
2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

Published by IOP Publishing for Sissa Medialab
Received: August 26, 2020

Revised: November 26, 2020
Accepted: February 28, 2021

Published: May 11, 2021
TECHNICAL REPORT

A continuous integration and web framework in support
of the ATLAS publication process
J.P. Araque Espinosa, 𝑓 G. Baldi Levcovitz,𝑎 R.M. Bianchi,𝑖 I. Brock,𝑑 T. Carli,𝑏

N.F. Castro, 𝑓 ,𝑔 A. Ciocio,ℎ M. Colautti,𝑒 A.C. Da Silva Menezes,𝑎 G. De Oliveira da Fonseca,𝑎

L. Domingues Macedo Alves,𝑒 A. Hoecker,𝑏 B. Lange Ramos,𝑎 G. Lemos Lúcidi Pinhão,𝑎, 𝑓

C. Maidantchik,𝑎 F. Malek,𝑐,∗ R. McPherson, 𝑗 G. Picco𝑒 and M. Teixeira Dos Santos𝑎

𝑎Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
𝑏CERN, Geneva, Switzerland
𝑐LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble, France
𝑑Physikalisches Institut, Universität Bonn, Bonn, Germany
𝑒Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine, Italy
𝑓 Laboratório de Instrumentação e Física Experimental de Partículas, Lisbon, Portugal
𝑔Departamento de Física, Escola de Ciências, Universidade do Minho, Braga, Portugal
ℎLawrence Berkeley National Laboratory and University of California, Berkeley, U.S.A.
𝑖Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, U.S.A.
𝑗Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

E-mail: fmalek@lpsc.in2p3.fr

Abstract: The ATLAS collaboration defines methods, establishes procedures, and organises advi-
sory groups to manage the publication processes of scientific papers, conference papers, and public
notes. All stages are managed through web systems, computing programs, and tools that are de-
signed and developed by the collaboration. A framework called FENCE is integrated into the CERN
GitLab software repository, to automatically configure workspaces where each analysis can be doc-
umented by the analysis team and managed by the relevant coordinators. Continuous integration is
used to guide the writers in applying consistent and correct formatting when preparing papers to be
submitted to scientific journals. Additional software assures the correctness of other aspects of each
paper, such as the lists of collaboration authors, funding agencies, and foundations. The framework
and the workflow therein provide automatic and easy support to the researchers and facilitates each
phase of the publication process, allowing authors to focus on the article contents. The framework
and its integration with the most up to date and efficient tools has consequently provided a more
professional and efficient automatized work environment to the whole collaboration.

Keywords: Computing (architecture, farms, GRID for recording, storage, archiving, and distribu-
tion of data); Software architectures (event data models, frameworks and databases)

ArXiv ePrint: 2005.06989
∗Corresponding author.

c© 2021 CERN. Published by IOP Publishing Ltd on behalf of Sissa
Medialab. Original content from this work may be used under the terms

of the Creative Commons Attribution 4.0 licence. Any further distribution of this work
must maintain attribution to the author(s) and the title of the work, journal citation
and DOI.

https://doi.org/10.1088/1748-0221/16/05/T05006

https://orcid.org/0000-0003-2927-9378
https://orcid.org/0000-0001-7345-7798
https://orcid.org/0000-0003-0903-8948
https://orcid.org/0000-0003-4058-5376
https://orcid.org/0000-0001-8491-4376
https://orcid.org/0000-0002-3081-4879
https://orcid.org/0000-0002-6596-9395
https://orcid.org/0000-0002-3511-0133
https://orcid.org/0000-0002-0948-5775
https://orcid.org/0000-0001-9211-7019
mailto:fmalek@lpsc.in2p3.fr
https://arxiv.org/abs/2005.06989
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/16/05/T05006


2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

Contents

1 Introduction 1

2 ATLAS publication process strategy 2

3 The FENCE framework 6
3.1 The main concepts of FENCE 6
3.2 Configuration files in FENCE 7
3.3 Security in FENCE 7

4 The analysis web-based systems with a focus on its initial phase 7
4.1 The main functionalities of the Phase 0 system 8
4.2 FENCE-GitLab integration 9

5 PO-GitLab and CI tools 10
5.1 GitLab structure to organize analysis groups and repositories 11
5.2 Automatic document creation 12
5.3 Continuous checks with GitLab CI 12
5.4 Paper submission 13

6 Author lists, acknowledgements, and the proof checker 14
6.1 Author lists and acknowledgements files 14
6.2 Proof checker functionalities 15

6.2.1 Proof checker synonyms 17
6.2.2 Report page 18

7 Conclusion 19

1 Introduction

The ATLAS Physics and Committees Office (also known as the Physics Office, or PO) is one of
the ATLAS collaboration’s [1] executive committees. It is composed of physicists and engineers
performing tasks connected to the continuous support of committees and groups including the
ATLAS management, the physics coordinators, the publication committee, the analysis group
conveners, the authorship committee, the speakers committee, and many others. The PO also
provides assistance to any member of the ATLAS collaboration, by, for example, facilitating
membership, authorship, paper submission to the arXiv and journals, and the review of talks and
posters for national and regional meetings.

– 1 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

The PO supports the development of several tools including those used to manage physics
analyses, prepare and submit papers, distribute detector performance documents, and track con-
ference proceedings. It uses web-based systems to track the metadata connected with analyses,
version control for editing documents, and author lists. PO members are available to guide users in
understanding the tools and also assist with other daily tasks to lower the load on each member of
the collaboration.

The ATLAS collaboration has an extensive organizational structure for work on detector main-
tenance and operation, computing, data analysis, and scientific publication and outreach. Collabo-
rative tools are needed to provide efficient communication among collaborators and straightforward
interaction with the journals, the institutions, and the funding agencies.

