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Abstract. CFD simulations are a fundamental engineering application,
implying huge workloads, often with dynamic behaviour due to run-
time mesh refinement. Parallel processing over heterogeneous distributed
memory clusters is often used to process such workloads. The execution
of dynamic workloads over a set of heterogeneous resources leads to load
imbalances that severely impacts execution time, when static uniform
load distribution is used. This paper proposes applying dynamic, het-
erogeneity aware, load balancing techniques within CFD simulations.
nSharma, a software package that fully integrates with OpenFOAM, is
presented and assessed. Performance gains are demonstrated, achieved
by reducing busy times standard deviation among resources, i.e. hetero-
geneous computing resources are kept busy with useful work due to an
effective workload distribution. To best of authors’ knowledge, nSharma
is the first implementation and integration of heterogeneity aware load
balancing in OpenFOAM and will be made publicly available in order to
foster its adoption by the large community of OpenFOAM users.

Keywords: computational fluid dynamics, OpenFOAM, heterogeneous
systems, dynamic load balancing

1 Introduction

Computational Fluid Dynamics (CFD) simulations have become a fundamental
engineering tool, witnessing an increasing demand for added accuracy and larger
problem sizes, being one of the most compute intensive engineering workloads.
The most common approaches to CFD, such as Finite Elements (FEs) and Finite
Volumes (FVs), entail discretizing the problem domain into cells (or elements)
and then solving relevant governing equations for the quantities of interest for
each cell. Since each cell’s state depends on its neighbours, solvers employ some
form of nearest neighbour communication among cells and iterate until some
convergence criteria are met. Typically, CFD problems are unsteady, requiring
an outer loop which progresses through simulation time in discrete steps. Such
very compute intensive type of workloads are obvious candidates to exploit the
multitude of resources available on parallel processing systems. Domain decom-
position is used to make available a suitable degree of parallelism, i.e., the set
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of discrete cells is partitioned into subsets which can then be distributed among
the computational resources.

Currently, the most widely available parallel systems are distributed mem-
ory clusters, which provide a cost-effective, extensible and powerful computing
resource. A cluster can be fairly easily extended by adding more nodes with
identical architectures, but often from newer generations offering more comput-
ing capabilities. This extensibility renders the system heterogeneous in the sense
that different generations of hardware, with diverse configurations, coexist in the
same system. An additional source of heterogeneity is the integration on current
supercomputing clusters [1] of devices with alternative architectures, program-
ming and execution models, such as the new highly parallel Intel KNLs and the
massively parallel GPUs [2].

However, this heterogeneity results in different performances across nodes,
potentially leading to severe load imbalances. Static and uniform workload dis-
tribution strategies, as typically used by CFD software, will result on the com-
putational units waiting on each other and resources underutilization. Properly
distributing the workload and leveraging all the available computing power is
thus a crucial feature, which has been revisited in the latest years due to increas-
ing systems’ heterogeneity [3].

The load distribution problem is further aggravated in the presence of dy-
namic workloads. CFD solvers often refine the problem domain discretisation
as the simulation progresses through time, allowing for higher accuracy in re-
gions where the quantities of interest exhibit higher gradients. In the scope of
this work, these applications will be referred to as adaptive applications. This
refinement entails splitting and merging cells, resulting on a new domain dis-
cretisation. Given that the computational effort is in general proportional to the
number of cells, its distribution across the problem domain also changes. Not
accounting for this refinement and maintaining the initial mapping throughout
the whole simulation would lead to load imbalances and huge performance losses.

The combination of the differences in computing power provided by the het-
erogeneous Computing Units (CUs) with the differences in computing require-
ments from dynamic workloads, results in a two-fold computing imbalance. The
adoption of Dynamic Load Balacing (DLB) addresses this computing imbal-
ance as a whole and allow for fully leveraging all the available computing power
and improve execution time. This work will thus focus in combining DLB with
heterogeneous systems in the context of CFD simulations by integrating DLB
mechanisms in a widely used application: Open Source Field Operation and
Manipulation (OpenFOAM).

