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Abstract: The efficient photodegradation of textile dyes is still a challenge, especially considering
resistant azo dyes. In this work, zinc/calcium mixed ferrite nanoparticles prepared by the sol–
gel method were coupled with silver by a photodeposition method to enhance the photocatalytic
potency. The obtained zinc/calcium ferrites are mainly cubic-shaped nanoparticles sized 15 ± 2 nm
determined from TEM and XRD and an optical bandgap of 1.6 eV. Magnetic measurements indicate
a superparamagnetic behavior with saturation magnetizations of 44.22 emu/g and 27.97 emu/g,
respectively, for Zn/Ca ferrite and Zn/Ca ferrite with photodeposited silver. The zinc/calcium ferrite
nanoparticles with photodeposited silver showed efficient photodegradation of the textile azo dyes
C.I. Reactive Blue 250 and C.I. Reactive Yellow 145. Subsequent cycles of the use of the photocatalyst
indicate the possibility of magnetic recovery and reutilization without a significant loss of efficiency.

Keywords: zinc/calcium ferrite; silver photodeposition; photodegradation; azo dyes

1. Introduction

Currently, water resource contamination by industry remains one of the main environ-
mental issues [1,2]. The textile industry is one of the most polluting industries worldwide,
not only considering the huge volumes of water consumed every day, but also the chemi-
cals used in textile processing, such as dyes [3,4]. Effluents containing large amounts of
dyes are discharged daily without completed treatment leading to a high negative impact
on the ecosystem and also being a threat to public health considering their hazardous
nature, persistence, and carcinogenic properties [5,6].

Photocatalysis has emerged as an efficient mechanism for the degradation of dyes [7–9].
In this process, a semiconductor absorbs energy (determined by the bandgap) by exciting
electrons to the conduction band and forming electron/hole pairs. The latter can originate
in reactive species (like the radicals ·O2

− or ·OH) that will react with dye molecules,
converting them into inert products (e.g., water, carbon dioxide) [10,11]. Since about 43%
of total solar radiation falls in the visible spectral region, the use of efficient photocatalysts
absorbing visible light becomes a priority [12,13], also allowing for a decrease in energy
consumption and associated costs [14,15].

Zinc/calcium mixed ferrites have appeared as interesting semiconductors for photo-
catalysis [16]: the incorporation of calcium improved both biocompatibility and magnetic
properties compared to neat zinc ferrite [17,18] and pointed to a possible recovery and
reuse of the magnetic nanoparticles. These nanoparticles present an estimated bandgap of
1.78 eV allowing for the use of visible light in effluent photoremediation [16]. However,
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ferrite nanoparticles present some limitations, namely the high electron/hole recombina-
tion rate giving low photodegradation rates [19]. Several investigations were developed
using noble metals as coatings, to decrease the recombination rate, and to enhance the
photocatalytic activity of the nanosystem [20,21], as the electron is transferred to the silver
nanoparticles while the hole remains in the ferrite phase. Heterostructured materials such
as AgCl on zirconium phosphate [22] and AgCl on ZnAl layered double hydroxide [23]
were also reported to have improved the photocatalytic effect in dye photodegradation.
This enhanced activity was shown to arise from the photoreduction of silver ions into
silver nanoparticles, which enabled the population of the AgCl conduction band through
visible photon absorption by the plasmonic silver nanoparticles. This process can also
be considered a plasmonic-induced separation of electron-hole pairs with the hole on the
metal and the electron on the wide bandgap AgCl semiconductor.

In this work, zinc/calcium mixed ferrites were prepared by the sol–gel method, as this
method is relatively advantageous to co-precipitation concerning the nanoparticle’s size
dispersion and crystallinity [21]. To enhance the photocatalytic activity, the mixed ferrites
were coupled with silver nanoparticles [24,25] undergoing a photodeposition process with
the aim of obtaining the improved characteristics of the photodegradation and reutilization
of the photocatalyst. Rhodamine B was tested as model dye [26–28], while the industrial
textile dyes C.I. Reactive Blue 250 and C.I. Reactive Yellow 145, resistant azo dyes (Figure 1),
were chosen for a comparison with previous work [16], where a non-optimized nanosystem
was unable to degrade these dyes. The results reported here were promising for the scale-up
of the photocatalytic process and reutilization of the catalyst.
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Figure 1. Structure of the industrial textile dyes used in photodegradation assays.

