Formal Aspects of Computing (2000) 3: 1-000
© 2000 BCS

Representational Reasoning and
Verification

Gavin J. Doherty'2, José C. Campos'® and Michael D. Harrison'

Human Computer Interaction Group,
University of York, UK!

CLRC Rutherford Appleton Laboratory,
Oxfordshire, UK2

Departamento de Informética,
Universidade do Minho, Portugal3

Abstract. Formal approaches to the design of interactive systems rely on rea-
soning about properties of the system at a very high level of abstraction. Speci-
fications to support such an approach typically provide little scope for reasoning
about presentations and the representation of information in the presentation.
In contrast, psychological theories such as distributed cognition place a strong
emphasis on the role of representations, and their perception by the user, in
the cognitive process. However, the post-hoc techniques for the observation and
analysis of existing systems which have developed out of the theory do not help
us in addressing such issues at the design stage.

In this paper we show how a formalisation can be used to investigate the repre-
sentational aspects of an interface. Our goal is to provide a framework to help
identify and resolve potential problems with the representation of information,
and to support understanding of representational issues in design. We present
a model for linking properties at the abstract and perceptual levels, and illus-
trate its use in a case study of a flight deck instrument. There is a widespread
consensus that proper tool support is a prerequisite for the adoption of formal
techniques, but the use of such tools can have a profound effect on the process
itself. In order to explore this issue, we apply a higher-order logic theorem prover
to the analysis.

Correspondence and offprint requests to: G. Doherty, Rutherford Appleton Laboratory, Chilton
Didcot, Oxon. 0X11 0QX, UK. E-mail: G.J.Doherty@rl.ac.uk

2 Gavin J. Doherty, José C. Campos and Michael D. Harrison

1. Introduction

It has been proposed that formal techniques to modelling and specification can
be used to improve the quality of interfaces to interactive systems [HT90, PP98].
This is especially important in safety critical domains, where “human error” is
very often cited as the cause of accidents [WJCS94]. The process involves first
constructing a formalisation of the aspect of the system we are interested in,
and then checking to see whether certain desirable properties hold. In the area
of interactive systems, these properties are intended to improve the usability
of the system, and include predictability, reactivity and support for the user’s
task. As with the use of formal techniques in mainstream software development,
this allows the designer to reason about the system at a very early stage in the
development life-cycle.

Specifications which support such reasoning, for example those based on the
interactor model [DH93], abstract away from the presentation as presentations
typically include many details which are not relevant and are highly subject to
change. Yet recent work on distributed and external cognition [WFH96, Hut95a,
ZN94, SR96], postulates that representations (both internal and external) play
a critical role in the cognitive process. Hutchins [Hut95b], uses this distributed
view to study the role that emergent properties of a cockpit instrument can play
in helping the pilot to perform his task. However, it is not clear how such analysis
could be used to inform and improve the design process.

While task analysis may consider information available in the interface, it
does not deal with the representation of information, unless this is explicitly
manifested in alternative strategies for carrying out a task based on different
information sources and representations. Theories of display structure [MSB95],
based on gestalt psychology can aid in the design of displays, but do not go
beyond the relationship between task and display structure. The cognitive and
perceptual effort involved in using a particular presentation are not explicitly
considered. We see such theory as relevant, but at a higher level of abstraction
than that considered here.

Hence, the existing literature either does not consider the representation of
information at the level we are interested in, or contains post-hoc techniques
involving the observation of the finished artefact in use. While these techniques
are undoubtedly valuable, since these properties depend on presentations (and
hence representations) chosen at the design stage, it would be helpful to have a
systematic analysis which could raise some of these issues at an earlier point in
the life-cycle. We will see in section 2.4.1 that the manner in which the user must
use information presented in an interface is often far more complex than an initial
evaluation might indicate. This potential complexity in the analysis, creates the
need for a systematic approach which can be applied at the specification and
design stage. This motivates the use of a formal technique, which carries the
additional advantage of affording the possibility of automated support [CH97].

1.1. A Formal Approach

With the above justification, the aims of this paper are twofold:

Representational Reasoning and Verification 3

e to provide a rigorous and direct means for integrating representational rea-
soning in the style of [Hut95b] into the design process.

e to further explore the process of verification and show how the verification
process exposes assumptions and requirements embedded in the presentation.

To address these issues we build upon the formalisation in [DH97], which we
describe below. The formalisation allows us to take a rigorous and methodical
approach to a form of analysis which would otherwise be conducted in an ad-hoc
fashion, and which we can apply to a specification of the system which has a
formal relationship with the artefact. In [DH97] it is shown how representational
requirements could be modelled in terms of a mapping between logical operators
over the abstract state and perceptual operators over the presentation. Taking
a formal approach to this involves constructing a model of the abstract artefact
under consideration, its representation, and the mapping between them.

This is not to say that we advocate detailed formal specification (e.g. to
the level of graphics primitives) of entire presentations, a proposition we see as
neither practical nor valuable, but that a limited specification, including details of
the representation and the operators supported by the representation, is sufficient
for establishing the validity of a presentation with respect to a property, such as
support for a given task.

For the purposes of explanation, we could detail the proofs in a purely mathe-
matical form, which would be more concise and readily accessible. However, from
the point of view of the practitioner, use of a proof assistant not only speeds up
the process greatly, but also makes it substantially less error prone. Using a the-
orem prover forces us to spell out all the assumptions we are making about the
system and its presentation, and identify problems with both the presentation
and the system that should be behind it. A drawback of automated tools is that
the insight which is gained will probably be less than that gained from a manual
proof. This poses the question of whether human-factors related conclusions can
be obtained using a theorem prover, and is one we seek to address.

We hope the case study shall illustrate both the feasibility and usefulness
of using tool support in the analysis, and also help identify possible problems
encountered when applying the approach.

1.2. Overview

We present in the next section a description of the nature of our approach to rep-
resentational properties. An example of a flight deck instrument and task to be
supported are introduced!. Formalisation of this example reveals many represen-
tational issues. The formal notation employed is VDM-SL, but the approach can
be applied to any model-based specification language. In the section following,
we use this example in a proof using a higher-order logic theorem prover (PVS)
to illustrate how the verification reveals further aspects of the presentation. We
also consider issues involved in providing machine assistance for the process.