This paper focuses on the infrastructure for managing analysis and papers, especially its most
recent developments, which were launched in fall 2017. Due to the phasing out of the use of
Apache Subversion [2], a new system with document version control functionality was built using
the FENCE framework. The new system is based on Git [3] and the associated CERN GitLab1

code repository hosting platform [4]. This system is now used to handle any analysis or document
type, for internal use or for publication. The FENCE framework is used not only for ATLAS
document handling, but for the organization of information about other entities including members,
institutes, appointments, equipment, talks, and conferences. It is also used by the ALICE and LHCb
experiments for similar purposes.

Many business workflow management software packages already exist in the market, such as
Monday [5] and Kissflow [6]. Those tools offer similar features like workflow definition, tracking
and email notifications, but they are meant for automatizing any type of business workflow, whereas
this work was implemented to satisfy solely the ATLAS publication process. Therefore, in this
project, it was decided that a new and personalized solution should be developed, adapted to the
LHC and physics community needs. The main reason for this decision was that integration with
other internal systems and Application Program Interfaces (APIs) had already been developed
using the FENCE framework, and using a different solution would have required significant effort
to rebuilding these connections.

This paper is organized as follows. Section 2 describes the ATLAS publication process in
general. The FENCE framework is described in section 3, and its organization of the early stages
of an analysis and integration with GitLab is explained in section 4. The ATLAS GitLab area for
editing documents and submitting papers to the journals, PO-GitLab, is described in section 5. A
description of the main tools used to support the collaboration author list and the acknowledgements
of funding agencies and foundations is given in section 6. A summary is given in section 7.

2 ATLAS publication process strategy

The ATLAS experiment supports a wide physics program to explore the fundamental nature of
matter and the associated forces. To do so, it makes use of the Large Hadron Collider (LHC),
which collides protons at almost the speed of light and a center-of-mass energy of 13 TeV. To carry
out such a physics program, physicists need software and graphical tools to analyze the data and

1Gitlab is a Git-repository manager platform used by the ATLAS collaboration platform to host its Git repositories.

– 2 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

compare them to theoretical models. Once a data analysis is finished, the group of researchers start
developing one or more documents that will be published to report their results.

ATLAS is organized into several Physics and Combined Performance working groups and
subgroups, as well as several Projects (e.g. sub-detector projects) and Activities (e.g. the Trigger
or Computing activity). These groups are coordinated by conveners appointed by the collaboration
for typically two years.

The publication process facilitates the communication among editors and the ATLAS collabo-
ration as a whole, and also supports the editing and review. The publications are categorized in types:

• PAPER: these are publications in peer-review journals, based on collision data analyses and/or
detector projects;

• PUB notes: these are unpublished public documents classified as notes; they sometimes use
only simulated data;

• PROC and CONF notes: these are conference proceedings and notes, respectively, containing
preliminary results which are shown at conferences;

• INT: these are internal notes or technical documents;

• PLOT: these are plots that can be used along with the above-mentioned documents.

The most complex workflow involves the approval and submission of a PAPER. Therefore, this
workflow is explained in detail below. The workflow is illustrated in figures 1 to 3 and is composed
of four phases: Phase 0, Phase 1, Phase 2 and Submission. The other document workflows normally
comprise a subset of the steps present in a PAPER workflow, and thus their details are omitted.

Phase 0 represents the launch of the workflow. There, the responsible groups are constituted;
the Analysis Team (AT), a group of editors of an Analysis document, is formed; the group and
subgroup conveners in charge of overseeing the analysis are identified; and, finally, an Editorial
Board (EB) is set up to support the analysis review. At this stage, the main physics goals of
the publication are formalized, and the proposal goes through an approval process. The first
integration with GitLab follows immediately, when a dedicated repository is created, based on a
default document template defined for the ATLAS collaboration. This new repository contains all
the necessary files to make the continuous integration (described in section 5) work properly during
the draft development. After that, the AT starts writing the first paper draft and the supporting
documents. The EB has the responsibility to enforce the implementation of ATLAS policies, review
the analysis and corresponding documentation, and decide if the analysis is worth publishing in the
proposed form. The Publication Committee (PubComm) chair may be consulted in decisions made
during this process. The editors and conveners are also involved to support the definition of the
final format of the paper — a letter or an article — and the target journal.

The next two phases, Phase 1 and Phase 2, consist of the validation of the draft document and
its first and second circulation to the ATLAS collaboration, respectively. A paper approval meeting
is held after the first circulation, in order to discuss the feedback given by the collaboration and the
EB. After the second circulation, there is a paper closure meeting closing the document for further
editing. Once the second circulation has passed, the document is sent to the PubComm chair for

– 3 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

Start

Constitution of Analysis Team

Appointment of group and 
subgroup conveners in 

charge of analysis

Expression of Interest 
Meeting

Constitution of Editorial 
Board

Approval Meeting

Preparation of 1st Draft

End of 
Phase 0

Formalization of analysis 
main goals

Figure 1. A representation of the initial Phase 0 of a PAPER workflow, when the supporting groups are
formed and the analysis goals defined.

a final sign-off. The ATLAS Spokesperson (SP) is ultimately responsible for the scientific quality
of the results from the ATLAS collaboration and makes a final review of each paper before the
Submission phase starts.

The final draft can be signed off by the SP or their delegate. When the SP has signed off, the
Phase 2 workflow is complete. A message to the PO is generated to inform it that a new document
is ready to submit. This marks the start of the Submission phase.

