Universidade do Minho
Escola de Engenharia
Departamento de Informatica

Luis Martinho de Aragao Rego da Silva

Intelligent feedback system
for programmer’s profile improvement

January 2020






Universidade do Minho
Escola de Engenharia
Departamento de Informatica

Luis Martinho de Aragao Rego da Silva

Intelligent feedback system
for programmer’s profile improvement

Master dissertation
Master Degree in Software Engineering

Dissertation supervised by
Prof. Pedro Rangel Henriques
Prof. Maria Joao Varanda

January 2020



COPYRIGHT AND THIRD PARTY TERMS OF USE

This is an academic work that can be used by third-parties as long as the internationally
accepted rules and good practises are respected on what the copyright and related rights are
concerned. Therefore, the present work may be used on the terms foreseen by the licence
indicated below. In case the user needs permission to use this work in any not foreseen
conditions by the indicated license, he should contact the author, through RepositoriUM at
University of Minho.

Attribution-ShareAlike
CC BY-SA
https:/ /creativecommons.org/licenses /by-sa/4.0/



STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along

the process leading to its elaboration.
I further declare that I have fully acknowledged the Code of Ethical Conduct of the

University of Minho.

ii



ACKNOWLEDGEMENTS

A first note of gratitude to both supervisors of this work, Professor Pedro Rangel Henriques
and Professor Maria Jodo Varanda for applying their experience in the form of invaluable
and unwavering support throughout the entire process. Their effort is visible in every major
decision that was taken to shape this small contribution to the world of academia. It is also
worth noting the incredible patience they showed despite all my setbacks of what, at times,
might have seemed to be lack of commitment.

Also to the initial beta testers: Estevao, Hugo, Mendes and Resende; that, despite time
constraints, were ready to trade feedback and discuss the underlying mechanisms of a tool
that only worked in a language that was not their cup of tea.

It has been a longer than expected journey where I have been engaged in several exhila-
rating projects. As such, there’s bound to be plenty of people that, in one way or another,
motivated me to move forward. For that reason, I have to thank everyone at CeSIUM for
reminding me since the beginning that I should prioritise my dissertation instead of being
a volunteering masochist and accepting to be the president for a second mandate. To all
those at AAUM, as although it was just a year, it was an unforgettable one at that, and
those too kept nagging me to conclude this chapter. For the opportunities that Subvisual
provided in launching my career and the elaborate strategies devised to make me focus in
advancing, one step at a time, this work. And finally, for those at Utrust who shared my
anxiety in this final year of a torn product manager who developed a dissertation in is off
time.

But above all, to my family and friends from these and other communities who joined
me in building something that I would be proud of.

iii



ABSTRACT

This document is a Master’s dissertation on a degree in Software Engineering, in the area
of Language Engineering.

The main goal of this thesis is to support a software developer’s growth by providing
feedback on improvement areas based on the classification of his programming profile. In-
formation about his profile as well as recommendations for improvement shall be extracted
through the analysis of his source code.

A programmer’s ability can be classified as one of four possible profiles and the distinc-
tion among them falls upon the levels of both skill and readability. By aiming at proficiency
on these criteria one can achieve a more valuable profile.

As proof of concept a tool, that identifies weaknesses in a programmer’s ability and
provides improvement feedback, was developed using as basis Daniel Novais’s Programmer
Profiler Tool (PP) tool with a more educational approach.

Keywords: feedback, improvement, profiling, programmer

iv



RESUMO

Este documento é uma dissertacdo em Engenharia Informdtica, na drea de Engenharia de
Linguagens.

O principal objetivo desta tese é suportar o crescimento de um programador providen-
ciando sugestdes baseadas na classificagdo do seu perfil. Informacado sobre o perfil, bem
como as recomendagdes para melhoria, sdo extraidas através da andlise de cédigo-fonte
providenciado pelo programador.

A aptiddo de um programador pode ser classificada como um de quatro possiveis per-
fis estando a distingdo destes sobre os niveis de competéncia e legibilidade. Ao atingir
proficiéncia em ambos o0s critérios obtém-se um perfil mais completo.

Como prova de conceito foi construida uma ferramenta que identifica dreas de melhoria,
apresentando sugestdes de correcdo, tendo sido desenvolvida a partir da ferramenta PP por
Daniel Novais, com uma abordagem mais educacional.

Palavras-chave: melhoria, perfil, programador, sugestdo



CONTENTS

1 INTRODUCTION

1.1

1.2

1.3

Objectives
Research Hypothesis
Document Structure

2 APPROACHES TO SUPPORT PROGRAMMER’'S GROWTH

2.1

2.2

2.3

Assessment of Programmer Skill
2.1.1  Challenges and Exams
2.1.2  Experience

Profiling Programmers

Delivering Feedback

3 APPROACH

3.1
3.2
33
3-4
3-5

Problem definition

Expanding the Programmer Profiler Tool

How profiles and attributes feed the feedback system
System architecture

Requirements

4 SCALING UP THE SYSTEM

4.1
4.2

43

Analysing hundreds of exercises
Algorithm Corrections

4.2.1 PP Metrics adjustments
4.2.2 PMD Update

4.2.3 Scoring

Result Analysis

4.3.1  Scale up

4.3.2 Control Group

5 DPROVIDING FEEDBACK

5.1
5.2
53

5.4
5.5

Delivering Feedback
Leveraging Profile
Types of Feedback
5.3.1 Violations
5.3.2 Metrics
Impact of Change

Implementation

vi

Y

Oy ol U1 i W W W

10
10
10
11
13
13
16
16
18
18
22
24
26
26
28
32
32
34
36
36
37
39
40



Contents

5.6 Guidelines for Feedback 42
5.6.1 Helps clarify what good performance is 42

5.6.2 Facilitates the development of self-assessment (reflection) in learn-

ing 43

5.6.3 Delivers high quality information to students about their learning 43

5.6.4 Encourages teacher and peer dialogue around learning 43

5.6.5 Encourages positive motivational beliefs and self-esteem 43

5.6.6 Provides opportunities to close the gap between current and desired
performance 43

5.6.7 Provides information to teachers that can be used to help shape the
teaching 44

6 RESULTS 45
6.1 Exercises from Profiling 45
6.1.1 Professor 45

6.1.2 Student 50 47

6.1.3 Student 58 48

6.1.4 Master Student Z 48

6.2 Reusing the scale up group 49
6.3 Programmer Feedback 50
6.3.1 STV 50

6.3.2 HG and MNDS 51

6.3.3 RSND 51

7 CONCLUSION 53
7.1 Project Development Stages 53
7.2 Outcomes 53
7.3 Future Work 54
7.3.1  Supporting Projects 54

7.3.2  Graphical User Interface for self-learning 55

7.3.3 Customisation 55

7.3.4 Improve Feedback and Personalisation 55

7.4 End Note 56
A EXERCISE P2 60
A.1  Professor Solution and Feedback 60
A.1.1  Profile Analysis 61
A.1.2 Personalised Feedback 61

A.2 Student Z Feedback and Solution 62

A2.1

Profile Analysis 63

vii



A3

A4

A.2.2  Personalised Feedback
Student 58 Feedback and Solution
A.3.1  Profile Analysis

A.3.2 Personalised Feedback
Student 50 Feedback and Solution
A.4.1 Profile Analysis

A.4.2 Personalised Feedback

EXERCISE CODECHEF COINS

B.1

B.2

B.3

B.4

B.5

B.6

B.7

B.8

B.9

Codechef Submission 17777014
B.1.1  Profile Analysis

B.1.2 Personalised Feedback
Solution 21236236

B.2.1 Profile Analysis

B.2.2 Personalised Feedback
Solution A

B.3.1 Profile Analysis

B.3.2 Personalised Feedback
Solution B

B.4.1 Profile Analysis

B.4.2 Personalised Feedback
Solution C

B.5.1 Profile Analysis

B.5.2 Personalised Feedback
Student STV, Solution 1

B.6.1 Profile Analysis

B.6.2 Personalised Feedback
Student STV, Solution 2

B.7.1 Profile Analysis

B.7.2 Personalised Feedback
Programmer HG

B.8.1 Profile Analysis

B.8.2 Personalised Feedback
Programmer MNDS

B.9.1 Profile Analysis

B.9.2 Personalised Feedback

EXERCISE CODECHEF JOHNY

C.1

Student RSND
c.1.1  Profile Analysis

Contents viii

63
63
65
65
66
66
67
68
68
69
69
70
71
71
72
73
73
74
78
78
79
81
81
82
83
83
83
84
84
85
86
86
87
88
88
89
89
90



Contents ix

c.1.2 Personalised Feedback 90



LIST OF FIGURES

Figure 1 Community based evaluation of two criteria 12
Figure 2 PP System Architecture 15
Figure 3 Scoring before changes 24
Figure 4 Scoring after proposed changes 25
Figure 5 Distribution of solutions without metrics and full violation changes

with A,B and C evidenced 27
Figure 6 Final distribution of solutions with A,B and C evidenced 28
Figure 7 Mapping profile strength: skill, readability or balanced 34
Figure 8 Growth paths for profiles after feedback adjustments 35
Figure 9 Profile comparison of selected users for exercise P2 46

Figure 10 Focus on improvement for users in exercise p2 49



LIST OF TABLES

Table 1

Table 2

Table 3

Comparison between a average and outlier solution for Factoriz Chal-

lenge 17
Comparison 3 solutions before and after the PP Tool scaling adjust-

ments 29
Comparing profiles after the adjustments for 4 classroom exercises

analysed in (Novais, 2016) 31

xi



LIST OF LISTINGS

4.1
4.2

5.1
5.2
53
54
5-5

A
A2
A3
Ay
A

B.1
B.2
B3
B.4
B.s
B.6

B.8
B.g

Ca

Metric configuration of the ones which attribute skill . . . .. ... ... ... 19
Metrics after adjustment . . . ... ... .. L o L Lo L Lo 20
Example of Violation Feedback in raw Markdown . . . . . ... .. ... ... 36
Example of Metric Feedback in raw Markdown . . . ... ... ... ... .. 38
Section of motivation . . . . . ... ... L L 40
Choosing attribute to improve . . . ... ... ... .. ... ... ... 40
Implementation of feedback regarding number of classes . . . . . . ... ... 41
Exercise P2 provided tostudents . . . . . ... ...... .. .. ... .. ... 60
Solution to P2 by Professor . . . . ... .... ... ... .. ... .. .. ... 60
Solution to P2 by a Master Student (Z) . . . . . ... ............... 62
Solution to P2 by a Bachelor’s Students8 . . . . ... ... ........... 64
Solution to P2 by a Bachelor’s studentso . . . ... ............... 66
Submission 17777014 to COINS . . . . . . . .. ... . .. 68
Submission 21236236 to COINS . . . . . . ... ... ... ... .. ....... 70
Submission 18403997 (Solution A) to COINS . . . . ... ... ......... 72
Submission 20951241 (Solution B) to COINS . . . . ... ... ... ...... 74
Submission 19757960 (Solution C) to COINS . . . .. ... ... ... ..... 79
First solution to COINSby STV . . . . . .. .. ... ... .. ... .. .. ... 82
Second solution to COINSby STV . . . .. ... ... ... .......... 83
Solution to COINSby HG . . . . . ... ... .. ... .. ... .. .. ... 85
Solution to COINSby MNDS . . . .. ... ... ... ............ 87
Solution to JOHNY by RSND . . . .. ... .................... 89

xii



ACRONYMS

C

ceFR  Common European Framework of Reference for Languages: Learning, Teaching,

Assessment. 1
cFs Control Flow Statements. 39

cui1 Command Line Interface. 13

1Ts Intelligent Tutoring Systems. 8, 55

K

KCc Knowledge about concepts. 8

KH Knowledge about how to proceed. 8, 32, 33
KM Knowledge about mistake. 8, 32, 33

KMC Knowledge about meta-cognition. 8

KTC Knowledge about task constraints. 8

N

Nsccrs  Not So Common Control Flow Statements. 39

P

rp Programmer Profiler Tool. iv, v, x, 1-5, 7, 8, 10, 12, 14, 15, 33, 43, 4547, 49, 50, 53

xiii



1

INTRODUCTION

Feedback plays a decisive role in learning and development for any field of study (Houn-
sell, 2003). However, in the quickly evolving area of computer science opportunities to
provide personalised feedback to programmers are scarce. Such occurs due to both the
increase in enrolments but also the diversity in students’” backgrounds, Often, due to the
very high student to professor ratio, the only form of assessment available is summative
assessment which has been shown to have low impact in student growth (Orrell, 2006). Due
to these issues, several systems have been trying to fill the gap and provide more ways to
help programmers improve. Even so, the options available for use in a classroom context
are quite limiting, sometimes due to being tailored to specific exercises and so requiring
manual configuration for more use cases or, by only considering syntactic mistakes. More
experienced programmers find even more difficulty to obtain feedback as the existing tools
tend to focus on the particular challenges of beginners.

The aim of this dissertation is to create a tool which is able to provide personalised
feedback to programmers despite their proficiency. Through the use of this automatic
improvement tips, a professor should be more equipped to understand the class, identify
both negative and positive outliers, and also improve the student’s personal growth. The
tool should also adapt to the context in order to not require prior adjustments.

In order to achieve this goal, there is a need to understand a programmer’s ability and
establish a sort of grading system to distinguish novice from experienced students. For
that, the parallel between proficiency in programming languages and that of natural lan-
guages is used. After all, the former has standardised ways of establishing profiles such
as the Common European Framework of Reference for Languages: Learning, Teaching, Assessment
(CEFR). This has been explored in (Novais, 2016) where the Programmer Profiler Tool (PP)
was constructed. The PP analyses the source code of a set of correct solutions to a given
programming problem, written in Java, by different programmers and infers a profile from
the following attributes: Skill and Readability. Skill is related to language knowledge and
adequate use of the algorithms while readability is about documentation of code and best
coding style practices. The scoring system compares the scores for the attributes among all

the programmers as such, it scores a solution differently depending on its peers.



For those reasons, and as it is open source, it was decided to develop on top of the PP
and add an intelligent feedback system to strive for programmer improvement. Two main
topics are to be explored:

e The author concluded that since the scoring system is too heuristic the accuracy of
the results when considering different contexts could be greatly improved. Hence a

machine learning approach was proposed.

e How to provide feedback. This will be the core of the topic explored as the tool had
been built in a way that it could be used in different subjects but was not prepared for
any of them yet. The focus will be in making it useful in the formal education system

or as a complement to it.

For the first one there was an intention to explore a dataset such as the one provided by
CodeWars'. In this website, the community evaluated solutions to a problem on two criteria
“Best Practices” and “Clever” which could possibly translate directly to the mentioned
programming perspectives. Unfortunately, a dataset that could be used for data mining
wasn’t available. Even though it could be an option to build one, to be useful, it would
require hundreds of assessments done manually before providing results. Instead, the
decision was to use a dataset with solved exercises in Java that already filtered the ones
that worked as the tool is only capable of processing compilable solutions.

Regarding the second topic, the adaptation of the PP tool to an educational context will
open the possibility to provide feedback for improvement, which can be contextualised to
the programmer’s profile. To provide an example to the previous point, a novice wouldn’t
gain much from being told about the most complex data structure when he might not even
grasp the most basic ones. Whilst, on the other hand, an expert wouldn’t benefit from
improving a lot on his skill when he could gain much more from readability recommenda-
tions. This shows the potential of directly applying the inferred profiles from the source
code in directing and adjusting personalised feedback.

A further step could be done where a graphical interface would be built and thus allow
the use of the tool as an educational complement to be available for students outside the
educational system. Perhaps it would have to be adjusted to be more efficient in a self-
learning situation.

The approach presented is ambitious and challenging yet could greatly contribute to
reduce the issues that professors are constantly facing. However, programming languages
are in constant development and some practices can be, at times, subjective. With that in
mind, the purpose of this research is to grasp the basics of the topic and adapt the PP to be
used as an auxiliary tool in teaching.

1 https://www.codewars.com


https://www.codewars.com

1.1. Objectives

1.1 OBJECTIVES

This master dissertation has the following objectives:

e to expand the PP to produce accurate results in more demanding scenarios, such as

with hundreds of peers instead of just classroom context;

e to discuss and choose relevant feedback depending on the specific areas of profi-

ciency;
e to explore and analyse how to motivate students to improve their attributes;

e to produce improvements tips based on the characteristics of the programmer while

leveraging the profile inferred from his source code;

To achieve these objetives, a tool will be developed that can be used by a professor or
deeply customised by any programmer. Thus, it should be fairly easy to extend it for other
uses by building on top as it is open-source code. The same is what will be done on top of
PP.

1.2 RESEARCH HYPOTHESIS

Through the analysis of a programmer’s source code against that of his peers it is pos-
sible to deliver personalised feedback adjusted to the particularities of his profile. This
should complement the formative assessment in the formal education system in a way that
supports and motivates a student towards self-improvement. The achievement mechanism
inherent with the profiles scoring could be the basis towards overcoming the limitations of

a low professor-to-student ratio.

1.3 DOCUMENT STRUCTURE

This dissertation is divided in seven chapters:
1. INTRODUCTION A brief explanation of both the context and the goals of the dissertation.

2. STATE OF THE ART In this chapter an overview is done of the current research in related
work. Furthermore, a survey is done of where the extended tool fits amongst the

other alternatives.

3. APPROACH On the third part the proposed approach to achieve the introduced goals
while analysing the challenges faced. The architecture of the overall system is also

documented.



1.3. Document Structure

4. SCALING UP SYSTEM An overview of the decisions and changes done to improve the ca-
pacity of the tool to handle different and more demanding contexts. There, the details
of the changes caused by the alterations done are analysed.

5. PROVIDING FEEDBACK Similarly to the previous chapter, this one dives into the core of

the system which is it’s ability to provide personalised feedback to each programmer
analysed.