1 For another case study applying the approach, see [CH99, Cam00].

4 Gavin J. Doherty, José C. Campos and Michael D. Harrison

2. A Model of Representation

We present in this section the model of verification for presentations of [DH97]
and explore further the formalisation process.

2.1. Presentation Model

The presentation component of a user interface must provide some adequate
representation of the state of the system. To model this, we begin with a simple
functional model of the presentation mapping, which maps the abstract state
(modelled as a set of attributes) to the presentation (modelled as a set of presen-
tation elements, or percepts). We give the name p to the mapping from system
state to presentation:

1.0 p: Attribute-set — Percept-set

A given piece of information may of course have many different possible
representations (p captures the particular choice of representation which has
been made). Unlike the abstract state, the percepts represent information which
can be perceived by the user, with no approximation or information loss. The
mapping itself often (and necessarily) approximates the abstract attributes.

2.2. Logical and Perceptual Operators

Logical operators are those which may be defined over the abstract state (for
example, magnitude comparison of two integers). Perceptual operators are those
which may be defined over the presentation, and are understood to be directly
performable by the user (e.g. determining if two objects on a display are ad-
jacent). In terms of the formalisation above, logical operators are defined over
Attribute-set, and perceptual operators are defined over Percept-set. Both the
logical and perceptual operators can hence be formalised.

The concepts of logical and perceptual operators have previously been applied
by Casner [Cas91] who constructed a system for automatic presentation genera-
tion by replacing logical operators in a task description by graphical components
supporting perceptual versions of these operators. We take the converse view,
and formulate our requirements on the presentation (for the specific example of
task support?), as follows:

Task support requirement: To support a given task, the presentation should
provide perceptual equivalents of the logical operators in the task.

By perceptual equivalents, we mean that some combination of perceptual
operations can be used to achieve the same result. We believe that formalising
the transformation from logical to perceptual operators provides an explicit and
rigorous basis for reasoning about representational issues. For example, the scale

2 This refers to the portion of the task to be performed by the user.

Representational Reasoning and Verification 5

types of Stevens [Ste46], applied by Zhang [Zha96] to the analysis of relational
information displays, can be formalised in terms of the groups of logical and per-
ceptual operators that each scale supports. In this way, we can use the operators
to characterise the representation. By trying to formulate perceptual operators
over the presentation model, we can expose hidden referents in our tasks. This
process serves both to increase our understanding of the system, and acts as an
aid to design.

2.3. A Model of Presentation Based Properties

One way to consider the validity of a presentation is to view the perceptual model
as a reification of the abstract model. We would then have to show that abstract
state and presentation changes are consistent. However proving the consistency
of state changes between the abstract and reified models tells us nothing about
how the presentation supports the desired properties from the users perspective.

From a perceptual standpoint, for the reification to be valid, we must know
that if a property holds on the abstract specification then it also holds on the
presentation. We accomplish this by relating the abstract and perceptual models
to a model in which the property can be expressed. Establishing the validity of
the presentation then becomes a matter of showing that the logical operators
over the abstract state and the perceptual operators over the representation of
this abstract state yield the same result in terms of the property (see figure 1).
We can express this formally as:

Abstract Model Presentation Model
Abstract Ops. Perceptua Ops.

Property

Fig. 1. Alternative approach to verification

2.0 perceptEquiv : Abstract-op x Perceptual-op x Attribute-set — B

.1 perceptEquiv (abs, per, attrs) &
2 abs(attrs) = per(p(atirs))

2.4. An illustrative example

In this section, we present a formalisation of a case study, described in Hutchins
[Hut95b]. Hutchins’ approach involves a broader contextual view of the cockpit
system, using understanding derived from distributed cognition. The example
concerns the use of ‘speed bugs’ to record minimum manoeuvering speeds on an
aircraft air speed indicator (ASI). While the example concerns a low-technology

6 Gavin J. Doherty, José C. Campos and Michael D. Harrison

cockpit (the McDonnell-Douglas MD-80), the role played by the instrument in
the pilot’s tasks is sufficiently interesting to warrant analysis. Hutchins gives
three descriptions of the use of ‘memory’ for speeds in the cockpit. The first is
a procedural account including computation of the appropriate speeds from the
weight of the aircraft, setting the speed bugs, and the various checks and cross-
checks which are carried out during the approach. At this level of abstraction, we
could apply standard techniques for task analysis [Dia89]. The second focusses on
the use of external representations - cards which relate aircraft weights to sets of
speeds, flight instrument displays and so on. Issues considered at this level could
include the physical location of information, the duration of representations,
and their malleability. The third description builds on the above and concerns
the representations and processes presumed to be internal to the pilots, and in
particular how the external representations can be applied in performance of the
pilot’s tasks.

Our analysis relates these different levels. We can see the initial description
of the operators in the task as a formalisation of aspects of the first, procedural
level. The formalisation of the percepts and perceptual operators is part of the
second level (the external representations). The proposition that the elements of
these two levels are equivalent (explored in the proof process) involves reasoning
of relevance to the third level (the presence of hidden referents in the operators,
the complexity of the operations performed on representations, and so on).

By using this example, we hope to illustrate how our approach achieves a good
coverage of the aspects of the analysis concerning the external representation,
and indicate how this might relate to a design context.

The indicator takes the form of a circular scale on which a needle indicates
the current air speed (see figure 2). The ‘configuration change bugs’ take the
form of movable tabs on the perimeter of the instrument. As the aircraft slows
for landing, the wings generate less lift, and so the pilot must change between
wing configurations (effectively altering the shape of the wing, and consisting
of slat and flap settings) in order to generate more lift. We shall refer to this
as the configuration change task. Each of these configurations has an associated
‘minimum manoeuvering speed’ below which the wings are not guaranteed to
generate enough lift for safe manoeuvering of the aircraft. The configuration
change bugs record these minimum manoeuvering speeds, and are set by the
flight crew prior to the approach.

