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Abstract. This paper makes the case that practical differentiation of measured 
state variables may be seen as an observation or estimation scheme for linear 
time invariant state space controllers. It is shown that although not having the 
separation property, the estimation error of this scheme – differential observa-
tion – converges to zero if the resulting closed loop system is strictly stable. On 
the basis of this concept, it is shown that PID controllers may be interpreted as a 
special case of state space controllers endowed with differential observation. 

Keywords: state observation, differential observation, state space controllers, 
PID controllers. 

1 Introduction 

The goal of this paper is two fold. First, one wants to present the concept of differen-
tial observation as embodying an approach – beyond full state [1] and Luenberger 
observers [2] – to estimate states in state space controllers. Second, one wants to show 
that with the concept of differential observation and the well-known implementation 
of integral action in state space controllers, one is able to interpret PID controllers [3] 
as a particular case of state space controllers. 

1.1 Differential observation 

While not quite referred as such, practically differentiating a signal can be understood 
as estimating the derivative of the signal. This is so because differentiation is a non-
causal operation. As it is believed that non-causal processes cannot be physically 
implemented, it follows that if one uses an electronic device, say a properly config-
ured op-amp, to calculate the derivative of its input, what one gets is at most an ap-
proximation of the values that would be output by an ideal (non-causal) differentiator. 

This is a well-known fact in the frequency domain, as the amplitude frequency re-
sponse of an ideal differentiator should tend to infinity as ω tends to infinity. A prac-
tical differentiator must be band limited or must have an upper or corner frequency ωc 
above which amplitude ceases to grow. The higher this frequency is, the smaller is the 
approximation error. 
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Assume that in a control system, plant variable x1 is the derivative of variable x2. 
One measures x2 and practically differentiates the measure to obtain xs1. The approxi-
mation error es1 = x1–xs1 cannot be calculated on-line (otherwise x2 could be differen-
tiated) but under appropriate conditions it can be bound and shown to converge to 
zero. This allows one to understand xs1 as an observation or estimate of x1. Of course, 
there are other causes of uncertainty, as disturbances or measurement errors, but the 
differentiation error es1 is intrinsic to the process. 

Full-order or reduced order state observers are supposed to perform only causal 
operations, but, beyond being subject to disturbances or measurement errors as practi-
cal differentiation, they also have an intrinsic and irreducible cause of output error: 
the uncertainty about the plant model used in the observer. This is not the case of 
practical differentiators, as they are model free.  

Summing up the above observations, we can interpret the operation of practical 
differentiators as differential observation of state variables at par with reduced-order 
observers. The output of practical differentiators, as the output of full or reduced order 
observers, can be seen as estimates of non-measured state variables. It follows that 
differential observation can be studied as a reduced order observation scheme and that 
one may compare it with the reduced-order or Luenberger observation scheme. The 
main, and more or less obvious at first sight, results of this study are: 

– In principle, differential observation can be used together with full state feedback 
as full or reduced order observation can, with partial only state measurement. 

– Differential observation does not have the separation property [3]. The poles re-
sulting from upper or corner frequencies ωc1, ωc2, …, do displace the closed loop 
poles from the positions intended with full-state measurement.1This effect grows with 
the lowering of the corner frequencies and diminishes with their increase. 

– The effect above can be easily assessed for strict stability of the regulated system 
modes and of estimation errors, therefore it turns out that differential observation can 
be incorporated into full state feedback designs as an appropriate observation scheme 
to consider. 

1.2 Integral action 

Inserting integral action in a state space controller is well understood. Here, one will 
be reviewing concepts. 

A full state feedback does not warrant zero steady-state errors to references or dis-
turbances that do not tend to zero. Among these, steps and ramps are of special inter-
est to consider.  

Steps are often good models not only for many references and disturbances but al-
so, given linearity, to constant components of any input. Obtaining zero error in 
steady state to a step reference or disturbance for some state variable can be accom-
plished adding to the system, at most, one integral of the variable error. 

                                                             
1  Let one remark that the separation property only holds for full or Luenberger observers 

under the condition that the system model used by the observer perfectly matches the sys-
tem. 
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 Obtaining zero error in steady state to a ramp reference or disturbance for some 
state variable can be accomplished adding to the system, at most, two integrals of the 
variable error. These are well-known results: to get zero steady state error to a time 
power ktn reference or disturbance the system transfer function must be of type n – 
which means that the loop transfer function must have n pure integrators. 

