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ABSTRACT 

 

The long-term success of a dental implant is dictated by a crucial group of conditions. Beyond 

being able to withstand masticatory loads, the implant must also be able to promote a good integration 

of its surface with the surrounding bone (osseointegration). In this context, various studies have been 

made with the aim of improving the osseointegration process in these implants.  

Usually, dental implants are made from titanium, normally titanium alloy Ti6Al4V, due to its good 

mechanical properties. Currently, several studies have also introduced zirconia (ZrO2) and polyether-

ether-ketone (PEEK) due to their inherent mechanical properties. However, due to the inert nature of 

these materials, coating their surface with bioactive materials is an effective solution to improve the 

osseointegration process. Among the bioactive materials, the most commonly used in these applications 

are Hydroxyapatite (HAp) and tricalcium phosphate (generally β-TCP) since they are very similar to the 

inorganic phase of bone. However, during the implantation process, the detachment of the coating may 

occur. 

In the present work, in order to overcome this problem, various bioactive composites were 

produced by hot pressing (hot pressing) or by cold pressing followed by sintering (Press and sintering) 

where the matrix is constituted by the material owing suitable mechanical properties and the 

reinforcement is a bioactive material. In this sense, the composites produced were: Ti6Al4V reinforced 

with 10 vol% HAp (Ti6Al4V-10%HAp), Ti6Al4V-10%βTCP, ZrO2-10%HAp, ZrO2-10%βTCP, PEEK-10%HAp, 

PEEK-βTCP10% (vol.%) which were subsequently characterized through a microstructural and 

mechanical analysis (hardness and shear tests). 

This work allowed to conclude that all samples have reached an effective densification and that 

the addition of bioactive materials increased the hardness of the samples, when compared to the 

unreinforced metal, polymer or ceramic matrix. When comparing both processing methods, hot pressing 

was found more capable to promote full densification and consequently higher mechanical properties. 

Although, in all samples, the presence of bioactive materials caused a shear strength decrease, the 

benefits of having a bioactive material and also an implant design solution based in functionally graded 

materials (FGM) would largely compensate these results. 

 

Keywords: dental implants, osseointegration, hot pressing, press and sintering, bioactive composites.  
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RESUMO 

 

O sucesso a longo prazo de um implante dentário é ditado por um grupo de condições cruciais. 

Além de ser capaz de suportar cargas mastigatórias, o implante deve ser capaz de promover uma boa 

integração da sua superfície com o osso adjacente (osseointegração). Desta forma, vários estudos têm 

vindo a ser feitos com o intuito de melhorar o processo de osseointegração. 

Habitualmente, os implantes dentários são feitos em titânio, geralmente liga Ti6Al4V, devido às 

suas boas propriedades mecânicas. Atualmente, vários estudos têm introduzido a zirconia (ZrO2) e o poli-

éter-éter-cetona (PEEK) devido às suas propriedades mecânicas inerentes. No entanto, devido à natureza 

inerte destes materiais, o revestimento superficial com materiais bioativos é uma solução efetiva para 

melhorar o processo de osseointegração. De entre os materiais bioativos, os mais utilizados nestas 

aplicações são a hidroxiapatite (HAp) e os fosfatos de tricalcio (geralmente, β-TCP) uma vez que são 

materiais muito semelhantes à fase inorgânica do osso. No entanto, durante o processo de implantação, 

o destacamento do revestimento pode ocorrer. 

No presente trabalho, de forma a superar este problema, produziram-se vários compósitos 

bioativos por prensagem a quente (Hot pressing) ou por prensagem a frio seguido de sinterização (Press 

and sintering) onde a matriz é constituída pelo material que apresenta propriedades mecânicas 

adequadas e o reforço é um material bioativo. Desta forma, os compósitos produzidos foram: Ti6Al4V 

reforçado com 10 vol.% HAp (Ti6Al4V-10%HAp), Ti6Al4V-10%βTCP, ZrO2-10%HAp, ZrO2-10%βTCP, PEEK-

10%HAp, PEEK-10%βTCP (vol.%) que foram posteriormente caracterizados através de uma análise 

microestrutural e mecânica (ensaios de dureza e testes de corte).  

Este trabalho permitiu concluir que todas as amostras atingiram uma densificação eficaz e que a 

adição de materiais bioativos aumenta a dureza das amostras, quando comparadas com a matriz 

metálica, polimérica ou cerâmica não reforçada. Comparando ambos métodos de processamento, o hot 

pressing mostrou-se mais apto a promover uma densificação total e consequentemente, melhores 

propriedades mecânicas. Apesar de, em todas as amostras, a presença dos materiais bioativos ter 

causado a diminuição da resistência ao corte, os benefícios da presença do material bioativo e também 

a solução de um design do implante baseado em materiais com gradientes funcionais (FGM), compensa 

largamente estes resultados. 

 

Palavras-chave: implantes dentários, osseointegração, prensagem a quente, prensagem a frio e 

sinterização, compósitos bioativos. 
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CHAPTER 1 

INTRODUCTION 

 

This chapter gives a framework to the topic presenting a motivation subchapter that elucidates 

the most important aspects that led to the preparation of this thesis contextualizing the aspects 

that will be further discussed in the following chapters, as well as a list of the objectives involved 

in this dissertation. 
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1.1. MOTIVATION 

 

In dentistry, the rehabilitation of completely and partially edentulous patients with dental implants 

is become increasingly important. In fact, dental implants could be an option for people who lost a tooth 

due to periodontal disease, an injury, or some other reason. Therefore, it is extremely vital to promote 

long term success of oral implants, which is significantly associated with a rapid and early 

osseointegration. Once osseointegration is related with the direct contact of bone to implant surface 

without interposing soft tissue between them, the surface properties play a major role in the adhesion 

behaviour of the bone cells to the substrate. In fact, chemistry, energy, topography and wettability play 

an important role in osseointegration process. For instance, a roughened titanium surface has a shorter 

healing period and vice-versa  [1, 2]. 

Frequently, dental implants are originally made of commercially pure titanium or Ti6Al4V, due to 

their excellent biocompatibility, favourable mechanical properties, very high corrosion resistance and 

other well-documented beneficial results. However, zirconia (zirconium dioxide, ZrO2) became a candidate 

for substituting titanium, not only because of its excellent biomechanical characteristics and 

biocompatibility but also due to its bright tooth-like colour [3, 4]. Additionally, poly-ether-ether-ketone 

(PEEK) is also considered a good substitute for dental implants once it presents good mechanical 

properties, possess the Young’s modulus closest to the bone in comparison with the other two 

abovementioned materials and also owns a good biocompatibility [5]. However, Ti6Al4V, ZrO2 and PEEK 

are defined as bioinert materials, meaning that their interaction with the surrounding tissue when 

implanted in human body is very weak [6–10]. Therefore, to promote osteogenesis, and consequently, 

osseointegration, the acceleration of this process could be achieved by incorporating bioactive materials 

which form a strong chemical bond with the adjacent tissue. This bioactivity could by achieved using 

bioactive materials such as hydroxyapatite and tricalcium phosphate, due to their crystalline structure 

similar to the mineral phase of bone and their active surface which provide biological bonding to bone 

[11, 12]. 

Since adequate surface properties are important to promote osseointegration, much effort has 

been made to improve the implant bond to the bone tissue through surface modification. Therefore, 

coating implants surface with the bioactive materials mentioned above is already a used approach to 

modify the surface in order to increase the adhesion of the cells to the implant. However, creating a film 
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of bioactive material by plasma spray, sol-gel or many other process, have some limitations upon  

implantation, because when screwing the implant the film can be detached and loss of material can 

occur, compromising its role [13]. 

Therefore, functionally graded materials (FGM) is an interesting approach to overcome the coating 

detachment once these materials have a gradient composition wherein the content of bioactive material 

is gradually added towards the surface of these materials, improving the adhesive properties between 

the reinforcement (bioactive material) and the matrix (metallic, ceramic or polymeric material). This 

approach also improves the mechanical properties of the FGM once the interior owns the mechanical 

properties of the matrix and the surface the bioactive properties of the reinforcement, with a gradient 

between. 
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1.2. OBJECTIVES 

 

The main goal of this dissertation focuses on improving osseointegration of dental implants using 

powder metallurgy thecniques such as Hot Pressing and Press and Sintering, to produce composites 

materials that have both good mechanical and bioactive properties.  

In this sense, several composite materials were produced and characterized, such as Ti6Al4V 

reinforced with 10 vol.% HAp (Ti6Al4V-10%HAp), Ti6Al4V-10%βTCP, ZrO2-10%HAp, ZrO2-10%βTCP, PEEK-

10%HAp, PEEK-10%βTCP (vol.%). Additionally, these were compared with the matrix materials without 

reinforcement (Ti6Al4V, ZrO2 and PEEK), produced using the same route. In these composites, the 

reinforcement particles are embedded in the matrix, which not only prevents the delamination of the 

bioactive material but also combine the good mechanical properties of the matrix with the bioactivity of 

the reinforcement.  

 

The detailed objectives of this dissertation are: 

1) Optimization of powder dispersion method; 

2) Sample processing by Hot Pressing of Ti6Al4V, Ti6Al4V-based composites, ZrO2, ZrO2-based 

composites, PEEK and PEEK-based composites and by Press and Sintering of ZrO2 and ZrO2-

based composites; 

3) Microstructural characterization of all samples by SEM/EDS analysis; 

4) Mechanical characterization of all samples through assessment of hardness and shear tests. 
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CHAPTER 2 
STATE OF THE ART 

 

This section aims to introduce a theoretical framework on dental implants. It begins with a brief 

review of the dental field, introducing concepts such as osseointegration, biocompatibility and 

bioactivity. Materials that are commonly used in implantology and new substitutes as 

biocompatible and bioactive materials are also presented, showing their advantages and 

disadvantages and outlining a possible solution to overcome these drawbacks. This section also 

gathers information about biocomposites, addressing the potential of these materials in the 

implants industry. A detailed description of functionally graded materials and powder metallurgy 

is afterwards presented, ending this section with some final remarks regarding the design of a 

dental implant. 
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2.1. DENTAL IMPLANTS 

 

In dentistry, the rehabilitation of completely and partially edentulous patients with dental implants 

has become increasingly important. In fact, dental implants could be the only restoration option for people 

who lost a tooth. The tooth absence from the dental arch could have many causes such as congenitally 

when a permanent tooth does not grow or as result of a disease, of which dental caries, periodontal 

problems and accidental trauma are the most common. Thus, replacing a missing tooth is extremely 

important not only to improve the patient’s appearance, but more vital to prevent other tooth lost, 

masticatory function problems or changes in the dental arches such as resorption (the bone tends to 

shrink over time) and drifting (the neighboring teeth moves to fill the free space), as shown in Figure 1 

[14–16]. Therefore, in comparison with other methods such as removable partial dentures or even full 

dentures, dental implants are currently the best solution, once they preserve not only the neighboring 

teeth, from drifting and further loosening, but also the bone tissue [17]. 

 

Figure 1- Bone resorption and teeth drifting. 

A dental implant can be defined as an artificial substitute for natural roots of teeth, that are placed 

under the gums into (endosseous) or onto (sub-periosteal) the jawbone to support a fixed prosthesis (e.g. 

crowns and bridges) or to stabilize a removable prosthesis Figure 2 shows a schematic representation 

of a full dental implant, and a radiograph of the position of a dental implant in relation to the adjacent 

teeth. 
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Figure 2-(a) dental implant [18] (b) Radiograph of a dental implant relative to the adjacent teeth [19]. 

Going back in history, several materials like seashell, stones, bones and gold alloys were used in 

dental interventions, being placed into human jawbone to replace missing teeth [20]. Later on, in the 

middle ages, allografts and xenografts were used as implants, however many problems have arisen 

related to this procedure such as infectious diseases and even deaths [20]. In 1948, Dr. Aaron Gershkoff 

in association with Dr. Norman Goldberg produced the first sub-periosteal implant [20]. The so called 

modern implants appeared due to a Swedish professor of orthopedics, named Per-Ingvar Branemark, 

that discovered in his research that bone grows near a titanium implant and attached to the metal without 

being rejected. This attachment between the bone and the implant was called by Branemark as 

“osseointegration”. This phenomenon has become a crucial factor in implant stability and consequently, 

on implants long term clinical success [15, 20].   

The placement of a dental implant must be performed according to a series of steps. Firstly, a 

surgery is performed to promote the fixation of the metallic implant to the bone. When the implant is 

considered osseointegrated, which occurs after a sequence of biological events that will be mentioned in 

this section, a second surgery is performed to uncover the implant and expose it to the oral environment 

to attach an abutment. Lastly, the final prosthesis (fixed or removable) is placed [21]. The abutment will 

help the attachment between the implant and the prosthesis, as seen in Figure 3. 

 

(a) (b) 
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Figure 3 – Diagram of implant components. A- implant, B-abutment, C-Prosthesis [21]. 

Immediately after the implantation, the implant is held only by mechanical friction, the so called 

primary stability. After that, many biological events interact with the implant on the bone-implant interface 

to promote the formation of new bone, taking place the secondary stability [22, 23].  These biological 

events comprise four main phases: hemostasis, inflammatory, proliferative and remodeling phase [24–

26]. 

During the surgical intervention, the rupture of the blood vessels will cause the interaction between 

the dental implant surface and the blood components. In a first phase (hemostasis), seconds after 

implantation, ions and plasma proteins (such as fibrinogen and fibronectin) begin to adhere and get 

adsorbed to the surface of the implant. The blood vessel rupture is then stopped by the action of blood 

platelets, which will start to aggregate by binding with collagen from the traumatized tissue. After that, 

clotting factors create a clot that was formed due to the conversion of fibrinogen to fibrin and its addition 

to the platelet aggregate. This blood clot will act as a provisional matrix and adhere to the implant surface. 

