
Towards Music-Driven Procedural Animation
Carlos Brito

Departamento de Informática
Universidade do Minho, Portugal

cfabrito@gmail.com

António Ramires Fernandes
Centro Algoritmi

Universidade do Minho, Portugal
arf@di.uminho.pt

Figure 1: (a) Initial tree; (b, c) Tree grows and thickens with every note; (d, e) Tree develops leaves upon reaching the half-note;
(f, g, h) Each note increases the wind intensity.

Abstract—We present our approach towards the development
of a framework for the creation of music-driven procedural
animations. We intend to explore the potential that elementary
musical features hold for driving engaging audio-visual anima-
tions. To do so, we bring forward an integrated environment
where real-time musical information is available and may be
flexibly used for manipulating different aspects of a dynamic
animation.

In general terms, our approach consists of developing a virtual
scene, populated by controllable entities, termed actors, and using
scripting to define how these actors’ behaviour or appearance
change in response to musical information. Scripting operates by
establishing associations, or mappings, between musical events,
such as the ringing of notes or chords, or sound information,
such as the frequency spectrum, and changes in the animation.

The scenario we chose to explore is comprised of two main
actors: trees and wind. Trees grow in an iterative process, and
may develop leaves, while swaying in response to the wind field.
The wind is represented as a vector field whose configuration
and strength can be altered in real-time. Scripting then allows
for synchronising these changes with musical events, providing a
natural sense of harmony with the accompanying music.

By having real-time access to musical information, as well as
control over a reactive animation we believe to have taken a first
step towards exploring a novel interdisciplinary concept with vast

expressive potential.
Keywords—audio-visual, procedural animation, tree genera-

tion, physical simulation

I. INTRODUCTION

The creation of audio-visual compositions is an interdis-
ciplinary pursuit which joins together art, science and engi-
neering. The interplay between vision and music not only
provides a vibrant means of artistic expression but may also be
used for aiding in the understanding of music. A significant
amount of academic research takes the latter approach and
often leads to frameworks that display various theoretical
aspects of music in graphical form (e.g. [1], [2], [3], [4]).
Other software exists that strives for a purely aesthetic visual
accompaniment of music which rely on information obtained
from the audio file. These are usually referred to as music visu-
aliser software. Two of the most prominent music visualisers
are Milkdrop2 [5] and G-force [6]. These two applications
produce abstract psychedelic imagery which often illustrates
musical aspects since the underlying generation algorithms
use waveform and spectral information obtained from the
audio signal. Music, however, contains far richer structural



information than what may be readily extracted from its
corresponding audio representation, namely information found
in sheet music. This higher level information is accessible in
symbolic representations such as MIDI [7] and MusicXML[8]
and comprises, for instance, note onset times, rests, and time
and key signatures. A prominent example of using this infor-
mation for animation is the work of the Animusic Company
[9]. These two contrasting approaches are representative of
using features from distinct representations of music. On one
hand, visualiser software uses low-level audio features, such as
the frequency spectrum. On the other Animusic uses low-level
musical features (which can arguably be regarded as high-
level audio features). Each of these representations reflects
certain aspects of a musical object, but no single representation
encompasses all its properties [10].

We hypothesise that due to music being the result of artistic
expression, often regarded as the language of emotion [11], the
creation of meaningful visual accompaniment should not be
built exclusively by algorithmic processes. Instead, we believe
that algorithms can provide configurable and reactive building
blocks from which complex animations can be built. Addi-
tionally, research into human perception has found statistical
evidence to indicate that there exist intuitive auditory-visual
mappings common among the general population [12].

We present a framework for procedurally generating three-
dimensional animations strongly choreographed to music. Our
framework offers a semi-automatic approach that allows for
building animations by specifying how particular events in
music can influence or determine the behaviour of actors
in a virtual world. The example we selected to animate is
comprised of two actors: a growing tree and a controllable
wind field. The wind field directs the motion of tree branches,
which allows for an intuitive control over their motion.

This approach can be regarded as a trade-off between con-
trol and automation. In this instance, a procedural algorithm
is responsible for the synthesis of tree geometry, a physical
simulation allows for its realistic response to wind, and other
continuous changes are modelled through interpolation.

Each animation is directed by a script that operates while
having access to both audio and symbolic musical information
and is responsible for defining the scene and establishing the
choreography in the form of audio-visual mappings.

