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Abstract. Bicycles equipped with sensors, processing capacity and communica-
tions can be a promising source of data about the personal and the collective re-
ality of urban cycling. While this concept has been attracting considerable inter-
est, the key assumption is the design of a closed system where a uniform set of 
sensing bicycles, with a concrete set of sensors, is used to support a specific ser-
vice. The core challenge, however, is how to generalise sensing approaches so 
that they can be collectively supported by many heterogeneous bicycles, owned 
by a multitude of entities, and integrated into a common ecosystem of urban data. 
In this work, we provide a comprehensive analysis of the design space for on-
bike sensing. We consider a diverse set of sensing alternatives, the potential value 
propositions associated with their data, and the collective perspective of how to 
optimise sensing by exploring the complementarities between heterogeneous bi-
cycles. This broader perspective should inform the design of more effective sens-
ing strategies that can maximise the overall value generated by bicycles in smart 
cycling ecosystems and enable new cycling services. 
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Smart cycling is a very broad concept encompassing the many paths through which 
cycling is being incorporated into the connected and smart transport networks of the 
future. It can be described as the shared, real-time and collaborative application of data, 
communication technologies, products, and services through both private and public 
actors, to help best move people individually, and collectively, across the urban envi-
ronment [1][2] . The application of Information Technologies in this domain is already 
a dominant factor for the successful adoption of shared bicycles [3], where they provide 
some of the collective features that characterise those services, such as the ability to 
find nearby bicycles or seamless pay per use. We can envision the evolution of this 
paradigm, with increasingly more bicycles being instrumented in ways that can add 
value to the entire ecosystem. 

In this study, we analyse the role that bicycles equipped with sensors, processing 
capabilities and communications might have as a valuable source of data about the per-
sonal and the collective reality of urban cycling. Sensing systems for bicycles have been 
explored in many different ways [4–7], but the key assumption is always the design of 
a closed system where a uniform set of bicycles, with a concrete set of sensors, is used 
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to support a specific service. Regardless of the technical merits of any particular sys-
tems, the larger challenge is how to generalise sensing approaches so that they can be 
collectively supported by many heterogeneous bicycles, owned by a multitude of enti-
ties, and operated under a common ecosystem of cycling data. This is a problem that 
goes beyond the existence of a single platform or the usage of standard protocols for 
data representation. It also involves the data collection procedures, the types of sensors 
used, data processing algorithms, the operation of sensors or even the details of how 
the sensors are deployed on the bicycles. Closed systems lack the generalization that is 
needed to allow different designs to be explicitly expressed in a way that describes their 
similarities, their differences and their contributions to a common cycling ecosystem. 

1.1 Research objectives 

A smart cycling approach should allow sensing systems from multiple bicycles to com-
pete for the best way to address specific data collection goals and to complement each 
other to serve broader data needs. Rather than assuming uniformity, the model should 
explore heterogeneity as the best way to allow these sensing systems to serve the very 
diverse set of data needs associated with Smart Cycling.  

In this work, we aim to explore this path by providing a comprehensive analysis of 
the design space of bicycle sensing systems. Our research objectives can be summa-
rized by these fundamental research questions: 

• What is the range of sensors that should be integrated into the sensing sys-
tems of bicycles to provide a comprehensive view of urban cycling activity 
and its context?  

• What are the key trade-offs involved in the design of sensing bicycles and 
how can they be optimised to reach the most effective results in the context 
of broader smart cycling ecosystems?  

