
Modeling Industrial Embedded Systems with UML�

João M. Fernandes
Dep. Informática

Universidade do Minho
Braga, Portugal

miguel@di.uminho.pt

Ricardo J. Machado
Dep. Sistemas de Informação

Universidade do Minho
Guimarães, Portugal

rmac@dsi.uminho.pt

Henrique D. Santos
Dep. Sistemas de Informação

Universidade do Minho
Guimarães, Portugal

hsantos@dsi.uminho.pt

ABSTRACT
The main purpose of this paper is to present how the Uni-
�ed Modeling Language (UML) can be used for modeling
industrial embedded systems. By using a car radios produc-
tion line as a running example, the paper demonstrates the
modeling processthat can be follow edduring the analysis

phase of complex control applications. In order to guarantee
the con tinuity mapping of the models, the authors propose
some guidelines to transform the use case diagrams into a
single object diagram, which is one of the main diagrams for
the next development phases.

1. INTRODUCTION
Blaupunkt Auto-R�adios Portugal (Bosch Group) is a com-
pany that produces radios for the automobile industry. Since
its managers are continuously searching for ways to improve
its production process, a project was established to pursue
the follo wing goals:

phase 1: Modeling the control system needed by the ma-

terial
o w on the production lines.

phase 2: Modeling the actual implementation of the control
system.

phase 3: Diagnosing the mismatches betw een the needed
system and the actual implementation, and optimizing the
later based on the mismatches found.

phase 4: Protot yping the optimized system, using hardware-
software co-design techniques and recon�gurable devices,

namely Xilinx XC4000 family [1].

The previous experiences of the authors [2; 3; 4; 5] have
shown that models based on P etri Nets w ere su�cient to
specify the systems' con trol view. Ho wever, for modeling
other aspects of the systems (data and function), it is impor-
tant to consider genuine multiple-view models. The solution
w as to consider UML as a uni�ed representation for embed-

�Work partially funded by the project R econ�gurable Em-
bedded Systems: Development Methodolo gies for R eal-Time
Applications (PRAXIS/P/EEI/10155/1998).

ded systems, since it is a standard notation that covers the
most relevant aspects of a system.

UML was the notation used to specify both the needed sys-
tem (phase 1) and the actual implementation (phase 2).
With this approach, �nding the mismatches bet w een these
tw o systems is easier, since both are speci�ed with the same

language. Additionally, the dev elopment of the needed sys-
tem can be follow ed, since automatic code generation tools
(for C and VHDL) are available.

The process model used within the project has the follow-
ing characteristics: operational approach, re�nement and

transformation of the speci�cations, spiral model, reverse
engineering, and automatic code generation for prototyping.

This paper focus mainly on the steps follow ed during the
1st phase and shows the results achieved b y the operational
approach within the analysis phase of industrial systems.

2. THE PRODUCTION LINES
The production lines (designated Hidro lines) are used to
manufacture car radios. Each car radio is placed on top of a
kit, whose track along the lines are automatically controlled.

The transport system is composed of several rolling carpets
that conduct the radios to the processing sites.

The radios are processed in pipeline by the Hidro lines. The
processing sites are geographically distributed in a sequen-
tial w ay, along the Hidro lines.Eac h Hidro line is composed

of 5 transport tracks: 3 on the upper level (LA, LB , LC)
and 2 on the lower level (LD, LE). The upper level tracks
transport kits from left to right and the low er level tracks
transport kits from right to left.

The track LB is used mainly to transport radios betw een
non-sequential sites. The upper tracks LA and LC are prefer-

ably utilized for sending the radios to the bu�ers of the sites
(FIFOs that start at the sites). The lower tracks LD and
LE are used for: (1) routing malfunctioning radios to the
repairing sites; (2) feedbacking the sites that did not accept
radios because their bu�ers were full; and (3) transporting
empty kits to the begin of the line.

There is also a robot that receives radios from the previous
production sub-processes (component insertion) and puts
them on track LB . The transfers allo wthe change of kits
betw een tw o neigh bor trac ks at the same level or bet ween a
track and an elevator. The 5 elevators establish the linkage

betw een the upper and the low er tracks.