This method provides a layer of abstraction from manually
specifying changes to animation elements. Instead, we define
controllable actors and a set of commands that will modify
their behaviour or appearance. When we synchronise these
commands to perceptual cues in music, such as the ringing
of notes or chords, we found it possible to achieve a natural
sense of harmony, which can be built upon to produce complex
visual accompaniments to music.

What we hope to demonstrate is the potential to unlock
artistic possibilities and empower creativity by supplying a
high-level interface for dealing with a real-time stream of
musical information and by allowing it to be projected onto
several aspects of an animation.

In our case study, we found this approach to be successful.

Although music structure is thoroughly described by a formal
theory, most of its fundamental aspects are perceived in an
intuitive way, which allows for them to be used in order
to derive an animation while simultaneously emphasising the
accompanying music.

II. BACKGROUND AND RELATED WORK

Establishing connections between sound and vision has been
a subject of active exploration with origins dating back to
ancient Greece [13][14][15]. Sir Isaac Newton and others have
proposed different connections of sound and vision through
the wave properties of colour in light and pitch in music
[16]. Arguably the first efforts to use technology to aid this
form of expression came with a series of experimental devices
from the eighteenth through the twentieth centuries generally
referred to as "colour organs". These instruments, modelled
on both the piano and the pipe organ, were built to produce
flashes of differently coloured light simultaneously with notes
played [17]. Due to the vast and interdisciplinary nature of
this subject, we focus this section exclusively on technological
approaches that allow for the creation of visual effects driven
by musical information.

The second half of the twentieth century was marked by
the rapid development of electronic devices, such as video
synthesizers, some of which were designed with audio-visual
exploration in mind [18]. During the 1970s one of the earliest
examples of music visualisers were developed, often referred
to as "light organs". These devices operated by converting
audio signals into rhythmic lighting effects. Most of these
operated by decomposing the audio signal into several fre-
quency bands, whose intensity then regulates the intensity of
differently coloured lights. This decade was also the stage for
the emergence of laser light shows, another example of joining
vision to music [19].

The software music visualisation age began in the mid-
1990s. From then on, several music players began incorporat-
ing visualiser software and the concept became widespread.
In this time it became common to use low-level audio fea-
tures, such as spectral features to produce abstract imagery
[20]. Possibly the earliest visualiser using this approach was
Cthugha, initially released in 1993 [21]. Milkdrop2 and G-
force, two prominent visualisers, were both initially released in
2001 and employ similar methods, having later been adopted
as the default visualisers for the WinAmp and iTunes media
players respectively [5]. Milkdrop2 has since then been open
sourced and re-implemented in OpenGL[22] and is able to
generate a myriad of fluid psychedelic effects. It operates
with preset files, which consist of code to describe how the
imagery evolves over time and how it responds to the input
audio signal. These files can describe effects ranging from
simple particles to intricate fluid and fractal-like shapes and
terrain. Due to its versatility, Milkdrop2 remains popular to
this day with a dedicated community who continues to re-
invent presets, exploring its endless possibilities [5].

Approaches which use only audio information have been
largely successful and remain popular among current music



visualiser applications. Beat detection algorithms can be im-
plemented using this information and often provide accurate
results. However, the audio-visual connection is limited by the
fact that only low-level features of sound are used, which do
not always bear a direct relationship to perceptual experiences
[12]. Despite the importance of music, music processing is
still a relatively young discipline [10].

One of the earliest academic efforts of using musical fea-
tures for the generation of imagery is presented in [23], where
the authors developed software for generating images of notes,
chords, and chord progressions, based on a set of artist-defined
associations between shape and colours, and pitches of musical
scales. In [24], MIDI information and forward kinematics were
used to automatically animate a virtual human drummer. It
was found necessary to allow for manual customisation of the
generated motions, to better match the emotional aspects of the
music played. [25] presents an approach to edit motion curves
with cues from musical information based on using preexisting
motions, created by an animator or resulting from motion
capture, which are then algorithmically emphasised according
to extracted musical cues, such as detected beats, chord
changes or variations in loudness. [26] describes a system
built to enhance the experience of live musical performances
by having a virtual character react in real-time to the music
being played. This was constructed upon the Animus system
described in [27]. [28] defines an approach for synthesising
dance motion matched to input music, based on approximating
the emotional aspects of dance performance. A database of
motion captured dance movements is used and processed.
After segmentation of both the audio signal and the available
motions, a sophisticated matching is made between the two,
assuring connectivity and producing remarkable results. In
[29], the Soma platform is described. This system uses three
inter-operating applications in order to produce visual imagery
from music. A live input application gathers and processes
audio and control data from multiple instruments, from which
several features are extracted and transmitted. These features
are received by a second application which configures the
mapping of audio to visual attributes. The results of the
mapping processes are then sent to the final application which
synthesises visual imagery using simultaneous Processing [30]
sketches. The authors in [31] have developed a system for
audio-visual mapping for the accompaniment of live orchestral
performances. A score-following interface was implemented to
account for tempo deviations during performance, allowing as
well for manual adjustments in real-time by the conductor.
The final projected visualisation was generated by Processing
[30].