OpenFOAM is a free and publicly available open-source software package,
specifically targeting CFD applications [4]. It is an highly extensible package,
allowing applied science experts to develop scientific and engineering numeri-
cal simulations in an expedite manner. OpenFOAM includes a wide range of
functionalities such as simulation refinement, dynamic meshes, particle simu-
lations, among others. OpenFOAM large set of features and extensibility has
made it one of the most used and leading open-source software packages across
the CFD community. It has also been made available in multiple supercomputers
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and computing centres, along with technical support. OpenFOAM parallel dis-
tributed memory model is based on a domain decomposition approach, however,
there is little to no support for either heterogeneous systems or DLB, which is
addressed by this work by integrating and evaluating all proposed mechanisms
into this package.

Providing such support is of crucial importance, however, this task is too
complex to be handled by the CFD application developer. This complexity has
two different causes: i) efficient mapping of the dynamic workload onto a vast
set of heterogeneous resources is a research level issue, far from the typical con-
cerns of a CFD expert, and ii) execution time migration of cells (particularly
dynamically refined meshes of cells) across memory spaces requires a deep under-
standing of OpenFOAM’s internal data structures and control flow among lower
level code functions and methods. Integration of these facilities with OpenFOAM
by computer science experts is proposed as the best solution to provide efficiency
and robustness, while simultaneously promoting reuse by the CFD community.

This paper proposes nSharma – Numerical Simulation Heterogeneity Aware
Runtime Manager – a runtime manager that provides OpenFOAM with het-
erogeneity aware DLB features. nSharma monitors the heterogeneous resources
performance under the current load, combines this data and past history us-
ing a performance model to predict the resources behaviour under new work-
load resulting from the refinement process and makes informed decisions on
how to re-distribute the workload. The aim is to minimize performance losses
due to workload imbalances over heterogeneous systems, therefore contributing
to minimize the simulation’s execution time. DLB minimizes idle times across
nodes by progressively and in an educated way assigning workload, which can
be itself dynamic, to the available resources. nSharma package integrates in a
straightforward manner with current OpenFOAM distributions, enabling the
adoption of heterogeneity aware DLB. To best of authors’ knowledge, this is the
first implementation and integration of heterogeneous-aware DLB mechanism in
OpenFOAM.

2 Related work

Available libraries supporting the development of CFD simulations, include
OpenFOAM[4] , ANSYS Fluent[5], ANSYS CFX[6], STAR-CCM+[7], among
others. OpenFOAM is distributed under the General Public Licence (GPL),
allowing modification and redistribution while guaranteeing continued free use.
This motivated the selection of OpenFOAM as the target platform for the devel-
opments envisaged in this work. The authors see no reason why this document’s
higher level assessments and results can not be applied to other similar CFD
libraries. This generalization should, however, be empirically verified on a per
case basis.

Domain decomposition requires that the mesh discretization is partitioned
into sub-domains. This is a challenging task impacting directly on the workload
associated with each sub-domain and on the volume of data that has to be ex-
changed among sub-domains in order to achieve global convergence. Frameworks
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that support mesh-based simulations most often delegate mesh partitioning to
a third-party software. ParMETIS [8] and PTSCOTCH [9] are two widely used
mesh partitioners, which interoperate with OpenFOAM. ParMETIS has been
used within this work’s context because it provides a more straightforward sup-
port for adaptive mesh refinement.

ParMETIS includes methods to both partition an initial mesh and re-partition
a mesh that is already scattered across CUs disjoint memory address spaces,
avoiding a potential full re-location of the mesh in runtime. The (re)partitioning
algorithms optimize for two criteria: minimizing edge-cut and minimizing ele-
ment migration among memory spaces. These criteria have been merged into
a single user-supplied parameter (ITR), describing the intended ratio of inter-
process communication cost over the data-redistribution cost. ParMETIS also
provides an interface to describe the relative processing capabilities of the CUs,
allowing more work units to be assigned to faster processors. nSharma calculates
these parameters in order to control ParMETIS’ repartitioning and thus achieve
efficient DLB.