To explore the possible answers to these questions, we have started by developing 
our own prototype of a bicycle sensing system. Using this prototype as a research con-
text, we have experimented different designs by creating multiple variants of sensing 
systems. This provided a key learning context to understand the sensitivities associated 
with this sensing context and assess the real value that can be obtained from various 
types of sensors. This experimental work was complemented with an analysis of the 
sensing design space for bicycles. This analysis was organised around 3 layers, more 
specifically the universe of viable sensors, the value propositions offered by those ser-
vices through the services they enable and the collective perspective of how to combine 
heterogeneous sensing systems to optimise their value to the whole ecosystem. This 
broader perspective should provide new insights for the development of sensing sys-
tems for bicycles and the understanding of their role in the larger context of urban cy-
cling services.  
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2 Related Work 

Previous work has already explored many variants of bicycles equipped with various 
types of sensors. The smart e-bike monitoring system (SEMS) [8] is a platform for the 
real-time acquisition of usage data from electrically assisted bikes. The system collects 
e-bike data including location, rider control data and power data. The SEMS data feeds 
an online interface for data analysis, for riders to view their own data and sharing on 
social media. BikeNet [9] is a mobile sensing system for mapping the cyclist experi-
ence. BikeNet uses a number of sensors embedded into the bicycle so that it collects 
data about the cyclist’s ride. BikeNet uses two approaches for data synchronization: an 
opportunistic approach where it uploads data when the bicycle opportunistically finds 
a wireless access point; and real time synchronization using the cellular data channel of 
the cyclist’s mobile phone. SensorBike [7] is mainly focused on capturing data that 
influences security and comfort while cycling. It includes power sensors, vital sensors, 
accelerometers and vibration sensor, environmental sensors, distance sensors and cam-
eras. The goal is to understand the cyclist’s perspective and contribute to the future of 
cycling planning. The Smart e-bike [11] explores the combination of sensors associated 
with the physical characteristics and physical condition of the rider with the motor con-
trol system. The aim is to help the cyclist in situations when the values of his physical 
condition or the parameters of the environment are critical. The system includes pulse 
sensors, gyroscope/accelerometer, speedometer and GPS. 

In addition to special bike configurations, there are also add-ons that include a major 
sensing functionality. The See.Sense system [10] is a set of augmented cycling products 
with the capability to collect and share trip information. The See.Sense smart bike lights 
include a GPS, accelerometers and GSM communication service. The system can col-
lect data from cycling trips and alert cyclists when they are entering a more dangerous 
zone. The device is able to register 800 data points per second, enabling it to monitor 
road conditions and even alert the owner when the bicycle is being moved or stolen.  

Air quality has been particularly popular as an application domain for sensing on 
bicycles. The motivation for using bicycles in this context is the possibility to collect 
data from many locations, many of which might not be reachable by car, and also the 
fact that the bicycle is not an air pollutant itself and therefore does not interfere with 
measurements.  

Aeroflex [4] is a sensing bicycle for mobile air quality measurements. The system 
measures Ultra Fine Particles, Particle Matter, Black Carbon and CO. It also collects 
GPS location, sound, images, vertical acceleration, temperature and relative humidity. 
The Sniffer bike  [6] is equipped with a particulate matter sensor developed in collab-
oration with the Utrecht Province to be attached to bicycles. It measures air quality 
every ten seconds and shares data with the Civity data platform every minute. The Co-
penhagen Wheel [5] is an electric bicycle system developed to transform any bicycle 
into a smart bicycle by replacing the rear wheel with the Copenhagen Wheel. The wheel 
is able to collect the location data of the bicycle and other data to improve cycling and 
cyclists’ experience. It also collects data about air (CO2, NO) and noise (db) pollution, 
congestions, road conditions, relative humidity as well as temperature. 
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Bike sharing companies also use different forms of sensing on their bicycles [12] 
They typically collect data related with position and timing from routes made by their 
users. The primary purpose of this data collection is for pricing processes, but it also 
enables the construction of data related to the users’ profile so that the system can be 
optimized for them. Accordingly, they work on this data to improve efficiency and in-
crease user satisfaction.  

These systems demonstrate the variety of approaches that can be explored when 
combing sensors with bicycles. What differentiates our work in mainly the broader per-
spective on bicycle sensing. Rather than aiming to propose yet another sensing bicycle, 
our work aims to uncover the key technical trade-offs and design sensitivities associ-
ated with sensing bicycles. The ultimate goal is to allow a heterogeneous and open-
ended set of sensing bicycles to coexist, while improving their capability to operate as 
complementary approaches under a common cycling ecosystem.  

