

Universidade do Minho

CENTRO DE CIÊNCIA E TECNOLOGIA TÊXTIL

www.2c2t.uminho.pt

The Power of Specialized Biomolecules Against Bacteria

Tânia D. Tavares*, Joana C. Antunes, Jorge Padrão, Ana I. Ribeiro, Andrea Zille, M. Teresa P. Amorim, Fernando Ferreira, Helena P. Felgueiras Centro de Ciência e Tecnologia Têxtil (2C2T), Universidade do Minho, Portugal

*taniatav@2c2t.uminho.pt

Introduction

Bacterial growth can be inhibited by antimicrobial agents, causing disruption of vital cellular functions resulting in rapid cell death. Typically, these agents act at the level of the bacterial membrane, which is a crucial structure for cell survival. Currently, there is a vast array of antimicrobial biomolecules. For many years, the most widely used have been the antibiotics. However, their excessive consumption has led to an alarmingly high resistance development by bacterial pathogens, raising a serious global public-health problem. Hence, the interest in the research for novel alternatives to antibiotics has been growing. Natural products are becoming very promising as antimicrobial agents, being considered safe and environmentally friendly. Here, we envisage the evaluation of the antimicrobial efficacy of antimicrobial peptides (AMPs), namely LL37 and pexiganan, and essential oils (EOs), tea tree oil (TTO), cinnamon leaf oil (CLO) and niaouli oil (NO), against four associated bacteria commonly to nosocomial infections: Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa. The antibiotic vancomycin and silver nanoparticles (AgNPs) were used as control compounds for comparison purposes.

Antimicrobial Solutions Preparation

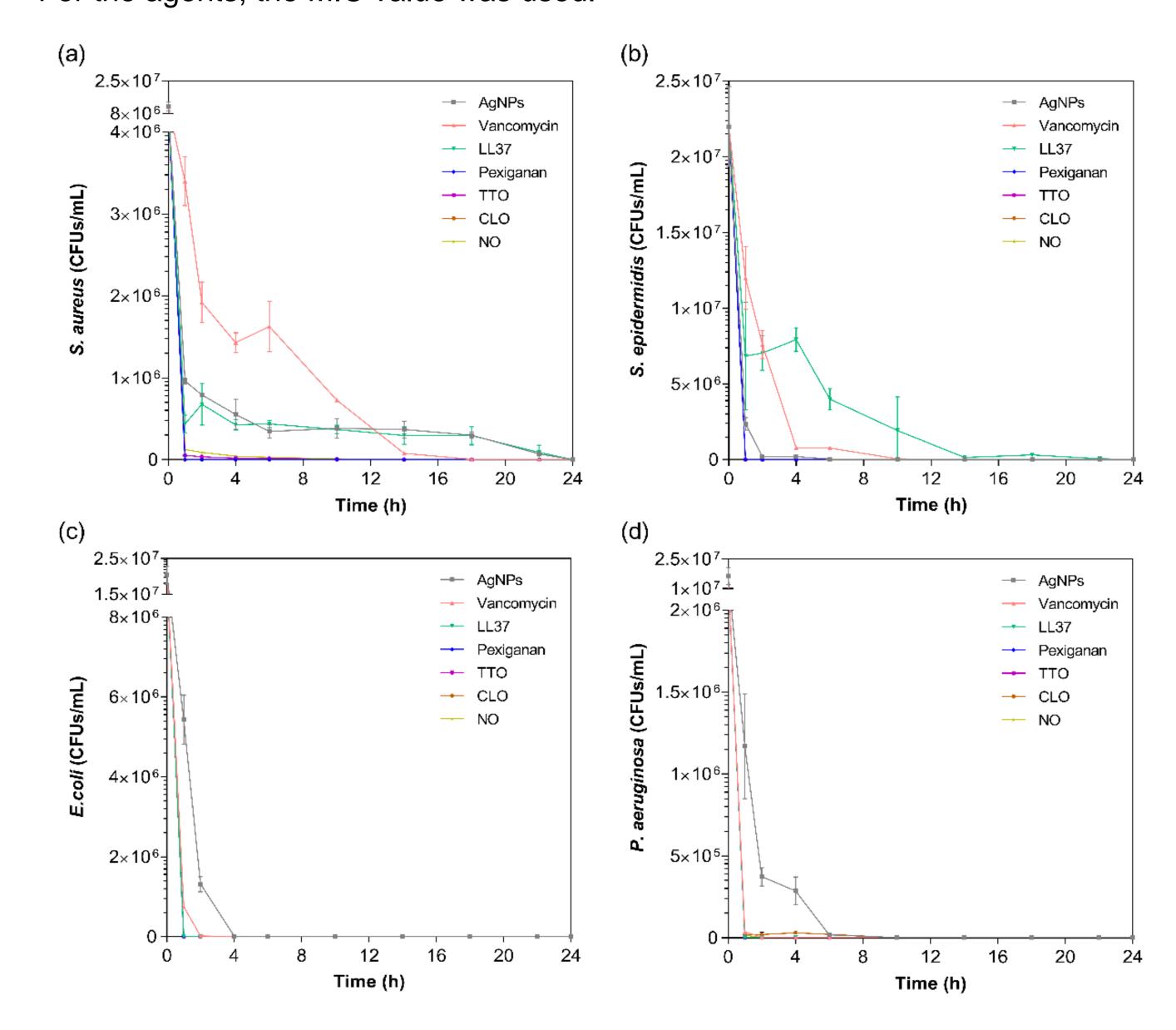
Antimicrobial agents	Solvent	Concentrations
AgNPs	Distilled water (dH ₂ O)	5000-1.95 μg/mL
Vancomycin	dH_2O	2000-1.95 μg/mL
LL37	Phosphate buffered saline solution (PBS)	1000-0.98 μg/mL
Pexiganan	dH_2O	1000-0.98 μg/mL
TTO	Mueller Hinton broth (MHB)	500-0.18 mg/mL
CLO	MHB	500-0.18 mg/mL
NO	MHB	500-0.18 mg/mL