Some software frameworks providing DLB to iterative applications have been
proposed. DRAMA [10] provides a collection of balancing algorithms that are
guided by a cost model which aims to reduce the imbalance costs. It is strictly
targeted for finite element applications. PREMA [11] is designed to explore an
over-decomposition approach to minimize the overhead of stop-and-repartition
approaches. This approach is not feasible in some mesh-based numerical simula-
tions (due to, for instance, data dependencies) and no mention to heterogeneous
computing support could be found. Zoltan [12] uses callbacks to interface with
the application and integrates with DRUM [13], a resource monitoring system
based on static benchmark measured in MFLOPS and averaged per node. The
resource monitoring capabilities of nSharma are much more suitable to account
for heterogeneous computing devices – see next section. Zoltan is not tied to any
particular CFD framework. It does not enforce any particular cost functions and
uses abstractions to maintain data structure neutrality. This however comes at
the cost of requiring the CFD application developer to provide all data defini-
tions and pack/unpack routines, which in a complex application like OpenFOAM
is an extremely programming intensive and error prone task.

nSharma integrates with OpenFOAM, accessing its data structures and mi-
gration routines. Although this option implies some code portability loss, it
avoids the multiple costs of data (and even conceptual) transformations together
with overheads of code binding between different software packages. This allows
direct exploitation, assessment and validation of DLB techniques for OpenFOAM
applications on heterogeneous systems. The results on conceptually more ab-
stract design options, such as the performance model and the decision making
mechanism, should still generalise to alternative software implementations, al-
though empirical verification is required.

Some of the above cited works can handle heterogeneous systems. They do so
by using high-level generic metrics, such as vendor announced theoretical peak
performances or raw counters associated to generic events such as CPU and
memory usage [14, 13]. The associated performance models are however generic,
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ignoring both the characteristics of CFD workloads and emerging devices par-
ticular execution models and computing paradigms, and thus tend to be inaccu-
rate [15]. This paper proposes a performance model which explicitly combines
the workload particularities with the heterogeneous devices capabilities. The de-
sign of this performance model is strictly coupled with the requirements of the
proposed DLB mechanisms.

FuPerMod [16] explores Functional Performance Models, extending tradi-
tional performance models to consider performance differences between devices
and between problem sizes. It is based on speed functions built based on ob-
served performances with multiple sizes, allowing the evaluation of a workload
distribution [15]. Zhong applied these concepts to OpenFOAM [17] and vali-
dated it in multi-core and multi-GPU systems. This paper introduces a similar
performance model tightly integrated with the remaining DLB mechanisms.

3 nSharma’s Architecture

OpenFOAM simulations are organized is solvers, which are iterative processes
evaluating, at each iteration, the quantities of interest across the problem do-
main. Each iteration includes multiple inner loops, solving a number of systems
of equations by using iterative linear solvers. Within this work, solver refers to
OpenFOAM general solvers, rather than the linear solvers. Since OpenFOAM
parallel implementation is based on a zero layer domain decomposition over
a distributed memory model, the solver’s multiple processes synchronize often
during each iteration, using both nearest neighbour and global communications.

nSharma is fully integrated into OpenFOAM and organized as a set of com-
ponents, referred to as modules or models. The Online Profiling Module (OPM)
acquires information w.r.t. raw system behaviour. The Performance Model (PM)
uses this data to build an approximation of each CU performance and to gen-
erate estimates of near future behaviour, in particular for different workload
distributions. The Decision Model (DM) decides whether workload redistribu-
tion shall happen, based on this higher level information and estimates. The
Repartitioning Module (RM) handles the details of (re)partitioning subdomains
for (re)distribution across multiple processors, while finally load redistribution
mechanisms carry on the cells migration among computing resources, therefore
enforcing the decisions made by nSharma.