The platelets then start to release a number of substances that will play an important role in cell to cell 

communication and, consequently, in the wound healing by acting as signaling molecules for recruitment 

and cell differentiation. [24, 25] 

On a second phase (inflammatory phase), hours after the surgery, immune cells clean the wound, 

tissue debris and bacteria that remains in the site through phagocytic cells (neutrophils first and then 

macrophages).  
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The third phase (proliferative phase), occurs with the fibroblasts migrating into the wound and 

starting to synthesize components of the extracellular matrix. Then, mesenchymal stem cells migrate 

through the preliminary matrix of the fibrin clot toward the implant surface and platelets cause the 

differentiation of these cells into the osteoblastic lineage.  Thus, osteoclast cells start to resorb the 

residual bone which will allow bone healing. This will cause the reduction of primary stability, as can be 

seen in Figure 4(a). Additionally, mesenchymal stem cells migrate also toward existing trabeculae 

(primary anatomical unit of trabecular bone) and to the implant surface and differentiate into osteoclasts. 

On the other hand, osteoblastic cells are also differentiated and will form an organic matrix that is 

mineralized by deposition of calcium phosphate. This will result in an immature woven bone formation 

around the implant, which will increase the secondary stability (Figure 4(a)).  

During the last phase (remodeling phase), the osteoclasts resorb the woven bone and the 

osteoblasts replace the woven bone by mature bone (lamellar bone). The woven bone forms very quickly 

and is mechanically weak unlike lamellar bone which has a regular parallel alignment of collagen fibers 

into the lamella and, thanks to that, is mechanically strong. Lamellar bone is then classified in trabecular 

bone or spongy bone, and cortical bone or compact bone (Figure 4(b)) [15, 23–26]. 

According to Branemark, the healing period to allow osseointegration ranges from three to six 

months. Several studies have been made over the years aiming to reduce this healing time and improving 

the aesthetics [22, 27].  

 

Figure 4 – (a) primary and secondary stability [15] and (b) general schematic of bone structure [28] 

(a

(b

) 
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In dental implants, biocompatibility, osseointegration and appropriate mechanical properties are 

the main factors required to reduce the healing time and promote implant long-term success [29–31]. 

These requirements will be guaranteed by many factors such as the material used for the implant, its 

design, surface characteristics, health and bone quality, among others. The material of which the implant 

is made influences directly the biocompatibility, the osseointegration and the mechanical properties of 

the implant. On the other hand, the design of the implant affects the implant stability because it influences 

the stress distribution at the bone-implant interface, the surface area and the distribution of forces [20]. 

However, many studies already identified implant surface properties as the major factor to obtain an 

effective implant-tissue interaction and osseointegration, once the interaction between the bone and the 

implant is through its surface  [32, 33]. Accordingly, much research has been made in order to control 

surface characteristics of implants, such as roughness, chemical composition, surface energy, 

topography, the presence of oxides, etc. Researches have already shown that the surface roughness 

affects the biological response in terms of osteoblast differentiation, proliferation and adhesion [20, 34–

36]. On the other hand, the chemical composition improves the interaction between bone and implant. 

Surface chemical modification/control can be achieved with coatings through techniques such as plasma 

spraying, dip coating, electrophoretic deposition, etc [20, 34, 36, 37].  Additionally, surface energy is 

also an important factor to improve the biological response, once it is related with the wettability of the 

surface and thus its hydrophilicity. Hydrophilic surfaces will allow protein absorption to the implant 

surface and subsequent interaction with cells in contrast to hydrophobic surfaces that are subjected to 

air bubbles entrapment forbidding protein absorption and thus cell adhesion and activation (Figure 5). In 

this context, many studies have concluded that a moderate hydrophilicity improves the biological 

response [35, 36]. 
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Figure 5 – Schematic of the possible interactions with (a) hydrophilic and (b) hydrophobic surfaces [35]. 

 

2.2. BIOCOMPATIBLE MATERIALS 

 

For many years, several materials were used to replace a missing tooth. With time, scientists 

realized that some materials were more successful than others when in contact with the human body, 

since the tissue response to certain materials was better than others [38].  

In 1987 the term biocompatibility is defined as the “ability of a material to perform with an 

appropriate host response in a specific situation” [39]. By analyzing this definition, it is possible to 

conclude that biocompatibility is not an invariant property of a biomaterial, once the tissue response to 

a material may not be the same for all applications. Thus, the biological response of a material depends 

on the material itself, the host and the application For example, in dentistry, when choosing a material 

for dental implants it is expected that the bone creates a direct connection with the implant surface and 

thus, a range of biological responses have to occur for osseointegration such as inflammation, unlike to 

what is expected when choosing a material for a crown where this phenomenon is not desired [40].  

The biocompatibility of a material can be assessed by many available methods. These 

biocompatibility assessment methods are provided by guidance documents developed by International 

Organization of Standards (ISO) and Food and Drug Administration (FDA) and include cytotoxicity, 

sensitization, hemocompatibility, pyrogenicity, implantation, genotoxicity, carcinogenicity, reproductive 

and developmental toxicity and biodegradation testing [41]. 

Biocompatible materials are nowadays used in several biomedical fields, as for metallic, ceramic 

and polymeric materials. 
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2.2.1. METALLIC MATERIALS 

 

Metallic alloys are widely used as biomedical materials for medical implants due to their excellent 

mechanical properties such as mechanical strength and resistance to fracture. These requirements are 

very important for implants because they are in load-bearing conditions. Among the metallic materials, 

those that are most commonly used as implants are stainless steel (especially 316L), CoCr alloys and 

titanium and its alloys, once besides their excellent mechanical properties, they also exhibit good 

biocompatibility [42–44].  

Stainless steel (SS) was in earlier times one of the metallic materials most commonly used in 

orthopedic applications due to their good mechanical properties, however it is not a good biomaterial for 

long-term implants once it has poor fatigue strength and poor corrosion resistance [45, 46].  

CoCr alloys appeared as a substitute for stainless steel due to having a higher corrosion resistance. 

However, ions release is a problem in this biomaterial because Co and Cr are toxic to human body and 

studies have already reported Co as carcinogenic  [45, 46].  

Titanium and its alloys are extensively used in many fields of engineering, such as aerospace 

applications, but also in biomedical applications. In fact, titanium and its alloys are the most frequently 

used materials in dental implantology, as a result of Branemark’s findings They are classified as light 

metals owning a density of approximately 4.50 g/cm3 for pure Ti (Figure 6) and 4.43 g/cm3 for Ti6Al4V. 

Additionally these alloys present excellent mechanical properties, Young’s modulus (YM) that are closer 

to bone (when comparing with the metallic biomaterials previously mentioned), a highest biocompatibility 

when compared to stainless steels and CoCr alloys and also a good corrosion resistance [44, 45, 47–

52]. 

 

Figure 6-Density of selected metals [52]. 
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Between titanium and its alloys, although commercially pure titanium (cpTi) is a very good 

candidate to dental implants due to their good mechanical properties, the most frequently used material 

is a titanium alloy - Ti6Al4V  [12, 13]. Table 1 lists some mechanical properties of Ti6Al4V. 

Table 1 - Mechanical properties of Ti6Al4V [55]. 

Property Range of values 

Tensile Strength (MPa) 895-930 
Young’s Modulus (GPa) 110-114 

Yield Strength (MPa) 825-869 

Elongation (%) 6-10 
 

While stainless steels have a YM around 190-210 GPa, CoCr alloys YM are between 210-253 GPa, 

substantially higher than that of bone tissue (10-30 GPa for cortical bone). When the stiffness (Young’s 

modulus) between the implant and the host tissue is different, a process known as “stress shielding” 

occurs which can lead to bone resorption and non-occurrence of osseointegration process due to the 

movements between implant and bone. In contrast to SS and CoCr alloys, Ti6Al4V possess a Young’s 

modulus around 110-114MPa which is still a higher value when compared to bone, however is the closest 

value to the bone in comparison with the other metallic materials, which turns the stress distribution at 

the interface between bone and implant more acceptable [44, 51–54, 56].  

On the other hand, the yield strength of Ti6Al4V ranges between 825 and 869 MPa [55]. This 

property provides the stress value at which plastic deformation begins to occur. Thus, it is vital to evaluate 

the mechanical loading on either bone and implant materials to understand the effect of occlusal loading 

around dental implants at the bone-implant interface. In this sense, Benaïssa et al. studied the effect of 

mastication loads on the mechanical stresses generated in titanium dental implants. Benaïssa concluded 

that the mechanical stress is higher in the bone areas closer to the implant (Figure 7(a)), with the 

maximum Von Mises stress occurring in the dental implant itself. This study also concludes that for the 

loading conditions tested, the abutment was the most fragile component, since high concentration of 

stress occurs in the first threads, and that the implant supports this typical loading without plastic 

deformation [57]. Thus, titanium alloys are suitable metallic biomaterials for dental implants, having the 

necessary strength to resist fracture under occlusal forces and a Young’s modulus more close to bone 

than other metallic alloys, thus providing a more uniform stress distribution on the bone-implant interface 

[21]. 
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Figure 7 – Distribution of stresses within (a) the bone (b) main model [57] 

Ti6Al4V corrosion resistance and biocompatibility are a consequence of an oxide layer formed in 

the surface of the titanium alloy. When exposed to atmosphere or to environments that contain oxygen, 

titanium will absorb the oxygen and form an oxide layer (mainly based on TiO2) on the surface of the 

material, acting as a protective barrier. The biocompatibility is also improved by the oxide layer once the 

attachment and growth of the human bone cells to this layer is very effective [48, 50, 58, 59].  

Nevertheless, in oral environment, Ti6Al4V can corrode, which will cause the release of metallic 

ions to the surrounding tissues, such as vanadium ions, provoking cytotoxicity as well as aluminum ions 

which have been proven to cause Alzheimer in long-term. Also, in masticatory movements, the loads that 

are applied through the material to bone causes micromovements that can detach the oxide layer, leading 

to material loss and release of metallic ions from the material [60]. 

In the oral environment, wear sliding can occur in presence of saliva and abrasion particles from 

food intake or tooth brushing. These wear debris can increase corrosion and therefore the degradation 

of this material [61]. These aspects will cause adverse events on the human tissues promoting peri-

implant inflammations and consequently, bone and implant loss [51, 60]. Additionally, bone resorption 

and consequent recession of the gingiva can expose the implant, causing esthetic complications due to 

the dark grayish color of titanium, as seen in Figure 8 [62].  

 

Figure 8 – Gingival recession [19]. 

(a) (b) 
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2.2.2. CERAMIC MATERIALS 

 

Ceramics have become increasingly attractive as new materials for dentistry, once they can 

surpass the several disadvantages that metals brings when implanted in the human body. Ceramics are 

nonmetallic inorganic materials that contain compounds of oxygen with metallic or semi metallic 

elements. These materials are very attractive to dental applications due to their biocompatibility, color 

stability, good mechanical properties (they exhibit good flexure strength and fracture toughness) [21] , 

besides good chemical, physical and thermal properties when compared with other materials [21, 62]. 

Glasses, porcelains, glass-ceramics or highly crystalline structures are some examples of ceramics. As 

previously mentioned, titanium biostability is due to the oxide layer formed on its surface, that will prevent 

corrosion. In fact, this oxide layer is a ceramic coating formed spontaneously on the surface of the metal 

when exposed to oxygen [63].  

In recent years, ceramic materials have been increasingly used in dental implants, with high-

strength ceramics being the most used in implantology, once they have to withstand the occlusal loads 

in the masticatory movements[21, 64]. High-strength ceramics, classified as inert in the body, have an 

important advantage over metallic materials, by exhibiting minimal ion release. Additionally, as 

mentioned before, bone resorption and consequently peri-implant recession, may turn the implant visible, 

which turns the dark grayish color of the titanium a drawback in terms of esthetics. Therefore, research 

on tooth-colored ceramic materials become extremely important not only to overcome this issue but also 

to reduce the use of metallic materials in the human body [64]. 

Aluminum oxide or alumina (Al2O3) and zirconium oxide or zirconia (ZrO2) are the most used 

ceramic materials in implantology. Table 2 lists some mechanical and physical properties of these two 

ceramic materials. 

Table 2 – Mechanical and physical properties of aluminum oxide and zirconium oxide [21] 

Material 
Grade or 
Condition 

Flexure 
Strength 

(MPa) 

Elongation 
(%) 

Young’s 
Modulus 

(GPa) 

Tensile 
Strength 

(MPa) 

Density 
(g/cm3) 

Aluminum 
Oxide 

Polycrystalline 400-550 0.1 380 220 3.96 

Zirconium 
Oxide 

Y2O3 
(stabilized) 

1200 0.1 200 350 6.00 

 
Aluminum oxide is very used in implants due to its inertness, high toughness and strength, 

excellent wear resistance and high wettability in comparison with metallic surface materials. On the other 
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hand, zirconium oxide has become a good substitute to alumina because although having some similar 

properties to alumina it possesses a higher fracture toughness, flexure strength and a lower Young’s 

modulus [63, 65]. 

Zirconia’s high strength and toughness derived from its crystallographic forms (monoclinic, 

tetragonal and cubic) [63]. In fact, the high mechanical toughness and strength are consequence of the 

stabilization of the tetragonal phase of zirconia (by adding metal oxides like yttria (Y2O3)) at room 

temperature. Thereby, yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is often used in implantology 

[62, 63, 66, 67]. 

Monoclinic phase is stable from room temperature till 1170°𝐶, the tetragonal phase is stable 

above 1170°𝐶 till temperatures of 2370°𝐶, while up to the melting point the phase is cubic [53]. These 

phase transitions happen only with pure zirconia, however, when alloying zirconia with metal oxides such 

as yttria, the tetragonal form is retained metastable at room temperature [53, 63, 68, 69]. This 

metastable tetragonal phase can transform into a stable monoclinic phase under applied stresses (stress-

induced) which will be complemented with a volume increase (3-4%) [53, 63] . This volume increase will 

lead to compressive stresses that contribute to crack closing and consequently increasing the crack 

resistance (transformation toughening). This mechanism, presented in Figure 9, increases the reliability 

and lifetime of Y-TZP implants [40, 53, 63, 70, 71]. 

 
Figure 9 – Schematic of transformation toughening mechanism in partially stabilized zirconia [71]. 