The Animusic Company [9] produces musical short films
where intricate virtual instruments are animated to appear to
play themselves. This is made possible by the company’s
internal software, MIDImotion, which generates motion curves
from MIDI data [25]. Ubiquitously mentioned in music visu-
alisation literature is Stephen Malinkowski’s Music Animation
Machine [32]. His work consists in what he refers to as
"animated scores", that is, real-time animations of a musical

sheet synchronised with a live performance. His animations
often resemble the piano-roll representation of music, having
note transitions inspired by the musical piece in question
and colours based on musical structure. A vast library of
animations has been produced and is available on Stephen
Malinkowski’s YouTube channel [33]. Max/MSP [34] is an
advanced tool for the creation of interactive multimedia pro-
ductions. It employs the visual programming paradigm which
allows for an intuitive manipulation of real-time data. In 2003
the package Jitter was added which provides real-time video
and 3D graphics processing. It has since then been employed
for the creation of visual music [35] and is popular among
visual and performing artists [36]. The original developer
Miller Puckette, has since then authored Pure Data, often
regarded as the open-source counterpart of Max/MSP [37].

Our framework shares some goals with the Max/MSP
family, particularly the creation of audio-visual compositions.
However, Max is a general purpose development tool and
the access it provides to 3D graphics is low-level, as it
involves the direct manipulation of matrices and OpenGL
objects. Our approach intends to abstract the user away from
all implementation details and focus solely on the mappings
between musical events and changes in the animation.

The reported approaches demonstrate successful results for
their purposes, however, none offers a generalised and exten-
sible framework for the creation of audio-visual animations.
Furthermore, none explores the possibilities of using real-time
procedural generation or physical simulation techniques to
produce visual imagery.

III. TOWARDS PROCEDURAL MUSIC-DRIVEN ANIMATION

The problem we approach is allowing for the flexible
creation of animations strongly choreographed to music. In
order to make this possible, controllable algorithms for pro-
cedural generation are necessary, as well as input for musical
information. To join these two parts a versatile strategy to
create mappings is also required.

Since any predefined mapping of musical to visual attributes
would be arbitrary, what we strive to accomplish is to design
a framework which allows for the definition of any mapping
within the established scope. For this, we found that the use
of a scripting system provided not only flexibility but also
the possibility to create further abstractions, which aid in
specifying increasingly complex behaviours.

In order to bring the concept of script-based music-driven
procedural animation to life, we have developed a proof-of-
concept demonstration. We selected trees swaying in the wind
as our scene for three main reasons. Firstly, the procedural
generation of trees is a well-studied field, having had contri-
butions from both computer graphics and botany [38]. Second,
trees possess several mutable aspects, such as topology, growth
rate, texture and colour, which can be used as a "canvas" for
projecting different musical aspects and third, by modifying
the wind field we are able to create a variety of swaying
motions which resemble dancing.



Our framework allows for the real-time processing of the
various aspects which will produce our animations namely
audio and MIDI processing, tree growth and response to
wind, script execution and rendering. The system can be
conceptually divided into the host application, where the actors
are implemented, and the Lua scripting environment, where
the audio-visual mappings are described.

A. System Architecture

In this subsection, we present a broad overview of our
framework’s internal organisation as an introduction to the
various challenges it tackles. In particular, we describe the
main modules which constitute our system, as well as how we
structured their interaction. Figure 2 offers a visual representa-
tion of the different stages of data processing. We distinguish
between what we have implemented from planned future work
with dashed lines, which also serves to illustrate how the
system can be extended.

Our system was designed to accept various representations
of the music being played, in particular, audio data and MIDI
events. These representations are fundamentally different since
an audio stream consists of a continuous sequence of numbers
(audio samples) whereas a MIDI stream is a sequence of
discrete events.

The results of the processing stages can also be divided into
continuous and discrete data. Audio data represents a con-
tinuous signal, and, for instance, the application of the Short
Time Fourier Transform also yields continuous numerical data,
which can be used directly for audio reactivity.