The whole DLB mechanism is tightly coupled with OpenFOAM iterative
execution model. This allows nSharma to learn about system behaviour and also
allows for progressive convergence towards a globally balanced state - rather than
trying to jump to such a state at each balancing episode. Dynamic workloads
are also handled by OpenFOAM and nSharma iterative model, with impact on
the whole system balanced state and simulation execution time being handled
progressively.



6

3.1 Online Profiling Module

The OPM instruments OpenFOAM routines to measure execution times, crucial
to estimate the CUs relative performance differences. This has been achieved by
thoroughly analysing OpenFOAM workflow and operations, and identifying a set
of low-level routines that fundamentally contribute to the application execution
time. It has been empirically verified that these times correlate well, enabling
nSharma to monitor only the parts of the simulation that are relevant to the
associated performance modelling, while simultaneously implying a low instru-
mentation overhead without any additional analytical models or benchmarking.

The OPM API allows for the registration of which routines to measure, and
internally refers to these as Operations. Operations are classified as either IDLE,
representing a synchronization or memory transfer, or BUSY, representing a
computational task without any synchronizations or memory transfers. This cat-
egorization allows to measure performance individually, otherwise execution time
would be cluttered by dependencies and communications.

3.2 Performance Model

The PM characterizes the system’s – and its individual components, such as each
CU – performance and provides estimates of future performances under different
workload distributions. Workload and performance characterization requires the
definition of a work unit, upon which problem size can be quantified. OpenFOAM
uses Finite Volumes, with the problem domain discretisation being based on
cells that are combined to define the computational domain. With this approach
problem size is often characterized by the number of cells, which is, therefore,
the work unit used by nSharma.

Each CU performance is characterized by the average time required to pro-
cess one work unit, denoted by TperCellp (where p indexes the CUs). For each
iteration i and CU p, the respective performance index (TperCellip) is given by
the ratio of the iteration’s total busy time over the number of cells assigned to
p, N i

p: TperCellip = Tbusyip/N
i
p. The actual metric used for balancing decisions,

TperCellp, is a weighted average over a window of previous iterations, which
smooths out outliers and, for dynamic workloads, takes into account different
problem sizes (different numbers of cells assigned to each CU at each iteration).

Execution time estimates for arbitrary workload distributions, Tp, use the
above described metric multiplied by the number of work units to assign to each
CU, Np, as given by Equation 1 – with P being the number of CUs.

Tp = TperCellp ×Np, ∀p ∈ 0, 1, ..., P − 1 (1)

3.3 Decision Module

It is the DM role to assess the system balancing state and decide whether a load
redistribution step should take place. It is also the DM who decides what load
to redistribute. Assessing and making such decision is referred to as a balancing
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episode. Since these episodes represent an overhead, it is crucial to decide when
should they occur. nSharma allows them only at the beginning of a solver itera-
tion, and defines a period, expressed in number of iterations, for their frequency.
The unpredictability of dynamic workloads makes it unpractical to define an op-
timal balancing period, therefore it is auto-tuned in execution time, as described
below.

At the beginning of a new solver’s iteration i, the Relative Standard Deviation
(RSD), among the CUs busy times for the previous iteration i− 1 is calculated

RSDi−1 = σi−1/|Tbusyi−1| ∗ 100; standard deviation, σ, is well known as a good,
light-weight, indicator of a system’s balancing state. A linear regression is then
computed over the last few iterations RSD in order to estimate its rate of change,
which is used to update the period. Also, a normalization of the magnitude of
the RSD is added to the contribution to update the period. Therefore, the load
balancing period is adjusted based on how fast the system’s balancing state
changes and how much it changes.

