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Abstract In this paper, we study a new binary relation defined on the set of
rectangular complex matrices involving the weighted core-EP inverse and give
its characterizations. This relation becomes a pre-order. Then, one-sided pre-
orders associated to the weighted core-EP inverse are given from two perspec-
tives. Finally, we make a comparison for these two sets of one-sided weighted
pre-orders.
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1 Introduction

A binary relation is a pre-order if it is reflexive and transitive; if it is also
antisymmetric, then it is a partial order. The theory of partial orders (pre-
orders) based on various generalized inverses has been increasingly investigated,
such as, s-partial order [2], minus partial order [7, 16], sharp partial order
[12], Drazin pre-order [11, 13|, core partial order [1, 17, 19] and core-EP pre-
order [5, 14, 18]. Meanwhile, weighted Drazin pre-order and one-sided weighted
Drazin pre-order were studied by Herndndez et al. [8, 9].

Motivated by the above papers, in this paper, our main goal is to study new
binary relations defined by the weighted core-EP inverse.

Throughout this paper, C™*™ is used to denote the set of all m x n complex
matrices. For each complex matrix A € C™*" A* denotes the conjugate trans-
pose of A, and Z(A) denotes the range of A. The index of A € C"*™, denoted by
ind(A), is the smallest non-negative integer k for which rank(A*) =rank(A**1).

Recall that the core-EP inverse was proposed by Manjunatha Prasad and
Mohana [10] for a square matrix of arbitrary index, as an extension of the core
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inverse restricted to a square matrix of index at most 1 in [1]. Then, Gao
and Chen [4] characterized the core-EP inverse (also known as the pseudo core
inverse) in terms of three equations. Let A € C™" with ind(A) = k, the
core-EP inverse of A, denoted by A® s the unique solution of the system

XA — AR AX? = X, (AX)* = AX.

The core-EP inverse is an outer inverse (resp. {2}-inverse), i.e., ADAAD =
AD | see [4].

Lemma 1. [4] Let A € C"" with ind(A) = k. Then AD = AP AF(AF)1,
In [18], Wang introduced the core-EP pre-order as follows:

Definition 1. [18] Let A, B € C"*". Then A <® B if AOA = AOB and
AA® = BA®.

An extension of the core-EP inverse from a square matrix to a rectangular
matrix was made by Ferreyra et al. [3] and was named the weighted core-EP in-
verse. Let A € C™*", W € C™*™ (W # 0) with £k =max{ind(AW),ind(WA)},
the W-weighted core-EP inverse ADW of A is the unique solution of the system

WAWX = Puy ape, Z(X) C Z((AW)F).

Recently, Gao et al. [6] gave more representations of the weighted core-EP
inverse of a rectangular complex matrix.

Lemma 2. [6] Let A € C™*" and W € C**™. Then AOW = A[(WA)D)2.

Besides, Mosi¢ [15] studied the weighted core-EP inverse of an operator be-
tween two Hilbert spaces as a generalization of the weighted core-EP inverse of
a rectangular matrix. In addition, the author introduced some binary relations
on the set of all Wg-Drazin invertible operators between two Hilbert spaces by
means of the core-EP inverse of certain generalized Drazin invertible operators.

In this note, we focus on binary relations associated with the W-weighted
core-EP inverse of rectangular complex matrices. The paper is organized as
follows: in Section 2, a new binary relation <®W on rectangular matrices is in-
troduced and characterized. In Section 3, two sets of one-sided binary relations
corresponding to j®’W, namely, j®’W’l, j®’W7T and j®’W’L, j®’W7R are
defined and compared, after which, a relationship diagram of <®W  <®OWI

<@OWr  <@W.L - <OW.R g provided, and finally we conclude that <@W
is weaker than <@ W defined in [15].

2 A pre-order defined by the weighted core-EP inverse

In this section, we define a new binary relation in terms of the weighted core-EP
inverse and then give its characterizations.
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Definition 2. Let A, B € C™*" and W € C™ ™. [t is said that A <OW B
if (AW)ADW = (BW)ADW gnd AOW (W A) = AOW (W B).

Remark 1. In general, <@V does not preserve the rank function. Indeed, for
fized matrices A, W with WA being nilpotent, then A <OW B always holds
whatever B equals. Thus, the rank of B could be less, equal or greater than
rank of A.

In the following result, we give characterizations of <@ involving the
core-EP inverse.

Theorem 1. Let A, B € C"™*" and W € C™*"™ with k =maz{ind(W A),ind(AW)}.