6. CASE STUDIES Afterwards the combination of all the decisions previously discussed into
the final result capabilities of the upgraded PP. That is done by exploring a few ex-

amples and also collecting some outside opinions of the impact this might have in
loco.

7.CONCLUSION Finally outputting what was achieved in this dissertation in relation to the

initial objectives and hypothesis while also presenting possible paths for improve-
ment.



2

APPROACHES TO SUPPORT PROGRAMMER’S GROWTH

Throughout this chapter two things will be explored: the studies and approaches to both
rank and evaluate programmers and also the ways in which tools can support one’s growth.
As the goal of this dissertation is to increase existing functionality of (Novais, 2016)’s pro-
grammer profiling tool, it was further necessary to analyse research since 2016 specifically
around that topic.

2.1 ASSESSMENT OF PROGRAMMER SKILL

Whilst focus has been on adapting PP for educational use, assessment of programmers is a
wider topic that is applied in different contexts. After all, formal education is but part of a
software engineer’s career, and his initial grade tends to be just one of a long list of possible
factors to analyse. As such, recruitment has been seen as one of the most diverse moments
where each company and recruiter, often subjectively. ranks programmers.

Two main approaches to evaluation have been identified, these usually add value to each
other and are fairly generic across technical disciplines like other engineering areas. These
will be explored in the following subsections.

2.1.1  Challenges and Exams

In (Daly and Waldron, 2004) two assessment methods which are considered the standard

in education are analysed, these are:

1. Programming Assignments

2. Written Exams

For the first one, it has been identified that 40% of students had plagiarised at least one
assignment, making its purpose unreliable. As for written exams, the authors pointed that
“examiners often see how a weak attempt could be improved to produce a solution and
so provide credit with foresight that frequently is not there”. Instead they propose lab



2.1. Assessment of Programmer Skill

assignments should be the default option of assessment and tools like Coderunner (Lobb
and Harlow, 2016) apply that same knowledge.

During recruitment, programming assignments are also used frequently such as techni-
cal interviews. Yet there are more ways to assess a programmer than just those used by
recruiters and professors. In fact, some approaches make use of gamification techniques to
do so. Gamification is used often to boost interest in learning, as explained by (Swacha and
Baszuro, 2013), and has been applied in almost all code challenges platforms such as Code-
Wars'. In this kind of platforms, which there are dozens of, programmers are ranked based
on number and difficulty of programming challenges that they solved, with leaderboards
to compare with other players. These features are further explained on (Fuchs and Wolff,
2016). It is viewed as an achievement system in which the best programmers are the ones
who have solved more challenges. Often, what this means is that they spent the most time
and effort yet it doesn’t contemplate the approach they used.

This has become an go-to resource for some companies, as they can prospect talent di-
rectly from the top of a leaderboard. Or they can filter candidates by offering the same
challenge to all and comparing who solved it more quickly or in the best way, in fact there
are even mechanism of what is called Player vs Player where multiple programmers compete
online for whom solves a few exercises quicker.

As such, due to their versatility, challenges and exams have been the way of assessing the
attributes of a programmer. These are the only available way to use for novice programmers
hence in an educational environment there is no other option.

2.1.2  Experience

Perhaps the most traditional for other disciplines, experience is hard to measure as the stan-
dards greatly vary. Furthermore, having experience does not imply that one can code well.
This is especially true as the industry is constantly changing. For recruitment purposes
experience is written through a curriculum vitae and validated through recommendation
letters and explored during interviews. Unfortunately due to all these factors, evaluating
experience tends to be very subjective and although it is one of the stages for recruitment
it is usually paired with other tools for evaluation.

Experience is still heavily taken into account to subjectively rate a programmer. It is also
often paired with other evaluation methods to guarantee trustworthiness of the sources.

There are novelty or niche ways to analyse experience such as the activity of a user in
online tools. Software communities have accumulated data for many of their users. Open
Source Communities like GitHub track number of contributions and when they occur, which

relate to the interests of the programmer and his popularity. On the other hand, platforms

1 https://www.codewars.com/


https://www.codewars.com/

2.2. Profiling Programmers

like StackOverflow, where the community answers questions and is rated by the peers, offer
a way to further analyse their profile. An approach has been proposed by (Huang et al.,
2016) whichm using a tool called CPDScorer, combines information from both these sources
in order to identify programmer ability and interests claiming ao 80% precision. This study,
although using very different input fields, can be an interesting guideline both due to its
precision and to the use of data mining and machine learning which will also be used in
this work.

However, since this information can not be extracted from source code analysis and stu-

dents tend to not have work experience, this topic won’t be explored further.

2.2 PROFILING PROGRAMMERS

The current grading system used in education is one-dimensional, it evaluate students’
performance on a scale of passing to failing. Yet there are multiple characteristics that can
be perceived and so should be evaluated separately.

As proposed by (Pietrikovd and Chodarev, 2015) one can profile a programmer through
source code analysis into two relevant profiles: subject and object. Subject profile is de-
scribed as the base knowledge a programmer has, such as whether he knows how to use
the conditional construct of a specific language. Object profile represents the profile of
knowledge necessary to handle a specific task. The tool developed searches for the mis-
match between these two profiles to identify the profile of the programmer. As the analysis
is done based on the source code it means this can be automated and remove some of
the subjectivity or infered knowledge previously observed in some evaluation approaches.
The tool developed by the authors required optimal solutions to be used for comparisons,
which can often prove to be a limitation.

On the other hand PP uses two attributes: skill and readability (Novais et al., 2016).
The former describes the language knowledge, such as advanced constructs but also the
simplicity of the algorithms used. The latter analyses the effort placed into ensuring the
code can be easily understood by another developer. Due to supporting two different
attributes, one can identify students which show skill from those with readability and also
trace ideal profiles with balanced scores. This would not be achieve in the one-dimensional
grading system.

In (Paterson, 2017) readability is considered an important aspect to support learning and
concluded that instructors would benefit from having the means to evaluate, in a simple
and automatic way;, this attribute. A study based on that initial exploration was done where
(Hofmeister et al., 2017) it was shown that experts and novices follow different gaze paths
when reading code. For instance, that novices saccades were shorter and more focused on

52.4% of the elements, versus 41.3% compared to experts. A deep research was conducted



2.3. Delivering Feedback

by (Scalabrino et al., 2019) on how to automatically access this attribute. In it, 121 metrics
were analysed, some of which had already been configured for use in the PP. This article
was done specifically for Java so it faced many of the same specific challenges. However
they conclude there is currently a lack of developer-related metrics.

2.3 DELIVERING FEEDBACK

There are also a fair share of platforms and services that analyse source code either to offer
feedback on improvements, such as reducing duplicate code, or to expose vulnerabilities.

For the former situation refer to Codacy®> which rates the current codebase, and could
therefore extrapolate the average evaluation to the programmer himself. Furthermore tools
such as linters, which are approached in further detail in (Fast et al., 2014), have become
more frequently used in IDEs. (Flowers et al., 2004) also discuss an automated tool named
Gauntlet which corrects syntax errors in Java. All of these tend to automatically correct
mistakes and align with the best language practices instead of guiding the individual on
how to improve.

In the latter case, Checkmarx3, could come as an example. This platform tests for security
issues and provides feedback accordingly.

The examples above focuses on ensuring program quality instead of aiming to improve
a programmer’s skill to not repeat the same mistakes. The tools to help boost learning are
currently usually Intelligent Tutoring Systems (ITS). A systematic overview of these tools was
done by (Crow et al., 2018) and it is concluded that “a lot of work can be put into developing
intelligent feedback and hints relating to semantic and syntactic issues in programming
tasks”.

Pursuing feedback directly, as analysed by (Keuning et al., 2016) the nature of feedback
can be segmented to 5 types. Where Knowledge about task constraints (KTC) and Knowledge
about concepts (KC) both require prior configuration per exercise, limiting the versatility of
the tool. Out of the examples mentioned above which are analysed from the source code,
clearly most of them naturally go towards Knowledge about mistake (KM) and Knowledge
about how to proceed (KH). Finally, one last type is mentioned which is Knowledge about meta-
cognition (KMC) but it very scarcely used and requires a lot of specialisation to achieve
it.

There has also been research around the impact of personifying feedback such as in (Lee
and Ko, 2011). Here, once again, gamification was employed through the use of a robot in a
game which helps present the mistakes identified in a softer way. It was concluded that by
personifying the tool, feedback can increase novice programmers’ motivation to program.

2 https://www.codacy.com
3 https://wuw.checkmarx.com/


https://www.codacy.com
https://www.checkmarx.com/

2.3. Delivering Feedback

Overall there are multiple approaches to feedback, but it is identified that adapting it to
the specific programmer and applying gamification can be of great value. However, auto-
matic feedback is often limited in the ability to adapt to the context.



APPROACH

During the previous chapters it was shown that there is currently a substantial gap in
providing feedback to programmers not only to students in higher education but also across
the board. Furthermore it was identified that, by improving personalised feedback, students
could be more motivated to learn.

As such, this chapter will explain the proposed solution by exploring its challenges and
the approach used to tackle them.

3.1 PROBLEM DEFINITION

By focusing in higher education it has become clear that, right now, there is a need to over-
come the tendency to resort only to summative assessment. Professors, have a lack of tools
that can provide students individual feedback while simultaneously being flexible enough
to not require changes in the teaching or evaluation method. These are the requirements

that the solution proposed must comply to. What is thus proposed is a solution that can:

e analyse the source code of any solution;

adapt to the context, such as a specific class of students;

provide personalised feedback;

motivate the student to improve;

work out of the box without prior exercise configuration.

3.2 EXPANDING THE PROGRAMMER PROFILER TOOL

To achieve such requirements, namely the adaption to the context without requiring prior
configuration, the solution must have an inference engine. For that reason, the Programmer
Profiler Tool developed by (Novais, 2016) was a great basis to work on top of. The Program-

mer Profiler Tool, which has been commonly named PP, is an open source profiling tool

10



3.3. How profiles and attributes feed the feedback system

capable of processing exercises in the Java language. It was developed as part of a Master’s
Dissertation in Software Engineering at Minho University. The code itself can be found on
GitHub".

By taking as input a set of correct solutions to a problem and performing static analysis,
it can infer a profile for each of the programmers. The profile is calculated by comparing
the results among each other on two distinct attributes: skill and readability. The existing
profiles are:

e Novice: Low Skill and Low Readability;

Advanced Beginner R (Readability): Low Skill and Average Readability;

Advanced Beginner S (Skill): Average Skill and Low Readability;

Advanced Beginner + (Both): Average Skill and Average Readability;

Proficient: Low-to-Average Skill and High Readability;

Expert: High Skill and Low-to-Average Readability;
e Master: High Skill and High Readability.

The information obtained can thus support the personalisation of feedback. By knowing
the type of profile a programmer has, it is possible to adapt the available feedback. For
instance, a programmer with a lot of skill, but low readability, could be directed to a book
such as Clean Code by (Martin, 2009). Whilst such resource might be too overwhelming
for a programmer which still lacks both skill and readability.

3.3 HOW PROFILES AND ATTRIBUTES FEED THE FEEDBACK SYSTEM

Personalised feedback can be very beneficial to students (Lee and Ko, 2011). Furthermore,
the expectations of one group’s performance can be completely different from others. By
being able to pick on these nuances of context to provide adequate feedback is the mission
of an intelligent system.

One possibility to achieve it would be by doing an artificial intelligence approach. For
example, by using a similar input to CodeWars’s community evaluation where they rate
solutions for ”"Best Practices” and ”Cleverness”. In figure 1 both labels can be seen, and
the conversion to our existing attributes is almost immediate. “Readability” for the “Best
Practices” button and ”Skill” for the “"Clever”, which were the defining criteria in (Novais,
2016). Such an approach using data-mining techniques, was explored in (Kagdi et al,,
2007).

1 https://github.com/danielnovais92/ProgrammerProfiler

11


https://github.com/danielnovais92/ProgrammerProfiler

3.3. How profiles and attributes feed the feedback system

press :: Char -> Int
press x = maybe @ (+1) $ getFirst . foldMap (First . elemIndex (toUpper x)) $ layout

presses :: String -> Int
presses = sum . map press

~ Best Practices 7 ~ Clever 3 ® 1 Fork 13 Comparewithyoursolution = Link

Figure 1.: Community based evaluation of two criteria

Instead during this project the approach was to use the information already generated by
PP during (Novais, 2016) to adapt the feedback. The information available is:

1. programmer’s profile;

2. score in readability;

3. score in skill;

4. PMD? violations and their impact;

5. score obtained by each metric analysed.

A data structure with the compilation of all this information was created, using some
auxiliary data like the impact in percentage of violations or the highest obtained result for
some metrics. For each programmer with an exercise solved a feedback file is generated by
doing the following steps. From the profile (1) the attribute to focus on is obtained. After
all, the profiles with lower readability than skill should focus on the former attribute and
vice-versa. If the profile is balanced, like an Advanced Beginner +, then the feedback which
can have the most impact in either attribute is selected.

With the knowledge of which attribute to prioritise, identify the violation (4) which had
the highest negative impact to the relevant score (2 or 3). This means the programmer will
always be applying the least effort for the maximum gain. Since violations tend to be easy
to solve, a simple suggestion about the most impactful metric (5) is also provided.

If no violation is available then feedback will only focus on the metric (5) with the most
impact, but with more detail then if a violation had been identified.

Afterwards, a full section on motivation is generated by comparing the difference of score
for both (2 and 3) if the suggestions were followed. This might even mean the programmer

was upgraded to a better profile.

2 pmd.github.io

12


pmd.github.io

3.4. System architecture

3.4 SYSTEM ARCHITECTURE

In figure 2 the architecture of the full system can be seen. It is done with the professor as
an user. As can be seen, the input is a compilation of solutions by programmers from one
or multiple classrooms depending on the context that wants to be analysed.

From the Command Line Interface (CLI), the professor can identify the folders with exer-
cises to be analysed and also provide a base solution for each. If, multiple folders should be
processed separately, by default, the base solution will be the first file on each the directory.
In that case, the systems used multi-threading to improve efficiency of analysis.

The solutions are then processed by both the PP Analyser (using AnTLR) to extract rel-
evant metrics and also, PMD Analyser (using PMD) to obtain violations to the predefined
rules. This information is then used to calculate scores by making comparisons between all
the solutions and also the base solution. With the scores, the profiles can then be inferred
and are added to a general data structure with all data obtained.

This data is then used simultaneously to generate feedback and for multiple exports. The
feedback generation has a few steps:

e Generate general information about the purpose of the tool;

Identify attribute to focus on;

Provide main suggestion;

Provide secondary suggestion (if main one is a violation fix);

Show impact of the suggestion fix;
e Show progress towards better profiles.

The outputs are both individual feedback files per programmer and an overview of the
metrics and profiles obtained through the analysis. The professor could intervene manually
on the feedback files for the students either to use them to adapt teaching methods or to
forward them to students. An interface could have been built to avoid needing to use the
CLL

3.5 REQUIREMENTS

In Novais (2016) there are several proposals for improvement of the tool. For instance,
processing syntactic and semantic errors. However improving the source code analysis
itself has not been labelled as a necessity to validate the hypothesis as the focus was on
adapting the tool to be used in education and so provide personalised feedback. Even

so, the scalability in this project was improved to better handle more varied environments.

13



3.5. Requirements

Overall this means there is currently a set of requirements to use PP successfully, most of
which were inherited.

First, it is limited to Java version 7 as the new constructs of Java 8 were not considered.
As the purpose was to validate the ability to provide intelligent feedback based on a pro-
grammer’s profile, the need to extend the tool to more languages could be detrimental.

The solutions are still assumed to be valid, this means usually an auxiliary tool such
as mooshak or an online programming context platform could be useful. Solutions with
errors or warnings or not even fulfilling the challenge proposed could still be run with the
PP but due to the mechanism of comparing different results, they could deviate the other
solutions being analysed.

Furthermore, the tool requires multiple solutions to a problem in order to be effective.
This is not necessarily an issue in education as in a classroom several students would solve
the same exercises. However, this means that for self-learning, exercises would have to be
pre-loaded with solutions.

All in all, the tool is still in a beta phase, and does not have a standalone version. A user,
in this case a professor, must run it locally in order to begin profiling. This could have been
done through a new platform where professors would create classes and submit solutions
to challenges on them, while potentially analysing growth of the students across a certain
period of time.

14



3.5. Requirements 15

PROFESSOR

Feedback Classroom(s) Auxiliary Docs

Log
Sludenl Student
k F
Fesdbar Solution Selution TxT)
Student tudent Flot
e (PEG)
Famback Feedback Student Studant Matrics
Saolution Solution (HTML}

Qutput
Input
Qutput

Interface

PN

PMD
[ PPAnaIyser} ( Analyser }

Score
Calculator

Infer Profile

[ Command Line }

Programmer Profiler Tool

Feedback Results
Generation Export

Figure 2.: PP System Architecture



SCALING UP THE SYSTEM

4.1 ANALYSING HUNDREDS OF EXERCISES

In order to ensure the Programer Profiler tool was ready to be used in a more generic
environment, it was needed to test it with a far more diverse input of exercises. As such,
instead of requesting more exercises from a classroom, platforms which provided hundreds
of challenges and solutions were explored. In that search, online programming exercise
platforms came up as an ideal solution. These type of platforms have several years worth
of exercise solutions from all experience levels and with users across the globe. Other
services are often either tailored for specific use cases such Stack Overflow with just code
bits. There are also less filtered contexts such as Open Source projects like found in Github
where there is great difficulty in comparing solutions for profiling.

By request CodeChef, a not-for-profit educational initiative, supplied compilable Java
solutions for 11 exercises. These 11 exercises are have different difficulty levels and as
explained above, the diversity of the code to be analysed is quite wide, with distinct coding
styles and clearly different experience levels.

