
D
ow

nl
oa

de
d 

B
y:

 [B
-o

n 
C

on
so

rti
um

 - 
20

07
] A

t: 
14

:5
9 

26
 J

ul
y 

20
07

 

Tests for the Null Hypothesis of Cointegration:
A Monte Carlo Comparison

Vasco J. Gabriel*

Department of Economics, Birkbeck College, University of London, London, UK,

and University of Minho, Braga, Portugal

ABSTRACT

The aim of this paper is to compare the relative performance of several tests for the null

hypothesis of cointegration, in terms of size and power in finite samples. This is carried

out using Monte Carlo simulations for a range of plausible data-generating processes.

We also analyze the impact on size and power of choosing different procedures to

estimate the long run variance of the errors. We found that the parametrically adjusted

test of McCabe et al. (1997) is the most well-balanced test, displaying good power and

relatively few size distortions.
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1. INTRODUCTION

The problem of testing for cointegration has been a central issue in the literature on

economic time series. Usually, in the case where a single cointegrating vector is expected

to exist, testing is carried out by means of residual based procedures that consist of
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extensions of unit root tests, i.e., one tests whether the residuals from the cointegrating

regression contain a unit root or, by contrast, are I (0). The null hypothesis is, thus, of no

cointegration, against the alternative of cointegration. However, this approach seems

unnatural, especially if one takes the existence of a long run equilibrium relationship

among the variables as the hypothesis of interest, stemming from economic theory (e.g.,

the link between consumption and disposable income). With cointegration as the null

hypothesis, one would reject it only if the data would provide strong evidence against the

maintained hypothesis, unlike the situation where the hypotheses are reversed.

There have been some recent attempts to test directly for cointegration in single

equation models. One route has been to extend existing univariate test procedures to test

for an I (0) null against an I (1) alternative, such as the tests advocated by Kwiatkowski et al.

(1992, henceforth KPSS), Leybourne and McCabe (1994) and Saikkonen and Lukkonen

(1993), among others [see Stock (1994) for a survey]. These tests emerged from the

apparently unrelated literature on testing for unit moving average roots [see Tanaka (1990),

for example] and testing time-varying parameters [see Nabeya and Tanaka (1988), inter

alia], and are one-sided LM tests with asymptotic locally optimal power properties. In this

way, Harris and Inder (1994), Leybourne and McCabe (1993), McCabe et al. (1997) and

Shin (1994) devised tests that generalize the so-called KPSS statistic to the context of

cointegration. The main difference between these versions lies on the proposed estimation

method to obtain the residuals and the variance, subsequently used to construct the test

statistic.

A related test was suggested by Hansen (1992), although it was primarily conceived to

test for parameter instability in cointegration models. Under the alternative hypothesis,

each coefficient in the model is allowed to follow a random walk, so by testing the stability

of the estimated parameters, one is also testing for cointegration. On the other hand, Park

(1990) developed a test for the null of cointegration based on the addition of superfluous

regressors to the cointegrating regression. More recently, Xiao (1999) proposed a residual

based test that examines the fluctuation of the residuals from a regression.

The aim of this paper is to compare the relative performance of these testing

approaches, in terms of size and power in finite samples. This is carried out using

Monte Carlo simulations for a range of plausible data-generating processes. As of this

writing, there is no study providing guidance on the use of this type of procedures in

empirical situations, with the exception of the limited studies of Haug (1996) and McCabe

et al. (1997). Moreover, it would be useful to know which tests are best suited for

conducting confirmatory analysis, i.e., applying tests for the null of cointegration in

conjunction with the standard tests for the null of no cointegration. If the two approaches

give consistent results (i.e., there is an acceptance and a rejection of the nulls), one may

conclude whether the series are cointegrated or not, whereas if both tests either reject or

accept their respective null hypotheses, the results are inconclusive. See, for example,

Maddala and Kim (1998) and Shin (1994) for a discussion, as well as Carrion-i-Silvestre

et al. (2001) and Charemza and Syczewska (1998) for an application to the univariate case.

Gabriel (2003) addresses the issue in a cointegration context, casting doubt on the use of

this methodology.

