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a b s t r a c t 

In this paper, we investigate two variants of association rules for preference data, Label Ranking Asso- 

ciation Rules and Pairwise Association Rules. Label Ranking Association Rules (LRAR) are the equivalent 

of Class Association Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single class, to 

which the example is expected to belong to. In LRAR, the consequent is a ranking of the labels. The gen- 

eration of LRAR requires special support and confidence measures to assess the similarity of rankings. In 

this work, we carry out a sensitivity analysis of these similarity-based measures. We want to understand 

which datasets benefit more from such measures and which parameters have more influence in the ac- 

curacy of the model. Furthermore, we propose an alternative type of rules, the Pairwise Association Rules 

(PAR), which are defined as association rules with a set of pairwise preferences in the consequent. While 

PAR can be used both as descriptive and predictive models, they are essentially descriptive models. Ex- 

perimental results show the potential of both approaches. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Label ranking is a topic in the machine learning literature [1–

3] that studies the problem of learning a mapping from instances

to rankings over a finite number of predefined labels. One char-

acteristic that clearly distinguishes Label Ranking problems from

classification problems is the order relation between the labels.

While a classifier aims at finding the true class on a given unclassi-

fied example, the label ranker will focus on the relative preferences

between a set of labels/classes. These relations represent relevant

information from a decision support perspective, with possible ap-

plications in various fields such as elections, dominance of certain

species over the others, user preferences, etc. 

Due to its intuitive representation, Association Rules [4] have

become very popular in data mining and machine learning tasks

(e.g. mining rankings [5] , classification [6] or even Label Ranking
∗ Corresponding author at: INESC TEC, Porto, Portugal. 

E-mail addresses: claudio.r.sa@inesctec.pt , claudio84@gmail.com , 

c.f.pinho.rebelo.de.sa@liacs.leidenuniv.nl (C.R. de Sá), pja@di.uminho.pt 

(P. Azevedo), csoares@fe.up.pt (C. Soares), amjorge@fc.up.pt (A.M. Jorge), 

a.j.knobbe@liacs.leidenuniv.nl (A. Knobbe). 

d  

s  

s  

e  

t  

http://dx.doi.org/10.1016/j.inffus.2017.07.001 

1566-2535/© 2017 Elsevier B.V. All rights reserved. 
7,8] ). In [7] , association rules were adapted for the prediction of

ankings, which are referred to as Label Ranking Association Rules

LRAR). A different approach, Rule-Based Label Ranking (RBLR) [8] ,

dapts the Dominance-based Rough Set Approach (DRSA) [9] for

redicting rankings in the Label Ranking task. Both LRAR and RBLR

an be used for predictive or descriptive purposes. 

LRAR are relations, like typical association rules, between an an-

ecedent and a consequent ( A → C ), defined by interest measures.

he distinction lies in the fact that the consequent is a complete

anking. Because the degree of similarity between rankings can

ary, it leads to several interesting challenges. For instance, how to

reat rankings that are very similar but not exactly equal. To tackle

his problem, similarity-based interest measures were defined to

valuate LRAR. Such measures can be applied to existing rule gen-

ration methods [7] (e.g. APRIORI [4] ). 

One important issue for the use of LRAR is the threshold that

etermines what should and should not be considered sufficiently

imilar. Here we present the results of sensitivity analysis study to

how how LRAR behave in different scenarios, to understand the

ffect of this threshold better. Whether there is a rule of thumb or

his threshold is data-specific is the type of questions we investi-

http://dx.doi.org/10.1016/j.inffus.2017.07.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/inffus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2017.07.001&domain=pdf
mailto:claudio.r.sa@inesctec.pt
mailto:claudio84@gmail.com
mailto:c.f.pinho.rebelo.de.sa@liacs.leidenuniv.nl
mailto:pja@di.uminho.pt
mailto:csoares@fe.up.pt
mailto:amjorge@fc.up.pt
mailto:a.j.knobbe@liacs.leidenuniv.nl
http://dx.doi.org/10.1016/j.inffus.2017.07.001


C.R. de Sá et al. / Information Fusion 40 (2018) 112–125 113 

g  

t  

 

d  

p  

b  

r  

r  

d  

t  

4  

e  

d  

e  

o  

[  

p  

u

 

m  

d  

W  

w  

w  

fi

 

i  

w

 

s  

w  

c  

f  

[  

t

 

t  

l  

t  

h  

r

2

 

∅  

i  

T

i  

v  

s

2

 

[  

H  

A

S

s

C  

i

c

C  

o

c

W

L  

t

l

L  

l

2

 

g  

h  

p  

c  

t  

c

 

t  

t  

s  

t  

b  

v  

[  

i

 

t  

w  

a  

s  

w  

s  

t  

t

2

 

s  

a  

[  

r

 

o  

p  

i  

a  

A  

A  

f

I  

p  

o  

f  

s

ate here. Additionally we also want to understand which parame-

ers have more influence in the predictive accuracy of the method.

Another important issue is related to the large number of

istinct rankings. Despite the existence of many competitive ap-

roaches in Label Ranking, Decision trees [2,10] , k -Nearest Neigh-

or [2,11] or LRAR [7] , problems with a large number of distinct

ankings can be hard to model. One real-world example with a

elatively large number of rankings, is the sushi dataset [12] . This

ataset compares demographics of 50 0 0 Japanese citizens with

heir preferred sushi types. With only 10 labels, it has more than

900 distinct rankings. Even though it has been known in the pref-

rence learning community for a while, no results with high pre-

ictive accuracy have been published, to the best of our knowl-

dge. This might be due to noise in the data or simply because

f inconsistency in the ratings provided by the people interviewed

13] . Cases like this have motivated the appearance of new ap-

roaches, e.g. to mine ranking data [5] , where association rules are

sed to find patterns within rankings. 

We propose a method which combines the two approaches

entioned above [5,7] , to extract interesting information from

atasets even when the number of different rankings is very high.

e define Pairwise Association Rules (PAR) as association rules

ith one or more pairwise comparisons in the consequent. In this

ork, we present an approach to identify PAR and analyze the

ndings in two real world datasets. 

By decomposing rankings into the unitary preference relation

.e. pairwise comparisons , we can look for sub-ranking patterns,

hich are expected to be more frequent. 

LRAR and PAR can be regarded as a specialization of general as-

ociation rules that are obtained from data containing preferences,

hich we refer to as Preference Rules . These two approaches are

omplementary in the sense that they can give different insights

rom multi-target relations that can be found in preference data

14] . We use LRAR and PAR in this work as predictive and descrip-

ive models, respectively. 

The paper is organized as follows: Sections 2 and 3 introduce

he task of association rule mining and the Label Ranking prob-

em, respectively; Section 4 describes the Label Ranking Associa-

ion Rules and Section 5 the Pairwise Association Rules proposed

ere; Section 6 presents the experimental setup and discusses the

esults; finally, Section 7 concludes this paper. 