When a load balancing episode is triggered the DM will compute, for each
CU p, how many cells, N∗

p , to assign to it. It will devise a new load distribution,
where all CUs will take, the same amount of time to process the assigned work
units, according to each CU execution rate, TperCellp. Since the total number
of cells N is known, a well-determined system of P linear equations can be
formulated (see Equation 2) and solved to find N∗

0 , . . . , N
∗
P−1 – the number of

cells to assign to each CU.


TperCell0 ×N∗

0 = TperCell1 ×N∗
1

TperCell1 ×N∗
1 = TperCell2 ×N∗

2

...
TperCellP−2 ×N∗

P−2 = TperCellP−1 ×N∗
P−1

N∗
0 +N∗

1 + ...+N∗
P−1 = N

(2)

After computing this new distribution, a decision has to be made as to
whether it will be applied or not, by taking into account the cells migration cost,
m. The goal is that the remaining simulation execution time after the load redis-
tribution must be smaller than not migrating. The next iteration i expected ex-
ecution time without load redistribution is given by ti = maxp(TperCellp×Np),
whereas with the new load distribution it is t∗i = TperCellp × N∗

p ,∀p (no
need for max because t∗i is the same for all p, according to Equation 2). Let
n be the number of remaining iterations and δ represent some additional ex-
ecution overheads independent on workload redistribution. Then the condition
n × ti + δ > m + n × t∗i + δ expresses that migration will only take place if
it is expected to reduce the total remaining execution time, while taking into
account the cost of actually enforcing the migration m. This cost is estimated
by keeping track of the costs of previous migrations and using a linear regression
to estimate the cost of any arbitrary decomposition.

ti >
m

n
+ t∗i (3)
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Equation 3 (a simplification of the condition equation above) makes it clear that
a load redistribution should only be enforced if the cost of migrating cells can be
properly amortized across the remaining n iterations. Consequently, towards the
end of the simulation, as n gets smaller, the cells migration impact on execution
times is progressively higher and load redistribution will become proportionally
less likely.

3.4 Repartitioning Module

nSharma repartitioning module interfaces with ParMETIS (see Section 2), by
carefully parametrising the relevant methods and by extending some function-
ality. ParMETIS’ repartitioning method is used, which takes into account the
current mesh distribution among CUs and balances cells’ redistribution cost with
the new cells’ partition communication costs during the parallel execution of the
next iterations. The relationship between these two costs is captured by the ITR
parameter. nSharma learns this parameter by requesting multiple decomposi-
tions with different ITR values. A record is maintained on which ITR values
result on more effective mesh decompositions and convergence to an empirically
determined ITR is achieved. After a few initial balancing episodes, the learn-
ing process converges and a single decomposition request to ParMETIS. Besides
ITR, this method also receives a list of each CU relative computing power, given
by ωp = N∗

p /N , as evaluated by the Decision module (Section 3.3).
OpenFOAM does not natively support migration of refined meshes, which

required integrating such support (based on Kyle Mooney’s approach, see Ac-
knowledgements). Since each refined cell is always a child of a single original
(non-refined) cell and since the refined hierarchy is explicitly maintained, par-
titioning is applied to the original (non-refined) coarse mesh; after partitioning,
the refined mesh is considered to perform migration. To ensure that the original
non-refined coarse mesh reflects the correct workload, weights for each coarse
cell are provided to ParMETIS based on the number of child cells, which will be
used by ParMETIS in devising new partitions.