We also define a set of events to represent higher-level
musical features. Events can be extracted from either input,
such as detected chords from MIDI or detected beats from
audio. All this information is made available to our scripting
environment which is the central connecting element of our
framework.

The Script Environment has access to all available
actors. As such, it allows to instantiate actors, configure how
they interact and define how they react to incoming musical
events. Once again, actors may react in a continuous or a
discrete way. An example of a continuous change would
be adjusting the size of an object based on the frequency
spectrum’s average. A discrete change would be to trigger
branch growth at the start of a musical note. However, we
still wish to produce smooth continuous motion from discrete
changes. To this effect, we have used Tweens as a versatile
interpolation strategy.

Regarding our actors, we have defined both Tree and
Wind. We model trees as hierarchical structures composed of
several connected segments, which are individually accessible
from the script environment. Furthermore, it is possible to
arbitrarily select subsets of the tree and manipulate them
independently, which provides yet another degree of flexibility
for the creation of visual effects, such as growing part of the
tree or adding leaves selectively.

We represent wind as a velocity field built from various flow
primitives, namely uniform, sink and source flow. The script

environment is able to freely create wind fields by combining
these primitives and adjusting their parameters in real-time,
such as strength or position.

IV. MUSICAL INPUT

Our system has access to sample data as music is played.
From this data, we can extract audio features, such as the
frequency spectrum which we obtain by using the Short Time
Fourier Transform (STFT). The result of this transform can
be interpreted as a histogram where each bin corresponds to
a frequency interval and its corresponding height corresponds
to those frequency’s intensities over the sampling period. As
previously mentioned, this is one of the most common features
used in music visualisation.

We make this numeric information available to the scripting
environment, which is then able to use it to manipulate
any defined attribute. Although more sophisticated analysis
techniques exist, we found this low-level feature to already
produce interesting results, in particular when applied to subtle
effects in the animation, such as scaling the tree skeleton or
the leaves.

In audio representations high-level musical information such
as note onset times, pitch or duration are not given explicitly.
Extracting this information remains a difficult problem, still
under active investigation [10]. We did not approach this
problem and instead bypassed it by using musical symbolic
formats, namely MIDI. By doing so we have direct access
to higher level musical features that can be used directly in
animations. For instance, it becomes trivial to implement chord
detection with MIDI since individual notes are readily avail-
able. However, this does require that the MIDI information
must closely match the audio representation.

Our music processing stage results in a new set of events.
These events can originate directly from MIDI, such as the
beginning and ending of notes, or they can be the result of
pre-processing, such as the chord event.

In general, we found that events are very useful as triggers
to noticeable changes in the animation, while continuous data
is usually more usable by modulating numerical attributes such
as sizes or wind strengths. We also found that the choice of
interpolation strategy has a significant impact when attempting
to translate musical aspects into visual form.

The ideal scenario for an animation to be generated is
having both an audio file as well as a synchronised MIDI file
describing every instrument. This combines the best of both
worlds, as music analysis tasks can be performed on MIDI data
whereas dynamics and timbre information is more accessible
on the audio data.

V. SCRIPTING

As mentioned in section III, an animation in our system
is configured through scripting, establishing the scene and
determining how the animation evolves as music progresses.
The usage of scripting is both flexible and straightforward,
since it allows for new actors to be added having only to



Figure 2: Overview of our system’s architecture.

register their properties and commands in order to become
usable.

The scene and choreography are defined on the script’s
initialisation function, which is where actors are instanced and
configured.

A. Handling events

The approach we took to define event audio-visual mappings
consists of having each script specify how particular musical
events translate to a visual modification. The general form of
the structure that stores these mappings is illustrated in listing
1.
handlers =
{
[track_number] =
{
event_type =
{
{predicate, action}
{predicate, action}
...
}
...

}
...

}

Listing 1: handler structure example.

The predicate and action function pair is the fundamental
element in this structure. The predicate function evaluates the
incoming event and determines whether the respective action
function should be called, while the action function specifies
the changes that happens within the animation in response to
the event. For instance, the predicate function may determine
that the action function will be called if a particular set of
pitches is played, or if a note is played with a particular
intensity. The action function may, for instance, trigger a
growth iteration of a tree, or an increase in wind strength.

