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Abstract
In this paper, we’ll discuss a simple approach to integrating musical events, such as notes or chords,
into a programming language. This means treating music sequences as a first class citizen. It will be
possible to save those sequences into variables or play them right away, pass them into functions
or apply operators on them (like transposing or repeating the sequence). Furthermore, instead of
just allowing static sequences to be generated, we’ll integrate a music keyboard system that easily
allows the user to bind keys (or other kinds of events) to expressions. Finally, it is important to
provide the user with multiple and extensible ways of outputing their music, such as synthesizing it
into a file or directly into the speakers, or writing a MIDI or music sheet file. We’ll structure this
paper first with an analysis of the problem and its particular requirements. Then we will discuss
the solution we developed to meet those requirements. Finally we’ll analyze the result and discuss
possible alternative routes we could’ve taken.
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1 Introduction

Musikla stands for Music and Keyboard Language. Our goal is to develop a DSL (Domain
Specific Language) that allows treating musical events with the same importance as other basic
types, like integers and booleans, are treated in most programming languages. More than
generating these musical events offline, we want to be able to easily declare keyboards that
map keys to expressions that either mutate the state or play musical events (or even both).

The project can be partitioned in three different, modular layers: inputs, the language,
and outputs. While music events can be described as code literals inside our language, they
can also originate from many other sources (such as files or physical devices such as pianos).
After being processed by our language, they are then emitted as a stream of musical events
to the Player component, which then multiplexes those events into however many outputs
the user defined.

While the development of both the input and output layers, as well as their many
respective components, presents by itself many interesting challenges that could be discussed,
we will instead focus this paper on the aspects of the middle layer: the interpreter, while
ackowledging the existence (and their effects) of the layers that wrap around it.

As such, the problem of developing the interpreter can be divided into two parts: the
syntax used for describing the notes and the operators that compose them inside the
language; and the semantics of the generated events, how they are stored in memory, and
how their temporal properties (start time and duration) are handled without forcing the
programmer/user to always manually type them.
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6:2 Musikla: Language for Generating Musical Events

Figure 1 The three main layers of the project.

Designing the syntax for describing those musical expressions, especially given our strong
desire to make those musical expressions first class citizens like other primitive data types in
most programming languages (such as numbers, strings or arrays are), did unearth some
challenges. To minimize the learning curve for new users, and avoid reinventing the wheel,
we decided to adopt a subset of the very popular note declaration syntax from the ABC
Notation project[3, 5] and integrate it with our language.

As for the execution model, we decided to go with a tree-walker interpreter[8]. Altough
computationally slower than other alternatives (such as a bytecode virtual machine), the ease
of implementation allowed us to prototype and develop features extremely fast. And with a
more mature and stable language in the future, there is always the potential to rewrite the
interpreter if performance or latency ever reveal themselves as potential problems.

The simplest way of generating such musical events in a programming language is to use
already common, low-level, programming mechanisms, such as using a procedural approach
where the user creates each event manually by calling a function and providing as parameters
all the events’ information, such as it’s timestamp and duration. This is the approach used by
some of the existing languages in this space, such as SonicPi[2], and it’s usage can somewhat
resemble the code in listing 1.

Listing 1 Example of a hypothetical imperative API for creating events.
play_note ( 0, 100, ’A’ );
play_note ( 100, 50, ’B’ );
play_note ( 150, 200, ’C’ );

Instead we decided to follow a more functional approach, with custom syntax and
operators, as well as the hability to describe those events in a single expression. Musical
events are treated as sequences, and as such can be stored in variables, passed around inside
functions and trasformed. So, for musical events, we will be exploring a way to define them
in code, as musical literals, such as what can be seen in listing 2.

