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A B S T R A C T

In this paper, we discuss the use of mixed-effects modeling for analyzing land use change in the Brazilian
Pantanal subregion of Cáceres, Mato Grosso State, Brazil. The proposed method, easily extendable to similar case
studies, consisted of two steps. First, spatio-temporal data, consisting of Landsat images of the study area from
1993, 1999, 2004, 2009, and 2015, were obtained. The data are polygons with numerical data (year and area)
and categorical data (land use and soil type). Second, we analyzed the data using four linear mixed models able
to incorporate both the fixed and the random effects underlying the clustered data. The proposed models allowed
analyzed complex data structures, such as multilevel data, taking into account particularities of each land use
type as a function of the year. The models were fitted to identify land use changes over time. In particular, the
point estimate of the random slope in the case of the Pasture class, the value of the random slope is 0.043, which
indicates an increase of about 21.5% in hectare over the next 5 years; The point estimate of the slope for the
Forest was −0.04, which indicates a decrease of about 20.5% in hectare in next 5 years.

1. Introduction

Understanding the spatio-temporal relationships between natural
and anthropogenic changes in ecosystems, including wetlands, is ne-
cessary for planning, management, and monitoring of natural re-
sources. Studies of land use and occupation require the adequate
characterization of different types of natural vegetation (Rosa, 2003).

The Pantanal is a large wetland containing several types of vege-
tation (landscape units) forming complex habitats having multiple
functions and is an important natural resource. Both flooding and the
interactions between these habitats are necessary for their existence
(Silva and Girard, 2004; Wantzen et al., 2008). The double seasonality
and variations in the flood regime impact structure and floral compo-
sition of the wetland, making the habitat more sensitive to anthro-
pogenic processes (Bove et al., 2004; Adamoli, 2005).

Land cover information is essential for proper planning, manage-
ment, and monitoring of natural resources (Zhu, 1997). In particular,
remote sensing data are useful for analyzing changes in terrestrial
ecosystems, including dynamic changes in energy and water, plant
cover, species composition, and the physical properties of soil. Viable
information on the nature of land coverage on the regional and global

scale are obtained using synoptic-vision and remote-sensing to map
wetland (Csaplovics, 1998; Foody, 2002).

Methods based on land use change (LUC) have been proposed. For
example, Weng (2002) investigated LUC dynamics by combining re-
mote sensing data, geographic information systems (GIS), and sto-
chastic modeling. Clements et al. (2014) studied detecting vegetation
changes in East Africa using Normalized Difference Vegetation Index
(NDVI) data and multiple testing methodologies. Rawat and Kumar
(2015) carried out a study on land use/cover change using geospatial
techniques. Pramudya et al. (2016) investigated the impact of climate
change on agriculture by identifying land use conversions in Landsat
satellite images obtained over the course of the last 20 years and con-
ducting logistic regressions.

However, detecting the temporal and spatial details of LUC can be
challenging. Studies that consider both statistical and computational
methods are promising for analyzing remotely sensed data (Clements
et al., 2014). Methodologies that detect LUC must be sensitive and
accurate to form environmental policy decisions. Veldkamp and Lambin
(2001) argued that statistical analysis is a powerful tool for analyzing
LUC because it can test theoretical assumptions, rank relative factors,
and rigorously test hypotheses.
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In this manuscript, a method for analyzing LUC based on a mixed-
effects modeling approach is proposed. The model incorporates both
fixed and random effects. The former allows one to consider observed
explanatory factors and the latter accommodates possible unobserved
factors; together, these factors are important for correctly modeling the
variable of interest, the area per land use type. This article is organized
into four main sections. In Section 2, we describe the study area, the
data pre-processing, model specifications, and primary statistical ana-
lysis methods. In Section 3, we present the results and discussion.
Conclusion remarks are provided in Section 4.

2. Methods

2.1. Study area

Pantanal biome occupies 1.76% of Brazil's land area, totaling
150, 355 km2 (IBGE, 2004; Brasil, 2009). It is located in the Alto Para-
guai (BAP) basin, in the central-west region of the country. The Pan-
tanal of Cáceres is one of the subregions of the Mato Grosso Pantanal,
occupying approximately 9.01% of its land area (Silva and Abdon,
1998).

The Pantanal subregion of Cáceres occupies 12,412 km2, of which
12, 371 km2 (99.66%) is devoted to the municipality of Cáceres. This
municipality is located between the Paraguai river and the municipality
of Corumbá, Mato Grosso do Sul (south) and borders the Republic of
Bolivia and Pantanal of Poconé (west) (Neves et al., 2008) (Fig. 1).