An internal CERN preprint is produced and the final publication title is defined. Further on, a
public web page is setup containing the figures and tables in the paper, as well as additional support-
ing figures and tables, and the PO officers proceed with the submission to the arXiv. At this stage,
the proposed peer-review journal is contacted to receive the document for review. The PO officers
are responsible for communication with the journal during all the steps (referee reports and proofs)
throughout the whole Submission workflow. The referee reports are reviewed together with the AT
and the EB, and a formal answer to each question raised is prepared to be sent back to the journal.

Author lists and acknowledgements are both generated and handled through the FENCE frame-
work, described in section 3. Their production is described in detail in section 6.1. Before the
final publication and after the refereed review and acceptance by the journal, proofs are sent to the
collaboration for a last check. While the editors proofread the content of the paper within a short
period of time, usually two days, the PO officers check whether the authors and their affiliations
have been appropriately handled by the journal, through comparison with the original files sent to
them. This check is performed in large part automatically using a tool called the Proof Checker,
which is described in section 6.2. If everything is correct, the document is published online. The
journal references and any previous replacements (e.g. for erratum submission and acceptance)

– 4 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

Publication draft review

Is it ready to 
circulate?

Physics 
Approval 
Meeting

Physics Closure 
Meeting

Paper is closed
Publication 

Committee chair 
review

ATLAS 
Spokesperson signs 

off

End of Phase 
1 and 2

1st Circulation

Yes

Start of Phase 1 
and 2

NoNo

2nd Circulation

Editorial Board signs off 
1st draft

Publication draft review

Is it ready 
to circulate?

Editorial Board signs 
off 2nd draft

Yes

No

Figure 2. A representation of the Phases 1 and 2 of a PAPER workflow. These two phases include
the collaboration review of the document being produced, as well as the final sign-off by the ATLAS
Spokesperson.

Receivement of 
journal referee 

reports

End
Start of 

Submission 
phase

Journal acceptance

Author list and 
aknowledgements 

review

Journal submission

Final ArXiv 
replacement

Publishing of 
document online

CERN Preprint 
production (Reference 

and URL)

Final title definition

Figures webpage setup ArXiv submission

Erratum 
submittance

Erratum acceptanceAnswer to journal 
referee reports

Publication 
review

Figure 3. A representation of the Submission phase of a PAPER workflow.

are finally incorporated into the record. This is the last step of the workflow, which closes the
procedure and makes available the references to the publication on the arXiv, public web pages, and
the INSPIRE-HEP database [7].

– 5 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

ATLAS members interact with this workflow through web-based systems developed using the
FENCE framework, which is described in section 3. The technical implementations for each phase,
with a focus on Phase 0, as well as the integration with GitLab are described in section 4. The
metadata filled in any of the Phases are exported to web sites to display the necessary information,
including the Public Results pages. Some of the metadata are also used internally by the collab-
oration to monitor the journal submission process or related activities. The GitLab Continuous
Integration (CI) tools, which are explained in section 5, allow validation of the document drafts
and preparation of the appropriate ready-to-go tarball, a compressed set of files, containing the full
LaTeX [8] resources and files for the submission to the arXiv and peer-review journals.

3 The FENCE framework

FENCE is an object-oriented PHP [9] framework designed for the development of web applications.
It encompasses the concepts of encapsulation, data abstraction, polymorphism, and inheritance.
FENCE uses an Oracle [10] database (DB) to store the data fetched and displayed in its interfaces.
Oracle is the default DB management system used, although with some development effort, other
relational database services such as MySQL [11] and Microsoft SQL Server can be used.

3.1 The main concepts of FENCE

The FENCE framework is composed of a library of helper classes that are extensible program-code
templates for creating objects. Any new class can be coded and added to the framework, extending
its capabilities, and can then be reused in different systems. One example is the Search class that
provides methods to create search interfaces to filter the data through predefined search attributes.
Likewise, the SuperSearch class offers an advanced search interface where the user can build
queries using logical operators. The inputs that are entered into a form can easily be added using
classes such as DateInput and MemberInput, which provide a calendar-based input and a selection
box with the list of all members of the collaboration, respectively.

The FENCE Workflow class represents a state machine. It is based on the concept of Directed
Cyclic Graphs (DCG) that encompasses the relationships between objects. Nodes and Edges
compose a Workflow that, in the case of ATLAS publication process, represent the several steps
and tasks associated to it. Examples of these tasks are triggering the creation of an E-group, a
mailing list solution provided by CERN, or performing an update of a GitLab repository.

One functionality for workflows is to send out e-mail notifications based on its state transition
events. In FENCE, this is handled by the Messenger class, which provides support for sending
notifications. The messages are configured using templates stored in JSON files, a lightweight format
for storing and transporting data, which contain the notifications parameters, such as recipients,
subject and body. Thus, notifications can be integrated into a workflow and sent out dynamically,
with variable parameters according to the specific context.

Since systems built using FENCE are essentially information systems, accessing data is the
preponderant task. For this, an infrastructure of Models, Builders, and Factories (MBF) was
implemented. Instead of writing a plain SQL query, the MBF engine enables fetching data via
orders, which are lists of the desired information. These lists are stored in JSON files and gather
the properties from those available in a factory inventory that should be built.

– 6 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

3.2 Configuration files in FENCE

The FENCE framework is based on configuration files that provide the necessary parameters and
properties to build interfaces. The main goal of this infrastructure is to simplify many aspects of
web system requirements. The configuration is stored in JSON files. Since those can be easily
converted into structured objects, it enables the definition of properties within specific contexts.
One usage of this feature is to set up access permissions to a given interface, by defining the group
membership required for a user to be allowed to proceed, as explained in section 3.3.