Regarding data usage, route characterisation has always been one of the most com-
mon goals for on-bike data collection. There is a vast research literature on the main 
determinants in cyclist’s decisions to cycle or to decide where to cycle. These are im-
portant indicators for data that should be widely available in cycling ecosystem. Ehrgott 
et. al. [13] observed that some cyclists prefer to travel longer distances in order to in-
clude cycle facilities on their routes. The shortest route is not necessarily the most at-
tractive route to cyclist, making route selection a bi-objective routing problem, where 
the aim is to generate a set of compromise solutions that is considered efficient. A route 
is called efficient if, given the same travel time, there will be no route with higher level 
of suitability and given the same level of suitability, there will be no route with shorter 
travel time. In another study by Winters et. al. [14] a group of cyclists answered 73 
survey items, grouped into 15 factors that might influence their likelihood of cycling. 
These factors highlight the importance of the location and design of bicycle networks. 
In another survey with 65 commuter cyclists, Segadilha et al. [15] asked participants to 
classify the importance of 18 cycling factor in a scale from 1 to 5. The factors identified 
as the most important were grouped in these 5 categories: road, traffic, environment, 
trip and route as a whole. A survey conducted by Felix [16] with cyclists and non-
cyclists has sought to understand their motivators, triggers and barriers towards cycling. 
Results have shown that both groups consider the issues related to the perception of 
safety, physical effort, lack of a safe cycling network, and bicycle ownership as im-
portant barriers to take up cycling. Broach et al. [17] developed a GPS model to collect 
data from cyclists so that stakeholders could answers questions about types of infra-
structures, preferences and the links between bicycle infrastructures and cycling behav-
iour. Su et. al. [18] identified some online bicycle trip planners and concluded that these 
online trip planners rarely provide the complete set of route selection criteria required 
for a bicycle trip planner including fast, safe, simple and attractive routes. These studies 
provided us important insights on the very diverse set of goals that may be relevant 
when collecting cycling data and on the identification of key target services for cycling. 
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3 A prototype of sensing system for bicycles 

Our own prototype of a sensing system for bicycles was an important research tool in 
this work. More than a goal in itself, this bicycle allowed us to experiment many sensing 
alternatives and uncover multiple challenges associated with sensors on bicycles. The 
bicycle design is not attached to any particular form of sensing or any particular usage 
of the data collected. Instead, the system is designed to support a broad range of sensing 
possibilities and be instantiated in various ways, according to the requirements of spe-
cific research goals. Therefore, there is not a unique prototype specification, but rather 
a set of diverse prototype instances created throughout the project to study specific per-
spectives of sensing bicycles.  

These various instances may differ in many ways, such as their specific set of sen-
sors, the way those sensors are physically deployed or the specifics of the data collec-
tion process. The structured exploration of these many possibilities provides a broader 
view of the whole range of on-bike sensing possibilities and creates actionable 
knowledge on how to define specific sensing strategies for specific sensing goals. It 
also creates a context where it can be possible to compare multiple competing alterna-
tives for similar forms of sensing. To improve the generalization of the results, we also 
avoid any major assumptions about the ways in which a system like this could be em-
bedded into a common bicycle, e.g. embedded directly on the bike or attached as a 
removable add-on. We will however, try to explicitly identify any effects associated 
with sensor positions or with other design decisions that may also impact on the viabil-
ity of particular deployment approaches. 

3.1 Bicycle instrumentation.  

Our prototype bicycle was based on an electrical bike equipped with a Bosch motor. 
Fig. 1 shows an instance of our sensing bicycle with a common combination of sensors 
and their deployment positions. 