. Association rule mining 

An association rule (AR) is an implication: A → C where A 

⋂ 

C =
 and A, C ⊆ desc ( X ) , where desc ( X ) is the set of descriptors of

nstances in the instance space X , typically pairs 〈 attribute , value 〉 .
he training data is represented as D = {〈 x i 〉} , i = 1 , . . . , n, where x i 

s a vector containing the values x 
j 
i 
, j = 1 , . . . , m of m independent

ariables, A , describing instance i . We also denote desc ( x i ) as the

et of descriptors of instance x i . 

.1. Interest measures 

There are many interest measures to evaluate association rules

15] , but typically they are characterized by support and confidence .

ere, we summarize some of the most common, assuming a rule

 → C in D . 

upport. Percentage of the instances in D that contain A and C : 

up ( A → C ) = 

# { x i | A ∪ C ⊆ desc (x i ) , x i ∈ D } 
n 

onfidence. Percentage of instances that contain C from the set of

nstances that contain A : 

on f ( A → C ) = 

sup ( A → C ) 
sup ( A ) i
overage. Proportion of examples in D that contain the antecedent

f a rule: coverage [16] : 

overage ( A → C ) = sup ( A ) 

e say that a rule A → C covers an instance x , if A ⊆ desc ( x ). 

ift. Measures the independence of the consequent, C , relative to

he antecedent, A : 

i f t ( A → C ) = 

sup(A → C) 

sup(A ) · sup(C) 

ift values vary from 0 to + ∞ . If A is independent from C then

ift ( A → C ) ∼ 1. 

.2. Methods 

The original method for induction of AR is the APRIORI al-

orithm, proposed in 1994 [4] . APRIORI identifies all AR that

ave support and confidence higher than a given minimal sup-

ort threshold ( minsup ) and a minimal confidence threshold ( min-

onf ), respectively. Thus, the model generated is a set of AR, R , of

he form A → C , where A, C ⊆ desc ( X ) , and sup ( A → C ) ≥ minsup and

onf ( A → C ) ≥ minconf . For a more detailed description see [4] . 

Despite the usefulness and simplicity of APRIORI, it runs a

ime consuming candidate generation process and needs substan-

ial time and memory space, proportional to the number of pos-

ible combinations of the descriptors. Additionally it needs mul-

iple scans of the data and typically generates a very large num-

er of rules. Because of this, many alternative methods were pre-

iously proposed, such as hashing [17] , dynamic itemset counting

18] , parallel and distributed mining [19] and mining integrated

nto relational database systems [20] . 

A major breakthrough in itemset mining has been brought by

he algorithm FP-Growth (Frequent pattern growth method) [21] ,

hich starts by efficiently projecting the original data base into

 compact tree data structure (FP-tree). From the FP-tree, itemset

upport can be calculated without revisiting the original dataset,

hich also avoids the generation of candidate itemsets. With re-

pect to APRIORI there is an enormous reduction both on compu-

ational time and space necessary. FP-growth approach is also able

o efficiently find long itemsets. 

.3. Pruning 

AR algorithms typically generate a large number of rules (pos-

ibly tens of thousands), some of which represent only small vari-

tions from others. This is known as the rule explosion problem

22] which should be dealt with by pruning mechanisms. Many

ules must be discarded for computational and simplicity reasons. 

Pruning methods are usually employed to reduce the amount

f rules without reducing the quality of the model. For exam-

le, an AR algorithm might find rules for which the confidence

s only marginally improved by adding further conditions to their

ntecedent. Another example is when the consequent C of a rule

 → C has the same distribution independently of the antecedent

 . In these cases, we should not consider these rules as meaning-

ul. 

mprovement. A common pruning method is based on the im-

rovement that a refined rule yields in comparison to the original

ne [22] . The improvement of a rule is defined as the smallest dif-

erence between the confidence of a rule and the confidence of all

ub-rules sharing the same consequent: 

mp (A → C) = min (∀ A 

′ ⊂ A, con f (A → C) − con f (A 

′ → C)) 
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As an example, if one defines a minimum improvement

minImp = 1% , the rule A → C will be kept if con f (A → C) −
con f (A 

′ → C) ≥ 1% , for any A 

′ ⊂ A . 

If imp ( A → C ) > 0 we say that A → C is a productive rule. 

Significant rules. Another way to prune nonproductive rules is to

use statistical tests [23] . A rule is significant if the confidence

improvement over all its generalizations is statistically signifi-

cant. The rule A → C is significant if ∀ A 

′ → C, A 

′ ⊂ A the difference

conf ( A → C ) − conf 
(
A 

′ → C 
)

is statistically significant for a given

significance level ( α). 

3. Label ranking 

In Label Ranking, given an instance x from the instance space

X , the goal is to predict the ranking of the labels L = { λ1 , . . . , λk }
associated with x [24] . A ranking can be represented as a strict total

order over L , defined on the permutation space �. 

The Label Ranking task is similar to the classification task,

where instead of a class we want to predict a ranking of the la-

bels. As in classification, we do not assume the existence of a de-

terministic X → � mapping. Instead, every instance is associated

with a probability distribution over � [2] . This means that, for each

x ∈ X , there exists a probability distribution P(·| x ) such that, for

every π ∈ �, P(π | x ) is the probability that π is the ranking as-

sociated with x . The goal in Label Ranking is to learn the map-

ping X → �. The training data contains a set of instances D =
{〈 x i , πi 〉} , i = 1 , . . . , n, where x i is a vector containing the values

x 
j 
i 
, j = 1 , . . . , m of m independent variables, A , describing instance

i and π i is the corresponding target ranking. 

Rankings can be represented with total or partial orders and

vice-versa. 

Total orders. A strict total order over L is defined as a binary rela-

tion, �, on a set L [25] , which is: 

1. Irreflexive: λa �λa 

2. Transitive: λa �λb and λb �λc implies λa �λc 

3. Asymmetric: if λa �λb then λb �λa 
1 

4. Connected: For any λa , λb in L , either λa �λb or λb �λa 

A strict ranking [3] , a complete ranking [27] , or simply a rank-

ing can be represented by a strict total order over L . A strict to-

tal order can also be represented as a permutation π of the set

{ 1 , . . . , k } , such that π ( a ) is the position, or rank , of λa in π . For

example, the strict total order λ3 �λ1 �λ2 �λ4 can be represented as

π = ( 2 , 3 , 1 , 4 ) . 

However, in real-world ranking data, we do not always have

clear and unambiguous preferences, i.e. strict total orders [28] .

Hence, sometimes we have to deal with indifference [29] and in-

comparability [30] . For illustration purposes, let us consider the

scenario of elections, where a set of n voters vote on k candi-

dates. If a voter feels that two candidates have identical proposals,

then these can be expressed as indifferent so they are assigned the

same rank (i.e. a tie). 

To represent ties, we need a more relaxed setting, called non-

strict total orders , or simply total orders , over L , by replacing the

binary strict order relation, �, with the binary partial order rela-

tion, � where the following properties hold [25] : 

1. Reflexive: λa � λa 

2. Transitive: λa � λb and λb � λc implies λa � λc 

3. Antisymmetric: λa � λa and λb � λa implies λa = λb 
4. Connected: For any λa , λb in L , either λa � λb , λb � λa or λb = λa 

1 Asymmetry can be derived from 1. and 2. [26] . 

v  

L  

c

These non-strict total orders can represent partial rankings

rankings with ties) [3] . For example, the non-strict total order

1 � λ2 = λ3 � λ4 can be represented as π = ( 1 , 2 , 2 , 3 ) . 