 
However, although this phenomenon imparts a higher mechanical toughness and strength it can 

increase the susceptibility of the material to low-temperature degradation (LTD). LTD or ageing occurs 

when the transformation of metastable tetragonal to stable monoclinic happens in the presence of water 

or water vapor. As said before, when the metastable tetragonal phase changes to stable monoclinic 
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phase, this transformation leads to volume increase of the grains, creating microcracks. These turn the 

material susceptible to water penetration, generating a phase destabilization starting in the surface and 

progressing into the material (figure 10). This phenomenon is enhanced at temperatures in the range of 

200°𝐶 to 300°𝐶, and will cause the reduction of the mechanical toughness, strength and density [53, 

69, 70, 72]. 

 

 
Figure 10 – Scheme of the ageing process (a) transformation on a particular grain followed by microcracking and stress transmission to 
neighboring grains (b) growth of the transformation grains (grey) and water penetration (red) derived by microcracking [73]. 

 

Nonetheless, several studies on zirconia concluded that, allied to a high mechanical toughness 

and strength, this material has a good resistance to corrosion, great biocompatibility due to the minimal 

ion release, increased esthetics and exhibit lower bacteria accumulation when compared with metallic 

materials, making it extremely appealing for dental implants [8, 62, 66, 69].  

2.2.3. POLYMERIC MATERIALS 

 

Both titanium and zirconia still have some drawbacks when used as dental materials for implants. 

A phenomenon that brings some concerns in implantology, once it can lead to bone resorption and 

consequent implant failure[74–77] is the Young’s modulus mismatch between zirconia or titanium 

implants and bone, with stress shielding occurring on the implantation area. Another aspect concerns 

the metal ions and debris release, which usually occurs on metallic implants. 

In this context, to overcome these limitations and others, much research has been made to found 

alternatives to these materials. Another broad category of materials that are commonly used in 

biomedical applications to substitute the materials aforesaid are polymeric materials [75–77], that are 

known to avoid ions release and being considered inert materials. 

Poly-ether-ether-ketone, also known as PEEK, is a polymeric material member of the PAEK family 

(poly-aryl-ether-ketone) increasingly employed in orthopedic, cranial and spinal implants [75, 78–81]. 

(a) (b) 
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This material is well known as a high-performance semi crystalline thermoplastic polymer and is a 

biocompatible material owning several advantages such as good mechanical properties (Young’s 

modulus, strength, and toughness), wear and fatigue resistance, excellent thermal and chemical stability, 

bioinert properties [61, 76, 79, 80, 82–85]. Table 3 lists the mechanical properties of PEEK [86, 87]. 

Table 3 – Mechanical properties of PEEK [86, 87]. 

Properties Property range of values 

Tensile Strength (MPa) 90-100 

Young’s Modulus (GPa) 3-4 

Yield Strength (MPa) 107 

Elongation (min.) 4.9 

 

As previously referred, the Young’s modulus of bone is between 10 to 30 GPa, while titanium and 

zirconia Young’s modulus are 110-114 GPa and 200 GPa [21, 55], correspondingly. These differences 

can cause stress shielding in the local area and therefore bone resorption and implant failure [21, 55, 

74]. On the other hand, PEEK presents a Young’s modulus ranging between 3 and 4 GPa which is lower 

than bone’s young’s modulus. However, this value can be increased up to 18-25 GPa by reinforcing it 

with carbon fiber, attaining a similar value to bone [5, 74, 77, 78, 82, 88]. Additionally, the carbon fibers 

reinforcement doubles the tensile strength of PEEK from 90-110 MPa to 214 MPa which will provide 

mechanical properties close to metal alloys [48, 85]. Nonetheless, with or without reinforcements, PEEK 

will become a very good substitute for metals or ceramics, by decreasing the stress shielding effect [74, 

77, 82]. 

However, PEEK is a material chemically inert material and due to its low surface energy 

(hydrophobic surface), protein absorption and consequently cellular adhesion on its surface is limited 

[84, 85]. Therefore, many researches have been made in order to modify PEEK surface to promote cell 

adhesion and proliferation [84]. Among these treatments, surface coatings or modifications are known 

to enhance bioactivity and osseointegration of PEEK implants [78, 75, 88]. 

2.3. BIOACTIVE MATERIALS 

 

Ti6Al4V, ZrO2 and PEEK are broadly used in dental and orthopedic implants due to their several 

advantages, already addressed. Still, although these materials own very good mechanical properties, 

they are generally defined as bioinert materials [8, 89, 90]. Therefore, their ability to interact with the 
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surrounding tissue is very weak, which can lead to a poor implant to bone fixation. Thus, it is important 

to enhance the chemical or biological bonding between the implant and bone, with one of the strategies 

being through the use of bioactive materials [6–10]. 

The term bioactive was define by Hench and Ethridge as the: “one that elicits a specific biological 

response at the interface of the material which results in the formation of a bond between the tissues 

and the material” [63, 91–93]. Thus, bioactive materials are the ones that react with the surrounding 

tissue causing a positive reaction on bone tissue formation. Accordingly, bioactivity is related to the 

interaction between the material surface and the nearby tissue forming a layer on the surface of the 

material that would allow bone bonding  [63, 92, 94]. Hence, these materials have expanded industrially 

in areas such as medicine and dentistry. 

In bone implants, bioactivity and the choice of the bioactive materials are directly related with the 

natural bone tissue. The bone tissue is mainly composed of bone cells and a calcified matrix commonly 

called bone matrix. As previously mentioned the bone cells are mainly important to synthetize the organic 

part of the matrix, to promote the resorption of the bone and to secrete substances to keep the 

maintenance of the bone (osteoblasts, osteoblasts and osteocytes, respectively). On the other hand, 20% 

of the bone matrix is mainly composed with an organic phase, 70% an inorganic phase and 10% water, 

approximately. In turn, the organic phase is mostly constituted by type I collagen (around 95%) and the 

inorganic phase, also called mineral phase, is composed with higher quantities of calcium phosphates 

especially hydroxyapatite crystals located along the collagen fibers and some other components in minor 

amounts such as bicarbonate, magnesium, potassium, etc (Figure 11) [91, 95]. 

 

Figure 11 – Composition of bone [91]. 

Given the bone composition, the selection of bioactive materials focuses on the use of calcium 

phosphates, since these components exist in large amounts on the inorganic phase of bone matrix. It is 
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the combination of collagen fibers with hydroxyapatite crystals which are responsible for bone strength 

and hardness [23].  

Calcium phosphates are bioactive materials that own biocompatible properties due to their high 

similarity to the naturally apatites of bone, their ability to promote bone formation (osteoconductivity) and 

their osseointegration. Among all the calcium phosphates listed in Table 4, the most used in dental and 

orthopedic applications is hydroxyapatite (HA or HAp), although recently tricalcium phosphates also 

gained attention in these applications due to their favorable properties, like its ability to be resorbed by 

human body allowing the integration between implant and bone which will subsequently accelerate the 

process of osseointegration [12, 37, 96–99]. 

 

Table 4-Biologically relevant calcium phosphates compounds [96] 
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As previously mentioned, hydroxyapatite is the most widely used bioactive compound in 

implantology, due to a chemical composition and structure similar with the mineral phase of bone, as 

seen in Table 5 [37].  

This bioactive material has a stoichiometric formula Ca10(PO4)6(OH)2 which in turn corresponds to 

a Ca/P ratio of 10:6, also commonly expressed as 1.67 [95]. This ratio is similar to the natural bone 

which turns this material a good candidate for dental and orthopedic applications. Additionally, Ca/P 

ratio is related with the degradation rate and solubility, i.e., these parameters increase with a decrease 

of the Ca/P ratio [100]. HAp crystalizes in a hexagonal structure with a space group P63/m and the 

following lattice parameters: 𝑎 = 𝑏 = 9.423Å , 𝑐 = 6.875Å , 𝛼 = 𝛽 = 90°  𝛾 = 120° [95, 101, 

102]. Figure 12 shows the crystal structure of hydroxyapatite. 

 

Table 5 – Comparative composition and crystallographic of Human Enamel, Bone, and HAp ceramic [93] . 
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Figure 12 – Crystalline structure of hydroxyapatite [91]. 

On the other hand, tricalcium phosphates (TCP) are another calcium phosphates that could be 

used in orthopedic and dental implants once they are also biocompatible materials and have 

osteoconductive properties [94]. These phosphates have a Ca/P ratio of 1.5 [92, 94] and exist in two 

crystal forms: β and α. Both have similar chemical composition (β-Ca3(PO4)2 and α-Ca3(PO4)2) with 

differences in their crystalline structure. In one hand, α-TCP has a crystalline structure with a monoclinic 

space group P21/a with 𝑎 = 12.887Å, 𝑏 = 27.280Å  and 𝑐 = 15.219Å. On the other β-TCP has a 

crystalline structure rhombohedral with a space group R3c and the following lattice parameters: 𝑎 =

𝑏 = 10.439Å, 𝑐 = 37.375Å [103, 104]. 

The differences in the crystalline structures of α-TCP and β-TCP confer different solubilities to 

these compounds. Comparing also with hydroxyapatite, the order of the solubility is as follows: α-TCP > 

β-TCP >> HAp, being α-TCP the more soluble in physiological medium [99, 105]. In this sense, the ones 

that have longer permanence in the body are HAp and β-TCP. Thus, between α-TCP and β-TCP, the β-

phase was considered more stable than the α-phase [92, 105].  

In this sense, one of the main differences between HAp and TCP is their degradation rate. 

Another aspect to consider is the thermal decomposition of these materials. In fact, many 

researchers have determined the effect of temperature on the decomposition of these bioactive materials. 

At high temperatures, HAp can release the OH- ions causing dehydration which, according to C.F. Koch 

et. al, could occur at temperatures above 900°C, followed by the decomposition of HAp in β-TCP, α-TCP 

or other compounds [96]. On the other hand, Chunyan Wang et al. reported that HAp releases its OH 

ions at temperatures around 1000°C and then proceeds to its decomposition into β-TCP and other 

compounds at temperatures greater than 1350°C, which in turn decompose to α-TCP at temperatures 

around 1450°C [106]. Muralithran et al. evaluated the effects of sintering temperatures on 

hydroxyapatite when the HAp powder was cold isostatically pressed at 200 MPa and sintered in air at 

temperatures around 1000 to 1450ºC. The results from X-ray diffraction analysis, XRD, (Figure 13) 
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showed that when the material is sintered at 1250°C the peaks corresponding to hydroxyapatite are 

detected, which does not happen when the material is sintered at 1400°C once the XRD revealed the 

presence of α-TCP. When using a sintering temperature of 1450°C, β-TCP, and other compounds are 

identified [107]. 

A final remark on these bioactive materials concerns their brittle nature, which make these 

materials not suitable for load-bearing applications [31, 37, 108–111]. 

 

 

Figure 13 – X-ray diffraction patterns of HAp sintered for 2h at (a)1250°C, (b) 1400°C and (c) 1450°C [107]. 

 

2.4. BIOCOMPATIBLE COMPOSITES 

 

When a material has two or more distinct constituents, it can be defined as a composite material, 

with these constituents being named matrix and reinforcement(s). Composites have the advantage of 

combining the properties of each constituent material, desirably creating better properties than each 

material possess individually. Hence, it is the possibility to combine different properties that make these 

materials widely used in dental and orthopedic applications  [78, 87, 91, 112]. 

In load-bearing dental and orthopedic applications, these materials became very useful once it 

becomes beneficial to combine suitable mechanical properties with biocompatible ones, promoting 

osseointegration in order to create a good bond between the bone and the implant (bioactivity) [91]. 

As already mentioned throughout this literature review, although Ti6Al4V, ZrO2 and PEEK own very 

good mechanical properties they do not integrate very well with the surrounding tissue. On the other 
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hand, bioactive materials such as calcium phosphates (HAp and β-TCP) develop a good bond with the 

neighboring tissue due to their similarity with the mineral bone. However, calcium phosphates are brittle 

materials, which is a drawback in such applications (implantology). To overcome these problems, calcium 

phosphates are traditionally used as coating materials, once this combination promotes bioactivity of the 

calcium phosphates (HAp and β-TCP) in the outer regions, while assuring favorable mechanical 

properties of Ti6Al4V, ZrO2 or PEEK [31, 98, 110, 113, 114]. Several techniques such as plasma 

spraying, sputtering, electrophoresis, ion beam-assisted deposition, among other, are now used to create 

coatings in several base materials [37, 96, 108, 109, 115–118]. These coatings promote 

osseointegration which leads to a long-term success of implants [119]. In fact, Sergio Allegrini Jr. et al 

reported that the presence of hydroxyapatite promotes the maturation of collagen fibers on titanium 

implants leading to a faster osseointegration [120].  

However, when concerning implants, the existence of a coating can be a detrimental aspect, once 

during implantation, the adhesive strength of the coating could be compromised and the coating can be 

delaminated/destroyed, thus releasing debris along the implantation site. This phenomenon can lead to 

the implant rejection and extraction. In this sense, the use of composites that combine the 

biocompatibility and bioactivity of HA or β-TCP with the favourable mechanical properties of Ti6Al4V, ZrO2 

or PEEK would allow to overcome this problem [109, 115, 121–124]. With these solution, Ti6Al4V, ZrO2 

or PEEK would act as matrix and HA or β-TCP as reinforcement material. These composites, having 

bioactive reinforcement particles embedded in the matrix, can avoid the occurrence of delamination, as 

occurs in coating solutions. 

2.5. POWDER METALLURGY 

 

Powder metallurgy (PM) gathers several manufacturing processes, where a powder material is 

converted into shaped objects that can be used in several applications. The ancient Incas used powders 

to made jewelry from metal powder. The use of powder metallurgy for the production of filaments arises 

with the invention of the electric lamp by Thomas Edison in 1879. Later on, in 1909 W.D. Coolidge 

starred one of the greatest landmarks of PM when he developed a ductile tungsten filament using 

tungsten powder for Edison’s lamp. Thereafter, porous bearings, cemented carbides and electrical and 

magnetic materials were developed using PM [125–127]. 

This technology can be used in numerous applications such as automotive components, structures 

with controlled porosity, electrical and electronics applications, aesthetic materials and devices, 
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biomedical components (like implants), among others [125]. Some examples of PM applications can be 

seen in figure 14. 

 

Figure 14 - Some of the many powder metallurgy applications (a) pulley-timing automotive component, (b) porous devices for gas 
distribution, filtration, and flow control applications (c) orthodontic system bracket, slide, and hook, (d) watch fabricated with PM parts 
[125].  