Additionally, each event has an index in the MIDI file and a
duration, which we use for choreographing the various sections

of the song. Part of the handler structure from the example in
figure 1 is shown in listing 2.

handlers =
{

[9]= { note_on = {
-- Grow 2 iterations with notes 1 to 4
{ pred = note_range(1, 4),
func = note_on_full_grow(tree,

"easeOutQuad", 2) },
-- Swell the trunk on every note
{ pred = note_range(1, 4),
func = note_on_displacement(tree,

"easeOutQuad", 2, 0.26) },

-- Increase lateral wind strength
{ pred = note_range(5, 7),
func = note_on_empower_wind(100) },

...
}
...

}
}

Listing 2: Part of the handler structure from the Beethoven’s
5th example.

This particular excerpt of code specifies the mapping of the
first seven NoteOn events in track of index 9, where the main
melody is present, commanding the tree to grow and thicken
its branches on the first four notes, and altering wind strength
on the latest three.

B. Handling Continuous Data

In order to associate real-time information, such as fre-
quency intensities, to arbitrary attributes, we defined a simple
abstraction called DataLink. This structure is composed of an
extractor function which is responsible for obtaining a value,
and an applicator function which may transform that value
and assign it to an attribute.

An example usage is that of adjusting the size of leaves
according to the frequency spectrum’s average. The code that



achieves this can be found in listing 3. The leaf_scale is
determined based on the output from the extractor function.

local pulseLink =
DataLink.create("leaf_size_link",
function ()

return AudioAnalyser["spect_average"]
end,
function (v)

tree:set("leaf_scale", [0.3 + v/80])
end)

Listing 3: An example of a DataLink

Lastly, it’s also possible to configure real-time actor be-
haviour, including their interaction, with each other, which
can be achieved through an exchange of data structures. This
can be implemented using a DataLink or by using the built-in
onUpdate function, as seen in listing 4.

function onUpdate(dt)
t = t + dt
tree["vector_field"]:set(

wind:get("vector_field"))
end

Listing 4: Computing tree motion from the wind’s vector field.

VI. TREE MODELLING AND SIMULATION

Our system represents a tree model as a hierarchically
organised structure. Each node on this structure is a possi-
ble branching point and its connections to both parent and
child branching points establish small branch segments, often
referred to as internodes in botany. Each chain of consecutive
vertices represents a full branch.

Regarding tree generation, we adopted the Space Colo-
nization Algorithm (SCA) as described in [39]. As the name
implies, SCA operates by simulating the growth of a branching
structure based on a description of available space.

The elegance of this algorithm lies in its simplicity, as
available space is signalled by a set of points, referred to
as attraction points. This name results from each point’s
behaviour of attracting the tree structure, promoting branch
growth in its vicinity. Points are removed when approached
by branch segments, which ensures no self-intersections occur
in the final structure. Consequently, the point cloud effectively
defines the tree crown’s shape.

The algorithm takes a small number of input parameters,
namely the segment length, the radius of influence, and the kill
distance, as well as the set of attraction points. The radius of
influence defines the size of the spherical region surrounding
every attraction point which triggers the spawn of new nodes.
Conversely, the kill distance defines the minimum distance
between a tree node and an attraction point, that once reached
causes the latter to be removed.

We found this algorithm to be particularly suitable for our
purposes as it provides intuitive control over the shape of
the generated trees. The input parameters also correspond to
visually relevant characteristics, offering convenient control of
branch shape and density. Furthermore, the tree is produced

Figure 3: Three different flow primitives combined: (a) Source
flow; (b) Sink flow; (c) Vortex flow.

with a natural base-to-tips order which makes it adequate for
animation.

Lastly, we compute the tree’s reaction to the wind’s vector
field based on the method described in [40]. The method
consists in simulating the movement of individual segments
and then recursively combining the results. This is achieved by
defining a set of forces which act simultaneously upon the tree,
leading to a final equation which is continuously integrated in
order to produce the resulting motion.

A. Wind Field Construction

Wind is the motion of air, and as such, it can be simulated as
a moving fluid. Mathematically, the state of a fluid at a given
instant of time can be modelled as a velocity vector field.

A wind field can be described by the Navier-Stokes equa-
tions which can be solved using a variety of algorithms. Recent
work in tree-wind simulation such as [41] and [42] each
use different approaches. In [41] the authors use Smoothed
Particle Hydrodynamics, while [42] employ a discrete solver
as described in [43]. Both these approaches offer some degree
of control regarding the wind field. [41] allows for the arbitrary
placement of "wind emitters", which are finite planes from
where wind flow originates and [42] allows for control by
exerting external forces upon the wind field.

