S : hγ ∈ H0} be a permissible subset of S where H0

is a permissible subset of S/γ . The γ -classes of S are nonempty, therefore H	 = H0. This
implies that	 is surjective, and it is also injective since H0 uniquely determines H .Moreover,
the argument in the previous paragraph shows that 	 is a homomorphism, Altogether, 	 is,
indeed, an isomorphism whence we obtain that the set of all permissible subsets of S forms
an inverse semigroup. This implies that, for every permissible subset H as above, we have
H−1 = (Hγ )−1 = H−1

0 whence

H−1 = {h′ ∈ S : h′γ ∈ H−1
0 = {h′ ∈ S : (h′γ )−1 ∈ H0}

= {h′ ∈ S : h ∈ V (h′), hγ ∈ H0} = {h′ ∈ V (h) : hγ ∈ H}.
��

Proposition 3.3 For a nonempty subset H of S such that

h1, h2 ∈ H ⇒ h1h
′
2, h

′
1h2 ∈ E(S), (†)

the set H := { f h : f ∈ E(S), h ∈ H} is the permissible subset of S generated by H .

Proof Let H be a nonempty subset of S as in the hypothesis. Then Hγ = {hγ : h ∈ H} is a
nonempty subset of the inverse semigroup S/γ that satisfies

(h1γ ) (h2γ )−1, (h1γ )−1 (h2γ ) ∈ E(S/γ ),

for all h1γ, h2γ ∈ Hγ . Thus, by Proposition 6, the set

Hγ := {( f γ ) (hγ ) : f γ ∈ E(S/γ ), hγ ∈ Hγ }
is the permissible subset of S/γ generated by Hγ . By Proposition 8 we now obtain that
(Hγ )	−1 is a permissible subset of S. Hence H = (Hγ )	−1 is a permissible subset of S
generated by H . ��

For h ∈ S, consider the mapping

ωh : Sh′ → Sh,

xh′ �→ xh′h

where h′ is any inverse of h. The mapping ωh is independent of the choice of h′ in V (h)

since, by Proposition 2.1 (4), Sh′ = Shh′ = Shh∗ = Sh∗, for all h′, h∗ ∈ V (h). It is also
worth calling the attention here to the fact that, in particular, if e ∈ E(S) then ωe = 1Se, the
identity mapping on the set Se.

Proposition 3.4 For each h ∈ S, the mapping ωhis a bijection, and so ωh belongs to the
symmetric inverse semigroup I(S). Furthermore, the equalities (ωh)−1 = ωh′

andωh1ωh2 =
ωh1h2 hold in I(S) for every h, h1, h2 ∈ S and h′ ∈ V (h).

Proof For all x ∈ S, (xh′)ωh ∈ Sh, and

(xh′)(ωhωh′
) = ((xh′)h)h′ = (xh′)(hh′) = (xh′)ωhh′

.
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Since hh′ ∈ E(S), and so ωhh′
is the identity mapping on Shh′ = Sh′, we obtain that

ωhωh′ = 1domωh for all mutually inverse elements h, h′. This implies that ωh ∈ I(S) and
(ωh)−1 = ωh′

for all h, h′ ∈ S with h′ ∈ V (h).
Now let h1, h2 ∈ S. By Proposition 2.1 (6), we see that

ran (ωh1ωh2) = (Sh1 ∩ Sh′
2)ω

h2 = S(h′
1h1h2h

′
2h2) = Sh1h2 = ranωh1h2 .

Moreover, we have

dom (ωh1ωh2) = ran (ωh′
2ωh′

1) = ranωh′
2h

′
1 = domωh1h2 .

Since h′
2h

′
1 ∈ V (h1h2), we obtain by definition that

(xh′
2h

′
1)(ω

h1ωh2) = xh′
2h

′
1h1h2 = (xh′

2h
′
1)ω

h1h2 ,

completing the proof of the equality ωh1ωh2 = ωh1h2 . ��
For any nonempty subset H of S with property (†), define

ϕH :=
⋃

h∈H
ωh .

