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Abstract

The addition of metallic fibres in concrete is a widely used technique to in-

crease its resistance to crack opening, energy absorption capacity, and dura-

bility. The properties of the resulting composite strongly depend on the ge-

ometry of the fibres, which usually dispose of an hooked end, as well as on the

mechanical properties of both the fibre and the concrete. The optimization

of the fibre reinforcement mechanisms can only be achieved by an approach

that takes into account adequately these aspects. Therefore, in this work,

a computational model incorporating the key features of a hooked end fibre

embedded in a cement matrix is proposed. The fibre is modelled as a Tim-

oshenko beam, whereas a cohesive interface is used to model the interaction

with the surrounding concrete. Different failure mechanisms are defined in-

cluding fibre debonding or fibre tensile rupture and concrete spalling at fibre

exit point. The model is calibrated by using the results of an experimen-

tal campaign conducted by authors. A multi-step optimization algorithm is
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used to find the optimal geometry and model’s constitutive parameters that

maximize the peak pull-out force and the energy absorption capacity in a

fibre pull-out test. The analysis suggests that the use of concrete with high

strength has the potential to increase both peak force and energy absorption

capacity by designing the proper geometry of the fibre.

Keywords: Hooked end steel fibres, SFRC, Cohesive interface, Multiscale

Modelling

1. Introduction

A large number of research studies on Fibre Reinforced Concrete (FRC)

has been devoted to assess the reinforcement potentialities of discrete fibres

[1, 2, 3, 4]. One of the reasons is their ability to control the crack opening

and propagation by bridging the crack faces and providing resistance to crack

opening whichever directions the cracks form [5]. This mechanism starts at

microlevel, since the addition of fibres offers resistance to micro-cracks to de-

generate in meso- and macro-cracks delaying their propagation and favour the

development of multiple smaller cracks [6, 7]. These characteristics become

particularly attractive in demanding environments, such as tunnel linings

and maritime applications, where hybrid reinforcements (fibres and conven-

tional steel bars or grids) can provide a significant increase in the system

performance. If resisting mechanisms of fibres crossing the cracks are capa-

ble of supporting the applied external forces, fibres can replace or eliminate

the use of conventional reinforcements with significant economic benefits [8].

Among the different type of fibres available in the market, hooked end steel

fibres are the most used for structural applications because their anchorage
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mechanisms, together with their length and tensile strength, offers additional

additional pull-out resistance and may further improve the performance of

the structural element, compared to smooth fibre. In any case, the rheology

of the steel fibre reinforced concrete (SFRC), the casting conditions and the

geometry of the structural member to be produced must be also considered

in the modelling due to their significant impact on the fibre distribution and

orientation profile [9]. The peak pull-out resisting force of hooked end type

fibres can be attained for a crack width do not exceeding the limits imposed

by the serviceability limit state design conditions, as long as the geometry

and properties of the materials are properly evaluated, which can have sig-

nificant technical and economics benefits in the civil construction industry

[10].

The hooked end contribution to the pull-out mechanism depends mainly

on the fibre tensile strength, fibre orientation, the hook geometry and the

strength of the surrounding cement-based matrix [5]. The accurate descrip-

tion of the reinforcement mechanisms provided by the hook is crucial for

designing the fibre and optimising the effectiveness of the reinforcement

system. To better understating these reinforcement mechanisms, many re-

searchers have performed pull-out tests of a single hooked end fibre [6, 8]

and have proposed analytical formulations for modelling the bond behaviour

[5, 11, 10, 12, 13, 14, 15]. In all these contributions, the pull-out on hooked

end fibres was modelled with a certain inclination of the fibre towards the

applied load for capturing the relative orientation between the crack plane

and the fibre. In [5] for instance, the contribution of the hooked end was

modelled by adding an elastic spring at the end of a smooth fibre, where the
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stiffness of the spring was calibrated with the available experimental. The

authors of [13] and [10] used a similar approach to incorporate the effects of

the hook in their model. They considered a series of key states during the

pull-out of the fibre and, for every key state, the additional pull-out force

provided by the hook was calculated and added as an external force into a

model of a straight fibre. Their formulation took into account several aspects

of the response: the transverse force at the fibre exit point, the plasticity of

the fibre, the concrete deformabilty and the matrix damage. In [4], a model

was developed to simulate the hooked end by adding the friction between

the fibre and the matrix during the pull-out and the plastic work required

to straighten the fibre. The latter was found to be a function of geometric

parameters and of the yield stress of the fibre.