3. THE DESIGN FLOW
UML is a general purpose modeling language for specifying

and visualizing the artifacts of software systems, as well as

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES 2000, San Diego, CA USA
© ACM 2000 1-58113-268-9/00/05 . . .$5.00

18

for business modeling and other non-software systems [6].

UML is a standard language for de�ning and designing soft-
ware systems, and is being progressively accepted as a lan-
guage in industrial environments. UML is meant to be used
universally for the modeling of systems, including automatic
control applications with both hardware and software com-
ponents, so it seems a good choice for embedded systems.

For modeling the needed system, the team followed the de-
sign
ow depicted in �g. 1. It is presented in a sequential
way (similar to the waterfall model), but, in practice, it is
more iterative and incremental.

Object Diagram Class Diagram

Sequence Diagrams

Sequence DiagramsOblog Repository

Plant/Data Path

Specification

Textual Behavior

no
t v

al
id

va
li

d

Plant/Data Path

4. transformation

2. functional modeling

Use Cases Diagram
Textual Description

Use Cases 3. description

Context Diagram

1. environment capture
Analysis phase

Design & Implementation phases

Feasibility Study phase

5. plant modeling

7. selection

6. behavioral

8. classification

modeling

13. matching

12. simulation

11. system specification
9. formalisation

modeling
10. protocol

State-Chart

Diagram

Figure 1: The design
ow for the project.

The main views for specifying the system are captured by

the following UML diagrams. Use case diagrams are used
to capture the functional aspects of the system as viewed by
its users. Object diagrams show the static con�guration
of the system, and the relations among the objects that con-
stitute the system. Sequence diagrams present scenarios
of typical interactions among the objects that constitute the

system or that interact with it. Class diagrams store the
information of ready-made components that can be used
to build systems and specify the hierarchical relationships
among them. State-chart diagrams are used to specify
the dynamic behavior of some objects/classes.

The information that is represented in state-charts diagrams,
object diagrams, and class diagrams is transformed into
Oblog, which is a UML-based (extended subset) object-
oriented modeling language that allows the system to be
simulated and has automatic code generation capabilities

[7]. The Oblog environment generates sequence diagrams,
as a simulation output, that can be compared with those
previously created to specify the system behavior in order
to validate the system's requirements (step 13 in �g. 1).

Although the OMG's Real-time Analysis and Design work-

ing group has not come yet with a �nal proposal for directly

incorporating real-time concepts into the UML standard

(namely in what concerns the syntax for the OCL language),
the authors are using UML for dealing with hard real-time
systems. Up to now timed sequence diagrams and Oblog
syntax have been used for the speci�cation of the canonical
latency and duration constraints, which are viewed as com-
posites for more accurate categories of timed requirements

(for performance and safety constraints speci�cation).

4. CONTEXT AND USE CASE DIAGRAMS
The context diagram of the system is the �rst one to be built
and it shows which actors interact with the system (�g. 2).
This diagram de�nes the boundaries of the system. The
actors are anything that interacts with the system, but do
not belong themselves to it. The behavior of the actors need
not to be speci�ed to complete the system, but they must

be considered to correctly build the system.
The next task was to de�ne the use case diagram, which is
a powerful technique for capturing the user's requirements.
It is an easy-to-read diagram that divides the system in its
functional points. A use case can be understood as a service

or functionality that the system o�ers to its users.

employee

car radio

HIDRO line

system´s
administrator

maintenance
technician

site
configurator

any person

line
configurator

production
supervisor n.2

production
supervisor n.1

Figure 2: The context diagram.

The authors propose an extension to UML by adding a new
tagged value to use cases, that was designated reference.
Each use case can have a reference that follows a numbering
scheme similar to the traditional DFD scheme. Each use
case at the top-level is assigned a reference (e.g. 9), and
if this use case is eventually re�ned, each one of its sub-

use cases has a reference that uses the super-use case as a
pre�x (e.g. 9.2). This numbering scheme can be repeated to
any depth, helps to relate all use case diagrams and is used
during the transition from use cases to objects to ease the
mapping between both models.