Listing 2 Our proposed declarative syntax that calculates timings implicitly.
play( A B/2 C2 );

In the listing 2 we can see we have discarded the explicit timings in milliseconds that
were being used in the listing 1, and instead adopted an approach more in line with music
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notation, where notes’ durations are written as breve or double whole note (2), semibreve or
whole note (1, the default), minim or half note (1/2, with the number 1 being optional in
fractions). The actual duration of the notes in milliseconds is then calculated behind the
scenes and can be adjusted automatically by changing the tempo (which we will cover later).
Note that from this point forward, all code listings present in this paper will contain code
written using our own DSL.

2 Initial Problem and Desired Goals

Our overarching goal is to have a dynamic programming language that allows to input and
manipulate musical arrangements of varying complexity. We want our language to be as
flexible as possible, with features like variables, functions, conditionals and loops. More
imporantly, we want to provide a standard, out-of-the-box way for the user to declare is
musical keyboards that is tighly coupled with the language (with the keyboards actions being
expressions or even statements in our language).

There are two important requirements we need to consider when evaluating possible solu-
tions to this problem: the ability to produce music interactively, and to produce music lazily.

Having interactivity adds the requirement that musical events (like playing a note)
have to be produced in an ordered fashion, so that we can play them in realtime.

And with the events being produced in an ordered fashion also opens up the possibiliy of
baking laziness into the language, so that we can generate only the music that is needed.
This is especially nice when we have a keyboard that can, for example, start playing a
tecnically-infinite musical sequence that is being calculated on demand, and that the user
can stop at any time he wants.

But like we’ve mentioned before, this requires events to be generated in order: if the first
event to be played could be the last to be generated, we could not implement laziness. We
would always have to generate the full musical expression before we knew what to play first.
Therefore having a total order for our events is a key feature.

B Claim 1 (Total Order). To allow potentially infinite sequences to be played in realtime,
music events must always be generated in the correct order: otherwise the sequence would
have to be generated fully before we could be sure of what event was actually next in line
to play.

Goals

We can then summarize our main goals for this language as follows:
Declarative. Music sequences are described in a declarative (rather than imperative)
fashion.
Dynamic. Introduce programming or mathematical concepts, like functions and variables,
to the music world.
Interactive. Make it possible to create interactive keyboards out-of-the-box that integrate
with all features provided by the language.
Lazyness. Make lazyness for musical sequences the default, generating only events as
they are need.
Rich events. Music sequences can describe complex musical arrangements, containing
simple notes, rest, chords, voices, and more.
Multiple Inputs. Besides allowing musical arrangements to be declared inside our lan-
guage, also allow for them to be imported and converted from multiple sources, like MIDI
files and devices.
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Multiple Outputs. Store or write to multiple different outputs the music events generated
inside our language.

Extensibility. Make it easy to extend and customize the project, without needing to fork
or recompile or hack it’s internals.

3 Related Work

There are a number of both domain specific languages that provide facilities to generate
music through programming, as well as libraries that try to align existing general-purpose
programming languages to the same goal. When keeping in mind the goals defined in the
section above, those existing approaches can be categorized in a handful of groups that share
similar characteristics. None however, covers all the needs we had in mind.

In terms of music notation, there are markup languages such as alda and abc notation [3]
(from which we take a lot of inspiration) that are static textual representations of musical
notation. While they are easy to use, they do not possess any dynamic capabilities (no
variables, no control structures such as conditionals or loops, no functions). It is possible to
envision using a regular programming language to function as a sort of macro language, to
allow some dynamism. But still, beyond being a slightly cumbersome approach that requires
duct taping unrelated tecnologies together, we would most likely be working with string
operations to generate the final output, and wouldn’t be able to easily treat each note and
chords as individual entities.

Other languages, such as Faust [9], Chuck [12] and SuperCollider [7] do provide
programming mechanisms, but they work as audio processing languages, not specifically
musical languages. And while the capabilities of the former are always good to have, they
are too low level and require significant knowledge and time to implement the later on top of
them.

SoniPi [1] is the one that most likely provides the functionality we are looking for, mixing
programming mechanisms with the concepts of notes and chords. But still falls short on the
usability side, employing a procedural style of programming (play this note now, advance
time, play this note now, and so on) rather than a declarative style (play this complex musical
expression).