 

 
Fig. 1.  Sensing Bicycle instrumentation 
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The instrumentation of the bicycle essentially involved the selection of specific posi-
tions for particular sensors and for the central control unit, as well as the installation of 
cables to support the connections between them. To facilitate deployment, a rear basket 
was added. This is where the central control unit was placed, together with most sensors 
and the power battery. To support the cable connection between the central unit in the 
rear basket and the various sensors that needed to be placed at the front of the bicycle, 
two small plastic tubes were attached to the bicycle frame and wrapped with black fab-
ric.  

3.2 System Architecture 

The system follows a centralized architecture with a single control unit connected to 
multiple sensors via cable connections. In this integrated design, all core functionality 
is provided as part of a single system, developed and deployed by a single entity.  

The system comprises an Arduino UNO R3, a shield with Qwiic extension ports, a 
micro-SD storage shield, a LED to signal the system status, a 12V battery and a number 
of sensors controlled from the Arduino board. Fig. 2 represents a particular instantiation 
of the system with four distance sensors, two accelerometers, one environmental sen-
sor, one light sensor and one sound sensor. 

 
 

 
Fig. 2. Sensing system architecture 
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Since all the sensors are connected with cables, their maximum number is limited by 
the number of available connections. However, this has not been a major problem at 
this stage, because for each prototype instance there is normally a specific goal, for 
which only a particular sub-set of the potential sensors is needed.  

3.3 Sensor sampling algorithm.  

The control software running on the Arduino board executes all the necessary tasks for 
continuously collecting sensor data and writing it to an output file in the SD Card. The 
sensor sampling algorithm begins with the setup phase, which involves the activation 
and initialization of the sensors. A LED light on the bicycle handlebar provides basic 
awareness about the current system status and will be on if all sensors defined as critical 
are operational. Once the setup is successfully completed, the system enters a data col-
lection loop to obtain data from the various sensors. Given the specific properties of the 
Arduino Board, each cycle is a sequential process which needs to go through all the 
system’s sensors to obtain their data.  

Even though there is a single data collection cycle, we need to accommodate very 
different requirements regarding the sampling rates of various sensors. Accelerometers 
will typically have the highest rate. For example, for road anomaly detection in a car 
driving at 50 Km/h, Silva et al. suggest a 50 Hz sampling rate [19]. On the contrary, for 
GPS data a single sample per second can already be seen as intensive tracking. To ad-
dress these different sampling rates, we allocate to each sensor a variable that defines 
the respective frequency.  

These sampling frequencies are determined by the envisioned usage of the data, 
which affects the potential relevance of higher sampling rates, and by the specifications 
of the sensors, which may limit the maximum rate at which data can actually be pro-
duced. The maximum sampling rate possible is also bounded by the performance of the 
board and the execution time of each cycle. 

3.4 Data collection.  

Data collection is the ultimate goal of any sensing system and is therefore a critical part 
of this research on sensing bicycles. Our data collection process is structured around 
three complementary data collection processes, as represented in Fig. 3. They are dis-
tinct processes because they serve different goals, but they also have many interdepend-
encies and shared steps. 
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Fig. 3. Complementary Data Collection Processes 

Urban data collection is what we envision as a generic, large scale data generation pro-
cess, where a large number of different types of sensing bicycles are in operation to 
regularly produce the data needed to support various types of urban cycling services. 
This is the most generic process supported by the sensing bicycle and essentially cor-
responds to the normal execution of the software on the control board unit. The raw 
sensor data is a CSV file containing the data collected from sensors during a trip. The 
data is structured in a Tidy Data format [20], with each sensor output being registered 
as a new observation, consisting of line with a time stamp, the data context and the 
respective value. This format provides the flexibility needed to operate the system un-
der multiple sensing bicycle configurations, each with its own particular set of sensors. 
It also provides a simple solution to address the very different sensing rates of the var-
ious sensors in our system, as each sensor is free to output its data to the file without 
any dependencies on the others. At the end of the process, data is exported to OGC 
SensorThings format [21]. This json format provides the necessary self-description of 
the data, allowing it to be processed without the need for further information, other than 
what is described in the file itself.  

