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Abstract In this paper, we study a new binary relation defined on the set of
rectangular complex matrices involving the weighted core-EP inverse and give
its characterizations. This relation becomes a pre-order. Then, one-sided pre-
orders associated to the weighted core-EP inverse are given from two perspec-
tives. Finally, we make a comparison for these two sets of one-sided weighted
pre-orders.
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1 Introduction

A binary relation is a pre-order if it is reflexive and transitive; if it is also
antisymmetric, then it is a partial order. The theory of partial orders (pre-
orders) based on various generalized inverses has been increasingly investigated,
such as, ∗-partial order [2], minus partial order [7, 16], sharp partial order
[12], Drazin pre-order [11, 13], core partial order [1, 17, 19] and core-EP pre-
order [5, 14, 18]. Meanwhile, weighted Drazin pre-order and one-sided weighted
Drazin pre-order were studied by Hernández et al. [8, 9].

Motivated by the above papers, in this paper, our main goal is to study new
binary relations defined by the weighted core-EP inverse.

Throughout this paper, Cm×n is used to denote the set of all m×n complex
matrices. For each complex matrix A ∈ Cm×n, A∗ denotes the conjugate trans-
pose of A, and R(A) denotes the range of A. The index of A ∈ Cn×n, denoted by
ind(A), is the smallest non-negative integer k for which rank(Ak) =rank(Ak+1).

Recall that the core-EP inverse was proposed by Manjunatha Prasad and
Mohana [10] for a square matrix of arbitrary index, as an extension of the core
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inverse restricted to a square matrix of index at most 1 in [1]. Then, Gao
and Chen [4] characterized the core-EP inverse (also known as the pseudo core
inverse) in terms of three equations. Let A ∈ Cn×n with ind(A) = k, the
core-EP inverse of A, denoted by A †○, is the unique solution of the system

XAk+1 = Ak, AX2 = X, (AX)∗ = AX.

The core-EP inverse is an outer inverse (resp. {2}-inverse), i.e., A †○AA †○ =
A †○, see [4].

Lemma 1. [4] Let A ∈ Cn×n with ind(A) = k. Then A †○ = ADAk(Ak)†.

In [18], Wang introduced the core-EP pre-order as follows:

Definition 1. [18] Let A, B ∈ Cn×n. Then A � †○ B if A †○A = A †○B and
AA †○ = BA †○.

An extension of the core-EP inverse from a square matrix to a rectangular
matrix was made by Ferreyra et al. [3] and was named the weighted core-EP in-
verse. Let A ∈ Cm×n, W ∈ Cn×m (W 6= 0) with k =max{ind(AW ), ind(WA)},
the W -weighted core-EP inverse A †○,W of A is the unique solution of the system

WAWX = P(WA)k , R(X) ⊆ R((AW )k).

Recently, Gao et al. [6] gave more representations of the weighted core-EP
inverse of a rectangular complex matrix.

Lemma 2. [6] Let A ∈ Cm×n and W ∈ Cn×m. Then A †○,W = A[(WA) †○]2.

Besides, Mosić [15] studied the weighted core-EP inverse of an operator be-
tween two Hilbert spaces as a generalization of the weighted core-EP inverse of
a rectangular matrix. In addition, the author introduced some binary relations
on the set of all Wg-Drazin invertible operators between two Hilbert spaces by
means of the core-EP inverse of certain generalized Drazin invertible operators.

In this note, we focus on binary relations associated with the W -weighted
core-EP inverse of rectangular complex matrices. The paper is organized as
follows: in Section 2, a new binary relation � †○,W on rectangular matrices is in-
troduced and characterized. In Section 3, two sets of one-sided binary relations
corresponding to � †○,W , namely, � †○,W,l, � †○,W,r and � †○,W,L, � †○,W,R are
defined and compared, after which, a relationship diagram of � †○,W , � †○,W,l

, � †○,W,r, � †○,W,L, � †○,W,R is provided, and finally we conclude that � †○,W

is weaker than � d○,W defined in [15].

