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Abstract. The structure of a reactive transition system can to be mod-
ified on the fly by e.g. removing, reversing or adding new transitions. The
topic has been studied by D. Gabbay and his collaborators in different
contexts. In this paper we take their work a step further, introducing a
suitable notion of bisimulation and obtaining a Hennessy-Milner theo-
rem with respect to a hybrid logic in which transition properties can be
expressed. Our motivation is to provide a characterisation of equivalence
for such systems in order to exploit their possible roles in the formal
description of software connectors in Reo, either from a behavioural (se-
mantic) or spatial (syntactic) point of view.

This paper is dedicated to Farhad Arbab, on the occasion of his retire-
ment, as a tribute of gratitude for his outstanding contributions to the
field of systems’ interaction and composition, his inspiring attitude, and
generosity.

1 Introduction

Complex, distributed systems require reliable and yet flexible architectures. A
clear separation between typical loci of computation (e.g. services or compo-
nents) and the protocols that manage their interaction is at the heart of the
so-called exogenous coordination models and, in particular, of Farhad Arbab’s
outstanding contributions to Software Engineering [1, 2]. Actually, Reo connec-
tors mediate interaction, offering a powerful “glue-code” to express such pro-
tocols, while maintaining the envisaged separation of concerns. Moreover, Reo
connectors are compositional, providing a very flexible approach to software
composition. Among languages with a similar purpose, Reo is the only one that
allows for propagation of mutual exclusion and synchrony requirements along
the connector structure.

Different forms of transition systems have been used as semantic domains
for connector behaviour [14], either directly (as in, e.g. constraint [5] or Reo



automata [8]), or indirectly through mappings to process algebra formalisms [6,
15]. Typically, such systems are then regarded as (variants of) Kripke frames
upon which (variants of) modal logics are interpreted providing a framework to
reason about coordination semantics. This is well-known and will not be further
detailed here.

From a different point of view, Reo connectors are syntactically represented
as graphs of communication primitives (e.g. channels) whose nodes stand for
interaction points. Edges are labelled with channel identifiers and types which
classify their behaviour. Again such graphs can be regarded as Kripke frames
expressing the spatial structure of coordination patterns. This perspective was
introduced by N. Oliveira and L. S. Barbosa [17] when proposing an elementary
framework for expressing reconfigurations of the interaction protocols, i.e. of the
connector’s structure, as discussed, for instance, by C. Krause [16]. Reconfigu-
rations in that sense may substitute, add or remove communication channels, or
move communication interfaces between components, in order to restructure a
complex interaction policy. The corresponding modal logic expresses properties
of (spatial) connector structure.

From this perspective, the focus is placed on the interconnection structure,
with no reference to the connector’s emerging behaviour. Examples of structural,
or ’syntactic’ properties are:

i) every fifoe channel from a node n is connected to at least a lossy channel,
ii) node i is an output node of the connector.

In [17] it is required that a reconfiguration preserves such properties.
Often structural properties are to be formulated relatively to a particular

node in the pattern. An example is given by property ii) above. In general, one
may require, for instance, that all the channels incident to a specific node and
their interconnections remain unchanged under a reconfiguration. This justifies
the choice of hybrid logic [7, 9] to express such properties. In general, hybrid logic
adds to a modal language the ability to name, or to explicitly refer to specific
states of the underlying Kripke structure. This is done through the introduction
of propositional symbols of a new sort, called nominals, each of which is true
at exactly one possible state. The sentences are then enriched in two directions.
On the one hand, nominals are used as simple sentences holding exclusively in
the state they name. On the other hand, explicit reference to states is provided
by a satisfaction operator @ such that @iφ asserts the validity of φ at the state
named i. In the logic described in next section, properties i) and ii) above are
written3 as

@n[fifoe]〈lossy〉>
and

@i[−]⊥
respectively, where [−]⊥ states the absence of outgoing channels from the node
referred by nominal i.

3 As used in modal logics coming from process algebras, modalities are indexed by
sets of labels, with symbol “-” standing for the whole set of those.