In these previous works, the different mechanisms affecting the peak pull-

out force and failure modes of aligned and inclined fibres were presented. The

additional effects caused by the shear force and the bending moment on the

fibre’s cross section, mainly at its exit point (at crack section) have a signif-

icant impact on the peak force and they are determinant to lead the system

to fail, which can either be by the complete debonding of the fibre, matrix

spalling or the tensile rupture of the fibre. The spalling mechanism of the

matrix at the fibre exit point, which was observed for a hook end fibre with

a certain orientation, was taken into account in a model recently proposed in

[16] for smooth fibres. Indeed, the orientation is one of the mainly parame-

ters to achieve the full potential of the pull-out system and the experiments

carried out in [5] confirm that the force necessary to completely pull-out the

fibre from the matrix increases with the inclination angle, if the fibre rupture
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does not occur. In addition, [16] reported that up to a certain inclination, the

work required to completely remove the inclined fibre from a cement matrix

is higher than the one of an aligned fibre. Several investigations revealed

similar tendencies and certified the existence of an optimal configuration in

the terms of peak force and energy absorption capacity [5, 10, 16].

In this paper, the existence of optimal configurations of a fibre-matrix

system tested in [17] is thoroughly investigated. The analysis is carried out

by adapting a microstructural model recently proposed by the authors [16]

for smooth fibres. This model can account for an arbitrary orientation of the

fibre toward the crack plane, for multiple branches of the fibre to simulate the

hooked end or more complex geometric configurations. In addition, the model

simultaneously accounts for all the relevant effects registered in the pull-out

response, which are mostly neglected in the available literature contributions,

including: fibre bending, matrix damage and matrix spalling. The fibre

reinforcement is described through a one-dimensional model, which is used

to solve the set of differential equations that governs the pull-out behaviour

by considering the variation of the axial and transverse displacements, the

axial and shear forces, and the bending moment along the fibre length. The

fibre-matrix interaction is simulated through a cohesive-like interface, which

allows the main experimental failure modes to be recovered, including fibre

debonding and rupture, and matrix spalling. Experimental tests carried out

in [17] are used to assess the predicting capabilities of the model. Finally,

a parametric analysis is conducted to find the optimal geometries that can

maximise both the peak pull-out force and the energy absorption capacity.
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Figure 1: (a) Picture of the real specimen used in [17]. (b) Schematic representation of
the specimen with the different fibre segments used for modelling.

2. Model description

In this section, the model initially proposed for smooth fibres in [16]

is adapted for being possible the development of hooked end steel fibres of

optimum reinforcement performance. The geometry of the system along with

a picture of the real specimen are displayed in Fig. 1. The fibre consists of four

segments, each one with a relative inclination with respect to the other. The

segment 0, of fixed length L0 = 1 mm, is used to model the real experimental

setup in which the fibre is vertically pulled out by the testing machine. The

angle that the fibre forms with the crack plane is indicated with θ1, whilst

the total length of the fibre is Lb = L0 + L1 + L2 + L3. Since the fibre is

vertically pulled out by the testing machine during an experiment,

a small segment is added to the geometric configuration of the

fibre to reproduce the experimental setup as shown in Fig. 1.. Each

segment of the fibre is modelled as a Timoshenko beam, thus the balance of

axial N and shear T forces and bending moment M at each material point

x gives

6



N ′(x)− p τ(x) = 0, M ′(x)− T (x) = 0, T ′(x)− q(x) = 0 . (1)

Here τ is the shear force transferred to the fibre by the cohesive interface

and p is the perimeter of the fibre, whereas q is used to account for the

reaction force of the cement matrix surrounding the fibre. In writing down

Eq. (1), it is implicitly assumed that the interface has a vanishing thickness

and can only transfer shear forces.