Antimicrobial Action

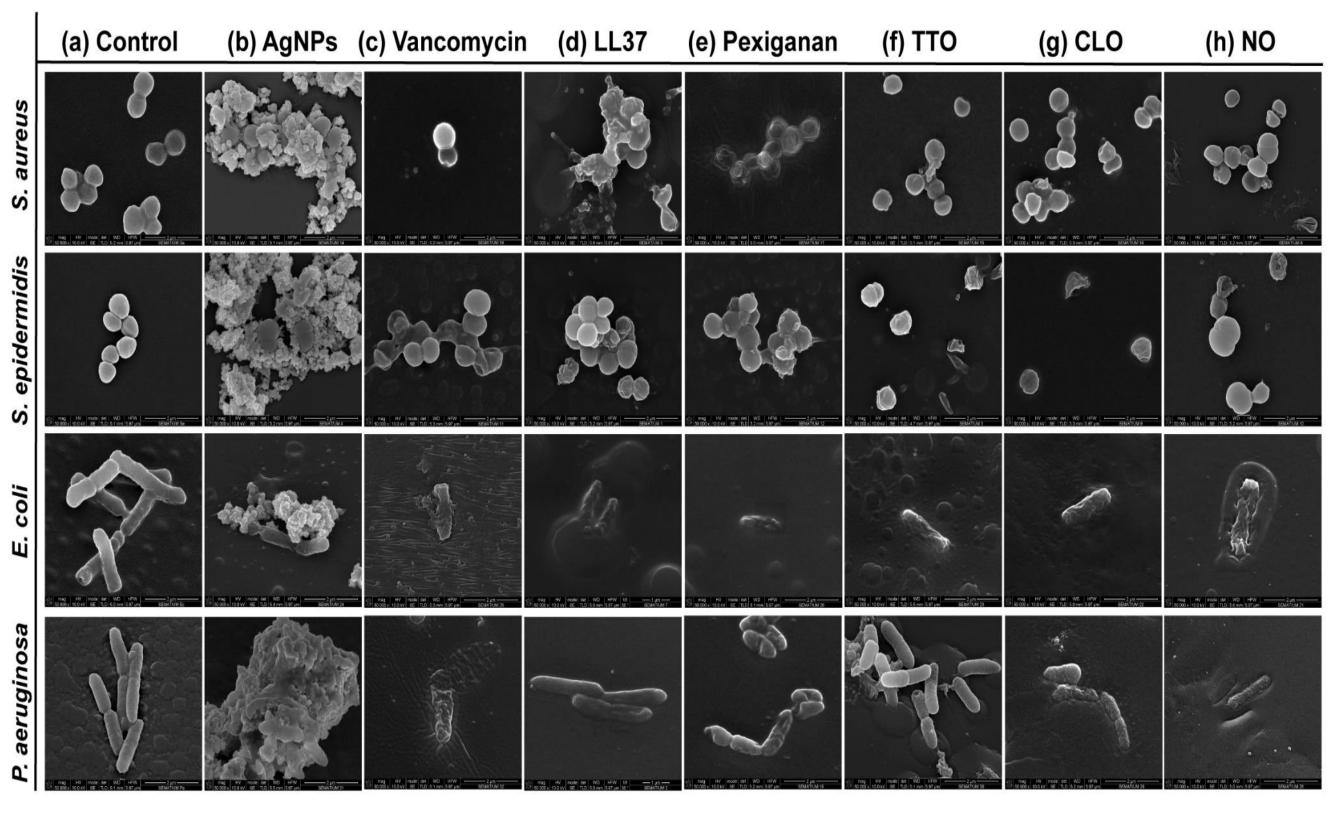
1) Agar-Well Diffusion Assay

Initial Bacteria Concentration: 2x10⁶ CFUs/mL in TSB For the agents, the highest concentration was used.

Antimicrobial agents	Zol Diameter (mm)				
	S. aureus	S. epidermidis	E. coli	P. aeruginosa	
AgNPs	11.5 ± 1.7	10.6 ± 0.6	8.8 ± 0.5	8.8 ± 3.0	
	22.5 ± 0.5	22.5 ± 0.5	8.0 ± 0.1	8.0 ± 0.2	
Vancomycin	0	0	0		
	6.5 ± 0.1	6.5 ± 0.5	6.3 ± 0.1	6.2 ± 0.1	
LL37					
	9.0 ± 0.5	12.2 ± 0.6	8.0 ± 1.5	12.0 ± 0.1	
Pexiganan					
	20.2 ± 0.1	15.0 ± 0.5	15.5 ± 0.5	13.3 ± 0.3	
TTO					
	21.5 ± 0.5	15.0 ± 1.0	15.0 ± 1.9	15.0 ± 0.6	
CLO					
	14.7 ± 0.4	10.0 ± 0.5	11.5 ± 0.5	6.8 ± 0.5	
NO					


2) Minimum Inhibitory Concentrations (MICs)

Initial Bacteria Concentration: 2x10⁷ CFUs/mL in MHB


Antimicrobial agents	MICs				
	S. aureus	S. epidermidis	E. coli	P. aeruginosa	
AgNPs	4000.0 μg/mL	4000.0 μg/mL	4000.0 μg/mL	1250.0 µg/mL	