The starting point for this paper is that the description of coordination el-
ements at any level (behavioural or spatial, semantic or syntactic) may be en-
riched, and become more expressive if the underlying transition system exhibits
a reactive structure. The qualifier reactive classifies a frame, or a transition sys-
tem, in which some transitions may inhibit others to occur. The study of this
sort of structures, and of their corresponding logics, goes back to the seminal
paper of Johan van Benthem [18] which introduces what was then called sabo-
tage logic. In this language crossing a specifically annotated edge would erase an
edge from the underlying Kripke frame. Other variants of reactivity encompass
different effects, for example creating new edges [3], or reversing their direction
[4]. The topic has received some attention along the last 10 years — see e.g. [12]
for a detailed account.

This paper illustrates the use of reactive transition systems to specify Reo
connectors in both perspectives, behavioural and spatial, mentioned above. How-
ever, to make this a useful feature in practice, one needs to have at hand the
tools typically used to reason about transitions, in particular a notion of bisim-
ulation, a logic and a Hennessy-Milner-like theorem relating model bisimilarity
and logical equivalence. Such is actually the paper’s contribution, adding to the
theory of reactive frames developed within the modal logic community.

The remaining of the paper is organised as follows. The next section intro-
duces a hybrid logic for reactive transition systems and illustrates the application
of such systems to connector modelling. Section 3 contains the core results of
the paper, introducing a suitable notion of bisimulation and proving the cor-
responding Hennessy-Milner theorem for the logic. Finally, section 4 concludes
and suggests a few topics for future work.

2 A hybrid logic for reactive transitions

Figure 1 illustrates how reactive transition systems may be used in the context of
connector specification, leading to short and crisp descriptions. On the left hand
side is depicted the structure of a merger-broadcaster connector intermediated
by a lossy channel; edges in the graph are labelled with the type and identifier
of constituent channels. The arrow connecting channel syncb to syncd inhibits a
transmission on the latter whenever a data token has entered the circuit through
the former.

The system on the right, on the other hand, expresses the semantics of a
synchronous channel ! whose both ends can either receive or deliver data.
Ignoring all the double arrows the behaviour of such a connector would simply
be to accept a token at end a (represented by label ina) and deliver it at b (outb),
or the other way round. As designed, however, a strict alternating discipline is
enforced. Actually, crossing transition ina has two side effects: inhibits itself and,
at the same time, removes the inhibition affecting transition inb which will be
selected in the next acceptance round.
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Fig. 1. Reactive transition in Reo connectors.

A (hybrid) logic to talk about this kind of systems is specified as follows.
Note the presence of two kinds of modalities (〈a〉 and �P ) as well as a hybrid
satisfaction operator (@i).

Definition 1. Given sets Π, NOM, and A, of atomic propositions, nominals,
and labels respectively, the set of HLr-formulas is defined inductively as follows:

ϕ ::= i | p | ¬ϕ |ϕ ∨ ϕ |@iϕ | 〈a〉ϕ |♦Pϕ

for any i ∈ NOM, p ∈ Π and a ∈ A. As usual, connectives ⊥, >, ∧, → and ↔
for a ∈ A and �P , [a] are introduced as abbreviations.

As discussed below, formulas are interpreted over paths. Modality ♦Pϕ and
its dual, �P , are blind for the path taken to arrive to the current state. They
are necessary because in a reactive system the accessibility relation may change
on the fly. Actually, differently from what happens in classical modal logic, the
evaluation of a proposition p at a world w depends on the path taken to reach w.
In general, (W,R), w � 〈a〉p⇔ (W,R′), w′ � p for some edge w,w′ labelled by a,
where R′ is the accessibility relation obtained after crossing the edge (w,w′) ∈ R.