On top of all that, neither of the solutions above handle very well extensibility in terms
of implementing new output formats. And most importantly, none provides functionality to
declare interactive keyboards to allow playing fragments of music defined in their respective
languages, nor to change the state in realtime of the music being played.

4 Specification

We won’t exhaustively cover all the details of our language in this paper, and will instead
focus on the ones that deviate from the conventional semantics of a programming language.
However, a more practical guide (but still a work in progress) documenting how to use our
language is available online 1.

1 https://pedromsilvapt.github.io/miei-dissertation/

https://pedromsilvapt.github.io/miei-dissertation/
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Core Types

The basic premise is that our syntax has special constructs designed to facilitate the generation
of the Music data type. Music is simply a sequence (or stream) of ordered musical events.
However, it is also treated differently by many constructs in our language (which we will
explore in more detail later in this paper). Just as a quick example, any statement in our
language whose return value is of the type Music and is not captured (into a variable or
passed as an argument to a funcion) is played immediately. Instead of having to call a play
function when we want to play something (which in our language will be most cases), that
function call is implicit. And when we don’t want to play, we can use the discard function
provided by the language, on the music we don’t want.

A musical Event can be one of many things, such as a note, a chord, or even more
implementation-specific events like MIDI messages[6]. While all events must have a start
time, some events can be instantaneous (events with a duration of zero time units). Our
goal is to have the language be extensible. And so even though we have core events (such as
notes and chords) that most functions and operators are aware of, it is also possible for the
user (or custom libraries) to create their own custom event types. With that in mind, all
code that handles events should try to be as permissive as possible, interacting with events
it knows and understands, and simply passing along any events it doesn’t know, untouched.

The time unit used in the events timestamp and duration fields could be anything so long
as it has a total order. We chose to represent it using milliseconds.

Syntax

While our goal is not to delve into every little detail of the language (because most are
just similar to all popular programing languages), and we’d rather focus on how the tight
integration of the Music data type into the language changes some aspects of it. Still, for
the sake of making it easier to understand this paper, we will briefly discuss the syntactic
features provided by the language.

Here is a non-exhaustive list of accepted expressions:

Table 1 List of valid expressions in Musikla.

EXPRESSIONS SYNTAX

Variables $var

Function Calls function_name( expr, named_arg = expr )

Function Declaration

$name = fun() {}

fun name($arg, ref $ref_arg, optional = expr) {}

fun name() => expr

fun name() {}

Modules import "file.mkl"

Arithmetic Operators a + b; a * b; a - b; a / b

Literals 1, true, none, "string"

A function declaration is an expression (allowing higher order functions). Function
names are optional. Giving a name to a function is equivalent to assigning an anonymous
function to a variable with that same name.
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Table 2 List of valid statements in Musikla.

STATEMENTS SYNTAX

Attribution $var = expr

Code Blocks { stmt; stmt; stmt }

Conditionals if (expr) {stmt} else {stmt}

Loops
for ($var in expr) {stmt}

while (expr) {stmt}

Returns return expr

Statements must always end with semicolons, even loops and conditionals, with the
exception of the last semicolon in a list of statements, which is optional.

Table 3 List and Object operations in Musikla.

LISTS SYNTAX

Declaration @[ "list" ]

Indexed $var::[ $index ]

OBJECTS

Declaration @{ "object": 1 }

Attributes $obj::property

Methods $obj::method()

To avoid ambiguities between chords, lists (square brackets), code blocks, objects (brack-
ets), both list and object literals are prefixed with the @ symbol.

Also, we use two colons as separators to access lists and objects’ properties and methods,
because the period is used in the musical notation for indicating dotted notes, and as such
could be confusing and ambiguous sometimes.

Table 4 Keyboard declaration and body syntax.