Then the following conditions are equivalent:

(a) A 2OV B;

(b) (AW)(ADWW) = (BW)(ADW W) and (WADW)(W A) = (W ADW ) (W B);
(c) (A )(AW>@=<BW><AW>@ and (WA)O(WA) = (WA)D(WB);

(d) AWA* = BWA)E and (WA)*(WAF = (WB)*(WA)K;

(

A)¥
e) AWA® = BWA)® and(WA)@(WA)z(WA)@(WB).

Proof. (a) = (b) It is obvious from Definition 2.
(b) = (c) By applying Lemma 2, WADW = (W A)®. Thus, from (WADWV) (W A) =

(WADWYWB), it is clear that (WA)®(WA) (WA)®(WB) By Lemmas

1 and 2, as well as the fact that W (AW)P = (WA)PW, we have

(ADWW)(AW)(AW)? = AW A)DPW (AW)(AW)P = A[(W AP (W A) (W 4) W
= AW A)OPW A2 (W AT = AW AW A)P)2w
= A[(WAPPW = (AW)P.

Post-multiply (AW)(ADWW) = (BW)(ADWW) by (AW)(AW)P, then we

derive
(AW)(AW)P = (BW)(AW)P.

Hence, in view of Lemma 1,

(AW)(AW)D = (AW)(AW)P (AW )F[(AW)H]T = (BW)(AW)P (AW)*[(AW)*]!
= (BW)(AW)D.
(¢) = (d) Post-multiplying (AW)(AW)D = (BW)(AW)® by (AW)FA, it
comes immediately that A(WA)* = B(W A)¥.
Pre-multiply (WA)D(WA) = (WA)D(WB) by WA, then
WAWADWA) = WAWADWB).
Thus, (WA)*(WA)(WA)D = (WB)*(WA)(WA)D. Hence,

(WA (WAE = (WA (WA WADWAF = (WB)* (WA WADW A
= (WB)*(WA)~.
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(d) = (e) From A(WA)k = B(W A)* it follows that

AWA)D = AW AR [(WA)DEHL = BW AR (W A) D)+ = B(W A)D.
Then from (WA)*(WA)* = (WB)*(WA), it follows that [(WA)**WA =
[(WA)*]*W B. Hence, by the definition of the core-EP inverse, we have

(WA)DOWA) = OwA)(WA)D(W A)

WA)(W AP (W A)
WA (W A)D)F)*(W 4)
W A) O [(W Ak (W A)
W A)O)F (W A" (W B)

WA

(WA)(
(WA)Y
(WA
= (WA
= (WAY
(WAL W
)

(e) = (a) Note that (AW)ADW = A(WA)® = B(WA)® = (BW)ADW
as well as ADW(WA) = A(WA)DPR(WA) = A(WA)DP2(WB) = AOW(WB).
O

From Theorem 1, it is clear that if A <®W B then WA <® W B. However
the converse is not true in general, see Example 1.

10 10

Example 1. Let A = OO] €eC3*2 B = 00] € C3%2 gnd W = [é(l)g}

00 10

C2%3, Then

WA= [38} (WA)® = [(1)8] WB = [(1)8]

Hence WA <@ WB. However AWA)® #£ BWA)D. That is to say, A AOW
B.

Theorem 2. The binary relation <OW defined on C™ ™ is a pre-order.

Proof. From Definition 2, it follows immediately that <®@W is reflexive. Now,
suppose that A, B, C € C™*" satisfy A <®W B and B <®W . Note that
A<OW B ig equivalent to

AWA)D = BWA)D and (WA)DOWA) = (WADWB) (1)
by applying Theorem 1. Likewise, B <®'W (' is equivalent to
B(WB)® = c(WB)® and (WB)O(WB) = (WB)DWC). (2)
Thus,
AW )@ LLBw a)® = BWA[WA)D? = BW[AW A)D| (W 4)D

L B (BwW A (WA)D = BWBW AW A,
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Note that WB(WA)® = WBWA[(WA)D)? = (WB}(WA)D]2 = ... =
(WB)*[(WA)D)*, where k =max{ind(W A),ind(W B)}.
Thus,

AW A)D =BWB)*|(WA)D)+ = BWB)D(WB)F+1[(W A) D)+,
Hence, by (2),

AW A =C(WB)OW B)M (W AP = c(WB)F (WA
=C(WA)D, because of

WAD =wA(WA)PPR LL wB(WAPP =... == (WB)HW A+,

Since (WA)D = (WAOWAWA)D = (WADO[WAWA)DT* = (WA)DO[(WB)F(WA)D)
= (WAO[(WB) (WA WBWB)D = (WADOWBWB)D, then

WADQWA) = WAPWB = (WAOWBWB)OWB = (WA)OWBWB)PwWC
= (WADQWC).