The sensing bicycle can also be used to produce training data for machine learning 
models. In this case, data collection should be done under a more structured protocol to 
control the specific variables involved and facilitate the annotation of relevant events. 
Videos can be used to support this annotation process. They show the concrete situa-
tions being experienced during the ride and they will normally include voice descrip-
tions of the events made by the rider. Each study will conduct whatever specific data 
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manipulation processes it may need to produce specific Machine Learning models. 
Those ML models may at some point integrate the normal data processing flow to sup-
port the automated identification of such events during the ride and shared them as an 
additional data stream produced by the bicycle.  

4 What to sense in a sensing bicycle 

A central research question in our work is how to determine the set of sensors that 
should be available on bicycles to support their role as sensing entities. Our experi-
mental work on sensing systems for bicycles may provide us with many insights about 
the implications of certain design decisions or about the use of concrete sensors, but it 
does not take us closer to the answer to this question. This is a very open-ended ques-
tion, which would normally be easier to answer if made in the context of a concrete 
systems with specific sensing goals. Trying to provide a generic answer can be much 
harder, as it requires the generic exploration of sensing possibilities, their viability in 
the cycling context and also the potential value of the respective data for concrete ap-
plication domains in the cycling ecosystem. The overall process can be seen as involv-
ing three successive layers of analysis, which progressively reduce the set of sensors to 
be considered, as represented in Fig. 4. 

 
Fig. 4. Layers of analysis in the selection of sensors 

The following sub-sections will explore each of these perspectives in more detail. 

4.1 Universe of cycling sensing possibilities 

The starting point in this analysis is the universe of bicycle sensing possibilities, which 
we define as the range of physical phenomena that are measurable, meaningful in the 
cycling domain and viable. Sensor viability is determined by their cost and by the prac-
tical implications of their deployment on the bicycles, such as dependability, size, vol-
ume, mass, and longevity [10]. For the purpose of this study, we will assume a loose 
interpretation of viability, and consider that the universe of sensing possibilities corre-
sponds to all the sensors previously suggested for this purpose in other studies and mar-
ket products.  

Given the wide range of sensor possibilities and their various applications domains, 
we structured this analysis around a set of sensing profiles, which represent particular 
sensor types that share the same type of sensing phenomena and a similar application 
domain. This profile structure explores the fact that the various sensor possibilities are 
not independent between each other. Similar sensors will typically be used for similar 
purposes and most of the time will just be alternative solutions to the same problem. 
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By treating them as a whole, we significantly reduce the complexity of the analysis, 
while still maintaining the capability to make meaningful connections between sensors 
and their value propositions. We will now present the proposed list of 8 sensing pro-
files: 

Position profile. The position profile assumes the existence of position sensors that can 
determine the position of the bicycle. Position data play a major role in the sensing 
process, not just as a core data itself, but also as a way to georeference data generated 
by others sensors. This profile may thus be often used in combination with other pro-
files. Position sensors rank high on viability as they can be low-cost, discrete and pose 
no major processing requirements, especially when no real-time data is involved. 
Whenever there is the need to determine the position of the bicycle on a regular basis, 
a GPS receiver is the common solution.  

Motion profile. Motion measurements can provide key data to understand the smooth-
ness of the ride. When properly analysed by machine learning models this data can 
produce high-level knowledge about the motion patterns of a ride, including the driving 
style or the identification of riding events, such as braking, turning, road bumps or ir-
regular tracks. This type of data can serve many relevant purposes, including those re-
lated with safety. The motion profile is mainly composed by IMU sensors, such as 3-
axis accelerometers, 3-axis gyros and 3-axis magnetometers. These sensors can be low-
cost. However, they produce large volumes of data that needs to be processed locally 
or otherwise transferred to a server. Either way, this may introduce additional require-
ments regarding processing capability, storage or network connectivity.  