By Proposition 3.4, this property implies that

(ωh1)−1ωh2 = ωh′
1h2 = 1Sh′

1h2
,

and similarly, ωh1(ωh2)−1 = 1Sh1h′
2
. Hence we immediately obtain the first two statements

of the following proposition by applying [6, Proposition 1.2.1].

Proposition 3.5 Let H , K be nonempty subsets of S having property (†). Then

(1) ϕH ∈ I(S) such that dom ϕH = SH−1(= ⋃
h′∈H−1 Sh′) and ran ϕH = SH(=⋃

h∈H Sh);
(2) ϕHϕK = ϕHK and ϕ−1

H = ϕH−1 ;
(3) ϕ2

H = ϕH , or equivalently, ϕH = 1SH−1 if and only if H ⊆ E(S);
(4) ϕH = ϕH if H satisfies condition (†);
(5) if S is an inverse semigroup and H is a permissible subset of S, then ϕH is just the

one-to-one partial right translation ρ of S assigned to H in Theorem 2.6.

Proof (3) Obviously, ϕH = 1SH−1 if and only if ωh = 1Sh−1 for every h ∈ H , and this is
the case precisely if h ∈ E(S) for every h ∈ H .

(4) Since ω f h ⊆ ωh for f ∈ E(S) and h ∈ H , we have
⋃

h∈H , f ∈E(S) ω f h = ⋃
h∈H ωh ,

whence ϕH = ϕH .
(5) can be easily checked by the definition of ρ. ��

Define the subset C(S) = {ϕH : H is a permissible subset of S} of I(S). In particular, if
S is an inverse semigroup then statement (5) of the previous proposition implies that C(S)

is the inverse semigroup of all one-to-one partial right translations of S. More generally, the
following holds.

Proposition 3.6 The set C(S) forms an inverse subsemigroup of I(S), and consequently, of
the semigroup PT (S) of all partial transformations on S. Moreover, the mapping C(S) →
C(S/γ ), ϕH �→ ϕHγ is an isomorphism, and so C(S) is isomorphic to the inverse semigroup
C(S/γ ) of all one-to-one partial right translations of S/γ .
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Proof Proposition 3.5 (1) and (2) show thatC(S) is an inverse subsemigroup of I(S). Denote
the mapping C(S) → C(S/γ ), ϕH �→ ϕHγ by �. Consider the mappings from the inverse
semigroup of all permissible subsets of S to C(S) and from the inverse semigroup of all
permissible subsets of S/γ to C(S/γ ) given by the assignments H �→ ϕH and H0 �→ ϕH0 ,
respectively, and denote them � and �0. By Proposition 3.5 (2) we also obtain that �

is a surjective homomorphism. Theorem 2.6 and Proposition 3.5 (5) imply that �0 is an
isomorphism, and we have seen in the proof of Proposition 3.2 that the mapping 	 from
the inverse semigroup of all permissible subsets of S into that of S/γ defined by the rule
H �→ Hγ is also an isomorphism. It is clear by definition that 	�0 = ��. Since 	�0 is
an isomorphism, this equality implies that the surjective homomorphism � is also injective.
Therefore � is also an isomorphism whence the same follows for �. ��

For each s ∈ S, let ϕs : S → Ss be defined by x �→ xs. Let

C∗(S) = 〈C(S) ∪ {ϕs : s ∈ S}〉
be the subsemigroup of PT (S) generated by C(S) ∪ {ϕs : s ∈ S}.
Proposition 3.7 For λ = [ϕs1 ]ϕH1 · · · ϕsn [ϕHn ] ∈ C∗(S), where n ∈ N and [· · · ] may occur
or not, let λ = [ωs1 ]ϕH1 · · · ωsn [ϕHn ]. Then
(1) ran λ = ran λ;
(2) dom λ ⊆ dom λ;
(3) λ |dom λ= λ.