Integral action is readily inserted into state-space controllers by associating to each 
variable for which a requirement of zero steady state error exists one or more states 
which will be an integral of the variable error, an integral of the integral of the varia-
ble error, etc. Interpreting these integrals as additional state variables of an augmented 
system state leads one to the following known result: 

– Integral action can be included in a LTI state space controller by making the con-
troller calculate the number of error integrals required to match steady-state error 
specifications. Understanding these integrals as additional variables in an augmented 
system allows one to establish the closed loop poles of this augmented system through 
a full-state feedback vector. 

Let us note, en passant, that from a practical point of view, applying integral action 
is not a free lunch and the price to pay lies somewhere between slow modes of the 
error integrals and significant worsening of gain and phase margins. Furthermore, use 
of integral action requires some form of anti-reset windup to counter the effect of 
actuator saturation. With these convenient remarks in mind, integral action can be 
applied systematically in state space   

1.3 Layers of variables and PID controllers 

For the sake of generality, let one assume that a system has n state variables, of which 
n/2 are measured, let us call them the P variables. The other n/2 variables are deriva-
tives of the P variables and we will call them the D variables – to be estimated 
through differential observation. Assume that it is meaningful to specify independent 
reference trajectories for the P variables as well as finite or null steady-state errors to 
be attained through integral action. Then, the controller must calculate n/2 error inte-
grals, which one will call the I variables.  

The D, P and I variables make up the augmented system state upon which a full 
feedback will be applied. Metaphorically, one can say that the control system has 
three layers of variables. This leads to the idea of a uniform LTI controller structure to 
be configured for systems with the properties above. 

Now it can be recognized that a usual PID controller makes up a “vertical” slot of 
such a state space LTI controller. Actually one can see that a PD controller can be 
interpreted as a full state feedback with differential observation for a second order 
system with the property of one state variable being the derivative of the other. A PID 
controller will be the version with integral action of such a controller. 

This is conceptually useful in design and teaching as well as in research. We do not 
need to distinguish between state space and PID controllers – the latter become a 
special case of the first ones, provided that differentiation is understood as a state 
variable observation scheme. 
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1.4 Plan of the paper 

Section 2 develops the concept of differential observation in continuous time assum-
ing a flat frequency response above the upper differentiation frequency. Properties of 
this observation scheme are given as well as the general expression of a state space 
controlled system with this observation scheme. From this, one obtains that the sepa-
ration property does not hold for this scheme and practical considerations for its use 
are indicated. 

Section 3 gives a review of integral action in state space controllers together with 
an example. In Section 4 one develops the interpretation of a PID controller as a state 
space controller with differential observation. Section 5 concludes with some remarks 
about further research. 

2 Differential observation 

If one could make an ideal differentiator, its transfer function would be 

 
  
Hi (s) = Y (s)

U (s)
= s   (1) 

implying that the modulus of H(jω) should grow with ω  without limit. For a practi-
cal differentiator, the modulus of Hp(jω) must cease to grow above some corner fre-
quency ωc. Here one will assume that the practical differentiator has as transfer func-
tion the series of (1) with a first-order low pass whose corner frequency is ωc: 

 
  
H p (s) = Y (s)

U (s)
= s

ω c

s+ω c

  (2) 

This implies: 

 
  
lim
ω→∞

H p (jω ) =ω c   (3) 

Therefore the condition is fulfilled with |Hp(jω)| becoming constant for frequencies 
above ωc. In the time domain, the output and input of such practical differentiator are 
related as: 

 
 
dy
dt

+ω c y =ω c

du
dt

  (4) 

Now, let one assume that in a plant one wants to control, state variable x1 is the de-
rivative of state variable x2:  

 
  

dx2

dt
= x1   (5) 
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One can measure x2 and differentiate it to obtain an estimate xs1 of x1 with a practi-
cal differentiator as in (4). The relation between xs1 and x2 becomes: 

 
  

dxs1

dt
+ω cxs1 =ω c

dx2

dt
  (6) 

Therefore: 

 
  

dxs1

dt
+ω cxs1 =ω cx1   (7) 

So that xs1 equals x1 passed through a first order low pass with corner frequency ωc. 
The estimation error e1 decreases with the value of ωc: 

 
  
e1 = x1 − xs1 =

1
ω c

dxs1

dt
  (8) 

Let one assume that the plant is single input nth-order: 

 
 

dx
dt

= Ax + Bu   (9) 