For each of the components of this FRC composite, the constitutive laws

depicted in Fig. 2 are assumed: the metallic fibre has an elastic-brittle be-

haviour, typical of steel with high carbon content as the one used in the

experiments; the interface has the cohesive-like response given by

τ(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τm
u

uI

, u ≤ uI

τm , uI < u ≤ uII

τr + (τm − τr)
uII

u
, u > uII

(2)

in which τm and τm/uI are the bond strength and the elastic modulus of the

interface, respectively, uI is the sliding at the attainment of the bond strength

and uII is the sliding at which the bond stress capacity enters in a softening

stage with an asymptotic evolution up to a residual value of τr. The τr is used

to account for the friction force exerted when the fibre is completely debonded

and can slide into the concrete channel. In [17], it was observed that the peak

pull-out force decreases with the increase of the fibre inclination angle; this
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behaviour is the manifestation of the complex micro-cracking mechanisms

that happen in proximity of the fibre exit point and are the main responsible

for a portion of the matrix being expunged, a phenomenon often referred to as

matrix spalling [13]. To account for this important effect, it was proposed in

[16] to make the parameter uI of the bond-stress constitutive law dependent

on the angle θ1 (Fig. 1) by the relationships uI = u0
I exp(δ θ1), where δ

is used to adjust the dependence of the sliding uI with the fibre angle θ1,

and u0
I is the displacement for θ1 = 0◦. As a consequence, the stiffness of

the first branch of the bond interface law decreases with the increase of θ1;

this simple strategy allows these complex micro-mechanisms to be simulated.

For what concerns the concrete, the following nonlinear foundation

model with cohesive-like behaviour is assumed:

q(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Kv , 0 < v ≤ vI

KvI , vI < v ≤ vII

KvI
vII
v

v > vII

(3)

where K is the elastic stiffness of the concrete, v is the transverse

displacement of the fibre, vI represents the displacement at the

attainment of the contact compressive strength and, finally, vII

is the displacement at which crushing starts being so significant

that the fibre’s supporting capacity decreases with the increase

of the transverse deformation. Differently from the constitutive law

of the interface, the concrete has a non-symmetric transverse deformation

constitutive response, not being able to transfer tractions.

By using the compatibility equations for the Timoshenko beam (see [18])
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Figure 2: Constitutive laws for the three components of the fibre reinforced concrete, where
just half of the system is shown due to the symmetry with respect to the dot-dashed line.

together with the constitutive equations, one arrives at the following set of

differential equation governing the elastic equilibrium

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

EIϑ′′
i (x)− κϑi(x) + κ v′i(x) = 0

κ v′′i (x) + q(vi(x))− κϑ′
i(x) = 0

EAu′′
i (x)− p τ(ui(x)) = 0

(4)

in which ϑi(x) is the rotation of the cross-section at position x and

the subscript i = 1, 2, 3 indicates the fibre segments represented in

Fig. 2, where E is the elastic modulus of the fibre, A its cross-

section area, and κ = ηAG, G = E/(2 + 2ν) the transversal modulus

of elasticity of the material (ν = 0.3 for the considered materials), η

the so-called Timoshenko shear coefficient (6/7 for fibres of circular

cross section).

The use of the Timoshenko beam model to describe behaviour of a fibre

resting on a pseudo-soil (concrete matrix) was proven to be effective in [16],
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particularly for those FRC composites in which the diameter of the fibre is

comparable with the length of a fibre segment. The solution of the system (4)

has to be carried out numerically once the proper boundary conditions are

enforced; for the fibre represented in Fig. 1, continuity of horizontal and

vertical displacements, as well as equilibrium of forces and bending moment

are imposed at the points where consecutive segments are connected. At the

fibre exit point, displacement with null rotations is imposed, whereas null

horizontal force and null bending moment are prescribed at the fibre end.