One of the benefits of using configuration files is that classes with numerous arguments can
be instantiated in a cleaner way, with just a configuration file path as a constructor argument. This
practice gives the opportunity to add more context behind configuration values that would, otherwise,
be simple scalars. Concrete cases employed in most of the FENCE system interfaces are field
definitions, including edition permission and validation callbacks, MBF orders (see section 3.1),
and workflow step definitions. In these cases, centralizing the information in a JSON file improves
the code maintainability by using human-readable text to describe the context of high-level features,
for example, in a web form. Additionally, it makes it easier for the code base to scale in case
of disruptive changes such as moving to a different programming language, or refactoring current
features. Moreover, all specifications of the interface are defined in a single JSON file, facilitating
the verification of compatibility between old and new implementations.

3.3 Security in FENCE

Alongside the features FENCE offers, securing the information stored in the applications’ databases
is also a responsibility of the framework. For that, authentication and authorization layers are
built-in to ensure, respectively, the authenticity of users’ credentials and the availability of proper
resources based on the users’ permissions.

CERN provides an official Single-Sign On (SSO) authentication solution, which is used by
all applications available within the CERN network. The authentication service provides a list of
E-groups that a member owns or is part of in the collaboration. FENCE implements a BaseUser
class which makes use of the information given by the SSO to control access to the application
resources. Additionally, an internal validation is done to verify the registration of the authenticated
user in the application database. This extra check is needed to map the authenticated user identifier
to the one used internally by the FENCE applications to define relationships with other entities.

Once the authentication is done, the set of functionalities available for the user is restricted or
expanded according to the roles to which they are associated. These roles can be defined either
by the users’ E-groups, obtained from the authentication service, or user groups defined in the
application database. A User class encapsulates the access to the users’ roles and is ultimately used
to check them when building interfaces.

4 The analysis web-based systems with a focus on its initial phase

The need for tracking of the initial phase of an analysis, Phase 0, arose 2017, as the CERN
IT department phased-out the SVN version control system and encouraged the use of Git [3]
because of its decentralised characteristics, which are better suited to the reality of the ATLAS

– 7 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

collaboration. The experiment started to use the repository platform GitLab [4] because of its
continuous integration functionality, the possibility of storing repositories in private servers, and
the provisioning of an API with many services.

To formalize the creation of Git repositories at the beginning of the publication writing process,
the concept of Phase 0 emerged. This concept was opportunistically used to track the flow of tasks
during the preliminary stage of the editorial process.

4.1 The main functionalities of the Phase 0 system

The Phase 0 system incorporates three main interfaces. The first is presented in figure 4 and allows
the submission of a new analysis. At this stage, ATLAS users must provide the initial description of
the article or public note in order to start writing. The interface presents a web form that contains
several fields, some of which are mandatory. If all fields are filled correctly, the form information
is stored in the database, gathering the information that defines an analysis such as its title and
reference code.

Figure 4. The analysis submission functionality in the Phase 0 system. On the left is a summary of all
steps needed to complete the data submission. On the right are the fields that belong to the first step of the
data submission.

The second interface presents advanced search functionality and allows a user to define complex
logical expressions as search criteria. Users can also configure the search results by grouping them
by attributes, selecting the visible attributes, or saving those configurations locally for use in a future
search. Search results can also be exported in comma-separated value (CSV) file format.

Finally, the publication details interface, the main interface of the system, shown in figure 5,
presents metadata and allows their editing. The interface also controls the workflow of Phase 0
activities, providing an overview of all its stages and highlighting the previous, current, and upcom-
ing ones. A transition between Phase 0 steps triggers actions. The most common action is storing
data in the database. If allowed, a user has the option of saving the data and staying at the same
step by pressing the “Save” button, or saving the data and moving to the next step by pressing the

– 8 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

Figure 5. The main interface of the Phase 0 system. On the left is a summary with the most important
information about a publication. On the right are the steps corresponding to the Phase 0 workflow.

“Proceed” button. When one moves forward in the workflow, the system triggers automatic alert
messages that provide instructions to the person(s) responsible for the next step.

An example of a Phase 0 step is the request for the formation and first meeting of an Editorial
Board (EB), which is illustrated in figure 6. The group convener is responsible for adding the EB
request meeting title, date, comments, and links. The Publication Committee (PubComm) chair
is responsible for appointing the EB members and entering the date on which they are appointed.
Once this information is saved in the system, the PubComm chair can proceed to the next Analysis
workflow step. Subsequently, the EB E-group is automatically created, including all its members,
and an email is sent to those members, informing them that they were appointed and should continue
the workflow.

4.2 FENCE-GitLab integration

The first interaction between FENCE and GitLab happens when a Phase 0 entry is created. A GitLab
group and a first internal note repository are automatically created using a boilerplate set of standard
files and configurations. The first commit to this repository is obtained from a source repository, a
package containing file templates. FENCE is responsible for substituting all the necessary variables
into all the file templates (e.g. automatically naming some files using the analysis reference code).

Another FENCE and GitLab integration process is executed when Phase 0 is finished or is
skipped, thus proceeding to Phase 1. FENCE automatically creates a publication repository, setting
all the configuration elements that are needed. That means that the creation and the configuration

– 9 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

Figure 6. Screenshot of the Editorial Board request meeting and formation step in the FENCE Phase 0 system.

of the repositories holding the documentation is done without any input or intervention from the
editors, allowing for a streamlined process.

FENCE and GitLab also interact while handling the author list of a publication. At first
circulation, the author list is created according to its reference date in various formats (including
xml and tex). It then pushes the files through the GitLab API so they are stored in the existing
publication repository. Upon first circulation, the files are added to GitLab, while on subsequent
circulations, they are simply updated.

