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A B S T R A C T   

Acute stress is ubiquitous in everyday life, but the extent to which acute stress affects how people learn from the 
outcomes of their choices is still poorly understood. Here, we investigate how acute stress impacts reward and 
punishment learning in men using a reinforcement-learning task. Sixty-two male participants performed the task 
whilst under stress and control conditions. We observed that acute stress impaired participants’ choice perfor
mance towards monetary gains, but not losses. To unravel the mechanism(s) underlying such impairment, we 
fitted a reinforcement-learning model to participants’ trial-by-trial choices. Computational modeling indicated 
that under acute stress participants learned more slowly from positive prediction errors — when the outcomes 
were better than expected — consistent with stress-induced dopamine disruptions. Such mechanistic under
standing of how acute stress impairs reward learning is particularly important given the pervasiveness of stress in 
our daily life and the impact that stress can have on our wellbeing and mental health.   

1. Introduction 

Learning to choose options that lead to rewards and to avoid those 
that result in punishments is crucial for adaptive behavior. Situational 
factors, such as stress, can have deleterious effects on the ability to make 
the best choices and learn from them (Porcelli & Delgado, 2017). Stress 
is present in our day-to-day life, but, notably, how acute stress affects 
reward and punishment learning remains largely unknown. A growing 
body of evidence suggests that acute stress impairs reward-seeking 
behavior (Berghorst, Bogdan, Frank, & Pizzagalli, 2013; Bogdan & 
Pizzagalli, 2006; Bogdan, Santesso, Fagerness, Perlis, & Pizzagalli, 2011; 
Ehlers & Todd, 2017; Morris & Rottenberg, 2015; Paret & Bublatzky, 
2020; but see Lighthall, Gorlick, Schoeke, Frank, & Mather, 2013), but 
less is known about the impact of acute stress on punishment-avoidance 
behavior (Aylward et al., 2019; Petzold, Plessow, Goschke, & Kirsch
baum, 2010). More critically, there is even less evidence on the mech
anisms that underlie the behavioral effects of acute stress on reward and 
punishment learning. Here, we use a computational reinforcement- 
learning framework to investigate the impact of acute stress on reward 
and punishment learning in men. 

In the past decades, the use of computational modeling approaches 
to describe behavior-brain relationships in healthy humans has played 
an influential role on cognitive science (Daw & Frank, 2009; Frank, 

2015; Huys, Maia, & Frank, 2016; Maia & Frank, 2011; Maia, 2015). 
Computational models, such as reinforcement-learning models, are built 
and implemented to capture very specific cognitive and neural mecha
nisms, thus linking different levels of analysis, from cognitive and 
behavioral phenomena to neurobiological mechanisms (Chater, 2009; 
Daw & Frank, 2009; Nair, Rutledge, & Mason, 2020). Reinforcement- 
learning models are considered extremely useful tools to investigate 
the neural computations underpinning cognition and behavior (Collins 
& Frank, 2013; Daw, 2011; Daw & Frank, 2009; Huys et al., 2016; Maia 
& Frank, 2011; Nair et al., 2020), and can thus provide a mechanistic 
framework to disentangle the effects of acute stress on reward and 
punishment learning (Aylward et al., 2019; Huys, Pizzagalli, Bogdan, & 
Dayan, 2013; Luksys & Sandi, 2011; Otto, Raio, Chiang, Phelps, & Daw, 
2013; Radenbach et al., 2015; Robinson, Overstreet, Charney, Vytal, & 
Grillon, 2013). 

According to reinforcement-learning theory, individuals learn to 
gradually select more and more often the actions that maximize rewards 
and those that minimize punishments by learning the values of the 
executed actions, and such learning is driven by prediction errors (Maia 
& Frank, 2011; Schultz, Dayan, & Montague, 1997; Sutton & Barto, 
1998). Specifically, prediction errors — which signal the difference 
between obtained and expected outcomes — are used to progressively 
update the values of the executed actions (Collins & Frank, 2013; Maia & 
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Frank, 2011; Schultz et al., 1997; Sutton & Barto, 1998). Prediction 
errors can be positive or negative. Positive prediction errors occur when 
outcomes are better than expected, and can thus signal unexpected re
wards or avoidance of expected punishments (Daw & Tobler, 2014; 
Schultz et al., 1997; Watabe-Uchida, Eshel, & Uchida, 2017). Negative 
prediction errors occur when outcomes are worse than expected, thus 
signaling unexpected punishing outcomes or omission of expected re
wards (Daw & Tobler, 2014; Schultz et al., 1997; Watabe-Uchida et al., 
2017). This means that positive and negative prediction errors can be 
both present in reward and punishment learning. Interestingly though, 
recent evidence indicates that in simple reinforcement-learning tasks, 
reward learning should be mostly driven by positive prediction errors 
(Lefebvre, Lebreton, Meyniel, Bourgeois-Gironde, & Palminteri, 2017; 
Palminteri & Pessiglione, 2013), while punishment learning seems to be 
largely driven by negative prediction errors (Palminteri & Pessiglione, 
2013). Studies that do not consider the positive and negative valence of 
prediction errors when modeling reward and/or punishment learning 
often assume that, during reward learning, obtaining unexpected re
wards (positive prediction errors) is coded similarly to the omission of 
expected rewards (negative prediction errors), and that, during pun
ishment learning, obtaining unexpected punishments (negative predic
tion errors) is coded similarly to the omission of expected punishments 
(positive prediction errors). However, extant evidence suggests that the 
brain encodes positive and negative prediction errors differently (Frank, 
2005; Maia & Frank, 2011; O’Doherty, Dayan, Friston, Critchley, & 
Dolan, 2003; Schultz et al., 1997). Thus, to better understand the 
mechanisms underlying reward and punishment learning, computa
tional models could benefit from the integration of such neurobiological 
evidence and model positive and negative prediction errors separately. 
Importantly, reinforcement-learning models can capture how quickly 
unexpected positive and negative outcomes are integrated over time 
through distinct learning rates for positive and negative prediction er
rors, respectively (Frank, Moustafa, Haughey, Curran, & Hutchison, 
2007). Relatedly, blunted signaling of positive and negative prediction 
errors can be captured by reinforcement-learning models as reduced 
learning rates. 

Dopaminergic functioning plays a key role in prediction-error-based 
learning (Frank, Seeberger, & O’Reilly, 2004; Glimcher, 2011; Maia & 
Frank, 2011; Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006). 
Prediction-error signals are known to be encoded in the phasic activity 
of dopamine neurons (Daw & Tobler, 2014; Maia & Frank, 2011; Schultz 
et al., 1997). Specifically, phasic bursts of dopaminergic neurons are 
thought to adaptively encode positive prediction errors, whereas 
dopamine dips have been associated with the adaptive encoding of 
negative prediction errors (Daw & Tobler, 2014; Maia & Frank, 2011; 
Schultz et al., 1997). However, phasic-dopamine responses do not seem 
to be always adaptive, and there is evidence that dopamine can be 
phasically released in an aberrant spontaneous manner (Belujon, Grace, 
& Grace, 2015; Maia & Frank, 2017; Sulzer, Cragg, & Rice, 2016). 
Studies with non-human male animals suggest that acute stress increases 
aberrant spontaneous phasic-dopamine release in the mesolimbic 
pathway, which originates in the ventral tegmental area and projects to 
terminal regions such as the striatum (Anstrom, Miczek, & Budygin, 
2009; Anstrom & Woodward, 2005; Valenti, Lodge, & Grace, 2011). 
Crucially, exaggerated, aberrant spontaneous dopamine release seems to 
reduce adaptive phasic bursts that signal positive prediction errors in the 
striatum (Daberkow et al., 2013; Grace, 2016; Maia & Frank, 2017; 
Werlen et al., 2020). Additionally, though more speculative (Maia & 
Frank, 2017), aberrant spontaneous dopamine release might also block 
the effects of dopamine dips (Frank, 2005; Frank & O’Reilly, 2006) 
needed to signal negative prediction errors. Still, the extent to which 
stress-induced aberrant spontaneous dopamine release blunts signaling 
of positive and/or negative prediction errors remains poorly 
understood. 