2.4.1. Logical Model

What is interesting about this artefact and the tasks it supports is that although
on the surface it appears simple, there are in fact many pieces of information
required to perform the operations involved in the tasks. In fact, we will find that
under some circumstances the information presented by the artefact will not be
enough (cf. section 3.4.2). The hidden complexity just mentioned becomes ap-
parent when we formulate an initial description of the configuration management
task:

if current speed is within acceptable margin speed
of minimum manoeuvering speed for current configuration
then change to next configuration

Representational Reasoning and Verification 7

~w_ Configuration

- change bugs

Fig. 2. Simplified Air Speed Indicator, adapted from [Hut95b]

We can see from this that there are four referents in the operation of changing
configuration: the current speed, the margin speed, the minimum manoeuvering
speed and the configurations being changed between (treated as one since they
are paired). An operator to support this task could be one which checks a speed
and configuration and determines whether it is appropriate to change to the next
configuration. The first step in our formalisation is to construct a model of the
ASI:

types
3.0 Speed = R;
4.0 Configuration = Ny ;

5.0 AbstractASI :: V, : Speed — Current Speed
. C. : Configuration — Current configuration
2 Spum : Speedt — Minimum manoeuvering speeds
3 Vrey : Speed — Reference speed of approach

values

6.0 Smargin : Speed = 10 KNOTS — Margin for configuration change

We can now formalise the logical operation to support the configuration man-
agement task as:

7.0 configChangeCheck : AbstractAST — B

.1 configChangeCheck (asi) 2
.2 asi. Ve < asi.Smm (Ce) + Smargin

We can see that this formal model provides a concise ‘computational’ view
of the operations, and the information required to carry them out.

8 Gavin J. Doherty, José C. Campos and Michael D. Harrison

2.4.2. Presentation Model

The two main percepts are the ASI needle and the speed bugs. The scale is
also a percept, but we use it only to establish a relationship between angles and
sections of arc on the display, and absolute speeds.

We begin the specification with the data types representing the percepts.
Perceptually the ASI needle is simply an angle from the upright (0 deg) position.
A speed bug has both a position (again, an angle from the upright), and an
extent, an angle which describes an arc to one side, clockwise from the position.
The perceptual function of the scale is to relate angles on the display to speeds.

types
8.0 Angle = R;
9.0 ASINeedle :: posn : Angle ;

10.0 ASISpeedBug :: posn : Angle
1 extent : Angle ;

11.0 ASIScale :: interpret : Angle — R

values
12.0 ScaleFactor : R is not yet defined — Unit speed per scale degree ;

13.0 BugExtent : Angle is not yet defined
The full instrument integrates these three components, note that we have a

sequence of speed bugs, arranged in order of decreasing angle (and hence repre-
sented speed):

14.0 ASI_Instrument :: needle : ASINeedle

1 bugs : ASISpeedBug™

2 scale : ASIScale

3 inv asi 2 — Speed bugs in the sequence bugs cannot overlap

4 Vi,j € inds bugs -

5 i<j = asi.bugs(i).posn > asi.bugs(j).posn

6 A asi.bugs(i).posn > asi.bugs(j).posn + asi.bugs(j).extent

We are now in a position to formalise the presentation mapping between these
two models. The presentation p, maps an AbstractASI value to an ASI_Instrument
value which represents it. Defined below is the top-level p function and the lower
level p-Needle, p-BugSeq and p-Scale functions which map the appropriate ele-
ments of the abstract instrument to the corresponding elements of the presenta-
tion.

15.0 p: AbstractASI — ASI_Instrument

1 p(a) &
2 mk-ASI_Instrument (p-Needle(a.V.), p-BugSeq(a.Smm),
3 p-Scale)

Representational Reasoning and Verification 9

16.0 p-Needle (v) &
1 mk-ASINeedle (v/ScaleFactor)

17.0 p-BugSeq (s : Speed™) bs : ASISpeedBug™
1 post Vi e dom s- bs(i) = mk-ASISpeedBug (s(i)/ScaleFactor,
2 BugExtent)
3 A len(s) = len(bs)

180 p-Scale () &
1 mk-ASIScale (A a : Angle - a x ScaleFactor)

Now that we come to define the perceptual operators to support the configu-
ration management task, we must compare the current speed (as represented by
the needle) to the minimum manoeuvering speeds (as represented by the speed
bugs). It is acceptable to make changes within a certain margin above the mini-
mum manoeuvering speed, but it is not acceptable to go below this speed before
making the configuration change. Thus the perceptual operation must be one
which determines (one sided) proximity of the ASI needle to the speed bug.

19.0 configBugCheck (needle, ccbug) &
1 in_arc (needle, ccbug.posn, ccbug.posn + (Smargin / ScaleFactor))

20.0 n_arc (needle, Gstart, Gend) 2
-1 Ustart < needle.posn < Geng

The presence of an element of the abstract state (Sargin) indicates a hidden
referent in the operation. This does not necessarily indicate a serious inadequacy
of the presentation, (for example, information may sometimes be provided by
other artifacts), although it does point to a lack of integration with the other
percepts involved in the operation. In this case Spqrgin is @ constant which is
constrained by “operational considerations” [Hut95b].

But there is also the issue of the current and next configuration. Ultimately,
the perceptual operator must relate the abstract artefact (a sequence of minimum
manoeuvering speeds) to a sequence of speed bugs around the perimeter of the
ASI. We could use the ordering of the bugs as a simple formalisation, thus we
employ a perceptual operator which indexes the sequence of speed bugs with the
current configuration:

21.0 getCurrentBug (C., bugs) &
1 index (C., bugs)

We can see in this expression a requirement that the user already know the
current configuration (C.) or that it be represented in another artefact (which
itself must enable the user to extract the information perceptually). Another
(and perhaps more realistic) formalisation would be based on proximity of the
ASI needle. Thus the ‘next lowest’ speed bug on the ASI is the one we want.