Example 1. Formula [synca][lossyi]〈syncd〉> characterises a property valid for
the system depicted in Fig. 1(a): the connector allows data to flow through chan-
nels synca, lossyi, and syncd in sequence. If channel syncb was taken instead,
it would no longer be possible to use syncd after lossyi. The fact is captured by
the formula [syncb][lossyi][syncd]⊥. Finally both properties can be combined in
one formula resorting to modality ♦P : The formula

[synca][lossyi]
(
〈syncd〉> ∧ ♦P [syncd]⊥

)
records the possibility of data flowing through channel syncd for data items
coming from synca, as well as the fact that there exists another possible edge
leading to the same state, but which makes impossible to cross syncd.



Formally, let W be a nonempty set of vertices (or states), A a set of labels,
and denote by (A×W )∗ the set of all nonempty finite sequences (i.e. paths) over
A×W . Then,

Definition 2. A reactive frame with labels is a set of finite paths ∆ ⊆W×(A×
W )∗ such that (w) ∈ ∆ for any w ∈ W , and

(
w1, ((a2, w2), ..., (an, wn))

)
∈ ∆

whenever
(
w1, ((a2, w2), ..., (an, wn), (an+1, wn+1))

)
∈ ∆, for every n ≥ 1.

Path composition is denoted by juxtaposition; if no ambiguity arises, w and
(a,w) will denote the corresponding singleton paths. Given a set W and a non-
empty set of paths ∆ ⊆ W × (A ×W )∗, function t : ∆ → W returns t(w) = w
and t

(
w1, ..., (an, wn)

)
= wn. In practice, t returns the last state in the path.

Definition 3. Let Π be a set of atomic propositions. A reactive model with
labels is a triple (W,∆, V ), where (W,∆) is a reactive frame with labels, and
V : Π ∪ NOM → 2∆ is a function such that λ ∈ V (p) iff t(λ) ∈ V (p) for any
p ∈ Π,λ ∈ ∆ and |V (i)| = 1 for any i ∈ NOM.

We may now define how to evaluate HLr-formulas with respect to a reactive
model with labels M = (W,∆, V ), at a path λ ∈ ∆:

Definition 4. The validity of a HLr-formula is established recursively:

– M,λ � p iff λ ∈ V (p), for any p ∈ Π
– M,λ � i iff λ ∈ V (i), for any i ∈ NOM

– M,λ � ¬ϕ iff M,λ 2 ϕ
– M,λ � ϕ ∨ ψ iff M,λ � ϕ or M,λ � ψ
– M,λ � @iϕ iff M,γ � ϕ, where V (i) = {γ}
– M,λ � 〈a〉ϕ iff ∃w ∈W , λ(a,w) ∈ ∆ and M,λ(a,w) � ϕ
– M,λ � ♦Pϕ iff ∃γ ∈ ∆, M,γ � ϕ and t(λ) = t(γ)

Both modalities and the hybrid satisfaction operator are interpreted over
paths rather than individual states. For modality ♦P note that a path γ ∈ ∆
is considered accessible from another one λ ∈ ∆ if and only if their final state
coincides.

Example 2. Consider the reactive model M = (W,∆, V ) with labels depicted in
Figure 2. The set of paths ∆ is built as follows. From w4 no move is possible,
therefore, w4 ∈ ∆. From w3, one may move to w4 through an edge labeled
by a, thus w3 and

(
w3, (a,w4)

)
∈ ∆. Similarly, starting from w2 leads to w4,(

w2, (a,w3)
)
,
(
w2, (a,w3), (a,w4)

)
∈ ∆. Finally, from w1 one may move to w3,

through an edge labeled by a. However, afterwards, it is not possible to go to
w4 because the edge (w3, a, w4) was inhibited when edge (w1, a, w3) was crossed.
This is the effect represented by the double arrow. Therefore, w1,

(
w1, (a,w3)

)
∈

∆. ∆ contains no other paths. Clearly, M,w2 � 〈a〉〈a〉> but M,w1 2 〈a〉〈a〉>.
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Fig. 2. A reactive frame (W,∆).

3 Bisimulation for reactive models with labels

This section characterises a notion of bisimulation to compare reactive models
with labels. Its relationship with the modal equivalence induced by the logic
above is discussed.