Stress can be defined as a subjective state of sensing potentially 
adverse changes in the environment (Joëls & Baram, 2009). Stressful 

stimuli (i.e., stressors) can elicit many physiological and functional 
changes in the brain in response to perceived adverse changes in the 
environment (de Kloet, Joëls, & Holsboer, 2005; Hermans, Henckens, 
Joëls, & Fernández, 2014; Joëls & Baram, 2009). The first wave of the 
stress response occurs rapidly and involves enhanced release of cate
cholamines, such as noradrenaline and dopamine. The catecholamines 
release generally initiates almost instantly after the onset of the stressor 
and the rapid raise in catecholamines levels is quickly translated into 
changes in neural functioning (Hermans et al., 2014; Joëls & Baram, 
2009; Sapolsky, Romero, & Munck, 2000). For instance, increased 
release of noradrenaline seems to contribute to the reorientation of 
attention to a more general scanning of the environment (Hermans et al., 
2014) and dopamine, which is released during stress exposure in the 
prefrontal cortex and striatum (Abercrombie, Keefe, DiFrischia, & Zig
mond, 1989; Anstrom et al., 2009; Anstrom & Woodward, 2005; Cabib 
& Puglisi-Allegra, 2012; Nagano-Saito et al., 2013; Pruessner, Cham
pagne, Meaney, & Dagher, 2004), is thought to alter reward learning 
rein (Porcelli & Delgado, 2017). A second, and slower, wave of the stress 
response involves secretion of glucocorticoids. Cortisol usually has slow, 
prolonged actions on neural functioning (de Kloet et al., 2005; Hermans 
et al., 2014; Joëls & Baram, 2009; Sapolsky et al., 2000). Peak con
centrations of cortisol are typically not reached before 15–30 min after 
the stressor onset (de Kloet et al., 2005; Hermans et al., 2014), which 
points to a limited role of cortisol in the immediate stress response. 

Stress exerts various effects on cognitive functioning (de Kloet et al., 
2005), namely via fast-initial release of catecholamines and slow- 
delayed release of cortisol, as mentioned above. Thus, one important 
factor when studying the impact of acute stress on learning is to consider 
whether learning is tested immediately after the onset of the stressor 
when catecholamines levels are higher or later when cortisol levels peak 
(Hermans et al., 2014; Joëls, Pu, Wiegert, Oitzl, & Krugers, 2006; Por
celli & Delgado, 2017; Schwabe, Joëls, Roozendaal, Wolf, & Oitzl, 
2012). A significant number of stress and learning studies have 
considered only slower effects of cortisol in the stress response, adopting 
designs that may involve relatively longer latencies between stress in
duction and task solving (Byrne, Cornwall, & Worthy, 2019; de Berker 
et al., 2016; Ehlers & Todd, 2017; Kruse, Tapia León, Stalder, Stark, & 
Klucken, 2018; Lighthall et al., 2013; Otto et al., 2013; Paul, Bellebaum, 
Ghio, Suchan, & Wolf, 2019; Petzold et al., 2010). In those studies, 
participants are often exposed to a stress manipulation, such as the Trier 
social stress test or the (socially evaluated) cold pressor test, and the 
impact of stress on learning is assessed around 10–20 min after the stress 
manipulation has occurred, so that cortisol levels peak during the 
learning task. Such stress inductions can combine a social evaluation 
component, unpredictability, and uncontrollability, which are known to 
produce robust increases in cortisol levels (McRae et al., 2006; Schwabe, 
Haddad, & Schachinger, 2008). However, in those paradigms, it is less 
clear if individuals are actually perceiving stress at the time of learning, 
as the stressor is experienced outside of the learning context (McRae 
et al., 2006; Schwabe et al., 2012). Moreover, it is not unlikely that stress 
recovery occurs during the learning task (see de Berker et al., 2016; Paul 
et al., 2019; Radenbach et al., 2015; Schwabe & Wolf, 2009, for exam
ples of studies that show decreasing cortisol levels during task solving) 
due to suppressive actions of glucocorticoids (Hermans et al., 2014; 
Sapolsky et al., 2000). 

Fast-acting stress-induced catecholaminergic effects, such as 
increased release of dopamine (Abercrombie et al., 1989; Anstrom et al., 
2009; Anstrom & Woodward, 2005; Cabib & Puglisi-Allegra, 2012; 
Nagano-Saito et al., 2013; Pruessner et al., 2004), can influence brain 
function in regions known to be critically associated with learning 
processes. Thus, by exposing participants to an acute stressor whilst they 
perform a learning task, one can conceivably capture the impact of 
stress-induced catecholamine (e.g., dopamine) release on learning. 
However, one potential drawback of using acute stressors, such as threat 
of shock, time pressure or noise, during a cognitive task, is that it can 
make it difficult to disentangle whether cognitive impairments occur as 
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a result of stress or because the stressor acted as a distractor (Robinson, 
Vytal, Cornwell, & Grillon, 2013). Indeed, the first wave of the stress 
response can trigger a sensory hypervigilant state and the redirection of 
attention to stressors, conceivably causing distraction in tasks that 
require selective attention (Hermans et al., 2014). Importantly though, 
distractibility seems to be more robustly induced by unpredictable 
changes (Parmentier, 2014; Parmentier & Hebrero, 2013; Sussman, 
Winkler, & Schröger, 2003). Therefore, one possible alternative to 
minimize the potential distractor effect of an acute stressor during a 
cognitive task could be to minimize the unpredictability of that stressor. 

In this study, we chose to use an acute stressor (with reduced 
unpredictability) during a reinforcement-learning task, to better un
derstand whether and how acute stress affects reward and/or punish
ment learning, very likely via putative dopaminergic mechanisms, 
which can be captured by computational models such as the one we used 
(Frank et al., 2007). The aim of the present work was twofold. First, to 
investigate how acute stress impacted behavioral performance during 
reward and punishment learning. Second, to inspect the computational 
mechanisms behind the effects of acute stress on reward and punishment 
learning. Given the putative roles of phasic-dopamine responses on 
prediction errors signaling and of acute stress on aberrant spontaneous 
phasic-dopamine release, we hypothesized that acute stress would 
impair reward learning and, more tentatively punishment learning. 
Relatedly, we hypothesized that acute stress would decrease the 
learning rate for positive prediction errors and, more tentatively, the 
learning rate for negative prediction errors. 