5 PO-GitLab and CI tools

The ATLAS Physics Office GitLab tools (PO-GitLab) simplify the publication process of ATLAS
documents by using the features provided by the CERN GitLab platform.

Previously, the publication workflow involved a heavy email exchange between ATLAS editors
and the Physics Office in order to ensure that ATLAS rules were being followed up to submission
of the paper to the arXiv and any peer-review journal. This approach led, usually, to modifications
by different parties (officers and editors), which were sometimes incorrect or conflicting and which
slowed the publication process down. Due to the uniform and repetitive nature of the tasks required
to submit a publication, an automatic tool was favored.

Three main tasks are handled by the GitLab integration tools throughout the submission phase:
the automatic creation of GitLab repositories; the continuous verification of technical rules by the
GitLab Continuous Integration (CI) tools; and the automatic processing of the document itself for
submission. These tasks are presented at detail in this section.

– 10 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

Figure 7. The substructure of a HIGG GitLab repository subgroup. The main admin group, atlas-physics-
office, is shown at the top. The HIGG subgroup is selected, and its ANA-HIGG-2017-08 subgroup is
expanded. A repository for the paper and one for the internal note (INT1) are created under ANA-HIGG-
2017-08.

5.1 GitLab structure to organize analysis groups and repositories

A hierarchy of groups were created in GitLab to reflect the current ATLAS group organization.
Each Physics or Combined Performance group, System Detector Project, and Activity is labelled
as a category with four letters in the FENCE systems. For example, the Top Quark physics group
is TOPQ, and the Electron/Photon Combined Performance group is EGAM. At the beginning of
Phase 0, Git repositories are created in GitLab in the area corresponding to the lead group of the
analysis. The identifier of a Phase 0 entry is labelled ANA-GROUP-YEAR-NN, where GROUP
can be, for example TOPQ or EGAM, while YEAR is the year the document was created and NN
is a two-digit counter. For instance, ANA-SUSY-2019-04 represents the fourth analysis created in
the SUSY group in 2019.

In GitLab, the following labels are adopted:

• ANA-GROUP-YEAR-NN-INTn for internal note repository,

• ANA-GROUP-YEAR-NN-PAPER for a paper repository.

The other publication categories (e.g. PUB and CONF) are also included. For instance, in the Higgs
(HIGG) physics group, for a given Phase 0 analysis entry ANA-HIGG-2017-08, PO-GitLab will
host ANA-HIGG-2017-08-INT1,2,. . . ,n and ANA-HIGG-2017-08-PAPER. This is illustrated in
figure 7 where the GitLab interface is shown. ANA-HIGG-2017-08, an analysis within the HIGG
group, contains for example one paper and one internal note repository, respectively ANA-HIGG-
2017-08-PAPER and ANA-HIGG-2017-08-INT1.

The automatic creation of repositories is done via communication between the FENCE frame-
work and the GitLab API, which is explained in more detail in section 4.2. The structure of groups

– 11 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

also permits the definition of an LDAP (Lightweight Directory Access Protocol) based fine-grained
access control provided by GitLab. It guarantees that repositories created under a given group are
restricted to the appropriate set of users (group conveners, analysis participants, and PO officers).

5.2 Automatic document creation

The initial files and directories present in a repository created through the FENCE web interfaces
are based on a template. They have their variables substituted according to requirements of the
related publication in the moment of creation. This way, all created repositories contain the default
documents, correctly formatted, to start writing a paper, CONF note, PUB note, or INT note. The
repository is also configured with a protected branch named PO-ready, to which only members
with the Maintainer role are allowed to push and merge. This special branch is used to run the final
submission pipeline when the document is ready and has been reviewed by the relevant parties. The
master branch is used as the main work branch, unprotected at the time of the repository creation,
allowing all editors to push new commits and interact with the repository.

5.3 Continuous checks with GitLab CI

GitLab CI tools are designed to automatically execute a set of tasks every time a new modification
is introduced into the document, which happens on every new commit pushed to the document
repository. A command line tool called PO-GitLab was developed to perform a variety of checks
on a given document. Those checks verify distinct aspects of an ATLAS publication, from style
guidelines to internal conventions, and is implemented in Python. The application architecture
is based on the isolation of each component that performs the verifications in abstractions that
represent a job from the pipeline. Each job is represented as a single code path which can be
executed without affecting the others, which allows for new and more complex tasks to be added
continuously, and facilitates the reuse of each component for creating new pipelines. Finally, the
tool is packaged up in a Docker [12] image which makes possible to run it in any environment that
has Docker installed in it, beyond only the GitLab CI machines installed at CERN.

GitLab’s CI offers a way to configure and organize task pipelines. A pipeline is simply a set
of jobs grouped into different stages. All the jobs in the same stage are executed in parallel, while
each stage is only executed after the previous one has completed. It is possible to start the jobs of
one stage only if the previous ones have finished successfully, or alternatively only if one or more
previous stages have failed. The tool starts a pipeline automatically based on the configuration put
in place for a given repository — normally this is done every time a new commit is pushed to the
repository.

Different sets of checks are performed in each step of the publication process. For editors,
all work done before the paper submission (detailed in section 5.4) is monitored by the editing-
pipelines shown in figure 8. These pipelines are triggered by any push made from Git branches
whose name does not start with PO-. The special branches using the PO- prefix are tracked by
the submission-pipelines when a paper is considered ready for submission to the arXiv and the
peer-review journal.

– 12 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

Figure 8. The editing-pipelines. These four stages perform checks before a publication is ready for
submission, with the first stage checking the version of the PO-GitLab package itself, the second stage
running checks related to LATEX formatting, the third ensuring that the ATLAS rules are followed, and the
last stage testing if the document builds correctly (without LATEX-related errors).