Proof We prove the result by induction on n. We first show (1), (2) and (3) for λ ∈
{ϕs, ϕsϕH , ϕHϕs}, where the proof for ϕs and ϕsϕH gives the assertion for n = 1, and the
proof forϕHϕs is needed in the induction step. Forλ = ϕs ,λ = ωs and so ran λ = Ss = ran λ,
dom λ = Ss′ ⊆ S = dom λ and, for xs′ ∈ Ss′, (xs′)λ = (xs′)ϕs = xs′s = (xs′)ωs . For
λ = ϕsϕH , λ = ωsϕH and so ran λ = ⋃

h∈H Sh = ran λ, since xsh = (xs)s′sh,

dom λ = {xs′ ∈ S : (∃y ∈ S) xs′s = yh′} ⊆ {x ∈ S : (∃y ∈ S) xs = yh′} = dom λ

and, for xs′ ∈ dom λ,

(xs′)λ = (xs′)ϕsϕH = (xs′s)ϕH = (yh′)ϕH = yh′h = xs′sh = (xs′)λ.

For λ = ϕHϕs , λ = ϕHωs and so

ran λ = {xh′hs : x ∈ S, h ∈ H and xh′h = ys′ for some y ∈ S} = ran λ,

dom λ = {xh′ : x ∈ S and xh′h = ys′ for some y ∈ S} ⊆ {xh′ : x ∈ S} = dom λ

and, for xh′ ∈ dom λ,

(xh′)λ = (xh′)ϕHϕs = (xh′h)ϕs = (ys′)ϕs = ys′s = xh′hs = (xh′)λ.

Now let n ∈ N and suppose that (1), (2) and (3) are satisfied for
λ = [ϕs1 ]ϕH1 · · · ϕsn [ϕHn ]. Let θ = [ϕs1 ]ϕH1 · · · ϕsn+1 [ϕHn+1 ]. We have

ran θ = (
ran ([ϕs1 ]ϕH1 · · · ϕsnϕHn ) ∩ dom (ϕsn+1ϕHn+1)

)
(ϕsn+1 [ϕHn+1 ])

= (
ran ([ωs1 ]ϕH1 · · · ωsnϕHn ) ∩ dom (ϕsn+1ϕHn+1)

)
(ϕsn+1 [ϕHn+1 ])

= ran ([ωs1 ]ϕH1 · · · ωsnϕHnϕsn+1 [ϕHn+1 ])
= ran (ϕKϕsn+1 [ϕHn+1 ]), where K = [{s1}]H1 · · · {sn}Hn

= (
ran (ϕKϕsn+1) ∩ dom ([ϕHn+1 ])

) [ϕHn+1 ]
= (

ran (ϕKωsn+1) ∩ dom ([ϕHn+1 ])
) [ϕHn+1 ]

= ran (ϕKωsn+1 [ϕHn+1 ])
= ran θ
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and

dom θ = (
ran ([ϕs1 ]ϕH1) ∩ dom (ϕs2ϕH2 · · · ϕsn+1 [ϕHn+1 ])

)
([ϕs1 ]ϕH1)

−1

⊇ (
ran ([ϕs1 ]ϕH1) ∩ dom (ωs2ϕH2 · · · ωsn+1 [ϕHn+1 ])

)
([ϕs1 ]ϕH1)

−1

= dom ([ϕs1 ]ϕH1ω
s2ϕH2 · · · ωsn+1 [ϕHn+1 ])

= dom ([ϕs1 ]ϕK ), where K = H1 · · · {sn}Hn{sn+1}[Hn+1]
⊇ dom ([ωs1 ]ϕK )

= dom θ.