KEYBOARDS SYNTAX
Keyboard Declarations @keyboard { }

Keyboard with Modifiers @keyboard hold extend { }

KEYBOARD BODY
Expression action key: expr

Action Block key: { stmt; stmt }

KEYS2

Single Keys a, b, 1, 2, ".", up, f12, ctrl a, ctrl shift f

Composite Keys ctrl a, ctrl shift left

MIDI Keys [c] [D,] [a’’]

2 Examples of the types of keys accepted. Rules for the key syntax are described below the table.
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A keyboard can have modifiers (such as hold to start/stop the music when the key is
pressed/released; toggle to start/stop the music when the key is pressed; extend to override
the duration of the notes to last as long as the key is active;).

Keys can be any alphanumeric character, or any character wrapped in quotes. We can
also create key combinations with the modifiers ctrl, shift and alt. Notes can be used as
keys (to program MIDI keyboards connected to the computer) by wrapping them in square
brackets. Each key can have an expression associated, or a code block with a list of arbitrary
statements.

Table 5 Music literal expressions.

MUSIC SYNTAX

Notes C, C c c’ A2/3 _A ^A

Chords [CFG] [Cm]/2

Rests r r1/2

Modifiers S4/4 T60 L/2 V70 O2 I2

Parallel C E | F A

A note’s octave is expressed by the case of the note (uppercase and commas mean lower
pitch, lowercase and single quotes mean higher pitch). They can be prefixed by an optional
accidental (underscore for flats, caret for sharps). They can be suffixed by an optional note
length (either an integer or a fraction). Chords can list each of their notes, or just the root
note and a suffix (CM for C major and Cm for C minor, for example).

Operators

Operators are special operations defined at the syntactic level that allowmusic to be composed
in different ways, such as concatenated, parallelized or repeated. Many of these operators can
have equivalent functions available through the language that provide more costumization
(such as a parallel function that stops when the smallest operand stops, instead of the
longest).

Concatenation Music1 Music2 ... MusicN
type List[Music] -> Music

Parallel Music1 | Music2 | ... | MusicN
type List[Music] -> Music

Repetition Music * Integer
type Music, Integer -> Music

Arpegio Chord * Music
type Chord, Music -> Music

Retime Music ** MusicOrLength
type Music, Union[Music, Float] -> Music
Stretches (or shrinks) proportionally the length of the first music expression to be the
same as the length of the second.

Transpose Music + Integer and Music - Integer
type Music, Integer -> Music

It is also useful to estabilish that while most operators work on sequences of musical
events, they can also accept a singular event as their argument: one event can be trivially
converted into a sequence of one element. Such ocorrence is so common and trivial that the
conversion should therefore be implicit whenever necessary.

SLATE 2020
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Grids

Another type available in our language are grids. Also known in most music applications
as the process of quantization [11]. The reason it is so useful in our language is that when
receiving input as musical events from a live keyboard, their timings are naturally more
prone to having small discrepancies that can become more apparent when we then mix them
with generated musical events (which have precise timings).

Having events always aligned with such a grid can also make computations and trans-
formations of such events easier and simpler, which is always a plus for our language.

Create a grid Grid(size)
type Fraction -> Grid

Aligning grid::align(music)
type Grid, Music -> Music

Compose Grids Grid::compose(grid1, grid2, ..., gridN)
type List[Grid] -> Grid

We can see that apart from the basic operations of creating a grid and aligning events to
said grid, we also want the ability to compose multiple grids (of different precisions). We
will approach this matter in more detail later.

Keyboards

A core part of the language is our hability to declare keyboards, which we can describe as
mappings between Keys and Musical Expressions. Each expression can mutate the state
(changing variables or calling functions), return some music (sequence of musical events) to
be played, or both.

We’ve seen in the syntax section how to create these keyboards in our language. Behind
the scenes, that syntax is merely a convenience that is translated into regular method calls
(like registering a key). We can see some of the available methods for the keyboard object here.