Hence A <®OW ¢ and the transitivity holds. This completes the proof. ]

In general, the binary relation <®W is not antisymmetric as Example 2
shows.

100 100

_ |010 4x3 _ (010 4x3 _

Example 2. Let A = 001 e C**° B = 002 e C and W =
000 000

1000

0100| € C3*4. Then it is easy to verify that A <OW B and B <OW 4.
0001

However A # B.

Ferreyra et al. [3] established a simultaneous unitarily upper-triangularization
of A e C™*"™ and W € C™"*™,

Lemma 3. (3] Let A € C™*" and W € C"*™. Then there exist unitary
matrices U € C™*™ and V € C™™" such that

Ar Arp

A=v |

} V*and W=V [Wl Wl?} U*,

0 W, 3)
where A1, Wi € C*¥t are non-singular matrices and AsWo, WaAs are nilpotent
of indices ind(AW) and ind(W A), respectively.

In this case,
Wr ATV )~
A@’W:U[( 1A10 1) 8] V. (4)



6 ; Yuefeng GAO, Jianlong CHEN,
Pedro PATRICIO

By applying Lemma 3, we have the following result.

Theorem 3. Let A, B € C"™*" and W € C™™. If A and W are written as
in (3), then the following conditions are equivalent:
(a) A 2OV B;

(b) there exist B1a € Ctx(n=t) By € Cm=1)X(=t) gych that B = U [

A1 Bia| (4
0 BQ]V

and
WiAig + WA = W1 Big + Wi2Bs.

Proof. Consider the following partition of B:

17 | B1 Bi2| («
B_U[Bg BJV. (5)

w;to

. ] OW _
In view of (3)-(5), AW A U { O O

] V* and
Bl(WlAl)_l O

®OW _
BWA =U |:Bg(W1A1)_1 O

] Ve

From AW ADOW = BWADOW it follows clearly that B; = A; and B = O. The
equality AOWW A = AOWW B leads to Wi A + WiaAy = WiBia + WiaBo.
Hence (a) = (b) holds. The converse is straightforward. O

3 One-sided pre-orders

In this section, we consider two sets of one-sided weighted binary relations
involving the core-EP inverse and then make a comparison of them. According
to Definition 2, it is natural to define the left and right-sided relations associated
to j®’W as follows:

Definition 3. Let A, B € C™ ™ and W € C™*™. [t is said that
(a) A <OWL B if AW (W A) = AOW (W B);
(b) A <OWr B if (AW)ADW = (BW)A@W

It is clear that A <®W B if and only if A <OW! B and 4 <OWr B
according to Definitions 2 and 3.

Analogously to Theorem 1, we get characterizations of one-sided weighted
core-EP pre-orders.

Theorem 4. Let A, B € C"™*™ and W € C™*"™ with k = ind(W A). Then the
following conditions are equivalent:

(a) A 3OWL B,

(b) (WAGH)(WA) = (WAD) (WD)

(c) (WA)D (WA) = (WA)DWB);

(d) (WA (WA)F = (WB)* (WA
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Theorem 5. Let A, B € C™*" and W € C™*™ with k =maz{ind(W A),ind(AW)}.
Then the following conditions are equivalent:
a) A <OWr p;

(b) (AW)(ADW W) = (BW)(ADW W),

(c) (4 )(AW)@ = (BW)(AW)@;

(d) AWA)* = BWA);

(e) AWA)D = BWA)O,

In light of Theorem 4, Theorem 5 and the proof of Theorem 2, we have the
following result.

Theorem 6. The binary relations <OV and <OWr defined on C™*" are
both pre-orders.

Proof. Suppose that A, B € C™*™. According to Theorem 4, A <®Wi B
is equivalent to (WA)D(WA) = (WA)DOWB). Similarly, according to The-
orem 5, A <OWr B is equivalent to A(WA)® = B(WA)D. By the proof of
Theorem 2, it is known that both j®7WJ and j®7w7r are pre-orders. O

However, it is possible that we also define the the right and left-sided rela-
tions associated to j®’W as follows:

Definition 4. Let A, B € C™*"™ and W € C™"*™. It is said that

(a) A <OWL B if  WAOWYWA) = (WADWYWB) and (WA (WADOW) =
(WB)(WADW);

(b) A KOWE B if (AW)(ADYVW) = (BW)(ADVYW) and (ADWW)(AW) =
(AOVW)(BW).

In what follows, <OW.L and <OWR are characterized respectively.