22.0 getCurrentBug (needle, bugs) 2
1 next_counterclockwise (needle, bugs)

10 Gavin J. Doherty, José C. Campos and Michael D. Harrison

23.0 next_counterclockwise (needle : ASINeedle, bugs : ASISpeedBug™) bug :
ASISpeedBug

1 pre 34 € N-bugs(i).posn < needle.posn
2 post 3i € N- bugs(i) = bug A bugs(i).posn < needle.posn
3 AVjEN-j<i = bugs(j).posn > needle.posn

Integrating these two operations into a composite operation to support the
configuration change task yields:

24.0 asiConfigCheck : ASI_Instrument — B

1 asiConfigCheck (asi) &
2 configBugCheck (asi.needle, getCurrentBug (asi.needle, asi.bugs))

We can see from the above that the process of formalisation itself contributes
to our understanding of the system, and possible shortcomings. The next section
will illustrate how more complex assumptions embedded in the representation
may be discovered.

3. Verification

Having defined both the abstract and presentation models, operators over these
models and the mapping between them, we can proceed with the verification
phase of our analysis. Recall that the form of verification we are using involves
establishing an equivalence between logical operators over the abstract state and
perceptual operators over the presentation.

At this point, it is worth reiterating the aims of the process. The aim is not
to show that the proofs can be done (indeed, formally they are quite simple),
but rather to show that something can be learned regarding the interaction
between system and user. We do not argue that the current analysis could not
be conducted without the aid of a theorem prover, but as models and proofs grow
in size and complexity, the ability to manage and partly automate the verification
becomes very useful, as work on the verification of protocols has shown. Our aim
is to show how we can derive insight into the interaction between human and
machine. Since the analysis of such interaction involves a number of different
concerns, ranging from software engineering to psychology, it is not necessarily
obvious that such insights can be obtained.

3.1. The prover - PVS

In this section we will introduce PVS, the theorem prover that will be used in
the verification process that follows. Our aim is to enable the reader to follow
the subsequent description of the performed verification. See [OSR93] for a more
thorough introduction to the system.

PVS is a typed higher-order logic theorem prover, which provides an inte-
grated environment for development and analysis of specifications. Specifications
are organised in theories. Typically a theory will introduce a number of types

Representational Reasoning and Verification 11

and constants (which can be functions), and formulas associated with them (ax-
ioms and theorems, for instance). Theories can be parameterised on types and
constants. Entities declared in a theory can be made available to others by ex-
porting them (using the EXPORTING clause). By default all declarations are
exported. Entities that are exported in a theory can be imported by another
using the IMPORTING clause.

PVS features a powerful type system. This is very useful when writing speci-
fications, but means that type checking becomes undecidable. To cope with this,
the type checker generates proof obligations (TCCs - Type Correctness Condi-
tions) that must be established by the theorem prover. If the system is unable
to prove a TCC automatically, then the user is asked to do it.

The usual types are available in PVS: natural numbers (nat), real numbers
(real), sequences (sequence[X]), sets (set[X]), tuples ([#...#]), etc. These types
are either built-in in the system or defined in the prelude library. PVS also allows
for the definition of predicate subtypes, dependent types and abstract data types.
Although we will not use these directly, they are used in the prelude to define
some of the types we will be using. A library is a collection of theorems. The
prelude is a special library whose theories are always available, without the need
for explicit importing.

PVS is used interactively. Its interface is mainly implemented as an Emacs
major mode, which integrates functionality for editing specifications and proving
theorems. When performing a proof, the system presents a goal in the form of
a sequent, and prompts the user for an appropriate command. If the command
does not solve the sequent, it will generate a new sequent or a number of new
sequents (ie. subgoals), and the user will be asked to prove them in turn. When
all subgoals are proved the original goal has been proved. The user interacts with
the prover by issuing commands to be applied to the sequent. There are com-
mands for induction, quantifier reasoning, rewriting, simplification using decision
procedures and type information, and propositional simplification using binary
decision diagrams. In the analysis that follows we will be using PVS version 2.3
(patch level 1.2.2.36).

3.2. Writing the specification in PVS

The translation from VDM to PVS is straightforward [Age96]. The specification
is organised into three theories. One for the abstract model (theory ASI), an-
other for the perceptual model (theory perceptualASI), and a final theory that
introduces the equivalences to be proved (theory ASIverification).

Figure 3 presents the PVS theory for the abstract model as described in sec-
tion 2.4.1. The theory starts by introducing the types. Besides the three types
present in the VDM model, a fourth type, Speeds (sequences of Speed), is de-
clared for use in abstractASI. Note the syntax for tuples used in abstractASI.
After the types, a constant of type Speed is introduced: Smargin. Note that the
constant is left uninterpreted (ie. no actual value is given). Finally, the theory de-
clares the logical operator (configChangeCheck). Note that the syntax for access
to composite types is of a functional style. The theory in figure 3 was obtained by
translating the VDM specification. As will be shown in sections 3.3 and 3.4 the
verification process will prompt us to introduce changes to the specification. In

12 Gavin J. Doherty, José C. Campos and Michael D. Harrison

ASI: THEORY

BEGIN

Speed: TYPE = real

Speeds: TYPE = sequence[Speed]
Configuration: TYPE = nat

AbstractASI: TYPE = [# Vc: Speed,
Cc: Configuration,
Smm : Speeds,
Vref: Speed#]

Smargin : Speed

configChangeCheck((asi : AbstractASI)): bool =
Vc(asi) < Smm(asi)(Cc(asi)) + Smargin

END ASI

Fig. 3. Initial version of the abstract model

Appendix A we present the final ASI theory that resulted from the verification
process.

The perceptual ASI theory is defined similarly. The final version (including
the changes prompted by the verification process) is given in Appendix B. Note
how invariants have been defined using predicate sub-typing. A predicate is in-
troduced stating the invariant, and the type is defined as all those values that
verify the predicate. The notation (pred) is a shorthand for {z: T' | pred(z)} (see
predicate inv_ASIInstrument and type ASIInstrument in Appendix B).

ASIverification : THEORY
BEGIN

IMPORTING ASI, perceptual AST
abs_asi: VAR AbstractASI

configuration_change_task : CONJECTURE
configChangeCheck(abs_asi) = asiConfigCheck(p(abs_asi))

END ASlverification
Fig. 4. ASlverification theory

The last theory, ASIverification (see figure 4), introduces the equivalence to
be proved as a conjecture. Again, the final version of the theory is presented in
Appendix C.