 

Powder metallurgy techniques have become competitive in comparison with conventional methods 

like casting, machining, hot forging, etc [125, 126]. This competitiveness is related to the various 

advantages of these powder metallurgy techniques. In one hand, unlike many opponents, these 

techniques can be applied to almost all materials such as metals, ceramics, polymers, alloys, 

composites, etc. On the other hand, as in any technique, the economic factor becomes essential when 

producing components. These PM techniques, own a high productivity which is related to a large-volume 

production with a residual material waste and low energy consumption, as can be seen in Figure 15, 

which demonstrates the comparison of energy consumption and materials waste between powder 

metallurgy and alternative techniques [125, 128].  

(a) (b) 

(c) (d) 
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Figure 15 – Energy use in MJ/kg of product and material waste as a percent of the starting material for powder technologies and 
alternative technologies [128]. 

 

Additionally, PM techniques also provide a good precision, in which compared with other 

techniques (Figure 16), offering a good tolerance and surface finishing [125]. However, once the tooling 

costs in PM technologies are quite elevated, they only are considered economical in terms of cost if the 

production rates are high [125, 126, 128] 

 

Figure 16 – Tolerance and surface finish capabilities for various technologies, comparing PM with some of the alternative routes [128]. 

 

Another advantage of powder metallurgy technologies is the ability to produce materials with high 

strength, depending on the technique. Figure 17 shows the comparison of strength ranges when using 

several technologies including PM’s ones [125, 128]. 
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Figure 17 – Strength ranges possible via various forming technologies, including several of the common PM approaches[128]. 

 

Over time, the use of PM techniques has evolved and is constantly growing once operating with 

powders makes possible the manufacture of certain materials that are not possible to produce with other 

techniques. Thus, once powders are the inputs of this technology, its properties and characteristics are 

essential to understand how they affect the process of consolidation. One of these characteristics is 

agglomeration since very small particles are naturally cohesive and form clusters, due to van der Walls 

forces. The solution to overcome this problem is to deagglomerate the particles constituting the 

agglomerate without fracturing them. The same effect of agglomeration can be seen when using powders 

to fabricate composites. The powders mixing step will have a huge influence on the homogeneity of the 

mixture, which will influence the powder consolidation process and dictate the material final properties. 

Figure 18 shows the various homogeneity levels, indicating on the right-hand side the optimal level of a 

homogeneously dispersed mixture [125]. 

 

Figure 18 – A schematic of increasing homogeneity [125]. 
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When increasing the homogeneity of the mixture, the packing density also increases. This 

characteristic is also important in the consolidation phase and is related to other essential characteristics 

of powder, such as powder shape and size. In one hand, concerning powder shape, the more irregular 

is the form of the particle, the lower the packing density. On the other hand, as can be seen in Figure 

19, when particles have different sizes, the smaller ones fill the spaces between the larger ones, 

increasing the packing density. This phenomenon can be counteracted if there were high concentrations 

of smaller particles that will cause a decrease in the packing density by separating the larger particles 

[125]. 

 

Figure 19 – A plot of fractional packing density versus composition for bimodal mixtures of large and small spherical particles [125]. 
 

Among the powder metallurgy techniques, press and sintering and hot pressing will be addressed 

throughout this dissertation. 

2.5.1. PRESS AND SINTERING 

 

Press and Sintering (PS) is a PM technique that densifies powders by applying pressure and 

afterwards sintering them without pressure applied. The compaction process goes through several 

stages. Initially, the powder is placed in a mold (die) (Figure 20), being pressure applied (usually at room 

temperature) by an upper and lower punch, that by moving apply pressure along an axis, in order to 

press the powder. 



Chapter 2 

Development of bioactive materials for dental implants using powder metallurgy 
 

29 

 

Figure 20 - A conventional punch and die set for powder compaction [125]. 

 

As pressure is applied, the powder particles accommodate (repacking), deform and finally bond, 

as shown in Figure 21. 

 

Figure 21 – A view of the stages of powder compaction. At low pressures the particles rearrange to eliminate large pores. Depending on 
the particle hardness, eventually the particles deform at high pressures and particle deformation dominates densification [125]. 

 

This process typically requires the presence of a binder that will allow maintaining the integrity of 

the compact formed (also referred to as green compact), until the sintering process, that will ensure the 

consolidation of the green compact [1,4]. The binder will be burned off the compact during sintering. 

This technology enables the production of materials with low manufacturing cost, however, the 

densification process does not preclude the presence of porosity. It is known that by decreasing porosity, 

higher mechanical properties are obtained. Thus, for materials that require high performance, full 

densification is essential to prevent its failure. Therefore, applying stress, simultaneously with 

temperature, will help to eliminate the porosity by collapsing the pores. The temperature will turn the 

materials ductile and allow their deformation without hardening. This complete densification is then 
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achieved by using processes with pressure and temperature simultaneously such as Hot Pressing 

process [1,4]. 

2.5.2. HOT PRESSING 

 

Hot Pressing (HP) is a full density process that applies pressure and temperature simultaneously. 

HP process begins with the proper mixture of powders which will be subsequently placed in a mold (die), 

heated and compacted by double-action punches in a hot-pressing equipment [129, 130]. The mold 

material most commonly used is graphite, that enables temperature increases up to 2500ºC when under 

vacuum [130]. The increase on the powder temperature is commonly achieved by heating the mold via 

radiation from an external heat source (Figure 22) [126, 130], typically through an induction system, 

with a coil which is located around the mold. 

 

Figure 22 - A cross-sectional view of uniaxial hot pressing [125]. 

 

Graphite molds allow the induction of temperature, however can contaminate the material, 

whereby measures to prevent direct contact of the powder with the graphite should be taken [125]. 

When the powder is placed inside the mold, with a correct positioning of the punches, the system 

is placed in the hot pressing equipment, more precisely in a chamber that applies a desired atmosphere 

(usually vacuum but argon or nitrogen can also be used). A schematic representation of a HP cycle can 

be seen in Figure 23. An initial pressure is applied to promote the rearrangement of the powders. 

Subsequently, the powder is heated to the desired temperature. The desired pressure is then applied 

and both parameters are maintained for a time period until the powder reaches its full densification 

(called sintering stage). Finally, the pressure and temperature are removed, allowing the material to cool 

[125, 126, 129, 130]. 
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Figure 23 – Schematic representation of a hot pressing cycle. 

 

Overall, full density processes will increase the materials properties, such as strength, hardness, 

ductility, wear resistance, etc. Moreover, using temperature and pressure simultaneously will enable to 

densify the materials at much lower temperatures than in conventional sintering process [107]. Similarly, 

densification is achieved at lower pressures with the assistance of high temperature, which does not 

occur in PS process [126]. And although HP processes are somehow expensive, the properties achieved 

make them suitable for numerous applications [125]. And as seen in Figure 16, HP offers a good 

tolerance and surface finishing in comparison with several technologies including other PM techniques. 

Likewise, Figure 17 demonstrates that in general, HP produces materials with high strength when 

compared to PS. 

Despite these advantages, HP also has some weaknesses, such as a lower production rate in 

comparison with press and sintering, and the presence of contaminants on the surface of the powders 

which prevents an effective sintering as in PS process. [125, 128]. 

 

2.6. FINAL REMARKS REGARDING THE DESIGN OF A DENTAL IMPLANT 

 

In implantology, the selection of biomaterials is an essential aspect to promote a long-term success 

of the implant, to enhance osseointegration and also to maintain the necessary mechanical properties of 

the implant in load-bearing applications. 

As mentioned before, Ti6Al4V, ZrO2 and PEEK are biocompatible materials that own good 

mechanical properties, although having a poor integration with the surrounding tissue. Therefore, the 

addition of a bioactive material increases the bioactivity of these base materials. Many researches have 
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focused their work in surface modifications to improve the bioactivity of these materials, like the 

application of a bioactive coating on their surface, however, delamination of the coating may lead to the 

loss of the desired properties. Thus, biocomposites become a good solution to overcome this problem, 

once these bioactive materials are reinforcing a matrix that exhibits good mechanical properties, making 

the final composite a material with both mechanical and bioactive performance, preventing delamination 

to occur. It is expected though that by adding these bioactive materials, the mechanical properties are 

decreased. 

Functionally graded materials (FGMs) are composites that present a gradual transition in 

composition and structure, resulting in a transition of the properties of a material [123, 131]. The idea 

to create a dental implant having an FGM transition would be extremely advantageous. This approach 

would allow that the content of the bioactive materials gradually increases from the inside (0%) to its 

outside (10%), in which this gradual transition reduces the properties mismatch of the final material. As 

an example, the implant inner part would be made of Ti6Al4V and HAp content would gradually increase 

from there, finishing with an outer part of Ti6Al4V-HAp composite. Thus, the interior of the implant 

guarantees the mechanical properties and the outside, that is in contact with the surrounding tissue, the 

bioactive properties [123]. 

Some studies regarding dental applications used different materials discussed in this work, 

however, these studies have been proven that the adhesion strength of two different materials through a 

gradual transition (FGMs) is superior in comparison to coatings. B. Henriques et al. studied the shear 

bond strength of conventional porcelain fused to metal (PFM) in comparison with a functionally graded 

dental restoration after thermal-mechanical cycling. He concluded that the FGM presents a higher shear 

bond strength than the sharp transition PFM, as seen in Figure 24 [132]. 
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Figure 24 – Mean ± standard deviation (SD) of shear bond strength results for conventional porcelain fused to metal specimens (PFM) 
and for functionally graded specimens (FGMR), after thermal and mechanical cycling [132]. 

 

Additionally, in the same study, the evaluation of the mechanical properties revealed that a sharp 

transition between materials results in an abrupt transition of mechanical properties, causing a mismatch 

in mechanical properties which does not happen in the FGM solution, that exhibits a gradual transition 

in properties along the interlayer (Figure 25) [132]. 

 

 

Figure 25 – Mechanical properties measured at the metal-ceramic interface for a sharp (PFM) and a graded transition (FGMR): Young’s 
Modulus and Hardness [132]. 

 

This dissertation focuses on the production and characterization of different types of composites, 

metal-based, ceramic-based and also polymer-based composites that would be incorporated in the design 

of a functionally graded transition between the inner and outer region of a dental implant. 

.
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CHAPTER 3 
MATERIALS AND METHODS 

 

The following chapter presents the experimental procedure of this dissertation referring the 

materials used for producing all the samples as well as a description of the methods used as for 

sample processing but also for its characterization. 
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3.1. RAW MATERIALS AND COMPOSITES DESIGN 

 

The experimental procedure of this dissertation focuses on processing different types of samples 

by powder metallurgy techniques, namely HP and PS and subsequent characterization of the samples 

thus produced. In this sense, for the processing of these composites, different materials were required, 

ranging from Ti6Al4V, Zr02, PEEK, HAp and βTCP. Table 6 shows the particle size of each raw material 

used as well as its manufacturer. Table 7 lists the composition of each sample, for unreinforced materials 

and composites. 

Table 6 - Powders dimension and supplier. 

Raw Material Particle size, d50 (µm) 
Commercial designation/ 

Supplier 

Ti6Al4V 32.53 Ti6Al4V/TLS Technik 

ZrO2 60 TZ-3YB-E/Tosoh corporation 

PEEK 50 
VESTAKEEP® 2000FP/Evonik 

Industries 

HAp 10 
nanoXim.Hap203® 

/Fluidinova S.A. 

βTCP 2.26 BETA-TCP/Trans-Tech,Inc 
 

Table 7 - Composition of the produced materials. 

Produced Materials Composition (vol.%) 

Ti6Al4V 100% Ti6Al4V 
Ti6Al4V-10HAp 90% Ti6Al4V – 10% HAp 

Ti6Al4V-10βTCP 90% Ti6Al4V – 10% βTCP 

ZrO2 100% ZrO2 
ZrO2-10HAp 90% ZrO2 – 10% HAp 

ZrO2-10βTCP 90% ZrO2 – 10% βTCP 

PEEK 100% PEEK 

PEEK-10HAp 90% PEEK – 10% HAp 

PEEK-10βTCP 90% PEEK – 10% βTCP 
 

The morphology of Ti6Al4V, ZrO2, PEEK, HAp and βTCP powders were analyzed using scanning 

electron microscopy (SEM) images and are presented in figure 26, respectively. From SEM images, it is 

possible to observe that all powders have a spherical shape, excepting the PEEK powder that possess 

an irregular shape. The corresponding particle size distribution of each raw material can be seen in figure 

27.  
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Figure 26-SEM images of (a) Ti6Al4V, (b) ZrO2, (c) PEEK, (d) HAp and (e) βTCP powders. 

(a) (b) 

(c) 

(d) (e) 
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Figure 27-Particle size distribution of (a) Ti6Al4V, (b) HAp, (c) βTCP, (d) ZrO2 and (e) PEEK powders (according to the manufacturer). 

 

3.2. METHODS 

3.2.1. DISPERSION METHODS 

 

As mentioned, when using powder metallurgy to fabricate composites, a prior efficient mixing of 

the powders is mandatory in order to obtain final parts with suitable mechanical performance. Some 

powders are cohesive and naturally they stick together and it is difficult to separate or disperse for further 

powder processing and characterization. This formation of agglomerates, especially when using small 

sized reinforcements, occurs due to attractive Van de Walls forces [125, 133, 134], and can also lead to 

parts with lower density [135].  Thus, dispersion methods are required to deagglomerate the particles, 

such as mechanical stirring, ultrasonic agitation, etc [125].  

(a) (b) 

(c) (d) 

(e) 
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In this context, four different dispersion methods were used to prepare composite mixtures and 

were compared in order to conclude which one would be the most suitable for further processing of 

implants with the desired properties. This comparison between the different dispersion methods was 

made using Ti6Al4V-HAp and also Ti6Al4V-βTCP and further extrapolated for the other composites. 

Figure 28 illustrates the four different dispersion methods addressed.  

   
Figure 28- Schematic illustration of the dispersion methods used, where powder A corresponds to the bioactive material (HAp or βTCP) 

and powder B to the biocompatible material (Ti6Al4V). 