In our system, we greatly simplify the original Navier-
Stokes equations by using linearised fluid flow, as described in
[44]. This simplification arises from the assumptions that the
fluid is inviscid, irrotational and incompressible and allows for
defining a small set of flow primitives which can be combined
to produce complex flows. Each primitive is described by a
linear equation which can be solved analytically and allows
for their combination to be expressed through simple addition.
By using a set of flow primitives, this approach allows for an
intuitive construction of vector fields.

These primitives correspond to building blocks of flow:
uniform (Figures 3a, 4a), which flows in a single direction;
sink/source(Figures 3a,3b), which flows towards/away from a
given point and lastly vortex (Figures 3c, 4b), which flows
around a given axis in a circular trajectory.



Figure 4: (a) Uniform Wind; (b) Vortex Wind.

All attributes that characterise wind primitives, for instance,
strength (which is common to all primitives), can be modi-
fied in real-time from the script environment. This approach
fulfils our requirements, as it provides sufficient movement
credibility, while simultaneously allowing for a wide range of
configurable animation effects, see Figure 5.

For instance, placing directional upwards wind leads to an
animation of a tree with its branches closing, whereas the
reverse direction will cause its branches to open. On the
other hand, placing a vortex primitive with an axis along
the main tree trunk will cause the tree branches to curl. A
sequence where the vortex wind’s axis is periodically inverted,
for instance, will resemble a dancer swinging their arms as can
be seen of Figure 5b.

VII. DISCUSSION AND CONCLUSIONS

In this project, we explored the challenge of creating a
framework for deriving animations from musical information.
In general, we found that this can be made possible by creating
a set of configurable actors, a system that accounts for their
interaction and finally, a set of rules which describe how
their behaviour or appearance changes according to musical
input. This concept can be summarised as a semi-automatic
construction of visual tracks for music.

We found that imagining visual metaphors for music comes
naturally to most people since casual discussions regarding this
application often brought with them fresh ideas for possible
associations between our tree’s reaction to moments in songs.
The flow of ideas seems particularly abundant from those with
greater affinity for music, and even more so from those who
study it. This was both an exciting and motivating result since
in this project we have barely scratched the surface of what
could be accomplished by extending this concept in different
directions. For instance by extracting more features from audio
and by modelling different phenomena. Some examples would
be flock and swarm behaviour, fluids, kinematics, fractals.

Furthermore, in any context where there is abundant real-
time data, this approach can lower the effort required to
translate any such data into a meaningful visualisation, as such
we believe this concept could extend beyond music. Any sort
of data could be used as input instead, leading to many distinct
usage possibilities.

Cinematographic and theatrical concepts and techniques
should be considered. Incorporating even the most basic
structural elements from these areas such as the notion of
scenes and acts, as well as camera and lighting, could yield
significant improvements regarding the expressiveness of the
resulting animations.

In terms of usability, we became increasingly aware that
scripting, although powerful, is not intuitive and has a steep
learning curve. We believe that an adequate interface for our
system would be the visual programming paradigm, as in
Max/MSP and PureData.

By creating this proof-of-concept, we believe to have
put forth a new way in which technology may assist in
the creation of audiovisual artwork. To the best of our
knowledge, the connection between musical performance and
procedural/physically-based animation has not been previously
explored. Many ideas remain delightfully open for future
research, exploration and experimentation. We hope that this
project will be able to incite further study and development.

We believe to have stumbled upon what seems to be a
largely unexplored concept, a union between the seemingly
ever-growing processing power of modern technology and
human expressiveness. "Extraordinary possibilities remain un-
tried, unknown, even barely imaginable"[45].

ACKNOWLEDGMENTS

This work has been supported by national funds through
FCT – Fundação para a Ciência e Tecnologia within the
Project Scope: UID/CEC/00319/2019.

REFERENCES

[1] A. Graves, C. Hand, and A. Hugill, “Interactive visualisation of musical
form using vrml,” in Proc. Fourth UK VR-SIG Conference, 1997, pp.
98–109.

[2] E. Chew and A. R. Francois, “Interactive multi-scale visualizations of
tonal evolution in musa. rt opus 2,” Computers in Entertainment (CIE),
vol. 3, no. 4, pp. 1–16, 2005.

[3] T. Bergstrom, K. Karahalios, and J. C. Hart, “Isochords: visualizing
structure in music,” in Proceedings of Graphics Interface 2007. ACM,
2007, pp. 297–304.