Definition 5. Let (W,∆, V ) and (W ′, ∆′, V ′) be reactive models over a set of
labels A. A relation S ⊆ ∆×∆′ is an H-bisimulation if and only if

(nom) for any i ∈ NOM, w ∈ V (i) and v ∈ V ′(i) implies (w, v) ∈ S

and, for all λ ∈ ∆,λ′ ∈ ∆′, such that (λ, λ′) ∈ S,

(atom) V (p)(λ) = V ′(p)(λ′), for all p ∈ Π ∪NOM

(A-zig) ∀a ∈ A
(
∀w ∈ W (λ(a,w) ∈ ∆ ⇒ ∃w′ ∈ W ′, λ′(a,w′) ∈ ∆′ such that

(λ(a,w), λ′(a,w′)) ∈ S)
)

(A-zag) ∀a ∈ A
(
∀w′ ∈ W ′(λ′(a,w′) ∈ ∆′ ⇒ ∃w ∈ W,λ(a,w) ∈ ∆ such that

(λ(a,w), λ′(a,w′)) ∈ S)
)

(P -zig) ∀γ ∈ ∆(t(λ) = t(γ)⇒ ∃γ′ ∈ ∆′
(
t(λ′) = t(γ′) and (γ, γ′) ∈ S)

)
(P -zag) ∀γ′ ∈ ∆′(t(λ′) = t(γ′)⇒ ∃γ ∈ ∆

(
t(λ) = t(γ) and (γ, γ′) ∈ S)

)
Example 3. Consider the two systems depicted in Fig. 3. Propositions holding at
each particular state are listed between square brackets; no nominals are consid-
ered. It is easy to verify that relation {

(
(w1), (v1)

)
,
(
(w1, (a,w2)), (v1, (a, v2))

)
,(

(w2), (v2)
)
,
(
(w2, (b, w3)), (v2, (b, v2))

)
,(

(w4), (v1)
)
,
(
(w4, (a,w3)), (v1, (a, v2))

)
,
(
(w3), (v2)

)
,
(
(w3, (b, w2)), (v2, (b, v2))

)
}

is an H-bisimulation.

As expected, bisimilarity entails modal equivalence.

Theorem 1. Let (W,∆, V ) and (W ′, ∆′, V ′) be two reactive models, let λ ∈
∆,λ′ ∈ ∆′ and let S ⊆ ∆ ×∆′ be an H-bisimulation. Then (λ, λ′) ∈ S implies
M,λ � ϕ⇔M ′, λ′ � ϕ for every formula HLr-formula ϕ.

Proof. The proof proceeds by induction over the structure of formulas. If ϕ ∈
Π ∪ NOM, then M,λ � ϕ ⇔ M ′, λ′ � ϕ by definition of H-bisimulation. The
non-basic cases are presented below, under the hypothesis that (λ, λ′) ∈ S.
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Fig. 3. Two bisimilar models.

– M,λ � ¬ϕ⇔M,λ 2 ϕ⇔M ′, λ′ 2 ϕ⇔M ′, λ′ � ¬ϕ.

– M,λ � ϕ ∧ ψ ⇔M,λ � ϕ and M,λ � ψ
⇔M ′, λ′ � ϕ and M ′, λ′ � ψ ⇔M ′, λ′ � ϕ ∧ ψ.

– M,λ � 〈a〉ϕ ⇒ ∃w ∈ W, λ(a,w) ∈ ∆ and M,λ(a,w) � ϕ. By definition of
bisimulation we conclude that ∃w′ ∈ W ′, λ′(a,w′) ∈ ∆′ such that λ(a,w)
and λ′(a,w′) are bisimilar. The induction hypothesis entails ∃w′ ∈ W ′,
λ′(a,w′) ∈ ∆′ and M ′, λ′(a,w′) � ϕ. Finally, M ′, λ′ � 〈a〉ϕ. The recipro-
cal condition is proved analogously.