2 A pre-order defined by the weighted core-EP inverse

In this section, we define a new binary relation in terms of the weighted core-EP
inverse and then give its characterizations.
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Definition 2. Let A, B ∈ Cm×n and W ∈ Cn×m. It is said that A � †○,W B
if (AW )A †○,W = (BW )A †○,W and A †○,W (WA) = A †○,W (WB).

Remark 1. In general, � †○,W does not preserve the rank function. Indeed, for
fixed matrices A, W with WA being nilpotent, then A � †○,W B always holds
whatever B equals. Thus, the rank of B could be less, equal or greater than
rank of A.

In the following result, we give characterizations of � †○,W involving the
core-EP inverse.

Theorem 1. Let A, B ∈ Cm×n and W ∈ Cn×m with k =max{ind(WA), ind(AW )}.
Then the following conditions are equivalent:

(a) A � †○,W B;
(b) (AW )(A †○,WW ) = (BW )(A †○,WW ) and (WA †○,W )(WA) = (WA †○,W )(WB);
(c) (AW )(AW ) †○ = (BW )(AW ) †○ and (WA) †○(WA) = (WA) †○(WB);
(d) A(WA)k = B(WA)k and (WA)∗(WA)k = (WB)∗(WA)K ;
(e) A(WA) †○ = B(WA) †○ and (WA) †○(WA) = (WA) †○(WB).

Proof. (a)⇒ (b) It is obvious from Definition 2.
(b)⇒ (c) By applying Lemma 2, WA †○,W = (WA) †○. Thus, from (WA †○,W )(WA) =

(WA †○,W )(WB), it is clear that (WA) †○(WA) = (WA) †○(WB). By Lemmas
1 and 2, as well as the fact that W (AW )D = (WA)DW , we have

(A †○,WW )(AW )(AW )D = A[(WA) †○]2W (AW )(AW )D = A[(WA) †○]2(WA)(WA)DW

= A[(WA) †○]2(WA)k+2[(WA)D]k+2W = A(WA)k[(WA)D]k+2W

= A[(WA)D]2W = (AW )D.

Post-multiply (AW )(A †○,WW ) = (BW )(A †○,WW ) by (AW )(AW )D, then we
derive

(AW )(AW )D = (BW )(AW )D.

Hence, in view of Lemma 1,

(AW )(AW ) †○ = (AW )(AW )D(AW )k[(AW )k]† = (BW )(AW )D(AW )k[(AW )k]†

= (BW )(AW ) †○.

(c) ⇒ (d) Post-multiplying (AW )(AW ) †○ = (BW )(AW ) †○ by (AW )kA, it
comes immediately that A(WA)k = B(WA)k.

Pre-multiply (WA) †○(WA) = (WA) †○(WB) by WA, then

WA(WA) †○(WA) = WA(WA) †○(WB).

Thus, (WA)∗(WA)(WA) †○ = (WB)∗(WA)(WA) †○. Hence,

(WA)∗(WA)k = (WA)∗(WA)(WA) †○(WA)k = (WB)∗(WA)(WA) †○(WA)k

= (WB)∗(WA)k.
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(d)⇒ (e) From A(WA)k = B(WA)k, it follows that

A(WA) †○ = A(WA)k[(WA) †○]k+1 = B(WA)k[(WA) †○]k+1 = B(WA) †○.

Then from (WA)∗(WA)k = (WB)∗(WA)k, it follows that [(WA)k]∗WA =
[(WA)k]∗WB. Hence, by the definition of the core-EP inverse, we have

(WA) †○(WA) = (WA) †○(WA)(WA) †○(WA)

= (WA) †○[(WA)(WA) †○]∗(WA)

= (WA) †○[(WA)k((WA) †○)k]∗(WA)

= (WA) †○[((WA) †○)k]∗[(WA)k]∗(WA)

= (WA) †○[((WA) †○)k]∗[(WA)k]∗(WB)

= (WA) †○(WB).