5.4 Paper submission

The CI also produces the files required for paper submission, using dedicated pipelines similar to
the editing ones. These are called submission-pipelines. They are responsible for producing the
final tarball, the set of files in an archived format (tar.gz) that will be sent to the journal or to a
public repository for building public web pages.

A protected Git branch, named PO-ready, is created by default at the time of the setup of the
paper repository. When a paper is ready for submission, an editor creates a Merge Request to the
PO-ready branch. When this request is accepted by a Physics Office officer, the paper submission
pipelines are triggered. In addition, any branch or tag created following the pattern PO-* triggers the
paper submission pipelines. These pipelines have, in addition to the previously described checks,
a flattening of the LaTeX documents, grouping together all the necessary files for submission, as
shown in figure 9. The flattening goes through the following steps:

1. all the source files are merged into a single LATEX source file;

2. all the comments in the LATEX source file are removed;

3. all the figures are renamed following the convention required by the journals;

4. any directory structure is removed.

Tarballs suitable for submission to the arXiv and journals are created using TEX Live 2020
and 2017, respectively. The two different versions differ in their handling of the bibliography and
references, and must be checked in order to avoid incompatibilities. The arXiv, at the time of this
publication, requires TEX Live 2020, while some APS journals, for example, require TEX Live 2017.
Other tarballs contain files with plots and tables for posting on a public web page. These tarballs
are created as GitLab artifacts and can be downloaded by the corresponding editors and members

– 13 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

Figure 9. A submission-pipeline. From left to right, preparation stage jobs check the version of the CI tools,
copy bib and sty files along with the flattened LATEX document to a special folder. Then all figures and
tables are renamed and labelled according to the journal’s specifications. At the final stage, the flattened
document is updated with the newly named figures and tables. In the last two steps, the document is built,
producing the bbl file needed for the journal and the tarballs for the public web pages.

of the Physics Office. In the submission tarballs, any auxiliary material (e.g. figures and tables not
for submission) is not included.

6 Author lists, acknowledgements, and the proof checker

6.1 Author lists and acknowledgements files

The author list, often written authorlist for convenience, is the inventory of qualified authors at a
given date, which is called the reference date. Every paper has an associated list of qualified authors
with a reference date that corresponds to the creation date of that list during Phase 1, just before
the first circulation of the draft document to the collaboration. Between Phase 1 and Phase 2, this
author list may be updated or amended. This information is stored in the ATLAS database and
managed by FENCE. Figure 10 shows a portion of the full list of members, their affiliations, and
the related metadata which are needed to generate the full report.

The acknowledgements are incorporated in a short section that the collaboration includes in
each paper to thank funding agencies for their financial support. They do not change often, but they
may add or remove a funding agency or a foundation at a given date. Therefore, similarly to the
author list, the acknowledgement file is built for each paper at a reference date.

Both files, the author list and the acknowledgements, are built using the FENCE framework and
are automatically pushed to the appropriate GitLab repository, using the FENCE–GitLab integration
(section 4.2). Their integration into the paper is straightforward at the time of submission to a journal.
FENCE provides the MBF infrastructure to retrieve the required information from the database (see
section 3.1) and build all the files.

The author list is built by the FENCE framework into an xml file. This is composed of three
main blocks:

• Header: stores the paper’s main information.

• Institutes: the list of institutes and their InSPIRE-HEP references.

• Authors: the list of authors and their identifying information, including names, initials,
affiliations, and ORCID.2

2ORCID stands for Open Researcher and Contributor ID.

– 14 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

Figure 10. The FENCE author list generation interface. From left to right, the list of institutions used as
affiliations; in the center of the screen, the authors (blurred) are listed; at the top of the page, the interface
allows the users to view (orange boxes) the creation date (left) for a given paper, the title of the paper (center),
and the formats available for download (tex, xml, pdf, etc.; top right). As an example, two authors of this
paper are highlighted with their affiliations (black boxes).

Most journals accept the xml version of the author list as input, and retrieve all the needed data
from it. The complete set of author lists created for every ATLAS paper that has been submitted or
published since 2009 is accessible through a web interface, called the FENCE author list interface.
They are easily filtered using a search box.

The acknowledgement tex file is built using a standard template and is filled using the FENCE
framework to retrieve the required information about the ATLAS funding agencies.

6.2 Proof checker functionalities

Once the author list included in the tarball has been sent to the journal, a check is made to
determine whether the publisher has correctly used the provided information. This check involves
a comparison of the proof pdf file that was sent back to the ATLAS Collaboration for review to the
original xml/tex file. This process used to be done by hand, requiring the PO officer to check that
each of the approximately 3000 authors and 200 institutes were correctly reported and matched. The
proof checker is the tool provided for ATLAS to compare these two files automatically. A report of
this comparison, one for every version of the proof, is available to PO officers who check the results.

The proof checker follows this process:

• retrieve the information from the xml file, containing the authors and their affiliations;

• extract the text from the journal’s pdf file;

• parse the text from the pdf file, creating the target reference;

• compare the official reference obtained from the xml file with the target reference;

• create a report with the differences found between the original and the target reference;

• link the report to the main ATLAS report page.