The purpose of the paper is twofold. Besides the distinct performances due to the way

each test is constructed, another important issue investigated is the impact on size and

power of choosing different procedures to estimate the long run variance of the errors.

Most of the tests analyzed here depend on the estimation of this nuisance parameter and

412 Gabriel



D
ow

nl
oa

de
d 

B
y:

 [B
-o

n 
C

on
so

rti
um

 - 
20

07
] A

t: 
14

:5
9 

26
 J

ul
y 

20
07

 

it is well known that the use of semi-parametric estimators may lead to substantially

oversized tests in samples of small size. Some results are known for stationarity tests

[Hobijn et al., 1998; Lee, 1996], but there is little evidence concerning tests for

cointegration, although one may expect similar conclusions.

We focus our attention on single equation methods, still very much used in empirical

practice because of their simplicity and also when a single cointegrating vector is believed

to exist, thus with no efficiency losses. Tests for the null of cointegration in systems of

equations using more intricate methods have also been developed, such as those of Choi

and Ahn (1995), using Park (1992) canonical cointegration regression (CCR), Harris

(1997) and Snell (1999), based on Principal Components methods, and Nyblom and

Harvey (2000).

The paper is organized as follows. Section 2 presents a general model of cointegration

and briefly reviews the methods for estimating the long run variance. In Sec. 3, the tests for

the null of cointegration are presented. The DGPs for the Monte Carlo experiments, as well

as the simulation results, are analyzed in Sec. 4. Section 5 summarizes and concludes.

2. THE ISSUES

2.1. The Basic Model

Since each test considered here was derived under a specific model, it is difficult to

present a common formulation for all tests. Nevertheless, we may write a general model as

yt ¼ aþ x0tbþ ut (1)

where yt is a scalar I (1) process and xt is a k � 1 vector I (1) process, such that Dxt ¼ vt, vt

being a k-vector stationary process and b is a vector of unknown coefficients. For

simplicity, we concentrate on the single equation specification with an intercept, although

more general specifications could be considered (e.g., containing time trends). The

variables yt and xt are said to be cointegrated if ut is I (0), whereas if ut is I (1) there is

no long run equilibrium relationship between yt and xt.

Some tests also differ on how the disturbance term is specified under the alternative

hypothesis of no cointegration, as will be seen later. Under the null hypothesis of

cointegration, zt ¼ (ut, v0t)
0 follows a general stationary process obeying some mild

regularity conditions and satisfies a multivariate invariance principle, such that

T�1=2
X[Tr]

t¼1

zt ) B(r), as T !1

Here, ‘‘)’’ denotes weak convergence, [ � ] is the integer part operator and B(r) is a k þ 1

dimensional Brownian motion defined on r 2 [0, 1], with long run covariance matrix

O ¼ limT!1 var(T�1=2
PT

t¼1 zt). These conditions allow for any stationary and invertible

ARMA process, possibly with heterogeneous innovations.

Tests for Null Hypothesis of Cointegration 413
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We partition B(r) conformably with zt ¼ (ut, v0t)
0 as B(r) ¼ [B1(r), B2(r)0]0 and

O ¼
o11 O12

O21 O22

� �

where o11 is the long run variance of ut. We will restrict our attention to the case where

cointegration among the regressors is excluded, so that O22 is positive definite. If we allow

for correlation between ut and vt, then an asymptotically efficient estimation method

should be used to account for the endogeneity of the regressors, such as the fully-modified

OLS method of Phillips and Hansen (1990) or the leads and lags OLS estimator of

Saikkonen (1991) and Stock and Watson (1993), for example. In this case, we are also

interested in the long run variance of ut conditional on vt, defined by o1:2 ¼

o11 � O12O
0
22O21, which plays an important role in the construction of the test statistics

studied in this paper.

2.2. Long Run Variance Estimation

The long run variance of ut is usually estimated from

s2(l) ¼ ĝg0 þ 2
Xl

j¼1

w( j, l)ĝgj ð2Þ

where ĝgj ¼ T�1
PT

t¼jþ1 ûutûut�j( j ¼ 0, 1, . . . , T ) is the estimate of the j-th autocovariance

and w( j, l) is a kernel function depending on a bandwidth parameter (or truncation lag) l.