The list is as follow:

BEGINNER 300 solutions for HSo8TEST, 300 solutions for STARToz.
EASY 300 solutions for TEST, 300 solutions for JOHNY.

MEDIUM 300 solutions for COINS, 300 solutions for TREEROOT.
HARD 134 solutions for ORDERS, 31 solutions for DOMSOL.
CHALLENGER 300 solutions for FACTORIZ.

LIVE CONTESTS 300 solutions for HOLES, 300 solutions for DOUBLE.

The challenger exercise does not have a solution in polynomial time, so each of them
has been scored through a point system. This means it is quite difficult to compare them
clearly for profiling as they might have distinct outputs. After all, some are more complex

16


https://www.codechef.com/
https://www.codechef.com/problems/HS08TEST
https://www.codechef.com/problems/START01
https://www.codechef.com/problems/TEST
https://www.codechef.com/problems/JOHNY
https://www.codechef.com/problems/COINS
https://www.codechef.com/problems/TREEROOT
https://www.codechef.com/problems/ORDERS
https://www.codechef.com/problems/DOMSOL
https://www.codechef.com/problems/FACTORIZ
https://www.codechef.com/problems/HOLES
https://www.codechef.com/problems/DOUBLE

4.1. Analysing hundreds of exercises

to achieve a higher ranking whilst others get the minimum possible. The exercises from the
live contests have an unknown difficulty level, but they also were available during a limited
amount of time.

Knowing that the PP tool is focused on the analysis of both skill and readability, it is
expected that developers have less concern than usual for readability when applying them-
selves for programming challenges. That is even more predicted for the live contest exer-
cises. However, due to the way it works, as the profile is obtained in comparison to other
solutions, it’s the assumption that the programmers are more focused on skill is unlikely to
be validated easily.

On trying to analyse almost any of the exercises above the PP tool often got entangled
on the comparison of metrics between exercises. The number of differences between each
solution could be very wide, which did not happen on the previously available test cases.
Furthermore, violations were a far more common occurrence which also pushed scores to
the negative.

This meant there was a need to adjust the tool to provide valid and useful results in a far
more demanding use case. Through analysis it was also detected that most of the issues
occurred due to the presence of outliers, and these were quite common on harder problems,
particularly on the Challenger one.

To demonstrate this, one can look at the Factoriz Challenge which is of challenger cate-
gory, making it easy to identify 2 very contrasting solutions, one of which is an outlier on
table 1.

Average Solution Outlier

PMD Violations 23 726
# Methods 1 47

# Statements 37 1454
Lines of Code 73 1365
Total Lines 115 1588
# Declarations 26 570

Table 1.: Comparison between a average and outlier solution for Factoriz Challenge

In fact, the deviation compared to the normal solution is minimal, with most solutions
ranging from 1-50 PMD violations. On the other hand, the outlier presented 726 violations,
each of those currently decreasing the profiler scores, hence why it had negative score.
Even though, as this is a challenger category the solutions could be aiming for a very
different rating on CodeChef, they are actually quite close as one obtained 266527.5 points
while the other 284921.3. Therefore the sharp differences between both solutions are still

representative of what may happen in a completely fair comparison of 2 programmers. It’s

17


https://www.codechef.com/problems/FACTORIZ/
https://www.codechef.com/viewsolution/4837075
https://www.codechef.com/viewsolution/4838778

4.2. Algorithm Corrections

fundamental to know that there’s been no pre-filtering of any of the solutions obtained as
all of them can be compiled and executed and obtained a valid score.

With that in consideration, it also means that there might be solutions with infinite num-
ber of lines, statements, methods or even classes. The goal has been such that the Programer
Profiler Tool, after these changes, should be capable of handling any exercise as long as it is
a valid, executable java program in order to support the growth and development of each

individual.

4.2 ALGORITHM CORRECTIONS

Due to the concerns explained above, several corrections to the profiling calculation algo-
rithms were required. Furthermore, as the tool hadn’t been updated for over 2 years, the
third party tools it was using were fairly outdated.

So it served as an opportunity to reevaluate some of the existing approaches and update
the third party tools that were used in the project.

Currently the PP tool has two major approaches to extract all the relevant information
required to compare solutions. The first one is called PP Analyser which is responsible for
extracting all metrics from the Java source code. The second is the PMD Analyser which
extracts violations to given rules.

As such the corrections have been separated in three major efforts which correspond to
the following sections. The PP Metrics rehaul at section 4.2.1, where the metrics obtained
are reviewed to encompass the growing differences that were evidenced by the new data set.
The PMD update at section 4.2.2 to describe the changes caused by the update to the tool.
And finally, the Scoring at section 4.2.3 where the combination of changes to the scoring

system are explained.

4.2.1 PP Metrics adjustments

The list of metrics for programmer profiling is an integral part of the tool. They are, after
all, the only way to get a positive impact on both skill and readability scores, as violations
only punish mistakes. However, their impact was quickly shown to be inconsistent when
being applied on such a diverse data set.

For example, one can look at a few of the readability metrics specifically LOC (Lines
of Code), %LOC (Percentage of Lines of Code) and their counterparts of comment lines
and blank lines. In total, these are 6 metrics which attributed readability in pairs, as one
analysed the percentage in the source code, whilst the other the number of occurrences.
For instance, considering an exercise A with about 30 lines of source code and 7o blank

lines, and an exercise B with 300 lines and 700 blank ones. These 2 exercises have the

18



4.2. Algorithm Corrections

same percentage of lines of code and lines of comment but, as exercise B has the most lines
overall, it will get benefited on the 2 metrics that count occurrences instead of percentage.
Meaning that solutions with more lines have a tendency to have higher readability score on
not just one metric but three.

Indeed, there were metrics that seemed to overlap, so to reduce the unbalance and stream-
line the comparisons some were removed. Of the 6 mentioned above, only the number of
lines of code, the percentage of blank lines, and the percentage comment lines were kept.
If the percentage of lines of code is higher, that means the percentage of blank lines and
comment lines is smaller, hence the user doesn’t get as high score. After all, if the code is
longer, there is ought to be more separation and documentation. However, the weight was
also slightly increased to make up for the impact.

Through looking at Listing 4.1 it is possible to see the configuration used for metrics.
Here, all five increase skill on a direct proportion as that is shown by the priority label of
the json file. Furthermore, there was no metric that directly decreased skill. This meant
that the longer and more varied a solution was, the more credits it got in both skill and,
as there are other metrics, readability increased due to longer and more detailed code too
as explained above. This had a strong impact in the evaluation of the outlier described in
Table 1 as it was inferred to be of a Master profile, easily obtaining high scores though the
board for simply having an over the top complicated solution which actually lacked both
readability and skill.

[

{
"methodname": "getNumberOfClasses",
"_this" g Wl g
"implies" : "+8",
"priority": 2
1,
{
"methodname": "getNumberOfMethods",
"_this" g Wy
"implies" : "+8",
"priority": 2
1,
{
"methodname": "getCFSVariety",
"_this" R
"implies" : "+48",
"priority": 4
1,
{
"methodname": "getNumberO0fNSCCFS",
"_this" R

"implies" : "+8",

19



4.2. Algorithm Corrections

"priority": 6

1,
{
"methodname": "getDifferentTypesOfNSCO",
"_this" g D0
"implies" : "+8",
"priority": 5
1,
{
"methodname": "getTotalNumberOfTypes",
"_this" S
"implies" : "+8",
"priority": 4
}

Listing 4.1: Metric configuration of the ones which attribute skill

Whilst the variety of control flow statements provides information on the language
knowledge of the programmer, the number of classes and methods is mostly a readabil-
ity based analysis. Again, it’s important to not underestimate that the possible number
of classes and methods is limitless, which means an outlier with hundreds of each could
massively affect all others.

A good example of the issues introduced by the current system is to look at an exercise
with 1 method and 10 statements versus one with 20 methods and 200 statements. In this
situation the former obtained less skill score than the latter. As such methods concerning
number of classes and methods now only affect readability instead of both factors. Fur-
thermore, the weights have been updated, with a smaller number of statements having the
greatest impact on skill. A programmer’s expertise should be measured by the number of
statements he used, not by the number of methods nor lines of code. However, does still
have an impact in readability.

The priority label was also replaced by weight (which is the term used above), as it had
the same naming as PMD violations” but the opposite impact (higher number means more
impact).

What came to be was the list represented at 4.2, weight was also adjusted to make up for
the removal of some metrics and to balance both skill and readability.

[

{
"methodname": "getNumberOfClasses",
n this” B I|+I|
Ilimpliesll . |I+RII ,
"weight": 4

20



"methodname" :
n _thiS n
"implies"
"weight": 3
"methodname":
n _thiS n
"implies"
"weight": 3
"methodname":
n _thiS n
"implies"
"weight": 4
"methodname" :
n _thiS n
"implies"
"weight": 2
"methodname":
n _thiS n
"implies"
"weight": 5
"methodname":
n _thiS n
"implies"
"weight": 3
"methodname" :
n _thiS n
"implies"
"weight": 3
"methodname":
n _thiS n
"implies"

"weight":

5

"getNumberOfMethods",
Il+ll ,

"yR" s

"getLinesO0fCode",
I|+I|

"yR" s

"getPerComment",
I|+I|

"4R" s

"getPerEmpty",
Il+ll

"yR" s

"getTotalNumberOfCFS"

>

nygn s

"getTotalNumber0OfCFS"
I|+I|

"4LR" s

"getCFSVariety",
Il+ll

nygn s

"getNumberO0fNSCCFS",
I|+II

nygn s

4.2. Algorithm Corrections

21



}!
{
"methodname": "getDifferentTypesOfNSCO",
n thisll I|+l|
Ilimpliesll |I+SII,
"weight": 3
},
{
"methodname": "getNumberOfStatementsWithoutRES",
Il_thisll II_II,
Ilimpliesll |I+SII,

"weight": 5

},
{
"methodname": "getTotalNumberOfDeclarations",
n thisll I|+Il
llimpliesll II+RI| .
"weight": 3
}!
{
"methodname": "getTotalNumber0OfTypes",
"_this” I|+I|
Ilimpliesll |I+SII ,
"weight": 2
},
{
"methodname": "getNumberOfRES",
Il_thisll I|+II
Ilimpliesll |I+RII ,

"weight": 2

Listing 4.2: Metrics after adjustment

4.2. Algorithm Corrections

4.2.2 PMD Update

PMD, one of the third party libraries used, was at version ‘5.4.1." and during this revision it
was updated to version ‘6.10.0°. This introduced several new violations that increased the
capabilities of the system as well as a full overhaul of the groups it had available.

This major update also made a new caching option available and, by applying it directly
through the command line tool, the speed at which hundreds of exercises were analysed
was speed up from a few minutes to a couple seconds. This supported development greatly
as minor adjustments to the algorithm could be analysed almost instantly.

22



4.2. Algorithm Corrections

The rule groups went from:

UNUSED cCODE The Unused Code Ruleset contains a collection of rules that find unused

code

oprTIMIZATION These rules deal with different optimizations that generally apply to perfor-

mance best practices

BAsIC The Basic Ruleset contains a collection of good practices which everyone should
follow

DESIGN The Design Ruleset contains a collection of rules that find questionable designs

coDE SIZE The Code Size Ruleset contains a collection of rules that find code size related
problems

NAMING The Naming Ruleset contains a collection of rules about names - too long, too
short, and so forth

BRACES The Braces Ruleset contains a collection of braces rules

During (Novais, 2016)’s progress the decision was to assign the impact of each violation
rule individually instead of by these groups. However, this also brought the disadvantage of
being unable to easily upgrade the system as with each new violation added, new changes
to the tool itself had to be done.

The new version has made a list of groups available which don’t match at all with the
previous one. Instead, they have revised entirely how the rules are organised bringing
in, for example, some rules from unused code and optimisation to two entirely different
groups. The new version has made the following available:

BEST PRACTICES Rules which enforce generally accepted best practices.
CODE STYLE Rules which enforce a specific coding style.

DESIGN Rules that help you discover design issues.

DOCUMENTATION Rules that are related to code documentation.

ERROR PRONE Rules to detect constructs that are either broken, extremely confusing or

prone to runtime errors.
MULTITHREADING Rules that flag issues when dealing with multiple threads of execution.
PERFORMANCE Rules that flag suboptimal code.

SECURITY Rules that flag potential security flaws.

23



4.2. Algorithm Corrections

1

m
(IZ'*PZ'*RZ')—U
=1
Figure 3.: Scoring before changes

By having a quick look at the new groups it seemed almost natural to match them directly
with our current two factors: skill and readability. For example, security is a topic that
clearly has nothing to do with readability, the opposite could be said regarding code style
and documentation. As such, to current those issues and to simplify upgrades to the PMD
tool the following match has been done:

Both - Best Practices
Readability - Code Style, Design, Dcumentation

Skill - Error Prone, Multithreading, Performance, Security

4.2.3 Scoring

Scoring in (Novais, 2016)’s tool was done as seen in formula 3 where:
e [ is the impact of the metric, either positive or negative.
e W is the weight

e R is the ratio in comparison with the results from peers. It can be below o if there is a
deviation from average results.

e m is the number of metrics analysed
e v is the number of types of violations detected

The previous version of the tool did not take into account neither the violation rules’
priority nor the occurrence. As such the number of violations was directly subtracted from
the obtained score of all metrics. Once again, this happens for both readability and skill.

As this new version is now comparing hundreds of solutions, it’s even more important to
be able to clearly distinguish each of them. Thus, it was decided to take into account both
of these factors. After all, if two solutions were able to get the same score but one had more
occurrences of critical violations then the tool should move their skill and/or readability
score points accordingly.

Previously, each rule that was violated on a given solution reduced its score by 1 and
there weren’t usually more than five violations. However, now it must be considered that
there might be an infinite number of violations and that the skill or readability score may

24



4.2. Algorithm Corrections

LisaWixO;
2 xmaxV

1

m

(Wi * R;)
=1
Figure 4.: Scoring after proposed changes

be smaller than that number. These are, after all, some of the problems that arose with the
new data set. So, in order to be able to consider such a wide range of violations, it was
decided that the impact of violations would be proportional to the score instead. Which
means, the solution with the worst violation score for skill would get a negative impact
of 50% on its skill scored obtained in the PP Analysis, all others would get a proportional
impact based on the number of violations. Same would happen for readability violations.

On the other hand, the ratio which was an essential part of the formula for calculating
the score for each metric, as part of the PP Analysis, usually ranged from o to 1. However,
when the metric had an inversely proportional impact, the ratio could be below -10, which
caused the outlier to have reductions of over 100 in score. This was replaced by keeping
the ratio between o and 1 and the comparison for that ratio to be done against the highest
or lowest value of that metric accordingly, instead of using the base solution.

So what has been implemented now is a multi-step process which is described as follow:

1. For each violation rule verified

a) Priority is taken into account for that particular rule, low priority violations count

for ‘0.25" whilst the highest “1".

b) Value is multiplied by the number of occurrences.
2. A sum of the violation score for that solution is obtained.

3. The score is divided by the max violation score for that type (skill/readability) and
multiplied by ‘0.5’ to obtain a ratio between ‘0" and ‘0.5 .

4. The skill/readability score is multiplied by (‘1° - ‘0.5") of the previous value. Effec-
tively reducing up to 50% if it had the highest violation score for that type.

This can be summed up in the formula 4. Where the following were added:
e O the number of occurrences of that particular violation rule

e maxV the maximum violation score obtained from all peers

25



4.3. Result Analysis

4.3 RESULT ANALYSIS
4.3.1 Scale up

Overall, these were some of the adjustments implemented in order to scale the tool for
more scenarios, namely improvement feedback on online platforms. In order to analyse
and compare the differences through this process the medium difficulty exercise called
Bytelandian gold coins was used. And the following solutions will be compared: solution
A, solution B, solution C.

Due to the tool at the point that was prepared by Novais (2016) crashing with large
sized exercises, the comparison of the results will still consider some adjustments from the
original tool. This includes the upgrade of PMD, which introduces new violations types, as
well as minor adjustments on the calculation algorithms, mostly the one related to the ratio
which could drive exercises to get massively negative scores.

Figure 5 represents the distribution with all 300 solutions. It’s clearly visible that almost
all solutions are profiled as “Experts”. With the average skill being higher than the average
readability, which seems consistent with the programming challenges environment expec-
tations. However, the distribution is also very tight with several points practically on top of
one another. Solution A was profiled as Proficient while B and C were as Experts.

On the figure 6 the graph shows the final distribution after all the changes explained
on the previous subsections. Now most of the profiles are considered Advanced Beginner
S. There is still a larger influence on the skill score, but the distribution is slightly more
spread about. Solution A was profiled as Advanced Beginner S (almost Expert), solution B
as Advanced Beginner R while C as Proficient.

To summarise the results of some of these changes table 2 can be viewed. Only some
of the key metrics have been listed. Solution A had been profiled as ”Proficient”, this is a

profile leaning towards more readability than skill, however it has:
e The least number of skill penalties;
e The smallest number of statements;
e Far less total lines, almost a 1 to 10 factor compared to solution B;
e Just 2 methods and 1 class;
¢ Quite a few readability penalties and no comment lines.

By looking at these factors it’s obvious the solution A leans towards skill instead of
readability. In fact, by making a direct contrast to solution C, it is clear why they almost
swapped profiles. Solution C leans towards readability while keeping a good skill score,
some of the factors for comparison with solution A:

26


https://www.codechef.com/problems/COINS
https://www.codechef.com/viewsolution/18403997
https://www.codechef.com/viewsolution/18403997
https://www.codechef.com/viewsolution/20951241
https://www.codechef.com/viewsolution/19757960

4.3. Result Analysis

Profile
18
17 o
16
15 o A
1 Blsg
13
12
: : C
A
o 10 A
= 9 x x Ad Ad A A
£
% N A A
@ B8 A
i Ad A
@ WK A
8 3. £i
° *;
u

17 18 19 20 2 22
Skill

® Novice Advanced Beginner S 4 Advanced Beginner R X Advanced Beginner +
A Expert O Proficient Master

Figure 5.: Distribution of solutions without metrics and full violation changes with A,B and C evi-
denced

One skill penalty;

Three more classes;

Four times the number of lines of code and of statements;

e 2.7 percent of lines of comment;

Just 2 methods and 1 class;

Quite a few readability penalties.