– M,λ � ♦Pϕ ⇒ ∃γ ∈ ∆, t(γ) = t(λ) and M,γ � ϕ. Again, by definition
of bisimulation, we conclude that ∃γ′ ∈ ∆′ with t(γ′) = t(λ′) such that
γ′ and γ are bisimilar. Thus, by induction, ∃γ′ ∈ ∆′ with t(γ′) = t(λ′)
and M ′, γ′ � ϕ, from which we conclude that M ′, λ′ � ♦Pϕ. The reciprocal
condition is proved analogously.

– M,λ � @iϕ⇔M,γ � ϕ such that V (i) = {γ}. From the definition of bisim-
ulation we have M ′, γ′ � ϕ such that V ′(i) = {γ′}, and therefore M ′, λ′ �
@iϕ. The reciprocal condition is proved analogously.

�

The reciprocal of Theorem 1 is only valid for a restricted class of models. In
classical modal logic a condition stating image-finiteness is usually imposed. We
resort here to a slightly more relaxed notion, that of a saturated model [4]. With
this restriction, theorem 2 below explains how an H-bisimulation relating paths
indistinguishable by HLr-formulas can be built. In the sequel, for a relation
Z ⊆ ∆×∆ on paths, notation Z[λ] abbreviates the set {γ ∈ ∆ : λZγ}.

Definition 6. Let Σ be a set of formulas and M = (W,∆, V ) a reactive model
with labels.

– Σ is satisfiable over a set of paths Λ ⊆ ∆ if there is a path λ ∈ Λ such that
M,λ � ϕ for every ϕ ∈ Σ.

– Σ is finitely satisfiable over a set of paths Λ ⊆ ∆ if, for every finite subset
Σ̄ ⊆ Σ, there is a path λ ∈ Λ such that λ � ϕ for every ϕ ∈ Σ̄.



– A model is Z-saturated over a relation Z ⊆ ∆ ×∆, if, for all λ, every set
Σ is satisfiable over Z[λ] whenever Σ is finitely satisfiable over Z[λ].

Definition 7. Given a reactive frame (W,∆) and a set of labels A, relation
Ra ⊆ ∆ ×∆, for each a ∈ A is defined by (λ, γ) ∈ Ra iff ∃w ∈ W,γ = λ(a,w).
Similarly, define relation P ⊆ ∆×∆ by (λ, γ) ∈ P iff t(γ) = t(λ).

In order to complete the Hennessy-Milner theorem for the presented logic,
we state and prove the next theorem. It is not proved for all reactive models but
comprise an embracing class of reactive models.

Theorem 2. Let M and M ′ be two P -saturated and (Ra)a∈A-saturated reactive-
models with labels. A non-empty relation S ⊆ ∆ × ∆′ such that (λ, λ′) ∈ S iff
for any formula ϕ, M,λ � ϕ⇔M ′, λ′ � ϕ, is an H-bisimulation.

Proof. Consider an arbitrary a ∈ A, suppose that (λ, γ) ∈ Ra, for some γ ∈ ∆
and let Sat(γ) = {ϕ : M,γ � ϕ}. Then, for each finite subset Σ′ ⊆ Sat(γ),

M,λ � 〈a〉
∧
ϕ∈Σ′

ϕ holds and, therefore, M ′, λ′ � 〈a〉
∧
ϕ∈Σ′

ϕ. This means that

Sat(γ) is finitely satisfiable over Ra(λ′), and since M ′ is Ra-saturated, Sat(γ)
is satisfied over Ra(λ′). Thus, there exists a state γ′ such that (λ′, γ′) ∈ Ra and
(γ, γ′) ∈ S. Analogously, if (λ, λ′) ∈ S and (λ′, γ′) ∈ Ra, then there exists some
w ∈W such that (λw, λ′w′) ∈ S.

Suppose now that (λ, γ) ∈ P , for some γ ∈ ∆ and consider Sat(γ) = {ϕ :

M,γ � ϕ}. Then, for each finite subset Σ′ ⊆ Sat(γ), M,λ � ♦P
∧
ϕ∈Σ′

ϕ and,

therefore, M ′, λ′ � ♦P
∧
ϕ∈Σ′

ϕ. This means that Sat(γ) is finitely satisfiable over

Pλ′ , and since M ′ is P -saturated, Sat(γ) is satisfied over Pλ′ . Again, there exists
a state γ′ such that (λ′, γ′) ∈ P and (γ, γ′) ∈ S. Analogously, if (λ, λ′) ∈ S and
(λ′, γ′) ∈ P , then there exists some γ ∈ ∆ such that (λ, γ) ∈ P and (γ, γ′) ∈ S.