To test those hypotheses, we used a well-established reinforcement- 
learning task involving monetary gains and losses (Pessiglione et al., 
2006) combined with a novel acute stress manipulation. Using this task 
combined with pharmacological manipulations of the dopaminergic 
system, Pessiglione et al. (2006) showed that dopamine-related drugs 
modulate prediction errors expressed in the striatum during reward 
learning. The stress manipulation consisted of exposing participants to 
an uncontrollable sound (i.e., participants could not put an end to it) 
whilst they performed the reinforcement-learning task. We chose to use 
a repetitive alarm sound as stressor, because alarms are known to acti
vate the nervous sympathetic system (e.g., increase heart rate and skin 
conductance), involved in the earlier phase of the stress response (Hall 
et al., 2016; Korhonen, 1981; Westman & Walters, 1981). Repetitive, 
uncontrollable sounds for long periods of time seem to be particularly 
effective in increasing dopamine release (Arnsten & Goldman-Rakic, 
1998) and levels of adrenocorticotropic hormone (Arguelles, Ibeas, 
Ottone, & Chekherdemian, 1962; Breier et al., 1987). To minimize the 
potential distractor effect of the stressor, we used a sound that was al
ways constant and repetitive, and therefore predictable, as unexpected 
changes in sound sequences robustly induce distraction and negatively 
affect performance in an unrelated task (Hughes, 2014; Parmentier, 
2014; Parmentier, Elford, Escera, Andrés, & Miguel, 2008). To further 
minimize unpredictability, we also instructed participants, before they 
started the task, that they would hear an alarm, not associated with the 
task itself or with their performance, during blocks cued with a warning 
signal and a red background (Hughes, 2014; Parmentier & Hebrero, 
2013; Sussman et al., 2003). Although the stressor was not unpredict
able, it was uncontrollable (i.e., participants could not put an end to it). 
Uncontrollable auditory stimuli can elevate stress responses (Arguelles 
et al., 1962; Breier et al., 1987; Rylander, 2004; Westman & Walters, 
1981) and may disrupt dopaminergic mechanisms (Arnsten & Goldman- 
Rakic, 1998) and cognitive functioning (Glass, Reim, & Singer, 1971). 
To check the success of the acute-stress manipulation, we collected self- 
report stress levels at the end of each block of the task and measured skin 
conductance response (SCR) rate throughout the task. Then, we 
inspected how acute stress altered reward and punishment learning 
during the reinforcement-learning task using both classical statistical 
analyses and computational-model-based analyses of participants’ 
behavioral data. For the latter analyses, we fitted participants’ choices 
with a previously established, biologically inspired, reinforcement- 

learning model (Frank et al., 2007), which has been extensively used 
to investigate the cognitive and behavioral impact of pharmacological 
manipulations and genetic variations in the dopaminergic system in 
humans (Diederen et al., 2017; Doll, Hutchison, & Frank, 2011; Frank & 
Fossella, 2011; Frank et al., 2007; Grogan et al., 2017; Rutledge et al., 
2009). The fitted reinforcement-learning model allowed us to examine 
the effects of acute stress on learning rates for positive and negative 
prediction errors. In this study, we included only male participants due 
to females’ hormonal-dependent variations on stress responsivity, as 
well as on reward and punishment learning (Diekhof, Korf, Ott, 
Schädlich, & Holtfrerich, 2020; Dreher et al., 2007; Ossewaarde et al., 
2010). 

2. Material and Methods 

2.1. Participants 

Sixty-two healthy male participants (age range = 18 – 35 years; M =
21.9 years, SD = 3.7 years) were recruited at University of Minho, 
Portugal. Due to similarities in study design, we used the study of Pezold 
et al. (2010) as a reference to determine our minimum sample size. To 
allow for possible data exclusions due to technical problems and/or 
nonresponders in skin conductance data, participant enrollment in our 
study was stopped once we reached a sample size two-fold the sam
ple size analyzed in Petzold et. al (2010). Data collection continued until 
all participants enrolled up to that point were tested. Data collection was 
stopped before data analyses, independently of the statistical signifi
cance of the data. Four participants were excluded from skin- 
conductance analyses due to poor signal quality. No participants were 
a priori excluded from any other data analyses, although we conducted 
confirmatory analyses excluding potential outliers to ensure that our 
results were not driven by extreme values. 

All participants provided their informed consent before the experi
mental session. All experimental procedures were approved by the 
Ethics Committee of University of Minho. 

2.2. Reinforcement-learning task 

After a short practice (12 trials), to familiarize participants with the 
task timings and response keys, participants completed four blocks of an 
adapted version of a well-established reinforcement-learning task (Pes
siglione et al., 2006) (Fig. 1). Each block included three pairs of abstract 
stimuli, and each pair of stimuli was presented 40 times, making 120 
trials in total per block. Different abstract stimuli were used in each 
block. Each pair of stimuli was associated with a valence: one pair of 
stimuli was associated with gains (gain 0.5€ or no change), a second pair 
associated with losses (loss 0.5€ or no change), and a third pair associ
ated with neutral, or non-financial outcomes (look at a 0.5€ coin or no 
change; for a depiction of neutral trials see Fig. S1a in the Supplemen
tary Material). The outcome probabilities were reciprocally 0.8 and 0.2 
for the stimuli in each of the three pairs. On each trial, one pair was 
randomly presented on the screen, with one stimulus above and the 
other below a central fixation cross (the stimuli position was counter
balanced across trials). Participants were instructed to choose between 
the two visual stimuli displayed on the computer screen to maximize 
payoffs. Missing choices occurred when participants did not press the 
response keys within 2000 ms (0.38% missing choices: 40 in the stress 
condition and 72 in the control condition, in a total of 29,760 trials 
across all participants) and were signaled with a “Missed” message (no 
other outcome was provided). Missing choices were excluded from data 
analyses. Before starting the task, participants were informed that they 
would be paid the amount of money obtained during a randomly 
selected block, although they all left with the same fixed compensation 
(15€) for their participation. The experiment was programmed and 
presented with Cogent 2000 (http://www.vislab.ucl.ac.uk/cogent.php) 
implemented in MATLAB R2015a (MathWorks). 
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2.3. Acute stress manipulation 

During the experimental session, participants performed two blocks 
of the reinforcement-learning task whilst exposed to a stressor (i.e., 
stress condition; Fig. 1a) and two blocks without the stressor (i.e., 
control condition; Fig. 1b). To elicit stress responses we exposed par
ticipants to a predictable, but uncontrollable auditory stimulus, a con
stant alarm (“Annoying modern office building alarm.wav”, retrieved 
from freesound.org, and programmed to loop uninterruptedly), played 
through the same set of over-ear headphones (GOODIS, model 
GWH4093, with the volume set to the maximum), with the sound vol
ume adjusted in the laptop to level 27 (in a scale from 0 to 100) for all 
participants. We conducted a brief pilot to qualitatively confirm that this 
volume was tolerable, yet stressful. Stress blocks were signaled by a 
warning sign and a red background (Fig. 1a), and control blocks were 
signaled by a safe sign and blue background (Fig. 1b). Stress and control 
blocks were administered alternately and in counterbalanced order. 
Each block of the task lasted 8 min, and the whole task took around 36 
min (including warnings, breaks between blocks, and stress ratings with 
variable durations). The experiment was conducted in a soundproof 
room to avoid interference due to environmental noise, and between 12 
pm and 6 pm to minimize diurnal variability in stress responses. 

2.4. Manipulation check 

Stress levels were assessed by asking participants at the end of each 
block to rate how stressed they felt during that block on a scale of 1 
(nothing) to 9 (extremely). To further assess the impact of the acute 
stressor on autonomic responses, we acquired skin conductance re
sponses (SCRs) using BIOPAC MP150 and a pair of finger electrodes. 
Electrodes were attached to participants’ left index and ring fingers; the 
gain was set to 5, the low pass filter to 10 Hz, and the high pass filters to 
DC. Recordings were performed using Acknowledge 4.4. Data were ac
quired at 200 Hz, downsampled to 62 Hz, and smoothed with a median 
filter in order to remove outliers. Each participant’s SCRs were detected 
using a threshold of 0 μs and a rejection rate of 10% (Kim, Bang, & Kim, 
2004), meaning that we excluded SCR with an amplitude smaller that 
10% of the maximum SCR amplitude in each subject, rather than using 
an arbitrary threshold that would not account for inter-individual dif
ferences in SCRs. The SCR rate was calculated by dividing the number of 
SCRs detected in each block by the duration of that block (in minutes). 