Theorem 7. Let A, B € C"™*™ and W € C™ ™ with k = ind(W A). Then the
following conditions are equivalent:
(a) A <OWL B
(b) (WAOWA) = WADWB) and (WA (WAD® = (WB)(WAO:
(c) WA <O wB;
(d) WA (WAE = (WB)*(WAY and (WA = (WB)(WA)*.

Proof. (a) < (b) According to Definition 4, A <®W:L' B if and only if
(WADW YW A) = (WADWY (W B) and (WA)(WADW) = (WB)(WADW).
Observe that (WADW) = (WA)D by Lemma 2. Then (a) < (b) follows.
(b) < (c) It is clear by applying Definition 1.
(b) = (d) Pre-multiply (WA)O(WA) = (WA)DQ(WB) by [(WA)F*(WA),
then

[(WAR*(WA) = (WA (WAWAD(WA) = (WA (WA)(WA)D(WB)
= (WA (WB).

Note that (WA)* (WA = (WB)*(WA)* if and only if [(WA)K*(WA) =
[(W A)*]*(W B) by making an involution.
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Post-multiply (WA)(WA)® = (WB)(WA)® by (WA)**1, then
(WA = (WAWADQW A = (WB)(WADW A+ = (WB) (WA
(d) = (b) From [(WA)*]*(W A) = [(WA)*]*(W B), it follows that

(WAOWA) = (WADQWA)(WADOWA) = (WAD[(WA)E(WA)D)k]* (W A)
(WA)D[(W A (WA (WA) = (WA)D[(WA)D)E]* (W A)F]* (W
(WAD(WB).

0 O

w
w

Post-multiplying (W A)¥+ = (W B)(W A)* by [(W A)D]F+1 we thus have (W A)(WA)D =
(WB)(WA)D. O

Theorem 8. Let A, B € C"™*" and W € C™*"™ with k =maz{ind(W A),ind(AW)}.
Then the following conditions are equivalent:
(a) A <OWE p;
(b) (A )(AW)@ (BW)(AW)D and (WA)OW AW = (WA)DW B)W;
(c) (WA)@ B(WA)@ and (WA)OW AW = (WA)DWB)W;
(d) AWA* = BWAK and W*(WA)*(WAF = W*(WB)*(W A)*.

Proof. (a) = (b) In view of Definition 4, A <®-W: B if and only if (AW )(ADW W) =
(BW)(ADYW) and (ADVW)(AW) = (ADWW)(BW). By Lemmas 1 and
2, we have

(AW)(AW)D = (AW)(AW)P (AW )F[(AW )T
= A[(WA)P (W AW [(AW)*]T
= AW AW AR W [(AW)F)
= [AW A)OW](AW)F[(AW)F)i
= (AW)(AD W) (AW )F[(AW ¥
= (BW)(ADWW) (AW F[(AW ¥t
= (BW)A[(W A)DPW (AW )F[(AW)H]T
= (WA)DP(W A2 (W APPW[(AW)H]T

BW) AW A (W A)PPW{(AW)*]f
AW)? (AW) “[Am)]!
AW)® and

BW

(AW)
(BW)
(BW)
(BW)A[
(BW)
(BW)
(BW)

(
(

WAQW AW = WAQWA?[(WADPCPWAW = (WADCW AW (ADW W AW)
= (WAOWAW (ADYV W BW) = (WA)Q(WB)W.
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(b) = (c) Post-multiply (AW)(AW)D = (BW)(AW)® by A(WA)D, then

(AW AW)DAW A)D = (AW)(AW)D AW A+ (W A)D]F+2

and analogously
(BW)(AW)D AW A)D = B(W 4)D.
(¢) = (d) From A(WA)® = B(WA)D, it follows that
AW AP = AWADQW A = BWA)D(W AR+ = B(W A)F.

Since (WA QW AW = (WA)O(WB)W, then W* (W A)*[(WA)D]* = W*(WB)*[(WA)D
Hence,

WHW A (W A)* = W*(W A [(WA)DPW A (WAF = W*(WB) (WA W A*(W A)*
= W*(WB)*(WA).

(d) = (a) Since A(WA)* = B(WA)*, then
(AW)(ADWW) = (AW)(A[(W A)DPPW) = AW A)OW = AW A)R[(W A) D)+
= BWAF(WADQ+W = BWADOW = (BW)(ADVWw).
By making an involution on W*(W A)*(W A)¥ = W*(W B)*(W A)*, we obtain
(WA W AW = [(WA)*]*W BW.
Therefore,

(ADYW)(AW) = A[(WA)PPW AW = A[(W A)CP([(WA)D)F)*[(W AR W AW
= A(WA)CP((WAP) (WA WBW = A[(WA)CPWBW
= (ADY W) (BW).