Now, let i ∈ NOM such that V (i) = {λ} and V ′(i) = {λ′} for some λ ∈
∆,λ′ ∈ ∆′. Let (γ, γ′) ∈ S 6= ∅, then, for any HLr-formula ϕ, M,γ � @iϕ ⇔
M ′, γ′ � @iϕ that semantically implies, M,λ � ϕ ⇔ M ′, λ′ � ϕ. Since ϕ is
arbitrary, (λ, λ′) ∈ S. Finally, if (λ, λ′) ∈ S, then we can trivially verify that,
∀p ∈ Π ∪NOM, M,λ � p⇔M ′, λ′ � p by definition.

�

Clearly the theorem would fail for non Ra-saturated models. The following
proposition gives a sufficient condition for a model to be Ra-saturated.

Proposition 1. Let M = (W,∆, V ) be a reactive model with labels and consider
Ra(λ) as defined above. If |Ra(λ)| <∞, for any λ ∈ ∆, then M is Ra-saturated.

Proof. Suppose |Ra(λ)| <∞, for any λ ∈ ∆, holds for M , but the model is not
Ra-saturated. This means that there exists λ ∈ ∆ and a set Σ of formulas such
that Σ is finitely satisfiable over Ra(λ) but not satisfiable over Ra(λ).



Clearly, any formula ϕ ∈ Σ, {ϕ} is satisfiable over Ra(λ) which means that
〈a〉Σ = {〈a〉ϕ : ϕ ∈ Σ} is satisfied in λ. Since |Ra(λ)| < ∞, every path in
Ra(λ) can be enumerated as γ1, . . . , γn. Since Σ is not satisfiable over Ra(λ),
there is a formula ϕi ∈ Σ for each γi, i ∈ {1, ..., n}, such that ϕi is not satisfied
in γi. However, for any i ∈ {1, ..., n}, 〈a〉ϕi is satisfied in λ. Thus, the set Φ =
{ϕ1, . . . , ϕn} ⊆ Σ is finite and, therefore, satisfiable over Ra(λ). This leads to a
contradiction since each path γi ∈ Ra(λ) does not verify ϕi ∈ Φ.

�

An analogous result for relation P is obtained along similar lines, but additionally
requiring the absence of cycles in the reactive model.

Our last results establish a connection between reactive models, as discussed
in this paper, and the usual Kripke models. We start by making explicit how a
reactive model arises from a classical one. Note that in the sequel NOM = ∅
because nominals, in the logic introduced here, bind paths, rather than states as
in standard hybrid logic.

Definition 8. A Kripke model K = (WK , R, VW ) induces a reactive model M =
(W,∆, V ) as follows:

• W = WK

• ∆ is the set of all possible paths generated by the accessibility relation R, i.e.:
– (w) ∈ ∆ for any w ∈W
– For any n ≥ 2, (w0, ..., wn) ∈ ∆ whenever ∀i ∈ {1, n− 1}, (wi, wi+1) ∈ R
• V is defined in order to be coherent with the notion of valuation for models

with no reactivity:
– ∀p ∈ Π, λ ∈ V (p) iff t(λ) ∈ VK(p)

Theorem 3. Let (WK , R, VK), (W ′K , R
′, V ′K) be Kripke models and B ⊆W×W ′

a bisimulation. Let (W,∆, V ) (respectively, (W ′, ∆′, V ′)) be the induced reactive
model with respect to (W,R, V ) (respectively, (W ′, R′, V ′)). Let the relation S ⊆
∆×∆′ be such that (λ, λ′) ∈ S iff t(λ)Bt(λ′). Then S is an H−bisimulation of
reactive models (with NOM=∅).

Proof. (nom) Trivial since NOM = ∅.