By attempting to prove the equivalence in figure 4, which correspond to the
analysis outlined in section 2.3, we hope to raise questions about representational
properties of the artefact, and in particular to derive hidden assumptions about
the representation. This process contributes to an increased understanding of
the system; it may indicate potential problems with the system and may also

Representational Reasoning and Verification 13

suggest ways in which the presentation might better support performance of the
users task. Before we proceed with the proofs, however, we must type check the
specification.

3.3. Type Checking

The first step after writing a PVS specification is type checking it. This might
generate a number of Type Correctness Conditions (TCCs). PVS will attempt
to prove all TCCs automatically. When some proof fails, it is left for the user to
finish. When attempting the type checking of the theories above, the following
proof obligation is generated:

rho_TCC1l: OBLIGATION
V(a: abstractASI): inv_ASIInstrument((# needle: = rho _Needle(Vc(a)),
bugs: = rho_BugSeq(Smm(a)),
scale: = rho_Scale#))

which can be more easily understood if rewritten as:

rho_TCC1: OBLIGATION
V(a: abstractASI): inv_ASIInstrument(p(a))

That is, PVS needs to prove that, for all values in abstractASI, p will generate
a valid presentation. When PVS attempts to prove the obligation, two sequents
are reached which cannot be solved. The first sequent:

Sequent 1. rho TCC1.1:

in>0
in>o0

-1
-1
3} i<l

o Yamin Vann
[S ")

{1} Smm(a!1)(i!1)/ScaleFactor > Smm/(al!l)(j!1)/ScaleFactor

amounts to having to prove that the list of speeds at the abstract level (Smm) is
sorted. Since no such restriction exists at the abstract level, it can be concluded
that not all values of Smm will have a valid representation. To solve this, we add
an invariant to the abstract level theory stating the Smm must be sorted (see
predicate inv_abs_asi and definition of AbstractASI in Appendix A).

The second sequent:
Sequent 2. rho TCC1.2:

i1 >0
>0

1
-1
31 i<

Fawin Yamm Yanien
[T

{1} Smm(all)(i!1)/ScaleFactor
> BugExtent + Smm(al1)(j!1) /ScaleFactor

14 Gavin J. Doherty, José C. Campos and Michael D. Harrison

amounts to having to prove that the speed bugs resulting from any given Smm list
will not overlap. This is interesting since it seems to be imposing a condition on
the abstract state, which is derived from the perceptual level. However, because
ScaleFactor and BugExtent are not known at the abstract level, this restriction
cannot be expressed with an invariant of AbstractASI, as above. Instead, it must
be included in the model as a pre-condition to p (see the definitions of pre_rho
and pre_rho_BugSeq in Appendix B). This pre-condition can be interpreted as
saying that any given representation will have limitations regarding the range of
information it can present. In this case, BugExtent must be such that allows all
relevant lists of minimum manoeuverability speeds to be represented.

These two examples show how formalising the different models in a theorem
prover helps in guaranteeing consistency between the models, and in finding
potential sources of problems with the proposed design. With these two additions
the theories now type check without problems.

3.4. Proving equivalence

We will now attempt to prove the equivalence of the logical and perceptual op-
erators for the configuration change task. The conjecture that represents the
equivalence is introduced in theory ASlequivalence (see figure 4). The first se-
quent for this conjecture is:

Sequent 3. configuration_change_task:

{1} V (abs_asi: AbstractASI):
configChangeCheck(abs_asi) = asiConfigCheck(p(abs_asi))

We start the proof by skolemising and expanding definitions. Eventually we
reach a point where, after introducing the definition of next_counterclockwise,
the proof splits into two subgoals: configuration_change_task.1 and configuration-
_change_task.2. (A schematic diagram of the proof is shown in figure 5).

Proceeding with the first subgoal, after expanding definitions and some arith-
metic simplifications, we arrive at the following sequent, where ccbugindex is a
skolem constant representing the index of the first bug just below the needle
(which we interpret in configChangeCheck as representing the current configu-
ration):

Sequent 4. configuration_change task.1:

{-1} posn(rhoBugSeq(Smm(abs_asi'))(ccbugindex)) <
posn(rho_Needle(Vc(abs_asi’)))
{-2} V (j: nat):
j < ccbugindex =
posn(rho_BugSeq(Smm(abs_asi’))(5))
> posn(rho_Needle(Vc(abs_asi')))

{1} Vc(abs_asi’) < Smm(abs_asi')(Cc(abs_asi’)) + Smargin =
configBugCheck(rho Needle(Vc(abs_asi’)),
rho_BugSeq(Smm(abs_asi’))(ccbugindex))

Representational Reasoning and Verification 15

The sequent can be read as: if needle points to a velocity above or equal
to the bug ccbugindex (antecedent -1), and all bugs above ccbugindez are also
above the needle (antecedent -2), then, testing that the current (abstract) ve-
locity Ve(abs_asi') is below the minimum manoeuvering speed of the current
configuration Smm(abs_asi)(Cc(abs_asi')) plus the safe margin, yields the same
result as performing a configBugCheck on the needle and the bug just below the
needle.

configuration_change _task
}_
Expanding
}_

|
(lemma"next_counterclockwise'")

il

L
(apply (repeat (inst?)))
| configuration_change_task.2

H
//(pmp)\/
- -

|
(skolem -2 "ccbugindex")

|
configuration_change task.1 = }I_
\ij mplifying (lemma " speed_assump")
I
n }—

(lemma"cc_bugs") Smplifying
|

= =
| |
(Arithmetics) (Smplifying)

Fig. 5. Schematic proof tree for configuration_change_task

This is not unexpected and should be true, as we interpret the bug just below
the needle as indicating the current configuration. To prove it, we must be able
to establish that Cc(abs_asi’') (the configuration index at the abstract level) and
ccbugindex (the configuration index at the perceptual level) point to the same
minimum manoeuvering speed.