 The first dispersion method (A) comes down to simply blending the matrix and reinforcement 

powders. Ti6Al4V-10Hap mixture was prepared using a batch of 0.29g of HAp along with 3,65g of 

Ti6Al4V. Another batch of Ti6Al4V-10βTCP was prepared using 0.28g of βTCP with 3,65g of Ti6Al4V.  

 The second dispersion method (B) corresponds to ball milling. Ball milling, more specifically high 

energy ball milling is a grinding method that can be used as a dispersion method once it is able to 

separate materials due to the interaction between the balls [136]. For this procedure 240 polymeric balls 

with a diameter of 6mm approximately were placed together with the following amount of powder: 0.29g 

of HAp with 3,65g of Ti6Al4V (Ti6Al4V-10HAp mixture) and 0.28g of βTCP with 3,65g of Ti6Al4V (Ti6Al4V-

10βTCP mixture) and mixed by using a high-energy vertical shaker mill.   
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The third dispersion method (C) that was used was ultrasonification, in which ultrasound energy 

is used to agitate particulates in a solution. The principle behind this technique is that when ultrasonic 

waves propagate in a medium, alternating low and high pressure waves are generated, leading to the 

formation of vacuum bubbles that subsequently collapse. This phenomenon, known as cavitation, 

provokes high pressure between the particles and separate them from each other, making ultrasound an 

effective way for deagglomeration [137–139]. Following this procedure, 0.29g of HAp or 0.28g of βTCP 

were weighed and placed together with a small quantity of alcohol. The ultrasound was applied on this 

solution during 30 seconds (40KHz, 200W) and then a weighted amount of Ti6Al4V (3.65g) powder was 

introduced. The volume of alcohol was strictly controlled to make the solution viscous in order to prevent 

the occurrence of decantation. After that, the solutions (Ti6Al4V+HAp in alcohol / Ti6Al4V+ βTCP in 

alcohol) were heated on a furnace for about one hour and a half at 60ºC to allow alcohol evaporation.  

The final dispersion method (D) that was tested comprises a combination of ultrasonification and 

ball milling. Firstly, the bioactive material was weighed (0.29g of HAp or 0.28g of βTCP) and mixed with 

a small amount of alcohol. Afterwards, ultrasound was applied and after some seconds, Ti6Al4V (3.65g) 

was added to this solution. The final solution was then dried in a furnace (similarly to the procedure 

described above) and finally ball milled with 240 polymeric balls having a diameter of 6 mm. 

 

From the four dispersion methods that were tested, ultrasonification (C) was found to be the best 

process, once it shows better dispersion of the reinforcing bioactives in the selected matrix, as will be 

further discussed on chapter 4. This method was applied for producing all the composite materials 

(Ti6Al4V-based composites, ZrO2-based composites and PEEK-based composites).  

3.2.2. HOT PRESSING 

 

Different materials demanded different molds and in this work, three types of molds were designed 

and produced. During the hot pressing process, pressure is applied by two cylindrical punches with a 

diameter of 8 mm, that are inserted inside the mold. Ti6Al4V and Ti6Al4V-based composites were 

processed using a graphite mold with a cylindrical shape with the following dimensions: 8 mm internal 

diameter x 36 mm external diameter x 30 mm height. PEEK and PEEK based- composites were 

processed using a steel mold [8 mm internal diameter x 29 mm external diameter x 45mm height]. 

Figure 29 illustrates each type of mold and punches. On the other hand, ZrO2 and ZrO2-based composites 

were processed with a graphite mold with ceramic inserts as can be seen in figure 30. 
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Figure 29- Molds and punches used to process the materials (a) Ti6Al4V graphite mold and punches (b) PEEK steel mold and punches. 

 

Figure 30 - System used to process ZrO2 and ZrO2-based composite materials. 

Different materials demand different processing conditions, that will be subsequently described in 

detail. 

 

A: Processing of Ti6Al4V and Ti6Al4V-based composites  

In this section Ti6Al4V, Ti6Al4V-10HAp composite and Ti6Al4V-10βTCP samples processing 

condition will be described. 

Initially, the powder mixtures were prepared using the dispersion method mentioned above (C). 

Subsequently, the powders were weighed and placed into the graphite mold. The mold was previously 

painted on its inside as well as in the extremities of the punches with zirconia ink in order to prevent the 

direct contact between the graphite and the sample and consequently prevent the diffusion of carbon 

into the samples. Posteriorly, when the powder was inside the mold and the punches were properly 

positioned, it was again painted with zirconia ink to prevent radiative heat transfer to the chamber. The 

mold was positioned so that the thermocouple was located close to the site where the powders are 

placed, in order to acquire temperature values closest to the ones that powders are in fact withstanding. 

(a) (b) 
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The mold/thermocouple system was placed inside the chamber and centered with the induction coil (the 

apparatus can be seen in figure 31). Vacuum was performed by a vacuum machine (Alcatel Adixen 

2005SD) numbered 1 in figure 32 and an initial pressure was applied to the mold. The powder was 

heated gradually with a heating rate of 78ᵒ/min until it reaches 1175ᵒ and then, a pressure of 40MPa 

was stipulated and maintained for 30 minutes. The heat was provided by an induction coil represented 

by the number 3 in figure 32 (most noticeable in figure 31) and pressure through a hydraulic pump 

numbered by the number 2 also presented in figure 32. The process parameters for Ti6Al4V and Ti6Al4V-

based composites was based on previous studies [140]. During this cycle, the values of pressure and 

temperatures were kept approximately constant. After this time stage the induction was turned off and 

the sample was allowed to cool inside the chamber till room temperature. Vacuum was removed and the 

sample was demolded using a manual press. 

The final samples have a diameter of 8 mm and an average height size of 2 mm, as predicted. 

 

Figure 31-Hot Pressing picture and schematic representation. 
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Figure 32 – Hot Pressing overall system (1) vacuum machine, (2) hydraulic machine, (3) induction coil. 

 

B: Processing of ZrO2 and ZrO2-based composites 

ZrO2, ZrO2-10HAp and ZrO2-10βTCP hot pressing general procedure was somehow similar to 

Ti6Al4V, however some relevant differences are found. Before the hot pressing process and powder 

mixtures by ultrasonification, the ZrO2 powder was heated at 400°C for 30min to remove the binder and 

prevent discoloration of ZrO2 after the sintering process. Furthermore, the mold and the extremities of 

the punches were painted with zirconia ink and the powder was weighed and placed inside the mold. 

After painting the mold outer surfaces, the mold was placed to assure a correct thermocouple positioning. 

When correctly positioned inside the chamber, the powder was heated to 1175°C with a heating rate of 

117.5°C/min while the pressure was gradually applied until 100 MPa. This temperature and pressure 

were thus maintained constant over 15 minutes [141]. Samples with 8 mm diameter and an average 

height size of 2 mm were obtained.  

 

C: Processing of PEEK and PEEK-based composites 

PEEK, PEEK-10HAp and PEEK-10βTCP samples were produced using a steel mold and punches. 

Consequently, it was not necessary to use zirconia ink since steel doesn’t react with PEEK, however it 

2 

1 

3 
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was required to paint the punches with a coupling grease in order to promote the lubrication of the 

punches to reduce friction during the pressing. In this case, the powder was weighted and placed directly 

inside the steel mold and the steel punches positioned. After placing and positioning the mold inside the 

chamber, an initial pressure was applied to compress the powder. The mold was then heated until 

reaching 380°C (above the melting point of PEEK (345°C)) using a heating rate of 80ᵒ/min. Posteriorly, 

the temperature was decreased until 300°C and a pressure of 25MPa was applied and upheld for 5 

seconds. The induction was turned off and the following process was identical to the previous 

approaches. When room temperature was achieved, the sample was removed and demolded, remaining 

with the desired dimensions of 8mm (diameter) x 2mm (height). The processing temperature and 

pressure selection was based on previous studies [51].  

3.2.3. PRESS AND SINTERING 

 

Beside hot pressing process, press and sintering were also performed to produced ZrO2 and ZrO2-

based composite samples. In this process, the samples were produced using a steel mold and punches 

were the steel mold has 10mm internal diameter x 40mm external diameter x 50mm height and the 

punches have both 8mm in diameter but one has 56mm in height and the smaller has 13mm (figure 

33). 

 

Figure 33 – Steel mold and punches used to process the materials 

In this case, contrary to what happens before the hot pressing process of ZrO2 and ZrO2-based 

composites, the ZrO2 powder was not heated at 400°C for 30min to remove the binder once in this 

technique the binder is essential to the maintenance of the green compact. The ZrO2-HAp and ZrO2-βTCP 

powder mixtures were prepared based on the dispersion method selected before.  

The press and sintering process begins with the placement of a zinc stearate inside the mold and 

on the extremities of the punches to facilitate the extraction of the sample out of the mold. Subsequently, 
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the smaller punch is positioned on the mold, the powder weighed and placed into the mold followed by 

the positioning of the higher punch. Then, the powder inside the mold is pressed slowly by a hydraulic 

press (figure 34(a)) with a pressure of 200MPa which was maintained for 30 seconds and then gradually 

removed. Once pressed, the samples were removed from the mold with subsequent sintering in a 

sintering furnace Zirkonofen 700 ultra-vacuum (figure 34(b)) until the sample reaches 1500°C and kept 

for 2 hours with a heating and cooling rate approximately of 8°C/min [142]. The final samples have a 

diameter of 8mm and an average size of 2mm in height, as predicted.  

 

Figure 34-(a) hydraulic press (Bb) Zirkonofen 700 ultra-vacuum sintering furnace. 

 

3.2.4. MATERIALS CHARACTERIZATION 

3.2.4.1. Specimens preparation 
 

Once the samples are processed, they need to be prepared for further characterization, starting 

with the polishing of the samples and finishing with its cleaning.  

The polishing was performed using a MECAPOL P251 polisher (figure 35) and different types of 

sand papers with different meshes.  With this procedure, the purpose is to polish the surface of the 

samples in order to obtain surfaces with near mirror finishing. The series of sand papers used for 

polishing all the samples were: P180, P320, P600, P800, P1200, P2000 and P4000. The polishing 

initiates with the sand paper with the largest grain size (P180) followed by the sand paper with a mesh 

smaller than the previous one (P320), and so forth. Between the exchanges of the papers, the sample is 

rotated 90 ° in relation to the previous position, in order to assess if the previous scratches were 

(a) (b) 
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eliminated. Lastly, after polishing, the samples were all cleaned for 8 minutes in a digital ultrasonic 

cleaner.  

 

Figure 35 – MECAPOL P 251 polisher 

3.2.4.2. SEM/EDS 
 

The different powder mixtures of the different dispersion methods and the final samples (after 

polishing) were analyzed by Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray 

spectroscopy analysis (EDS). SEM analysis provides high magnification imaging of the surface of the 

material which facilitates the image interpretations. SEM generates an electron beam that interacts with 

the sample creating signals that make possible the acquisition of an image. On the other hand, EDS 

technique detects x-rays arising from the ionization of the atoms of a sample which suffered from high-

energy radiation. This x-rays are converted into signals and consequently into an X-ray energy histogram. 

With SEM/EDS images it is possible not only to obtain information concerning the topography and 

composition of the material (SEM) but also provides its chemical characterization (EDS). Thus, this study 

focuses on the analysis of the surface of the samples produced in order to assess the bonding/interface 

between matrix and reinforcement, the existence of porosity, chemical composition, the possible 

degradation of bioactive materials and the potential formation of new compounds during the processing 

of the samples [143, 144]. Figure 36 shows the SEM/EDS equipment used for the analysis, a NanoSEM 

-  FEI Nova 200 (FEG/SEM); EDAX - Pegasus X4M (EDS/EBSD). 

http://www.semat.lab.uminho.pt/Equipamento_1.htm
http://www.semat.lab.uminho.pt/Equipamento_1.htm
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Figure 36 – SEM/EDS equipment. 

Porosity analysis was performed by image processing using the software image J by the application 

of a threshold filter of the images obtained from SEM. 

 

3.2.4.3. Vickers hardness test 

 

Vickers hardness tests were performed in order to obtain the micro-hardness of the samples 

produced. This method consists of indenting the samples with a diamond indenter and from this 

indentation two diagonals will be measured, allowing the calculation of the hardness by using the 

following equation: 

𝐻𝑉 = 1,8544 ×
𝐹

𝑑2, 

where 𝑑 is the arithmetic mean of the two diagonals and 𝐹 the load in kgf.  

The tests were performed along the polished sample using a Vickers micro-hardness tester 

(DuraScan, emcotest). This process uses a quadrangular pyramid that will create an impression on the 

surface of the material (indentation) in a lozenge form. For this technique the samples need to be with 

parallel faces and the face that will be analyzed polished. The calculation of the average hardness values 

was obtained from 5 indents for each sample. Vickers hardness was measure on Ti6Al4V and Ti6Al4V-

based composites under a load of 500g for 15s [145] and PEEK and PEEK-based composites hardness 

was measure using 100g load and a 15s loading time [146]. ZrO2 and ZrO2-based composites hardness 

https://en.wikipedia.org/wiki/Vickers_hardness_test
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was measure with a load of 500g for 15s. Figure 37 shows the Vickers micro-hardness tester used for 

the determination of the hardness of all samples. 

 

Figure 37 – Vickers micro-hardness tester DuraScan, emcotest. 

3.2.4.4. Shear tests 
 

In order to assess the shear strength of the produced materials (Ti6Al4V, Ti6Al4V-HAp; and 

Ti6Al4V-βTCP; Zr02; Zr02-HAp, Zr02-βTCP; PEEK; PEEK- HAp; PEEK-βTCP), shear tests were 

performed. This test assesses the maximum stress that the material can sustain before rupture. Four 

samples were tested for each material that was processed and the average value was calculated.  

The sample was positioned with half of the sample fixed in a metal support, leaving the other half 

exposed, in which the cutting insert will actuate. The test was conducted in a servohydraulic machine 

presented in figure 38 (Instron 8874) with a capacity load cell of 25kN, with a crosshead speed of 0.02 

mm/s, at room temperature (≈ 25℃).  
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Figure 38 – Servohydraulic machine Instron 8874. 

Figure 39 shows the custom-made stainless steel apparatus along with a sliding part armed with 

a cutting tool.  