Self-reported stress levels and SCR rates were analyzed using 
repeated-measures analyses of variance (ANOVAs), with condition 
(stress and control) and block (1 and 2) as within-subject factors, and 
post-hoc paired t-tests. ANOVAs effect sizes are reported as eta-squared, 
ƞ2, and post-hoc paired t-tests’ effect sizes are reported as Cohen’s d and 
95% confidence intervals. We further conducted non-parametric Wil
coxon signed-rank tests, which are more robust to outliers, to confirm 

Fig. 1. Reinforcement-learning task. On each trial of the task, participants had to choose either the upper or the lower of two abstract visual stimuli presented on a 
computer screen and to subsequently observe the obtained outcome, whilst under acute stress and under control conditions. (a) In the depicted stress-condition 
example, the chosen stimulus was associated with a probability of 0.8 of winning 0.5€ and with a probability of 0.2 of obtaining nothing. The other (not chosen) 
stimulus was associated with a probability of 0.8 of obtaining nothing and with a probability of 0.2 of winning 0.5€. (b) In the depicted control-condition example, 
the chosen stimulus was associated with a probability of 0.8 of losing 0.5€ and with a probability of 0.2 of obtaining nothing. The other (not chosen) stimulus was 
associated with a probability of 0.8 of obtaining nothing and with a probability of 0.2 of losing 0.5€. Participants completed a total of four blocks, consisting of an 
alternation between two stress and two control blocks. To assess stress responses, self-reported stress levels were collected at the end of each block and skin 
conductance was measured throughout the task. 
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the results from post-hoc paired t-tests. Additionally, to confirm that our 
findings were robust to extreme values, we repeated the SCR rate ana
lyses excluding participants with abnormally large SCR rates. Statistical 
analyses were conducted using JASP 0.9. 

2.5. Task performance analyses 

To examine the impact of acute stress on choice performance during 
the reinforcement-learning task, we applied a generalized linear mixed- 
effects (glme) model to participants’ choice data (with correct and 
incorrect choices coded as 1 and 0, respectively). We used a “logit” link 
function to account for the binomial distribution of the data. As pre
dictor variables in the glme model we included condition (stress or 
control), valence (gains or losses), block number (1 or 2), and trial 
number (1 to 40), and the interaction of interest (condition × valence; 
see Table S1 in the Supplementary Material for a full description of the 
glme model). The glme included a fixed intercept, as well as random 
intercepts for each participant. We fitted the glme model to the behav
ioral data using MATLAB’s fitglme function and conducted post-hoc 
analyses via contrast matrices using the MATLAB’s coefTest function. 
To assess the robustness of our findings, we also tested the significance 
of the interaction of interest (condition × valence) using confirmatory 
likelihood ratio tests (Daw, 2011) between the aforementioned full glme 
model and two nested models, which assumed equal performance in 
stress and control conditions during either gain or loss trials, through the 
MATLAB’s lratiotest function. Additionally, we repeated the analyses 
excluding participants that performed below chance levels, which is 
indicative that participants did not learn to perform the task correctly 
and may additionally reflect non-compliance with the experimental 
setting. 

To confirm that the choice probabilities estimated by the glme model 
showed a close correspondence with the actual observed choices, we 
used MATLAB’s predict function. Then, we assessed the Pearson’s cor
relation between the percentage of actual “correct” choices (i.e., choice 
of the stimuli associated with a probability of 0.8 of winning or a 
probability of 0.2 of losing) for each participant in each condition 
(averaged across blocks) and the percentage of “correct” choices as 
estimated by the glme model. We also performed confirmatory Spear
man’s correlations, which are more robust to outliers. 

2.6. Computational modeling 

2.6.1. Reinforcement-learning model 
We modeled participants’ trial-by-trial behavior in the stress and 

control conditions using a reinforcement-learning framework (Sutton & 
Barto, 1998) that has been extensively used to investigate the behavioral 
and neural impact of pharmacological manipulations and genetic vari
ations in the dopaminergic system in humans (Diederen et al., 2017; Doll 
et al., 2011; Frank & Fossella, 2011; Frank et al., 2007; Grogan et al., 
2017; Rutledge et al., 2009). Importantly, the fitted model included 
separate learning rates for positive (α+) and negative (α-) prediction 
errors, to account both for the differential firing of dopaminergic neu
rons for positive and negative prediction errors (Daw & Tobler, 2014; 
Maia & Frank, 2011; Maia & Conceição, 2017) and the differential ef
fects of dopamine onto the plasticity of the corticostriatal synapses 
implicated in action-value learning (Frank & O’Reilly, 2006; Maia & 
Frank, 2011; Maia & Conceição, 2017; Möller & Bogacz, 2019). This 
model also included the inverse temperature parameter, β, which con
trols the stochasticity of choice selection, or the decision noise (Daw, 
2011; Sutton & Barto, 1998), as detailed below. 

In the context of our experimental study, the specific reinforcement- 
learning model used (Frank et al., 2007) assumes that each participant 
gradually learns the value of choosing a given stimulus (say A or B) from 
a given pair of stimuli (here, “gain” or “loss” stimuli pairs, as the 
“neutral” pair of stimuli always yielded null monetary outcomes) as a 
function of the outcome that was obtained on that trial following 

stimulus selection. Specifically, each expected pair-stimulus value, or Q- 
value, was initialized to zero, and for each trial, t, within that pair of 
stimuli, the value of the chosen stimulus (say A was chosen) was updated 
according to: 

QA(t+ 1) = QA(t)+ α*δ(t)

where δ was the prediction error: 

δ(t) = r(t) − QA(t)

where r(t) was 0.5 for gains, 0 for neutral outcomes, and − 0.5 for 
losses. The learning rate, α, was given by: 

α =

{
α+, if δ(t) > 0
α− , if δ(t) < 0 ,

where α+ and α− were the learning rates for positive and negative 
prediction errors, respectively (Frank et al., 2007). 

The probability of choosing one stimulus over another (say A over B) 
was given by the softmax equation: 

PA(t) =
e[QA(t)*β]

e[QA(t)*β] + e[QB(t)*β]

where the β parameter, or inverse temperature, controlled the 
amount of decision noise. The lower the β, the higher the decision noise 
(i.e., decisions were made more at random). 

2.6.2. Model fitting, parameter analyses, and model validation 
We fitted the reinforcement-learning model to the trial-by-trial 

choice data from each participant in each condition. Model fitting 
involved estimating the values of the parameters (α+, α-, and β) that best 
accounted for the respective trial-by-trial choices in each condition. 

We estimated the best-fitting model parameters (α+, α-, and β) for 
each subject in each condition using maximum a posteriori estimation 
(Daw, 2011). Specifically, to optimize model parameters, we drew the 
learning rates from Beta distributions [Beta (1.1, 1.1)] and the inverse 
temperature from a Gamma distribution [Gamma (1.2, 5)] (Palminteri, 
Khamassi, Joffily, & Coricelli, 2015). We then used the MATLAB’s 
fmincon function, initialized at 100 random starting points of the 
parameter space, to search for the parameter values that minimized the 
negative log posterior of the observed sequence of choices, given the 
previously observed outcomes, with respect to different settings of the 
model parameters (Daw, 2011). 