2.1. Model implementation

The system of nonlinear differential equations (4) was implemented in

Matlab and solved through the built-in ode45 function. The solution algo-

rithm is schematically depicted in Fig. 3. A sensitivity analysis in terms of

the parameters of the model and the geometry of the fibre was carried out

in [16] to assess the convergence of the solution for different discretization

meshes. The main failure conditions observed in the experiments are ac-

counted for by the model, namely fibre rupture, matrix spalling and fibre

debonding. The spalling of the matrix is always coupled with debonding

or rupture of the fibre and takes place before the total fibre debonding or

reinforcement rupture occur, as experimentally observed in [5, 2]. Therefore,

four failure modes are contemplated: fibre rupture with or without matrix

spalling and debonding with or without matrix spalling. The fibre rupture is

verified when N/Nu +M/Mu + T/Tu = 1 , which represents the failure con-

dition of a fibre subjected to normal and shear forces and bending moment.

For a fibre with circular cross-section is given by, Nu = σuA, Tu = σuA/
√
3,

and Mu = 4σur
3/3, where σu is the ultimate strength of the fibre material
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1 Initialisation:
ū = 0.1 mm, material parameters ( . . . );
s = 0, %Spalling flag initialized to 0;

2 while ū < ūmax do
3 Solve Eq. (4);
4 Compute N , T , M ;
5 if Texit ≥ Rsp then

%Matrix spalling has occurred;
%L0 is unbounded and the model’s geometry updated;

6 s=1; %Spalling flag set to 1;

7 if N
Nu

+ T
Tu

+ M
Mu

≥ 1 then

8 Break();
% Fibre rupture either with (s=1) or without (s=0) Matrix
spalling;

9 ū = ū+ 0.1 mm

%Fibre debonding either with (s=1) or without (s=0) Matrix spalling ;

Figure 3: The failure-mode prediction algorithm implemented in Matlab to solve Eq. (4).

and r is the fibre radius. This failure criterion was successfully applied

in the model developed by the authors in [13], indeed, indicated

to fibre with a limited plastic plateau, such as the metallic fibre

with high carbon content used in the experiments considered in

this work. In addition, matrix spalling was set to occur when the trans-

verse force acting on the matrix near the fibre exit point Texit is higher than

a threshold value Rsp, which depends on the fracture toughness of the con-

crete and on the geometry of the fibre and was calculated in [16] according

to fracture mechanics criteria. In the region, where the spalling occur, the

fibre is let unbounded and its actual length reduced in the numerical code.

Finally, the complete debonding of the fibre was achieved when the entire

interface was in its softening or plastic stage.

The initial calibration of the model was carried out by fitting the ex-
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perimental results shown in Fig. 4. The hooked-end fibre had a diameter

0.75 mm and was embedded into a self-compacting concrete of 86 MPa com-

pressive strength. The embedment length of Lb = 22 mm and three in-

clination values of the angle θ1, 0, 30 and 60 degrees, were tested; for all

fibre the internal angle ϕ was 41 degrees. The constitutive parameters of

the fibre E = 200 GPa and σu = 1.225 GPa were obtained from the fi-

bre datasheet provided by the manufacturer. The other parameters of the

model p = {τm, uI , uII , δ,K, vI , vII} were obtained by simultaneously fitting

the data for the three angles in Fig. 4 through a nonlinear optimization al-

gorithm in Matlab. The objective function was defined to minimize for all

angles the difference between the numerical values of the force at the loaded

end slip f and the corresponding values obtained from the experiments, f̂ ,

that is

min
p

∑
θ1={0◦,30◦,60◦}

|f − f̂ |2θ1 . (5)

Due to the nonlinear nature of the governing equations, special procedure was

adopted in solving (5) in order to avoid becoming trapped in local minima.

In this procedure, the elastic modulus and tensile strength of fibre were kept

fixed and the stability of the optimal solution was assessed by running the

optimization algorithm multiple times with different values of the initial pa-

rameters and verifying after each iteration that the algorithm had converged

to the same solution. For the data shown in Fig. 4, the optimal values of the

constitutive parameters are:

τm = 2.10 MPa , τr = 1.05 MPa , u0
I = 0.25 mm, δ = 1.5

uII = 1.3uI , K = 20 GPa , vI = 0.20 mm, vII = 0.22 mm
(6)
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The results in Figure 4 show the high accuracy in the fitting of both peak force

and loaded-end slip for all fibre orientations and fibre embedment lengths.