2. Materials and Methods
2.1. Preparation of Mixed Zinc/Calcium Ferrite Nanoparticles

Zinc/calcium ferrite nanoparticles, Zn0.5Ca0.5Fe2O4, were prepared by the sol–gel
method adapting a protocol described by Samariya et al. [29]. A solution containing 20 mL
of water, 807.9 mg of iron(III) nitrate nonahydrate, 73.5 mg of calcium chloride dihydrate,
and 68.15 mg of zinc chloride was placed in a beaker under constant stirring. Then, 630.42
mg of citric acid as morphology controller and 70 µL of concentrated nitric acid were added
to the solution. The solution was slowly heated at 90 ◦C of temperature until it formed a
gel, and then further heated until it formed a loose powder. The as-prepared zinc/calcium
ferrite nanoparticles were calcined for 30 min at 400 ◦C to improve their crystallinity. For
comparison, zinc/calcium ferrite nanoparticles were also prepared by the co-precipitation
method, as previously described [16].

2.2. Silver Coating by Photodeposition Method

The prepared zinc/calcium ferrite nanoparticles, either by the sol–gel or co-precipitation
method, were coupled with silver by photodeposition adapting a method described by
Liu et al. [30]. First, 30 mg of nanoparticles were dispersed in an aqueous solution under
sonication for 30 min. Then, 1.5 mL of silver nitrate 1 M solution and 1 mL of methanol
were added, followed by an irradiation for 12 h with a UV light lamp (200 W Xe-arc lamp,
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L.O.T.-Oriel GmbH & Co. KG, Darmstadt, Germany). After irradiation, the nanoparticles
were washed with ultrapure water (Milli-Q grade) and dried for 12 h.

2.3. Structural Characterization

X-ray diffraction (XRD) measurements were performed in a conventional PAN’alytical
X’Pert PRO diffractometer (Malvern Panalytical Ltd., Malvern, UK) operating with a CuKα

radiation in a Bragg Brentano configuration. Magnetization measurements were carried
out in an MPMS3 SQUID magnetometer (Quantum Design Inc., San Diego, CA, USA). The
hysteresis cycles (magnetization versus magnetic field) of the samples were measured in
the convenient field range for each sample with a possible maximum ±50 kOe (±5 Tesla).
The measurement method was by DC extraction or VSM oscillation at a frequency of 14 Hz.
A specific magnetic field correction for the trapped flux in the superconducting coil was
made achieving an accuracy of residual less than 2 Oe.

TEM images of nanoparticles were acquired using a transmission electron microscope
JEOL 2100 (JEOL USA Inc., Peabody, MA, USA) operating at 200 kV. The solutions were
sonicated in ethanol and dropped onto a TEM grid (copper 400 mesh with a carbon film).
TEM images were processed using ImageJ software (National Institutes of Health (NIH),
Bethesda, MD, USA), and the histograms were fitted to Gaussian distributions.

2.4. Photodegradation Assays

A home-built irradiation apparatus was used to evaluate the photocatalytic activity of
the prepared samples in the degradation of aqueous solutions of the dyes Rhodamine B
(40 mg/L), C.I. Reactive Yellow 145 (80 mg/L), and C.I. Reactive Blue 250 (80 mg/L). The
setup incorporates a 200 W Xenon Arc Lamp (L.O.T.-Oriel GmbH & Co. KG, Darmstadt,
Germany), a 400 nm long-pass filter (Thorlabs Inc., Newton, NJ, USA) to isolate the visible
spectrum radiation, and a sample cuvette holder. Nanoparticles were dispersed, at a
concentration of 2 mg/mL, in an aqueous solution of dye and allowed to equilibrate by
magnetic stirring in the dark for 30 min. Absorption spectra of aliquots taken at given
irradiation times and centrifuged to remove photocatalyst were measured in a Shimadzu
UV-3600 Plus UV-Vis-NIR spectrophotometer (Shimadzu Corporation, Kyoto, Japan).