To assess the effects of acute stress on the parameters estimated by 
the reinforcement-learning model, we conducted repeated-measures 
ANOVAs with condition (stress and control) and prediction error 
valence (positive and negative) as within-subject factors, and post-hoc 
paired t-tests. ANOVAs’ effect sizes are reported as eta-squared, ƞ2, 
and post-hoc paired t-tests effect sizes are reported as Cohen’s d and 95% 
confidence intervals. We also confirmed all results from post-hoc tests 
using non-parametric tests (Wilcoxon signed-rank tests), which are more 
robust to outliers. Additionally, we repeated all analyses excluding 
participants that performed below chance levels to test whether the 
significance of the results remained unchanged. These statistical ana
lyses were conducted using JASP 0.9. 

To validate the used reinforcement-learning model, we computed 
trial-by-trial choice probabilities for all participants using the best- 
fitting set of parameters in each condition. The actual observed 
choices and outcomes were used to update the choice probabilities. To 
assess whether the choice probabilities estimated by the reinforcement- 
learning model (for each subject, the choice probabilities were averaged 
across gains or loss trials in each condition) followed the same pattern as 
the actual observed choices, we conducted Pearson’s correlations and 
confirmatory Spearman’s correlations for both conditions, using the 
respective mean percentages. 

To further validate the robustness of our model-fitting procedure, we 
examined the capacity of recovering subject-condition-specific 
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parameters using simulated datasets. Specifically, we simulated the task- 
choice behavior of 62 virtual participants using the parameter values 
that we had estimated for each of the 62 participants in each condition. 
We ran 100 simulations. Then, for each simulation, we fitted the model 
to the virtual participants’ data to estimate new (recovered) parameters. 
Finally, we tested the correlations between the original and these 
recovered parameters using Pearson’s and confirmatory Spearman’s 
correlations. 

3. Results 

3.1. Manipulation check 

First, we confirmed that the acute stress manipulation successfully 
elicited stress responses in the participants. Self-reported stress levels 
differed significantly between conditions, F(1, 61) = 107.67, p < .001, 
ƞ2 = 0.64, as participants reported higher levels of stress in the stress 
condition (M = 5.16, SEM = 0.21) than in the control condition (M =
3.31, SEM = 0.20), t(61) = 10.38, p < .001, d = 1.32, 95% confidence 
interval (CI) = [1.49, 2.20] (Fig. 2a). SCR rate also differed significantly 
between conditions, F(1, 57) = 20.61, p < .001, ƞ2 = 0.27, being higher 
in the stress condition (M = 2.89, SEM = 0.27) than in the control 
condition (M = 2.46, SEM = 0.22), t(57) = 4.54, p < .001, d = 0.57, 95% 
CI = [0.24, 0.62] (Fig. 2b). The condition × block interactions were non- 
significant for the self-reported stress levels, F(1, 61) = 0.004, p = .95, 
ƞ2 = 0, and for the SCR rate, F(1, 57) = 0.46, p = .50, ƞ2 = 0.0080, 
suggesting that both the self-reported stress levels and the SCR rate 
remained stable across blocks within conditions. Furthermore, confir
matory non-parametric Wilcoxon signed-rank tests replicated the effects 
of acute stress on self-reported stress levels, when comparing the stress 
condition with the control condition, Z = 6.29, p < .001, and SCR rate, Z 
= 4.08, p < .001. Additionally, to check whether our results were robust 
to extreme values, we identified two participants with abnormally large 
SCR rate and reanalyzed the data without those participants. The sig
nificance of the results remained unchanged (main effect of condition: F 
(1, 55) = 19.47, p < .001, ƞ2 = 0.26), with higher SCR rate in the stress 
condition than in the control condition, t(55) = 4.41, p < .001, d = 0.59, 
95% CI = [0.21, 0.56], even after excluding the two participants. 

In sum, these results suggest that the acute stress manipulation 
successfully elicited stress responses. 

3.2. Task performance 

After confirming that self-reported stress levels and SCR rate were 
augmented in the stress condition, we examined the impact of acute 
stress on choice performance during the reinforcement-learning task 
(Fig. 2c) using a glme model, which accounted for the binomial distri
bution of the data (correct or incorrect responses) and included as pre
dictor variables condition (stress or control), valence (gains or losses), 
block number (1 or 2), trial number (1 to 40), and the interaction of 
interest (condition × valence). We found a significant condition ×
valence interaction, β = -0.19, p = .018, 95% CI = [-0.34, − 0.031] 
(Fig. 2d), and post-hoc analyses revealed that under stress, relative to 
the control condition, participants performed significantly worse when 
seeking monetary gains, F(1, 19755) = 12.87, p < .001, but not when 
avoiding losses, F(1, 19755) = 0.14, p = .71. As performance below 
chance levels might be indicative of non-compliance with the experi
mental setting, we also inspected whether each participant’s behavioral 
performance across gains and losses was below chance levels (i.e., less 
than 50% of correct choices) in the stress or control conditions. One 
participant performed below chance levels in the stress condition, and 
two participants performed below chance levels in the control condition. 
Thus, we repeated the aforementioned analyses excluding these three 
participants. We found that the condition × valence interaction was still 
significant after excluding participants that did not learn how to perform 
the task, β = -0.28, p < .001, 95% CI = [-0.44, − 0.12]. We also 

confirmed the robustness of our findings using likelihood ratio tests. We 
found that the full glme model (which assumed different performance 
towards gains between the stress and control conditions) had a signifi
cantly better fit than a model that assumed no differences in perfor
mance towards gains between conditions, χ2(1) = 12.80, p < .001, and 
that the same full model did not have a significantly better fit than a 
model that assumed no differences in performance towards losses be
tween the stress and control conditions χ2(1) = 0.20, p = .66. These 
analyses indicate that behavioral performance towards gains, but not 
losses, significantly differed between the stress and control conditions. 

In sum, acute stress selectively impaired choice performance towards 
monetary gains during the reinforcement-learning task. As an additional 
check, we confirmed that the choices estimated by the glme model 
showed close correspondence with the observed choices across trials in 
both conditions, Pearson’s r > 0.65, p < .001, Spearman’s r > 0.52, p <
.001 (Fig. 2e, see Fig. S2 in the Supplementary Material for scatterplots). 

Additionally, given that acute stress is thought to increase aberrant 
spontaneous phasic-dopamine release (Anstrom et al., 2009; Anstrom & 
Woodward, 2005; Valenti et al., 2011), which, in turn, may lead to 
augmented learning and behavioral responding for neutral stimuli (Maia 
& Frank, 2017; Roiser, Howes, Chaddock, Joyce, & McGuire, 2013), we 
performed an exploratory analysis of participants’ choices for the 
neutral stimuli pairs (the pairs not associated with financial outcomes; 
for further details see Table S2 and “Analyses of neutral trials” in the 
“Supplementary Analyses” section of the Supplementary Material). We 
found that, within the pairs of neutral stimuli, acute stress increased 
behavioral responding towards the stimuli that more often yielded as 
outcome a coin with no financial value (the high-probability “look” 
stimuli) relative to the stimuli that yielded no outcome at all (Fig. S1b in 
the Supplementary Material). This tentative finding seems consistent 
with the idea that acute stress might bias behavioral responding for 
neutral stimuli due to augmented aberrant spontaneous phasic- 
dopamine release. 