(e) ⇒ (a) Note that (AW )A †○,W = A(WA) †○ = B(WA) †○ = (BW )A †○,W

as well as A †○,W (WA) = A[(WA) †○]2(WA) = A[(WA) †○]2(WB) = A †○,W (WB).

From Theorem 1, it is clear that if A � †○,W B, then WA � †○ WB. However
the converse is not true in general, see Example 1.

Example 1. Let A =

1 0
0 0
0 0

 ∈ C3×2, B =

1 0
0 0
1 0

 ∈ C3×2 and W =

[
1 0 0
0 1 0

]
∈

C2×3. Then

WA =

[
1 0
0 0

]
, (WA) †○ =

[
1 0
0 0

]
, WB =

[
1 0
0 0

]
.

Hence WA � †○ WB. However A(WA) †○ 6= B(WA) †○. That is to say, A � †○,W

B.

Theorem 2. The binary relation � †○,W defined on Cm×n is a pre-order.

Proof. From Definition 2, it follows immediately that � †○,W is reflexive. Now,
suppose that A, B, C ∈ Cm×n satisfy A � †○,W B and B � †○,W C. Note that
A � †○,W B is equivalent to

A(WA) †○ = B(WA) †○ and (WA) †○(WA) = (WA) †○(WB) (1)

by applying Theorem 1. Likewise, B � †○,W C is equivalent to

B(WB) †○ = C(WB) †○ and (WB) †○(WB) = (WB) †○(WC). (2)

Thus,

A(WA) †○ (1)
===B(WA) †○ = BWA[(WA) †○]2 = BW [A(WA) †○](WA) †○

(1)
===BW [B(WA) †○](WA) †○ = BWB(WA) †○(WA) †○.
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Note that WB(WA) †○ = WBWA[(WA) †○]2 = (WB)2[(WA) †○]2 = · · · =
(WB)k[(WA) †○]k, where k =max{ind(WA), ind(WB)}.
Thus,

A(WA) †○ =B(WB)k[(WA) †○]k+1 = B(WB) †○(WB)k+1[(WA) †○]k+1.

Hence, by (2),

A(WA) †○ =C(WB) †○(WB)k+1[(WA) †○]k+1 = C(WB)k[(WA) †○]k+1

=C(WA) †○, because of

(WA) †○ =WA[(WA) †○]2
(1)

=== WB[(WA) †○]2 = · · · == (WB)k[(WA) †○]k+1.

Since (WA) †○ = (WA) †○WA(WA) †○ = (WA) †○[WA(WA) †○]∗ = (WA) †○[(WB)k((WA) †○)k]∗

= (WA) †○[(WB)k((WA) †○)k]∗WB(WB) †○ = (WA) †○WB(WB) †○, then

(WA) †○(WA) = (WA) †○WB = (WA) †○WB(WB) †○WB = (WA) †○WB(WB) †○WC

= (WA) †○(WC).

Hence A � †○,W C and the transitivity holds. This completes the proof.

In general, the binary relation � †○,W is not antisymmetric as Example 2
shows.

Example 2. Let A =


1 0 0
0 1 0
0 0 1
0 0 0

 ∈ C4×3, B =


1 0 0
0 1 0
0 0 2
0 0 0

 ∈ C4×3 and W =

1 0 0 0
0 1 0 0
0 0 0 1

 ∈ C3×4. Then it is easy to verify that A � †○,W B and B � †○,W A.

However A 6= B.

Ferreyra et al. [3] established a simultaneous unitarily upper-triangularization
of A ∈ Cm×n and W ∈ Cn×m.