The kinetic constants of dye photodegradation can be estimated by applying a pseudo-
first-order kinetic model (Equation (1)),

ln(C/C0) = −kt (1)

where k is the photodegradation rate constant (min−1), C0 is the initial concentration of the
dye, and C is the concentration of the dye at different irradiation times, t.

3. Results and Discussion
3.1. Nanoparticles Characterization

It was reported that the coupling of photocatalytic nanoparticles with silver led to a
decrease of a recombination of the generated electron/hole pairs with an enhanced forma-
tion of reactive species and an improved corresponding photocatalytic activity. This was
already described for silver-doped zinc oxide [5], titanium dioxide [25,31], zinc ferrite [21],
CdS nanoparticles [32], and ZnS nanoparticles [32]. In this work, we aimed at preparing op-
timized Zn0.5Ca0.5Fe2O4 nanoparticles with silver islands to potentiate their photocatalytic
activity and allow the reuse of the photocatalyst. For that purpose, the sol–gel method was
chosen for nanoparticle synthesis.

The UV-visible absorption spectra of the prepared nanoparticles are shown in Figure 2A.
Using a standard Tauc plot, a direct bandgap of 1.6 eV was determined for the zinc/calcium
mixed ferrite nanoparticles (Figure 2B). This value is similar to the one obtained previously
for the same type of ferrite prepared by the co-precipitation method [16]. The absorp-
tion spectrum of Zn/Ca mixed ferrite upon silver photodeposition (Figure 2A) clearly
evidenced the presence of plasmonic bands from metallic silver, with a broad band starting
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below 400 nm and extending to the NIR spectral region. These features are compatible with
the presence of either aggregated spherical silver nanoparticles [33] or silver nanodiscs [34].

Nanomaterials 2021, 11, x FOR PEER REVIEW 4 of 14 
 

 

The UV-visible absorption spectra of the prepared nanoparticles are shown in  

Figure 2A. Using a standard Tauc plot, a direct bandgap of 1.6 eV was determined for the 

zinc/calcium mixed ferrite nanoparticles (Figure 2B). This value is similar to the one ob-

tained previously for the same type of ferrite prepared by the co-precipitation method 

[16]. The absorption spectrum of Zn/Ca mixed ferrite upon silver photodeposition (Figure 

2A) clearly evidenced the presence of plasmonic bands from metallic silver, with a broad 

band starting below 400 nm and extending to the NIR spectral region. These features are 

compatible with the presence of either aggregated spherical silver nanoparticles [33] or 

silver nanodiscs [34]. 

 

Figure 2. Absorption spectra of zinc/calcium ferrite obtained by the sol–gel method dispersed in water and with photode-

posited silver (A) and Tauc plot for the ferrite nanoparticles (B). 

XRD results (Figure 3) confirm the crystallinity of the prepared nanoparticles. Profex 

software [35], which is based on BGMN [36], was used to conduct a Rietveld analysis of 

the experimental diffractograms. The crystal structure of the Zn/Ca mixed ferrite was de-

fined through an adaptation of the zinc ferrite CIF file nr. 2,360,015 (space group Fd-3m:1) 

considering a stoichiometric distribution of cations across the tetrahedral and octahedral 

sites and assuming an inversion degree of 1 [17]. The silver phase was accounted by the 

use of CIF file nr. 9,008,459. In Table 1, the main results obtained by the Rietveld analysis 

are shown. 
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posited silver (A) and Tauc plot for the ferrite nanoparticles (B).

XRD results (Figure 3) confirm the crystallinity of the prepared nanoparticles. Profex
software [35], which is based on BGMN [36], was used to conduct a Rietveld analysis of
the experimental diffractograms. The crystal structure of the Zn/Ca mixed ferrite was
defined through an adaptation of the zinc ferrite CIF file nr. 2,360,015 (space group Fd-3m:1)
considering a stoichiometric distribution of cations across the tetrahedral and octahedral sites
and assuming an inversion degree of 1 [17]. The silver phase was accounted by the use of CIF
file nr. 9,008,459. In Table 1, the main results obtained by the Rietveld analysis are shown.
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Table 1. Selected parameters from the Rietveld analysis using BGMN.