Finally, solution B clearly has a too long solution compared to the others, with the most
penalties and no good points in its favour. This, makes it lean more towards readability,
hence the profile given is ”Advanced Beginner R”.

Finally, and just from a programmer’s direct point of view, there are some things that are
easily noticeable and also serve as a validation of the adjustments made.

Solution C is clearly the most readable, it has good descriptions, spacing, more classes
and methods. Solution A, was able to solve the exercise in simply 25 lines of code, and

27



4.3. Result Analysis

Profile
12
1 o
10 =
(o]
9
o]
o
8
for
=
_§ 7 + ® ¢
» X
& ¢ N B
6 -+ X =
L L ] '
L]
5 o ’. a A“
® o8 A
o [ X iy : A
4 o % ®
™ ®
[ ]
A
3 : A A
2
1 2 3 4 [ 6 7 8 9 10 11 12 13 14 15
Skill
® Novice Advanced Beginner S ¢ Advanced Beginner R » Advanced Beginner +
A Expert O Proficient Master

Figure 6.: Final distribution of solutions with A,B and C evidenced

one of the smallest number of statements. On the other hand, Solution B is very long, it’s

actually complicated compared to other alternatives, it seems more the work of a beginner.

4.3.2  Control Group

To further assure the consistency of the adjusted tool a comparison with the combination of
the classroom results which were used on (Novais, 2016) is made. In order to see the differ-
ences in results, Table 3 can be analysed. Although it shows that 38 out of 73 programmer
profiles have been changed, it is significant to note that all but 1 transitioned from adjacent
profiles. Adjacent profiles are those which through a small difference in profile, caused
moving in the readability or skill axis just enough to change to one of the closer profiles.
For instance, the profile Advanced Beginner + which has a balanced mix of readability
and skill is in the center of the grid, as such can move to any other profile. However, an
advanced more tailored for readability like Proficient or Advanced Beginner R can’t shift
directly to an Advanced Beginner S or Expert.

28



4.3. Result Analysis

Solution A Solution B Solution C
Skill PMD Penalty 0 1 1
Readability PMD Penalty 7 14 8
# Classes 1 2 3
# Methods 2 18 6
# Statements 4 60 17
Lines of Code 13 99 52
Percentage of Comment o 2.3% 2.7%
Total Lines 26 214 73
# Declarations 4 16 10
Profile - Before Proficient Expert Expert
Profile - After Advanced Beginner S Advanced Beginner R Proficient

Table 2.: Comparison 3 solutions before and after the PP Tool scaling adjustments

Out of the 73 profiles, there were just 2 (Std26, Std31) which moved to non-adjacent
profiles. The one which presented the biggest change was student 31 who suffered strong

penalties due to PMD violations causing his profile to be of a novice on exercise 1 and 4.

In fact, it’s precisely due to the violations that it’s become harder to reach the higher levels
like proficient, expert and master. Yet, now all the master students have become Experts.

The changes to the profiles can be easily noticed also in the following description:
e Novice: 3 — now 2

e Advanced Beginner (Readability): 5 — now 9

Advanced Beginner (Skill): 14 — now 22

Advanced Beginner (Both): 20 — now 22

Proficient: 17 — now 7

Expert: 6 — now 2
e Master: 0 — now 1

Although it’s clearly an important change in profiles obtained, it’s still important to take
into account the number of changes that were performed. Furthermore, considering that
in 97.26% of the situations the new profiles were just a shift to one of the adjacent ones it’s
clear that the impact was minimal.

Std Profiles Before Scale After Scaling
P P P
D AB+ i
A% E E

29



AB+
AB-S

AB-S
AB-R

AB+

AB-S

AB-S

AB+

AB+

AB-R

AB-S

AB+

AB+

AB-S

AB+

AB+

AB-S

AB+

'ﬁ

lewl

'ﬁ

AB+

E

AB+
AB-S

AB-S

I'ﬁI

AB-S
AB-S

AB-S

AB-S

AB+

AB-S

4.3. Result Analysis

30



Std3g
Std4o
Std41
Stdg2
Std43
Stda4
Std4s
Std46
Std47
Std48
Std49
Stdso
Stds1
Stds2
Stds3
Stds4
Stdss
Stds6
Stdsy
Stds8
Stdsg
Stdéo
Std61
Std62
Std63
Std64
Stdé6s
Std66
Stdey
Std68
Stdég

AB+
AB+
AB-S

AB+
AB+
AB+

AB-S
AB-S
AB+
AB+
E

P

N
AB+
AB+
AB+
AB-R
P
AB-S
AB-S
AB+
E
AB-S
AB-S
P
AB-R
P
AB-R
AB-S

AB+
AB-S

AB+

AB+

AB-S

AB-S

AB+

AB+

AB-R

AB-S
AB-S
AB+

wI.ﬁl

AB-R

4.3. Result Analysis

Table 3.: Comparing profiles after the adjustments for 4 classroom exercises analysed in (Novais,

2016)

31



PROVIDING FEEDBACK

The main component explored in this work is how to provide feedback to a programmer
based on his source code. Traditionally feedback systems report all errors prior to compi-
lation which can be overwhelming to a programmer. Also, in (Orrell, 2006) participants
“suggested that one of the most valuable purposes of assessment was to give students feed-
back on their achievements.”. It was also analysed that academics were focusing more on
summative assessment instead of formative as it was more expedient despite producing
poor learning habits in students due to them being more concerned with passing instead
of learning.

Thus, the concept of the programmer’s profile can be leveraged as a form of achievement
while guiding them towards a balance between skill and readability. This would also by
definition be taking into account the context of his solution in relation to the peers. After
all, a programmer with 2 years experience can be considered expert if his peers are just
starting to learn how to code, but he would likely be quite a novice compared to those with
10 years experience.

As such this has been tackled in a series of steps which will be explained throughout
this chapter, ranging from the selection of feedback, through leveraging the profile but also

touching motivation and implementation.

5.1 DELIVERING FEEDBACK

As noted back in section 2.3 there are different types of feedback where KM is the most
common. In (Keuning et al., 2016) it is also concluded that unless it’s a test-based system,
the capability to adapt to teachers’” requirements is quite limited, requiring code changes
and recompilation of the tool.

The goal has been to allow the PP tool to still remain very adaptable and easily brought
to new contexts while requiring no manual intervention. This would allow a professor to
apply it to whichever exercises he finds more relevant and to be more demanding if the
students in one group were more skilled than other groups. This means only KM and KH

recommendations can be applied.

32



5.1. Delivering Feedback

Our score formula which is shown in 4 uses PMD to attribute a penalty based on violating
rules, this is very akin to a test based system which enables KM feedback. By knowing
violations it is possible to provide information to the user to fix that particular rule. At the
same time, feeding from metrics like statements used or percentage of comments to assign
points to score and readability, which could be used to generate KH feedback. Unlike with
violations there’s no clear definition of ‘pass’ and ‘failure’, instead it is possible to generate
information based on the context such as: ”On average, users were able to solve this exercise
with half the statements that you used, perhaps there’s a easier solution?”.

The PP requires a group of solutions for the same exercise and a base solution from which
it is possible to derive comparisons. It was already reporting all rules that were violated per
solution and generating a chart of the profile distribution along with a log of all information
made. None of the elements were meant for a single contributor but instead for the person
running the tool, potentially a teacher or someone in a company evaluating candidates. As
the feedback is meant to allow a programmer to improve, it is necessary to generate this
information with that user in mind. This could either reach him directly through an online
tool or be forwarded by someone like a professor after being slightly mediated. In both
scenarios a file for each programmer is created which he can read directly.

One of the research work that was followed in order to deliver feedback is (Nicol and
Macfarlane-Dick, 2006) in which seven principles are proposed to facilitate self-regulation.
Examples of how to apply this concept are shown at the end of this chapter. Furthermore,
only one or two suggestions are generated for each programmer. The perceived advantages
of this limitation are: ensure novices (and similar profiles) are not overwhelmed by a large
checklist of improvements; motivate students to improve step by step instead of knowing
what to expect; allow self-assessment instead of a fully guided tutorial of improvement; fo-
cus on improvement to an attribute at a time, considering multiple changes simultaneously
might have an unexpected impact on the score, making the motivation section less accurate;
avoid too many tips become public unnecessarily so as not to be easily exploited, example
if one finds that the tool suggests to improve documentation, students might start trying to
write gibbering documentation lines.

Therefore, the structure adopted for each feedback file was the following;:

INTRODUCTION TO PP TOOL Explaining the purpose of the tool and the number of peers.

PROFILE AND SCORE ANALYSIS Inform of the profile obtained in which solution along with

the score in both skill and readability.
RECOMMENDATION Suggest a way to improve that has the most impact with minimal effort.

MOTIVATION Apply basic ‘gamification” to persuade the programmer to follow the recom-
mendation and achieve a better and balanced profile.

33



5.2. Leveraging Profile
5.2 LEVERAGING PROFILE

As discussed on (Pahl and Kenny, 2008), an Intelligent Tutoring, the ”challenge in computer-
aided learning is to achieve personalisation in a learning experience based on skills training
and activity”. In our tool it has been managed to adapt the feedback system to each pro-
grammer in multiple ways. Two of which, the information provided by the assigned profiles
was used.

First, a selection is done on whether to focus on improving skill or readability by looking
at where the profile is placed. This can be easily understood at image 7. A programmer
whose strength is on readability will obtain feedback focused on skill and vice-versa as
this is the kind of feedback that will have the most long-term impact on his growth. The
balanced profiles will instead get the tip which has the most immediate effect on their score
as they don’t need to focus on any attribute. In both situations the ideal profile is “"Master”,
a balanced profile which excels in both skill and readability.

Proficient Proficient \YERN

Readability LGELE]T]14Y Balanced

Advanced Advanced
Beginner R Beginner +
Readability Balanced

Readability

. Advanced
Novice

Balanced

Beginner S
Skill

skill

Figure 7.: Mapping profile strength: skill, readability or balanced

34



5.2. Leveraging Profile

Secondly,the profiles are used as an achievement system with implied gamification. This
has been explored further on several research projects such as (Swacha and Baszuro, 2013).
As our feedback will be mostly focused on improving one attribute at a time, the usual path
for achievement can be seen through the arrows in figure 8. It is thus intuitive that transi-
tioning from a Proficient or Expert profile to a Master is quite challenging but that is the
limitation of the profile distribution as these two stretch across being great in one attribute
but potentially terrible in the other one. How this information as been represented will be
discussed in section 5.4 which focuses on motivating the programmer for improvement.

As such the profiles allow us to personalise both the feedback obtained and the way it is
communicated. This information is particularly valuable when considering that during the
scaling up efforts over 300 solutions were used for each exercise. Furthermore these large
input is composed of very different approaches that got distinct evaluations.

Proficient Proficient

Advanced
Beginner +

2
=
[}
o
o
o

Novice

Skill

Figure 8.: Growth paths for profiles after feedback adjustments

35



5.3. Types of Feedback
5.3 TYPES OF FEEDBACK

After knowing for each programmer whether the focus will be on improving skill or read-
ability, the next step is to select either violation type of recommendations, subsection 5.3.1,
or metrics recommendations, subsection 5.3.2.

As each Java rule provided through PMD has already an embed description complete
with examples and is just about a pass or fail scenario it is far easier to solve than, for
instance, to fully document the code or find a better algorithm which allows less use of
statements. For this reason, if there are any violations to a rule, that is the feedback applied
tirst. Only afterwards feedback of metrics that extracted from the source code is delivered.

5.3.1 Violations

In difficult exercises it is easy to provoke dozens of violations which are caught by the PMD
tool. Back in section 4.1, on the challenger exercise, a solution which had over 700 violations
was explored. So to solve all of these simultaneously would be too cumbersome, instead
the focus will be on the one that had the most negative impact on the score. This means the
weight of the rule along with the number of occurrences is calculated. By fixing just this
one violation type he will get, for minimum effort, the most positive personal growth.
One example of how this feedback is delivered can be seen in listing 5.1. The information

structure is as follows:
1. Type of suggestion, in this case follow PMD rule

2. The rule violated with a direct link to the PMD documentation which provides exam-

ples.
3. Number of occurrences this rule was violated in the solution.
4. Basic information of the set and description
5. Lines of the solution where it was violated

6. Extra tip to work towards

### Suggestion: **Follow PMD Rule*x*
You violated rule [ControlStatementBraces] (https://pmd.github.i0/pmd-6.16.0/
pmd_rules_java_codestyle.hth#ControZStatementBraces) **k2*%*% times.

This rule is part of the set Code Style

**Description**: This statement should have braces

You have violated it in the following lines of the project:

36



5.3. Types of Feedback

+ 14
+ 16

#### Goal

You might still have some violations to improve on, but we advise you to more
than just that. Check out:

**There seems to be a better way to solve this exercise using fewer statements

Perhaps you over complicated the algorithm?.x*x*

Listing 5.1: Example of Violation Feedback in raw Markdown

Even if the programmer corrects only half the lines where the rule was violated, the next
time he runs the program he most likely will get another suggestion as the previous one no
longer holds such impact on his overall score. This type of feedback is the most common to
be obtained but since there are dozens of different rules and they are customisable, it still
allows the programmer to feel that he is progressing with small steps and hopefully not
make the same mistakes again.

However, as violation-type of feedback can often have a low impact for improvement
and be quite easy to fix, there is also a secondary goal based on the most impactfull metric.
The possible recommendation are simplified versions of what will be introduced in the

following section.

5.3.2  Metrics

Due to the scale up, adjustments to the metrics that were used for score calculation were
done. The current metrics list can be traced back in listing 4.2. There it is evidenced that the
methods which calculate the score in skill and readability are quite different. This means
that depending on which attribute needs to be improved, the metrics available to provide
feedback on have to be adapted.

Furthermore, it was noticed that if some of the metrics used were known it would make it
easy to circumvent the score mechanism of the system. One scenario where was identified
is if a suggestion about improving the readability of a solution needed to be provided by
way of increasing the percentage of blank lines. Here, a programmer could simply add
hundreds of random blank lines in the middle of his code which would serve no actual
purpose for readability. Same thing for metrics about lines of code. Due to this, only some
of the metrics were chosen as possibilities in feedback while still keeping the other ones as
part of the score calculation mechanism.

For readability the available metrics” methods to provide feedback from are:

37



5.3. Types of Feedback

GETNUMBEROFMETHODS Obtains the number of methods that the algorithm uses. This met-
ric by default assign points to readability as to keep everything in one single method

can be cumbersome.
GETNUMBEROFCLASSES  Similar to the one above this analyses the number of classes.

GETPERCOMMENT A percentage of the lines of comment existing in the file.

Even though the metrics were selected based on which would be hardest to be misleading
in, from the moment that they are known, it’s still straightforward how to do it. This is
particularly true for the percentage of comments, as a programmer could just add almost
blank lines tagged as comments. The issue seems to be more inherent to readability as this
is information that is meant for humans and as such even though it could not be used in
the algorithm or be gibberish it wouldn’t be caught by our system. Which means that with
the current readability feedback, after reusing the system a few times it would be possible
to understand how to easily achieve a good readability score. This happens at least for
the metrics that are available (number of methods, classes and percentage of comments). It
would be necessary to fully update how the evaluation of readability occurs by adding for
example natural language processing as well as checking the calls of methods and classes
to reduce the associated risk. Nevertheless, that is the reason why only some of the metrics
are used for feedback. Furthermore, some readability improvements might have a negative
effect on skill. For instance, by adding new methods and classes, a programmer would
have more statements, and so his skill score could potentially be significantly reduced.

The metrics used for skill are the following:

GETNUMBEROFSTATEMENTSWITHOUTRES Number of statements disregarding relevant expres-

sions such as System calls like System.out.
GETTOTALNUMBEROFCFS Number of Control Flow Statements

### Suggestion: **Decrease Control Flow Statements (CFS)**
You have shown the use of **4.0%* control flow statements. You seem to have

used **78.95x*) more flows than your best peer.

Control Flow Statements can be considered the heart of algorithms. However,
overusing them can cause a bad performance as well as might show there is
a easier way to solve the problem. By decreasing the number of CFS you
might be able to simplify your solution.

Currently you only obtained **2.5%* points to your readability score from this

metric.

**Try using 2 CFS instead.*x*

Listing 5.2: Example of Metric Feedback in raw Markdown

38



5.4. Impact of Change

Unlike what occurs in readability metrics, the skill ones are naturally less prone to mis-
leading. Even when it is public that Control Flow Statements (CFS) is one of our ways to
evaluate skill, in order to find a way to solve the problem using not only less CFS but also
less overall statements, would require actual programmer skill. It might involve using a
completely different approach or particular language tools that allow them to achieve a
better score. Regardless only some metrics are available because either their the others’
impact is low or they are very hard to improve on. For example, one way a programmer
can be scored on skill is by the number of Not So Common Control Flow Statements (NSCCFS),
unlike CFS which are core to an algorithm, a good solution doesn’t need NSCCFS. As such,
it was on purpose that a feedback like rejected. After all trying to solve exercises with more
NSCCEFS could be just complicating a solution, even though he could get a slightly higher
skill score.