Additionally, real-world data may lack preference data regard-

ng two or more labels, which is known as incomparability . Con-

inuing with the elections example, the lack of information about

ne or two of the candidates, λa and λb , leads to incomparability,

a ⊥ λb . In other words, the voter cannot decide whether the candi-

ates are equivalent or select one as the preferred, because he does

ot know the candidates. Incomparability should not be confused

ith intrinsic properties of the objects, as if we are comparing ap-

les and oranges. Instead, it is like trying to compare two different

ypes of apple without ever having tried at least one of them. In

his cases, we can use partial orders . 

artial orders. Similar to total orders , there are strict and non-strict

artial orders . Let us consider the non-strict partial orders (which

an also be referred to as partial orders ) where the binary relation,

 , over L is [25] : 

1. Reflexive: λa � λa 

2. Transitive: λa � λb and λb � λc implies λa � λc 

3. Antisymmetric: λa � λa and λb � λa implies λa = λb 

We can represent partial orders with subrankings [5] or incom-

lete rankings [31] . For example, the partial order λ1 �λ2 �λ4 can be

epresented as π = ( 1 , 2 , 0 , 3 ) , where 0 represents λ1 , λ2 , λ4 ⊥ λ3 . 

.1. Methods 

Several learning algorithms were proposed for modeling La-

el Ranking data in recent years. These can be grouped as

ecomposition-based or direct. Decomposition methods divide the

roblem into several simpler problems (e.g., multiple binary prob-

ems). An example is ranking by pairwise comparisons [1] and

ining rank data [5] . Direct methods treat the rankings as target

bjects without any decomposition. Examples of that include de-

ision trees [2,10] , k -nearest neighbors [2,11] and the linear utility

ransformation [32,33] . This second group of algorithms can be di-

ided into two approaches. The first one contains methods that are

ased on statistical distributions of rankings (e.g. [2] ), such as Mal-

ows [34] , or Plackett–Luce [31] . The other group of methods are

ased on measures of similarity or correlation between rankings

e.g [10,35] .). 

Label Ranking-specific pre-processing methods have also been

roposed, e.g. MDLP-R [36] and EDiRa [37] . Both are direct methods

nd based on measures of similarity. Considering that supervised

iscretization approaches usually provide better results than unsu-

ervised methods [38] , such methods can be of a great importance

n the field. In particular, for AR-like algorithms, such as the ones

roposed in this work, which are typically not suitable for numer-

cal data. 

Below, we briefly describe some of these Label Ranking ap-

roaches (including both direct and decomposition methods)

ith which we compare our method in the experimental part

 Section 6 ). 

.1.1. Rule-Based Label Ranking 

Rule-Based Label Ranking (RBLR) [8] is a rule-based approach

hat aims to deliver interpretable results in the form of logical

ules. It is essentially a decomposition method, where the rankings

re decomposed into pairwise comparisons ( λa , λb ) and considered

s a further attribute called relation attribute [8] . It uses an adapted

ersion of the Dominance-based Rough Set Approach (DRSA) for

abel Ranking data to transform the features into a gain and cost

riteria. 
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.1.2. Instance-Based Placket–Luce 

Instance-Based Placket-Luce (IB-PL) is a local prediction method

ased on the nearest neighbor estimation principle [39] . Given a

ew instance ˆ x it uses the { π1 , . . . , πβ} rankings of the β nearest

eighbors to predict the ranking ˆ π associated with ˆ x . The estima-

ion of ˆ π is made using the Plackett–Luce (PL) model. For the PL

odel, the probability to observe a ranking π is: 

 ( π | v ) = 

k ∏ 

i =1 

v π−1 ( i ) 

v π−1 ( i ) + v π−1 ( i +1 ) + . . . + v π−1 ( k ) 

here v = ( v 1 , . . . , v k ) is obtained with a Maximum Likelihood Es-

imation and can be seen as a vector indicating the skill, score or

opularity of each object [39] . The larger the parameter v i in com-

arison to the remaining parameters, the higher the probability of

i to be on a top rank. 

.1.3. Label ranking by learning pairwise preferences 

Ranking by pairwise comparisons basically consists of reducing

he problem of ranking into several classification problems. In the

earning phase, the original problem is formulated as a set of pair-

ise preferences problems. Each problem is concerned with one

air of labels of the ranking, 
(
λi , λ j 

)
∈ L , 1 ≤ i < j ≤ k . The target

ttribute is the relative order between them, λi �λj . Then, a sep-

rate model M i j is obtained for each pair of labels. Considering

 = { λ1 , . . . , λk } , there will be h = 

k ( k −1 ) 
2 classification problems to

odel. 

In the prediction phase, each model is applied to every pair of

abels to obtain a prediction of their relative order. The predictions

re then combined to derive rankings, which can be done in sev-

ral ways. The simplest is to order the labels, for each example,

onsidering the predictions of the models M i j as votes. This topic

as been well studied and documented [24,40] . 

More detailed information on Label Ranking methods can be

ound in [41] . 

.2. Evaluation 

Given an instance x i with real ranking π i and a ranking ˆ πi pre-

icted by a Label Ranking model, several loss functions on � can

e used to evaluate the accuracy of the prediction. One such func-

ion is the number of discordant label pairs: 

 

(
π, ˆ π

)
= # { (a, b) | π(a ) > π(b) ∧ ˆ π(a ) < ˆ π(b) } 

f there are no discordant label pairs, the distance D = 0 . Alterna-

ively, the function to define the number of concordant pairs is: 

 

(
π, ˆ π

)
= # { (a, b) | π(a ) > π(b) ∧ ˆ π(a ) > ˆ π(b) } 

endall Tau. Kendall’s τ coefficient [42] is the normalized differ-

nce between the number of concordant, C, and discordant pairs,

: 

(
π, ˆ π

)
= 

C − D 

1 
2 

k ( k − 1 ) 

here 1 
2 k ( k − 1 ) is the number of possible pairwise combina-

ions, 
(

k 
2 

)
. The values of this coefficient range from [ −1 , 1] , where

( π, π) = 1 (i.e. for equal rankings) and τ (π, π−1 ) = −1 , where
−1 denotes the inverse order of π (e.g. π = (1 , 2 , 3 , 4) and π−1 =

(4 , 3 , 2 , 1) ). Kendall’s τ can also be computed in the presence of

ies, using tau-b [43] . 

An alternative measure is the Spearman’s rank correlation coef-

cient [44] . 
amma coefficient. If we want to measure the correlation between

wo partial orders (subrankings), or between total and partial or-

ers, we can use the Gamma coefficient [45] : 

(
π, ˆ π

)
= 

C − D 

C + D 

hich is equivalent to Kendall’s τ coefficient for strict total orders,

ecause C + D = 

1 
2 k ( k − 1 ) . 

eighted rank correlation measures. When it is important to give

ore relevance to higher ranks, a weighted rank correlation coef-

cient can be used. They are typically adaptations of existing sim-

larity measures, such as ρw 

[46] , which is based on Spearman’s

oefficient. 