The pull-out response is made up of three parts, a feature common to all the

experimental data considered. The fibres with 0◦ and 30◦ inclination shown

similar pre-peak behaviour, however the nonlinear part is more pronounced

in the 30◦, due to the cracking and spalling of the matrix at the fibre bending

point, as a consequence of the additional stress concentration in this zone.

However, for the fibre oriented at the highest inclination (60◦), the decay in

the force for low end slip represents the pressure introduced by the fibre in

the matrix at the exit point region which leads to matrix spalling, and con-

sequently, a decrease in stiffness is observed. During this spalling process,

the fibre in this region has moved in order to be aligned with the loading

direction, and as a consequence a higher shear force and the bending mo-

ment is observed when compared with lower angles (see Fig. 8); this in turn

leads to the tensile rupture of the fibre at lower loaded end slip compared to

the other fibre orientations. For both 30◦ and 60◦ specimen, the post-peak

behaviour shows a similar trend where the decrease of pull-out with the in-

crease of loaded end slip is mainly governed by the frictional resistance of the

surrounding matrix. This softening stage is also well captured by the model.

3. Optimization of the hooked end fibre/matrix system

The analytical model detailed in previous section is here applied to the

optimisation of the geometry and material properties of the matrix fibre sys-

tem. The material properties extracted by fitting the experimental data in

Fig. 4 are listed in Eq. (6); among the geometric parameters, Lb, θ1, θ2, ϕ,

13



Load end slip [mm]

F
or
ce

[N
]

200

100

0

2 4 60 8

300

400 A. 0o

E. 0o

A. 30o

E. 30o

A. 60o

E. 60o

Lt20-Tarifa

Figure 4: Force vs displacement obtained by fitting the analytical model to the experi-
mental data from [17] with Lb = 22 mm (A.=Analytical; E.=Experimental).

L1/L2 and L3/L2 were selected to evaluate their influence on peak force,

energy absorption capacity and failure mode. Afterwards, the influence of

concrete compressive strength and fibre tensile strength (fcm, σu) is assessed,

since preliminary studies have shown that these parameters greatly affect the

fibre pull-out response. In particular, due to the highly nonlinear character of

the proposed model, a multi-step optimization procedure was followed. First,

the influence on the peak force and energy absorption capacity of the fibre

embedment length and inclination angle were investigated; thereafter, start-

ing from the optimal configuration achieved, the effects of the internal lengths

and, successively, of the internal angles were appraised. The schematic de-

scription of this algorithm is shown in Fig. 5. To obtain conclusions as a

broad application as possible, the results at each step are presented in terms

of peak force and energy dissipation capacity normalised with respect to the

optimal configuration achieved at the previous step; in such a way, direct
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1 Initialisation:

Set {L(i)
b , θ

(i)
1 , θ

(i)
2 , ϕ(i), L

(i)
1 /L

(i)
2 , L

(i)
3 /L

(i)
2 , σ

(i)
u , f

(i)
cm} from [17];

2 Optimize Lb and θ1;
3 Optimize L1/L2, L3/L2 ;
4 Optimize θ2 and ϕ;
5 Optimize σu and fcm;

Optimal set
{L(opt)

b , θ
(opt)
1 , θ

(opt)
2 , ϕ(opt), L

(opt)
1 /L

(opt)
2 , L

(opt)
3 /L

(opt)
2 , σ

(opt)
u , f

(opt)
cm };

Figure 5: Optimization strategy used to get the optimal values of the geometric and
material parameters of the FRC composite.

indication of the enhancement provided by the parameter being optimised is

obtained. In all plots, the energy was obtained by calculating the area under

the pull-out force versus load end slip relationship.

3.1. Effect of embedment length (Lb) and fibre inclination (θ1)

First, the influence of the fibre embedment length Lb in its pull-out force,

energy absorption and failure mode is evaluated. The analysis was carried

out by fixing the geometry of the hook, according to the values provided in

Eq. (6).