[4] G. D. Cantareira, L. G. Nonato, and F. V. Paulovich, “Moshviz: A detail
overview approach to visualize music elements,” IEEE Transactions on
Multimedia, vol. 18, p. 2238–2246, 2016.

[5] R. Geiss. Geisswerks - about milkdrop. [Online]. Available: http:
//www.geisswerks.com/milkdrop/

[6] A. O’Meara. Soundspectrum news - g-force concert visuals, updates,
shows. [Online]. Available: http://www.soundspectrum.com/news.html

[7] A. Billias, “The midi association (tma).” [Online]. Available:
https://www.midi.org/about

[8] “Musicxml for exchanging digital sheet music.” [Online]. Available:
http://www.musicxml.com/

[9] “Software.” [Online]. Available: http://animusic.com/company/software.
php

[10] M. Muller, Fundamentals of music processing: audio, analysis, algo-
rithms, applications. Springer, 2015.

[11] P. N. Juslin, “What does music express? basic emotions and beyond,”
Frontiers in psychology, vol. 4, p. 596, 2013.

[12] K. Giannakis, “A comparative evaluation of auditory-visual mappings for
sound visualisation,” Org. Sound, vol. 11, no. 3, pp. 297–307, Dec. 2006.
[Online]. Available: http://dx.doi.org/10.1017/S1355771806001531

[13] J. L. Caivano, “Color and sound: Physical and psychophysical relations,”
Color Research & Application, vol. 19, no. 2, pp. 126–133, 1994.

[14] W. Moritz, “The dream of color music, and machines that made it
possible,” Animation World Magazine, vol. 2, no. 1, 1997.

http://www.geisswerks.com/milkdrop/
http://www.geisswerks.com/milkdrop/
http://www.soundspectrum.com/news.html
https://www.midi.org/about
http://www.musicxml.com/
http://animusic.com/company/software.php
http://animusic.com/company/software.php
http://dx.doi.org/10.1017/S1355771806001531


Figure 5: Frame sequence of tree reacting to (a) Uniform lateral wind and (b) Vortex wind.

[15] F. Collopy, “Color, form, and motion: Dimensions of a musical art of
light,” Leonardo, vol. 33, no. 5, pp. 355–360, 2000.

[16] B. Alves, “Digital harmony of sound and light,” Computer Music
Journal, vol. 29, no. 4, p. 45–54, 2005.

[17] M. Betancourt, “Making music with color,” Nov 2015.
[Online]. Available: https://www.theatlantic.com/technology/archive/
2015/11/color-organs/414460/

[18] N. Collins and J. d’Escriván, The Cambridge companion to electronic
music. Cambridge University Press, 2017.

[19] P. Daukantas, “A short history of laser light shows,” Optics and Pho-
tonics News, vol. 21, no. 5, pp. 42–47, 2010.

[20] T. Kitahara, “Mid-level representations of musical audio signals for
music information retrieval.” 2010.

[21] [Online]. Available: http://www.afn.org/~cthugha/
[22] C. Piccione, P. Sperl, A. Descartes, R. Dannenburg, M. Klumpp, and

M. Spiegelmock. [Online]. Available: http://projectm-visualizer.github.
io/projectm/

[23] J. B. Mitroo, N. Herman, and N. I. Badler, “Movies from music,” ACM
SIGGRAPH Computer Graphics, vol. 13, no. 2, p. 218–225, Jan 1979.

[24] A. M. Wood-Gaines, “Modelling expressive movement of musicians,”
Ph.D. dissertation, Applied Sciences: School of Computing Science,
1997.

[25] M. Cardle, L. Barthe, S. Brooks, and P. Robinson, “Music-driven motion
editing: Local motion transformations guided by music analysis,” in
Eurographics UK Conference, 2002. Proceedings. The 20th. IEEE,
2002, pp. 38–44.

[26] R. Taylor, D. Torres, and P. Boulanger, “Using music to interact with
a virtual character,” in Proceedings of the 2005 conference on New
interfaces for musical expression. National University of Singapore,
2005, pp. 220–223.

[27] D. Torres and P. Boulanger, “The animus project: a framework for
the creation of interactive creatures in immersed environments,” in
Proceedings of the ACM symposium on Virtual reality software and
technology. ACM, 2003, pp. 91–99.

[28] T. Shiratori, A. Nakazawa, and K. Ikeuchi, “Dancing-to-music character
animation,” in Computer Graphics Forum, vol. 25, no. 3. Wiley Online
Library, 2006, pp. 449–458.