Lemma 3. [3] Let A ∈ Cm×n and W ∈ Cn×m. Then there exist unitary
matrices U ∈ Cm×m and V ∈ Cn×n such that

A = U

[
A1 A12

O A2

]
V ∗ and W = V

[
W1 W12

O W2

]
U∗, (3)

where A1, W1 ∈ Ct×t are non-singular matrices and A2W2, W2A2 are nilpotent
of indices ind(AW ) and ind(WA), respectively.
In this case,

A †○,W = U

[
(W1A1W1)

−1 O
O O

]
V ∗. (4)
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By applying Lemma 3, we have the following result.

Theorem 3. Let A, B ∈ Cm×n and W ∈ Cn×m. If A and W are written as
in (3), then the following conditions are equivalent:

(a) A � †○,W B;

(b) there exist B12 ∈ Ct×(n−t), B2 ∈ C(m−t)×(n−t) such that B = U

[
A1 B12

O B2

]
V ∗

and
W1A12 + W12A2 = W1B12 + W12B2.

Proof. Consider the following partition of B:

B = U

[
B1 B12

B3 B2

]
V ∗. (5)

In view of (3)-(5), AWA †○,W = U

[
W−11 O
O O

]
V ∗ and

BWA †○,W = U

[
B1(W1A1)

−1 O
B3(W1A1)

−1 O

]
V ∗.

From AWA †○,W = BWA †○,W , it follows clearly that B1 = A1 and B3 = O. The
equality A †○,WWA = A †○,WWB leads to W1A12 + W12A2 = W1B12 + W12B2.
Hence (a)⇒ (b) holds. The converse is straightforward.

3 One-sided pre-orders

In this section, we consider two sets of one-sided weighted binary relations
involving the core-EP inverse and then make a comparison of them. According
to Definition 2, it is natural to define the left and right-sided relations associated
to � †○,W as follows:

Definition 3. Let A, B ∈ Cm×n and W ∈ Cn×m. It is said that
(a) A � †○,W,l B if A †○,W (WA) = A †○,W (WB);
(b) A � †○,W,r B if (AW )A †○,W = (BW )A †○,W .

It is clear that A � †○,W B if and only if A � †○,W,l B and A � †○,W,r B
according to Definitions 2 and 3.

Analogously to Theorem 1, we get characterizations of one-sided weighted
core-EP pre-orders.

Theorem 4. Let A, B ∈ Cm×n and W ∈ Cn×m with k = ind(WA). Then the
following conditions are equivalent:

(a) A � †○,W,l B;
(b) (WA †○,W )(WA) = (WA †○,W )(WB);
(c) (WA) †○(WA) = (WA) †○(WB);
(d) (WA)∗(WA)k = (WB)∗(WA)k.
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Theorem 5. Let A, B ∈ Cm×n and W ∈ Cn×m with k =max{ind(WA), ind(AW )}.
Then the following conditions are equivalent:

(a) A � †○,W,r B;
(b) (AW )(A †○,WW ) = (BW )(A †○,WW );
(c) (AW )(AW ) †○ = (BW )(AW ) †○;
(d) A(WA)k = B(WA)k;
(e) A(WA) †○ = B(WA) †○.

In light of Theorem 4, Theorem 5 and the proof of Theorem 2, we have the
following result.

Theorem 6. The binary relations � †○,W,l and � †○,W,r defined on Cm×n are
both pre-orders.

Proof. Suppose that A,B ∈ Cm×n. According to Theorem 4, A � †○,W,l B
is equivalent to (WA) †○(WA) = (WA) †○(WB). Similarly, according to The-
orem 5, A � †○,W,r B is equivalent to A(WA) †○ = B(WA) †○. By the proof of
Theorem 2, it is known that both � †○,W,l and � †○,W,r are pre-orders.

However, it is possible that we also define the the right and left-sided rela-
tions associated to � †○,W as follows:

Definition 4. Let A, B ∈ Cm×n and W ∈ Cn×m. It is said that
(a) A � †○,W,L B if (WA †○,W )(WA) = (WA †○,W )(WB) and (WA)(WA †○,W ) =

(WB)(WA †○,W );
(b) A � †○,W,R B if (AW )(A †○,WW ) = (BW )(A †○,WW ) and (A †○,WW )(AW ) =

(A †○,WW )(BW ).