Vancomycin	7.8 µg/mL	7.8 µg/mL	1000.0 μg/mL	1000.0 μg/mL	
LL37	500.0 µg/mL	500.0 µg/mL	125.0 μg/mL	250.0 µg/mL	
Pexiganan	31.3 µg/mL	7.8 µg/mL	62.5 µg/mL	31.3 µg/mL	
TTO	67.1 mg/mL	179.0 mg/mL	33.6 mg/mL	268.5 mg/mL	
CLO	26.2 mg/mL	26.2 mg/mL	19.7 mg/mL	39.3 mg/mL	
NO	137.0 mg/mL	182.6 mg/mL	137.0 mg/mL	365.2 mg/mL	

3) Kill-time Analysis: Bacteria Viability

Initial Bacteria Concentration: 2x10⁷ CFUs/mL in MHB For the agents, the MIC value was used.

4) Cell-Wall Disruption: Mechanisms of Action (SEM observations) Initial Bacteria Concentration: 2x10⁷ CFUs/mL in MHB For the agents, the MIC value was used.

Conclusions: All agents were effective against the selected bacteria. Interestingly, the AgNPs required a higher concentration (4000–1250 μ g/mL) to induce the same effects as the AMPs (500–7.8 μ g/mL). Pexiganan was the most effective biomolecule.

For more details please refer to DOI: 10.3390/antibiotics9060314