These correlation measures are not only used for evaluation es-

imation, they can be used in the learning [7] and pre-processing

37] methods. Since Kendall’s τ has been used for evaluation in

any recent Label Ranking studies [2,36] , we use it here as well. 

The accuracy of a label ranker can be estimated by averaging

he values of any of the measures explained here, over the rankings

redicted for a set of test examples. Given a dataset, D = {〈 x i , πi 〉} ,
 = 1 , . . . , n, the usual resampling strategies, such as holdout or

ross-validation, can be used to estimate the accuracy of a Label

anking algorithm. 

. Label ranking association rules 

Association rules were originally proposed for descriptive pur-

oses. However, they have been adapted for predictive tasks such

s classification (e.g., [6] ). Given that Label Ranking is a predictive

ask, the adaptation of AR for Label Ranking comes in a natural

ay. A Label Ranking Association Rule (LRAR) [7] is defined as: 

 → π

here A ⊆ desc ( X ) and π ∈ �. Let R π be the set of Label Ranking

ssociation rules generated from a given dataset. When an instance

 is covered by the rule A → π , the predicted ranking is π . A rule

 π : A → π, r π ∈ R π , covers an instance x , if A ⊆ desc ( x ). 

We can use the CAR framework [6] for LRAR, by transforming

ach ranking into a class. However this approach has two impor-

ant problems. First, the number of classes can be extremely large,

p to a maximum of k !, where k is the size of the set of labels, L .

his means that the amount of data required to learn a reasonable

apping X → � is unreasonably large. 

The second disadvantage is that this approach does not take

nto account the differences in nature between Label Rankings and

lasses. In classification, two examples either have the same class

r not. In this regard, Label Ranking is more similar to regression

han to classification. In regression, a large number of observations

ith a given target value, say 5.3, increases the probability of ob-

erving similar values, say 5.4 or 5.2, but not so much for very dif-

erent values, say −3.1 or 100.2. This property must be taken into

ccount in the induction of prediction models. A similar reasoning

an be made in Label Ranking. Let us consider the case of a data

et in which ranking πa = ( 1 , 2 , 3 , 4 ) occurs in 1% of the examples.

reating rankings as classes would mean that P (πa ) = 0 . 01 . Let us

urther consider that the rankings πb = ( 1 , 2 , 4 , 3 ) , πc = ( 1 , 3 , 2 , 4 )
nd πd = ( 2 , 1 , 3 , 4 ) , which are obtained from π a by swapping

 single pair of adjacent labels, occur in 50% of the examples.

aking into account the stochastic nature of these rankings [2] ,

 (πa ) = 0 . 01 seems to underestimate the probability of observing

a . In other words it is expected that the observation of πb , π c 

nd πd increases the probability of observing π a and vice-versa,

ecause they are similar to each other. 

This affects even rankings which are not observed in the avail-

ble data. For example, even though a ranking is not present in
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Table 1 

An example of a Label Ranking dataset. (TID = 

Transaction ID). 

TID A 1 π1 π2 π3 

(1, 3, 2) (2, 1, 3) (2, 3, 1) 

1 L 0.33 0.00 1.00 

2 L 0.00 1.00 0.00 

3 L 1.00 0.00 0.33 
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2 http://www4.di.uminho.pt/ ∼pja/class/caren.html (accessed 10.02.17). 
the dataset it would not be entirely unexpected to see it in future

data. This also means that it is possible to compute the probability

of unseen rankings. 

To take all this into account, similarity-based interestingness

measures were proposed to deal with rankings [7] . 

4.1. Interestingness measures in label ranking association rules 

As mentioned before, because the degree of similarity between

rankings can vary, similarity-based measures can be used to eval-

uate LRAR. These measures are able to distinguish rankings that

are very similar from rankings that are very distinct . In practice, the

measures described below can be applied to existing rule genera-

tion methods [7] (e.g. APRIORI [4] ). 

Support. The support of a ranking π should increase with the ob-

servation of similar rankings and that variation should be pro-

portional to the similarity. Given a measure of similarity between

rankings s ( π a , πb ), we can adapt the concept of support of the rule

A → π as follows: 

sup lr ( A → π) = 

∑ 

i : A ⊆desc ( x i ) 

s ( πi , π) 

n 

Essentially, what we are doing is assigning a weight to each tar-

get ranking π i in the training data where A ⊆ desc ( x i ). The weights

represent the contribution of π i to the probability that π may be

observed. Some instances x i ∈ X give a strong contribution to the

support count (i.e., 1), while others will give a weaker or even no

contribution at all. 

Any function that measures the similarity between two rank-

ings or permutations can be used, such as Kendall’s τ [42] or

Spearman’s ρ [44] . The function used here is of the form: 

s (πa , πb ) = 

{
s ′ (πa , πb ) if s ′ (πa , πb ) ≥ θ
0 otherwise 

(1)

where s ′ is a similarity function. This general form assumes that

below a given threshold, θ , is not useful to discriminate between

different rankings, as they are so different. This means that, the

support sup lr of A → π a will be based only on the items of the form

〈 A, πb 〉 , for all πb where s ′ ( π a , πb ) > θ ). 

Many functions can be used as s ′ . However, given that the loss

function we aim to minimize is known beforehand, it makes sense

to use it to measure the similarity between rankings. Therefore, we

use Kendall’s τ as s ′ . 
Concerning the threshold, given that anti-monotonicity can only

be guaranteed with non-negative values [47] , it implies that θ ≥ 0.

Therefore we think that θ = 0 is a reasonable default value, be-

cause it separates between the positive and negative correlation

between rankings. 

Table 1 shows an example of a Label Ranking dataset repre-

sented according to this approach. Instance {A 1 = L, π3 } (TID = 1)

contributes to the support count of the rule A 1 = L → π3 with

1, as expected. However, that same instance, will also give a

contribution of 0.33 to the support count of the rule A 1 = L →
π , given the similarity between their rankings. On the other
1 
and, no contribution to the support of the rule A 1 = L → π2 is

iven, because these rankings are clearly different. This means that

up lr ( A 1 = L → π3 ) = 

1+0 . 33 
3 . 

onfidence. The confidence of a rule A → π comes in a natural way

f we replace the classical measure of support with the similarity-

ased sup lr . 

on f lr ( A → π) = 

sup lr ( A → π) 

sup ( A ) 

mprovement. Improvement in association rule mining is defined

s the smallest difference between the confidence of a rule and

he confidence of all sub-rules sharing the same consequent

 Section 2.3 ). In Label Ranking, it is not suitable to compare targets

imply as equal or different, as explained earlier. Therefore, to im-

lement pruning based on improvement for Label Ranking, some

daptation is required as well. Given that the relation between tar-

et values is different from the classification setting, as discussed

arlier, we have to limit the comparison between rules with differ-

nt consequents, if s ′ ( π , π ′ ) ≥ θ . 