Sample Ox,y,z (*) i (*)
Phase Size (nm)

Lattice Constant (nm)
Zn/Ca Ferrite|Ag

Ag (wt%) RP χ2

Zn/Ca ferrite 0.3834 1 (+) 12.3 | —-
0.8418 | —- —– 5.89 1.16

Zn/Ca ferrite
with silver

photodeposition
0.3505 1 (+) 12.4 | 42.4

0.8418(+) | 0.409 4.31 7.91 1.87

(*) Value of Ox,y,z in CIF file 2,300,615 is 0.2535. (+) fixed value.

Reasonable fits with RP values of 7.91 and 5.89, respectively, were obtained from the
samples with and without silver. The mixed ferrite lattice parameter was similar to the
one obtained from similar particles prepared by the co-precipitation method [16]. The
implementation of a size broadening effect in BGMN allowed an estimation of 12.4 nm for
the ferrite phase and 42.4 nm for the silver nanostructures.

The magnetic properties of calcium-substituted zinc ferrite nanoparticles resulted
from the cation distribution along their spinel structure. The magnetic moment of Fe3+

cations is 5 µB while Zn2+ and Ca2+ are non-magnetic. Additionally, Ca2+ is a large cation
with an ionic radius of 0.99 Å, having a strong influence on the distributions of magnetic
ions in interstitial sites. The spinel structure of calcium-substituted zinc ferrites could
be written as (Ca2+

x Zn2+
y Fe3+

1−x−y)[Ca2+
x Zn2+

y Fe3+
1+x+y]O

2−
4 , where the round and square

brackets represent tetrahedral (A) and octahedral [B] sites, respectively; x and y denote the
inversion degree as the fraction of the (A) sites are occupied by Fe3+. Both divalent cations,
Zn2+ and Ca2+, had a tetrahedral (A) site preference [17,37], anticipating a reduction of
exchange interactions between the cation’s occupancy in both tetrahedral and octahedral
sites. Thus, the net magnetization was expected to decrease with a possible migration of
the divalent cations to the octahedral site.

Figure 4 displays the magnetic hysteresis loops of the synthesized nanoparticles at
room temperature. These measurements gave information about the saturation magneti-
zation (Ms), the degree at which the sample remains magnetized after the applied field
was removed (the remanent magnetization, Mr), and how easily the sample magnetization
could be reversed, the so-called coercive field (C). The magnetic properties are summarized
in Table 2.
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Table 2. Coercive field (C), saturation magnetization (Ms), remanent magnetization (Mr), and ratio
Mr/Ms for zinc/calcium ferrites at room temperature.

Nanoparticles Ms (emu/g) Mr (emu/g) C (Oe) Mr/Ms

Zn0.5Ca0.5Fe2O4 (sol–gel) 44.22 5.03 82.66 0.11
Zn0.5Ca0.5Fe2O4 (sol–gel)/Ag

(photodeposition) 27.97 3.31 85.43 0.12

Using the sol–gel preparation technique, the maximum magnetization of zinc/calcium
mixed ferrite rose more than two times compared with the similar, previously observed
nanoparticles prepared by the co-precipitation method (Ms = 20.45 emu/g [16]), despite
their significantly higher coercivity. This evidenced a notable improvement in the magnetic
properties of the ferrites, which was important for the purpose of the magnetic recovering
(and reuse) of the photocatalyst. Regarding the silver-doped nanoparticles, as expected,
the saturation magnetization is lower, due to the presence of a non-magnetic silver coating.
Jasso-Terán et al. [17] reported Zn0.5Ca0.5Fe2O4 nanoparticles of about 14 nm and a satura-
tion magnetization of 31.31 emu/g, also prepared by the sol–gel methodology. Here, for a
similar size, a higher maximum magnetization was reached.

Both Zn0.5Ca0.5Fe2O4 and Zn0.5Ca0.5Fe2O4/Ag nanoparticles showed to be in the
limit for a superparamagnetic behavior, with magnetic squareness values, Mr/Ms, of about
0.1 (Table 2). If below 0.1, this ratio indicated that more than 90% of the magnetization
was lost upon the removal of the applied magnetic field and the nanoparticles were
superparamagnetic. The low field region enlargement (inset of Figure 4) revealed a slightly
opened curve with coercivity values of 82.66 Oe and 85.43 Oe for Zn0.5Ca0.5Fe2O4 and
Zn0.5Ca0.5Fe2O4/Ag nanoparticles, respectively.