Figure 6a shows that by increasing the fibre inclination its tensile rup-

ture occurs for smaller normalized peak force. Above an angle θ1 of about 40

degrees, fibre tensile rupture is the failure mode even for embedment length

of 10 mm. Figure 6b shows that energy absorption is always higher if fibre

debonding is the failure mode rather than fibre tensile rupture. The maxi-

mum energy absorption occurs in the intervals 15 to 25 degrees for θ1 and

20 to 35 mm for Lb. By increasing the fibre inclination towards the fracture

surface (θ1), the shear stresses and bending moments in the fibre exit point

region increases by affecting detrimentally the fibre tensile strength, caus-
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Figure 6: Contour plot of the peak pull-out force (a) and energy absorption capacity (b)
for θ1 ∈ [0, 60] and Lb ∈ [10, 40] mm. The thick dashed lines show the transition between
two failure modes given by Eq. (8): complete debonding of the fibre from the matrix or
fibre rupture. The blue star indicates the optimal configuration chosen to carry out the
sensitivity analysis in Sec. 3.2.

ing the premature tensile rupture of the fibre, as demonstrated in [2], [5] and

[10]. Inclined fibre mobilizes extra resisting mechanisms compared to aligned

fibre, and as long as the fibre does not fail by tensile rupture, the maximum

pull-out force increases with the fibre inclination.

The failure mode map for the hooked end fibre-matrix system is shown

in Fig. 7. This plot gives an overview of the different failure mechanisms

that occur for different geometric configurations of the fibre, as well as of

the changes of the peak force value. When the inclination angle increases,

the peak force has a maximum at relatively low embedment lengths and

then it remains constant, meaning that in SFRC where fibres have a ten-

dency to cross the cracks with a relatively high angle, and consequently to

develop concrete spalling at the exit point of the fibre, no benefits in terms

of fibre reinforcement are obtained by using longer fibres. Using smaller fi-

bres (and consequently with smaller embedment length) but with the same
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Figure 7: Failure mode map in the θ1 and Lb space for the SFC from [17]. The black and
grey circles shows the data from [5] and [2] where similar configurations were tested.

volume fraction has more probability of providing higher reinforcement ef-

ficiency (higher number of fibres bridging the crack if the diameter is the

same or even smaller), and this can also be seen by the size of the dots in

Figure 7, indicating the peak force value remains almost constant for an-

gles between 25◦ and 40circ; above 40◦ fibres fail by tension. The transition

between debonding and fibre rupture can be approximated by the following

dimensionless second order equation:

Lb

Lf

= 0.61θ21 − 1.44θ1 + 0.89, (7)

represented in Figure 6 by dashed lines. Due to the high R-square value

(R2 = 0.985) of a linear equation, the term θ21 can be neglected for design
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simplifications leading to

Lb

Lf

= −1.02θ1 + 0.85, (8)

where θ1 is expressed in radians. Figure 6b evidences that the normalised

energy has an abrupt decay in the region just right of the limit defined by

Eq. (7). Given that fibre rupture is an undesirable failure mode, due to the

loss of fibre reinforcement mechanisms, pull-out model can then be used to

provide some valuable insights and optimise the design of concrete reinforced

with hooked end steel fibres, as will be presented in the following pages.

The pull-out resistance provided by the hook is evidenced in Fig. 8 where

the internal actions (normal and shear forces, and bending moment) are

compared for two inclination angles, θ1 = 15◦ and θ1 = 60◦, with fixed

embedment length Lb = 30 mm. At the lower angle, the anchorage effect

is provided mainly by the hook and in fact the internal stresses are higher

in the hook region, corresponding to the curvilinear abscissa ξ2 and ξ3 in

the figure. On the other hand, when the inclination towards the crack plane

increases, there is a stress accumulation between segment 0 and 1, that in

turn may lead to matrix spalling and eventually to fibre rupture.

One of the main reasons to add discrete fibres into concrete is to prevent

crack propagation and limit the crack opening in-service lifetime. The max-

imum admissible crack width in normal operative condition is between 0.1

to 0.3 mm [19]. In reinforced concrete structures, crack width at the level

of a certain reinforcement is between one to two times the sliding (ū) of this

reinforcement. Therefore, the optimisation of the hooked end fibres should

assure the maximum pull-out force for a loaded end slip varying between 0.05
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for a fibre with θ1 = 15o (a,c,e) and θ1 = 60◦ (b,d,f), where LES is the load end slip. ξi
represents the curvilinear abscissa along each fibre segment.
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mm and 0.15 mm. Analysing the results from Fig. 6, it is seen that at angles

of θ1 = 15o − 25o and bond length of Lb = 20− 30 mm, both peak force and

energy absorption are maximised without rupture of the fibre.