Create a keyboard keyboards\create()
type () -> Keyboard

Binding a Key keyboard::register(key, expression)
type Keyboard, Key, Expression -> Keyboard

Mapping a keyboard keyboard::map(transformer)
type Keyboard, ( Music -> Music ) -> Keyboard

Aligning with a Grid keyboard::with_grid(grid)
type Keyboard, Grid -> Keyboard

5 Implementation

The reference implementation for this system is written in Python, although the approach
here should be language agnostic.

One of the features that Python boasts (but are certainly not exclusive to it) that have
eased our implementation of the language are generators[10]. They integrate very nicely into
both our concept of emitting musical events as sequences (or iterators, as they are called
in Python and other languages), as well as into our concept of laziness, where events are
generated on demand when needed, and thus infinite musical sequences can be handled easily.
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Context State

To keep track of the cursor (the current timestamp where the next event should start) each
operator in our language is implemented as a function call that receives an implicit Context
object. While here we’ll mostly focus just on the methods related to time management
provided by the context, it can be used to store other types of information, like the default
length of a musical note, for instance, to avoid forcing the user to type it out all the time, or
the tempo at which it is to be played.

It is important to keep in mind that there might be more than one context in execution
at the same time. This can be most obvious with the use of the parallel operator, where
each operand must run concurrently (and thus could not share the same context).

Let’s describe what kinds of functionality our context should provide.

cursor(ctx) Return the current cursor position
seek(ctx, time) Advance the cursor to the given position
fork(ctx) Clone the parent context and return the new one. Allows multiple concurrent

contexts to be used
join(parent, child) If the child’s cursor is ahead, make the parent context catch up

5.1 Operators
Basic Events

The basic building block of our system are the Note, Chord and Rest events. We can
use the current context to determine the event’s timestamp, as well as it’s default duration
(in case the user does not explicitly state one). Any event(s) that is/are not captured in a
variable or passed to a function are implicitly played. We can look at a very simple example
of declaring a note event, two octaves up from middle C, and the length of a quarter note, in
the Listing 3. The note syntax follows very closely the same approach as the abc notation
project, so there is no much use in discussing it in detail.

Listing 3 Creating a Note Event
c ’1/4

Voice Modifiers

In the following sub-sections we will cover how to declare many combinations of notes and
chords. Each of those musical events needs a lot of information to be able to describe them
thoroughly, and doing that for every event would be cumbersome. To solve that problem we
choose to provide sensible defaults for those values, and allow the user to specify modifiers
to customize those values when needed for a specific group of events.

There are multiple modifiers, and they can be used anywhere in a musical expression.
Each modifier is identified by a single letter, followed by the value carried by the modifier.
Those values can either be an integer, or a fraction. Modifiers are case insensitive. Some of
the modifiers available are described below:

Time Signature. Identified by the letter S followed by a fraction. For example, the expression
S4/4 sets the time signature to common time, and S3/4 set’s it to three-four time.

Tempo. Identified by the letter T followed by an integer. For example T60 sets the tempo
(beats per minute) to 60.

SLATE 2020
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Velocity. Identified by the letter V followed by an integer between 0 and 127, sets the
velocity (roughly equivalent to volume) of the notes. For example, V70 sets the velocity
to 70.

Length. Identified by the letter L, followed by an integer or fraction, sets the base length of
each note to it’s value. If a note has a custom length, their values are multiplied. For
instance, the expression L2 C/4 would create a note with the actual length of 2 × 1

4 = 1
2 .

A modifier can be declared inside inside parenthesis, and so will only affect events emitted
inside those parenthesis as well. For instance (L2 C) C is functionally equivalent to C2 C.

Concatenation

We’ve seen how single events’ declarations are handled and how we can customize the settings
that affect those declarations. Now it is important for us to see how we can combine those
events together. And probably the most straightforward operator of all, concatenation, it
simply consumes each event. Each event, as we’ve seen before, is responsible for seeking the
context depending on the event’s duration. In the Listing 4 we show how to concatenate
some notes, as well as some modifiers, to recreate a portion of a song, whose generated
music sheet can be viewed in figure 2. Note that the semicolon is only needed to separate
statements. An expression is always a valid statement. In this case, it serves simply to better
separate the configuration and the actual notes. They could however be written in a single
line with no semicolons and have the same meaning.