4 Results Analysis

For experimental validation, the damBreak simulation was selected among those
distributed with OpenFOAM tutorials. It uses the interDyMFoam solver to sim-
ulate the multiphase flow of two incompressible fluids – air and water – after the
break of a dam. The Preconditioned Conjugate Gradient (PCG) linear solver
was used for pressure solver, adjustable time step was disabled and the nSharma
configuration dictionary was introduced – all other parameters are the same as
distributed in the package. For dynamic workloads, adaptive mesh refinement
subdivides a cell into 8 new cells according to the interface between the water
and air; cells will thus be refined (and unrefined) following the evolution of the
two phases’ interface.
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System SeARCH Stampede2

Nodes

Homogeneous Heterogeneous I Heterogeneous II Homogeneous
Multiple 641’s Pair(s) of 641+421 Pair 662+KNL7210 Multiple KNL7250’s

Network

Tag 641 - Ivy Bridge E5-2650v2 @ 2.60GHz, 16 cores p/node Tag KNL7250 - Intel 
Xeon Phi 7250 @ 1.4GHz 
("Knights Landing"), 68 
cores p/ node

Tag 662 - Ivy Bridge E5-2695v2@ 2.40GHz, 24 cores p/node
Tag 421 - Nehalem E5520 @ 2.27GHz, 8 cores p/node
Tag KNL7210 - Intel Xeon Phi 7210 @ 1.3GHz, 64 cores p/ node

Multi-node 
configurations

Myrinet (myri) Myrinet (myri) Ethernet(eth) Intel Omni-Path (OPA)

Table 1. Computing systems and system configurations used in evaluation

This solver requires frequent local and global communications. As the degree
of parallelism is increased, more sub-domains are created, increasing the num-
ber of cells in sub-domains boundaries and, consequently, increasing commu-
nications among sub-domains, with network bandwidth and latency impacting
significantly in the simulation’s performance.

Four hardware configurations were used (Table 1). Two are homogeneous (all
nodes are equal), one sitting at the SeARCH cluster (Universidade do Minho,
Portugal), the other from Stampede2 (Texas Advanced Computing Center, USA).
The former is constituted by Intel IvyBridge processors, with up to 16 cores per
computing node and a Myrinet interconnect, the latter has Intel Xeon Phi KNL
7520 processors, with 68 cores per node and an Intel Omni-Path network. The
two heterogeneous configurations sit both at the SeARCH cluster. One includes
two different generations of Intel processors (IvyBridge and Nehalem) and the
other includes nodes with Ivy Bridge processors and an Intel Xeon Phi KNL
7210 co-processor. The latter uses an Ethernet network.

OpenFOAM 2.4.0 was used, compiled with GNU C Compiler in SeARCH
and with Intel C Compiler in Stampede2. Each MPI process is associated to one
CU or processing core: the number of used cores is equivalent to the number of
processes. MPI terminology refers to processes as ranks, and this terminology is
maintained throughout this section.

4.1 Performance Gain

Performance gain is hereby defined as the reduction in execution time achieved by
using nSharma and quantified as the ratio between the execution times without
and with nSharma, respectively. Figure 1 illustrates such gain for 200 iterations
of the damBreak simulation in SeARCH. The first row depicts results obtained
with 2 nodes, the second row results obtained with 4 nodes. Results in the
first column were obtained with a static workload and problem size of 1024K
cells (Heterogeneous I configuration), whereas in the second and third columns
dynamic workloads were used with 512K cells (Homogeneous and Heterogeneous
I configurations, respectively).

nSharma achieves a significant performance gain for all experimental condi-
tions. For static workloads, the gain increases with the number of ranks, with a
maximum gain of 1.94 gain with 2 nodes and 16 ranks and 1.59 with 4 nodes
and 32 ranks. This gain is basically a consequence of nSharma’s heterogeneous
awareness, which allows remapping more cells to the 641 more powerful cores,
which would otherwise be waiting for the 421 processing cores to finish execution.
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Fig. 1. nSharma gain with Homogeneous and Heterogeneous I configurations on
SeARCH, with size 512K for dynamic and 1024K for static

For homogeneous hardware and dynamic workloads (second column), perfor-
mance gain is due to moving cells from overloaded cores to underloaded ones,
with such fluctuations due to adaptive mesh refinement. Significant gains are
still observed for all experimental conditions, but this gain suffers a slight de-
creases as the number of ranks increases for 4 nodes. This is due to an increase in
migration and repartitioning costs (see Figure 3), proportional to the increased
number of balance episodes required in a dynamic workload scenario (see Fig-
ure 2). The communication overheads also increase from 2 to 4 nodes sustaining
more sub-domains and more communications over a limited bandwidth network.