Fig. 3 shows the top-level use case diagram, showing which
actors perform which functionalities. Since use cases can be
further decomposed, the most important use cases (in this
case, 9 and 10) were re�ned in other use case diagrams. This
allows more detail to be added to the initial diagram and
the project to follow a risk-driven process, where the most

important functionalities of the system are �rst tackled.
After identifying all the system's use cases, the next step
is to describe their behavior. There are some forms for do-
ing it (informal text, numbered steps with pre- and post-
conditions, pseudo-code and activity diagrams [8]) and, as
an example, the descriptions for use cases 9 and 10 are next

presented following the �rst proposal.

19

9. conduct car radio: Move radios along the tracks in

order to make them available for processing at the sites.
10. operate car radio: Perform a set of prede�ned oper-
ations to produce radios.

{6}
generate

report

HIDRO line

employee

{10}
operate
car radio

production
supervisor n.2

system´s
administrator

maintenance
technician

line
configurator

site
configurator

any person

{8}
manage

users' access

{2}
configure

site

{11}
visualize

production

{12}
activate

emergency

«extends»

production
supervisor n.1

{1}
maintain
system

{3}
configure

line

{4}
activate

equipment

{7}
monitorize

line

{5}
recover from
emergency

{9}
conduct
car radio

car radio

Figure 3: The use case diagram.

5. OBJECT DIAGRAMS
Object diagrams are used to show the components that con-

stitute the system. Transforming the use cases that divide
the system in a functional way into objects is a critical task,
since usually there is no direct one-to-one mapping from use
cases to objects. Several use cases can give rise to one object
and one use case can originate a couple of objects.
Douglass presents 11 useful strategies to �nd/identify the

objects of a system [9], but they can not be directly applied
to this purpose, because none of them is based on the use
cases that were previously identi�ed.
A strategy, composed of some guidelines, is needed to guide
the developers on how to transform use cases into objects.
There are some approaches for that transformation, but the

majority of them is based on personal feelings and some kind
of magic. The authors present a new systematic strategy for
�nding the objects of a system from its use cases, based on
the OOSE's object types (interface, data and control) [10].
The transition from the use cases to the objects is a critical
project step, since the system's architecture is starting to

possess a shape. It is a creative task and some guidelines
are given below to help the developers during this task. This
transition consists in distributing the behavior speci�ed by
the use cases to the objects.
The main point is how to identify the objects that constitute

the system. The �rst solution would be to consider each use
case as an object [10], but this does not ease the localization
of the modi�cations that must inevitably be executed during
the system's life cycle (either during development or usage).
Another alternative, also not considered in this work, is to
use data objects to just store information and to totally

put the dynamic behavior in control objects. It is better
to avoid this solution, since it would be built a structure
similar to those that result from applying any structured
method, where the separation between data and functions
is quite evident. To avoid the well-known problems asso-
ciated with the structured approach, it is recommended to

associate behavior to data objects.

The approach that the authors followed to transform use

cases into objects consists of a 4-step rule set:

step 1: Transform each use case in three objects (one inter-
face, one data, and one control). Each object receives the
reference of its respective use case appended with a su�x
(i, d, c) that indicates the object's category.

step 2: Based on the textual description for each use case
it must be decided which of the three objects must be main-
tained to fully represent, in computational terms, the use
case, taking into account the whole system and not consid-

ering each use case per si, as in a reducionistic approach.

step 3: The survival objects must be aggregated whenever
there is mutual accordance for a uni�ed representation of
those objects.

step 4: The obtained aggregates must be linked to specify
the associations among the existing objects.

This approach aims to obtain a holistic set of objects (re-
sources of the system), so that the inter-relations amongst

the objecti�ed use cases can be successfully simpli�ed in or-
der to obtain a reduced number of relevant and pertinent
system-level objects.

For control-dominated systems, this strategy makes natural

the need to have a controller, which is an object of the appli-
cation that is responsible for controlling the system process
and the
ow of information among the system components.