Listing 4 Snippet of the song Wet Hands by C418
S4/4 T74 L/8 V90;
A, E A B ^c B A E D ^F ^c e ^c A3;

Figure 2 Generated music sheet for concatenation3, audio version available here4.

Repetition

The repetition operand is in a way very similar to the concatenation operator. It makes sense,
since repeating any kind of music pattern N times could be thought as a particular case of
as concatenation where there are N operands, all representing the same musical pattern.

Listing 5 Intro to Westworld’s Theme by Ramin Djawadi.
I1 S6/8 T140 L/8 V90;
A*11 G F*12

3 Rendered with $ABC_UI. Some hand made changes made for clarity.
4 https://drive.google.com/open?id=1TP4lcul81s8iMCUFmD3HKnSpeftCzKT0
5 https://drive.google.com/open?id=1IIm8PQkLsNFMK9MNSVubJSG6SP6KwhPL

https://drive.google.com/open?id=1TP4lcul81s8iMCUFmD3HKnSpeftCzKT0
https://drive.google.com/open?id=1TP4lcul81s8iMCUFmD3HKnSpeftCzKT0
https://drive.google.com/open?id=1IIm8PQkLsNFMK9MNSVubJSG6SP6KwhPL
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Figure 3 Generated music sheet for repetition, audio version available here5.

Parallel

The parallel operator enables playing multiple sequences of musical events simultaneously.
However our events are emitted as a single sequence of ordered events, thus requiring merging
the multiple sequences into a single one, while maintaining the properties of laziness and
order. The operator assumes that each of its operands already maintains those properties
on their own, and so is only in charge of making sure the merged sequence does so as well.
With this in mind, it relies on a custom merge sorted algorithm for iterables (not related to
the most common merge sort algorithm by John von Neumann).

Listing 6 Snippet of the song Soft to Be Strong by Marina.
T120 V70 L1;
r/4 ^g/4 ^g/4 ^g/4 ^f/2 e/8 ^d3/8 ^c2 | [^Cm] [BM] [AM] [BM]

Figure 4 Generated music sheet for parallel, audio version available here6.

The merge sorted function receives N operands and creates a buffer with the size N .
For each operand it forks the context, so that they can execute concurrently and each will
mutate their own context only. It then requests one single event for each operand.

After the buffer is prefilled (meaning it has at least one event for all non-empty operands),
the algorithm finds the earliest event stored in the it. Let’s assume it is stored in the K

index of the buffer, with K < N . The method emits the value stored in buffer[K] and then
fills requests the next event from the K operand (storing null if the operand has no more
events to emit). It then repeats this step until all operands have been drained.

6 https://drive.google.com/open?id=1ENTm3hZonYHyQIOgRZ8TQ1Qz-AfRLt2I
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5.2 Integration in a Programming Environment
Apart from generating musical events from syntatic constructs, our goal is to have those
events integrate into the rest of our own DSL in the same way integers, floats, strings and
booleans do: as data that can be stored, passed around and manipulated. This, of course,
must still retain all the properties we’ve laid out for our sequences of events: being lazy and
always being ordered.

Variables and Functions

All expressions that are assigned to a variable run in a forked context, with it’s cursor set to
zero initially. Musical expressions inside variables are still lazy (meaning they only calculate
each musical event when the variable is first used, not declared) but the events are cached to
prevent the calculations from being performed every time the variable is used. This cache is
then garbage collected when the variable is no longer in use.

Sometimes this lazyness can indeed be more trouble than it’s worth, and that’s why from
the very beginning the language allows the user to explicitly consume a musical sequence
(with the knowledge that it cannot be an infinite one, or the application will hang). Once
consumed, all it’s events will be cached in memory, stored in a list, and the user doesn’t need
to worry about laziness there anymore.