3.3. Computational modeling 

To further probe the nature of the effects of acute stress on reward 
and punishment learning, we fitted a biologically inspired 
reinforcement-learning model (Frank et al., 2007) to participants’ trial- 
by-trial choices (see subsection 2.6.1. in “Materials and Methods” for a 
full description of the model). The fitted model included separate 
learning rates for positive (α+) and negative (α-) prediction errors, to 
account for the differential firing of dopaminergic neurons for positive 
and negative prediction errors (Schultz et al., 1997). The model also 
included the inverse temperature parameter, β, which controls the de
cision noise (Daw, 2011; Sutton & Barto, 1998). We then analyzed the 
best-fitting model parameters using ANOVAs. 

These analyses revealed a main effect of condition on learning rates, 
F(1, 61) = 4.69, p = .034, ƞ2 = 0.071, but a non-significant condition ×
valence interaction, F(1, 61) = 2.13, p = .15, ƞ2 = 0.034 (Fig. 3a). For 
completeness, we performed paired t-tests. Despite not formally well- 
justified (due to the lack of a significant interaction), such paired t- 
tests yielded results consistent with those from task-performance ana
lyses and those from ensuing computational modeling analyses (cf. an
alyses that excluded participants who performed below chance levels 
and analyses of α±*β). Paired t-tests revealed that α+ was significantly 
lower in the stress condition (M = 0.40, SEM = 0.033) than in the control 
condition (M = 0.51, SEM = 0.038), t(61) = -2.25, p = .028, d = -0.29, 
95% CI = [-0.21, − 0.013], while α- was not significantly different be
tween the stress (M = 0.25, SEM = 0.025) and control conditions (M =
0.27, SEM = 0.027), t(61) = -0.72, p = .47, d = -0.092, 95% CI =
[-0.098, 0.046] (Fig. 3a). Additionally, as for task-performance analyses, 
we repeated all statistical analyses excluding the three participants that 
performed below chance levels. Exclusion of those three participants 
revealed that the condition × valence interaction reached significance, F 
(1, 58) = 4.61, p = .036, ƞ2 = 0.074), such that α+ was significantly 
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Fig. 2. Manipulation check and task performance. (a) Participants (n = 62) reported higher stress levels in the stress condition (red) compared with the control 
condition (blue). (b) Skin conductance response rate (n = 58) was significantly higher in the stress condition than in the control condition. (c) Learning curves 
represent the trial-by-trial percentage of participants (n = 62) who chose the “correct” gain stimulus (associated with a probability of 0.8 of winning 0.5€; upper part 
of the graph) and the “incorrect” loss stimulus (associated with a probability of 0.8 of losing 0.5€; lower part of the graph), in the stress and control conditions. (d) 
Participants performed significantly worse when seeking monetary gains, but not when avoiding monetary losses, in the stress condition relative to the control 
condition. The reported p-values are from the generalized linear mixed-effects model that included each participant’s trial-by-trial choices and respective post-hoc 
tests. (e) The choices estimated by the generalized linear mixed-effects model captured the evolution of the actual observed choices during the reinforcement- 
learning task (to compare the choices estimated by the model with the actual observed choices, compare the overlap of the curves between the stress and con
trol conditions depicted here with the overlap of the curves depicted in Fig. 2c). In panels a, b, and d, connected dots represent data points from the same participant, 
and more transparent (opaque) dots represent less (more) overlapping data points; the error bar displayed on the side of the scatter plots indicate the sample mean ±
standard error of the mean. In panels c and e, each central line represents the mean and the filled area represents the ± standard error of the mean. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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lower in the stress condition than in the control condition, t(58) = -2.48, 
p = .016, d = -0.32, 95% CI = [-0.22, − 0.024], and α- did not differ 
significantly between conditions t(58) = -0.16, p = .88, d = -0.021, 95% 
CI = [-0.073, 0.063]. Thus, our findings suggest that acute stress de
creases α+. 

The parameter β, which controls the amount of noise in choice se
lection, also did not differ significantly between the stress (M = 9.52, 
SEM = 0.49) and control (M = 9.53, SEM = 0.51) conditions, t(61) =

-0.016, p = .99, d = 0.0020, 95% CI = [-0.98, 0.99] (Fig. 3b). 
We further tested whether stress had a differential effect on reward 

compared with punishment learning by analysing the products between 
each learning rate (α±) and the inverse temperature (β). In 
reinforcement-learning models, α± and β tend to be inversely coupled 
(Daw, 2011; Supplementary Material of Maia & Conceição, 2017) 
because α± multiply by state-action values and the state-action values 
themselves are multiplied by β to compute choice probabilities (see 

Fig. 3. Model-fitting results. (a) Participants (n = 62) had lower learning rates (α+ and α-) in the stress condition (red) compared with the control condition (blue). 
Paired t-tests revealed a significantly lower learning rate for positive prediction errors (α+) in the stress condition comparatively to the control condition. (b) The 
inverse temperature (β) did not differ between conditions. (c) α+*β, but not α-*β, was significantly reduced in the stress condition compared with the control 
condition. In panels a, b and c, connected dots represent data points from the same participant, and more transparent (opaque) dots represent less (more) overlapping 
data points. The error bar displayed on the side of the scatter plots indicate the sample mean ± standard error of the mean. (d) The probabilities of choosing the 
“correct” gain (upper part of the graph) and the “incorrect” loss (lower part of the graph) stimuli estimated by the reinforcement-learning model followed the same 
pattern of the actual observed choices (compare the overlap of the curves between the stress and control conditions depicted here with the overlap of the curves that 
represent the actual observed choices depicted in Fig. 2c). Each central line represents the mean and the filled area represents the ± standard error of the mean. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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equations in subsection 2.6.1). As a result, the parameters viewed 
separately can have larger estimation errors, while their product tends 
to be more reliably estimated (Daw, 2011; Schonberg et al., 2007; Waltz 
et al., 2018; Zhang, Lengersdorff, Mikus, Gläscher, & Lamm, 2020), and 
thus better recovered. Note that the products α±*β control how strongly 
the outcomes impact subsequent choice preferences (Schonberg et al., 
2007). Statistical analyses revealed a significant condition × valence 
interaction, F(1, 61) = 4.85, p = .032, ƞ2 = 0.074, meaning that acute 
stress significantly decreased α+*β (stress: M = 3.72, SEM = 0.34, con
trol: M = 4.87, SEM = 0.48), t(61) = -2.58, p = .012, d = -0.33, 95% CI =
[-2.04, − 0.26], while not significantly affecting α-*β (stress: M = 2.33, 
SEM = 0.28, control: M = 2.44, SEM = 0.25), t(61) = -0.33, p = .74, d =
-0.042, 95% CI = [-0.71, 0.51] (Fig. 3c). Exclusion of the three partic
ipants that performed below chance levels did not change the signifi
cance of the results for the parameter β, t(58) = 0.15, p = .88, d = 0.020, 
95% CI = [-0.94, 1.10], nor for the α±*β condition × valence interaction, 
F(1, 58) = 4.45, p = .039, ƞ2 = 0.071. Notably, the previous results were 
fully replicated when comparing the estimated parameters between the 
stress and control conditions using non-parametric Wilcoxon signed- 
rank, rather than parametric, post-hoc tests (α+: Z = -2.22, p = .026; 
α-: Z = -0.17, p = .86; β: Z = -0.11, p = .91; α+*β: Z = -2.19, p = .028; 
α-*β: Z = -0.35, p = .73). 