Environmental profile. Environmental sensors can measure a wide range of environ-
mental characteristics, such as gas concentrations, particles in the air, light intensity, 
humidity level, atmospheric pressure or temperature. In the cycling domain, this data 
can be useful to inform each cyclist about the level of exposure to hazards elements 
experienced during daily rides and to complement information about route quality, e.g. 
the presence of certain particles can be a predictor for heavy motor traffic. This data 
can also be very useful beyond the cycling context, as bicycles are frequently recog-
nized as ideal vehicles for mobile environmental data collection [22–24]. These sensors 
do not place many new additional requirements, but some of these sensors can be par-
ticularly expensive and require specific installation settings or calibration procedures 
that may not be compatible with large scale crowdsourcing data collection. 

Surrounding profile. The surrounding profile includes distance sensors to provide a 
perspective of route quality and safety. Distance between the bicycle and nearby objects 
defines the free surrounding space, which can be an important indicator for the safety 
risks associated short distances to other vehicles or to potential obstacles. Common 
distance sensors, possibly pointing into different directions, may provide simple data 
about nearest objects. A more sophisticated perception of the surrounding space can be 
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created with data obtained from Lidar and Radar devices, as they offer the additional 
capability to make 3D representations and identify object sizes. However, LIDAR and 
Radar sensors, can be much more demanding in regard to their deployment on the bi-
cycle and their data processing requirements.  

Rider. The rider is at the centre of the cycling experience and therefore data from the 
rider can also provide key insights about that experience. The Heart beat rate is com-
monly used in sports contexts, but it may also be used as proxy for the level of stress 
experienced during the ride. A cadence sensor can measure the rotations per minute 
performed by the rider on the pedal and therefore the effort the cyclist is making.  

 
 

Video. With proper processing capability, video can be a powerful form of sensing, but 
the automated collection of data from computer vision processes is not common on 
bicycles, mainly due to the strong processing requirements. For the purpose of this 
study, we will embrace video mainly as a source of ground truth data through the crea-
tion of autonomous video streams for later annotation of relevant events. In this context, 
we can expect the video profile to be used mainly in the context of professional data 
collection activities.  

Sound profile. While potentially a form of environmental sensing, sound can be used 
to support more advanced interpretations of the cycling context. The level of sound 
obtained from a simple sound level sensor may be used as a proxy for traffic levels. 
Sound data obtained with a microphone may enable machine learning methods that 
explore the particular sound frequencies associated with riding events, e.g. different 
types of surface will typically produce distinct combinations of sound frequencies and 
being overtaken by a car may also produce a unique sound signature. 

Proximity. Proximity sensors enable bicycles to detect the presence of nearby entities 
without any physical contact. This is not concerned with the physical proximity to sur-
rounding objects as is the case with distance sensors. This is about logical proximity to 
recognisable entities, such as other bicycles, cars or bike counters, that are able to iden-
tify themselves and possibly engage in more sophisticated communications. Bluetooth, 
BLE or RFID are commonly used for this purpose. 

 
These 8 profiles do not correspond to specific bicycle instances. They are meant to 

be combined in many different ways. In particular, the position profile can be expected 
to be often included when one of the other profiles is also included. By describing sens-
ing systems from the perspective of the supported sensing profiles, it becomes possible 
to have a common framework to discuss many different sensing bicycle designs.  
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4.2 Sensors with relevant value propositions 

The universe of cycling sensors can be very large, but any realistic cycling sensing 
setup will have to be shaped by the worthiness of the data produced. Worthiness is 
essentially determined by the demand side and the concrete value propositions that can 
be associated with the data produced by those sensors. To scope this analysis, we will 
focus on cycling routes as the core data entity in our model. Our problem can thus be 
defined as identifying the types of data that are the most relevant to characterise cycling 
mobility on a given route network. We mainly consider two major types of data: trips 
that define movement, i.e. where bicycles are passing and at what speed; and route 
annotations that characterise routes, i.e. what type of road surface is there or what types 
of riding events are generated. These two dimensions can be combined with the indi-
vidual and the collective perspective. For example, combining trips with the collective 
perspective corresponds to route traffic measurements, i.e. volume metrics. From and 
individual perspective, trip information can be used to track individual progress and 
achievements. The combination of these dimensions and their key results are depicted 
in Fig. 5. 