Improvement for LRARs is defined as: 

mp lr (A → π) = min ( con f lr (A → π) − con f lr (A 

′ → π ′ )) 

or ∀ A 

′ ⊂ A , and ∀ ( π , π ′ ) where s ′ ( π ′ , π ) ≥ θ . 

As an illustrative example, consider the two rules r 1 : A 1 → (1, 2,

, 4) and r 2 : A 2 → (1, 2, 4, 3), where A 2 is a superset of A 1 , A 1 ⊂ A 2 .

f s ′ ((1, 2, 3, 4), (1, 2, 4, 3)) ≥ θ then r 2 will only be kept if, and

nly if, con f (r 1 ) − con f (r 2 ) ≥ minImp . 

ift. This is a measure of the independence between the conse-

uent and the antecedent of the rule [48] . The adaptation of lift

or LRAR is straightforward since it only depends the concept of

upport, for which a version for LRAR already exists: 

i f t lr (A → π) = 

sup lr (A → π) 

sup(A ) · sup lr (π ) 

.2. Generation of LRAR 

Given the adaptations of the interestingness measures pro-

osed, the task of learning LRAR can be defined essentially in

he same way as the task of learning AR, i.e. to identify a set

f LRAR which have a support and a confidence higher than the

hresholds defined by the user. More formally, given a training

et D = {〈 x i , πi 〉} , i = 1 , . . . , n, the algorithm aims to create a set

f high accuracy rules R π = { r π : A → π} to cover a test set T =
〈 x j 〉} , j = 1 , . . . , s . If R π does not cover some x j ∈ T , a default rank-

ng ( Section 4.3.1 ) is assigned to it. 

.2.1. Implementation of LRAR in CAREN 

The association rule generator 2 we use is CAREN [49] . CAREN

mplements an association rule algorithm to derive rule-based pre-

iction models, like CAR and LRAR. For Label Ranking datasets,

AREN derives association rules where the consequent is a com-

lete ranking. 

CAREN is specialized in generating association rules for pre-

ictive models and employs a bitwise depth-first frequent pattern

ining algorithm. Rule pruning is performed using a Fisher exact

est [49] . Like CMAR [50] , CAREN is a rule-based algorithm rather

han itemset-based. This means that, frequent itemsets are derived

t the same time as rules are generated, whereas itemset-based

lgorithms carry out the two tasks in two separated steps. 

http://www4.di.uminho.pt/~pja/class/caren.html
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3 To derive the PAR, we added a pairwise decomposition method to the CAREN 

[49] software. 
Rule-based approaches allow for different pruning methods. For

xample, let us consider the rule A → λ, where λ is the most fre-

uent class in the examples covering A . If sup ( A → λ) < minsup then

here is no need to search for a superset of A, A 

∗, since any rule of

he form A 

∗ → λ, A ⊂ A 

∗ cannot have a support higher than minsup .

CAREN generates significant rules [23] . Statistical significance of

 rule is evaluated using a Fisher Exact Test by comparing its sup-

ort to the support of its direct generalizations. The direct gener-

lizations of a rule A → C are ∅ → C and ( A �{ a }) → C where a is a

ingle item. 

The final set of rules obtained define the Label Ranking predic-

ion model, which we can also refer to as the label ranker . 

CAREN also employs prediction for strict rankings using consen-

us ranking ( Section 4.3 ), best rule, among others. 

.3. Prediction 

A very straightforward method to generate predictions using a

abel ranker is used. The set of rules R π can be represented as an

rdered list of rules, by some user-defined measure of relevance: 

 r π1 
, r π2 

, . . . , r πs 
> 

s mentioned before, a rule r ∗π : A 

∗ → π ∗ covers (or matches) an

nstance x i ∈ T , if A 

∗ ⊆ desc ( x i ). If only one rule, r ∗π , matches x i , the

redicted ranking for x i is π
∗. However, in practice, it is quite com-

on to have more than one rule covering the same instance x i ,

 

∗
π

(
x j 

)
⊆ R π . In R 

∗
π

(
x j 

)
there can be rules with conflicting rank-

ng recommendations. There simple approaches to address those

onflicts, such as selecting the best rule, calculating the majority

anking, etc. 

However, it has been shown that a ranking obtained by order-

ng the average ranks of the labels across all rankings minimizes

he Spearman footrule distance to all those rankings [51] . In other

ords, it maximizes the similarity according to Spearman’s ρ [44] ,

nd, consequently [52] Kendall’s τ . This can be referred to as the

verage ranking [11] . 

Given any set of rankings { π i } ( i = 1 , . . . , s ) with k labels, we

ompute the average ranks as: 

( j ) = 

s ∑ 

i =1 

πi ( j ) 

s 
, j = 1 , . . . , k (2)

he average ranking π can be obtained if we rank the values of

( j ) , j = 1 , . . . , k . A weighted version of this method can be ob-

ained by using the confidence or support of the rules in R 

∗
π

(
x j 

)
as

eights. 

.3.1. Default rules 

As in classification, in some cases, the label ranker might not

nd any rule that covers a given instance x j , so R 

∗
π

(
x j 

)
= ∅ . To

void this, we need to define a default rule , r ∅ 

, which can be used

n such cases: 

 ∅ } → default ranking 

A default class is also often used in classification tasks [53] ,

hich is usually the majority class of the training set D . In a sim-

lar way, we could define the majority ranking as our default rank-

ng . However, some Label Ranking datasets have as many rankings

s instances, making the majority ranking not so representative. 

As mentioned before, the average ranking ( Eq. (2 )) of a set of

ankings, minimizes the distance to all rankings in that set [51] .

ence we can use the average ranking of the target rankings in the

raining data as the default ranking . 
.4. Parameter tuning 

Due to the intrinsic nature of each different dataset, or even of

he pre-processing methods used to prepare the data (e.g., the dis-

retization method), the minsup / minconf needed to obtain a rule

et R π , that covers all the examples, may vary significantly [54] .

he trivial solution would be, for example, to set mincon f = 0

hich would generate many rules, hence increasing the coverage.

owever, this rule would probably lead to a lot of uninteresting

ules as well, as the model would overfit the data. Then, our goal is

o obtain a rule set R π which gives maximal coverage while keep-

ng high confidence rules. 

Let us define M as the coverage of the model i.e. the coverage

f the set of rules R π . Algorithm 1 represents a simple, heuristic

lgorithm 1 Confidence tuning algorithm. 

Given minsup and step 

mincon f = 100% 

while M < minM do 

mincon f = mincon f − step 

Run CAREN with ( minsup , mincon f ) and determine M 

end while 

return mincon f 

ethod to determine the minconf that obtains the rule set such

hat a certain minimal coverage, minM , is guaranteed. 

This procedure has the important advantage that it does not

ake into account the accuracy of the rule sets generated, thus re-

ucing the risk of overfitting. 

. Pairwise association rules 

Association rules use a sets of descriptors to represent mean-

ngful subsets of the data [55] , hence providing an easy interpre-

ation of the patterns mined. Due to the intuitive representation,

ince its first application for market basket analysis [56] , they have

ecome very popular in data mining and machine learning tasks

Mining rankings [5] , classification [6] , Label Ranking [7] , etc). 