The study area contains a variety of species adapted to the dynamic
flood cycle. The Pantanal subregion of Cáceres has both forested and
unforested vegetation and features three principle phyto-physiognomic
categories: the Wooded Savanna, the Forest Savanna, and the Grass
Savanna (Abdon and Silva, 2006).

According to Dallacort et al. (2014), the mean annual temperature
varies from °21 C to °32 C in the study area. However, in the spring, the
maximum daily temperatures may exceed °41 C. The annual average
precipitation is 1400mm, varying from 800 to 1600mm. The elevation
varies from 90 to 150m, and there are plateaus varying from 200 to
1200m above sea level (ANA, 2005; Alho and Silva, 2012).

The types of vegetation in the Pantanal are influenced by its soil,
which has formed from loose sediment dating from Quaternary period.
The soil primarily consists of sand, with some areas of clay and soil with
a high organic matter content (Pott et al., 2011). The primary types of
soil in the study area are: Plinthosols, Planosols, and Gleysols, the
presence of which show the influence of hydromorphic processes
(Fernandes et al., 2007).

2.2. Data pre-processing

In this paper, we propose a method for analyzing LUC in the
Pantanal subregion of Cáceres using a mixed-effects modeling ap-
proach. The Methodology flowchart is presented in Fig. 2.

Spatio-temporal data for the study were obtained using image
composites from the Thematic Mapper (TM) sensor onboard the
Landsat 5 (bands 3, 4, and 5) and the Operational Land Imager (OLI)
sensor onboard the Landsat 8 (bands 4, 5, and 6), both freely available
from the image catalogs of the United States Geological Survey (USGS,
2017).

The study area was covered by the following Landsat scenes (paths/
rows): 227/71, 227/72, 228/71, and 228/72 (30-m spatial resolution;
185-km swath width; 16-day temporal resolution; and 8-bit or 16-bit
radiometric resolutions) (USGS, 2017). The images were from 1993,
1999, 2004, 2009, (Landsat-5), and 2015 (Landsat-8).

Images from 1993, 1999, and 2004 were collected in September,
and those from 2009 and 2015 were collected in August; both months
are in the dry period. Images were chosen based on the vegetation
appearing in the image. During this time in the Savanna (Cerrado),
vegetation was undergoing a period of leaf shedding, which allowed the

vegetation to be identified.
After the radiometric correction by ArcGIS (version 9.2) (Esri, 2007)

of the images obtained by Landsat 5 and 8, the georeferenced images
were imported into the Georeferenced Information Processing System
(SPRING), version 5.1.8 (Camara et al., 1996). Finally, a mosaic of
images of the study area was created.

Next, the Landsat images were processed using an image segmen-
tation algorithm available in the SPRING software, tests with different
values of similarity and area were performed.

The best combination for grouping two spectrally similar regions
into a single region was the similarity value 10 and area 10 (0.9 ha)
from 1993, 1999 and 2004, similarity 10 and area 16 (1.44 ha) from
2009. In the case of the 2015 image acquired from Landsat 8, we chose
similarity value 10 and area 20 (1.8 hectare).

For classification, six distinct thematic classes of vegetation were
considered in this study based on the land use and land cover classes
proposed by IBGE (2013): Pasture, formed by grass native to the region
and exotic grassland composed of cultivated pastures; Forest, defined
by dense or open tree formations with varying degrees of continuity;
Savanna, consisting of two classes of vegetation open grasslands and
small arboreal vegetation; Water, all water bodies; Burned areas de-
fined by extensions of areas affected by fire; and Other Use, consisting
of urban areas, farmhouses and roads.

Finally, the training areas were identified and supervised classifi-
cation of the images was performed using Bhattacharya's method in
SPRING with a threshold of acceptance of 99.9% (Xaud and Epiphanio,
2014). The maps generated by SPRING were converted to matrix-vector
form and exported in a format shape file to ArcGIS for cartographic
mapping and quantification of thematic classes using the attribute
calculator.

We visited the study area in 2014 and 2015 to take photographs of
the area and collect Ground Control Points (GCPs) to support the
classification of the satellite images.

The soil map for the basin was edited and quantified using ArcGIS
software. This soil map was obtained from the web site of the Instituto
Brasileiro de Geografia e Estatística (IBGE); the scale of the map was
1:250,000 (IBGE, 2017).

We classified the soil of the Pantanal subregion of Cáceres into eight
classes; they were: Plinthosols (PT); Gleysols (GL); Planosols (PL);
Arenosols (AR); Alisols (AL); Ferralsols (FR); Fluvisols (FL); and
Leptosols (LP) (Fernandes et al., 2007).