Also, a full-state feedback –K = –[k1 k2 ... kn] has been calculated to set the eigen-
values of the regulated plant to the n desired values P = [p1 p2 ... pn] assuming full-
state measurement. But, instead of full-state measurement, one measures x2 to xn and 
one substitutes x1 by its estimate above to generate the feedback: 

    u = −[k1 k2…kn][xs1 x2…xn]T   (10) 

Because xs1 = x1 – e1, the state derivative becomes: 

 

   

dx
dt

= Ax + B −[k1 k2…kn][xs1 x2…xn]T( )
= Ax + B −[k1 k2…kn][x1 − e1 x2…xn]T( )
= ( A− BK )x + Bk1e1

  (11) 

Let one define A1 and B1 as row matrices equaling the first row of A and B, respec-
tively: 

   A1 = A(1,:) B1 = B(1,:)   (12) 

By (7) and (9) it follows that the derivative of the estimation error e1 can be writ-
ten: 
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de1

dt
=

dx1

dt
−

dxs1

dt
= A1x + B1u − ω cx1 −ω cxs1( )
= A1x + B1 −[k1 k2…kn][xs1 x2…xn]T( )−ω ce1

= A1x + B1 −[k1 k2…kn][x1 + e1 x2…xn]T( )−ω ce1

= A1 − B1K( )x + B1k1e1 −ω ce1

= A1 − B1K( )x + B1k1 −ω c( )e1

  (13) 

One may consider that the regulated system has an augmented state xa = [x e1]T. It 
follows that the state equation of the regulated system with full-state feedback and 
differential estimation of x1 becomes: 

 

  

dxa

dt
= Ar xa

dx
dt
de1

dt

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
=

A− BK Bk1

A1 − B1K B1k1 −ω c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x
e1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (14) 

One may conclude that: 
i) If the eigenvalues of Ar are strictly stable, the system is strictly stable and the es-

timation error converges to zero after an impulse disturbance in the state. 
ii) The eigenvalues of Ar will be different from the intended P values. This 

amounts to say that differential estimation does not enjoy the separation property: the 
estimator does move the regulated system poles from the intended P positions. This 
effect diminishes with increasing ωc, so, the amount of measurement noise in x2 will 
basically determine its impact. 

The above analysis can readily be generalized for m variables to estimate trough 
practical differentiation of m measured variables, equivalent results holding. An inter-
esting example to consider is the classical inverted pendulum on a cart where one may 
want to estimate the pendulum angular velocity and the cart translation velocity from 
the angular and translation displacement measures. 

3 Review of integral action in state space controllers 

Let one assume again a nth-order plant: 

 
 

dx
dt

= Ax + Bu   (15) 

with a full-state feedback and a servo signal for state variable xi: 
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   u = −Kx + kixir = −k1x1 − ...+ ki (xir − xi )− ...− knxn   (16) 

In (16) it is K = [k1,…, ki,…,kn], such that the closed loop eigenvalues are in in-
tended positions given by a vector P. Also, xir is the reference variable for xi and the 
feedback of variable xi has been substituted by the error feedback ki(xir–xi). The closed 
loop system is written: 

 
  

dx
dt

= ( A− BK )x + Bkixir   (17) 

To add integral action for variable xi, one gets the controller to calculate a variable 
xn+1 equal to an integral of the error for some arbitrary t = 0: 

 
  
xn+1(t) = xir (τ )− xi (τ )( )dτ

0

t

∫   (18) 

One interprets (18) as making up together with (15) an augmented system with 
state xa = [x xn+1]T : 

 

   

dxa

dt
=

dx
dt

dxn+1

dt

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
=

!
dxi

dt
!

dxn+1

dt

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

!
A 0

!
" −1 " 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

!
xi

!
xn+1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+ B
0

⎡

⎣
⎢

⎤

⎦
⎥u +

!
0
!
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

xir

= Aaxa + Bau + Bar xir

 

 (19) 

For this augmented system, a gain vector Ka, with i-th entry kai, that places the 
closed loop eigenvalues at desired positions Pa can be calculated giving the closed 
loop system: 

 
 

dxa

dt
= Aa − Ba Ka( )xa + Bakai + Bar⎡⎣ ⎤⎦ xir   (20) 

It follows that integral action can be seamlessly integrated in a state space control-
ler for any number of variables and with any number of integrators for each variable. 
The appearing practical limitation to this will be the degradation in gain and phase 
margins implied by increasing the number of pure integrators in the control loop. 
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4 PID controllers as state space controllers with differential 
observation 

The above analysis allows one to interpret a PID controller as a state space controller 
with differential observation and integral action. Let one assume a second order plant 
where state variable x1 is the derivative of state variable x2 and only x2 is measured: 