To validate the used reinforcement-learning model, we confirmed 
that the probability of choices estimated under the reinforcement- 
learning model had a close correspondence with the actual observed 
choices across trials in both conditions, Pearson’s r > 0.76, p < .001, 
Spearman’s r ≥ 0.70, p < .001 (Fig. 3d, see Fig. S3 in the Supplementary 
Material for scatterplots). Next, to further validate that our previous 
model-fitting results were reliable, we conducted parameter-recovery 
analyses. Those parameter-recovery analyses demonstrated that the re
sults of our model-fitting procedure were robust both in the stress and 
control conditions, Pearson’s r > 0.67, p < .001, Spearman’s r > 0.69, p 
< .001 (see Fig. S4 in the Supplementary Material). Additionally, 
Bayesian model averaging analyses (Hoeting, Madigan, Raftery, & 
Volinsky, 1999) using both the aforementioned, neurobiologically 
inspired reinforcement-learning model (with separate learning rates for 
positive and negative prediction errors) and a nested, alternative 
candidate model (with a single learning rate) provided further support 
for the robustness of the parameters estimated by the model with 
separate learning rates (see Fig. S5, Table S3 and “Model comparison 
and Bayesian model averaging” in the “Supplementary Analyses” section 
of the Supplementary Material). 

Taken together, these computational findings indicate that under 
acute stress participants incorporated positive prediction errors at a 
lower rate, which seems to explain why acute stress impaired behavioral 
performance towards monetary gains during the reinforcement-learning 
task. 

4. Discussion 

Acute stress is present in day-to-day life, and people recurrently need 
to make choices and learn from the rewarding or punishing outcomes of 
those choices whilst under stress. In this study we investigated whether 
and how acute stress impacted reward and punishment learning in men 
using a reinforcement-learning framework. Given the putative roles of 
phasic-dopamine responses on prediction errors signaling and of acute 
stress on aberrant spontaneous phasic-dopamine release, we hypothe
sized that acute stress would impair reward learning and, more tenta
tively punishment learning. Relatedly, we hypothesized that acute stress 
would decrease the learning rate for positive prediction errors and, more 
tentatively, the learning rate for negative prediction errors. We found 
that acute stress impaired behavioral performance towards monetary 
gains, but not losses, and that this impaired performance could be 
explained by a decreased learning rate for positive prediction errors. 

4.1. Effect of acute stress on reward learning 

Our finding that acute stress impaired reward-seeking performance 
is consistent with several previous studies which found reduced reward 
responsiveness under acute stress (Bogdan & Pizzagalli, 2006; Bogdan 
et al., 2011; Morris & Rottenberg, 2015; Paret & Bublatzky, 2020), 
particularly in high stress-reactive individuals (Berghorst et al., 2013). 
At a first sight, however, some of the extant literature may seem 
equivocal, possibly due to critical methodological differences related to 
stress operationalization (Porcelli & Delgado, 2017). A significant 
number of studies have investigated the effects of stress on learning 
using different paradigms, such as the Trier social stress test (Boyle, 
Stanton, Eisenberger, Seeman, & Bower, 2019; Kruse et al., 2018; Pet
zold et al., 2010; Radenbach et al., 2015), or the (socially evaluated) 
cold pressor test (Byrne et al., 2019; Ehlers & Todd, 2017; Glienke, Wolf, 
& Bellebaum, 2015; Lighthall et al., 2013; Otto et al., 2013; Paul et al., 
2019), in which acute stress is induced before the learning task. In these 
paradigms, stress induction precedes any learning processes, thus the 
stress-induced emotional state may be less concurrent with the cognitive 
processes that operate during the task. As such, it is unclear whether 
these paradigms probe the effects of acute stress or of recovery from 
stress on learning (Hermans et al., 2014). In contrast, in our study, we 
induced stress during the learning task, and we used relatively short task 
blocks to avoid the slow cortisol response from peaking and subsequent 
recovery within blocks. The timing of the stress induction relative to the 
task is an important factor to take into account when comparing studies, 
as early-fast catecholamine release and delayed-slow glucocorticoids 
actions might account for different effects on brain function (de Kloet 
et al., 2005; Hermans et al., 2014; Joëls & Baram, 2009). Critically, 
studies that induce stress before the learning task may suggest divergent 
behavioral results from ours (Byrne et al., 2019; Lighthall et al., 2013), 
whereas studies that have induced stress during the learning task (as 
ours) seem to be in agreement with our findings of impaired reward 
learning during acute-stress exposure (Berghorst et al., 2013; Bogdan & 
Pizzagalli, 2006; Bogdan et al., 2011; Morris & Rottenberg, 2015; Paret 
& Bublatzky, 2020). Therefore, cross-study comparisons suggest that 
individuals may perform more poorly when learning to maximize re
wards whilst exposed to an acute stressor. 

In this study we further inspected the computational mechanisms 
behind impaired reward learning under acute stress. Using a 
reinforcement-learning model with separate learning rates for positive 
and negative prediction errors (Frank et al., 2007), we found that acute 
stress reduced the rate at which participants learned from positive 
prediction errors. A reduced learning rate for positive predictions errors 
means that under acute stress individuals learned more slowly about 
unexpected rewards and therefore took longer to adapt their behavior on 
the basis of the more recent rewarding outcomes of their choices. Other 
studies have successfully applied this reinforcement-learning model to 
analyze data from distinct tasks to describe the genetic (Doll et al., 2011; 
Frank et al., 2007) and neural (Diederen et al., 2016; Lefebvre et al., 
2017; Niv, Edlund, Dayan, & Doherty, 2012) correlates of cognition and 
behavior. However, to the best of our knowledge, no studies had 
attempted to model how acute stress affects cognition, particularly 
reward and punishment learning, using such model. Another 
reinforcement-learning model commonly used in the stress literature 
includes distinct learning rates for gain and loss trials regardless of the 
valence of the prediction error (e.g., Aylward et al., 2019; Robinson 
et al., 2013; Treadway et al., 2017), meaning that learning from rewards 
in gain trials (or punishments in loss trials) is modeled the same way as 
learning from omission of rewards in gain trials (or omission of pun
ishments in loss trials, respectively), which may be misleading and not 
be so well supported by neurobiological evidence as a model that as
sumes distinct learning rates based on the valence of the prediction error 
(as the one we used) (Maia & Frank, 2011; O’Doherty et al., 2003; 
Schultz et al., 1997). In simple reinforcement-learning tasks, such as 
ours, reward learning seems to mostly occur via positive prediction 
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errors (Lefebvre et al., 2017). But, given the structure of our 
reinforcement-learning model, stress-induced impaired reward learning 
could have conceivably been underpinned by a higher learning rate for 
negative prediction errors — which could have led to unlearning of the 
correct stimulus — and/or by lower inverse temperature parameter (β) 
— which could have been reflected in choices more at random. The fact 
that our data indicated that the learning rate for negative prediction 
errors was not higher in the stress condition and that the inverse tem
perature parameter did not differ between conditions, but that the 
learning rate for positive prediction errors was decreased in the stress 
condition, suggests that acute stress specifically impaired reward 
learning via disruption of positive prediction errors. Thus, our findings 
contribute to a better mechanistic understanding of how acute stress 
may impact reward learning. 