It is further pointed out that the maximum embedment length Lb was

restricted to 30 mm, because the hooked ends fibres available in the market

have a total length Lf that varies between 30 and 60 mm and considering

the fact that Lb in SFRC can be statistically estimated as Lf/4 (see [20])

with a maximum of Lf/2 (symmetry). Therefore, in the rest of this section,

a configuration with θ1 = 15o and Lb = 30 mm was chosen to be optimized as

as it has the potentiality to achieve high performance in term of peak force

and energy absorption capacity.

3.2. Effect of the fibre embedment parts (L1, L2 and L3)

To find the optimal relationship between the lengths (L1, L2 and L3), the

embedment length (Lb = 30 mm) and the angles (θ2 = ϕ = 45◦ and θ1 = 15◦)

were kept fixed for the analysis in this section.

Figure 9 shows the normalised peak pull-out and the normalised energy

absorption capacity for different values of the ratios L1/L2 and L3/L2. The

normalisation was carried out with respect to the optimal configuration in

Figure 6, indicated with a star, which corresponded to L1/L2 = 9.8 and

L3/L2 = 0.88. By varying the L1/L2 ratio, the peak pull-out force can be

increased by 10% if L1/L2 is set between 1 and 3, which corresponds to a

significant reduction compared to the initial ratio L1/L2 = 9.88. For ratios

L/L2 higher than 3, the effect on the peak force is indeed detrimental. In

terms of L3/L2, the maximum force is achieved when L3/2 = 1.2, which is

close to the initial values of 0.88.
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Figure 9: Peak pull-out force (a) and energy absorption capacity (b) in terms of L1/L2 ∈
[0.1, 10] and L3/L2 ∈ [0.1, 6.66]. The peak force and the energy are normalised with
respect to the optimal configuration in Figure 6, which was achieved for L1/L2 = 9.8 and
L3/L2 = 0.88.

Regarding the energy absorption capacity (Fig. 9b), it is seen that the en-

ergy had a behaviour similar to the peak force, since for all the configurations

analysed the composite failed by fibre debonding. The results show that the

higher performance of the hooked end fibres is mainly due to the mobilisa-

tion of the hook and its straightening. In fact for the interval considered for

L1/L2, the normalized force has varied between 0.85 (minimum value) and

1.07 (maximum value). In terms of normalized energy this interval was a

little bit higher (0.65 to 1.15), so the effect of the hook end seems to have

a higher impact on the peak pull-out force than in the energy absorption

capacity.
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3.3. Effect of internal angles (θ2 and ϕ)

The influence of the internal angles (θ2 and ϕ) on the peak force and

energy absorption capacity, is evaluated for a configuration with θ1 = 15o

and Lb = 30 mm, for which the highest performance in terms of peak force

and energy absorption capacity was obtained (see Figure 6b). The optimal

configuration of these internal angles was found to be ϕ = 45o with θ2 =

55o, as Figure 10a shows. The results demonstrated that internal angles in

the range of 40o to 55o, increase the resistance to straighten and pull-out

the fibre, and, consequently, the peak pull-out load increases. For higher

angles (> 55o), the stress concentration in the curvature regions decreases

the local tensile strength of the steel. This was assessed experimentally and

considered in some models from the literature, such is the case described by

[21], where the tensile strength (designated as effective tensile strength by

the authors) decreases with the inclination of the fibre. Despite the present

model does not capture this effect directly, it is indirectly considered through

stopping condition for the fibre rupture since the higher generalized forces in

the transition zones can anticipate the tensile rupture of the fibre. Regarding

the optimal values of both peak force and energy, the interval was found to

be 35 < ϕ < 50 and 45 < θ2 < 65, which roughly corresponded to an

increase of 10% in the peak force and 5% of the energy absorption capacity.