In what follows, � †○,W,L and � †○,W,R are characterized respectively.

Theorem 7. Let A, B ∈ Cm×n and W ∈ Cn×m with k = ind(WA). Then the
following conditions are equivalent:

(a) A � †○,W,L B;
(b) (WA) †○(WA) = (WA) †○(WB) and (WA)(WA) †○ = (WB)(WA) †○;
(c) WA � †○ WB;
(d) (WA)∗(WA)k = (WB)∗(WA)k and (WA)k+1 = (WB)(WA)k.

Proof. (a) ⇔ (b) According to Definition 4, A � †○,W,L B if and only if
(WA †○,W )(WA) = (WA †○,W )(WB) and (WA)(WA †○,W ) = (WB)(WA †○,W ).
Observe that (WA †○,W ) = (WA) †○ by Lemma 2. Then (a)⇔ (b) follows.

(b)⇔ (c) It is clear by applying Definition 1.
(b)⇒ (d) Pre-multiply (WA) †○(WA) = (WA) †○(WB) by [(WA)k]∗(WA),

then

[(WA)k]∗(WA) = [(WA)k]∗(WA)(WA) †○(WA) = [(WA)k]∗(WA)(WA) †○(WB)

= [(WA)k]∗(WB).

Note that (WA)∗(WA)k = (WB)∗(WA)k if and only if [(WA)k]∗(WA) =
[(WA)k]∗(WB) by making an involution.
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Post-multiply (WA)(WA) †○ = (WB)(WA) †○ by (WA)k+1, then

(WA)k+1 = (WA)(WA) †○(WA)k+1 = (WB)(WA) †○(WA)k+1 = (WB)(WA)k.

(d)⇒ (b) From [(WA)k]∗(WA) = [(WA)k]∗(WB), it follows that

(WA) †○(WA) = (WA) †○(WA)(WA) †○(WA) = (WA) †○[(WA)k((WA) †○)k]∗(WA)

= (WA) †○[((WA) †○)k]∗[(WA)k]∗(WA) = (WA) †○[((WA) †○)k]∗[(WA)k]∗(WB)

= (WA) †○(WB).

Post-multiplying (WA)k+1 = (WB)(WA)k by [(WA) †○]k+1, we thus have (WA)(WA) †○ =
(WB)(WA) †○.

Theorem 8. Let A, B ∈ Cm×n and W ∈ Cn×m with k =max{ind(WA), ind(AW )}.
Then the following conditions are equivalent:

(a) A � †○,W,R B;
(b) (AW )(AW ) †○ = (BW )(AW ) †○ and (WA) †○(WA)W = (WA) †○(WB)W ;
(c) A(WA) †○ = B(WA) †○ and (WA) †○(WA)W = (WA) †○(WB)W ;
(d) A(WA)k = B(WA)k and W ∗(WA)∗(WA)k = W ∗(WB)∗(WA)k.

Proof. (a)⇒ (b) In view of Definition 4, A � †○,W,R B if and only if (AW )(A †○,WW ) =
(BW )(A †○,WW ) and (A †○,WW )(AW ) = (A †○,WW )(BW ). By Lemmas 1 and
2, we have

(AW )(AW ) †○ = (AW )(AW )D(AW )k[(AW )k]†

= A[(WA)D(WA)k]W [(AW )k]†

= A[(WA) †○(WA)k]W [(AW )k]†

= [A(WA) †○W ](AW )k[(AW )k]†

= (AW )(A †○,WW )(AW )k[(AW )k]†

= (BW )(A †○,WW )(AW )k[(AW )k]†

= (BW )A[(WA) †○]2W (AW )k[(AW )k]†

= (BW )A[(WA) †○]2(WA)k+2[(WA)D]2W [(AW )k]†

= (BW )A(WA)k[(WA)D]2W [(AW )k]†

= (BW )(AW )D(AW )k[(AW )k]†

= (BW )(AW ) †○ and

(WA) †○(WA)W = (WA) †○(WA)2[(WA) †○]2WAW = (WA) †○WAW (A †○,WWAW )