16 Gavin J. Doherty, José C. Campos and Michael D. Harrison

3.4.1. Assumption 1

Thus, by following a methodical approach to the analysis of a specification, we
raise one of the representational issues which came out of the post-hoc observa-
tion of the system in use - that the bug just below the needle indicates the current
configuration. The effect of this assumption is to assign a meaning (in terms of
configuration) to regions of the airspeed indicator face - a vital representational
property that Hutchins dwells on in some detail [Hut95b]. Particularly, he notes:

Once the bugs have been set, the pilots do not simply take in sensory data from the ASI;
rather, the pilots impose additional meaningful structure on the image of the ASI. They use
the tags to define regions on the face of the ASI, and they associate particular meanings with
those regions.

To proceed with the proof, we formalise the assumption with the following ax-
iom:

cc_bugs: AXIOM
V (¢: nat):
((posn(bugs(asi)(z)) x ScaleFactor < Vc(abs_asi))A
(=3 (j: nat):
J < in
(posn(bugs(asi)(j)) x ScaleFactor <
Vc(abs_asi)))) =i = Cc(abs_asi)

By forcing us to add this relation between the needle and the bugs to the per-
ceptual model, the proof process is unveiling relationships between the different
components of the presentation which were not initially considered. In this case
it is pointing out that pilots will use bugs in unforeseen ways, in order to detect
the current configuration of the airplane. The possibility of being able to predict
how users might interpret the presentation is valuable to the design process. In
particular we might ask whether the bugs are a suitable representation for the
current configuration. Next, we will see how considerations about this also arise
from the proof.

After applying the axiom, we proceed once again by expanding definitions and
simplifying. Eventually, the subgoal is further subdivided into two subgoals, both
of which are easy to prove. We are left with subgoal configuration_change_task.2.
This subgoal is represented by the sequent:

Sequent 5. configuration_change_task.2:

{1} (3 (i: nat):
(Smm(abs_asi’)(4) / ScaleFactor < Vc(abs_asi’) / ScaleFactor))

3.4.2. Assumption 2

This condition is generated by the precondition to next_counterclockwise. Com-
bining this with the axiom cc_bugs yields a second assumption about the sys-
tem. As failing to change configuration before dropping below the minimum

Representational Reasoning and Verification 17

manoeuvering is a critical item, it is generally assumed that this is never the
case. Without knowledge of this constraint, we would have to conclude that
the presentation is inadequate for representing configuration. Formalising the
assumption, we introduce the following axiom for ASI:

speed_assump : AXIOM V/(abs_asi: ASI): Vc(abs_asi) > Smm(abs_asi)(Cc(abs_asi))

A very interesting aspect of this assumption is that it is an operational con-
straint (that the pilot must keep the aircraft in an appropriate configuration for
the speed), on which the success of the representation (that it reflects the current
configuration) is based, and further illustrates how abstract and representational
properties are intertwined. Being operational in nature, it prompts us to analyse
how realistic it is to assume that it will hold, and whether the proposed pre-
sentation should be changed or used in conjunction with some other perceptual
artifact explicitly representing the current configuration. We might even decide
to go back to the abstract state and make a change there (for instance, introduc-
ing interlocks). We see here how the proof process prompts us to reason about
the artifact in the context of the overall design of the cockpit.

Using the above invariant the proof for this subgoal can be finished. The
proof tree for the final proof is shown in figure 5.

3.5. Summary

Through the verification process, we identified significant changes, in the form of
assumptions about the system, to the specification. Each of these assumptions
is derived directly from the information provided by the proof process.

The first highlighted aspects of the abstract level that needed to be better
represented at the perceptual level. The relationship between bugs and current
configuration had to be made explicit for the configuration change task to be
supported. The second brought out the implications of some of the assumptions
we were making about the interface and showed us that those issues had not
been included in our abstract model. Each of the assumptions added to enable
completion of the proof had a representational basis and concerned vital prop-
erties of the presentation. We can place these assumptions in the context of the
system, leading to an altered view of the analysis, depicted in figure 6.

In summary, checking for consistency between an abstract specification of the
interactive system and the presentation for that system, allowed us not only to
better understand the issues involved at the interface level and what assumptions
were being made, but also to see how assumptions made at the perceptual level
relate back to the system itself. Additionally, the verification process was valuable
in that it allowed us to identify a number of minor bugs in both specifications.
Finally, although these proofs are not so complex that it would be infeasible to
do them by hand, we found the prover to be helpful in two ways:

e PVS has a number of powerful proving commands that, most of the time,
can save us a lot of time and patience — as we use more and more concrete
specifications of the perceptual level, so the theorem prover will become more
and more useful in this regard

18 Gavin J. Doherty, José C. Campos and Michael D. Harrison

Human Context

Presentation Model

Assumptions about human
perceptual capabilities

Operational
Assumptions

Abstract Model

Operational Context

Perceptual Ops.

Abstract Ops.

Design Context

ssumptions about relevance of
logical operators to task

Model from Property

Fig. 6. Context in representational analysis

e by being totally impartial, the theorem prover better exposes assumptions we
are making about the system. Had the verification been performed by hand,
some of those assumptions might have crept into the proof unnoticed. Of
course, a possibility remains that we might include invalid assumptions in our
model, but such assumptions are more easily discovered and challenged when
explicitly encoded in the specification, than when they are hidden among the
steps of a manual proof.

A further practical issue is that of generality and reuse. We would point out that
there are two levels at which reuse can take place. Firstly, the formalisations of
the abstract and presentation models and associated operators can be shared
over different analyses involving the same components. In the present context,
the analysis will be relevant for all cockpit designs that use this type of airspeed
indicator. Secondly, the same proof can be used over different versions of the
same design. This is useful both when testing alternative design solutions for a
given problem, and to guarantee that a new design preserves all the properties of
the previous version. Additionally, it is also sometimes possible to reuse portions
of a previously conducted proof within another.

4. Conclusions

The stated aims of this paper were to provide a means for integrating represen-
tational reasoning into a design process, and to explore further the verification
process. Since reasoning about interaction falls at least partially in the realms
of human-factors related sciences, being able to conduct such reasoning from a
mathematical standpoint is an interesting result.