LRAR proved to be an effective predictive model [7] , however

hey are designed to find complete rankings. Despite its similar-

ty measures, which take into account ranking noise, they do not

apture subranking patterns because they will always try to infer

omplete rankings. On the other hand, association rules were used

o find patterns within rankings [5] , but without relating them to

he values of the independent variables. 

In this work, we propose a decomposition method to look for

eaningful associations between independent variables and pref-

rences (in the form of pairwise comparisons), the Pairwise Asso-

iation Rules (PAR), which can be regarded as predictive or descrip-

ive model. We define a PAR as: 

 → { λa � λb � λb � λa � λa = λb � λa ⊥ λb | λa , λb ∈ L} 
here, as in the original AR paper [4] , we allow rules with multi-

le items, not only in the antecedent but also in the consequent.

n other words, PAR can also have multiple sets of pairwise com-

arisons in the consequent. 

Similar to RPC ( Section 3.1.3 ), we decompose the target rankings

nto pairwise comparisons. Therefore, PAR can be obtained from

ata with strict, partial and incomplete rankings 3 . 

Contrary to LRAR, we use the same interestingness measures

hat are also used in typical AR approaches, instead of the

imilarity-based versions defined for Label Ranking problems, i.e.
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Table 2 

Summary of the datasets. 

Datasets #examples #labels #attributes U π

Bodyfat 252 7 7 94% 

Calhousing 20,640 4 4 0.1% 

Cpu-small 8,192 5 6 1% 

Elevators 16,599 9 9 1% 

Fried 40,769 5 9 0.3% 

Glass 214 6 9 14% 

Housing 506 6 6 22% 

Iris 150 3 4 3% 

Segment 2,310 7 18 6% 

Stock 950 5 5 5% 

Vehicle 846 4 18 2% 

Vowel 528 11 10 56% 

wine 178 3 13 3% 

Wisconsin 194 16 16 100% 

Algae 316 7 10 72% 

Sushi 5,0 0 0 10 10 98% 
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sup, conf , etc. This allows PAR to filter out non-frequent/interesting

patterns without the need to derive strict rankings. When meth-

ods cannot find interesting rules with enough pairwise compar-

isons to define a strict ranking, then it can abstain from making

some choices an, thus, obtain partial rankings, subrankings or even

with sets of disjoint pairwise comparisons. 

Abstention is used in machine learning to describe the option

to not make a prediction when the confidence in the output of

a model is insufficient. The simplest case is classification, where

the model can abstain itself to make a decision [57] . In the Label

Ranking task, a method that makes partial abstentions was pro-

posed in [30] . A similar reasoning is used here both for predictive

and descriptive models. Partial abstentions also make sense in PAR.

Hence, the decision to abstain on certain pairwise preferences is

defined by interest measures, such as minconf or lift . 

More formally, let us define D = {〈 x i , πi 〉} , i = 1 , . . . , n where π i

can be a complete ranking, partial ranking or a sub-ranking . For each

π of size k , we can extract up to h pairwise comparisons. We con-

sider 4 possible outcomes for each pairwise comparison: 

• λa � λb 

• λb � λa 

• λa = λb (indifference) 
• λa ⊥ λb (incomparability) 

As an example, a PAR can be of the form: 

A → λ1 � λ4 ∧ λ3 � λ1 ∧ λ1 ⊥ λ2 

The consequent can be simplified into λ3 �λ1 �λ4 or represented

as a subranking π = ( 2 , 0 , 1 , 3 ) . 

6. Experimental results 

In this section, we start by describing the datasets used in the

experiments, then we introduce the experimental setup and finally

present the results obtained. 

6.1. Datasets 

The Label Ranking datasets in this work ( Table 2 ) were taken

from the Data Repository of Paderborn University 4 . 

To illustrate domain-specific interpretations of the results, we

experiment with two additional datasets. We use Algae [58] , an

adapted dataset from the 1999 COIL Competition [59] , concerning
4 https://www- old.cs.uni- paderborn.de/fachgebiete/intelligente-systeme/ 

software/label- ranking- datasets.html (accessed 10.02.17). 

a

he frequencies of algae populations in different environments 5 .

he original dataset consisted of 340 examples, each representing

easurements of a sample of water from different European rivers

n different periods. The measurements include concentrations of

hemical substances like nitrogen (in the form of nitrates, nitrites

nd ammonia), oxygen and chlorine. Also the pH, season, river size

nd its flow velocity were registered. For each sample, the frequen-

ies of 7 types of algae were also measured. In this work, we con-

idered the algae concentrations as preference relations by order-

ng them from larger to smaller concentrations. Those with 0 fre-

uency are placed in last position and equal frequencies are repre-

ented with ties. Missing values in the independent variables were

et to 0. 

Finally, the Sushi preference dataset [12] , which is composed of

emographic data about 50 0 0 people and sushi preferences, is also

sed. Each person sorted a set of 10 different sushi types by pref-

rence. The 10 types of sushi, are a) shrimp, b) sea eel, c) tuna, d)

quid, e) sea urchin, f) salmon roe, g) egg h) fatty tuna, i) tuna roll

nd j) cucumber roll. Since the attribute names were not trans-

ormed in this dataset, it is particularly useful for the interpreta-

ion of the patterns extracted. 

Table 2 also presents a simple measure of the diversity of the

arget rankings, the Unique Ranking Proportion, U π . U π is the pro-

ortion of distinct target rankings for a given dataset. As a practical

xample, the iris dataset has 5 distinct rankings for 150 instances,

hich results in U π = 

5 
150 ≈ 3% . 

.2. Experimental setup 

Continuous variables were discretized with two distinct meth-

ds: (1) EDiRa [37] and (2) equal width bins. EDiRa is the state of

he art supervised discretization method in Label Ranking, while

qual width is a simple, general method that serves as baseline. 

The evaluation measure used in all experiments is Kendall’s τ
 Section 3.2 ). A ten-fold cross-validation was used to estimate the

alue for each experiment. The generation of LRAR and PAR was

erformed with CAREN [49] which uses a depth-first approach. 

The confidence tuning method described earlier ( Algorithm 1 )

as used to set parameters. We consider that 5% seems a reason-

ble step value because the minconf value can be found in, at most,

0 iterations. Given that a common value for the minsup in associ-

tion rule mining is 1%, we use it as default, except is stated oth-

rwise. We define the minM as 95%, to get a reasonable coverage,

nd minImp = 1% , to avoid rule explosion. 

In terms of similarity functions, we use a normalized Kendall τ
etween the interval [0, 1] as our similarity function s ′ ( Eq. (1) ). 

.3. Results with LRAR 

In the experiments described in this section, we analyze the

erformance of LRAR from different perspectives, namely accuracy,

umber of rules and average confidence , as the similarity threshold

varies. We expect to understand the impact of using similar-

ty measures in the generation of LRAR and provide some insights

bout its usage. 