= (WA) †○WAW (A †○,WWBW ) = (WA) †○(WB)W.
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(b)⇒ (c) Post-multiply (AW )(AW ) †○ = (BW )(AW ) †○ by A(WA) †○, then

(AW )(AW ) †○A(WA) †○ = (AW )(AW ) †○A(WA)k+1[(WA) †○]k+2

= (AW )(AW ) †○(AW )k+1A[(WA) †○]k+2

= (AW )k+1A[(WA) †○]k+2

= A(WA)k+1[(WA) †○]k+2

= A(WA) †○

and analogously

(BW )(AW ) †○A(WA) †○ = B(WA) †○.

(c)⇒ (d) From A(WA) †○ = B(WA) †○, it follows that

A(WA)k = A(WA) †○(WA)k+1 = B(WA) †○(WA)k+1 = B(WA)k.

Since (WA) †○(WA)W = (WA) †○(WB)W , then W ∗(WA)∗[(WA) †○]∗ = W ∗(WB)∗[(WA) †○]∗.
Hence,

W ∗(WA)∗(WA)k = W ∗(WA)∗[(WA) †○]∗WA∗(WA)k = W ∗(WB)∗[(WA) †○]∗WA∗(WA)k

= W ∗(WB)∗(WA)k.

(d)⇒ (a) Since A(WA)k = B(WA)k, then

(AW )(A †○,WW ) = (AW )(A[(WA) †○]2W ) = A(WA) †○W = A(WA)k[(WA) †○]k+1W

= B(WA)k[(WA) †○]k+1W = B(WA) †○W = (BW )(A †○,WW ).

By making an involution on W ∗(WA)∗(WA)k = W ∗(WB)∗(WA)k, we obtain

[(WA)k]∗WAW = [(WA)k]∗WBW.

Therefore,

(A †○,WW )(AW ) = A[(WA) †○]2WAW = A[(WA) †○]2([(WA) †○]k)∗[(WA)k]∗WAW

= A[(WA) †○]2([(WA) †○]k)∗[(WA)k]∗WBW = A[(WA) †○]2WBW

= (A †○,WW )(BW ).

This completes the proof.

From Definitions 2 and 4 as well as Theorem 1, it is easy to verify that
A � †○,W B if and only if A � †○,W,L B and A � †○,W,R B. It is worth mentioning
that only one of A � †○,W,L B and A � †○,W,R B is not sufficient to prove
A � †○,W B, see Examples 1 and 3 in conjunction with Theorems 7 and 8.
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Example 3. Let A =

1 1
0 0
0 0

 ∈ C3×2, B =

1 0
0 0
0 0

 ∈ C3×2 and W =

[
1 0 0
0 0 0

]
∈

C2×3. Then

WA =

[
1 1
0 0

]
, (WA) †○ =

[
1 0
0 0

]
, WB =

[
1 0
0 0

]
, AW = (AW ) †○ = BW =

1 0 0
0 0 0
0 0 0

 .

Therefore, (AW )(AW ) †○ = (BW )(AW ) †○ and (WA) †○(WA)W = (WA) †○(WB)W ,
i.e., A � †○,W,R B. However, (WA) †○(WA) 6= (WA) †○(WB). That is to say,
A � †○,W B.

Using the fact that � †○ is a pre-order, we derive the following result.

Theorem 9. The binary relations � †○,W,L and � †○,W,R defined on Cm×n are
both pre-orders.

Proof. Let A,B ∈ Cm×n. Observe that A � †○,W,L B if and only if

(WA) †○(WA) = (WA) †○(WB) and (WA)(WA) †○ = (WB)(WA) †○

by Theorem 7, and A � †○,W,R B if and only if

A(WA) †○ = B(WA) †○ and (WA) †○(WA)W = (WA) †○(WB)W

by Theorem 8. According to the proof of Theorem 2, it is easy to check that
� †○,W,L and � †○,W,R are both pre-orders.