 

  

dx1

dt
dx2

dt

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
a1,1 a1,2

1 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x1

x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

b1

0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
u

y = 0 1⎡⎣ ⎤⎦
x1

x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (21) 

Let one assume that one wants: 
i) A full state regulatory feedback for the above system with a servo signal for y to 

follow a reference yr. 
ii) Differential observation of x1. 
iii) Integral action on the error e = yr – y. 
The equations defining the state space controller will be: 

 

  

dxs1(t)
dt

+ω cxs1(t) =ω c

dx2(t)
dt

x3(t) = yr (τ )− y(τ )( )dτ
0

t

∫ = yr (τ )− x2(τ )( )dτ
0

t

∫
u(t) = −k1xs1(t)− k2x2(t)− k3x3(t)+ k2 yr (t)

= k2 yr (t)− y(t)( )− k3 yr (τ )− y(τ )( )dτ
0

t

∫ − k1xs1(t)

  (22) 

It may be recognized that one can summarily describe the above controller by the 
PI on error D on output rule 

 
  
u(t) = K pe(t)+ Ki e(τ )dτ

0

t

∫ + Kd

dy(t)
dt

  (23) 

where Kp = k2, Ki = –k3, Kd = –k1 and practical differentiation is abbreviated as ide-
al differentiation. 

Some remarks are in order. First, it is clear that PID control rules can only be inter-
preted as full state feedbacks for second or first order systems – in the latter, deriva-
tive action will not be used. Application of PID control rules to third or higher order 
systems is somehow a kind of “state-deficient” state feedback. Second, any of the 
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possible variations of PID control rules can be accommodated in this interpretation. 
For example, an also derivative on error PID can be obtained by adding to the com-
mand signal in (22) the result of practically differentiating the reference signal. This 
configuration may be useful for references that change as ramps, but for references 
that change as steps suffers from the setpoint derivative quick. 

Interpretation of state space controllers with differential observation as “stacks” of 
PID control rules is also possible. For an example, one may refer the many instances 
in the literature where an inverted pendulum on a cart is stabilized with “PID control”. 
Stabilization is obtained by differentiating the displacement signals, therefore obtain-
ing estimates of velocities, and computing the command variable as a value that rep-
resents a full state feedback. Integral action may as well be added.  

5 Conclusion and further research 

In this paper, one has presented practical differentiation as a scheme to observe or 
estimate state variables that are derivatives of measured variables in linear time invar-
iant state space controllers. It was shown that, although this scheme does not enjoy 
the separation property – intended regulatory closed loop eigenvalues are displaced by 
the observation eigenvalues –, the estimation error converges to zero if the resulting 
closed loop is strictly stable. 

One has also shown that understanding practical differentiation as a scheme to ob-
serve or estimate state variables allows one to interpret PID control rules as full state 
feedback controllers – with reference following and integral action – for first and 
second order systems. 

There are several aspects which one would like to investigate further. First, it will 
be in order to extend the approach to discrete time controllers. The fact that these are 
band limited to the Nyquist frequency makes one expect differences with respect to 
the continuous time version presented here. An interesting one is that, differently 
from the continuous time case, high-frequency behavior of discrete differentiation is 
unique. The above analysis is predicated on a constant high frequency response of 
practical differentiators and it will be more complicated if more than one pole is con-
sidered in the model of a practical differentiator. 

Second, the displacement of intended eigenvalues by the observation eigenvalues 
may be subject to scrutiny in order to quantify its effects in behavior as a function of 
the corner frequency value of practical differentiators. 

Of course, the practical application of differential observation must be assessed. As 
PID rules are ubiquitously applied, it follows that according to the interpretation de-
veloped in this paper, people do apply – maybe unwittingly – differential observation. 

With relation to full state and Luenberger observers, a differential observer pre-
sents the advantage of being model free – one does not to have a system model to get 
the needed estimates of variables. On the other hand, to design a full state feedback 
for intended closed loop regulatory eigenvalues one needs a system model – the ob-
servation scheme not withstanding. So, if a system model is necessary after all, why 
not to use a Luenberger observer, with better performance? It may be the case that 
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PID control rules allow for a simple and effective way to tune experimentally the 
majority of control loops without much theory and numeric calculations. 

As a last remark, one may presume, based on state variables basis change, that for 
second order systems the condition of one state variable being the derivative of the 
other may be lifted without loss of the possibility to get a stabilizing full state feed-
back. 
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