In addition, debonding was the observed failure mode independently of the

angles θ2 and ϕ. These fibre’s end regions, in fact, are far from the fibre

exit point where the force is applied, so they are submitted to relatively low

axial force, as can be seen by a small reacting force of the hooked part on

the fibre (Figure 8). As such, the energy absorption capacity in Figure 10b
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Figure 10: Peak pull-out force (left) and energy absorption capacity (right) for ϕ ∈
[15◦, 75◦] and θ2 ∈ [15◦, 75◦]. The peak force and the energy were normalised with re-
spect to the optimal configuration in Figure 6 that corresponded to ϕ = 42◦ and θ2 = 41◦.

showed a similar tendency of peak force. Moreover, lower internal angles

(θ2 = ϕ = 15o) lead to lower peak forces, due to the decreased resisting

anchorage mechanisms necessary to extract the fibre from the channel.

3.4. Effect of strength parameters (σu and fcm)

Finally, the effects of fibre tensile strength σu and concrete compressive

strength fcm are investigated in Figures 11 and 12. The analysis is carried

out for fibres at 15o and 60o degrees, with a bond length Lb = 30 mm. All the

other constitutive parameters are fixed according to the values in Eq. (6).

The parameter K was obtained by using the empirical relationship K =

a
√
fcm, which was used to derive the pseudo ”fibre’s concrete foundation”

from the concrete compressive strength. The coefficient a was determined

by fitting the experimental data in [5], for which K = 20 GPa and the mean

compressive strength of the concrete was 83.4 MPa.
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24



The range of parameters σu and fcm were chosen according to the strength

of the steel fibres available in the market (500 MPa ≤ σu ≤ 2500 GPa), and

considering that, in the technology of FRC, fcm ranges from 25 MPa up to

200 MPa. The results in Figs. 11 and 12 show that the concrete strength and

the fibre tensile strength have both a significant influence on peak force and

energy absorption capacity. In particular, both these indicators of the fibre

reinforcement performance significantly increase with the concrete compres-

sive strength. On the other hand, when fibre debonding is the main failure

mode, an increase in the fibre tensile strength does not have any significant

influence on the response, since the full fibre capacity is not reached.

4. Conclusions and future works

The pull-out behaviour of various configurations of a fibre reinforcement

embedded in a concrete matrix was investigated by adapting the computa-

tional model recently proposed in [16] to extend it for fibres with hooked end

geometries. The fibre is modelled as a one-dimensional continuum for which

axial, shear and bending internal work are accounted for. The interaction

of the fibre with the concrete matrix is simulated by considering the fibre

supported on a pseudo-foundation system, whose behaviour is modelled by

cohesive-like constitutive laws for the orthogonal compressive pressure and

for the sliding. The proposed approach is based on the solution of the system

of differential equations that considers the equilibrium of forces, kinematics

and constitutive laws of the intervenient materials. The additional com-

plexities induced by the fibre misalignment were considered, including the

transverse loading on the interface, bending of the fibre and the damage of
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the concrete matrix due to spalling.

A dimensional analysis gave physical insights into the model parameters

that have the most influence on the pull-out response of the composite. Ac-

cordingly, a parametric analysis was carried out in terms of fibre embedment

length, internal angles of the hook, and strengths of the fibre and of the con-

crete matrix. The results showed, and experimental results confirmed, that

the pull-out response at a given fibre orientation is predominantly influenced

by the mobilisation and straightening of the hook. Moreover, concrete com-

pressive strength and fibre tensile strength predominantly affect the peak

force, energy absorption capacity and failure mode.

With reference to the type of fibre used in [17], two optimal configurations

are found. One with θ1 = 30o and Lb = 30 mm, which maximises the peak

force, and another with θ1 = 15o and Lb = 30 mm for which both peak

force and energy absorption capacity are maximised. With respect to the

0◦ configuration tested by [17], the analysis showed that a proper choice of

the geometric parameters could lead to an increase of 34% in the peak force

and 50% in energy absorption capacity. However, when the composite fails

by fibre debonding, any increase in fibre strength does not contribute to

ameliorate the composite response.

Future developments of this research include the simulations of fibre ge-

ometries with more deformed parts as the so-called 4D and 5D fibres, as

well as the incorporation of viscous effects to account for the strain rate

dependence observed during pull-out at different velocities.
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