Remark 2. Observe that A � †○,W,L B if and only if WA � †○ WB in Theorem
7. However, in general, A � †○,W,R B is not equivalent to AW � †○ BW in
Theorem 8 as the following example shows.

Example 4. Let A =

1 1
0 0
0 0

 ∈ C3×2, B =

1 1
0 −1
0 0

 ∈ C3×2, W =

[
1 1 0
0 −1 0

]
∈

C2×3. Then WA =

[
1 1
0 0

]
, (WA) †○ =

[
1 0
0 0

]
, AW = (AW ) †○ =

1 0 0
0 0 0
0 0 0

,

BW =

1 0 0
0 1 0
0 0 0

. Thus,

(AW )(AW ) †○ = (BW )(AW ) †○,

(AW ) †○(AW ) = (AW ) †○(BW ),

(WA) †○(WA)W 6= (WA) †○(WB)W.

Hence AW � †○ BW . However, A � †○,W,R B.
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Likewise, we can illustrate that A � †○,W,R B but AW � †○ BW by letting

A =

1 0
0 0
0 0

 ∈ C3×2, B =

1/2 1/2
1/2 −1/2
1/2 −1/2

 ∈ C3×2, W =

[
1 1 0
1 −1 2

]
∈ C2×3.

Here we omit the details.

Let us make a comparison of these two sets of one-sided weighted core-EP
pre-orders.

Firstly, it is clear that if A � †○,W,L B, then A � †○,W,l B, but the converse
may not be true, see the example below.

Example 5. Let A =

1 0
0 0
0 0

 ∈ C3×2, B =

1 0
1 0
0 0

 ∈ C3×2, W =

[
1 0 0
0 1 0

]
∈

C2×3. Then WA =

[
1 0
0 0

]
, WB =

[
1 0
1 0

]
and (WA) †○ =

[
1 0
0 0

]
. It is clear that

(WA) †○(WA) = (WA) †○(WB), i.e., A � †○,W,l B.

However, A � †○,W,L B in light of Theorem 7, as (WA)(WA) †○ 6= (WB)(WA) †○.

Secondly, if A � †○,W,R B, then A � †○,W,r B. But the converse may not be
true, as the following example shows.

Example 6. Let A =

1 1
0 0
0 0

 ∈ C3×2, B =

1 0
0 1
0 0

 ∈ C3×2, W =

[
1 0 0
0 1 0

]
∈

C2×3. It is easy to very that

(AW )(AW ) †○ = (BW )(AW ) †○, i.e., A � †○,W,r B.

However, (WA) †○(WA)W 6= (WA) †○(WB)W . Hence A � †○,W,R B in view of
Theorem 8.

A relationship diagram of

� †○,W , � †○,W,L, � †○,W,R, � †○,W,l, � †○,W,r

is provided as follows.
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Finally, applying [15, Definition 3.1] to complex matrices, let A, B ∈ Cm×n

and W ∈ Cn×m, then (one-sided) pre-orders with respect to the W -weighted
core-EP inverse are given by

A � d○,W,l B if AW � †○ BW ;

A � d○,W,r B if WA � †○ WB;

A � d○,W B if A � d○,W,l and A � d○,W,r .

We conclude that A � d○,W B is stronger than A � †○,W B.
In fact, it is clear that A � d○,W B yields A � †○,W B, however, the converse

is not true in general, for example, take A =

1 0
0 0
0 0

 ∈ C3×2, B =

1/2 1/2
1/2 −1/2
1/2 −1/2

 ∈
C3×2, W =

[
1 1 0
1 −1 2

]
∈ C2×3 as in Example 4, we thus have A � †○,W B,

whereas AW � †○ BW and hence A � d○,W B.
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