– 15 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

The main difficulty with this process involves extracting the content from the pdf file; the text
is not easily retrieved, for a variety of reasons. One is that many elements have to be identified
and ignored, such as row numbers, watermarks, footers, and headings. Another reason is that
words extracted from a pdf file don’t follow a specific coding convention; the file can contain
non-ASCII characters that can be extracted in many different ways. The pdf file can specify a
predefined encoding standard to use, or provide a lookup table of differences between predefined
and alternative encoding standards; for texts with uncommon Latin characters, which are routine in
this kind of publication, special encoding is used, and they are translated into the Unicode standard
convention for glyph representation. It is necessary to provide a ToUnicode Table, to map the
codes used in the pdf file to Unicode symbols, where semantic information about the characters
is preserved. The proof checker also has to parse all the publication text and recognize where the
author list starts, where it ends, where the institute list starts and where it ends. All this is made
more difficult by the fact that different publishers have different layouts and create different versions
of pdf files. This makes the above problems not generic, but often specific to a particular publisher.

After the target reference is created, the comparison looks for:

• authors that seem to be missing from the pdf file. Here, false positives are often due to
character encoding and spaces;

• authors with inconsistent punctuation. This section points out differences between original
and target references authors’ first name punctuation, which can follow the rules X. or X.Y.
or X.-Y. or X-Y. with or without spaces;

• institutes that seem to be missing from the pdf file. Here false positives are often due to the
difficulties extracting and correctly encoding/decoding special glyphs in the pdf file format,
which make the comparison fail;

• institutes with close matches. All the entries that look like the original but have some
inconsistencies land in this group. Some publishers replace, for example, “USA” with
“United States of America” (or vice versa). Sometimes there is a new character that doesn’t
corrupt the institute entry, but makes the match imperfect, for example, “Università” and
“Universit‘a”; this is one of the problems that often occurs due to the difficulties of extracting
data automatically from a pdf file.

• mismatched authors. All the authors collaborate through one or more institutes. The link
between the author and the institute is checked for consistency. This sometimes results in
a false positive, because it is not always easy to extract from the pdf file the index number
of an institute, mainly because the text coming from the journal pdf file also includes other
elements such as line numbers of the document. For this reason an author originally assigned
to institute number X can end up matched with target institute YX, because in the text
extracted from the pdf the number X might be preceded by a Y line number; institute YX
may not exist;

• deceased authors. In some cases, ATLAS has tagged authors as deceased but the publication
fails to mark them as such, or vice versa;

• missing funding agencies, or those wrongly added by the publisher.

– 16 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

In early 2019, due to changes in CERN systems, the component written in Prolog which ran
the comparison went out of service. This implied an urgent need for a new tool for this task. Python
was chosen as the programming language for the new comparison engine.

A way to obtain the best match among all the items of an array of institutes and authors
was sought, because one cannot rely on finding an author or institute in the same position of the
sequences in the xml and pdf files. For this purpose the concept of Levenshtein distance [13] was
applied, so that a weighted index of similarity can be obtained to decide what is matched with what,
and to then effectively check for anomalies. The Levenshtein distance between two words is the
minimum number of single-character edits, such as insertions, substitutions or deletions, required
to change one word into the other. For example the Levenshtein distance between ATLAS and
Atlassian is 4 (4 insertions); between Maurizio and Fabrizio is 2 (2 substitutions); raise and race is
2 (1 deletion, 1 substitution).

Mathematically, the Levenshtein distance lev𝑎,𝑏(|a|,|b|) between two strings a and b of length
|a| and |b| respectively is given by:

lev𝑎,𝑏 (𝑖, 𝑗) =


max(𝑖, 𝑗) if min(𝑖, 𝑗) = 0,

min


lev𝑎,𝑏 (𝑖 − 1, 𝑗) + 1
lev𝑎,𝑏 (𝑖, 𝑗 − 1) + 1
lev𝑎,𝑏 (𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏 𝑗 )

otherwise,

where 1(𝑎𝑖≠𝑏 𝑗 ) is equal to 0 when a𝑖 = b 𝑗 and equal to 1 otherwise, and lev𝑎,𝑏(i,j) is the distance
between the first i characters of a and the first j characters of b.

A feature was developed to help the script evaluate as correct matches some that would not
otherwise appear to be such. A list of synonyms (see section 6.2.1) is created for every entry, author
or institute, to teach the proof checker to validate similar strings when the differences are due only
to problems from decoding the text from the pdf file. So, for instance, if author X. Nonamečič is
not found in the target reference, but from the pdf entries an author with name X. Nonamež ciž c
appears, then, as it has been previously verified that in the pdf file the name appears as expected, the
proof checker considers it to be the same, and skips the problem. A very long list of false positives
can be found in the report page as “skipped items”. The list of synonyms is updated manually, but
a tool, the Synonym web page, has been created to allow users to update this list themselves.

6.2.1 Proof checker synonyms

As previously discussed, the comparison between the pdf file and the xml file can generate false
positives. To minimize the list of false positives in the report page, the proof checker includes a syn-
onyms list that allows the comparison script to understand if the difference is a real error or another
correct way to display the same information. An example of a working synonym is Physics Depart-
ment, SUNY Albany, Albany NY, United States of America for the ATLAS original version and Physics
Department, SUNY Albany, Albany, New York, USA for the Journal version. These differences are
acceptable, since the main information is correctly displayed. All the synonym records are managed

– 17 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

Figure 11. Proof checker synonyms. One can search for an item and see all the defined synonyms for
institutes and authors’ names.

using a JSON file and are separated into institutes and authors. Institute listings are, for example:

{

"id": "2",

"original ": "Department of Physics , University of Alberta , Edmonton AB, Canada"

"synonyms ": [" Department of Physics , University of Alberta , Edmonton , Alberta ,

Canada"],

}

Author listings are, for example:

{

"original ": "A. B\\\"ub",

"inspire ": "INSPIRE -00000000" ,

"foafName ": "A Bub"

"synonyms ": ["A. B\u00f2b", "A. B\u00a8 b"],

}

To manage the list of proof checker synonyms, ATLAS provides a web interface that allows
users to search for an existing entry and manage the recorded synonyms. Searching for an institute
or author will display the list of records that match the search criteria (see figure 11). This allows
PO officers to edit the synonyms for the record. Clicking the edit icon shows a new page section
where a new synonym can be added. After confirmation, this is added to the list of synonyms and
is taken into account by the next run of the proof checker.