The metric feedback is very distinct from the violations one and an example can be seen

at listing 5.2. it is structured in the following way:
1. Type of suggestion, in this case decrease CFS
2. The number of solution’s CFS

3. A relative comparison with the best peer, it underlines that there is a far better way

to solve the exercise
4. A brief explanation of the relevance of this metric.
5. Current obtained score from this metric

6. A suggestion of what could be the next achievement, it is dependant on a growth

factor of how different it is from the best solution

5.4 IMPACT OF CHANGE

As mentioned in multiple articles ranging from e-learning to general learning experiences
gamification can be used with high return to boost chances for improvements. This has
been discussed for example in (Swacha and Baszuro, 2013), (Kapp, 2012) and (Muntean,
2011). The same concept was introduced to the PP Tool by adding a new section right after
providing the suggestion for improvement. As can be seen in listing 5.3 the first step is to
describe what attribute the programmer would be improving if he followed the suggestion
plus the direct impact it has on his score both by relative and absolute value.

The mechanism of scoring provides this platform for constant improvement where a
programmer can keep seeing both his readability and skill improvement as he follows the
teedback one by one. Also, as shown back in figure 8 the profiles can be leveraged as an

39



5.5. Implementation

achievement system. The ultimate goal is to reach the profile of master, hence why the
last part of the motivation section is on what is the impact that the improvement has on
the user’s profile. In the shown example, he would go from a “Advanced Beginner S’ to
a “Advanced Beginner + which is a more balanced profile which requires improvement of
readability..

### Impact of Change

By following the recommendation above your score will fundamentally improve on

**readability*x*.

- **Change in Readability**: 6.01 -> 5.7336845
(*x*x-4.819168.

- **Change in Skillx**: 5.38 -> 7.5675
(¥%x28.90651 .

#### Profile after Recommendation
After this change you’ll reach an even better profile: **Advanced Beginner

+% %,

Congratulations on obtaining a balanced profile! However, you certainly have a
lot to improve before reaching a better profile.
Perhaps, it will be easier to focus first on either readability or skill,
arriving at Proficient or Expert respectively before aiming for Master.
Good luck!

Listing 5.3: Section of motivation

5.5 IMPLEMENTATION

The feedback mechanism was implemented as a new class named ‘Feedback’ which ag-
gregates all previously obtained information. For that, other data structures were slightly
adjusted to provide more easily accessible information such as the impact of each violation
on the score which were only needed once before.

First, the header is generated with the introduction to the tool. Afterwards, for each file,
the attribute on which to focus on is presented. The first step is to balance profiles that are
leaning to a specific attribute as seen in figure 7. If, however, the profile is already balanced,
such as with a "Novice’, then the attribute in which the violation impact was greater is
selected. This can be seen in listing 5.4.

// Skill Leaning Profiles

if (profile.equals("Advanced Beginner S") || profile.equals("Expert")) {
isReadability = true;

40



5.5. Implementation

violationFixed = provideViolationTip(project, isReadability);

// Readability Leaning Profiles
} else if (profile.equals("Advanced Beginner R") || profile.equals("Proficient

")) {
isReadability = false;

violationFixed = provideViolationTip (project, isReadability);

// Balanced Profiles
} else if (profile.equals("Novice") || profile.equals("Advanced Beginner +")
|| profile.equals("Master")) {
isReadability = project.getReadabilityViolationImpact() >= project.
getSkillViolationImpact () ;

violationFixed = provideViolationTip(project, isReadability);

Listing 5.4: Choosing attribute to improve

With this information, the selection is on whether to provide a rule improvement tip or
a metric related one. By default the former has priority unless there was nothing reported
by the PMD for that programmer. In both of the scenarios the greatest impact to the

programmer’s attribute score is the basis for selection.

Through these queries it is identified which metric or violation to provide feedback on.

There are in total 6 different methods that can be called depending if it's one of the 3
readability tips, 2 skill tips or a general obtained violation tip. One simplified example of
the feedback classes is at listing 5.5.

private float provideClassesTip(Project project, MetricImpact metric) {
ArrayList<String> metricFeedback = new ArrayList<>();

float improvementImpact, improvementRatio;

metricFeedback.add ("### Suggestion: **xIncrease number of classesxx*");
metricFeedback.add("You have used **" + metric.getValue() + "xx classes. "

+

"This places you at **" + Math.round (10000 * metric.getRatio()) /
(float) 100 + ") #** compared to the maximum of your peers.");
metricFeedback.add("");
metricFeedback.add("Dividing your code into multiple classes, if relevant,
can dramatically increase its readability. ");

metricFeedback.add ("Currently you only obtained **" + metric.getImpact ()

+ "x* points to your readability score from this metric.");

metricFeedback.add("");

Listing 5.5: Implementation of feedback regarding number of classes

41



5.6. Guidelines for Feedback

Finally, the motivation section is generated which is the same regardless of the tip ob-
tained. By using the score difference of the chosen tip, it's impact to the current score
and profile is provided. Precisely this section is divided in the possible update on the
programmer’s score and in the possible profile achievement.

If there is no change in profile despite following the tip the messages are motivation
based. For instance, an Expert profile would get "Keep improving your readability above
anything else in order to notice the biggest changes more quickly.” while a Master as he can’t
get already a better profile receives a achievement "Congratulations! You have reached the
best profile! You can of course improve either skill or readability depending on the context,
but usually that will force you to lose the balance.”

On the other hand, when there could be improvements to the profile all the messages
are accomplishment based such as for a Advanced Beginner S who would receive ”"Con-
gratulations! You are no longer a Novice. However you certainly have a lot to improve,
"Proficient”, "Expert” and "Master” are all better profiles than the one you have currently
achieved. However you are clearly on the way forward. Just follow the recommendation,
try to notice other areas to improve, and rerun! You now lean more towards skill.”. A Mas-
ter for instance would simply get “Congratulations! You have reached the best profile!”.

All the feedback files are generated using Markdown' as it is a plain text format that is

easy-to-read, easy-to-write and converts easily to structurally valid XHTML.

56 GUIDELINES FOR FEEDBACK

The aim has been to generate individual and personalised feedback to each student. Two
complete examples of the final result can be seen in B.

In the following subsections the implementation of each guideline for feedback proposed
by (Nicol and Macfarlane-Dick, 2006) will be discussed.

5.6.1 Helps clarify what good performance is

It is important for a programmer to know what is considered good performance, hence
understanding some of the existing metrics such as the number of statements and doc-
umentation along with the profile definition is one of the steps towards clarifying good
performance. However, as presented on the article this is not quite enough as written

feedback is often misinterpreted.

1 https://daringfireball.net/projects/markdown/

42


https://daringfireball.net/projects/markdown/

5.6. Guidelines for Feedback

5.6.2  Facilitates the development of self-assessment (reflection) in learning

The tool makes explicit the current stage the programmer is in along with where he is
aiming towards. The article mentions that teachers should create opportunities for self-
monitoring and judging of progression to goals, this is precisely what being able to run
their own code against the tool allows them to do. Although, the ability to match their own
self-assessment with the score they obtained from the tool would have to be done manually.
After all, the PP process does not consider any self-evaluation moment as it was meant to

be used from the point of view of the professor.

5.6.3 Delivers high quality information to students about their learning

One of the proposed strategies for this is to limit the amount of feedback so that it is
actually used. This has been precisely one of the adopted approaches, as only one violation
at a time along with a brief description of an improvement to a general metric is generated.
Another strategy is to provide corrective feedback which is the tip itself as mentioned above.
Finally making sure that feedback is provided in relation to pre-defined criteria, this is an

advantage of an automated tool.

5.6.4 Encourages teacher and peer dialogue around learning

Due to the nature of the tool, it is meant to be used in an async way. This means that there
is very limited that could be done regarding this principle However, it is up to the teacher
or the student to the information generated to apply this methodology.

5.6.5 Encourages positive motivational beliefs and self-esteem

In section 5.4 the topic of motivating the student for improvement is explored, which is
precisely what this principle refers to. In fact, the third strategy proposed in the article is
automated testing with feedback. The overall goal was to allow them to see that even if the

score is very low in small steps it can be greatly improved.

5.6.6  Provides opportunities to close the gap between current and desired performance

The second part of the change in profile portion of the individual feedback entirely related
to closing the gap towards the next profile. By aiming to achieve a balanced, both skillful

and readable format, the programmer can obtains the steps required to improve and the

43



5.6. Guidelines for Feedback 44

change in profile caused by those changes. Although, according to (Nicol and Macfarlane-
Dick, 2006) there could be a lot more done to make this effective.

5.6.7 Provides information to teachers that can be used to help shape the teaching

Although the individual feedback to programmers is not necessarily helpful to shape teach-
ing, the efforts done in the first version of PP Tool (Novais, 2016) can provide very valuable
input. This has now become even more reliable due to the scaling up discussed in chapter
4.1. The teacher can see how his class is quickly compared to other’s by looking at the gen-
erated charts shown in figure 5. That would provide knowledge on outliers both negative
and positive as well as if there is any leniency towards either attribute.



RESULTS

In order to analyse the results of this project, in this chapter a few case studies are explored.
With these, the goal is to identify where the tool is falling short and where it is excelling.

The results are made clear in the conclusion.

6.1 EXERCISES FROM PROFILING

During the development of the initial PP in (Novais, 2016), participants from an object
oriented programming class were the basis for the validation of the programmer profiling.
In the mix, master students in Computer Science and the professor’s solutions were also
compared to ensure the increased experience was being recognised.

As this project is a reshape of the tool for use in formal education system, the analysis of
the provided feedback to the same use case is a relevant form of validation. For that reason,
a specific exercise was explored like the one in listing A.1 on the solutions made by: two
undergraduate students (50 and 58); one graduate student (Z) and the professor himself (P).
Previously their profiles for this specific exercise had been Proficient, Advanced Beginner
+, Expert and Expert respectively. Now, due to the changes referred in section 4.1, student
58 became a novice and the Professor a Master, whilst the others” profile did not change.
This distribution is also made evident in figure 9.

The solution and generated feedback of the four selected individuals can be seen in
appendix A. And through this section each of the results will be analysed, starting with the

rofessor’s.
P

6.1.1 Professor

The professor’s solution, listing A.2, is the base for comparison to all others. As such, it
needn’t get feedback for improvement in the normal use case of the tool. However, since
it can execute profiling even for the base solution, so does the feedback file get generated.
With this, it is possible to validate whether the feedback is useful for more advanced users.

45



6.1. Exercises from Profiling 46

50 P

58

@Novice  mAdvanced Beginner S 4 Advanced Beginner R X Advanced Bet ginner + A Expert o Proficient O Master

Figure 9.: Profile comparison of selected users for exercise P2

Despite having a profile of Master it doesn’t mean it cannot improve further. In fact, it still
incurred in 4 violations on PMD, so by fixing those the score could improve substantially.
This also proves that it doesn’t require a perfect solution to obtain the best profile.

The professor scored high in almost all metrics ranging from not so common control flow
statements (due to do while) to overall code readability (due to comments and blank lines).
And, has he had obtained a balanced profile, choosing feedback was solely based on the
impact. For that reason, the obtained file issued two recommendations. First, to follow
java class naming conventions, and secondly to add more documentation. The secondary
suggestions are provided when the first one is related to PMD, for it is usually very easy to
fix unlike the metric related ones.

For the former suggestion, it was found in line 3 and a description is provided obtained
directly from the PMD. The Professor used an underscore in the name of the class “ExI-
dades_Teste”, breaking the Pascal case which is considered the standard in Java according
to the the default PMD rules. Furthermore, this is a violation that is tagged as high priority
hence why, out of the 4 possible ones, it was the first to be delivered to the user. More
information can be seen in the PMD website just like the link was printed in the file - Class
Naming Conventions. It would be possible to either disable or configure this rule by load-
ing a different set into the PP. As previously mentioned, currently the quickstart set is being
used. By following the suggestion, the professor could improve his readability score by

almost 8%, and this would be achieved within a couple minutes.


https://pmd.github.io/pmd-6.16.0/pmd_rules_java_codestyle.html#classnamingconventions
https://pmd.github.io/pmd-6.16.0/pmd_rules_java_codestyle.html#classnamingconventions

6.1. Exercises from Profiling

For the latter recommendation, the professor used 2 lines of comments. This is far less
than the highest result, which meant instead of 4 readability points, only 1.3 were assigned.
However, explicitly improving on this regard doesn’t necessarily mean the exercise is better
documented. After all, this is simply a direct look into the lines of comment and not at
their usefulness.

As the profile is already "Master” there is no profile improvement change. It is also worth
noting that since the metrics are constructed in a way that sometimes they affect skill and
readability simultaneously but in opposite ways, a user might get to the point where he is
is, for instance, reducing number of statements only to increase them on the next iteration.

This scenario has not been dealt with and yet has not happened in the data sets used.

6.1.2 Student 50

The student 50, listing A.5, also showed 4 violations. In spite of this, for the sake of consid-
ering a scenario where there are no violations to pick on first, those have been disregarded.
This student’s profile leans towards readability as he obtained “Proficient”, as such the sug-
gestion will focus on improving skill. It can also be seen that on line 5, he used a comment
line, this contributed significantly to his readability score as most users did not use any.
However, it was simply a boilerplate but the PP does not validate whether the comment
lines actually contribute to readability or if they are gibberish.

For this student, the only suggestion which was generated is to decrease the number
of statements used. This can frequently be the hardest to follow as sometimes it requires
tiguring another way to approach the problem. The feedback file also points out that about
one third of the students managed to use less statements and that by simply removing one,
the student would climb to a better profile. Even more so, the improved profile would be
master which is the best and most balanced.

As this recommendation is based on the metrics, it is not possible to provide directly a
line or area where he could remove one statement. Still, it is known that other solutions
managed to do it with fewer statements.

By comparing directly this solution to the professor’s, it is evident that some things could
be improved. The while cycle for instance could be turned into a for to improve readability.
Some other improvements might not be caught by the PP right now, however by looking at
the score it is still falling short of the professor’s. Nevertheless, the intention is that after
following the available suggestions after, perhaps, multiple iterations the solution will be
both more readable and more skilful.

To reduce number of statements could potentially have implications in the other scores
as it might require redoing the algorithm. By doing so, other metrics’ scoring would also

change, such as the percentage of lines with comments, or the number of statements.

47



6.1. Exercises from Profiling

6.1.3 Student 58

Student 58, listing A.4, had the lowest skill and low readability. As such he obtained the
lowest profile of Novice. From incurring on 8 violations to bottom scores on almost all the
metrics, there was a lot to pick on what to improve.

Yet, he obtained the same initial recommendation as the Professor, for being a high prior-
ity violation. And, by correcting it, he would be able to achieve a better profile already. This
happens both because the rule has a large impact due to the priority but also because he
was already quite close to the other profile. Even so, the information provided on the pro-
file after recommendation section is highly adapted to motivate the novice users to improve
further, unlike what happened with the Professor.

The other recommendation is also related to documentation. This happens the student
needs to improve readability the most, so even the secondary goal aims tu find ways to do
so. After all, the student had only used 1 line of code which was also a boilerplate.

By attempting to configure manually to provide a secondary skill solution, the user
would get a request to reduce number of statements. By looking at his solution, it does
seem to be the right way to go. The student hard coded the number array, and seems to
have used many unneeded steps compared to other solutions. However, it seems a very

different approach so it might not be the most relevant comparison.

6.1.4 Master Student Z

The master student has several years of Java experience compared to student 50 and 58.
His code is shown on listing A.5, and like the Professor, it has 4 violations. He followed
standard Java Conventions and the tip was a recommendation that has medium to low
priority. However, it was violated 3 times hence why the impact to his score would enable
him to achieve the Master profile as well.

Despite the fact that his code is clearly more concise than the others” compared here,
the secondary recommendation is to split the code into multiple methods. That goes to
show that even though his skill score is the highest out of all 70 analysed in this exercise,
since the algorithm recognises he needs to improve readability, the proposal is to make it
clearer. However, this would clearly reduce the skill score as the number of statements
would increase.

The overall primary feedback obtained for these 4 solutions can be seen in figure 10. On
it, it can be seen that only profile 50 was recommended higher skill feedback. It was also
the only way leaning towards readability. All the others obtained readability first initial
teedback.

48



6.2. Reusing the scale up group

L 50 TE

@Novice  mAdvanced Beginner S 4 Advanced Beginner R X Advanced Bet ginner + A Expert o Proficient O Master

Figure 10.: Focus on improvement for users in exercise p2
6.2 REUSING THE SCALE UP GROUP

In section 4.1 3 solutions are used as a control group of the changes done during this work.
Now these will be used again to compare the feedback obtained. The table 2 will also be
used as basis for this section.

The generated feedback for solution A, B and C can be found in appendix B. To start

with, lets consider what they have in common.

e All had 7 or more violations;

e Of these 3, only one would be able to achieve a better profile by simply following the

primary recommendation;
e None would get more than 1 full point in either attribute;

By looking at other solutions analysed in this exercise this is a clear pattern in all. It
seems to be the case when there’s more competition. Unlike the previous example of
exercise 2, this is an analysis of 300 people. Since the PP works by comparing all of these
and profiling them, the more competition there is, the harder it is to get to move to another
profile. Furthermore, as the exercise itself is more difficult, there are bound to be more
violations. This is combined with the context in question which is a code challenge website,
where readability and best practices are least taken into account, which provokes more
PMD violations.

49



6.3. Programmer Feedback

On the other hand, all the recommendations obtained are different between the 3 exer-
cises. Either focusing on skill for a Advanced Beginner S profile like Solution A, or on
readability for a Proficient one like Solution C. The only feedback in common is between
Solution B and C where the secondary goal is to reduce the number of statements used,
since they have dozens of lines of code unlike solution A.