When events are stored in a variable, their timestamps are relative to the start timestamp
of that variable (which is always zero). But when the variable is then used inside some
expression, the events’ timestamps must be updated to be relative to where the variable
was inserted into. Since one variable can be inserted into more than one place, we cannot
edit the timestamp of the event in place, otherwise the places where we had already used
that variable would have their events’ timestamps changed too. This highlights the need for
musical events to be immutable, and for the need to copy them when we need to make a
change to one of their properties.

This works well enough because those events are very lightweight objects, and the benefits
of not having their values mysteriously changed midway during execution outweight the
small cost of a possible unnecessary allocation of an event that would only be used in one
place instead of many.

Function calls, on the other hand, pass the current context to the inside of the function,
so that any events played there now their correct times.

When integrating functions into our language, we decided to keep the semantics simple.
Returning musical events inside a function is similar to its return value being an iterator
that gives out the emitted events on demand (similar to how many programming languages
implement generator functions and emit values with the yield keyword). This means that
a function cannot both return musical events, while also returning other values manually
through a return statement.

There is no syntactic marker to distinguish regular functions from “musical-emitting”
ones (meaning, there is no explicit yield keyword). Instead, the language runtime starts
executing each function as a regular one, and automatically switches its execution mode into
a generator-like implementation once a statement that returns musical events is executed
(and it’s value is not captures into a variable). Any return statements that are evaluated
after this point must have no value (thus preserving the ability to early-stop a function). If
they do try to return a custom value, a runtime exception is triggered.

Here in the Listing 7 we can see a small snippet of the beginning of Fugue 2 in C minor
in Book I of the J.S. Bach’s Well-Tempered Clavier written in our language, and how using
functions and variables can help us visualize the structure behind music.
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Listing 7 Using variables and functions to compose musical arrangements.
fun fugue ( $subj , $resp ) =>

( $subj $resp | r ** $subj ( $subj + 7 ) );

S8/4 T140 L/4 V120;

$subj = r c/2 B/2 c G _A c/2 B/2 c d
G c/2 B/2 c d F/2 G/2 _A2 G/2 F/2;

$resp = _E/2 c/2 B/2 A/2 G/2 F/2 _E/2 D/2 C _e d c
_B A _B c ^F G A ^F;

play( fugue( $subj , $resp ) );

Figure 5 Generated music sheet for fugue example, audio version available here7.

The music sheet generated by the code in the listing 7 can be seen in figure 5. The two
staves of the first system correspond to the expressions $subj and stretch( r, $subj ),
respectively (we can identify it easily in the second staff, where there are only rests). The
two staves of the second system on the other hand, correspond to the expressions $resp and
( $subj + 7 ) (the later of the two being a transposition of $subj but with a higher pitch
of 7 semitones).

Grids

To define a grid there is only one parameter required: the length of it’s cells. When aligning
musical events, anything that falls inside each cell will be pushed to the closest edge of
the cell.

Grids are highly customizable too, however. They have multiple parameters, such as
forgiveness and range, that determine when an event is affected by the grid (depending on
how close it’s start time is to the edge of the cell). Each parameter can even be customized
separately for the left and right sides of the cell’s edge.

Let’s take a look at an example of a grid. In this example the grid has a cell size of 1.
We define the same values for both left and right sides just for the sake of this demonstration,
but each side could have different values.

7 https://drive.google.com/file/d/1dIfvnhhKn73Vpp0W6ss6RLsv6PQ_HFTF/view
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Listing 8 Declaring a grid with some additional optional parameters.
$grid = Grid( 1,

forgiveness_left = 125, # 1/8
range_left = 375, # 3/8
forgiveness_right = 125, # 1/8
range_right = 375 # 3/8

);

Figure 6 Representation of two cells from this grid.

We can see in this timeline two cells (each with a size of 1). Any events that fall in the
yellow and grey areas are ignored (meaning their timestamps are not changed) while events
in the green areas are pushed to whatever edge is closest. But even this behavior can be
customized, forcing events to always go to the previous edge cell, or always to the next.