 
Fig. 5. Simplified model of cycling data needs 

We can explore worthiness by exploring the possible associations between the many 
types of sensors and these different types of data needs. Trip information is largely 
provided by GPS devices, which generate a time series of positions along with the re-
spective speed and orientation information. Usage of this type of data is very common 
with Traffic Management services for motorized vehicles where many of these same 
metrics are intensively explored to produce a general perspective of urban traffic, sup-
porting the generation of live traffic maps and accurate and dynamic estimations of 
travel times. While there are many commonalities to be explored, cycling data differs 
from those models in that real-time data is not as relevant as it is with cars. A major 
goal with cars is to manage ongoing traffic and avoid congestion. With bicycles, vol-
ume is also very important, but mainly to understand demand trends and adjust accord-
ingly. We can thus consider trip information as strongly relevant, even if it does not 
need to be shared in real-time. 

On the contrary, route annotation data is very unique and much more relevant for 
bicycles than it is for cars. With cars, the navigation focus is very strongly on the fastest 
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route. With bicycles, route selection requires a much broader set of data about routes, 
particularly in regard to safety, comfort or road gradient. Data collected by bicycles 
should thus be able to support the generation of indicators that represent complex and 
multi-criteria route selection processes.  

The research literature includes a vast body of research on route selection criteria 
[13–18], which we have used to match sensing possibilities to worthy data applications. 
In particular, we have considered data services along the various layers of the Bicycle 
Pyramid model proposed by the BITS project [25]. The pyramid model is derived from 
Maslow’s pyramid of needs and is also organized according to the principle that the 
needs at the bottom of the pyramid need to be met before the next level becomes rele-
vant. The five proposed layers, from bottom to top, include Safety & Reliability, Speed, 
Convenience, Comfort and Experience. This is an extensive and prioritized view of 
multiple elements that can shape cycling activities and ultimately determine its adop-
tion, and therefore provides a good framework for matching data with the value it can 
generate. Once again, we will use the abstractions offered by sensing profiles to facili-
tate the association between any specific sensing bicycle designs and concrete urban 
cycling services. The result is summarised in Table 1, which describes the mapping 
between different sensing profiles and particular sets of services.  

Table 1. Mapping sensing profiles to specific services 

Profile Service 
Position Cycling Maps, Network planning, Volume estimations, Quantified 

self, Cycling network hierarchy, A->B patterns, Travel times 
Motion Ridding Conditions, Road surface classification, Automated cyclist 

profile, Bump detection, Riding flow metrics 
Environment Local pollution levels, Traffic level estimations 
Surrounding Safety index based on free surrounding Space  
Rider Physical condition, Riding stress, Exertion 
Video  Route annotation. Data interpretation. 
Sound Road surface classification, Surrounding traffic, Sound level 
Proximity Bicycle count, symbolic positioning 

 
By providing a perspective of the mapping between sensing system and key data-cen-
tric services this table should help developers to consider which profiles to include to 
obtain specific services, or, given a set of profiles, to understand what can realistically 
be achieved with the available data. 

4.3 Collective optimisation of cycling sensors 

The final layer in the analysis is to move beyond the individual bicycle and consider 
how to optimise an entire cycling sensing ecosystem. Ideally, once we define the target 
services and identify the sensor profiles that need to be included to support those ser-
vices, we would like to have all the bicycles equipped with all sensors for all those 
profiles. In reality, this assumption is challenged by multiple effects, which occur 
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across the various parts of the system and are common to any sensing bicycle design. 
These effects represent a design trade-off between the quantity and quality of the data 
that needs to be collected and the costs and hassles involved in that data collection 
process, as represented in the conceptual map in Fig. 6. 