Finally, we show that θ |dom θ= θ . Let x ∈ dom ([ωs1 ]ϕH1 · · · ωsn+1 [ϕHn+1 ]). On the one
hand, we have that x ∈ dom ([ωs1 ]ϕH1 · · · ωsnϕHn ) and so, by hypothesis,

x([ϕs1 ]ϕH1 · · · ϕsnϕHn ) = x([ωs1ϕH1 · · · ωsnϕHn ).

On the other hand, we have that x([ωs1 ]ϕH1 · · · ωsnϕHn ) ∈ dom (ωsn+1 [ϕHn+1 ]) and so
(
x([ωs1 ]ϕH1 · · · ωsnϕHn )

)
(ϕsn+1 [ϕHn+1 ]) = (

x([ωs1 ]ϕH1 · · · ωsnϕHn )
)
(ωsn+1 [ϕHn+1 ]).

Hence

xθ = x([ϕs1 ]ϕH1ϕs2ϕH2 · · · ϕsn+1 [ϕHn+1 ]) = x([ωs1 ]ϕH1ω
s2ϕH2 · · · ωsn+1 [ϕHn+1 ]) = xθ.

��
Lemma 3.8 Let λ,μ ∈ C∗(S) where λ = [ϕs1 ]ϕH1 · · · ϕsn [ϕHn ], and suppose that K is a
permissible subset of S such that [{s1}]H1 · · · {sn}[Hn] ⊆ K. Then we have

(1) λ ∈ E(C∗(S)) if and only if [{s1}]H1 · · · {sn}[Hn] ⊆ E(S);
(2) if λ,μ ∈ E(C∗(S)) then λμ = λμ;

(3) λ
−1 ∈ V (λ);

(4) λϕ−1
K = λλ

−1
and λϕ−1

K λ = λ = λϕ−1
K ϕK ;

(5) if [{s1}]H1 · · · {sn}[Hn] ⊆ E(S) and Hi = tiρ for any idempotent pure congruence ρ on
S and for some ti ∈ S (i = 1, . . . , n) then λϕ(s1t1···sn tn)ρ = λ.

Proof (1)–(2) These statements follow immediately from Proposition 3.7 since λ is idempo-
tent if and only if λ is the identity mapping on dom λ = ran λ.

(3) By definition, it suffices to notice that Proposition 3.7 implies λ
−1

λ to be the identity

mapping on dom λ
−1 = ran λ = ran λ.

(4) By the assumption on K , we have dom λ ⊆ dom ϕK , ran λ ⊆ ran ϕK , and λ is a
restriction of ϕK . This implies the first equality of statement (4), and the rest follows by
applying (3), and that ϕ−1

K ϕK is the identity mapping on ran ϕK .
(5) Let K = (s1t1 · · · sntn)ρ. Since [{s1}](t1ρ) · · · {sn}[(tnρ)] ⊆ E(S) by assumption,

and ρ is an idempotent pure congruence, we see that K ⊆ E(S). Hence ϕK ∈ E(C(S)) and
ϕK = ϕ−1

K ϕK follow, and the last equality of (4) implies the equality to be proved. ��
Theorem 3.9 C∗(S) is an R-unipotent semigroup.

Proof Lemma 3.8 (1) and (3) imply that E(C∗(S)) is a band and C∗(S) is a regular semi-
group. We show that E(C∗(S)) is left regular. Let λ,μ ∈ E(C∗(S)). By Proposition 3.7 and
Lemma 3.8 (2), ran (λμ) = ran λμ = ran (λμ) and so

ran (λμ) = ran λ ∩ ranμ ⊆ ran λ ⊆ dom λ,
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whence dom (λμ) = dom (λμλ). Next, for x ∈ dom (λμ), there is y ∈ S such that x(λμ) =
yλμ. We compute as follows:

x(λμ) = yλμ = y(λμ λ) = (yλμ)λ = (xλμ)λ = x(λμλ).