With the displacement and load taken from the universal testing machine, the stress-strain graph 

can be built and the maximum shear stress determined according to the following equation: 

𝜏𝑚á𝑥 =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑜𝑎𝑑

(𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 × 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
 

where 𝜏 is expressed MPa, the maximum load in N and the diameter and thickness in mm. 
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Figure 39- System apparatus to measure shear stress 
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CHAPTER 4 
RESULTS AND DISCUSSION 

 

Chapter 4 reports all the results of the samples characterization as well as a discussion of them. 

This chapter is divided into subchapters in order to highlight and explain all the results of the 

different types of samples in an organized and perceptible way. The first subchapter exhibits the 

results and discussion from the different powder dispersion methods, then a subchapter that 

evaluate the bioactive materials condition after hot pressing. The follow three subchapters the 

analysis of the results of all samples already processed by the appropriate processing method. 

Finally, in a last subchapter it is presented some additional studies made by other researches 

that are still on going.  
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4.1. DISPERSION METHODS ANALYSIS 

 

The fabrication of composites with suitable mechanical properties is largely related to the prior 

mixing of the powders. Powder agglomeration may compromise the mechanical properties of a 

composite; therefore, it is essential to mix the powders to obtain a dispersed homogeneous mixture. It is 

visible in figure 40, representing a SEM image of βTCP powder, that the particles constituting the powder 

are naturally agglomerated. This can be explained, as previously mentioned, by the attractive Van der 

Walls forces, especially when using powders with small particle sizes [125, 133, 134, 147]. Therefore, 

in order to enhance the mechanical properties of these composites, different mixing processes were 

performed on Ti6Al4V-10HAp and Ti6Al4V-10βTCP powders mixtures, as described in detail in Chapter 

3 - Materials and methods.  

These results are presented divided into two sections: a first section presenting the results of the 

different mixing processes of Ti6Al4V-10HAp mixtures and a second section showing the results of 

Ti6Al4V-10βTCP mixtures. 

 

Figure 40 – SEM image of βTCP powder. 

4.1.1. TI6AL4V-10HAP POWDERS MIXTURE 

 

Figure 41 shows SEM images of Ti6Al4V-10HAp powders mixture using the first dispersion method 

(A), that is simply blending the powders. Likewise, it is possible to observe in figure 42 the SEM images 

of Ti6Al4V-10HAp powders mixture when mixed by ball milling (B). Ultrasonic agitation (C) results are 

visible in figure 43 and finally, the images from the combination of ultrasonification with ball milling, the 

last dispersion method (D), are presented in figure 44. These SEM images show two types of detection 

modes: the first one is secondary electron image (SE) and the second one backscattered electron image 
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(BSE). SE images provides information about the morphology of the powders and BSE images are related 

to the atomic number of the specimen, which means that this type of detection mode provides 

information about the different elements, due to the differences in their atomic contrast. With this 

detection mode, it is then possible to distinguish on the images (presented in b) images of each figure) 

the presence of Ti6Al4V in a lighter color and HAp in a darker color. Particle size of each powder could 

allow to distinguish Ti6Al4V from HAp once Ti6Al4V have a higher particle size (d50=32.53µm) in 

comparison with the bioactive material (d50=10µm).  

By analyzing the images below, it is possible to conclude that among these four dispersion 

methods, the ones who presented a better distribution of the HAp in the matrix (Ti6Al4V) are the method 

(A) and (C).  

In figure 41 (dispersion method A), it is possible to observe a homogeneous mixture between 

Ti6Al4V and HAp powders. However, when high energy ball milling was performed (B) on these mixtures, 

figure 42 shows that hydroxyapatite particles not have the same particle size that had inittialy 

(d50=10µm). In fact, it can be observed that the HAp particles fracture and start to surround the Ti6Al4V 

particles, phenomenon that could prevent further compaction and sintering, since it will decrease particle 

packing and, consequently, the bonding between Ti6Al4V particles [125]. This phenomenon was not 

verified when Ti6Al4V-10HAp powder mixtures where ultrasonic mixed (C). Figure 43 demonstrates that 

the process of ultrasonification allows a homogenous dispersion of the powders without the occurrence 

of the fracture of the particles, as happens in ball milling process. Thus, in the fourth method (D) after 

ultrassonification a ball milling process were performed (figure 44) and the same phenomenon of HAp 

particle fracture occurs. 

This study allowed concluding that the most suitable powder dispersion method, for guaranteeing 

a further effective compaction and sintering are methods (A) and (C). 
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Figure 41 -- SEM images of Ti6Al4V-10HAp powders mixture after blending (method A) at magnifications of 1000x (left) and 

4000x (right). (a) secondary electron image (SE) and (b) backscattered electron image (BSE). 

 

 

Figure 42 - SEM images of Ti6Al4V-10HAp powders mixture after ball-milling (method B) at magnifications of 1000x (left) and 

4000x (right). (a) secondary electron image (SE) and (b) backscattered electron image (BSE). 

(a) 

(b) 

(a) 

(b) 
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Figure 43 - SEM images of Ti6Al4V-10HAp powders mixture after ultrasonification (method C) at magnifications of 1000x (left) 

and 4000x (right). (a) secondary electron image (SE) and (b) backscattered electron image (BSE). 

 

 

Figure 44- SEM images of Ti6Al4V-10HAp powders mixture after ultrasonification followed by ball-milling (method D) at 

magnifications of 1000x (left) and 4000x (right). (a) secondary electron image (SE) and (b) backscattered electron image (BSE). 

(a) 

(b) 

(a) 

(b) 
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4.1.2. TI6AL4V-10ΒTCP POWDERS MIXTURE 

The following figures report the results obtained from the different dispersion methods for Ti6Al4V-

10βTCP powder mixture. SEM images of the first dispersion method of blending the powders (method 

(A)) are indicated in figure 45. Ball milling powder mixture (method (B)) results can be observed in figure 

46 and ultrasonification method (C) in figure 47. Finally, figure 48 corresponds to the results from the 

powder dispersion method (D).  

Unlike what happens in Ti6Al4V-10HAp mixtures, the results from the first dispersion method (A) 

were not satisfactory. As previously mentioned in this chapter, βTCP particles are naturally agglomerated, 

due to their lower particle size (d50=2.26µm). This fact alone allows concluding that simply blending the 

powders would not deagglomerate the powder particles, as can be clearly seen in figure 45. Further, 

when the powder mixture was subjected to the ball milling process (B), a very similar outcome was 

verified, as can be seen in figure 46, showing that the βTCP particles are covering the Ti6Al4V particles. 

However, when using simply ultrasonic agitation (C), not only the βTCP particles are not involving the 

Ti6Al4V particles, but they are homogeneously dispersed between Ti6Al4V particles (figure 47). This does 

not occur when performing ball milling after ultrasonification (D) once it is observable in figure 48 that 

results similar to those obtained by the ball milling process were achieved. 

Therefore, in this powder mixtures, these SEM images allowed to conclude that the most suitable 

powder dispersion method for achieving an effective compaction and sintering are method (C), 

ultrasonification. 

 

Thus, the most suitable method for Ti6Al4V-10HAp and Ti6Al4V-10βTCP powder mixtures is 

ultrasonification (method (C)), once both results are positive for a homogeneous reinforcement 

dispersion. The different results founded in both powders mixtures, Ti6Al4V-10HAp and Ti6Al4V-10βTCP, 

are related to the differences of particle sizes of each bioactive material. As mentioned, βTCP particle 

size are low (d50=2.26µm) once HAp particle size are 10µm, thereby, the probability of particle 

agglomeration is higher on βTCP than on HAp, once smaller particle have higher tendency to 

agglomeration [125].  

In light of these conclusions, ultrasonification method was selected to be used for preparing all the 

other composites mixtures, namely PEEK and PEEK-based composites and ZrO2 and ZrO2-based 

composites. 
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Figure 45 – SEM images of Ti6Al4V-10βTCP powders mixture after blending at magnifications of 1000x (left) and 4000x (right).  (a) 

secondary electron image (SE) and (b) backscattered electron image (BSE). 

 

Figure 46 - SEM images of Ti6Al4V-10βTCP powders mixture after ball-milling at magnifications of 1000x (left) and 4000x (right). (a) 

secondary electron image (SE) and (b) backscattered electron image (BSE). 

(a) 

(b) 

(a) 

(b) 
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Figure 47 - SEM images of Ti6Al4V-10βTCP powders mixture after ultrasonification at magnifications of 1000x (left) and 4000x (right). (a) 

secondary electron image (SE) and (b) backscattered electron image (BSE). 

 

 

Figure 48 - SEM images of Ti6Al4V-10βTCP powders mixture after ultrasonification follow by ball-milling at magnifications of 1000x (left) 

and 4000x (right). (a) secondary electron image (SE) and (b) backscattered electron image (BSE). 

  

(a) 

(b) 

(a) 

(b) 
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4.2. ASSESSMENT OF THE BIOACTIVE MATERIALS CONDITION AFTER HOT PRESSING 

 

Since these materials are going to be processed at high temperatures, another aspect to take in 

consideration is the thermal behavior of HAp and βTCP. In fact, many studies have been made in order 

to analyze the effect of temperature on these materials.  

As previously mentioned, the decomposition of βTCP occurs at temperatures well above those 

used in this study for the processing of the samples (around 1450°C) [106], however the same does 

not occur with HAp. Several studies already report that HAp can suffer decomposition when exposed to 

certain temperatures and/or environment conditions [96, 106, 107, 14–150]. Therefore, degradation of 

HAp not only could lead to the loss of its bioactive properties but also could inhibit densification, which 

would reduce the composite mechanical properties [107]. 

Therefore, a XRD analysis was performed on hydroxyapatite after sintering at 1175°C during 30 

minutes. XRD analysis was also done in hydroxyapatite initial powder in order to compare with the 

sintered HAp XRD spectrum. The results are evidenced in figure 49. From this analysis it is possible to 

conclude that, despite the peaks are not extremely well-defined, the peaks of the powder spectrum are 

in accordance with HAp peaks, thereby demonstrating that there are no other components in the starting 

powder. The sintered HAp XRD spectrum revealed more defined peaks, with higher intensity (figure 

49(b)), which proves the crystallization of the HAp powder. Chunyan Wang et al. reported similar results 

when investigating the influence of temperature on HAp, concluding that, with the increase of 

temperature, the HAp powder crystallized better [106]. Y. Yang et al. when investigating the interaction 

between HAp and titanium at high temperatures also reported XRD spectra with similar results [148].  

Comparing these two spectra, it is possible to conclude that the peaks presented in sintered-HAp 

corresponds to the peaks of the HAp powder. This indicates that no considerable degradation occurred 

on HAp when sintering at 1175°C during 30 minutes.  
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Figure 49 – XRD plot of (a) HAp powder and (b) HAp sample after Hot Pressing at 1175º during 30 minutes. 

 

 

4.3. TI6AL4V AND TI6AL4V-BASED COMPOSITES CHARACTERIZATION 

 

After selecting the most effective dispersion method and assessing the HAp conditions, a complete 

characterization of the samples processed by hot pressing was performed. In this subchapter, the results 

for the Ti6Al4V and Ti6Al4V-based composites are presented and discussed. For a comparative analysis, 

in addition to the analysis of Ti6Al4V-based composites, the investigation of the samples constituted only 

by the metal matrix (Ti6Al4V) were also characterized. SEM images of polished surfaces of Ti6Al4V, 

Ti6Al4V-10HAp and Ti6Al4V-10βTCP, at magnifications of 500x and 1000x are presented in figure 50 

(a), (b), (c), respectively. Ti6Al4V images exhibit a good densification due to the absence of considerable 

porosity on the sample, which means that hot pressing parameters were adequate to achieve full 

densification. This absence of porosity is known to lead to an improvement of the mechanical properties 

of the sample [125].  

When adding a bioactive reinforcement to Ti6Al4V, it is possible to distinguish the reinforcement 

from the metallic matrix due to the different coloring, as seen in both Ti6Al4V-10HAp and Ti6Al4V-

HAp 

(a) 

(b) 
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10βTCP SEM images (Figure 11). As observed in Ti6Al4V samples, both reinforced samples present a 

good densification, once no visible porosity was detected for these samples.  

 

 

Figure 50 - SEM images of (a) Ti6Al4V, (b) Ti6Al4V-10HAp and (c) Ti6Al4V-10βTCP samples at magnifications of 500x (left) and 1000x 

(right). 

 

Additionally, an analysis of the chemical composition of each samples was performed by EDS. 

EDS analysis on Ti6Al4V sample was done to compared the results with the ones obtained on the 

composite samples. Ti6Al4V EDS results are shown in Table 8 that exhibits the chemical composition, 

(a) 

(b) 

(c) 
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in atomic percentage, of the marked zone of figure 51. The chemical compositions of four marked zones 

of Ti6Al4V-10HAp sample are presented in table 9, and the marked zones can be visible in figure 52. 

The first zone, marked as Z1, is a zone where the bioactive material can be found due to the 

presence of the elements of HAp. However, being HAp formula Ca10(PO4)6(OH)2, its chemical composition 

in atomic percentage should be 22.72% Ca 13.64% P, 59.09% O and 4.55% H, approximately, which is 

not observed in the obtained results. This could be explained by the fact that EDS is a semi-quantitative 

analysis, although not excluding a minor possible formation of other components, thereby indicating 

decomposition of hydroxyapatite, which may happen either by high temperature processing, atmosphere 

used, or by reaction with Ti6Al4V.  Given the obtained composition, the absence of hydrogen in the 

chemical composition could be explain by the process of dihydroxylation. Researchers have reported that 

this phenomenon of loss of the radical OH is gradual but occurs at temperatures below at which is used 

to process the samples of this study [107, 148]. Additionally, the same quantity of calcium (Ca) and 

oxygen (O) could represent the presence of calcium oxide that was formed by the decomposition of 

hydroxyapatite. Moreover, the possible formation of calcium titanate (CaTiO3) is not ruled out. Some 

studies revealed that sinterization of HAp/Ti6Al4V under vaccum conditions could lead to the formation 

of titanium dioxide (TiO2) due to the interaction of the Ti ions with the O ions derived from HAp, which 

could further interact with Ca ions from HAp leading, consequently, to the formation of CaTiO3 [151]. In 

a second zone, marked as Z2 in figure 52, a small percentage of phosphorus (P) and aluminium (Al) but 

with higher quantities of Ti is found. This may indicate that this zone may belong to a bioactive material 

cluster, formed during hot pressing, that was fractured and removed, possibly as a result of the polishing 

of the sample. The third zone, marked as Z3, indicate the metallic matrix composition once the chemical 

composition of this zone is similar to the chemical composition of the Ti6Al4V sample (table 8). However, 

the absence of vanadium (V) that is subsequently found in the fourth zone (Z4) which could indicate that 

during processing, the V migrated to the grain boundary forming the delimitation observed in figure 52 

in a lightest color. 