Transmission electron microscopy (TEM) imaging results of the prepared nanoparticles
are presented in Figure 5.
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Figure 5. TEM images of a plain Zn/Ca mixed ferrite (A,E) and coupled with silver (B,F). Size (C) and aspect ratio
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fast Fourier transform (FFT) of, respectively, images E and F, and include the identified electron diffraction rings from their
Miller indices for Zn/Ca ferrite spinel (white) and silver fcc (yellow) crystal structures.
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Zn/Ca mixed ferrites (Figure 5A,E) exhibited a cubic-like structure and the silver
photodeposition process seemed to introduce smaller round particles (Figure 5B,F). Size
estimation was achieved by manually outlining the particles and considering the diameter
of a circle with an equivalent area. The corresponding histogram (Figure 5C) showed that
the size of the mixed ferrite nanoparticles is 15 ± 2 nm, which got enlarged upon the silver
photodeposition process into 17 ± 5 nm. As the XRD results showed no significant size
variation of the ferrite phase upon silver photodeposition, the increase seen here either
corresponded to an enhanced nanoparticle aggregation or to an increase in size by silver
coupling to the mixed ferrite nanoparticles. Nevertheless, the estimations of the size of the
ferrite phase from TEM and XRD are compatible. There was also a noticeable appearance
of a smaller size population (9.4 ± 0.9 nm) in the nanoparticles obtained by the silver
photodeposition process. This was tentatively assigned to silver nanoparticles coupled
with the ferrite surface, as observed in a previous study using a different silver deposition
process [16]. Yet, the XRD size prediction of the silver phase was much higher (42.4 nm).
This discrepancy could be due to the influence of a specific topology of the nanoparticles
(silver on ferrite surface), as it was already observed in other metal coupled nanostructures,
namely a gold diffraction peak width from a 2 nm shell equal to the one from a 10 nm
magnetite core [38]. Using ImageJ software, it was possible to fit each outlined particle in
a rectangle. Taking the ratio between the longer and smaller side, it resulted in an aspect
ratio parameter that is represented in Figure 5D taking values mainly up to 1.4.

Further confirmation of the structure of imaged nanoparticles in Figure 5E,F could be
obtained through fast Fourier transform (FFT) showing spots that resulted from periodic
variations of the TEM images. These were analyzed by measuring the radius in the Fourier
space of the circles that overlap in diffraction spots. The inverse of such a radius was
the distance of adjacent lattice planes, dhkl, where (h, k, and l) are Miller indices. For
Figure 5G, using the spinel crystal structure and the lattice parameter obtained from the
XRD measurements, it was possible to obtain a calibration factor so that the observed
rings were compatible with the diffraction from the mixed Zn/Ca ferrite. Using the same
calibration factor in the analysis of Figure 5H, some of the rings were also ascribable to the
fcc (face centered cubic) structure of silver with the lattice parameters obtained from the
XRD measurements. This analysis gave an indication of the presence of silver nanoparticles
in Figure 5F probably corresponding to the circular-like areas.

3.2. Photodegradation Assays

Rhodamine B is widely employed as a model dye in photodegradation studies and
was also used here for comparison purposes. To clarify the effect of the preparation
method of mixed zinc/calcium ferrites, ferrite nanoparticles prepared by either sol–gel
or co-precipitation were compared. Clearly, the sol–gel preparation method was advanta-
geous for the degradation of Rhodamine B by silver-photodeposited coated nanoparticles
(Figure 6) with a total degradation after 120 min (Figure 6B), while for nanoparticles pre-
pared by co-precipitation, the degradation attained only 35% (Figure 6A). First-order
kinetics was followed in both cases (Figure 6 C,D), with rate constants in Table 3. The
results previously obtained for nanoparticles prepared by co-precipitation and silver de-
posited by a reflux procedure [16] were also shown for direct comparison. In the case of
Rhodamine B, the higher rate constant was half of the previously observed in nanoparticles
with silver coating obtained by reflux, probably due to a higher content of silver on the
latter, and to a higher particle load (3 mg/mL).