63 PROGRAMMER FEEDBACK

Finally and most importantly, 4 new programmers were asked to test the tool and provide
feedback on the results obtained. These are: STV, MNDS, HG and RSND. STV and RSND
are university students, whilst MDNS and HG are not. However the last two haven’t been
programming with Java in years so can be considered with about the same experience as

the others. The solutions are distributed as follows:
e CodeChef Coins: STV1, STV2, HG and MNDS;
e CodeChef Johny: RSND;

The solutions and generated feedback can also be found in appendix B for the coins
exercise and in appendix C for the Johny one. Only HG is not considered valid on CodeChef
for not handling input properly, this is due to being the least experienced in programming
challenges. However for the purpose of this analysis that was disregarded.

6.3.1 STV

Student STV has the freshest experience to Java. He has been using it for a couple years
and every so often has to touch it again.

He started by solving the problem through solution 2, listing B.7. This enabled him to
achieve “Expert” profile, with a very significant difference between skill and readability.
Hence, he obtained recommendation to fix one of his two violations regarding readability.

The student disagreed with the primary suggestion as in his opinion, for this purpose,
creating an instance or an utility class is a waste. He felt it would be useful though if it
had been in a longer project instead of a programming challenge. This is understandable
considering there’s a conflict between requirements on a platform like CodeChef versus the
normal projects a programmer has to deal on a daily basis. Furthermore, he felt there was
an added motivation from the feedback and agreed with the secondary feedback of being
able to improve documentation. The format of the feedback also seemed to be clear as there
was no question as to what was expected from it.

The student also decided to improve his solution before seeing the feedback from the PP.
So he proposed solution 1, listing B.6 which uses dynamic programming. The feedback

50


https://www.codechef.com/problems/COINS
https://www.codechef.com/problems/JOHNY

6.3. Programmer Feedback

obtained from the tool was the same although profiling and scoring wise he was punished
in skill. He obtained a Advanced Beginner S, dropping almost 40% in skill score. Although
still a skill leaning profile, it was a massive drop. This is, though, expected given the
limitations of the algorithms used. Since there is no consideration for performance, both
proposals solve the same problem. Yet one (the dynamic programming) is more complex
than the other one, both in number statements and in lines of code. As such even its
readability is more difficult. In fact, solution 1 manages to solve the exercise in 0.08 seconds
while solution 2 does it in 6.04. The student, after understanding that the performance was
not considered, noted that he’d only propose the more readable and simpler version which
is the one with the highest score. Even so, given that the programmer executing both
solutions got the same violations, generating similar feedback is on point. After all, the

goal is to improve the programmer and not necessarily the specific solution.

6.3.2 HG and MNDS

Both of these programmers hadn’t touched Java in several years. To solve this exercise was
the first time that they were remembering the structure and the language. Considering that
the tool evaluates the language proficiency it is natural that if they had taken more time
their score would be even higher.

On one hand, Programmer HG agreed completely that there was a lack of documentation,
which he hadn’t added because his goal was just to get the code to work. His profile was
after all Expert, and his solution quite similar to STV2.

On the other hand, MNDS applied OOP concepts by fully using the class and objects.
Due to that, he had the highest readability of those analysed, earning him the profile of
Advanced Beginner +. The suggestion was to reduce control flow statements, and if that
was done, perhaps he could get quite close to Master. This also shows the issue with the
profiles edge’s being so thin, as one can directly jump from Advanced Beginner + directly
to Master.

None of these 3 programmers with 4 solutions could however reach a new profile but as
previously mentioned, this might be due to the context of competitiveness in this exercise.

6.3.3 RSND

On a different exercise, which is of difficulty Easy, RSND obtained 6 violations. His profile
of Advanced Beginner S could be improved to Advanced Beginner + if he followed the
provided recommendation. This also proved that since the exercise was easier the competi-

tiveness was lower which meant there were less steps needed to move to new profiles.

51



6.3. Programmer Feedback

The primary suggestion obtained was due to not following naming conventions on 3
separate occasions. He understood why the profile was poor as he had first solved the
challenge in c++ and so migrated with different conventions. He also would have liked to
get more than just one violation, which could be useful for more advanced or experienced
programmers. After all RSND was very curious as what he needed to do to get a better
score, which showed that the gamification aspects could be working.

The secondary suggestion also seemed reasonable once again since the intention was to
improve readability and he had no comment lines and had just focused on delivering a

valid solution.

52



CONCLUSION

In the beginning of this work it was established that it was possible to deliver personalised
teedback for improvement of a programmer profile based on his source code. The project
developed was done by adding functionality on top of the PP by (Novais, 2016) and demon-
strates that hypothesis. The tool is available publicly as an open source project on Github".

It contains exercise solutions from CodeChef, which can also be found on their website.

7.1 PROJECT DEVELOPMENT STAGES

In order to ensure quality of the final result, this project followed a series of phases which

are hereby described:

e Search of the basic bibliography and its revision;

Search for data sets to validate opportunities;

Scale up the tool for the provided data sets;

Ensure quality of the scale up through testing in different contexts;

Implement the feedback generation system based on the profiles;

Evaluate, test and draw conclusions towards the outcomes from this evaluation and

the studies done along the project.

7.2 OUTCOMES

By building on top of the PP, it is now possible to submit source code of java solutions to
any programming exercise and get personalised feedback for improvement. It was proved
through demonstration that even for over 300 programmers it is possible to provide sug-

gestions for improvement that have a large impact on scoring.

1 https://github.com/martinhoaragao/ProgrammerProfiler

53


https://github.com/martinhoaragao/ProgrammerProfiler

7.3. Future Work

As such, Professors can apply such a tool in their evaluation routine in order to support
programmer’s growth without needing manual intervention for configuration. By compar-
ing the solutions between themselves the tool is able to adapt to any challenge or project
and help avoid the problems of focusing on summative assessment only. The combined
output of the previously done plots, logs and personalised feedback enables teaching hubs
to be more efficient.

Furthermore, the application of gamification and motivation attributes greatly supports
the users to improve one step at a time. By deliver the most impactful tips towards the least
developed attribute, the programmers are then directed towards a complete and balanced
profile which enables to be both skilful and write readable code.

Even so, there is still space for larger testing and fine tuning that could impede this beta
tool from going into the day to day of teaching environments yet.

As part of this work there was a paper submitted (Aragdo et al., 2019) that was published
in the 2019 edition of SLATE (Symposium on Languages, Applications and Technologies).
The article covered Chapters 1, 2, 3 and 4 of this dissertation.

7.3 FUTURE WORK

Although there are multiple Intelligent Tutoring Systems in the market, most tend to be
made for a specific teaching course with limited availability for configuration. Hence infer-
ring feedback simply from source code and personalising it from the profile and compar-
isons is a new approach. Furthermore, since this has been extended from a previous work,
a lot of what applied to it in terms of work in progress has not been touched during the
development of this project so it still stands true.

7.3.1 Supporting Projects

So far, all the testing has been achieved with small classroom exercises or coding challenges.
However, the moments when the concerns that originated this work are more valid, namely
the ratio of professors to students, are in projects that involve one or more programmers and
are complex assignments. Since frequently, this kind of tasks are accomplished in group,
there would be a need to somehow apply the tool from versioning data. By selecting for
example entire methods that were submitted through Git, source code analysis could be
run. However, in that case, there would be a limited amount of comparison data.

Nevertheless, without supporting projects, even the amount of possible feedback pro-
vided is limited. After all, a 50 lines challenge does not allow to apply for example OOP
concepts fully.

54



7.3. Future Work

7.3.2  Graphical User Interface for self-learning

Initially there was the intention of building a GUI, however that plan could not be accom-
plished. By for example making the tool available directly online with an available data set
for some exercises, it would mean that two sides experience could be improved: professors
and students outside the educational system.

In fact, with the growing content of online education, it seems intuitive to see person-
alised feedback with gamification features being made available to self-learning individu-
als. Taking into account that the entire process is automatic and without needing human
intervention, it is an easy fit.

At the same time, one of the discovered notes from bibliography is that it is hard for pro-
fessors to actually run a system like so. Even though the files are generated automatically
there is no easy way to send them to students or to process them in bulk or one by one.
Through the development of an interface, more functionality could be made easy for pro-
fessors to enable them to both drive decisions from the data and to improve the generated

feedback with some human adjustments.

7.3.3 Customisation

Currently there are a couple files that enable customisation, from the metrics file to the PMD
setup. However, it is not straightforward how to do it. Even the metrics’ one lack some
documentation and it is limited by which metrics have been built into the tool anyway. The
PMD rule setup for instance requires change in a class and has no customisation outside
finding where the tool is loaded.

By picking on customisation as a whole topic, templates could be created for instance,
which would allow teachers to choose which kind of setup suits them best. Documentation
should also be improved, and as much as possible all relevant customisation should be
available outside having to recompile the tool. This was another of the key flaws of most
ITS overall. Unfortunately as the focus was on ensuring the viability of the approach, this

kind of topics were not a priority.

7.3.4 Improve Feedback and Personalisation

Despite some changes in messages between the different profiles, the available personalisa-
tion could be enhanced. For instance, perhaps Novice programmers don’t need a secondary
suggestion. Or even, some violations are too complicated for them to understand while on

the other hand Experts and Proficients would rather get the entire list instead of seeing one

55



7.4. End Note

at a time. This was one of the topics pointed out by the programmers who validated the
current feedback.

The motivation section is also mostly a prediction, as following some metrics” suggestions
could have unexpected results across the other methods for analysis. Or even, it could be
validated that there is a profile with better skill and readability that has a better score in
that metric. That would ensure that delivering that feedback is correct as there is a way to
improve that metric without losing too much on another. Adjustments could be made to
visually show this possible impact.

Currently there are only two types of feedback: violations and metrics” improvement.
The rules information comes directly from PMD, and so is limited by what they provide
as descriptions to the rules. However, a lot more could be made available, from pointing
out books to read to improve readability or directly a chapter related to it. Perhaps a talk,
or showing a snippet of a better solution. Also, it was noticed that current readability
related feedback like separating classes and methods is not very reliable as that sort of
decision should come from problem understanding and object separation instead of simply
identifying solutions with more or less classes and methods. In fact, the mechanism of
comparing solutions to the highest scorer in each metric and generating feedback towards
it might be incorrect. After all, even though a solution is valid using 10 classes, doesn’t
mean it’s the right way to go. Most likely filter solutions by higher profiles or to the base
solution would be a better way of approaching this challenge. For example, only provide
feedback to increase documentation if either the base solution or a Master solution exists
with higher documentation.

Furthermore Metric” related to not so common operators could link to examples of how
to use them. There is an endless possibility of improved feedback that could be made
personalised. For example, it could be possible to assign data to a programmer and check
how often he has gotten certain types of feedback, and make mini-games to ensure he learnt

them. Similar concepts are currently being used on dictionaries such as the one in Kindle.

7.4 END NOTE

With the ambition that this work has been able to shed some light into the world of auto-
matic teaching methods, the dissertation is concluded. Hopefully it was a good read on the
concept of personalising feedback based on programmer’s profiling through source code
analysis.

56



BIBLIOGRAPHY

Martinho Aragdo, Maria Jodo Pereira, and Pedro Henriques. Scaling up a programmers’
profile tool. In SLATe 2019-Symposium on Languages, Applications and Technologies. OASIcs:
OpenAccess Series in Informatics, 2019.

Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. Intelligent tutoring systems
for programming education: a systematic review. In Proceedings of the 20th Australasian
Computing Education Conference, pages 53—62. ACM, 2018.

Charlie Daly and John Waldron. Assessing the assessment of programming ability. SIGCSE
Bull., 36(1):210-213, March 2004. ISSN 0097-8418. doi: 10.1145/1028174.971375. URL
http://doi.acm.org/10.1145/1028174.971375.

Ethan Fast, Daniel Steffee, Lucy Wang, Joel R. Brandt, and Michael S. Bernstein. Emergent,
crowd-scale programming practice in the ide. In Proceedings of the 32Nd Annual ACM
Conference on Human Factors in Computing Systems, CHI "14, pages 2491-2500, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2473-1. doi: 10.1145/2556288.2556998. URL
http://doi.acm.org/10.1145/2556288.2556998.

T Flowers, Curtis Carver, and ] Jackson. Empowering students and building confidence in
novice programmers through gauntlet. pages T3H/10 - T3H/13 Vol. 1, 11 2004.

Markus Fuchs and Christian Wolff. Improving programming education through gameful,
formative feedback. 2016 IEEE Global Engineering Education Conference (EDUCON), pages
860-867, 2016.

Johannes Hofmeister, Jennifer Bauer, Janet Siegmund, Sven Apel, and Norman Peitek. Com-
paring novice and expert eye movements during program comprehension. FACHBERE-
ICH MATHEMATIK UND INFORMATIK SERIE B INFORMATIK, 17, 2017.

Dai Hounsell. Student feedback, learning and development. Higher education and the life-
course, pages 67-78, 2003.

Weizhi Huang, Wenkai Mo, Beijun Shen, Yu Yang, and Ning Li. Automatically model-
ing developer programming ability and interest across software communities. Interna-
tional Journal of Software Engineering and Knowledge Engineering, 26(09n10):1493-1510, 2016.
doi: 10.1142/50218194016400143. URL http://www.worldscientific.com/doi/abs/10.
1142/50218194016400143.

57


http://doi.acm.org/10.1145/1028174.971375
http://doi.acm.org/10.1145/2556288.2556998
http://www.worldscientific.com/doi/abs/10.1142/S0218194016400143
http://www.worldscientific.com/doi/abs/10.1142/S0218194016400143

Bibliography

Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. A survey and taxonomy of
approaches for mining software repositories in the context of software evolution. Journal
of Software: Evolution and Process, 19(2):77-131, 2007.

Karl M Kapp. The gamification of learning and instruction. Wiley San Francisco, 2012.

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. Towards a systematic review of au-
tomated feedback generation for programming exercises. In Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education, ITICSE 16, pages
4146, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4231-5. doi: 10.1145/2899415.
2899422. URL http://doi.acm.org/10.1145/2899415.2899422.

Michael ] Lee and Andrew ] Ko. Personifying programming tool feedback improves novice
programmers’ learning. In Proceedings of the seventh international workshop on Computing

education research, pages 109—-116. ACM, 2011.

Richard Lobb and Jenny Harlow. Coderunner: A tool for assessing computer programming
skills. ACM Inroads, 7(1):47-51, February 2016. ISSN 2153-2184. doi: 10.1145/2810041.
URL http://doi.acm.org/10.1145/2810041.

Robert C Martin. Clean code: a handbook of agile software craftsmanship. Pearson Education,

2009.

Cristina Ioana Muntean. Raising engagement in e-learning through gamification. In Proc.

6th International Conference on Virtual Learning ICVL, volume 1, pages 323-329, 2011.

David J Nicol and Debra Macfarlane-Dick. Formative assessment and self-regulated learn-
ing: A model and seven principles of good feedback practice. Studies in higher education,
31(2):199-218, 2006.

Daniel Novais, Maria Jodo Pereira, and Pedro Rangel Henriques. Profile detection through

source code static analysis. 51:1-13, 2016.

Daniel José Ferreira Novais. Programmer profiling through code analysis. Master’s thesis,

December 2016.

Janice Orrell. Feedback on learning achievement: rhetoric and reality. Teaching in Higher
Education, 11(4):441—456, 2006. doi: 10.1080/13562510600874235. URL https://doi.org/
10.1080/13562510600874235.

Claus Pahl and Claire Kenny. Personalised correction, feedback, and guidance in an auto-

mated tutoring system for skills training. International Journal of Knowledge and Learning
(IJKL), 4(1):75-92, 2008.

58


http://doi.acm.org/10.1145/2899415.2899422
http://doi.acm.org/10.1145/2810041
https://doi.org/10.1080/13562510600874235
https://doi.org/10.1080/13562510600874235

Bibliography

James H Paterson. Evaluating the readability of example programs for novice programmers.
FACHBEREICH MATHEMATIK UND INFORMATIK SERIE B INFORMATIK, page 9, 2017.

Emilia Pietrikovd and Sergej Chodarev. Profile-driven source code exploration. Computer

Science and Information Systems (FedCSIS), pp. 929-934, IEEE., 2015.

Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Denys Poshyvanyk, Rocco
Oliveto, et al. Automatically assessing code understandability. IEEE Transactions on Soft-

ware Engineering, 2019.

Jakub Swacha and Pawel Baszuro. Gamification-based e-learning platform for computer
gp p
programming education. In X World Conference on Computers in Education, pages 122-130,

2013.

59



EXERCISE P2

P2) Write a Java program that, given two ages (integers,

and outputs all ages greater than M,

For example ,
20 //-> M 5 //->N 15

20
21 40 5
given:
The output should be: 21
40
20.2
Listing A.1: Exercise P2 provided to students
A.1 PROFESSOR SOLUTION AND FEEDBACK

import java.util.Scanner;
public class ExIdades_Teste {

{

public static void main(Stringl[] args)

Scanner ler new Scanner (System.in) ;
int n, idade;

int total=0;

m,

float media;

do {
System.out.println("Introduza um numero para
m ler . .nextInt () ;

} while (m <=0);

do {

M and N) reads N ages

and the average (real number) of all ages

comparacao") ;

System.out.println("Introduza o numero de idades");

n ler . .nextInt () ;

60



A.1. Professor Solution and Feedback

} while (n <= 0);
// Read the age values
for (int i = 0; i < n; i++) {
idade = ler.nextInt();
if (idade > m) {
System.out.println(idade) ;

total=total+idade;

//The division result must be casted to float!
media=(float)total/n;

System.out.println(media) ;

Listing A.2: Solution to P2 by Professor

Welcome to the PP Tool Feedback System! You have been compared to 70 other projects
which solved the exact same exercise. By analysing metrics and mistakes a profile has been
extracted. This is done with 2 key distinctions in mind Skill and Readability

A.1.1  Profile Analysis

Your project which is named p has achieved a profile of Master! The score obtained is 14.92
skill and 11.8 readability.

A.1.2  Personalised Feedback

The system will now provide personalised feedback to help you improve your

score. This is done by prioritising the easiness and impact in your current score.