The last column illustrates the combination of dynamic workload with het-
erogeneous systems. The gain is mostly constant with the number of ranks. It
is lower than with static workloads or homogeneous hardware, because the de-
cision making process is much more complex requiring a much higher level of
adaptability, i.e more frequent balancing episodes and larger volumes of data
migration (see Figures 3 and 2).
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Fig. 2. Busy RSD with and without nSharma for 4 nodes and 32 ranks.

Figure 2 illustrates the accumulated busy RSD (as described in Section 3.3)
with and without nSharma for the same experimental conditions, 4 nodes and 32
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ranks. The grey area represents the total number of cells and the vertical lines are
balance episodes. Clearly nSharma results in a large RSD reduction, i.e. reduced
busy times variation across ranks, thus enabling significant performance gains.
This can be clearly seen around iteration number 50 for the static case, where a
large RSD reduction occurs.
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Fig. 3. Execution time percentage breakdown for 4 nodes

Figure 3 illustrates, for the 4 nodes cases of Figure 1, the percentage of execu-
tion time spent in different algorithmic segments: Profiler represents time used
by the OPM, nSharma time for decision making, parMetis represents reparti-
tioning, redistribute is cells migration cost and simulation represents the time
dedicated to the actual simulation. The side slim bars represent the performance
gain, which is the same as in Figure 1. The vertical axis goes up to only 20%,
the remaining 80% are simulation time and add-up to the illustrated.

The overheads associated with profiling and decision making are negligible in
all experimental conditions. Repartitioning (ParMETIS) and redistribution costs
increase with the number of ranks. The former is negligible as a percentage for
the dynamic plus heterogeneous case, but the latter represents an increasing
overhead in all cases. This is tightly related to the fact that the numbers of
migrated cells and balancing episodes (see Figure 2) increase with the hardware
configuration and the workload complexities (homogeneous versus heterogeneous
and static versus dynamic, respectively). Nevertheless the overheads associated
with DLB are below 15%, allowing for very significant performance gains.

Figure 4 presents nSharma performance gain for dynamic workload, 4 nodes,
fixed number of ranks and increasing problem size for 3 alternative hardware con-
figurations: SeARCH homogeneous, SeARCH Heterogeneous II and Stampede2
homogeneous (see Table 1). The x-axis shows the rank count (particularly, for
662+KNL configuration, 64 plus 24 ranks are used from KNL and 662 respec-
tively), which corresponds to the use of all available CUs. The performance gain
associated with the introduction of DLB increases consistently with the problem
size. Larger problems have the potential to exhibit more significant imbalance
penalties with dynamic workloads, due to larger local fluctuations in the number
of cells. nSharma is capable to effectively handle this increased penalty, becom-
ing more efficient as the problem size increases. Based on the observed data,
this trend is expected to continue. No inflection point should be reached and
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nSharma performance gain will keep increasing with the workload, i.e. exactly
when the potential for load imbalances becomes higher.
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Fig. 4. Increasing problem size for four 641 SeARCH nodes, 662+KNL and four Stam-
pede2 nodes

4.2 Efficiency Gain

Within the context of this paper strong scalability entails studying parallel ef-
ficiency variation with increasing number of computing resources (ranks) for
constant problem size. Weak scalability refers to the study of parallel efficiency
variation with increasing number of ranks for increasing problem size. Parallel
efficiency is evaluated with respect to the timing results achieved with only 1
rank and without nSharma (DLB is senseless for a single rank).