The object diagram presented in �g. 4 is the result of ap-
plying the 4-step rule set to the use case diagram depicted

in �g. 3. As a user-readability pursuit, it is always a good
practice to encapsulate as much as possible the system's
representations using packaging. Fig. 4 illustrates the us-
age of several packages that de�ne, each one, decompo-
sition regions which contain several tightly semantically-
connected objects. These packages should be further spec-

i�ed, in what concerns its architectural structure. Objects
9.3.c and 10b.1.c are the system's controller.

Use cases specify the functionality of the system, whilst the
object diagram is related to the structure of the system,

which is used as the foundation for the design and imple-
mentation phases. The object diagram represents an ideal
architecture for the system, because its construction was
completely independent of any implementation issue (plat-
form, programming language, processor, etc.).

6. CLASS DIAGRAMS
The majority of the methodologies do not pay too much

attention to the object diagram. Usually, the class diagram
is built �rstly, but in this project the order was reversed. To
develop embedded control systems, the authors believe that
it is more important to have a good object model than a
good class diagram, because the elements that do constitute
the system are the objects and not their classes. This was

the main reason to �rst identify the objects and to later
select the classes to which those objects belong. Obviously,
the best situation is having good object diagrams and good
class diagrams. The authors are not advocating to roughly
treat the class diagram or even to ignore it, but to direct the
attention towards the construction of the object diagram.

This perspective that puts classes in an apparently sec-
ondary role may be classi�ed by some specialists as object-
based rather than object-oriented. However, the approach
that �rstly de�nes the objects and later the classes is some-

how consistent with the bottom-up discovery of inheritance

20

«data»
{8.d}

passwords

database

«data»
{9.3.d}

car radios
in production

car radios

«data»
{2.d}

sites configuration

configurations

supervision

supervision interfaces

supervision control

manipulate car radio

sensors

«sensor»
{4.1.i}

activate line

1

interfaces reports

*
«interface»

{9.4.i}
handle car radio

«interface»
{9.5.i}

require conduction

«control»
{5.c}

emergency recoverer

«interface»
{5.i}

recover from
emergency

«interface»
{2.i}

configure place

«interface»
{3.i}

configure line

«interface»
{4.3.i}

activate site

«interface»
{8.i}

manage
user´s access

«interface»
{6.i}

generate reports

«control»
{6.c}

report generator

«data»
{6.d}

reports

«control»
{10b.1.c}

car radio verifier

1 «actuator»
{9.3.i}

transport car radio

*

«control»
{10b.2.c}

execute task

«data»
{10b.2.d}
 task data

«interface»
{10b.2.i}

execute task

«black box»
{10b.2}

site

«sensor»
{4.2.i}

activate transport

1

«sensor»
{9.2.i}

identify car radio
at the transport

* «sensor»
{10b.1.i}

identify car radio
at the site

*

«sensor»
{9.1.i}

detect car radio

* «sensor»
{12.i}

activate emergency

1

«data»
{3.d}

line configuration

«data»
{4.3.d}

active sites

«data»
 {9.4.d}

handled car radios

«data»
{9.5.d}

required car radios

«data»
{10b.3.d}

tasks results

«control»
{9.3.c}

conduction controller

1

«interface»
{7.i}

supervise line

«control»
{7.c}

supervision of
the line

«interface»
{11.i}

visualize production

«control»
{11.c}

visualization of
the production

Figure 4: The object diagram.

to organize the classes [11]. Additionally, and without sub-
estimating the bene�ts of using classes, some self-designated
object-oriented methodologies start to relegate inheritance

to a less important position [12].

Thus, it seems valid the approach proposed here: identify
�rst the objects and then classify them. During the classi-
�cation of objects the class structure is built, modi�ed, or
ideally just used. Reuse can be achieved in 3 di�erent ways,
during the classes discovery. First, if there are more than

one object of the same class, their de�nition is speci�ed in
just one place. Second, if classes with similar properties
are found, hierarchical relations among those classes can be
de�ned. Finally, when a class is described, the developer
can recognize the existence of that class in a library, which

allows it to be immediately reused.

The class diagram is understood as a template for a set of
applications that can be obtained from it. In other words,
the class diagram is a high-level generalization of the sys-
tem [13]. When the developers de�ne the way classes are
interrelated, they are indicating all the systems (or all the

con�gurations) that can be obtained from those classes.