 

 
Fig. 6. Key design trade-offs 

The key design decision regards the sensing profiles to deploy on each bicycle. In our 
work with the prototype bicycle, we found, from our many integration attempts, that 
the number and range of sensors deployed on a particular bicycle seems to have a major 
impact across a number of other key design goals, particularly cost, convenience and 
heterogeneity. The first two, cost and convenience, will significantly impact the number 
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Therefore, rather than pushing for more uniform bicycles, we leverage heterogeneity 
as an opportunity to explore complementarities between large numbers of heterogene-
ous bicycles in an urban ecosystem. More specifically, we envision an ecosystem where 
different proportions of different types of sensing bicycles would be complementing 
each other to produce a balanced vision of the cycling reality and guarantee the neces-
sary data while avoiding unnecessary redundancies. A larger number of low-cost sens-
ing bicycles, with a basic sensing profile could collect large volumes of data, especially 
data that requires higher spatial and temporal coverage, e.g. traffic volume. These 
would be complemented with a few, more sophisticated, bicycles that could combine 
two or more sensing profiles and collect data that is updated only occasionally, such as 
route characterisation. Additionally, one or very few probe bicycles could be deployed 
for professional data collection regarding more critical data. These probe bicycles could 
include multiple sensing profiles, but its most distinctive property would be the profes-
sional nature of the data collection process, which could thus involve more rigorous 
processes and more credible data. The quantitative relation between specific sensing 
profiles and the proportion of bicycles where they should be included to produce the 
data needed by their target services is not addressed in this work, but becomes a relevant 
research topic for future work. 

While bicycle heterogeneity may hold the key for sensing in urban cycling, it also 
raises interoperability issues that may negatively affect the value of the data generated 
by the whole system. In a context of heterogeneity, there are many design possibilities 
regarding the specific sensor model, the way it is deployed, its position on the bicycle 
or even the bicycle itself, that may affect the data generated. These challenges may go 
beyond the usual issues of standard data representations. They may also involve the 
explicit description of the data collection circumstances, which in some cases might be 
crucial for the correct interpretation of data. If these relevant elements are not consid-
ered, the ability to aggregate data from multiple sources and consequently the value 
that could be obtained from combining heterogeneous bicycles, can be compromised. 
This suggest the need for a reference design for sensing bicycles that allows many dif-
ferent bicycles to be used together as part of one common ecosystem, while explicitly 
dealing with any relevant deployment sensitivities.  

5 Conclusions and Future work 

Sensors and bicycles are a powerful combination that is attracting significant attention 
from research and industry perspectives. While many technical approaches have al-
ready been explored, there is a gap on how to approach this topic from an ecosystem 
perspective where many stakeholders can be involved and data is being collected by 
very diverse sensing bicycles all of which with their own technology and sensing con-
cepts. The novelty of this contribution is in the broader and more generic perspective 
of this study, which aimed to pursue a more explicit and thorough analysis of the vari-
ous dimensions shaping the key trade-offs for cycling sensing systems.  
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5.1 Future work 

This is an ongoing work, where we are plan to develop further research to provide more 
thorough indications on how to design, describe and combine very diverse sets of sens-
ing bicycles. In particular, we plan to explore the quantification of the size and relative 
proportion of the samples needed to offer the services associated with each sensing 
profile. This knowledge is crucial to support the planning of smart fleets of heteroge-
neous bicycles where the combination of the various profiles is optimized according to 
the target services. We also plan to evolve the definition of a reference design for sens-
ing bicycles. This should offer a common reference for describing the sensing af-
fordances of a particular bicycle design, from the simplest ones to a full-fledged probe 
bicycle for professional data collection. This should allow those sensing possibilities to 
be combined in many different ways, while allowing their results to be analysed con-
sistently. With this model, it should become possible to relate multiple sensing bicycle 
designs as variants of a common model and it should be easier to integrate data gener-
ated from different instances into shared datasets. 
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