Thus, the estimation depends on the chosen kernel and on the procedure to truncate the

number of autocovariances.

Here, we compare three widely used kernels, namely the Parzen, the Bartlett and the

Quadratic Spectral (QS) kernels [see Andrews (1991) for details]. Concerning the

truncation lag selection, we study two procedures widely used in the literature, namely

those of Andrews (1991) and Newey and West (1994),a see Den Haan and Levin (1997)

for a survey. Both methods are data-based and nonparametric, consisting of obtaining, for

a given kernel, the optimal bandwidth parameter sequence that minimizes asymptotic

mean square errors. Andrews (1991) suggested the use of an automatic plug-in bandwidth

estimator, which has the form

l̂lT ¼ 1:1147[âa(1)T ]1=3 (Bartlett kernel)

l̂lT ¼ 2:6614[âa(2)T ]1=5 (Parzen kernel)

l̂lT ¼ 1:3221[âa(2)T ]1=5 (QS kernel)

(3)

where âa(1) and âa(2) are obtained from fitting AR(1) regressions to the residuals. This

procedure has the advantage of avoiding an arbitrary choice of l, as practiced in previous

literature [see Kwiatkowski et al. (1992), for example].

aIn a previous version of this paper, available upon request, a deterministic selection rule as in

Kwiatkowski et al. (1992) is also analyzed.
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However, when testing for stationarity, this method requires truncation to assure

consistency under the I (1) hypothesis, since l̂lT becomes Op(T ), as pointed out by Choi and

Ahn (1995). To circumvent this problem, these authors suggest estimating the lag

truncation parameter subject to a restriction, i.e., fixing l ¼ 2 if l̂lT is larger than T e,

where e is a chosen number such that 0:5 < e < 1. Another possibility was proposed by

Stock (1994), which involves the truncation of l̂lT after a given lag m, i.e.,

l̂l ¼ min (l̂lT , m(T=100)1=5). In this paper, we follow the suggestions of these authors by

fixing e ¼ 0:65 [see Choi and Ahn (1995), p. 969] and m ¼ 12 [see Stock (1994), p.

2803].

Note that with these methods the problem of the arbitrary choice of the bandwidth is

reintroduced, as they depend on the choice of l, e or m. This is especially relevant when the

errors are strongly correlated (i.e., approaching the alternative hypothesis), since l̂lT will

quickly become large, and, thus, the automatic bandwidth estimator will return the

deterministic choice, therefore conditioning the performance of the tests. This will become

apparent in our subsequent simulation study.

Another approach studied here is the procedure proposed by Newey and West (1994).b

It is similar to the method of Andrews (1991), although they use nonparametric estimates

of âa(1) and âa(2) in (3) to construct the automatic plug-in bandwidth estimator, instead of

autoregressions. The nonparametric estimation of these parameters also depends on a

parameter j which is selected with a non-stochastic rule,j ¼ integer[c(T=100)d], where d

depends on the kernel being used and c is fixed a priori. We choose c ¼ 4, as

recommended by Hobijn et al. (1998) and Newey and West (1994), which was also the

value that produced better results, having also experimented c ¼ 2, 8 and 12. According to

these authors, the impact of this choice appears to be not very substantial for the final

outcome, s2(l).

Further refinements have been proposed, namely a ‘‘pre-whitening’’ procedure

(Andrews and Monahan, 1992) that filters the residuals with an AR regression in order

to make them closer to white noise and then calculate the spectral density at the origin.

However, this method renders null of cointegration tests inconsistent, since under the

alternative of no cointegration (i.e., a unit root in the residuals) the AR estimate would be

close to unity, the long run variance would tend to infinity and, thus, the tests statistics

close to zeroc [see discussion in Lee (1996) and Shin (1994), for example].