Figure 5 presents performance gain with nSharma (grey bars) and parallel
efficiency with and without nSharma (blue and orange lines), using 8 KNL nodes
of Stampede2 (up to 512 ranks). For the strong scaling case – left plot – nSharma
performance gain is around 2, except for 512 ranks. In this latter case, the
workload per rank is so low (the number of cells ranges from 1000 to 2000 per
rank) that incurred overheads (partitioning and cells migration) significantly
impact on the load redistribution benefits. For the weak scaling case – right plot
–, problem size increases at the same rate as number of ranks, thus the workload
per rank is kept constant; performance gain is quite consistent, since increasing
DLB costs are compensated by the added workload.
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Fig. 6. Speedup in combining a 662 node and a KNL by using nSharma

The scalability curves in Figure 5 illustrate that OpenFOAM without DLB
exhibits very low efficiency even for increasing problem size. Two major penalties
contribute to this: aforementioned parallel communications costs and load imbal-
ance due to dynamic workloads. nSharma addresses the load imbalance penalty
in a very effective manner, roughly doubling efficiency for most configurations
– the (512,512K) case of strong scalability can not be taken into account due
to the very scarce load per rank. This clearly illustrates that introducing DLB
mechanisms results in a very significant reduction of execution time, sustained
by an increase in efficiency, i.e. a better utilization of the parallel computing
resources.

4.3 Heterogeneity and Dynamic Load Balancing

Effective exploitation of the raw computing capabilities available on heteroge-
neous systems is hard, with load balancing being one of the main challenges,
specially for dynamic workloads.

Figure 6 details the performance speedup when combining a KNL node –
with two different core configurations, one with the full 64 cores (knl) and an-
other with only 32 cores (half-knl) – with a 24-core 662 node. Speedup is illus-
trated w.r.t to the execution time obtained with the node 662 for static (left)
and dynamic (right) workloads. By adding a KNL node to a 662 node (662+knl
and 662+half-knl) yields no significant performance gain, with a severe deterio-
ration for the dynamic workloads. This is due the imbalance introduced by the
large computing power differences between the nodes (as illustrated by the white
bars). By enabling nSharma, the whole system capabilities will be assessed and
more load is assigned to 662 node, reducing its idle time and increasing resource
utilization. Performance gains between 22% to 38% are observed (*-nSh bars).
The gain is more substantial with dynamic workloads where the potential for
load imbalances is larger: heterogeneous resources plus execution time locally
varying number of cells. nSharma works at its best under these more challeng-
ing conditions, effectively rebalancing the workload and efficiently exploiting the
available resources.
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5 Conclusions and Future work

This paper proposes and assesses the integration of heterogeneity aware DLB
techniques on CFD simulations running on distributed memory heterogeneous
parallel clusters. Such simulations most often imply dynamic workloads due to
execution time mesh refinement. Combined with the hardware heterogeneity
such dynamics cause a two-fold load imbalance, which impacts severely on system
utilization, and consequently on execution time, if not appropriately catered for.
The proposed approach has been implemented as a software package, designated
nSharma, which fully integrates with the latest version of OpenFOAM.

Substantial performance gains are demonstrated for both static and dynamic
workloads. These gains are shown to be caused by reduced busy times RSD
among ranks, i.e. computing resources are kept busy with useful work due to
a more effective workload distribution. Strong and weak scalability results fur-
ther support this conclusion, with nSharma enabled executions exhibiting sig-
nificantly larger efficiencies for a range of experimental conditions. Performance
gains increase with problem size, which is a very desirable feature since the po-
tential to load imbalances under dynamic loads grows with the number of cells.

Experimental results show that performance gains associated with nSharma
are affected by increasing the number of ranks for larger node counts. This
is due to inherent increase of load migration costs associated with a growing
number of balancing episodes. Future work will necessarily imply addressing this
issue, to allow for increased number of parallel resources by further mitigating
load migration overheads. Additionally, nSharma will be validated against a
more extensive set of case studies and heterogeneous devices; upon successful
validation it will be made publicly available in order to foster its adoption by
the large community of OpenFOAM users.
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