2.3. Model specification

All modeling was conducted using RStudio statistical software ver-
sion 1.0.153 (RStudio, 2015). We used the lme4 package (Bates et al.,
2015a) to obtain R (R Core Team, 2015). According to Bates et al.
(2015b), the package provides functions that fit and analyze linear
mixed, generalized linear, mixed, and nonlinear mixed models.

The analyzed geocoded data consists of polygons, each identified by
a pair of coordinates based on: year of data collection (five distinct
years); area of the polygon (in hectare); land use type (six classes); and
soil type (eight classes). The first inputs are numerical and the latter are
categorical. The spatio-temporal data consists of an average of 19,000
polygons per year over five different years.

Linear mixed models (LMMs) are the short-reference to linear
mixed-effect models in which both fixed and random-effect terms,
along with their variance and covariance components, are considered.
These models can be expressed in different but equivalent forms ap-
propriate for representing grouped data, i.e., when data are gathered
over time or when data consists of clusters of related statistical units. In
our case, these clusters are land use type.

With the goal of modeling LUC over time, our model can be pre-
sented in matrix form as follows:
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where Nq and Nni are multivariate normal distributions of dimension q
and ni, respectively, and yi is the ×n 1i response vector representing
area measurements in the ith category of land use type. The ni need not
be equal. Xi is the ×n pi model matrix of fixed-effect regressors

representing observations in the ith use type category. Examples of
regressors, also commonly referred to as explanatory variables, are year
or soil type. is the ×p 1 vector of the fixed-effect coefficients, which
are assumed invariant for all land use types. Zi is the ×n qi matrix of
regressors for the random effects for observations in the ith category of
use type. bi is the ×q 1 vector of random effects coefficients for land use
type i, i is the ×n 1i vector of errors for area measurements in the ith
category of use type, is the ×q q covariance matrix for the random
effects, and Ini is the identity matrix of dimension ni.

In our study, we also used a Generalized linear mixed model
(GLMM). GLMMs are a class of more flexible linear mixed models that,
rather than modeling responses directly, apply a link function g (.). A
GLMM is an extension of a generalized linear model (GLMs), because it
adds random effects to the linear predictor of a GLM and expresses the
expected value of the response conditional on the random effects.

To understand LUC data over time, we modeled areas of polygon
obtained from images composites over five different years. An ex-
ploratory analysis of our spatio-temporal data indicated there were
some response variables that were gross outliers. Consequently, we
used the logarithm as the link function g (.) as a mitigation approach to
address the presence of outliers. In matrix form, the GLMM is

Fig. 1. Map of Pantanal subregion of Cáceres, Mato Grosso State, Brazil.

Fig. 2. Methodology flowchart (LRT is the Likelihood-Ratio Test and AIC is the
Akaikes Information Criterion).
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where µi is the ×n 1i expectation vector for the response, the area
measurements, conditional on the random effects. i is the ×n 1i linear
predictor for the elements of the response vector. =g log(.) (.) is the link

function, transforming the conditional expected response to the linear
predictor.

2.4. Statistical analysis

Prior to model fitting, we conducted an exploratory data analysis to
gain insight into our spatio-temporal data. R statistical software offers
many ways to easily summarize and visualize the most important

Fig. 3. Distribution of thematic land use classes in the Pantanal subregion of Cáceres in 1993, 1999, 2004, 2009 and 2015.
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characteristics of a data set. We used the table function to build con-
tingency tables showing the number of each categorical variable, such
as soil type or land use type.

We also produced boxplots to display groups of area measurements
(i.e., graphically comparing grouped values), which is useful for ana-
lyzing data symmetry and determining the presence of outliers. The
barplot function, which creates bar plots with vertical or horizontal
bars, proved useful for handling large datasets. We used this function to
graphically compare the area distribution (over time) with respect to
land use type.

The Akaikes Information Criterion (AIC) is frequently used to
compare multiple models fit to the same database (Burnham and
Anderson, 2002). The criterion supports choosing the model that
minimizes the AIC. We chose one that captures the primary underlying
characteristics of a dataset. We compared several models with different
structures for random effects, e.g., the random intercept or both the
random intercept and the slope, while allowing the slope to be corre-
lated or uncorrelated. We also considered different fixed-effects in the

analyzed mixed models.
We tested hypotheses on the variances and covariances of the

random effects by deleting the random-effects terms from the model
and maintaining identical fixed-effects (i.e., nested models). Tests were
based on the change in the log of the maximized likelihood, i.e., the
(log) likelihood-ratio tests (LRT). In the R environment, the Analysis of
variance (ANOVA) function was used as the LRT to compare nested
models, providing significance testing of both fixed and random effects.
If two models under comparison were not nested, then the AIC was
chosen over the LRT.