Summarizing, we obtain λμ = λμλ, whence E(C∗(S)) is left regular. ��
Let S be an R-unipotent semigroup with identity element 1S and let ρ be an idempotent

pure congruence on S. Then each ρ-class uρ satisfies condition (†). By Proposition 3.5
(4) we have ϕuρ = ϕuρ , whence by Proposition 3.5 (2) ϕ−1

uρ = ϕ−1
uρ = ϕuρ−1 follows.

From Lemma 3.8 (4) we directly obtain ϕsϕ
−1
sρ ϕs = ϕs and ϕuρϕsϕ

−1
(us)ρϕuρϕs = ϕuρϕs .

Consider the wreath product E(C∗(S))Wr S/ρ and let � be the correspondence defined by
s� = ( fs, sρ), for all s ∈ S, where fs ∈ C∗(S)S/ρ is defined by (uρ) fs = ϕuρϕsϕ

−1
(us)ρ . By

Proposition 2.2 and the remark above we get (uρ) fs = ϕuρϕsϕ
−1
sρ ϕ−1

uρ = ϕuρϕsϕs′ϕ−1
uρ =

ϕuρϕss′ϕ−1
uρ with s′ ∈ V (s), whence (uρ) fs ∈ E(C∗(S)) by Lemma 3.8 (1). Consequently

� is a mapping from S into E(C∗(S))Wr S/ρ. Note in particular that from the above we
also get fs = fss′ , since ss′ = ss′(ss′)′.

We prove that � is a morphism. Let uρ ∈ S/ρ. We compute

(uρ) fs sρ ft = (uρ) fs(us)ρ ft
= ϕuρϕsϕ

−1
(us)ρϕ(us)ρϕtϕ

−1
(ust)ρ

= ϕuρϕsϕtϕ
−1
(ust)ρ, by Lemma 3.8(4), since uρ{s} ⊆ (us)ρ

= ϕuρϕstϕ
−1
(ust)ρ

= (uρ) fst .

We prove that � is injective. Note first that (1S)ρ = E(S) whence ϕ(1S)ρ = ϕE(S), the
identity mapping on S. Let now ( fs, sρ) = ( ft , tρ). It follows fs = ft and sρ = tρ. Also,

fs = ft ⇒ ((1S)ρ) fs = ((1S)ρ) ft ⇒ ϕss′ = ϕt t ′
⇒ (1S)ϕss′ = (1S)ϕt t ′ ⇒ ss′ = t t ′
⇒ (s, t) ∈ R.

Since sρ = tρ, we now obtain (s, t) ∈ R ∩ ρ. Thus, t ′s = t ′t (since t ′s ∈ E(S), t ′s R t ′t
and S is R-unipotent) and so,

s = ss′s = t t ′s = t t ′t = t .

We have the following theorem.

Theorem 3.10 Let ρ be an idempotent pure congruence on anR-unipotent semigroup S with
identity element. Then S is embeddable into a semidirect product of a left regular band by
S/ρ.

Let now S be an R-unipotent semigroup having no identity element, and let ρ be an
idempotent pure congruence on S. Then ρ can be extended to an idempotent pure congruence
ρ1 on S1 by definingρ1 = ρ∪{(1, 1)}, and S1/ρ1 is nothing but S/ρ with the identity element
{1} adjoined. By Theorem 3.10 there is an embedding � : S1 → E(C∗(S1))Wr (S/ρ){1}
mapping S into the subsemigroup of E(C∗(S1))Wr (S/ρ){1} which consists of all elements
whose second component belongs to S/ρ. Thus we obtain the main result of the paper.

Corollary 3.11 Let S be an R-unipotent semigroup and let ρ be an idempotent pure con-
gruence on S. Then S is embeddable into a semidirect product of a left regular band by
S/ρ.
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If S is an E-unitary R-unipotent semigroup, then the least group congruence σ on S
is idempotent pure and so, by Corollary 3.11, we obtain Szendrei’s embedding result for
E-unitary R-unipotent semigroups.