It is then trivial to see how we could compose multiple grids in sequence, each with
different ranges (green areas) that capture different events and align them accordingly.

Keyboards

Finally we can combine all the systems we’ve described above, from musical expressions,
grids, variables and functions, and devise a compact way of describing virtual keyboards.

To make the process of designing keyboards less verbose, we’ve added syntactic sugar to
this process, that is translated in the background to regular function calls registering each
key binding.

While a picture maybe worth a thousand words, a good example is worth maybe even
more. So here we can take a brief look at the workflow for defining two keyboards (that are
active at the same time). The first keyboard has all the musical keys (the chords and single
notes we want), all aligned by a custom grid.

The second keyboard binds to the up and down arrow keys and allow us to change the
virtual instrument through which we play the sounds of the notes in the keyboard (those
instruments can be identified by an integer and usually follow the General MIDI standard[4]).

Listing 9 Creating a keyboard that can play multiple instruments.
$inst = 0;

fun spin_instrument ( ref $instrument , $change ) {
$instrument = $instrument + $change ;

setinstrument ( $instrument );
};
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@keyboard {
a: [^Cm]; s: [BM]; d: [AM]; f: [EM]; g: [^Fm];
1: ^c; 2: ^d; 3: e; 4: ^f; 5: ^g;
6: b; 7: ^c’; 8: ^d’; 9: e’;

}:: with_grid ( Grid( 1 / 16 ) );

@keyboard {
up: spin_instrument ( $inst , 1 );
down: spin_instrument ( $inst , -1 );

};

Keyboards are objects (that we could save in a variable for example) and that can perform
many operations, like unions and intersections, or maps and filters. They can be enabled
and disabled at runtime, and their keys can be simulated to be pressed and released.

More than that, we don’t need to restrict ourselves to computer keyboards. We can for
instance, define bindings between MIDI events and musical expressions, so that when we
connect a piano keyboard to our computer, we can use each piano key to play more than a
single note.

Since like we’ve seen keyboard keys are not limited to computer keyboards, we can
imagine the possibilities of events we could listen to: knobs, mouse buttons, the mouse scroll
wheel. We could even create an event that could, for example, listen on a socket and trigger
when a message is received, allowing in that way our musical applications to be controlled
remotely.

The result is that our keyboards are extremely extensible and allow for a great deal of
creativity. And thanks to our tight integration with the Python language, those extensions can
be easily integrated and don’t require hacking the source code or recompiling the application.

6 Results Discussion and Conclusion

The scope of this project could have been massive, mainly because implementing a way to
fully describe hundreds of years of comulative musical notation would be a gigantic task. We
chose instead to build a solid foundation, always with a strong focus on extensibility for the
future.

This hability to extend the functionality of our project, thanks to our easy integration
with regular Python code, means that new types of musical events, new inputs or outputs,
new functions or libraries can be added with minimal effort by everyone using our application.
There is no need to recompile the project or change the source, just include the Python code
at runtime.

When it comes to keyboards, there are many more possibilities to explore too. While
we’ve included examples of working with key presses, both from computer keyboards as well
as pianos (through a MIDI connection), more rich events can also be used that were not
demonstrated here. Since each event can also carry parameters with it, we can do more than
boolean press/release types of events: we can model knobs or scroll wheels or other kinds of
spatial events into our keyboards.

A work in progress implementation of the project can be found on GitHub8, with an
online work-in-progress documentation available as well9. It is possible that a more stable
version can be published to the Python Package Index (PyPi) somewhere in the near future.

8 https://github.com/pedromsilvapt/miei-dissertation
9 https://pedromsilvapt.github.io/miei-dissertation/
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The current version is already very usable in practice, which can be seen both in the
examples provided in this paper (alongside with the generated audio and music sheets, both
created by our application already) as well as many different experiments that have already
been developed during this dissertation. We do think in our (obviously biased) humble
opinion that the project has a lot of potential, particularly to serve as a swiss army knife,
extensible and customizable solution for music creation and experimentation.
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