[29] I. Bergstrom, “Soma: live performance where congruent musical, visual,
and proprioceptive stimuli fuse to form a combined aesthetic narrative,”
Ph.D. dissertation, UCL (University College London), 2011.

[30] P. Foundation, “Processing.org.” [Online]. Available: https://processing.
org/

[31] K. Ng, J. Armitage, and A. Mclean, “The colour of music: Real-time
music visualisation with synaesthetic sound-colour mapping,” Electronic
Visualisation and the Arts (EVA 2014), Aug 2014.

[32] “Music Animation Machine.” [Online]. Available: http://www.musanim.
com/

[33] smalin, “smalin.” [Online]. Available: https://www.youtube.com/
channel/UC2zb5cQbLabj3U9l3tke1pg

[34] D. Zicarelli. Cycling ’74. [Online]. Available: https://cycling74.com/
[35] R. Jones and B. Nevile, “Creating visual music in jitter: Approaches and

techniques,” Computer Music Journal, vol. 29, no. 4, pp. 55–70, 2005.
[36] F. Visnjic. (2016, Jan) Hexpixels – "c punks", a unit for realtime

visual expression. [Online]. Available: http://www.creativeapplications.
net/maxmsp/hexpixels-c-punks-a-unit-for-realtime-visual-expression/

[37] M. Puckette et al., “Pure data: another integrated computer music
environment,” Proceedings of the second intercollege computer music
concerts, pp. 37–41, 1996.

[38] O. Deussen and B. Lintermann, Digital design of nature: computer
generated plants and organics. Springer, 2005.

[39] A. Runions, B. Lane, and P. Prusinkiewicz, “Modeling trees with a space
colonization algorithm,” in Proceedings of the Third Eurographics
Conference on Natural Phenomena, ser. NPH’07. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, 2007, pp. 63–70.
[Online]. Available: http://dx.doi.org/10.2312/NPH/NPH07/063-070

[40] T. Sakaguchi and J. Ohya, “Modeling and animation of botanical
trees for interactive virtual environments,” Proceedings of the ACM
symposium on Virtual reality software and technology - VRST ’99, 1999.

[41] S. Pirk, T. Niese, T. Hädrich, B. Benes, and O. Deussen, “Windy trees,”
ACM Transactions on Graphics, vol. 33, no. 6, p. 1–11, 2014.

[42] N. J. Oliapuram and S. Kumar, “Realtime forest animation in wind,”
in Proceedings of the Seventh Indian Conference on Computer Vision,
Graphics and Image Processing. ACM, 2010, pp. 197–204.

[43] J. Stam, “Stable fluids,” in Proceedings of the 26th annual conference on
Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co., 1999, pp. 121–128.

[44] J. Wejchert and D. Haumann, “Animation aerodynamics,” SIGGRAPH
Comput. Graph., vol. 25, no. 4, pp. 19–22, Jul. 1991. [Online].
Available: http://doi.acm.org/10.1145/127719.122719

[45] J. Whitney, “To paint on water: The audiovisual duet of complementar-
ity,” Computer Music Journal, vol. 18, no. 3, pp. 45–52, 1994.

https://www.theatlantic.com/technology/archive/2015/11/color-organs/414460/
https://www.theatlantic.com/technology/archive/2015/11/color-organs/414460/
http://www.afn.org/~cthugha/
http://projectm-visualizer.github.io/projectm/
http://projectm-visualizer.github.io/projectm/
https://processing.org/
https://processing.org/
http://www.musanim.com/
http://www.musanim.com/
https://www.youtube.com/channel/UC2zb5cQbLabj3U9l3tke1pg
https://www.youtube.com/channel/UC2zb5cQbLabj3U9l3tke1pg
https://cycling74.com/
http://www.creativeapplications.net/maxmsp/hexpixels-c-punks-a-unit-for-realtime-visual-expression/
http://www.creativeapplications.net/maxmsp/hexpixels-c-punks-a-unit-for-realtime-visual-expression/
http://dx.doi.org/10.2312/NPH/NPH07/063-070
http://doi.acm.org/10.1145/127719.122719

	Introduction
	Background and Related Work
	Towards Procedural Music-Driven Animation
	System Architecture

	Musical Input
	Scripting
	Handling events
	Handling Continuous Data

	Tree Modelling and Simulation
	Wind Field Construction

	Discussion and Conclusions
	References