With this perspective, it is common, in several methodolo-
gies, to not build the object diagram, since it automatically
results from the class diagram. Whenever an object dia-
gram is constructed, it is necessary to guarantee that the
relations expressed in the class diagram between two classes

also exist between instances of those classes. This is the
main reason that methodologies usually impose (or suggest)
class diagrams to be �rst elaborated than object diagrams.

This implies an additional task in which it must be assured
that there is consistency between the information that is

described by both diagrams [9]. This fact can be interpreted
as a symptom that some information is being unnecessarily
replicated. For instance, the existence of the �singleton�
stereotype in UML, which indicates that a given class can
only have one instance, corroborates the perspective that
sees the class diagram as a pattern for the systems, within

a given application domain.

This approach seems adequate to develop business informa-
tion systems or, more generally, any data-dominated system,
where the objects are created and destroyed during the sys-

tem life cycle. For example, in a system for bank accounts
management, it is common that each account is always asso-
ciated with, at least, one customer. This fact is indicated in
the class diagram by associating the account class with the
customer class. When an account object is created, it must
be linked to, at least, one customer object. This approach is

useful for business information systems, but does not o�er
many bene�ts for developing embedded systems, since nor-
mally the objects that constitute the system are not created
and destroyed on the
y. An embedded system is generally
composed of a set of �xed objects that are linked in some
way. Thus, it is not crucial to indicate, for example, that

objects of the controller class need to be linked with objects
of the sensor class. If this information is relevant in some
applications, it may be inadequate or even wrong in others.

The authors see the class diagram as a repository of previ-
ously de�ned objects' speci�cations (\a raw material store"),

that can be used to develop any application.

7. STATE-CHART DIAGRAMS
For those objects that have a complex or interesting dy-
namic behavior, a state diagram should be speci�ed. For
control embedded systems the application of Petri nets to

the speci�cation of the behavioral view has given origin to
several meta-models intentionally developed to deal with the
semantical particularities of that kind of systems [14; 15].
However, since UML was chosen as the notation for all the
documentation of the project, UML's state-charts were used
to describe state diagrams [16].

The crucial components of the control application are ob-
jects 9.3.c and 10b.1.c, and state-charts were produced for
these objects to specify their dynamic behaviors. Object
9.3.c is responsible for controlling the movements of the ra-
dios along a Hidro line. Due to its great complexity, this ob-

ject was decomposed into smaller objects, each one respon-

21

sible for coordinating one node (a set of plant resources).

Since the di�erent nodes of one Hidro line have not the same
con�guration, each kind of node requires a di�erent state-
chart. However, there are similarities among the di�erent
categories of node controllers, so a class hierarchy can best
indicate their relations. For instance the state-chart of an
upper node with 3 lines is similar to an upper node with

3 lines and one elevator to transport kits to the lower level.

Fig. 5 depicts the top state-charts of an upper node with 3
lines and no elevator. Same states are super-states (their do-

activities are pre�xed with an \@"), but due to the lack of
space the corresponding state-charts are not presented here.
Similar state-charts were created for the other categories of
node controllers.

ProcTA

do / @Proc(A,n)

ProcTB

do / @Proc(B,n)

ProcTC

do / @Proc(C,n)

WaitTA WaitTB WaitTC

[busyUp(A,n)] [busyUp(B,n)]

ReadyTA ReadyTB ReadyTC

[else]

do / @ResetNCS3(n)

[else] [busyUp(C,n)][else]

OperNCS3(n)

Reset

Figure 5: The top state-chart diagram.

8. CONCLUSIONS
This paper has presented how UML can be used in real
industrial projects to model embedded control systems. The
authors consider UML as an adequate uni�ed representation
language for industrial projects, since it is intuitive for non-

technical people, it covers the main views of a system, it is
independent of the platform and it is a standard.

The approach presented puts more emphasis on objects rather

than on classes, which is one of its main divergences in re-
lation to the traditional object-oriented approaches. The
transformation from use cases into objects is one of the most
important tasks within the development process. An holis-
tic approach is followed during this transformation, so that
it is possible to obtain, in a semi-automatic migration step,

the object diagram that best maps the user's requirements
into the system's requirements.