(A−zig) Let us consider λ ∈ ∆, λ′ ∈ ∆′ and w ∈W such that (λ, λ′) ∈ S and
λw ∈ ∆. By definition of S, we conclude that (t(λ), t(λ′)) ∈ B and (t(λ), w) ∈ R.
Therefore, since B is a bisimulation, there exists w′ ∈W ′ such that
(t(λ′), w′) ∈ R′ and (w,w′) ∈ B. Thus, ∃w′ ∈ W ′, (t(λw), t(λ′w′)) ∈ B which
implies ∃w′ ∈W ′, (λw, λ′w′) ∈ S.

(A− zag) Analogous to A− zig.

(P − zig) Let us consider λ, γ ∈ ∆ and λ′ ∈ ∆′ such that t(λ) = t(γ) and
(λ, λ′) ∈ S. Therefore (t(λ), t(λ′)) ∈ B implies (t(γ), t(λ′)) ∈ B and, thus,
(γ, λ′) ∈ S. The result follows because, trivially, t(λ′) = t(λ′).

(P − zag) Analogous to P − zag.



(atom) M,λ �X p ⇔ M, t(λ) � p for any p ∈ Π. Thus, if (λ, λ′) ∈ S, then
M,λ �X p⇔M, t(λ) � p⇔M ′, t(λ′) � p⇔M ′, λ′ �X p

�

In the opposite direction a similar result pops out:

Theorem 4. Let (WK , R, VK), (W ′K , R
′, V ′K) be Kripke models and S ⊆ ∆ ×

∆′ a bisimulation between paths of the corresponding induced reactive models.
Define relation B ⊆W ×W ′ by (w,w′) ∈ B iff there exists (λ, λ′) ∈ S such that
t(λ) = w and t(λ′) = w′. Then B is a bisimulation between the original Kripke
models.

Proof. We prove the zig and zag conditions, as well as the semantic equivalence
between atomic propositions.

(zig) Let us suppose (w,w′) ∈ B and that there exists v ∈ W such that
(w, v) ∈ R. Then, there exists (λ, λ′) ∈ S such that t(λ) = w and t(λ′) = w′.
Furthermore, λw ∈ ∆. Since S is a bisimulation, there exists v′ ∈ W ′ such that
λ′w′ ∈ ∆′ and (λw, λ′v′) ∈ S. Hence, t(λv) = v, t(λ′v′) = v′ and, therefore,
vBv′.

(zag) Analogous to zig.

(atom) Finally, we note that M,λ �X p ⇔ M, t(λ) � p for any p ∈ Π
because X = Π. If (w,w′) ∈ B, then there exists (λλ′) ∈ S such that t(λ) = w
and t(λ′) = w′. Because M,λ �X p ⇔ M ′, λ′ �X p, we conclude that M, t(λ) �
p⇔M ′, t(λ′) � p, i.e., M,v � p⇔M ′, v′ � p. �

As explained above, the set of nominals was assumed to be empty in the
context in which both theorems were formulated. However, if nominals were
considered in the language of reactive models, the second theorem would remain
valid, but not the first one, as non bisimilar paths may be bound by the same
nominal.

4 Conclusions and future work

This paper indicates that reactive transition systems may play an interesting role
in the formal description of software connectors in Reo, either from a behavioural
(semantic) or spatial (syntactic) point of view. In the later sense, we are currently
enriching our previous work on connector reconfiguration [17] to handle such
reactive spatial descriptions of coordination patterns.

A preliminary step for those developments is a suitable characterisation of
equivalence. Such is the focus of the technical contents of the present paper.
We introduce a notion of bisimulation for reactive transition systems with labels
and establish, under reasonable conditions, a Hennessy-Milner-like result. This
adds to the quest of D. Gabbay and his collaborators for suitable (logic) tools to
specify the dynamics of reactivity. We are currently extending our work to switch
graphs [13], another sort of reactive frames with an interesting potential for
describing coordination patterns, namely in the context of analogues to biological
systems — a main topic in the first author’s doctoral research [10, 11].
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