3. TESTS FOR THE NULL HYPOTHESIS OF COINTEGRATION

In this section, we will briefly describe the cointegration tests examined in the

subsequent Monte Carlo study. As said earlier, we may group the tests into four different

categories, according to the way the test is constructed.

bThe application of the Newey–West method to univariate stationarity tests is documented in Hobijn

et al. (1998).
cThis fact helps to explain the poor performance of null of cointegration tests in Haug (1996), since

the author prewhitens the residuals before constructing the test statistics.

Tests for Null Hypothesis of Cointegration 415
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3.1. Variable Addition Test

Park (1990) suggested an approach for testing the null hypothesis of cointegration,

which consists of including a set of superfluous regressors zt in the cointegration

regression, so that

yt ¼ aþ x0tbþ z0tdþ et (4)

If the variables in (1) are truly cointegrated, then the added regressors in (4) will not be

significant, while the opposite holds if the regression is spurious. Standard significance

tests (such as Wald) will be able to discriminate between the two situations. The test

statistic may be written as

J1 ¼
RSS1 � RSS2

ôo1:2

(5)

where RSS1 and RSS2 are, respectively, the residual sum of squares from (1) and (4).

The denominator is an estimate obtained with a consistent estimator of the (conditional)

long run variance of ut. A particular advantage of this test is that under the null

hypothesis of cointegration (i.e., d ¼ 0), J1 has a limiting w2(q) distribution, where q is

the dimension of the set of superfluous regressors, therefore avoiding extensive tabula-

tions. If the alternative is true, J1 diverges at a rate dependent on the chosen bandwidth

for ôo1:2.

As recommended by Park (1990), we use a set of polynomial time trends

zt ¼ (t, t2, t3) as superfluous regressors in the Monte Carlo experiments.d Regarding the

estimation method, the J1 test may be implemented with any asymptotically efficient

procedure, so we use FM-OLS, although the test was derived in the context of the CCR

methode developed by Park (1992).

3.2. Fluctuation Test

A different approach is followed by Xiao (1999), by deriving a residual based test for

the null of cointegration based on the fluctuation of the residuals ûut from the cointegrating

regression. The idea is quite simple: if cointegration holds, the residuals will replicate the

stationary behavior of the errors and will display a limited amount of fluctuation, whilst if

the residuals fluctuate too much the converse should be true.

The fluctuation principle was originally proposed to study the stability of the

estimated coefficients of a model [see Ploberger et al. (1989), for example]. Using the

dComputer generated random walks were also experimented as additional regressors, although with

worse results in the subsequent simulations.
eSome preliminary simulations using CCR and FM-OLS revealed that the estimation method has no

impact on the performance of the test.
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FM-OLS method, Xiao (1999) constructs a statistic that is asymptotically free of nuisance

parameters, based on the recursive estimates statistic

RT ¼ max
i¼1,...,T

iffiffiffiffiffiffiffiffiffiffiffiffi
ôo1:2T

p 1

i

Xi

t¼1

ûut
þ �

1

T

XT

t¼1

ûut
þ

�����
����� (6)

where ûut
þ are the residuals resulting from FM-OLS estimation. The limiting distribution of

RT is non-standard and depends only on the dimension of the set of regressors.

3.3. Lc Test

Hansen (1992) proposed some LM-type structural change tests in cointegrated

models, making use of the FM-OLS method. A versatile feature of those tests is the

possibility of using them as cointegration tests. In fact, if the alternative hypothesis is the

intercept following a random walk, then structural change testing becomes cointegration

testing, albeit with the null hypothesis of cointegration. Decomposing ut in (1) such

that ut ¼ wt þ vt, wt being a random walk and vt a stationary term, the model then

becomes

yt ¼ at þ x0tbþ vt (7)

with at ¼ aþ wt, i.e., the intercept ‘‘absorbs’’ the random walk wt when there is no

cointegration.

In view of this fact, Hansen (1992) suggested the use of the statistic

Lc ¼

PT
t¼1 ŝs0tM̂Mt

�1ŝst

ôo1:2T
(8)

to test the null of cointegration, where ŝst represents the scores of the FM-OLS estimates

and the weighting matrix M̂M is the moments matrix of the regressors. However, this statistic

was designed to test the stability of the whole cointegration vector, so there are advantages

in regarding a version that tests only (partial) structural change in the intercept. Hao has

shown that such a test may be carried out by employing the KPSS statistic to test for the

null of cointegration. This is considered next.