6.2.2 Report page

The proof checker provides a report for each paper and draft version (the journal may produce
several proofs). This report is provided and stored in a JSON file and must be parsed to show
the report results in a human-readable way. The report contains all the paper information and the

– 18 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

comparison results sorted by topic, for example:

{

"ref_code ": "EXOT -2017 -24" ,

"ref_date ": "2018 -07 -31" ,

"creation_date ": "29-Oct -2018" ,

"publisher ": "’APS ’",

"document ": "doc1053",

"filename ": "LY15578_proof_v2",

"authors_missing_skip ": [...] ,

"authors_missing_list ": [...] ,

"authors_puntuation_list ": [...]

"institutes_missing_pdf_list ": [...] ,

"institutes_missing_pdf_skip ": [...] ,

"authors_mismatched_list ": [...] ,

"authors_not_deceased_list ": [...] ,

"authors_deceased_list ": [...] ,

"institutes_close_matches_list ": [...] ,

"founding_agencies_missing ": [...] ,

"founding_agencies_wrong ": [...]

}

The JSON file contains more information than is displayed; the information is reduced to allow the
web page to optimize the display of the huge amount of information and to retain data for future
improvements. The web page contains some hidden sections that are produced by the proof checker
via the known synonyms. These can be displayed by clicking on “Skipped +”. Here the page will
show all the false positive results that the proof checker found in its comparison, but that are ignored
after association with the synonyms.

The proof checker helps the Physics Office staff in a tedious task, but it is far from being a
perfect tool. It requires continuous maintenance and updates for new cases, changes in publication
layouts, and new conventions in the author lists and their format. Further improvements are planned,
with the goal of minimizing the number of cases to be checked manually.

7 Conclusion

A suite of tools have been developed to support the publication of documents by the ATLAS
collaboration. While the emphasis is on papers published in refereed journals, the new technology
also supports internal documents and other public documents such as conference and public notes.

The FENCE framework is used as the backbone of the whole setup and is also used to interface
the web-based tracking of the status of an analysis with the documentation in GitLab. Extensive use
is made of the Continuous Integration tools available in GitLab to ensure that documents can easily
be submitted to the arXiv and journals as soon as they have been approved by the collaboration.

The software solutions described in this document are now used to accompany the entirety
of a physics analysis, from the expressions of interest by research groups to the final journal
publication. They also include the generation of the appropriate author list and processing of
proofs. In addition, metadata are continuously maintained, and public web pages and all the related
information regarding the scientific results of the experiment are obtained automatically.

The tools are used by the whole collaboration and minimize the amount of manual work
required for repetitive procedures, easing the workload of editors, editorial boards, management,

– 19 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
5
0
0
6

and the Physics Office. At the same time, all documents connected to an analysis can now be
accessed from a central tool where the experiment’s rules and knowledge are codified and made
available in an intuitive way.

The FENCE framework and its integration with the most up to date and efficient tools has
consequently provided a more professional and efficient automatized work environment to the
entire collaboration.

Acknowledgments

The authors are indebted to the ATLAS Collaboration for the support provided to achieve the
results described in this paper. We are grateful to ATLAS collaborators who provided invaluable
comments and input to the paper and the framework it presents. Special acknowledgements go to
Marzio Nessi for helping initiate the Glance project in ATLAS and for supporting its development,
and to Kathy Pommes for supervising the Glance team at CERN. Special thanks to Giordon Stark
and Zachary Marshall for thoroughly reviewing this paper.

References

[1] ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3
S08003.

[2] Apache Subversion Documentation, https://subversion.apache.org/docs/.

[3] Git official website, https://git-scm.com/.

[4] GitLab official website, https://gitlab.cern.ch/.

[5] Monday official website, http://monday.com/.

[6] Kissflow official website, http://kissflow.com/.

[7] HEP inSpire, http://inspirehep.net/.

[8] The LATEXproject, https://www.latex-project.org/.

[9] PHP official website, http://php.net/.

[10] Oracle official website, http://oracle.com/.

[11] MySQL official website, http://mysql.com/.

[12] Docker, http://www.docker.com.

[13] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals, Sov. Phys.
Dokl. 10 (1966) 707.

– 20 –

https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://subversion.apache.org/docs/
https://git-scm.com/
https://gitlab.cern.ch/
http://monday.com/
http://kissflow.com/
http://inspirehep.net/
https://www.latex-project.org/
http://php.net/
http://oracle.com/
http://mysql.com/
http://www.docker.com

	1 Introduction
	2 ATLAS publication process strategy
	3 The FENCE framework
	3.1 The main concepts of FENCE
	3.2 Configuration files in FENCE
	3.3 Security in FENCE

	4 The analysis web-based systems with a focus on its initial phase
	4.1 The main functionalities of the Phase 0 system
	4.2 FENCE-GitLab integration

	5 PO-GitLab and CI tools
	5.1 GitLab structure to organize analysis groups and repositories
	5.2 Automatic document creation
	5.3 Continuous checks with GitLab CI
	5.4 Paper submission

	6 Author lists, acknowledgements, and the proof checker
	6.1 Author lists and acknowledgements files
	6.2 Proof checker functionalities
	6.2.1 Proof checker synonyms
	6.2.2 Report page


	7 Conclusion