Suggestion: Follow PMD Rule

You violated rule ClassNamingConventions 1 times. This rule is part of the set Code Style

61

Description: The utility class name 'Ficha8” doesn’t match '[A-Z][a-zA-Zo-9]+(Utils?|Helper)’

You have violated it in the following lines of the project:

*3


https://pmd.github.io/pmd-6.16.0/pmd_rules_java_codestyle.html#classnamingconventions

A.2. Student Z Feedback and Solution

GOAL  You might still have some violations to improve on, but we advise you to more
than just that. Check out: Add more documentation.

Impact of Change

By following the recommendation above your score will fundamentally improve on read-

ability.
e Change in Readability: 11.8 -> 12.8 (7.8125%).

e Change in Skill: 14.92 -> 14.92 (0.0%).

PROFILE AFTER RECOMMENDATION  Your profile won't suffer any change yet, but that
is alright! Congratulations! You have reached the best profile! You can of course improve
either skill or readability depending on the context, but usually that will force you to lose

the balance.

A.2 STUDENT Z FEEDBACK AND SOLUTION

import java.util.Scanner;
public class Solution {

public static void main(Stringl[] args) {

Scanner in = new Scanner (System.in);

int threshold = in.nextInt(), i, ages = i = in.nextInt (), age, sum =
0;

while(i > 0){
sum += age = in.nextInt();

if (age > threshold)System.out.println(age);
i--3
}
/*Double or float, according to the desired decimal digits precision*/

System.out.println(ages > 0 ? (double) sum/ages : 0.0);

Listing A.3: Solution to P2 by a Master Student (Z)

62



A.3. Student 58 Feedback and Solution

A.2.1  Profile Analysis

Your project which is named Z has achieved a profile of Expert! The score obtained is 16.63

skill and 10.53 readability.

A.2.2 Personalised Feedback

The system will now provide personalised feedback to help you improve your
score. This is done by prioritising the easiness and impact in your current score.

Suggestion: Follow PMD Rule

You violated rule GenericsNaming 3 times. This rule is part of the set Code Style
Description: All classes and interfaces must belong to a named package You have vio-

lated it in the following lines of the project:

*3

*7

e 10
GOAL  You might still have some violations to improve on, but we advise you to more
than just that. Check out: Divide your code into multiple methods.
Impact of Change
By following the recommendation above your score will fundamentally improve on read-
ability.

e Change in Readability: 10.53 -> 11.28 (6.6489334%).

e Change in Skill: 16.63 -> 16.63 (0.0%).
PROFILE AFTER RECOMMENDATION  After this change you'll reach an even better pro-

file: Master.
Congratulations! You have reached the best profile!

A.3 STUDENT 58 FEEDBACK AND SOLUTION

63


https://pmd.github.io/pmd-6.16.0/pmd_rules_java_codestyle.html#genericsnaming

A.3. Student 58 Feedback and Solution

//Ezercicio 2
import java.util.x;

public class Exercicio2

{
private static ArraylList<Integer> numeros ;
public static float Geralist (ArraylList<Integer> nr, int n , int m){

Integer num [] = {23,34,3,65,20,24,9,7,51,43,60,87,53,37};
float resultado = 0;
float media = O0;

int i=0;
numeros = new Arraylist<Integer >(Arrays.asList(num));

Iterator it = numeros.iterator ();

nr = new ArrayList<Integer>();

while (it.hasNext()){
int p = (int) it.next();
if(p > m ){
nr.add (p);

Iterator maior = nr.iterator();

while (maior.hasNext ()){
if (i<n){
int q = (int) maior.mnext ();
resultado = resultado + q;
System.out.println ("Numero ARRAY ->" + q);
i++;

}else break;

return media = (float) (resultado/n);

Listing A.4: Solution to P2 by a Bachelor’s Student 58

64



A.3. Student 58 Feedback and Solution

A.3.1  Profile Analysis

Your project which is named Alunos8 has achieved a profile of Novice! The score obtained
is 6.52 skill and 8.34 readability.

A.3.2  Personalised Feedback

The system will now provide personalised feedback to help you improve your
score. This is done by prioritising the easiness and impact in your current score.

Suggestion: Follow PMD Rule

You violated rule ClassNamingConventions 1 times. This rule is part of the set Code Style

Description: The utility class name 'Ficha8” doesn’t match '[A-Z][a-zA-Zo-9]+(Utils?|Helper)’

You have violated it in the following lines of the project:

e 6

GOAL  You might still have some violations to improve on, but we advise you to more

than just that. Check out: Add more documentation.

Impact of Change

By following the recommendation above your score will fundamentally improve on read-
ability.

e Change in Readability: 8.34 -> 9.34 (10.706642%).

e Change in Skill: 6.52 -> 6.52 (0.0%).

PROFILE AFTER RECOMMENDATION  After this change you'll reach an even better pro-
tile: Advanced Beginner R.

Congratulations! You are no longer a Novice. However you certainly have a lot to im-
prove, “Proficient”, “Expert” and “Master” are all better profiles than the one you have
currently achieved. However you are clearly on the way forward. Just follow the recom-
mendation, try to notice other areas to improve, and rerun!

You now lean more towards readability.

65


https://pmd.github.io/pmd-6.16.0/pmd_rules_java_codestyle.html#classnamingconventions

A.4. Student 50 Feedback and Solution

A.4 STUDENT 50 FEEDBACK AND SOLUTION

import java.util.Scanner;

public class Exercicio2

// wvarti vetis de inst ncia - substitua o exzemplo abaizo pelo seu pr prio

public static void main(Stringl[] args)

{
{
}
}
A4.1

System.out.println("Insira a idade minima: ");

Scanner s = new Scanner (System.in);

int min = s.nextInt ();

System.out.println("Insira quantas idades quer introduzir: ");
int quantos = s.nextInt();

System.out.println("Insira as idades: ");

int idade;
double sum = 0;

int i=0;

while (i < quantos){
idade = s.nextInt();
if (idade<0)
System.out.println("Insira um numero positivo");
else
{
if (idade>min) System.out.println("Idade " + idade + " maior
do que " + min);

sum += idade;

}
i++;
}
System.out.println("M dia de todas as idades: " + sum/quantos);
Listing A.5: Solution to P2 by a Bachelor’s student 50
Profile Analysis

Your project which is named Alunoso has achieved a profile of Proficient! The score ob-

tained is 11.87 skill and 11.67 readability.

66



A.4. Student 50 Feedback and Solution

A.4.2 Personalised Feedback

The system will now provide personalised feedback to help you improve your
score. This is done by prioritising the easiness and impact in your current score.
Suggestion: Decrease number of statements

You have used 6.0 statements. This places you at 66.67% compared to the best of your peers.
A big difference of statements usually means there is a far easier solution to the problem.
Currently you only obtained 3.3333335 points to your skill score from this metric.

Try using 5 statements instead.

Impact of Change
By following the recommendation above your score will fundamentally improve on skill.
e Change in Readability: 11.67 -> 11.67 (0.0%).
e Change in Skill: 11.87 -> 13.703333 (13.378738%).
PROFILE AFTER RECOMMENDATION  After this change you'll reach an even better pro-

file: Master.
Congratulations! You have reached the best profile!

67



EXERCISE CODECHEF COINS

This appendix introduces feedback to an exercise which be found in COINS. All feedback
generated was converted to latex from markdown using Pandadoc’.

B.1 CODECHEF SUBMISSION 17777014

/* package codechef; // don’t place package mname! */

import java.util.x*;
import java.lang.x*;

import java.io.*;

/% Name of the class has to be "Main" only <if the class %s public. */

class Codechef

{

static long ans(long n)

{
long num=n/2+n/3+n/4;
if (num>n)
return ans(n/2)+ans(n/3)+ans(n/4);
else
return n;

}

public static void main (String[] args) throws java.lang.Exception
{
Scanner sc=new Scanner (System.in);
while (sc.hasNext ())
{
long n=sc.nextlong();

System.out.println(ans(n));
}

1 https://pandoc.org

68


https://www.codechef.com/problems/COINS
https://pandoc.org

B.1. Codechef Submission 17777014 69

Listing B.1: Submission 17777014 to COINS

Welcome to the PP Tool Feedback System! You have been compared to 300 other projects
which solved the exact same exercise. By analysing metrics and mistakes a profile has been
extracted. This is done with 2 key distinctions in mind Skill and Readability

B.1.1 Profile Analysis

Your project which is named 17777014 has achieved a profile of Advanced Beginner S! The
score obtained is 8.44 skill and 3.87 readability.

B.1.2 Personalised Feedback

The system will now provide personalised feedback to help you improve your
score. This is done by prioritising the easiness and impact in your current score.

Suggestion: Follow PMD Rule

You violated rule GenericsNaming 3 times. This rule is part of the set Code Style
Description: Avoid empty catch blocks You have violated it in the following lines of the

project:
o8
o 14

o 16

GOAL  You might still have some violations to improve on, but we advise you to more
than just that. Check out: Add more documentation.

Impact of Change

By following the recommendation above your score will fundamentally improve on read-

ability.
e Change in Readability: 3.87 -> 4.62 (16.233765%).

e Change in Skill: 8.44 -> 8.44 (0.0%).


https://pmd.github.io/pmd-6.16.0/pmd_rules_java_codestyle.html#GenericsNaming

B.2. Solution 21236236

PROFILE AFTER RECOMMENDATION  Your profile won't suffer any change yet, but that

is alright! Keep improving your readability above anything else in order to notice the

biggest changes more quickly.

B.2

SOLUTION 21236236

import java.util.HashMap;

import java.util.Map;

import java.util.Scanner;

class ByteLandianCoin {

static Map<Long,Long> solutions = new HashMap<Long,bLong>();
public static void main(String args[]) {

Scanner in = null;
try {
in = new Scanner (System.in);

String line =null;

while (in.hasNext ()){
line =in.nextLine() ;
System.out.println(solution(Long.parseLong(line))) ;
}
} catch (Exception e) {
System.out.println("Error " + e);
} finally A{

in.close () ;

public static long solution(long coin){

long solution = coin;
if (coin<12){

return coin;

if (solutions.containsKey (coin)){

return solutions.get(coin);

70



B.2. Solution 21236236

long coinSum = solution(Math.floorDiv(coin,2)) +solution(Math.floorDiv (
coin,3)) +solution(Math.floorDiv(coin,4));
if (coinSum>coin){
solution = coinSum;

}
solutions.put (coin, solution);

return solution;

Listing B.2: Submission 21236236 to COINS

Welcome to the PP Tool Feedback System! You have been compared to 300 other projects
which solved the exact same exercise. By analysing metrics and mistakes a profile has been
extracted. This is done with 2 key distinctions in mind Skill and Readability

B.2.1 Profile Analysis

Your project which is named 21236236 has achieved a profile of Advanced Beginner R! The

score obtained is 5.38 skill and 6.02 readability.

B.2.2 Personalised Feedback

The system will now provide personalised feedback to help you improve your

score. This is done by prioritising the easiness and impact in your current score.

Suggestion: Decrease Control Flow Statements (CFS)

You have shown the use of 4.0 control flow statements. You seem to have used 78.95% more
flows than your best peer.
Control Flow Statements can be considered the heart of algorithms. However, overusing

them can cause a bad performance as well as might show there is a easier way to solve the

problem. By decreasing the number of CFS you might be able to simplify your solution.

Currently you only obtained 2.5 points to your skill score from this metric.
Try using 2 CFS instead.

71



B.3. Solution A 72

Impact of Change

By following the recommendation above your score will fundamentally improve on skill.

e Change in Readability: 6.02 -> 5.7436843 (-4.8107758%).

e Change in Skill: 5.38 -> 7.5675 (28.90651%).

PROFILE AFTER RECOMMENDATION  After this change you'll reach an even better pro-
tile: Advanced Beginner +.

Congratulations on obtaining a balanced profile! However, you certainly have a lot to
improve before reaching a better profile. Perhaps, it will be easier to focus first on either
readability or skill, arriving at Proficient or Expert respectively before aiming for Master.
Good luck!

B.3 SOLUTION A

Solution A can be seen in Codechef’s interface here.

import java.util.x;

class COINS
{
public static void main(String args[])
{
Scanner s=new Scanner (System.in) ;
for (int i=0;i<10;i++)
{
long N=s.nextLong();
System.out.println (find (N)) ;

}
public static long find(long N)
{
long s=N/2+N/3+N/4;
if (s>N)
{
return(find (N/2)+find (N/3) +£find (N/4)) ;

return (N) ;


https://www.codechef.com/viewsolution/18403997

B.3. Solution A

Listing B.3: Submission 18403997 (Solution A) to COINS

B.3.1 Profile Analysis

Your project which is named 18403997 has achieved a profile of Advanced Beginner S! The
score obtained is 9.89 skill and 2.82 readability.

B.3.2 Personalised Feedback

The system will now provide personalised feedback to help you improve your

score. This is done by prioritising the easiness and impact in your current score.

Suggestion: Follow PMD Rule

You violated rule ClassNamingConventions 1 times. This rule is part of the set Code Style

73

Description: The utility class name 'COINS’ doesn’t match '[A-Z][a-zA-Zo-9]+(Utils?|Helper)’

You have violated it in the following lines of the project:
*3

GOAL  You might still have some violations to improve on, but we advise you to more
than just that. Check out: Add more documentation.
Impact of Change
By following the recommendation above your score will fundamentally improve on read-
ability.

e Change in Readability: 2.82 -> 3.82 (26.178009%).

e Change in Skill: 9.89 -> 9.89 (0.0%).
PROFILE AFTER RECOMMENDATION  Your profile won't suffer any change yet, but that

is alright! Keep improving your readability above anything else in order to notice the

biggest changes more quickly.



https://pmd.github.io/pmd-6.16.0/pmd_rules_java_codestyle.html#classnamingconventions

B.4 SOLUTION B

import
import
import
import
import

import

java.io.IOException;

java

java.
java.
java.

java.

.io.InputStreamReader;
io.BufferedReader;
util.x*;

math. *;

io.x*x;

class hacker

{

/*Fatt Gyt Bhai *x/
//Dekh le mera code

public static boolean/[]

{

boolean[] prime = new boolean[(int)n+1];

Arrays.fill (prime, true);

prime [0] = false;

prime [1] = false;

long m = (long)Math.sqrt(n);

for(int i=2;i<=m;i++)

{

}

if (prime[i])

{
for (int k=i*i;k<=n;k+=1i)
{
prime[k] = false;
}
}

return prime;

static long GCD(long a,long b)

{

if (a==0 || b==0)
{
return O;
}
if (a==b)
{
return a;
}
if (a>b)

{

sieve (long n)

B.4. Solution B

74



B.4. Solution B 75

return GCD(a-b,b);
}
return GCD(a,b-a);

static long CountCoPrimes (long n)
{
long res = n;
for(int i=2;i*i<=n;i++)
{
if (n%i==0)
{
while (n%i==0)
{
n/=1i;
}

res-=res/ij;

¥
if (n>1)
{
res-=res/n;
¥

return res;

static long modularExponentiation(long x,long n,long m)

{
long res = 1;
while (n>0)
{
if (n’%2==1)
{
res = (res*x)%m;
}
x =(x*x)%m;
n/=2;
}
return res;
}

static long lcm(long a,long b)

{
return (a*b)/GCD(a,b);



static long pow(long a,long b)

{
long res = 1;
while (b>0)
{
if ((b&1)==1)
{
res *= a;
}
b >>= 1;
a *x=a;
}
return res,;
}

static long modInverse(long A,long M)

{
return modularExponentiation(A,M-2,M);
}
static long fact(long n)
{
long res = 1;
for(int i=1;i<=n;i++)
{
res = (res*i) %1000000007;
}
return res%1000000007;
}

public static void main(String[] args) throws IOException
{
// in = new Scanner(new File("ezplicit.in"));
//out = new PrintWriter ("explicit.out");

new hacker () .run();

static long digits(long n)
{
long res =0;
while (n>0)
{
res+=n%10;
n/=10;

B.4. Solution B

76



B.4. Solution B 77

}

return res;

static void run() throws IOException

{
//Scanner sc = new Scanner (System.in);
BufferedReader br = new BufferedReader (new InputStreamReader (
System.in));
String str = "";
while ((str=br.readLine()) !=null)
{
try
{
long p = Long.parseLong(str);
System.out.println(getC(p));
}
catch(Exception e)
{
break;
}
}
}

static long getC(long n)

{
if (n<12) return n;
else return getC(n/2)+getC(n/3)+getC(n/4);
}
static long abs(long n)
{
return Math.abs(n);
}

static class Scanner
{
StringTokenizer st;

BufferedReader br;



B.4. Solution B

public Scanner (InputStream s){ br = new BufferedReader (new

InputStreamReader (s)) ;}

public String next() throws IOException

{
while (st == null || !st.hasMoreTokens())
{
st = new StringTokenizer (br.readLine());
}
return st.nextToken () ;
}

public int nextInt () throws IOException {return Integer.parselnt(next

(ODNS,

public long nextLong() throws IOException {return Long.parselLong(next
(ODES;

public String nextLine() throws IOException {return br.readLine() ;}

public boolean ready() throws IOException {return br.ready() ;}

Listing B.4: Submission 20951241 (Solution B) to COINS

B.4.1 Profile Analysis

Your project which is named 20951241 has achieved a profile of Advanced Beginner R! The

score obtained is 6.22 skill and 7.27 readability.

B.4.2 Personalised Feedback

The system will now provide personalised feedback to help you improve your
score. This is done by prioritising the easiness and impact in your current score.

78



B.5. Solution C

Suggestion: Follow PMD Rule

You violated rule UnusedImports 1 times. This rule is part of the set Best Practices
Description: Avoid unused imports such as java.io” You have violated it in the following
lines of the project:

*5

GOAL  You might still have some violations to improve on, but we advise you to more
than just that. Check out: There seems to be a better way to solve this exercise using
fewer statements. Perhaps you over complicated the algorithm?