3. Results

3.1. Exploratory analysis

In this section, we present and analyze the results obtained using the
proposed methods, starting with the thematic map (Fig. 3). After that
we present the data graphically.

The classification shown in Fig. 3 provides an overview of the major
land use features present in the Pantanal subregion of Cáceres in the
state of Mato Grosso, Brazil, from 1993 to 2015. The Pantanal sub-
region of Cáceres is a sub-region comprising the Floristic Contacts of the
Ecotonic type between the Pioneer Formations and Cerrado, the tree
Savanna (Cerrado), and the grassy-woody Savanna (field), which re-
present 75% of the vegetation cover in the region (Abdon and Silva,
2006).

Over the study period, an expansion of the area of the pasture class
is observed. In the Pantanal, the conversion is from forest to pasture,
particularly in the upland areas (the ridges), as discussed in Brasil
(2010) and WWF (2010).

The graph in Fig. 4 shows the area distribution over the five distinct
years of analysis, showing the land use variation over time. In Fig. 4,
one observes that the areas per land use type increase or decrease lin-
early over time. In addition, the slopes and intercepts vary, which
suggests a model with random slopes and intercepts (Equations (M1)-
(M4)).

In particular, Fig. 4 indicates that the area of the Pasture increases,
and the area of the Forest and Savanna decrease over time. The Burned
areas constitutes a large portion of the study area in 1993 and 1999.
This is relevant because the local vegetation is characterized by dif-
ferent behavior in times of drought (Rodrigues et al., 2002), which
favors the incidence and spread of fire, in addition to other climatic
factors, such as high temperature, low humidity, and wind.

3.2. Modeling results

As we did in our exploratory data analysis, we started our model-
based approach with a simple model (M1), which is a particular case of
Eq. (1), as follows:

= + + × +Area b b Year ,ij i i ij ij1 2 (3)

where Areaij represents the area measurement for the jth polygon
within the ith category of land use type, is a common fixed intercept,
b i1 identifies the random intercepts per land use type, b i2 represents the
random slopes per land use type as a function of year, and ij is the error
of the observation j in use type i. To confirm the importance of the
random slopes b i2 , we performed a likelihood-ratio test (LRT), obtaining
a p-value 0.01146.

Next, we attempted to include soil type as a fixed-effect in the model
(M2), as follows:

= × + + × +Area SoilType b b Year ,ij ij i i ij ij1 2 (4)

where is a vector of fixed-effect coefficients associated with the eight
categories of soil type.

Models M1 and M2 are nested; thus, an LRT can be adopted to test
for significant differences between the two. Fox and Weisberg (2015)

Fig. 4. Distribution of area use type.

Table 1
Summary of AIC values obtained for the linear mixed models. Model 1 (M1) and
Model 2 (M2) are Linear Mixed Models (LMMs). Model 3 (M3) and Model (M4)
are Generalized Linear Mixed-Models (GLMMs).

Models M1 M2 M3 M4

AIC 1,736,930 1,736,851 824,537.8 824,289.7

Fig. 5. Estimates and standard deviations for the fixed-effect coefficients in
model M4 with respect to the eight soil types, namely: Plinthosols (PT), Gleysols
(GL), Planosols (PL), Arenosols (AR), Alisols (AL), Ferralsols (FR), Fluvisols (FL)
and Leptosols (LP).
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did not perform an LRT for fixed-effects when the mixed model was
fitted by the restricted maximum likelihood (REML), as it is in the lme4
package (lmer function). Therefore, when performing ANOVA, we re-
fitted models with ML instead of REML. The p-value obtained from the
LRT was 0.9917. This large p-value indicates that it is not evidence to
adopt model M2, which excludes the explanatory variable “soil type”
from the analysis.

Our next model, M3, is defined as a particular case of Eq. (2), with
which we tested whether there were advantages of using the general-
ized linear mixed model.

= + + ×
= =
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where N2 is a Multivariate Normal of dimension two, 11 represents the
variance of the random intercepts, 22 represents the variance of the
random slopes, and 12 represents the covariance between these two
random effects. Moreover, µij is the expected area measurement for the
jth polygon in the ith use type, and ij is the corresponding linear pre-
dictor. The GLMM was fitted by maximum likelihood (Laplace Ap-
proximation), using the glmer function of the lme4 package.