We have shown that by employing a formal model which allows us to address
representational issues, we provide both a rigorous and precise framework for

Representational Reasoning and Verification 19

reasoning about representation, and confidence that reasoning over the abstract
specification holds at the presentation level. The primary concern of our analysis
is the choice of representation, it is this choice which the analysis can guide, and
which we ensure is consistent with the chosen properties. The analysis requires
that we know the properties to be supported and the attributes to be presented.
Our treatment has led us to formulate a revised view of the analysis, in which
the context, and particularly assumptions about this context are an integral part
of the process.

We have also shown how the verification process improves our understanding
of the specification, and in particular brings out assumptions about the system
which are embedded in the representation. We consider it an interesting aspect of
the process that some issues have emerged purely from the effort of formalisation,
whereas others emerge only when we attempt to verify the relationship between
the logical and perceptual operators.

We have to an extent also answered the question posed in section 1.1, by
illustrating that we can engage in human factors reasoning based on the proof
process while using automated support. An interesting question concerns the
step between reaching a point in the proof which indicates some assumption is
missing from the specification, and the actual assumption introduced. We can
make a number of comments on this. Firstly, our reference point is the system
being described; the assumptions are not arbitrary, but must make sense in
the context of the system. Secondly, the process is about discovering potential
problems with the system and improving our understanding of the system, rather
than ‘proving’ the system to be usable. One notes also that if we desire to know
if an assumption is necessary in the context of a property, then a proof by
contradiction is possible; this is an area for further exploration.

Each of the assumptions brought out by the verification process had an im-
portant representational significance and a direct correspondence with Hutchins
analysis. The first concerned the implicit representation of current configuration
by the configuration change bugs. The second assumption exposed an opera-
tional constraint, which is not part of the abstract system model, yet which is
vital for the success of the presentation. Thus it is not merely a question of errors
or omissions in the specification, but additional information and understanding
which emerges from the analysis.

External representations are, of course, only one aspect of the distributed
cognitive system; one interesting area for future work would be to consider a
wider range of cognitive resources, for example by employing the resources model
of [WFH96].

Acknowledgements

José Campos was supported by FCT - Fundacgao para a Ciéncia e a Tecnologia,
Portugal - under grant PRAXIS XXI/BD/9562/96. During part of the prepa-
ration of this paper Gavin Doherty was a Visiting Researcher at CNR Istituto
CNUCE, Pisa, Italy, and has been supported by the TACIT network under
the European Union TMR programme, contract ERB FMRX CT97 0133. The
authors would like to thank the anonymous reviewers and the organisers and
participants of the BCS workshop on Formal Aspects of the Human Computer
Interface.

20 Gavin J. Doherty, José C. Campos and Michael D. Harrison

References

[Age96] S. Agerholm. Translating specifications in VDM-SL to PVS. In Proceedings of
9th International Conference on Theorem Proving in Higher Order Logics, volume
1125 of Lecture Notes in Computer Science, 1996.

[Cam00] José C. Campos. Automated Deduction and Usability Reasoning. DPhil thesis,
Department of Computer Science, University of York, 2000.

[Cas91] S.M. Casner. A task-analytic approach to the automated design of graphic pre-
sentations. ACM Transactions on Graphics, 10(2):111-151, April 1991.

[CH97] J. C. Campos and M. D. Harrison. Formally verifying interactive systems: A
review. In Harrison and Torres [HT97], pages 109-124.

[CH99] José C. Campos and Michael D. Harrison. Using automated reasoning in the
design of an audio-visual communication system. In D.J. Duke and A. Puerta,
editors, Design, Specification and Verification of Interactive Systems ’99, pages
167-188. Springer-Verlag/Wien, 1999.

[DH93] D. J. Duke and M.D. Harrison. Abstract interaction objects. Proceedings of
Eurographics ’93, Computer Graphics Forum, 12(3), 1993.

[DHI7] G. Doherty and M. D. Harrison. A representational approach to the specification
of presentations. In Harrison and Torres [HT97].

[Diag9] Dan Diaper, editor. Task Analysis for Human-Computer Interaction. Ellis Hor-
wood Books in Information Technology. Ellis Horwood, 1989.

[HT90] M. D. Harrison and H. W. Thimbleby, editors. Formal methods in Human Com-
puter Interaction. Cambridge University Press, 1990.

[HT97] M.D. Harrison and J.C. Torres, editors. Proceedings, 4th Eurographics Work-
shop on Design, Specification, and Verification of Interactive Systems, Springer
Computer Science. Springer Wien, 1997.

[Hut95a] E. Hutchins. Cognition in the Wild. MIT Press, 1995.

[Hut95b] E. Hutchins. How a cockpit remembers its speeds. Cognitive Science, 19:265-288,
1995.

[MSB95] J. May, S. Scott, and P.J. Barnard. Structuring Displays: A Psychological Guide.
Eurographics Tutorial Notes Series. EACG: Geneva, 1995. Appeared as Amodeus
report B04.

[OSR93] S. Owre, N. Shankar, and J. M. Rushby. User Guide for the PVS Specification
and Verification System. Computer Science Laboratory, SRI Internatinal, Menlo
Park CA 94025, USA, (beta release) edition, March 1993.

[PP98] P. Palanque and F. Paternd, editors. Formal Methods in Human-Computer Inter-
action. Formal Approaches to Computing and Information Technology. Springer-
Verlag, 1998.

[SR96] M. Scaife and Y. Rogers. External cognition: how do graphical representations
work? International Journal of Human-Computer Studies, 45:185-213, 1996.

[Sted6] S.S. Stevens. On the theory of scales of measurement. Science, 103:677-680, 1946.

[WFH96] P.C. Wright, B. Fields, and M.D. Harrison. Distributed information resources:
An new approach to interaction modelling. In T.R.G. Green, J.J. Canas, and
C.P. Warren, editors, Proceedings of ECCES8: European Conference on Cognitive
Ergonomics, pages 5-10. EACE, 1996.

[WJCS94] D.D. Woods, L.J. Johannesen, R.I. Cook, and N.B. Sarter. Behind human er-
ror: Cognitive systems, computers and hindsight. State-of-the-Art Report SOAR
94-01, Crew Systems Ergonomics Information and Analysis Center (CSERIAC),
Wright- Patterson Airforce Base, Ohio., December 1994.