Finally, the chemical compositions of several marked zones of Ti6Al4V-10βTCP sample (figure 

53) are presented in table 10. Similar results were found in the EDS analysis of this sample. The first 

zone, Z1, indicate a high quantity of titanium (86.9 at. %), 10.7 at. % of P, 2 at. % of Al and a very low 

amount of Ca (0.4 at.%). These amounts could also indicate that this zone could belong to a bioactive 

cluster, formed during hot pressing, that was removed when polishing the sample. The second zone, Z2, 

indicate the metallic matrix composition due to the its chemical composition similar to the composition 
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of Ti6Al4V sample (table 8). However, similar to Ti6Al4V-10HAp, the absence of V in this zone which is 

found in a third zone (Z3) could be related to the grain boundary migration of V. 

 

Table 8 – Chemical composition (in at. %) of marked zone of figure 
51. 

 

 

 

 

 

 
 
 

 
Figure 51 – SEM images of Ti6Al4V with marked zone for EDS analysis. 

 

Table 9 – Chemical composition (in at. %) of marked zones of figure 52. 
 

Figure 52 - SEM images of Ti6Al4V-10HAp with marked zone for 
EDS analysis. 

 
Table 10 – Chemical composition (in at. %) of marked zones of figure 

53. 

Figure 53 - SEM images of Ti6Al4V-10βTCP with marked zone for 

EDS analysis. 

Elements Z1 

Ti 90.5 

Al 5.5 

V 4.0 

Elements Z1 Z2 Z3 Z4 

Ti 38.2 90.0 94.4 82.4 

O 30.7 - - - 

Ca 27.9 - - - 

Al 1.8 1.6 5.6 5.1 

P 1.3 8.5 - 0.4 

V - - - 12.1 

Elements Z1 Z2 Z3 

Ti 86.9 94.2 83.0 

O - - - 

Ca 0.4 - - 

Al 2.0 5.4 5.3 

P 10.7 0.4 0.4 

V - - 11.2 

Z1 

Z2 

Z3 

Z1 

Z2 

Z3 

Z4 

Z1 
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Subsequently, the samples were characterized in terms of hardness and shear strength. The 

hardness values (figure 54) for Ti6Al4V, Ti6Al4V-10HAp, Ti6Al4V-10βTCP were 340.20 HV, 473.33 HV 

and 520.60 HV, respectively. The hardness value of Ti6Al4V samples are in agreement with the values 

found in the literature [145]. Moreover, it is also expected that the addition of hard bioactive materials 

as a reinforcement will increase hardness values [90, 152]. On the other hand, shear test results 

exhibited shear strength values for Ti6Al4V, Ti6Al4V-10HAp, Ti6Al4V-10βTCP of 547.73 MPa, 209.54 

MPa and 188.50 MPa, respectively (figure 55). These results show that the reinforcement significantly 

decrease the shear strength, which are in accordance with the literature [90, 123], once these fragile 

areas reduce the effective resistant area of the sample cross-section subjected to shear.  

 

 
Figure 54 – Average hardness (HV) for Ti6Al4V, Ti6Al4V-10HAp and Ti6Al4V-10βTCP composites. 

 

 
Figure 55 - Average shear strength for Ti6Al4V, Ti6Al4V-10HAp and Ti6Al4V-10βTCP composites. 
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4.4. ZRO2 AND ZRO2-BASED COMPOSITES CHARACTERIZATION 

 

The following subchapter presents the results of ZrO2 and ZrO2-based composites samples. 

Similarly, to Ti6Al4V and Ti6Al4V-based composites, EDS analysis were made in samples constituted by 

the ceramic matrix (ZrO2) for comparison with the results of ZrO2-based composites samples. 

Besides ZrO2 and ZrO2-based composites processed by hot pressing, also ZrO2 and ZrO2-based 

composites samples processed by press-and-sintering were characterized.  

SEM images of ZrO2 samples processed by hot pressing and by press-and-sintering are shown in 

figure 56. 

 
Figure 56 - SEM images of ZrO2 samples (a) hot-pressed and (b) press and sintered, at magnifications of 500x (left) and 1000x (right). 

 

By analyzing figure 56, it is possible to identify the presence of some residual porosity in both 

samples, processed by hot pressing as by press and sintering, so it is possible to conclude that the 

densification was not total. However, it could also be concluded that the densification was better in the 

samples processed by hot pressing than in those produced by press and sintering. This conclusion was 

confirmed by image analysis using ImageJ software. With this software it is possible to apply a threshold 

filter to the images acquired, to highlight the pores and thus measure the percentage of porosity of the 

(a) 

(b) 
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sample. An example of this procedure application is shown in figure 57, for each sample, being the black 

dots the porosity found on the samples. This procedure revealed an average porosity value of 0.0855 

and 0.3360 % for hot-pressed and press-and-sintered samples, respectively. These values correspond to 

a densification of 99.9% for HP samples against 99.7% for PS ones. Although the value found for PS was 

lower than for HP, both procedures allow a good densification. 

 

 
Figure 57 - Example of porosity measuring of ZrO2 (a) hot-pressed and (b) press-and-sintered samples. SEM image in backscattered view 
(left) and the same SEM image with a threshold filter enhancing the porosity (right). Porosity percentage in the tables. 

 

SEM images of ZrO2-based composites processed by hot pressing as well as of the composites 

produced by pressing and sintering are presented below. SEM images of ZrO2-10HAp samples produced 

by both processing methods are shown in figure 58. For both, it is possible to identify the HAp particles 

dispersed in the ZrO2 matrix. Image analysis was not possible to performed in this samples to measure 

porosity once the software cannot distinguish the pores from the reinforcement, what could lead to higher 

porosity values than they would be in reality. However, it is visible more porosity in press-and-sintered 

(a) 

(b) 
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samples than in hot-pressed ones, even though both samples presented low porosity. Analogous 

conclusions can be taken from ZrO2-10βTCP SEM images, presented in figure 59. These results showing 

higher porosity in press-and-sintered samples are in accordance with literature [125]. Nevertheless, ZrO2-

based composite samples seem to present lower porosity than zirconia samples, which may indicate 

that the reinforcement improves the densification process. 

 

 
Figure 58 - SEM images of ZrO2-10HAp samples (a)hot-pressed and (b) press-and-sintered, at magnifications of 500x (left) and 1000x 
(right). 

 

(a) 

(b) 
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Figure 59 - SEM images of ZrO2-10βTCP samples (a)hot-pressed and (b) press-and-sintered, at magnifications of 500x (left) and 1000x 

(right). 

 

Furthermore, in order to measure the chemical composition of each sample, EDS analysis were 

performed. Once again, EDS analysis of ZrO2 samples (HP and PS) was made in order to compare these 

results with the ones obtained for ZrO2-based composites. Table 11 displays the chemical composition, 

in atomic percentage, for hot-pressed and press-and-sintering samples, of the marked zones in figure 

60(a) and (b) respectively. The values obtained for both samples were similar; allowing concluding that 

the processing method does not influences the chemical composition of ZrO2. 

The chemical composition of ZrO2-10HAp samples processed by hot pressing and by press and 

sintering are presented in table 12. The chemical composition was made for different zones in the 

samples in order to identify the ceramic matrix and the bioactive reinforcement. Those marked zones are 

identified in figure 61. The first zone (Z1), in both samples, correspond to the bioactive reinforcement, 

due to the presence of the typical elements of HAp. As mentioned, HAp atomic percentages are 22.72% 

Ca 13.64% P, 59.09% O and 4.55% H, approximately, which are similar to the results obtained for HP 

and PS samples, indicating that in these zones minor or no reaction occurred. The increase of Ca in ZrO2-

10HAp processed by HP may indicate a possible decomposition of HAp, not discarding the hypothesis 

of calcium oxide formation, although the semi-quantitative EDS analysis by itself could induce some of 

(a) 

(b) 
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these changes. It is also possible to observe from the EDS analysis of these zones the absence of 

hydrogen in the chemical composition which may indicate the occurrence of dehydroxylation. The second 

zone (Z2), in both samples, indicate that these regions correspond to the ceramic matrix, once these 

values are similar to those obtained in the ZrO2 samples (table 11). 

EDS analysis performed in ZrO2-10βTCP HP and PS samples revealed analogous results as those 

obtained in ZrO2-10HAp samples. Table 13 shows the chemical composition of the marked zones shown 

in figure 62, from each sample. The first zone (Z1), for both samples, corresponds to the bioactive 

reinforcement. Likewise, being βTCP formula Ca3(PO4)2, the chemical composition (at. %) should be 

approximately as follow: 23.08% Ca, 15.4% P and 61.5% O. Therefore, these values when compared with 

the obtained ones are similar, allowing to conclude that minor or no reaction occurred in these zones on 

both samples. One the other hand, when analyzing the values obtained for the second zone (Z2), in both 

samples, it is possible to conclude that these zone corresponds to the ceramic matrix due to the similarity 

with the values obtained in ZrO2 samples (table 11). 

Table 11 – Chemical composition (in at. %) of marked zones in hot-
pressed (top) and press-and-sintered (bottom) samples of figure 60. 

 

 

HP 

Elements Z1 

O 53.8 

Zr 46.2 

PS 

Elements Z1 

O 52.5 

Zr 47.5 

Figure 60 - SEM images of ZrO2 with marked zone for EDS analysis in (a) hot pressed and (b) press-and-sintered samples. 

(a) 

(b) 

Z1 

Z1 
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Table 12 - Chemical composition (in at. %) of marked zones in hot-

pressed (top) and press-and-sintered (bottom) samples of figure 61. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 13 - Chemical composition (in at. %) of marked zones in hot-
pressed (top) and press-and-sintered (bottom) samples of figure 62. 
 

 

 

 

 

 

 

 

 

 

 

 

HP   

Elements Z1 Z2 

O 45.5 51.5 

Zr 6.7 47.1 

Ca 30.3 1.2 

P 16.2 0.2 

Cl 1.3 - 

PS   

Elements Z1 Z2 

O 50.2 54.0 

Zr 5.8 44.8 

Ca 27.9 1.2 

P 16.2 - 

HP   

Elements Z1 Z2 

O 49.2 54.2 

Zr 13.2 44.7 

Ca 23.6 1.1 

P 1.,0 - 

Cl 0.7 - 

PS   

Elements Z1 Z2 

O 50.4 55.6 

Zr 10.0 42.8 

Ca 24.9 1.2 

P 14.7 0.4 

Z1 

Z2 

(a) 

Z1 
Z2 

(b) 

Figure 61 - SEM images of ZrO2-10HAp with marked zone for EDS analysis in (a) hot pressed and (b) press-and-sintered samples. 

Z1 

Z2 

(a) 

Z1 

Z2 

(b) 

Figure 62 - SEM images of ZrO2-10βTCP with marked zone for EDS analysis in (a) hot pressed and (b) press-and-sintered samples  



Chapter 4 

Development of bioactive materials for dental implants using powder metallurgy 
 

71 

The measured Vickers hardness for ZrO2, ZrO2-10HAp and ZrO2-10βTCP for PS samples were 

1490.5 HV, 1418.25 HV and 1701.75 HV, respectively, as can be seen in figure 63. The hardness value 

of ZrO2 are similar to those found in literature [153]. The addition of a bioactive reinforcement on ZrO2 

samples should increase the hardness of the composite due to the higher stiffness of the bioactive 

material. This is confirmed on the results obtained on ZrO2-10βTCP samples, however this didn’t occur 

on ZrO2-10HAp.  

Shear tests were performed for ZrO2 and ZrO2-based composites processed by hot pressing and 

also ZrO2 and ZrO2-based composites samples processed by press-and-sintering. Shear test results 

indicate shear strength values for ZrO2, ZrO2-10HAp and ZrO2-10βTCP hot-pressed samples are 172.91 

MPa, 123.41 MPa, 168.13 MPa, respectively (average and standard deviation values shown in figure 

64). On the other hand, shear strength values for ZrO2, ZrO2-10HAp and ZrO2-10βTCP press-and-sintered 

samples are 122.92 MPa, 115.87 MPa and 120.56 MPa, respectively, as can be seen in figure 64. The 

results obtained for both samples show that the addition of the reinforcement decreased the shear 

strength, as expected. When comparing with HP samples, PS samples present lower shear strength 

values, which can be explained by the presence of higher porosity in these samples in comparison with 

HP samples. 

 
Figure 63 - Average hardness (HV) for ZrO2, ZrO210HAp and ZrO2-10βTCP composites processed by press-and-sinter. 
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Figure 64 - Average shear strength for hot pressed and press and sintered ZrO2, ZrO2-10HAp and ZrO2-10βTCP composites. 

 

 

4.5. PEEK AND PEEK-BASED COMPOSITES CHARACTERIZATION 

This subchapter will present and discuss the results from PEEK and PEEK-based composites, 

presenting a comparative analysis between PEEK and composite samples. SEM images of PEEK and 

PEEK-based composites samples are presented in figure 65. 

From SEM analysis of PEEK samples (figure 65(a)), it is observable a homogeneous surface 

without no porosity. The same results are observed in PEEK-based composites (figure 65(b) and (c)) 

where it is also possible to identify the HAp (figure 65(b)) and βTCP (figure 65(c)) particles dispersed in 

the polymeric matrix, in which the white phase is the bioactive material and the dark one is PEEK. These 

results allow to conclude that the absence of porosity on PEEK and PEEK-based composites was due to 

a full densification of the samples and to a good dispersion of the bioactive materials in the matrix. 
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Figure 65 - SEM images of (a) PEEK, (b) PEEK-10HAp, (c) PEEK-10βTCP samples at magnifications of 500x (left) and 1000x (right). 