LRAR, despite being based on similarity measures, are consis-

ent with the classical concepts underlying association rules. A spe-

ial case is when θ = 1 , where, as in CAR, only equal rankings are

onsidered. Therefore, by varying the threshold θ we also under-

tand how similarity-based interest measures (0 ≤ θ < 1) contribute

o the accuracy of the model, in comparison to frequency-based

pproaches ( θ = 1 ). 
5 https://data.mendeley.com/datasets/spwmg2z7cv/ (accessed 10.02.17). 

https://www-old.cs.uni-paderborn.de/fachgebiete/intelligente-systeme/software/label-ranking-datasets.html
https://data.mendeley.com/datasets/spwmg2z7cv/
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Fig. 1. Average accuracy (Kendall τ ) of CAREN as the value θ varies. (The shaded area represents the standard deviation). 
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We would also like to understand how some properties of the

ata relate the sensitivity to θ . We can extract two simple mea-

ures of ranking diversity from the datasets, the Unique Ranking

roportion ( U π ), described earlier, and the ranking entropy [37] . 

.3.1. Sensitivity analysis: accuracy 

In Fig. 1 , we can see the behavior of the accuracy of CAREN

arying the value of θ . It shows that, in general, there is a tendency

or the accuracy to decrease as θ gets closer to 1. This happens in

2 out of the 14 datasets analyzed. On the other hand, in 9 out of

4 datasets, the accuracy is rather stable in the range θ ∈ [0, 0.6]. 

If we take into consideration that the model ignores the simi-

arity between rankings for θ = 1 , the results indicate that, as ex-

ected, there is advantage in using the more flexible approach (i.e.

aking ranking similarity into account) compared to the strict clas-

ification approach (i.e. using CAR). Two extreme cases are fried

nd wisconsin , where CAREN was not able to find any LRAR for

= 1 6 . 
6 The default rule was not used in these experiments because it is not related 

o θ . 

6

 

h  
Let us consider the accuracy range , the maximum accuracy mi-

us the minimum accuracy. To find out which datasets are more

ikely to be affected by the choice of θ , we can compare their rank-

ng entropy with the measured accuracy range (In interest of space,

e do not include the specific values here but they can be eas-

ly estimated from Fig. 1 ). In Fig. 2 , we compare the accuracy range

ith the ranking entropy [37] . We can see that, the higher the en-

ropy, the more the accuracy can be affected by the choice of θ . 

Results seem to indicate that, when mining LRAR in datasets

ith low ranking entropy, the choice of θ is not so relevant. On

he other hand, as the entropy gets higher, reasonable values are

n the range 0 ≤ θ ≤ 0.6. 

Another interesting observation can be made regarding fried .

espite the fact that it has a very low proportion of unique rank-

ngs, U π ( fried ) = 0 . 3% ( Table 2 ) its entropy is quite high ( Fig. 2 ). For

his reason, it makes it more sensitive to θ , as seen in Fig. 1 . On the

ther hand, iris and wine , with very low entropy, seem unaffected

y θ . 

.3.2. Sensitivity analysis: number of rules 

Ideally, we would like to obtain a small number of rules with

igh accuracy. However, such a balance is not expected to happen
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Fig. 2. Accuracy range (Kendall τ ) of CAREN in comparison to ranking entropy. 
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frequently. Ultimately, as accuracy is the most important evalua-

tion criterion, if a reduction in the number of rules comes with a

high cost in accuracy, it is better to have more rules. Thus, it is

important to understand how the number of LRAR varies with the

similarity threshold θ , while taking the impact in the accuracy of

the model into account as well. 

In Fig. 3 , we see how many LRAR are generated per dataset as

θ varies. The majority of the plots, 10 out of 14, show a decrease

in the number of rules as θ gets closer to 1. As discussed before,

the accuracy in general also decreases as θ ≥ 0.6, so let us focus on

θ ∈ [0, 0.6]. 

In the interval θ ∈ [0, 0.6], the number of rules generated is

quite stable in 9 out of 14 datasets. In the first half of this interval,

θ ∈ [0, 0.3], it is even more remarkable for 13 datasets. 

We expect the number of rules to decrease as θ increases, how-

ever, results show that the number of rules does not decrease so

much, especially for values up to 0.3. This is due to the fact that θ
is also used in the pruning step ( Section 4.1 ), reducing the number

of rules against which the improvement of an extension is mea-

sured and, thus, increasing the probability of an extension not be-

ing kept in the model. This means that pruning is being effective

in the reduction of LRAR. As mentioned before, imp lr ( A → π) not

only compares rules A 

′ → π where A 

′ ⊂ A , but also rules A → π ′ 
where S ′ ( π ′ , π ) ≥ θ . In other words, with the minImp lr we are

pruning LRAR with similar rankings too. 

These results do not lead to any strong conclusions about the

ideal value for θ regarding the number of rules. However, they are

in line with the previous analysis of accuracy . 

6.3.3. Sensitivity analysis: minimum confidence 

As described earlier, we use a greedy algorithm to automatically

adjust the minimum confidence in order to reduce the number of

examples that are not covered by any rule. This means that differ-
nt values of minconf depend on both the dataset and the value of

, as seen in Fig. 4 . 

In general, the minconf decreases in a monotonic way as θ in-

reases. As θ ≈ 1 the minconf gets to its minimum on 13 out of 14

atasets, which is consistent with the accuracy plots ( Fig. 1 ). This

eans that, if we want to generate rules with as much confidence,

s measured by minconf , as possible, we should use the minimum

, i.e. θ = 0 . 

.3.4. Sensitivity analysis: support versus accuracy 

We vary the minimum support threshold, minsup , to test how

t affects the accuracy of our learner. A similar study has been car-

ied out on CBA [60] . Specifically, we vary the minsup from 0.1%

o 10%, using a step size of 0.1%. Due to the complexity of these

xperiments, we only considered the six smallest datasets. 

In general, as we increase minsup the accuracy decreases, which

s a strong indicator that the support should be small ( Fig. 5 ). All

ines are monotonically decreasing, i.e. either the values remain

onstant or they decrease as minsup increases. 

From a different perspective, the changes are generally very

mall for minsup ∈ [0.1%, 1.0%]. Considering that lower minsup gen-

rate potentially more rules, we recommend minsup = 1% as a rea-

onable value to start experiments with. 

iscretization techniques. To test the influence of the discretiza-

ion method used, we compared EDiRa with a non-supervised dis-

retization method, equal width . 

In general, the accuracy had the same behavior, as a function of

, as with EDiRa , i.e. the results are highly correlated ( Fig. 6 ). How-

ver, the supervised approach is consistently better. These results

dd further evidence that EDiRa is a suitable discretization method

or Label Ranking [37] . 

Similar behavior was observed concerning the number of rules

enerated and the minimum confidence, but are not presented

ere in interest of space. 
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Fig. 3. Number of Label Ranking Association Rules generated by CAREN as the value θ varies. (The shaded area represents the standard deviation). 
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Table 3 

Results obtained on Label Ranking datasets using 4 

different approaches (the mean accuracy is repre- 

sented in terms of Kendall’s tau, τ ). 