[Zha96] J. Zhang. A representational analysis of relational information displays. Interna-
tional journal of human computer studies, 45, 1996.

[ZN94] J. Zhang and D. A. Norman. Representations in distributed cognitive tasks. Cog-

nitive Science, 18:87-122, 1994.

A. ASI PVS theory

This appendix presents the final version of the ASI PVS theory introduced in
section 3.2. This theory is the PVS equivalent to the VDM model described in

Representational Reasoning and Verification 21

section 2.4.1, with the addition of an invariant for AbstractASI, and an assump-
tion about user behaviour.

ASI: THEORY
BEGIN

% Types needed for the model

Speed: TYPE = real
Speeds: TYPE = sequence[Speed]
Configuration: TYPE = nat

AbstractASIaux: TYPE = [# Vc: Speed,
Cc: Configuration,
Smm : Speeds,
Vref: Speed#]
% Invariant — Smm is sorted
inv_abs_asi(abs_asi : AbstractASIaux): bool =
V (i,7: nat): 4 < j< Smm(abs_asi)(¢) > Smm(abs_asi)(j)
AbstractASI: TYPE (inv_abs_asi)
% Values — the safe margin to change configuration
Smargin : Speed
% Assumptions
abs_asi: VAR AbstractASI
% the speed never goes below the minimum maneuverability speed
% for the current configuration
speed_assump : AXIOM Vc(abs_asi) > Smm(abs_asi)(Cc(abs_asi))

% Logical operator — should configuration change?

configChangeCheck((asi: AbstractASI)): bool =
Ve(asi) < Smm(asi)(Cc(asi)) + Smargin

END ASI

B. perceptual ASI PVS theory

In this appendix the final version of the perceptual ASI PVS theory is presented.
This theory is the PVS equivalent to the VDM model described in section 2.4.2,
with the addition of assumptions and pre-conditions.

perceptualASI: THEORY
BEGIN

% ASI must be imported for we need Smargin

IMPORTING ASI

22 Gavin J. Doherty, José C. Campos and Michael D. Harrison

% Types

Angle: TYPE = real

ASINeedle: TYPE = [# posn: Angle#]

ASISpeedBugs: TYPE = sequence[ASISpeedBug]

ASIScale: TYPE = [# interpret: [Angle — real] #]

ASIInstrumentaux: TYPE = [# needle: ASINeedle,
bugs: ASISpeedBugs,
scale : ASIScale#]

% Invariant — Bugs do not overlap
inv_ASIInstrument(asi : ASIInstrumentaux) : bool =
V (4,7 : nat):
1 < j=
(posn(bugs(asi)(é)) > posn(bugs(asi)(j))A
posn(bugs(asi)(¢)) > posn(bugs(asi)(j)) + extent(bugs(asi)(j)))

ASIInstrument: TYPE = (inv_ASIInstrument)
% Constant values

ScaleFactor : posreal
BugExtent : Angle

% Assumptions

asi: VAR ASIInstrument
abs_asi: VAR AbstractASI

% Bugs identify configurations
cc_bugs: AXIOM
V (i: nat):
((posn(bugs(asi)(z)) x ScaleFactor < Vc(abs_asi))A
(=3 (j: nat):
J < iA
(posn(bugs(asi)(j)) x ScaleFactor <

Vc(abs_asi)))) =

1 = Cc(abs_asi)

% Presentation mapping
rho_Needle((v: Speed)): ASINeedle = (#posn: = v / ScaleFactor#)

pre_rtho_BugSeq((s : Speeds)): bool =

V (4,5 :nat) : ¢ < j = (s(z)/ScaleFactor > s(j)/ScaleFactor + BugExtent)
rho BugSeq((s : (pre_rho_BugSeq))): ASISpeedBugs =

A (i: nat): (#posn: = s(4) / ScaleFactor, extent: = BugExtent#)

rho_Scale: ASIScale = (#interpret: = A (a: Angle): ScaleFactor x a#)

pretho((a: AbstractASI)): bool =
p((a: (prerho))): ASIInstrument =
(#needle: = rho_Needle(Vc(a)),
bugs: = rho_BugSeq(Smm(a)),
scale: = rho_Scale#)

pre_rho_BugSeq(Smm(a))

Representational Reasoning and Verification 23

% Perceptual Operators

% is the needle inside an arc?
in_arc((needle : ASINeedle), (astart,aend: Angle)): bool =
astart < posn(needle) A posn(needle) < aend

% identify the bug below the needle (defined axiomatically)
next_counterclockwise : [[ASINeedle, ASISpeedBugs] — ASISpeedBug]
next_counterclockwise : AXIOM
V (needle: ASINeedle, bugs: ASISpeedBugs, bug: ASISpeedBug):
(3 (4: nat): posn(bugs(i)) < posn(needle)) =
(next_counterclockwise(needle, bugs) = bug <
(3 (¢: nat):
bugs(i) = bugA
posn(bugs(i)) < posn(needle)A
(V (5 : nat):
j < i = posn(bugs(j)) > posn(needle))))

% identify the current speed bug
getCurrentBug((needle : ASINeedle), (bugs: ASISpeedBugs)):

ASISpeedBug = next_counterclockwise(needle, bugs)
% is the needle inside the safe margin of a bug?
configBugCheck((needle : ASINeedle), (bug: ASISpeedBug)): bool =

in_arc(needle, posn(bug), posn(bug) + Smargin / ScaleFactor)
% should configuration change?
asiConfigCheck((asi: ASIInstrument)): bool =

configBugCheck(needle(asi), get Current Bug(needle(asi), bugs(asi)))

END perceptual ASI

C. ASlverification PVS theory

In this appendix the final version of the ASlIverification PVS theory is presented.
Note that the only difference between this theory and the original version pre-
sented in figure 4 is the use of (pre_rho) instead of abstractASI in the declaration
of abs_asi. This guarantees that abs_asi will validate the precondition to p.

ASlverification : THEORY
BEGIN

IMPORTING ASI, perceptual AST
abs_asi: VAR (pre_rho)

configuration_change_task : CONJECTURE
configChangeCheck(abs_asi) = asiConfigCheck(p(abs_asi))

END ASlverification