In comparing models M1 and M3, we observed that the corre-
sponding AIC values dropped from 1,736,930 to 824,537.8 (see
Table 1), strongly supporting the use of the log-link in our model.
Notably, the standard deviation of the error measurements, ij, dropped
from 1358.82 to 17.2.

Lastly, we employed a GLMM, in which the soil type is considered to
be a fixed-effect. The new model, M4, is an extension of M3 that
changes the linear predictor ij as follows:

= × + + ×SoilType b b Year .ij ij i i ij1 2 (6)

Table 1 presents a summary of AIC values obtained for the four
linear mixed models under consideration. Model M4 is preferable to
model M3 due to its lower AIC value. Based on the LRT, in which M3
and M4 are equivalent under the null hypothesis, we obtained a p-value

0, showing the advantages of M4.
We present a summary of the results obtained using M4. Fig. 5 gives

the estimated fixed-effect coefficients and corresponding standard de-
viations. These results reveal how the type of soil explains the area
measurements per land use type.

We conclude that there is no statistically significant difference be-
tween Alisols (AL), Ferralsols (FR) and Leptosols (LP) soil types.

Fluvisols has the largest area, (FL), followed by Planosols (PL) and
Gleysols (GL).

Hydromorphic soils are common in the Pantanal, being “subject to
alternating periods of natural flooding and drying, leading to formation
and differentiated characteristics” (Coringa et al., 2012). In particular,
the Planosols (PL) and Gleysols (GL) soils are saturated with sodium. In
addition, pasture areas are prone to flooding, which likely explain the
land cover of areas with this soil (Santos et al., 1997).

Based on the covariance matrix of random effects, we conclude that:
=^ 490.611 ; =^ 142.522 ; We also observe that the correlation between

the random intercepts and random slopes is 0.39. Furthermore, the
standard deviation of the error measurements, ij, is 17.27.

The left-panel of Fig. 6 shows 95-percent confidence intervals (CI)
for the random intercepts, represented by bi1 in Equation (M4).

Because our primary goal is to understand the land use changes in
the Pantanal over the 22-years of study, understanding the random
slopes b i2 appearing in Equation (M4) and listed in the right-panel of
Fig. 6 is important. We conclude that the Savanna and the Forest classes
show a statistically significant negative slope over time, while the
Pasture class shows a positive slope.

In particular, in the case of the Pasture class, the value of the
random slope is 0.043, which indicates an increase of about 21.5% in
hectare over the next 5 years; The point estimate of the slope for the
Forest was −0.04, which indicates a decrease of about 20.5% in hec-
tare in next 5 years, assuming all other factors are fixed.

4. Conclusions

A formal framework for LUC analysis supported by mixed-effects
modeling was proposed, evaluated, and used to determine LUC in the
Brazilian Pantanal subregion of Cáceres. The framework was based on
spatio-temporal data obtained using multi-year satellite imagery. Data
collected in five year were processed and analyzed using ArcGIS soft-
ware. We then compared four statistical models incorporating both
fixed and random-effects in the R environment.

Two LMMs and two GLMMs were compared using categorical and
numerical data. M1 considered random intercepts per land use type and
the random slopes per land use type as a function of year. M2, as an
extension of M1, considered the soil type as a fixed-effect. The GLMM
models M3 and M4 were fitted to maximum likelihood (Laplace
Approximation), using the glmer function in the lme4 package. Finally,
in M4, an extension of M3, the soil type was considered to be a fixed-
effect. The diagnostic analysis using LRT and AIC indicated that M4
performed best among the tested models.

The final model M4 revealed that, over the period 22-year study
period, there was a statistically significant positive slope for the Pasture

Fig. 6. The 95-percent confidence intervals for the random intercepts b i1 (left-panel) and random slopes bi2 (right-panel) in model (M4).
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class and negative slopes for the Savanna and Forest classes.
Incorporating the soil type into M4 as a fixed-effect helped improve the
characterization of the LUC interactions.

This study illustrates that combining remote sensing, GIS, and
GLMM offers a formal framework useful for the spatio-temporal ana-
lysis of LUC that is otherwise difficult using conventional techniques.
The statistical analysis has proven to be a powerful tool for analyzing
LUC, as it allows one to rank relative factors and to formally test al-
ternative hypotheses.

Another direction for future study is the extension of the method to
multilevel models for characterizing the LUC on a season by season
basis. Examining other measures, such as rainfall, relief, and vegetation
indices and using modeling approaches similar to those discussed here
may help in an analysis of LUC in wetland areas.
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