This completes the proof. O

From Definitions 2 and 4 as well as Theorem 1, it is easy to verify that
A <OW B if and only if A <OW:-L B and A <OW:E B Tt is worth mentioning
that only one of A j®’W’L B and A j@’W’R B is not sufficient to prove
A =DOW B see Examples 1 and 3 in conjunction with Theorems 7 and 8.
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11 10 Loo
Example 3. Let A= [00| € C3*2, B= (00| € C3*2 and W = [ } €
000
00 00
C2*3. Then
10 10 100
WA= , (WA)D = , WB = ;AW = (AW)® = BW = {000
oo 00 00 000

Therefore, (AW)(AW)® = (BW)(AW)D and (WA D(W AW = (WADWB)W,
i.e., A <OWLE B However, (WAYD(WA) # (WAD(WB). That is to say,
A£OW B,

Using the fact that <® is a pre-order, we derive the following result.

Theorem 9. The binary relations <OWL gng <OWER defined on C™*" are
both pre-orders.

Proof. Let A, B € C™ ™. Observe that A <®W:L B if and only if
WADOWA) = (WADQWB) and (WAY(WAD = (WB)(WA)D
by Theorem 7, and A <OW:E B if and only if
AWA)D = BWA)D and WAQW AW = (WADQWB)W

by Theorem 8. According to the proof of Theorem 2, it is easy to check that
j®’W’L and j®’W’R are both pre-orders. O

Remark 2. Observe that A <OW-L B if and only if WA <@ W B in Theorem
7. Howewver, in general, A <OWE B s not equivalent to AW <® BW in
Theorem 8 as the following example shows.

11 11 {10
Example 4. Let A= |00| € C3*2, B= |0-1| € C3*2, W =
0-10
00 00
11 10 10O
C2%3. Then WA = , (WA)O = AW = (AWM® = [000],
00 00 000

100
BW = {010|. Thus,

000

(AW)(AW)@ = (BW)(AW) @,
(AW)D(AW) = (AW)P(BW),
WAOWAW £ (WADWB)W.

Hence AW <® BW . However, A ﬁ@’W’R B.
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Likewise, we can illustrate that A <OWE B byt AW ﬁ@ BW by letting

10 1/2 1/2 110
A=100| eC¥>? B={1/2-1/2 e@“,W:[L4466“?
00 1/2 -1/2

Here we omit the details.

Let us make a comparison of these two sets of one-sided weighted core-EP
pre-orders.

Firstly, it is clear that if A <OW.L B then A <®Wl B hut the converse
may not be true, see the example below.

10 10 100
Example 5. Let A= |00 € C3*2 B = [10]| € C>*2, W =
00 00 010

10 10 10 .
2x3 _ — ® —
C#*°. Then WA [O 0] , WB [1 0] and (W A) {0 O} . It is clear that

WAOWA) = (WAPWB), ie., ASOWI B
However, A ﬁ@W,L B in light of Theorem 7, as (WA)(WA)@ £ (WB)(WA)@,

Secondly, if A <®W.E B then A <®:W:r B But the converse may not be
true, as the following example shows.

11 10 100
Example 6. Let A = [00| € C3*2, B = |01]| € C3*2, W =
00 00 010

C2*3. It is easy to very that
(AW)(AW)®D = (BW)(AW)D, ie., A <OWr B,

However, (WA)YD(W AW # (WA DWB)W. Hence A 2OW-E B in view of
Theorem 8.

A relationship diagram of

<OW QWL OWE - <OWL <@.Wr

is provided as follows.
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<®,W,l and <®,Wr

Exampl 1 ExgMmple 3
Definitions 2 |and 3
AN
Trivial (@ /4 Trivial
Exqmple 5 ) Example 6
Example’l Definitions 2 |and 4 Exdxaple 3

<@,WL ond <@.WR

(men

Finally, applying [15, Definition 3.1] to complex matrices, let A, B €
and W € C™ ™ then (one-sided) pre-orders with respect to the W-weighted
core-EP inverse are given by

A=Wl it oAw <© Bw;
A<OWr gifwA <O wh;
A<OW Bif A KOWL ang A @Wr

We conclude that A <@W B is stronger than A <®W B,
In fact, it is clear that A <@W B yields A <®W B however, the converse

10 1/2 1/2
is not true in general, for example, take A = |00| € C3*2, B = |1/2 -1/2| €
00 1/2 —1/2
C32, W = B _11 g} € C2%3 as in Example 4, we thus have A <OW B,

whereas AW ;ﬁ® BW and hence A ﬁ@’w B.
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