Given that the (quantifiable) parameters from the reinforcement- 
learning model that we used seem to reflect specific dopaminergic- 
related neural mechanisms (e.g., Frank et al., 2007; Frank & O’Reilly, 
2006) our computational findings may shed light on putative neural 
mechanisms underlying the impact of acute stress on cognition and 
behavior. Specifically, our computational findings seem broadly 
consistent with the proposed neurobiological account of dopaminergic 
neurons functioning under acute stress. Acute stress is thought to induce 
aberrant spontaneous dopamine release (Anstrom et al., 2009; Anstrom 
& Woodward, 2005; Cabib & Puglisi-Allegra, 2012; Valenti et al., 2011); 
stress-induced spontaneous dopamine release, in turn, may disrupt the 
adaptive striatal phasic-burst dopamine responses that signal positive 
prediction errors (Daberkow et al., 2013; Grace, 2016; Maia & Frank, 
2017; Werlen et al., 2020), which would explain the stress-induced 
impairment of reward learning. While our computational results sug
gest that acute stress disrupts striatal responses to prediction errors 
during reward learning (see also Huys et al., 2013), we cannot disregard, 
however, that acute stress may also affect reward learning via prefrontal 
cortex disturbances (Arnsten, 2009; Lighthall et al., 2013; Otto et al., 
2013). 

4.2. Effect of acute stress on punishment learning 

Acute stress impaired reward learning, but we found no evidence for 
an effect of acute stress on punishment learning. Computational- 
modeling analyses did not provide evidence that acute stress affected 
the learning rate for negative prediction errors to the same extent that it 
affected the learning rate for positive prediction errors, which might 
explain why behavioral performance during loss trials — which might 
rely more on negative prediction errors compared with performance 
during gain trials (Palminteri & Pessiglione, 2013) — was not impaired 
under acute stress. 

According to a long standing influential loss aversion framework 
(Kahneman & Tversky, 1979), losses can have more debilitative po
tential than gains; therefore, as an adaptive strategy, it is possible that 
individuals may be more attuned to losses than to gains (Lejarraga, 
Hertwig, & Gonzalez, 2012; Yechiam, 2019; Yechiam & Hochman, 
2013), explaining why punishment learning was spared under acute 
stress. However, recent evidence suggests that individuals learn gain 
associations better than loss associations in reinforcement-learning tasks 
despite symmetrical task structure and symmetrical outcome probabil
ities (Lin, Cabrera-Haro, & Reuter-Lorenz, 2020) (as in our task). Indeed, 
our behavioral data indicated that participants performed better when 
learning to seek gains than when learning to avoid losses in both the 
stress and control conditions. In addition, our computational data 
indicated that the learning rate for positive prediction errors was 
significantly higher than the learning rate for negative prediction errors, 
which might suggest underestimation of negative outcomes relative to 
positive outcomes (see also Lefebvre et al., 2017). Thus, our data suggest 
that it is unlikely that acute stress spared the mechanisms involved in 
punishment learning, but not in reward learning, due to heightened 
attention towards losses relative to gains. 

One potential neurocognitive explanation for such lack of effect of 
acute stress on loss avoidance is that D2 dopamine receptors, which 
mediate punishment learning (Frank & O’Reilly, 2006; Maia & Frank, 
2011), are already mostly activated at baseline dopamine levels, so their 
activation might be affected by decreases, but less so by increases, in 
dopamine levels (Maia & Conceição, 2017; Möller & Bogacz, 2019). 
Finally, non-dopaminergic mechanisms may also be involved in pun
ishment learning (Boureau & Dayan, 2011; Moran et al., 2018), which 
may partially explain why previous studies using the same 
reinforcement-learning task also did not find significant effects of 
pharmacological manipulations of the dopaminergic system on pun
ishment learning (Eisenegger et al., 2014; Pessiglione et al., 2006). 

4.3. Acute stress and behavioral performance in neutral trials 

We found preliminary evidence that acute stress biased behavioral 
responding to neutral stimuli, as the choice of the high-probability 
“look” stimuli — compared to the stimuli with a high probability of 
yielding “nothing” — was augmented under stress compared to the 
control condition (for a detailed discussion about this finding, see the 
Supplementary Material). Although very tentative, this finding might be 
of relevance as excessive, aberrant spontaneous dopamine release is 
thought to underlie increased behavioral responding and aberrant 
learning for neutral stimuli (Maia & Frank, 2017; Roiser et al., 2013). 
Still, whether acute stress promotes aberrant valuation of neutral stimuli 
via dopaminergic disturbances remains unknown and should be further 
investigated. 

4.4. Limitations 

In this study, we induced acute stress in participants, using a repet
itive and uncontrollable sound, whilst they completed a reinforcement- 
learning task. We exposed participants to the sound during the task to 
ensure that acute stress was contingent on the learning processes, but at 
the expense of possibly confounding the induction of stress with 
distraction. To minimize this potential confound, we used a sound that 
was always constant and repetitive, as unpredictable changes in sound 
sequences induce distraction more robustly (Hughes, 2014; Parmentier, 
2014; Parmentier et al., 2008; Sussman et al., 2003). Moreover, and also 
aiming to reduce the unpredictability of the sound, before starting the 
task, participants were instructed that they would hear a sound during 
blocks cued with a warning signal and a red background (Hughes, 2014; 
Parmentier & Hebrero, 2013; Sussman et al., 2003). Besides the exper
imental precautions we took to avoid that the stressor acted as a dis
tractor, our data indicated a selective effect of the stress manipulation on 
behavioral performance during gain trials. If the sound was acting as a 
distractor, rather than as a stressor, it would be more likely to find 
instead a general behavioral impairment; that is, worse performance 
towards both gains and losses, rather than a selective effect on gains. 
Relatedly, if the manipulation had acted mostly as a distractor, it would 
be expected that participants behaved more at random. For example, 
previous data indicate that when participants are asked to generate 
novel combinations of numbers whilst exposed to an auditory distractor, 
they generate combinations more at random than participants who are 
not exposed to the auditory distractor, suggesting that enhanced 
distraction during a cognitive task may enhance the ability to generate 
randomness (Tsushima & Nakayama, 2010). Thus, if participants were 
distracted by our auditory stressor, we would have expected them to 
make choices more at random, which would likely be captured by a 
reduction of the inverse temperature parameter — reflecting increased 
random behavior — in the stress condition. Still, although our data and 
experimental design make it unlikely that the observed effect on reward 
learning was due to distractibility rather than stress, additional control 
conditions should be added in future studies to experimentally disen
tangle distraction from stress. 

Finally, only men were included in this study, to avoid the potential 
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confounding effects of menstrual-cycle-dependent variation on stress 
responsivity (Ossewaarde et al., 2010), as well as on reward and pun
ishment learning (Diekhof et al., 2020; Dreher et al., 2007). Our finding 
that acute stress disrupts reward learning in men seems to be in line with 
previous reports showing that acute stress disrupts reward-seeking 
behavior in women (Berghorst, Bogdan, Frank, & Pizzagalli, 2013; 
Bogdan, Perlis, Fagerness, & Pizzagalli, 2010; Bogdan, Santesso, 
Fagerness, Perlis, & Pizzagalli, 2011; Bogdan & Pizzagalli, 2006; Morris 
& Rottenberg, 2015; Paret & Bublatzky, 2020), but further studies are 
needed to assess whether acute stress has the same computational effects 
on reward and punishment learning in men and women. 

5. Conclusions 

We present evidence that acute stress reduces how quickly male 
adults integrate the unexpected rewarding outcomes of their choices 
over time. Our results are consistent with a neurobiological framework 
of stress-induced dopaminergic disturbances and can thus contribute to 
a better understanding of the computational mechanisms that underlie 
the deleterious impact of acute stress on reward learning. Ultimately, 
this study might offer key mechanistic insights into the impact of acute 
stress in everyday life. 
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