 

Furthermore, the EDS results shown in table 14, 15 and 16 correspond to the chemical 

composition, in atomic percentage, of PEEK, PEEK-10HAP, PEEK-10βTCP marked zones in figures 

66,67,68, respectively.  

Table 14 indicates the chemical composition (at. %) of the marked zone on PEEK sample shown 

in figure 66. These values were acquired in order to be compared with the ones of PEEK-based 

composites. 

(a) 

(b) 

(c) 
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The chemical composition of PEEK-10HAp and PEEK-10βTCP samples are presented in table 15 

and 16, respectively. In these samples, EDS analysis were performed in two zones, as can be seen in 

figure 67 and 68. For both samples, the results obtained from Z1 still own a high percentage of PEEK 

composition but higher content of Ca and P are found in these zone in comparison with the second zone 

Z2. This higher content of Ca and P corresponds to a zone of agglomeration of the bioactive material. 

The second zone, when compared with the results obtained from PEEK samples, allow to conclude that 

this zone only presents the polymeric matrix once the chemical composition is similar to the composition 

obtained in table 14. 

Table 14 – Chemical composition (in at. %) of marked zone of figure 66. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 66 – SEM images of PEEK with marked zone for EDS analysis. 
 

Table 15 – Chemical composition (in at. %) of marked zones of figure 
67. 

 
 
 
 
 
 
 
 
 
 
 

Figure 67 – SEM images of PEEK-10HAp with marked zones for EDS analysis. 

 

Elements Z1 

C 85.3 

O 14.7 

Elements Z1 Z2 

C 67.8 84.2 

O 23.7 14.4 

Ca 5.0 0.9 

P 3.5 0.6 

Z1 
Z2 

Z1 
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Table 16 – Chemical composition (in at. %) of marked zones of figure 68. 

 
Figure 68 – SEM images of PEEK-10βTCP with marked zones for EDS analysis.  

 

Vickers hardness and shear strength results for PEEK, PEEK-10HAp and PEEK-10βTCP are given 

in figure 69 and figure 70, respectively. Vickers hardness results indicate hardness values for PEEK, 

PEEK-10HAp and PEEK-10βTCP of 25.86 HV, 29.27 HV and 29.05 HV, respectively (average and 

standard deviation values shown in figure 69). PEEK-based composites revealed higher hardness than 

PEEK samples, which is expected due to higher stiffness of the bioactive materials. These results are in 

accordance with literature [10, 89]. 

On the other hand, shear tests results indicate shear strength values for PEEK, PEEK-10HAp and 

PEEK-10βTCP of 67.81 MPa, 65.10 MPa and 66.91 MPa, respectively (figure 70). PEEK-based 

composites present relatively lower shear strength when compared with PEEK samples. This could be 

explained by the difference in thermal expansion coefficients between the materials, which can lead to 

internal stresses and thus reduce the overall mechanical properties; and/or could be a result of cracks 

that may exist around the HAp particles that, when the load is applied, leads to sample fracture [10, 

154]. However, this decrease on shear strength of PEEK-based composites is low, which can be 

explained by the good densification achieved in this samples. 

 

Elements Z1 Z2 
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Figure 69 – Average hardness (HV) for PEEK, PEEK-10HAp and PEEK-10βTCP composites. 

 

 
Figure 70 - Average shear strength for PEEK, PEEK-10HAp and PEEK-10βTCP composites. 
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4.6. ONGOING RESEARCH 

 

Some of the samples processed in this study are being used to perform other tests, conducted by 

other researchers. For the different materials, they comprise wear and biological tests, with some 

preliminary results being presented in this section. Additionally, corrosion, tribocorrosion and fatigue tests 

will be further performed on these samples. 

Wear tests were performed on all samples in order to measure the wear rate of the samples, in 

order to conclude on the potential of these composites for use in implantology, by comparing them with 

the non-reinforced materials. 

Wear tests of Ti6Al4V and Ti6Al4V-based composites samples were performed by MSc student 

Telma Dantas. To accomplish these tests, samples were processed by hot pressing according to the 

process previously described in this thesis. Then, ball-on-flat (BOF) sliding wear test were performed. In 

this test, an alumina ball slides against the samples with the application of a vertically load through the 

ball. The sliding was accomplished with a constant stroke length of 4mm, an oscillating frequency of 1Hz 

and in a phosphate buffered saline (PBS) medium at 37°C. Therefore, the alumina ball applied a normal 

load of 3N, 5N and 30N on the samples during 1-hour sliding time which corresponds to a total sliding 

distance of 28.8 m.  

The specific wear rate measured for Ti6Al4V and Ti6Al4V-based composites are presented in figure 

71.  

 
Figure 71 - Specific wear rate for the tested Ti based materials against Al2O3 in presence of PBS at 37 ºC. 
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It can be visible that the specific wear rate for Ti6Al4V-based composites increases in comparison 

with Ti6Al4V samples. This means that the addition of a bioactive material to Ti6Al4V decreases the wear 

resistance of the composite, which can be explained by the presence of agglomerates of the bioactive 

particles that, during sliding, fracture and are detached from the samples, leaving cavities that will 

increase wear rate. Figure 53 and 54 also shows the presence of some of these grooves before wear 

tests, which also indicates that, for these samples, the wear rate will be higher than those in which these 

cavities does not exist. Additionally, bioactive particles released at the sample surface will enhance 

abrasion and consequently increasing of wear rate. The differences between the two Ti6Al4V-based 

composites could be associated to the particle size of each bioactive material. Once HAp has a particle 

size of 10 µm (d50), the clusters will be bigger than βTCP that has a particle size of 2.26 µm (d50) 

which will indicate a higher wear rate on Ti6Al4V-10HAp samples than on Ti6Al4V-10βTCP ones. Another 

aspect to take in consideration is the chemical bonding between these bioactive materials with Ti6Al4V. 

Previous studies reported the bonding strength on metal/HAp interface as a weakness on the final 

product. Therefore, during wear tests, being the bonding strength between these materials poor, the 

detachment of HAp particles could occur which will consequently increase wear rate [155, 156]. On the 

other hand, it is understandable that a higher load applied to the sample will intensify abrasion and 

consequently wear rate. 

Similarly, wear tests on ZrO2 and ZrO2-based composites samples processed by press and sintering 

were carried out by researcher Cristiano Abreu. The experimental procedure was very similar with the 

one used in Ti6Al4V and Ti6Al4V-based composites samples. The reciprocating sliding tests were 

performed at 5N normal load by an alumina ball, at a sliding frequency of 1 Hz, with a stroke lenght of 

4 mm in presence of PBS at 37°C during 1h (total sliding distance=28.8mm). Figure 72, shows the 

specific wear rate measured for the studied samples at the parameters mentioned above. It can be visible 

that, contrary to what happens on Ti6Al4V and Ti6Al4V-based composites samples, the wear resistance 

increases with the addition of the bioactive phase. It is possible to observe in figure 60(b), 61(b) and 

62(b) that the porosity in ZrO2 samples seems to be a little higher than on ZrO2-based composites, which 

could be related to a higher wear rate in ZrO2 samples. Therefore, being the porosity of ZrO2 samples 

higher, this could mean that the densification of ZrO2-based composites was higher, leading to better 

mechanical properties. These results could also be related to the adhesion between ZrO2 and the bioactive 

materials, once both materials are ceramics. 
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Figure 72 – Specific wear rate for tested ZrO2 based materials processed by press-and-sintering against Al2O3 in presence of PBS at 
37°C. 

 

Wear tests on ZrO2 and ZrO2-based composites samples processed by hot pressing will be 

performed by researcher Mihaela Buciumeanu. These results are not yet available in order to evaluate 

the behavior of these ZrO2-based composite samples in comparison with ZrO2 ones.  

Finally, wear tests on PEEK and PEEK-based composites samples were performed by researcher 

Mihaela Buciumeanu. Once again, the experimental procedure was very similar with the others described 

before. The alumina ball slides against the samples with the application of a vertical load of 30N. The 

sliding was carried out with a constant stroke length of 3 mm, with an oscillating frequency of 1Hz during 

1h sliding time. The tests were lubricated with PBS at 37°C to mimic physiological conditions. The results 

of the specific wear rate of these samples are presented in figure 73. From this figure it is possible to 

conclude that the specific wear rate of Ti-based materials increases with the addition of a bioactive phase, 

being PEEK-10HAp sample the one that presents the highest value. Similarly to what was concluded in 

Ti6Al4V and Ti6Al4V-based composites wear tests, the wear resistance decrease with the addition of the 

bioactive material. Thus, this increase in wear rate on the composite samples could also be due to 

bioactive particles that were released from the samples that will act as abrasive particles and 

consequently, increases wear rate. In the same way, the difference between PEEK-10HAp and PEEK-

10βTCP could be related with the particle size of the bioactive materials, once HAp has a higher particle 

size (d50=10µm) in comparison with βTCP (d50=2.26 µm). 

 

ZrO₂ ZrO₂-10βTCP ZrO₂-10HAp 
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Figure 73 - Specific wear rate for tested PEEK based materials processed by press-and-sintering against Al2O3 in presence of PBS at 
37°C. 

 

Investigation on cellular viability, osteoblast cell function and cell morphology and adhesion are 

now being performed by researcher Gabriela Peñarrieta. Figure 74 shows preliminary results of 

osteoblast cellular viability acquired over 14 days. To accomplish these results a resazurin assay was 

used. Resazurin is a non-fluorescent blue dye that is reduced to a pink colored fluorescent resorufin. This 

reduction is correlated with the number of live organisms.  

 
 Figure 74 – Cellular viability of osteoblast cells acquired over 14 days. 
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Therefore, the results obtained in figure 74 allow concluding that, overall, the addition of bioactive 

materials presents beneficial results in respect of cellular viability, except for PEEK that presents higher 

values in comparison with PEEK-based composites. It is also observable an increase in viability from day 

1 to day 14 in all tested samples, with exception of PEEK-10HAp samples, where cell viability decrease 

along the 14 days. 

 

Overall, this subchapter allows presenting other tests that are being made by other researchers 

on the samples processed in this study. These tests are important once they allow the validation of the 

materials produced in the scope of this thesis. As mentioned, in addition to these tests, tribocorrosion, 

corrosion and fatigue tests are now on going. The results here presented are preliminary data acquired 

by the researchers. Although these results present lower wear resistance, the addition of bioactive 

materials has shown to increase cell viability.  

As mentioned above, the idea of processing these composites would be to use them in the upper 

region of a FGM being the composite a thin layer on the surface of the material. In this FGM, the inner 

zone would be composed only by the matrix that presents good mechanical properties for load-bearing 

applications such as dental implants and the bioactive material will be gradually added towards the outer 

zone. Thus, the decrease of mechanical properties displayed in this study, becomes less significant once 

the mechanical properties will be guaranteed on the inner part of the sample, being the composite a thin 

layer on the outer part. 
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CHAPTER 5 
CONCLUSIONS 

 

Chapter 5 is devoted to the main conclusions drawn from this work presenting also some 

possible pathways for future work. 
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The present dissertation reports the behavior of different materials in order to improve the 

osseointegration process, for further application in dental implants. Therefore, it is possible to present 

the following conclusions: 

 The optimization of the powder dispersion methods allowed to conclude that the best 

dispersion was achieved when using the ultrasonification method; 

 The samples processing using powder metallurgy technologies (Hot Pressing and Press 

and Sintering) was successfully accomplished; 

 Microstructural results showed that Ti6Al4V and Ti6Al4V-based composites presented a 

good densification due to the nonexistence of porosity. ZrO2 and ZrO2-based composites processed 

by hot pressing and press and sintering revealed that the densification was not total due to the 

presence of porosity. Comparing both powder metallurgy techniques, HP samples presented a higher 

densification than PS ones, as predicted. Additionally, it is also possible to conclude that by 

comparing unreinforced ZrO2 and ZrO2-based composites, the composites present, apparently, lower 

porosity. Finally, microstructural results of PEEK and PEEK-based composites showed also a good 

densification with an effective distribution of the bioactive materials in the PEEK matrix. This absence 

of porosity, related to a good densification, was proven to enhance the mechanical properties of the 

samples. 

 Hardness results of Ti6Al4V and Ti6Al4V-based composites showed that the addition of 

bioactive materials to the matrix increased their hardness. Hardness results of ZrO2 and ZrO2-based 

composites revealed higher values on ZrO2-10βTCP samples and lower on ZrO2-10HAp when 

compared with ZrO2 samples. Similar results were verified for PEEK and PEEK-based composites, 

which are related to the stiffness of the bioactive materials, that enhance their hardness. 

 Shear tests revealed that Ti6Al4V has a higher shear strength than Ti6Al4V-based 

composites due to the addition of the bioactive phase. On the other hand, the results obtained from 

ZrO2 and ZrO2-based composites revealed that the addition of bioactive material also decrease the 

shear strength but not as significantly as on Ti6Al4V-based composites. As expected, all HP samples 

exhibited higher shear strength than PS ones. Finally, PEEK and PEEK-based composites shear tests 

results also showed a decrease of shear strength when adding the bioactive reinforcement. 
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 As already mentioned, despite the slight decrease of the mechanical properties of the 

composite samples, as the shear strength values, the addition of bioactive materials to the samples 

brings advantages for dental implantology once these materials promote a higher osseointegration.  

 

With these findings, the future work should focus on the following aspects: 

 XRD characterization on all samples to confirm the values obtained in EDS analysis; 

 Development of functionally graded materials based on these composites, to produce 

materials were the inner zone is composed by either of the matrix materials (Ti6Al4V, ZrO2 or 

PEEK) which ensures the necessary strength for load-bearing applications and the use of a 

composite on the outer zone to promote bioactive properties and therefore enhance 

osseointegration.  

 Production of a HAp/β-TCP composite, instead of using HAp or β-TCP as a reinforcement, 

once these two materials have different degradation rates therefore adapting to bone 

regeneration. 

 Explore the use of alternative materials such as bioglass which improves surface bioactivity 

and silver nanoparticles which have antibacterial properties preventing dental implant 

infections. 
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