To ease the mapping of the models, tagged values (desig-
nated reference) are associated to the modeling elements
(use cases and objects). This mechanism is useful, since
it allows to circum-navigate throughout the whole comple-
mentary views of the system model, enabling the use of an
operational approach within the spiral model-based analysis

phase of system development.

This UML-based modeling approach was validated with a

real industrial case study. Although this paper just covers
the analysis phase, the authors are using UML models in
the design and implementation phases. The authors are
aware that the approach needs to be applied to more projects
to gain experience and to improve some of the guidelines,
namely in what concerns real-time constraints and model

re�nements during the design phase.

9. REFERENCES

[1] R.J.Machado, J.M.Fernandes, A.J.Esteves, H.D.San-
tos. Hardware Design and Petri Nets, chapter 11:
\An Evolutionary Approach to the Use of Petri Net
based Models: From Parallel Controllers to HW/SW
Co-Design". A.Yakovlev, L.Gomes, L.Lavagno (eds.),

Kluwer. To be published in 2000.
[2] A.J.Esteves, J.M.Fernandes, A.J.Proen�ca. Embedded

System Applications, chapter 3: \EDgAR: A Platform
for Hardware/Software Codesign", pp.19{32. Kluwer,
Jun.1997.

[3] J.M.Fernandes, M.Adamski, A.J.Proen�ca. VHDL Gen-
eration from Hierarchical Petri Net Speci�cations of
Parallel Controller. IEE Proceedings: Computers and

Digital Techniques, 144(2):127{37, Mar.1997.
[4] R.J.Machado, J.M.Fernandes, A.J.Proen�ca. An Object-

Oriented Model for Rapid Prototyping of Data
Path/Control Systems | A Case Study. In 9th IFAC

Symp. on Information Control in Manufacturing, vol.2,
pp.269{74, Jun.1998.

[5] R.J.Machado, J.M.Fernandes, A.J.Proen�ca. Hierarchi-

cal Mechanisms for High-level Modelling and Simula-
tion of Digital Systems. In 5th IEEE Int. Conf. on

Electronics, Circuits and Systems, vol.3, pp.229{32,
Sep.1998.

[6] G.Booch, J.Rumbaugh, I.Jacobson. The Uni�ed Mod-

eling Language User Guide. Addison-Wesley, 1999.
[7] L.F.Andrade, J.C.Gouveia, P.J.Xardon�e. Architectural

Concerns in Automated Code Generation. In OOPSLA

Midyear Conference, 1998.
[8] G.Schneider, J.P.Winters. Applying Use Cases: A Prat-

ical Guide. Addison-Wesley, 1998.
[9] B.P.Douglass. Real-Time UML: Developing E�cient

Objects for Embedded Systems. Addison-Wesley, 1998.
[10] I.Jacobson, M.Christerson, P.Jonsson, G. �Overgaard.

Object-Oriented Software Engineering: A Use Case

Driven Approach. Addison-Wesley, 1992.
[11] J.Rumbaugh, M.Blaha, W.Premerlani, F.Eddy,

W.Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall International, 1991.

[12] D.Budgen. Software Design. Addison-Wesley, 1994.
[13] A.Lyons. UML for Real-Time Overview. Technical re-

port, ObjecTime Limited, Apr.1998.
[14] R.J.Machado, J.M.Fernandes, A.J.Proen�ca. Speci�ca-

tion of Industrial Digital Controllers with Object-
Oriented Petri Nets. In IEEE Int. Symp. on Industrial

Electronics, vol.1, pp.78{83, Jul.1997.
[15] M.Sgroi, L.Lavagno, Y.Watanabe, A.Sangiovanni-

Vicentelli. Quasi-Static Scheduling of Embedded Soft-
ware Using Free-Choice Petri Nets. In 1st Workshop on

Hardware Design and Petri Nets, pp.26{45, Jun.1998.
[16] D.Harel. Statecharts: A Visual Formalism for Complex

Systems. Science of Computer Programming, 8:231{74,

1987.

22