Impact of Change

By following the recommendation above your score will fundamentally improve on skill.
e Change in Readability: 7.27 -> 7.52 (3.3244705%).

e Change in Skill: 6.22 -> 6.47 (3.8639908%).

PROFILE AFTER RECOMMENDATION  After this change you’ll reach an even better pro-
file: Advanced Beginner +.

Congratulations on obtaining a balanced profile! However, you certainly have a lot to
improve before reaching a better profile. Perhaps, it will be easier to focus first on either
readability or skill, arriving at Proficient or Expert respectively before aiming for Master.
Good luck!

B.5 SOLUTION C

//package codeforces;

import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashMap;

import java.util.Scanner;

import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;

import java.io.InputStreamReader;

79


https://pmd.github.io/pmd-6.16.0/pmd_rules_java_bestpractices.html#unusedimports

B.5. Solution C

import java.io.InputStream;

class ChefandSubsequence {
public static void main(Stringl[] args) {
InputStream inputStream = System.in;

OutputStream outputStream = System.out;

// InputReader in = new InputReader (inputStream);
Scanner in = new Scanner (inputStream) ;
PrintWriter out = new PrintWriter (outputStream) ;

TaskAA solver = new TaskAA();
solver.solve(1l, in, out);

out.close();

static class TaskAA {
static HashMap<Long,Long> memoize = new HashMap<>();
public void solve(int testNumber, Scanner in, PrintWriter out) {
memoize.put ((long)0, (long)O);
memoize.put ((long)1l, (long)1l);
while (in.hasNext ()) {
long n = in.nextLong() ;

out.println(max(n));

}

public static long max(long n) {
if (memoize.containsKey(n))return memoize.get(n);
long ret = Math.max(n, max(n/2)+max(n/3)+max(n/4));
memoize.put ((long)n, ret);

return ret;

static class InputReader {
public BufferedReader reader;

public StringTokenizer tokenizer;
public InputReader (InputStream stream) {

reader = new BufferedReader (new InputStreamReader (stream), 32768);

tokenizer = null;

public String next () {

while (tokenizer == null || !tokenizer.hasMoreElements ()) {
try {
tokenizer = new StringTokenizer (reader.readlLine());

} catch (IOException e) {

throw new RuntimeException(e);

8o



B.5. Solution C

}

return tokenizer.nextToken () ;

public int nextInt () {

return Integer.parselnt(next());
}
public long nextLong() {

return Long.parseLong(next ());

Listing B.5: Submission 19757960 (Solution C) to COINS

B.5.1 Profile Analysis

Your project which is named 19757960 has achieved a profile of Proficient! The score ob-

tained is 5.96 skill and 8.82 readability.

B.5.2 Personalised Feedback

The system will now provide personalised feedback to help you improve your
score. This is done by prioritising the easiness and impact in your current score.
Suggestion: Follow PMD Rule

You violated rule LooseCoupling 1 times. This rule is part of the set Best Practices
Description: Avoid using implementation types like "'HashMap’; use the interface instead

You have violated it in the following lines of the project:

® 29

GOAL  You might still have some violations to improve on, but we advise you to more
than just that. Check out: There seems to be a better way to solve this exercise using
fewer statements. Perhaps you over complicated the algorithm?

Impact of Change

By following the recommendation above your score will fundamentally improve on skill.

81


https://pmd.github.io/pmd-6.16.0/pmd_rules_java_bestpractices.html#loosecoupling

B.6. Student STV, Solution 1 82

e Change in Readability: 8.82 -> 9.15 (3.6065598%).
e Change in Skill: 5.96 -> 6.29 (5.246422%).
PROFILE AFTER RECOMMENDATION  Your profile won't suffer any change yet, but that

is alright! Keep improving your skill above anything else in order to notice the biggest
changes more quickly

B.6 STUDENT STV, SOLUTION 1

import java.util.HashMap;
import java.util.Map;
import java.util.Scanner;
class Coin {

public static Map<Long,Long> calculus;

private static long getmax(long x) {

if(x <= 10) {
return Xx;

} else if(Coin.calculus.containsKey(x)) {
return Coin.calculus.get(x);

} else {
long est = getmax(x/2) + getmax(x/3) + getmax(x/4);
Coin.calculus.put(x, Math.max(x, est));

return Coin.calculus.get(x);

public static void main (String[] args) {
Scanner in = new Scanner (System.in);

Coin.calculus = new HashMap<>();
while (in.hasNextLong()) {

long value = in.nextLong();

System.out.println(getmax(value)) ;

Listing B.6: First solution to COINS by STV



B.7. Student STV, Solution 2

B.6.1 Profile Analysis

Your project which is named STV1 has achieved a profile of Advanced Beginner S! The
score obtained is 6.54 skill and 4.31 readability.

B.6.2 Personalised Feedback

The system will now provide personalised feedback to help you improve your
score. This is done by prioritising the easiness and impact in your current score.
Suggestion: Follow PMD Rule

You violated rule UseUtilityClass 1 times. This rule is part of the set Design
Description: All methods are static. Consider using a utility class instead. Alternatively,
you could add a private constructor or make the class abstract to silence this warning. You

have violated it in the following lines of the project:
*4

GOAL  You might still have some violations to improve on, but we advise you to more
than just that. Check out: Add more documentation.
Impact of Change

By following the recommendation above your score will fundamentally improve on read-

ability.
e Change in Readability: 4.31 -> 4.64 (7.112068%).
e Change in Skill: 6.54 -> 6.54 (0.0%).
PROFILE AFTER RECOMMENDATION  Your profile won't suffer any change yet, but that

is alright! Keep improving your readability above anything else in order to notice the

biggest changes more quickly.

B.7 STUDENT STV, SOLUTION 2

import java.util.Scanner;

class Coin {

83


https://pmd.github.io/pmd-6.16.0/pmd_rules_java_design.html#useutilityclass

B.7. Student STV, Solution 2

public static long getmax(long x) {
if (x <= 10) {

return Xx;

} else {
long est = getmax(x/2) + getmax(x/3) + getmax(x/4);
return x < est 7?7 est : x;

}

public static void main (Stringl[] args) {
Scanner in = new Scanner (System.in);
while (in.hasNextLong()) {
long value = in.nextLong();

System.out.println(getmax (value)) ;

Listing B.7: Second solution to COINS by STV

B.7.1 Profile Analysis

Your project which is named STV2 has achieved a profile of Expert! The score obtained is

10.06 skill and 4.04 readability.

B.7.2 Personalised Feedback

The system will now provide personalised feedback to help you improve your

score. This is done by prioritising the easiness and impact in your current score.

Suggestion: Follow PMD Rule

You violated rule UseUtilityClass 1 times. This rule is part of the set Design
Description: All methods are static. Consider using a utility class instead. Alternatively,
you could add a private constructor or make the class abstract to silence this warning. You

have violated it in the following lines of the project:
°3

GOAL  You might still have some violations to improve on, but we advise you to more

than just that. Check out: Add more documentation.

84


https://pmd.github.io/pmd-6.16.0/pmd_rules_java_design.html#useutilityclass

B.8. Programmer HG

Impact of Change
By following the recommendation above your score will fundamentally improve on read-
ability.
e Change in Readability: 4.04 -> 4.37 (7.551483%).
e Change in Skill: 10.06 -> 10.06 (0.0%).
PROFILE AFTER RECOMMENDATION  Your profile won't suffer any change yet, but that

is alright! Keep improving your readability above anything else in order to notice the

biggest changes more quickly.

B.8 PROGRAMMER HG

import java.util.Scanner;

class HelloWorld {

private static int exchange (int coin)
{

int halfCoin = coin / 2;

int thirdCoin = coin / 3;

int fourthCoin = coin / 4;

if (coin >= halfCoin + thirdCoin + fourthCoin)
{
return coin;
} else {
int sum = exchange(halfCoin) + exchange(thirdCoin) + exchange (
fourthCoin) ;

return coin < sum ? sum : coin;

public static void main(String[] args)

{
Scanner in = new Scanner (System.in);
while (in.hasNextInt ()) {
int coin = in.nextInt();
System.out.println(exchange (coin));
}
}

85



B.8. Programmer HG

Listing B.8: Solution to COINS by HG

B.8.1 Profile Analysis

Your project which is named HG has achieved a profile of Expert! The score obtained is
10.06 skill and 4.64 readability.

B.8.2 Personalised Feedback

The system will now provide personalised feedback to help you improve your
score. This is done by prioritising the easiness and impact in your current score.
Suggestion: Follow PMD Rule

You violated rule UseUtilityClass 1 times. This rule is part of the set Design

Description: All methods are static. Consider using a utility class instead. Alternatively,
you could add a private constructor or make the class abstract to silence this warning. You
have violated it in the following lines of the project:

*3

GOAL  You might still have some violations to improve on, but we advise you to more
than just that. Check out: Add more documentation.
Impact of Change
By following the recommendation above your score will fundamentally improve on read-
ability.

e Change in Readability: 4.64 -> 4.97 (6.639839%).

e Change in Skill: 10.06 -> 10.06 (0.0%).
PROFILE AFTER RECOMMENDATION  Your profile won't suffer any change yet, but that

is alright! Keep improving your readability above anything else in order to notice the
biggest changes more quickly.

86


https://pmd.github.io/pmd-6.16.0/pmd_rules_java_design.html#useutilityclass

B.9. Programmer MNDS 87

B. PROGRAMMER MNDS

/* package codechef; // don’t place package name! */
import java.util.HashMap;

import java.util.Scanner;

class Bank {

private HashMap<Long, Long> exchanges;

public Bank () {

this.exchanges = new HashMap<>();

private long bestFit(long n) {
long half = this.exchange(n / 2);
long third = this.exchange(n / 3);
long quarter = this.exchange(n / 4);

long exchangedCurrencies = half + third + quarter;

return exchangedCurrencies > n ? exchangedCurrencies : n;

public long exchange(long n) {
if (n < 11) {
return n;
} else if(this.exchanges.containsKey(n)) {
return this.exchanges.get(n);
} else {
long result = this.bestFit(n);

this.exchanges.put(n, result);

return result;

public static void main(Stringl[] args) {
Scanner in = new Scanner (System.in) ;
Bank b = new Bank();

while (in.hasNextLong ()) {
long n = in.nextLong();

System.out.println(b.exchange(n)) ;



B.9. Programmer MNDS

Listing B.9: Solution to COINS by MNDS

B.9.1 Profile Analysis

Your project which is named MNDS has achieved a profile of Advanced Beginner +! The
score obtained is 7.13 skill and 5.92 readability.

B.9.2 Personalised Feedback

The system will now provide personalised feedback to help you improve your
score. This is done by prioritising the easiness and impact in your current score.
Suggestion: Follow PMD Rule

You violated rule LooseCoupling 1 times. This rule is part of the set Best Practices
Description: Avoid using implementation types like 'HashMap’; use the interface instead
You have violated it in the following lines of the project:

e 6

GOAL  You might still have some violations to improve on, but we advise you to more
than just that. Check out: You could use fewer control flow statements. Try reducing the
number of cycles, that usually means there is an easier way to solve this exercise.

Impact of Change
By following the recommendation above your score will fundamentally improve on skill.
e Change in Readability: 5.92 -> 6.25 (5.279999%).
e Change in Skill: 7.13 -> 7.46 (4.4235916%).
PROFILE AFTER RECOMMENDATION  Your profile won't suffer any change yet, but that
is alright! Your profile is balanced, however you have a lot to improve before reaching a

better profile. Perhaps, it will be easier to focus first on either readability or skill, arriving

at Proficient or Expert respectively before aiming for Master. Good luck!

88


https://pmd.github.io/pmd-6.16.0/pmd_rules_java_bestpractices.html#loosecoupling

EXERCISE CODECHEF JOHNY

This appendix introduces feedback to an exercise which be found in JOHNY.

C.1 STUDENT RSND

import java.util.Scanner;

import java.util.ArrayList;

class Main {

public static void main(String[] args) {

int n_tests;
ArraylList<Integer> array;
int number_array;
int current_k;
int value;

int count;

Scanner in = new Scanner (System.in);

array = new ArrayList<Integer>();

n_tests = in.nextInt () ;

for (int i = 0; i < n_tests; i++) {
number_array = in.nextInt () ;
for (int j = 0; j < number_array; j++) {

array.add(in.nextInt ());

¥
current_k = in.nextInt ();
value = array.get(current_k - 1);
count = O0;
for (int it : array) {

if (it<value)

count ++;

iy

System.out.println(count + 1);

array.clear () ;

89


https://www.codechef.com/problems/JOHNY

C.1. Student RSND

Listing C.1: Solution to JOHNY by RSND

c.1.1  Profile Analysis

Your project which is named RSND has achieved a profile of Advanced Beginner S! The
score obtained is 9.25 skill and 2.97 readability.

c.1.2 Personalised Feedback

The system will now provide personalised feedback to help you improve your
score. This is done by prioritising the easiness and impact in your current score.
Suggestion: Follow PMD Rule

You violated rule LocalVariableNamingConventions 3 times. This rule is part of the set
Code Style
Description: The local variable name ‘N’ doesn’t match ’[a-z][a-zA-Zo-9]*" You have

violated it in the following lines of the project:

GOAL  You might still have some violations to improve on, but we advise you to more

than just that. Check out: Add more documentation.

Impact of Change

By following the recommendation above your score will fundamentally improve on read-
ability.

e Change in Readability: 2.97 -> 5.9700003 (50.25126%).

e Change in Skill: 9.25 -> 9.25 (0.0%).

90


https://pmd.github.io/pmd-6.16.0/pmd_rules_java_codestyle.html#localvariablenamingconventions

C.1. Student RSND

PROFILE AFTER RECOMMENDATION  After this change you'll reach an even better pro-

file: Advanced Beginner +.
Congratulations on obtaining a balanced profile! However, you certainly have a lot to

improve before reaching a better profile. Perhaps, it will be easier to focus first on either

readability or skill, arriving at Proficient or Expert respectively before aiming for Master.

Good luck!

91



	1 Introduction
	1.1 Objectives
	1.2 Research Hypothesis
	1.3 Document Structure

	2 Approaches to Support Programmer's Growth
	2.1 Assessment of Programmer Skill
	2.1.1 Challenges and Exams
	2.1.2 Experience

	2.2 Profiling Programmers
	2.3 Delivering Feedback

	3 Approach
	3.1 Problem definition
	3.2 Expanding the Programmer Profiler Tool
	3.3 How profiles and attributes feed the feedback system
	3.4 System architecture
	3.5 Requirements

	4 Scaling up the System
	4.1 Analysing hundreds of exercises
	4.2 Algorithm Corrections
	4.2.1 PP Metrics adjustments
	4.2.2 PMD Update
	4.2.3 Scoring

	4.3 Result Analysis
	4.3.1 Scale up
	4.3.2 Control Group


	5 Providing Feedback
	5.1 Delivering Feedback
	5.2 Leveraging Profile
	5.3 Types of Feedback
	5.3.1 Violations
	5.3.2 Metrics

	5.4 Impact of Change
	5.5 Implementation
	5.6 Guidelines for Feedback
	5.6.1 Helps clarify what good performance is
	5.6.2 Facilitates the development of self-assessment (reflection) in learning
	5.6.3 Delivers high quality information to students about their learning
	5.6.4 Encourages teacher and peer dialogue around learning
	5.6.5 Encourages positive motivational beliefs and self-esteem
	5.6.6 Provides opportunities to close the gap between current and desired performance
	5.6.7 Provides information to teachers that can be used to help shape the teaching


	6 Results
	6.1 Exercises from Profiling
	6.1.1 Professor
	6.1.2 Student 50
	6.1.3 Student 58
	6.1.4 Master Student Z

	6.2 Reusing the scale up group
	6.3 Programmer Feedback
	6.3.1 STV
	6.3.2 HG and MNDS
	6.3.3 RSND


	7 Conclusion
	7.1 Project Development Stages
	7.2 Outcomes
	7.3 Future Work
	7.3.1 Supporting Projects
	7.3.2 Graphical User Interface for self-learning
	7.3.3 Customisation
	7.3.4 Improve Feedback and Personalisation

	7.4 End Note

	A Exercise P2
	A.1 Professor Solution and Feedback
	A.1.1 Profile Analysis
	A.1.2 Personalised Feedback

	A.2 Student Z Feedback and Solution
	A.2.1 Profile Analysis
	A.2.2 Personalised Feedback

	A.3 Student 58 Feedback and Solution
	A.3.1 Profile Analysis
	A.3.2 Personalised Feedback

	A.4 Student 50 Feedback and Solution
	A.4.1 Profile Analysis
	A.4.2 Personalised Feedback


	B Exercise CodeChef Coins
	B.1 Codechef Submission 17777014
	B.1.1 Profile Analysis
	B.1.2 Personalised Feedback

	B.2 Solution 21236236
	B.2.1 Profile Analysis
	B.2.2 Personalised Feedback

	B.3 Solution A
	B.3.1 Profile Analysis
	B.3.2 Personalised Feedback

	B.4 Solution B
	B.4.1 Profile Analysis
	B.4.2 Personalised Feedback

	B.5 Solution C
	B.5.1 Profile Analysis
	B.5.2 Personalised Feedback

	B.6 Student STV, Solution 1
	B.6.1 Profile Analysis
	B.6.2 Personalised Feedback

	B.7 Student STV, Solution 2
	B.7.1 Profile Analysis
	B.7.2 Personalised Feedback

	B.8 Programmer HG
	B.8.1 Profile Analysis
	B.8.2 Personalised Feedback

	B.9 Programmer MNDS
	B.9.1 Profile Analysis
	B.9.2 Personalised Feedback


	C Exercise CodeChef Johny
	C.1 Student RSND
	C.1.1 Profile Analysis
	C.1.2 Personalised Feedback