Corollary 3.12 ([8, Proposition 2.1]) Every E-unitaryR-unipotent semigroup can be embed-
ded into a semidirect product of a left regular band by a group.

4 Embedding in a �-semidirect product

In connection with an embedding of a certain type of R-unipotent semigroups into a λ-
semidirect product of a left regular band by an R-unipotent semigroup, the authors raise, in
[4], the question of “whether any idempotent pure extension of an R-unipotent semigroup
T is embeddable into a λ-semidirect product of a left regular band by T ”. In this section, we
provide a negative answer to this question.

The notion of λ-semidirect product of semigroups was introduced by the first author in [2]
for inverse semigroups, see also [6], and later generalized for locallyR-unipotent semigroups
in [3]. We recall this concept for the special case of R-unipotent semigroups. Let T be an
R-unipotent semigroup acting on a semigroup S by endomorphisms on the left. On the set

S ∗λ T :=
{
(a, x) ∈ S × T : xx ′

a = a, for x ′ ∈ V (x)
}

the equality (a, x)(b, y) =
(
xy(xy)′a xb, xy

)
defines a binary operation. S∗λT with the above

operation is called a λ-semidirect product of S by T .

Proposition 4.1 ([3, Theorem 3]) Let S ∗λ T be a λ-semidirect product of a semigroup S by
an R-unipotent semigroup T . Then

(1) S ∗λ T is a semigroup;
(2) ES∗λT = {(a, x) ∈ S ∗λ T | a ∈ E(S), x ∈ E(T )};
(3) for (a, x) ∈ S ∗λ T , V (a, x) = {( x ′

a′, x ′) | a′ ∈ V (a), x ′ ∈ V (x)};
(4) if S is regular, then so is S ∗λ T ;
(5) if S is R-unipotent, then so is S ∗λ T .

We prove a necessary condition for an R-unipotent semigroup to be embeddable in a
λ-semidirect product of a left regular band by an inverse semigroup.

Proposition 4.2 Let S be an orthodox semigroup which is embeddable in a λ-semidirect
product of a left regular band B by an inverse semigroup T . Then S satisfies the following
condition:

(E) se ∈ E(S) ⇒ se = s2e, for all e ∈ E(S), s ∈ S.

Proof Let s ∈ S and e ∈ E(S) be such that se ∈ E(S). Because of the embedding of S in
B∗λT , B being a left regular band andT an inverse semigroup,wecanwrite s = (b, t) and e =
( f , r), for some b, f ∈ B and t, r ∈ T , where t t ′b = b and rr ′

f = f . Since e is an idempotent
of S, we have that r ∈ E(T ) and f = r f . Also se = (b, t)( f , r) = ((tr)(tr)

′
bt f , tr) is, by

hypothesis, an idempotent, we have that tr ∈ E(T ) and tr(trbt f ) = trbt f = trbtr f = tr(b f ).
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Also, t2r = t2r2 = t · tr ·r = tr · tr = tr , since idempotents commute in T . We then obtain

s2e = (b, t)(trbt f , tr) = (t
2rbt(trbt f ), t2r)

= (trbtrbt
2
f , tr)

= (trbt
2
(r f ), tr)

= (tr(b f ), tr)
= se.

��
The following example provides a negative answer to the open question raised in [4].

Example 4.3 Let S = {1, s, e, f } and consider the operation defined in S by the following
Cayley table:

1 s e f
1 1 s e f
s s 1 f e
e e e e e
f f f f f

.

Clearly, S is an R-unipotent semigroup. The least inverse semigroup congruence γ on S
is idempotent pure and so S is an idempotent pure extension of E(S) by S/γ . Moreover,
se = f ∈ E(S) and se = f �= e = 1e = s2e, that is, S does not satisfy condition (E). Thus,
by Proposition 4.2, S is not embeddable in a λ-semidirect product of a left regular band by
S/γ .
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