Table 3. Rate of degradation of the dyes in a pseudo-first-order kinetics.

k (min−1)

Rhodamine B RB250 RY145

Zn0.5Ca0.5Fe2O4 (co-precipitation)/Ag (photodeposition) 0.0035 0.0321 0.0214
Zn0.5Ca0.5Fe2O4 (sol–gel)/Ag (photodeposition) 0.0310 0.0847 0.0292

Zn0.5Ca0.5Fe2O4 (co-precipitation)/Ag (reflux) [16] 0.0614 0.0104 0.0058
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Figure 6. (A,B): Photodegradation assays of solutions of the dye Rhodamine B (40 mg/L) by
zinc/calcium ferrite nanoparticles covered with silver by photodeposition. b. c.: Dye absorption
spectrum before adding the catalyst; (A): Ferrites prepared by co-precipitation; (B): Ferrites prepared
by sol–gel. (C,D): Plot of the pseudo-first-order kinetics for degradation of Rhodamine B; (C): Ferrites
prepared by co-precipitation; (D): Ferrites prepared by sol–gel.

The developed nanoparticles were also assayed in the degradation of the textile
industry dyes Reactive Blue 250 and Reactive Yellow 145. For Reactive Blue 250 (Figure 7),
a total degradation was obtained with zinc/calcium ferrites obtained by sol–gel and
photodeposition of silver (after 9 min) with a strong decrease in dye content in the first
5 min (Figure 7B). In this latter case, a first-order kinetics was obtained only until 30 min,
as almost all dye was in fact degraded in this time interval.
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Figure 7. (A,B) Photodegradation assays of solutions of the textile dye Reactive Blue 250 (80 mg/L)
by zinc/calcium ferrite nanoparticles covered with silver by photodeposition; b. c.: Dye absorption
spectrum before adding the catalyst; (A) Ferrites prepared by co-precipitation; (B) Ferrites prepared by
sol–gel. (C,D) Plot of the pseudo-first-order kinetics for degradation of Reactive Blue 250; (C) Ferrites
prepared by co-precipitation; (D) Ferrites prepared by sol–gel.
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Regarding the Reactive Yellow dye, the degradation is less efficient. For the ferrites
prepared by co-precipitation, the degradation was gradual until 120 min (Figure 8A,C). For
the sol–gel nanoparticles (Figure 8B,D), a fast degradation was observed until 30 min, with
a decrease in rate thereafter.
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Figure 8. (A,B) Photodegradation assays of solutions of the textile dye Reactive Yellow 145 (80 mg/L)
by zinc/calcium ferrite nanoparticles covered with silver by photodeposition; b. c.: Dye absorption
spectrum before adding the catalyst; (A) Ferrites prepared by co-precipitation; (B) Ferrites prepared
by sol–gel. (C,D) Plot of the pseudo-first-order kinetics for degradation of Reactive Yellow 145;
(C) Ferrites prepared by co-precipitation; (D) Ferrites prepared by sol–gel.

The obtained rate constant for Reactive Blue 250 using Zn0.5Ca0.5Fe2O4 (sol–gel)/Ag
(photodeposition) nanoparticles was similar to the reported value (k = 0.0885 min−1) for
Reactive Blue 4 using pure anatase nano-TiO2 under UV light [39]. Regarding RY145,
the degradation rates were much lower but were higher than the value reported for this
dye using a Ni3O4-Co3O4/Al2O3 catalyst when pseudo-first-order kinetics was followed
(k = 0.01623 min−1) [40]. The different degradation rates of the two reactive azo dyes must
be related to chemical structure variations, as already observed in the photodegradation
of azo dyes using ZnO nanoparticles [41]. This different reactivity also manifests itself
as distinct adsorption effects on absorption spectra, when comparing particles obtained
from co-precipitation or sol–gel methods, where similar variations were observed for the
blue dye (Figure 7A,B) while an enhanced absorption decrease was exhibited in sol–gel
nanoparticles for the yellow dye (Figure 8A,B). The main structural difference was the
existence of an s-triazine ring in the yellow dye, which was probably responsible for the
distinct behavior. As referred in the Introduction section, the degradation mechanism was
mainly determined by the action of reactive species like the ·O2