LRAR RBLR IB-PL RPC 

Bodyfat 0.136 – 0.230 –

Calhousing 0.285 – 0.326 –

Cpu-small 0.446 – 0.495 –

Elevators 0.645 – 0.721 –

Fried 0.743 – 0.894 –

Glass 0.806 0.882 0.841 0.882 

Housing 0.719 – 0.711 –

Iris 0.911 0.956 0.960 0.885 

Segment 0.898 – 0.950 –

Stock 0.865 – 0.922 –

Vehicle 0.822 0.812 0.859 0.854 

Vowel 0.654 0.776 0.851 0.647 

Wine 0.937 0.883 0.947 0.921 

Wisconsin 0.422 – 0.479 –

i  

o  

B

ummary. It is well known that general, simple rules to set pa-

ameters of machine learning algorithms do not exist. Neverthe-

ess it is good to know where reasonable values lie. Hence, we

hink that θ ∈ [0.5, 0.6] and minsup = 1% are good default values

or LRAR with CAREN. In terms of the discretization methods, our

esults confirm that a supervised approach, such as EDiRa , is a

ood choice. 

In Table 3 we compare the performance of LRAR with three

tate of the art approaches, RBLR, which is an alternative rule-

ased approach [8] , IB-PL, an instance-based approach for Label

anking [31] and Ranking by Pairwise Comparison [24] . We used

he parameter values recommended earlier: the data was dis-

retized with the EDiRa method, θ was set to 0.5 and minsup to

%. It is important to note that the results presented for the other

ethods are the published results, we did not implement the men-

ioned approaches. 

From Table 3 , we see that LRAR are clearly a competitive ap-

roach, since their accuracy is in line with the reported values of

ther approaches. We can conclude that LRAR are able to learn rel-

vant patterns from Label Ranking data. 

The lack of results for the RBLR and RPC on some datasets

ight be due to the size of the rankings in the training data. Both

ave a decomposition process that transforms the number of train-
ng examples into n ( k ( k − 1 ) / 2 ) examples, where n is the number

f examples in the original data set and k the number of labels.

ecause of that the training time can increase dramatically [8] . 
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Fig. 4. Mininum confidence as the value θ varies. (The shaded area represents the standard deviation). 
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6.4. Results with PAR 

In this work, we use PAR as a descriptive model, to find pat-

terns concerning subsets of labels. We focus in a descriptive task

for two reasons. One is to make the approach simpler and the

other is to complement the predictive LRAR approach. 

The minimum support and confidence presented here define

the abstention level of the model. Minsup and minconf were ad-

justed manually to generate a small enough set of rules to allow

manual inspection (between 150 and 200). Additionally, we set

the minimum lift to 1.5. Despite that many interesting rules were

found, due to space limitations we only present the most relevant.

Algae data. Using the Algae dataset, we found 179 PARs with

minsup = 2 and mincon f = 90 . With sup = 2 . 2% and con f = 100% ,

the rule with the highest lift (approx. 6) was: 

Riversize = small ∧ pH ≥ 37 . 9 ∧ Flowvelocity = high ∧ 

Chloride ≥ 3 . 4 ∧ Nitrates & Ammonia ≥ 18 . 5 

→ L 6 � L 2 ∧ L 5 � L 7 ∧ L 2 � L 7 
he consequent of this rule can be represented as

 6 �L 2 �L 7 ∧ L 5 �L 7. Considering that the labels represent algae

opulations, this rule states that it is always true that, under these

onditions, type 6 is more prevalent than type 2. It also states that

ype 7 is less prevalent than types 2, 5 and 6. 

The rule with the second highest lift obtained, with sup = 3 . 1%

nd con f = 91% , is: 

lowvelocity = medium ∧ Nitrates & Ammonia < 18 . 5 ∧ 

itrogenasnitrates < 7 . 9 

→ L 1 � L 7 ∧ L 7 � L 3 

he target of this rule is the partial ranking L 1 �L 7 �L 3. If this

AR was used for prediction, the subranking π = ( 1 , 0 , 3 , 0 , 0 , 0 , 2 )
ould have been the prediction. 

ushi data. When analyzing the sushi dataset we got 166 rules

ith mincon f = 70% and minsup = 1% . The following rule was

ound, with a lift of 1.95: 

geinterval = 15 − 19 ∧ Sex = Male ∧ Livedin = Eastern Japan 

→ egg � seaurchin ∧ shrimp � seaurchin 
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Fig. 5. Average accuracy (Kendall τ ) of CAREN as the value minsup varies. 

Fig. 6. Ranking accuracy (Kendall τ ) of CAREN after the discretization of data using equal width and EDiRa . This plot aggregates all the experiments carried out for each 

dataset, which means that each dataset is represented multiple times, with different parameter settings. 
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In the whole dataset, 37% of the people show this rela-

tive preferences egg � seaurchin ∧ shrimp � seaurchin . This PAR

shows that this number almost doubles (72%), if we consider males

from Eastern Japan, aged between 15 − 19 . 

A related rule was also found concerning a different set of peo-

ple, from a different age group and region ( sup = 1 . 1% , con f =
71 . 6% and li f t = 1 . 65 ): 

Ageinterval = 30 − 39 ∧ Sex = Male ∧ 

Livesin = W estern Japan ∧ Changedcity = Yes 

→ seaurchin � egg ∧ 

fattytuna � tunaroll ∧ 

tunaroll � cucumberroll ∧ 

fattytuna � egg 

This rule includes one relative preference found in this group,

seaurchin � egg , which is the opposite to what was observed in

the previous rule. Based on this information, we analyzed the data

and found out that 75% of people that live in Eastern Japan prefer

egg to seaurchin while 84% of people from Western Japan prefer

seaurchin to egg . 

7. Conclusions 

In this paper, we address the problem of finding association

patterns in Label Rankings. We present an extensive empirical

analysis on the behavior of a Label Ranking method, the CAREN

implementation of Label Ranking Association Rules. The perfor-

mance was analyzed from different perspectives, accuracy, number

of rules and average confidence . The results show that, similarity-

based interest measures contribute positively to the accuracy of

the model, in comparison to frequency-based approaches, i.e. when

θ = 1 . 

The results confirm that LRAR are a viable Label Ranking tool

which helps solving complex Label Ranking problems (i.e. prob-

lems with high ranking entropy). In comparison to other ap-

proaches, such as RPC, RBLR and IB-PL, LRAR have the advantage to

deliver interpretable results (in the form of association rules) and

at the same time, without the need to decompose rankings, which

saves computational time. The results also enabled the identifica-

tion of some values for the parameters of the algorithm that can

be used as default values. 

Results also seem to indicate that, the higher the entropy, the

more the accuracy can be affected by the choice of θ . The ranking

entropy of a dataset can be measured beforehand and the value of

θ adjusted accordingly. 

Additionally, we propose Pairwise Association Rules (PAR),

which are association rules where the consequent represents mul-

tiple pairwise preferences. With PAR it is possible to obtain rules

with complete, partial and incomplete rankings on the consequent.

We illustrated the usefulness of this approach to identify interest-

ing patterns in Label Ranking datasets, which cannot be obtained

with LRAR. 

As future work, we will use PAR for predictive tasks. 
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