− or ·OH radicals, which
were formed during the irradiation by the catalytic effect of the nanoparticles studied. The
·OH could result from the reaction of the holes, h+VB, with adsorbed OH− ions or water
molecules. However, this was not possible for the used photocatalyst, as the valence band
position for ZnFe2O4 and CaFe2O4 was 0.38 eV [42] and 0.42 eV [43], respectively, whereas
the reduction potentials for ·OH/OH− and ·OH/H2O were 1.99 V [42] and 2.31 V [44],
respectively. The superoxide anion (·O2

−) originated from the transfer of conduction band
electrons (e−CB) by dissolved oxygen. As the reduction potential for O2/·O2

− is−0.18 V [44]
and the conduction band position for zinc/calcium ferrite was calculated to be between
−1.22 eV and −1.18 eV, the production of superoxide was very favorable. In the previous
discussion, all the values of energy and reduction potentials were relative to NHE (normal
hydrogen electrode). This superoxide radical could originate ·OH through the formation
of H2O2 using further conduction band electrons [42]. Although the valence band position
was not very positive, direct oxidation of adsorbed molecules was also possible [42].
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Thus, the main reactive species were the superoxide, the ·OH (indirectly produced via
superoxide), and h+VB. This was proved using suitable scavengers for both CaFe2O4 [43] and
ZnFe2O4 [45]. The effect of silver decorated nanoparticles was a decrease of the possibility
of electron-hole recombination by acting as a sink for the ferrite conduction band electrons.
Additionally, it could also enhance the transfer of electrons to oxygen. Then, the following
photodegradation mechanism was expected:

Zn0.5Ca0.5Fe2O4 + hν → Zn0.5Ca0.5Fe2O4
(
e−CB ) + Zn0.5Ca0.5Fe2O4

(
h+VB

)
Zn0.5Ca0.5Fe2O4

(
e−CB

)
+ Zn0.5Ca0.5Fe2O4

(
h+VB

)
→ Zn0.5Ca0.5Fe2O4

Zn0.5Ca0.5Fe2O4
(
e−CB

)
+ O2 → Zn0.5Ca0.5Fe2O4 + ·O2

−

Zn0.5Ca0.5Fe2O4
(
h+VB

)
+ Dye → Zn0.5Ca0.5Fe2O4 + (photodegradation products)

Zn0.5Ca0.5Fe2O4
(
e−CB

)
+ ·O2

− + 2H+ → Zn0.5Ca0.5Fe2O4 + H2O2

Zn0.5Ca0.5Fe2O4
(
e−CB

)
+ H2O2 → Zn0.5Ca0.5Fe2O4 + ·OH + OH−

Dye + ·OH → (photodegradation products)

Dye + ·O2
− → (photodegradation products)

Overall, the results pointed to a significant rise in photodegradation efficacy using
zinc/calcium ferrites prepared by sol–gel and coated with photodeposited silver in the
case of blue and yellow industrial dyes, relative to previous work [16] (where these two
dyes were hardly degraded) and the systems that used UV-light reported in the literature.

The possibility of reutilization of the photocatalyst was an important feature of the
magnetic-nanoparticles-based materials for effluent remediation. This way, a two-cycle
assay was performed using the Reactive Blue 250 dye and the more active photocatalyst
Zn0.5Ca0.5Fe2O4 (sol–gel)/Ag (photodeposition). After the first cycle of degradation for
120 min, the catalyst was magnetically removed and washed, and no loss of mass was
detected. The photodegradation assay was then repeated (Figure 9). Only a slight loss of
catalyst activity could be observed with the percentage of the degraded dye in the second
cycle being higher than 90%. This result pointed to promising reuse of this photocatalyst in
industrial effluent remediation by taking advantage of the magnetic recovery.
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4. Conclusions

In this work, zinc/calcium mixed ferrite nanoparticles were synthesized by a sol–gel
method and coupled to silver clusters by photodeposition. Upon silver photodeposition, it
was found that the sol–gel method originated ferrite nanoparticles with superior photocat-
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alytic properties towards Rhodamine B photodegradation. The developed nanoparticles
were also successfully employed in the photodegradation of industrial textile azo dyes
showing, for all, full degradation using visible light, whereas, in a previous study [16] only
the red azo dye was completely photodegraded. The magnetic properties of the nanoparti-
cles were exploited for easy isolation of the photocatalyst, and no loss of photocatalytic
response upon reuse was demonstrated.
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