3.4. Tests Based on the KPSS Statistic

The tests previously presented are tests for a general null hypothesis of stationary

errors [i.e., ut in (1) is I (0)], against a general alternative of I (1) errors. However, it is

possible to formulate with more detail the behavior of ut, both under the null and the

alternative. Assume for the moment that yt and xt do not cointegrate and that ut in (1) may

be decomposed into the sum of a random walk and stationary component,

ut ¼ gt þ et (9)

Tests for Null Hypothesis of Cointegration 417
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where the random walk is gt ¼ gt�1 þ Zt, with g0 ¼ 0f and Zt distributed as i:i:d:(0, sZ
2),

while the stationary part et is distributed as i:i:d:(0, s2
e )

g and is assumed independent of Zt

[note the similarity with the model in (7)].

Cointegration stems from this formulation when sZ
2 ¼ 0, so that gt ¼ 0 and no longer

is a random walk. Therefore a test for cointegration has the null hypothesis H0: sZ
2 ¼ 0

against the alternative H1:sZ
2 > 0. Following Kwiatkowski et al. (1992), an asymptotically

equivalent test to the locally best invariant (LBI) test of H0 against H1 uses the LM-type

statistic

L ¼ T�2

PT
t¼1 St

2

s2(l)
(10)

where St is the partial sum process St ¼
Pi

t¼1 ûut of the residuals from (1) and s2(l) is a

consistent estimate of o11. Allowing for correlation between et and vt calls for the use of

an efficient estimation method and the denominator should be replaced by ôo1:2, as

discussed in Sec. 2. Different versions of this approach, using distinct estimation methods,

have been proposed, as can be seen next.

3.4.1. Nonparametric Versions

Leybourne and McCabe (1993) suggested a version of (10) by considering an OLS

regression of (1) and using the corresponding residuals ûut to construct the test statistic that

we will denote as LM. These authors suggested estimating ôo11 with a simple truncated

autocovariances estimator.h

The previous version, by using OLS, does not take into account the potential problems

that arise from second-order biases in the estimation of the cointegrating regression. Harris

and Inder (1994), using the FM-OLS method, suggested an extension of the KPSS test

(denoted as HI) that uses an estimate of ôo1:2 rather than ôo11 as in LM, reflecting the fact

that one is accounting for the possible endogeneity of xt.

Another way of circumventing the problem of endogenous regressors is to use the

estimation method advocated by Saikkonen (1991). The procedure consists of introducing

past and future values of Dxt, so that the regression becomes

yt ¼ aþ x0tbþ
Xn

j¼�n

Dx0t�jpj þ u�t (11)

The truncation parameter n should increase with T at an appropriate rate and may be

chosen with any model selection criterion such as AIC or BIC. We use the first criterion,i

after fixing the maximum lag as n ¼ integer[T 1=3]: To simplify, the same value of n is used

for both leads and lags of Dxt. Applying OLS to the modified regression in (11) will yield

fThis implies no loss of generality, since (1) contains an intercept.
gThe i.i.d. assumption of et may be relaxed so that et may follow a stationary process as discussed for

ut and vt in Sec. 2.1.
hIn our sampling experiments, we employ the kernel estimators mentioned in Sec. 2.2.
iResults were also obtained using the BIC, but were slightly worse in general.
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efficient estimates, see Saikkonen (1991) for a more detailed discussion. A version of (10)

may be constructed with the residuals ûu�t from (11), thus resulting the Shin test statistic S.

3.4.2. A Parametric Alternative

Unlike all the tests discussed previously, which used a nonparametric procedure to

correct for excess correlation in the disturbances, McCabe et al. (1997) devised a

parametric approach to test for the null of cointegration. They extend the parametric

adjustment procedure of Leybourne and McCabe (1994) to the cointegration case, by

considering a different formulation for the error component in (9). In fact, they assume that

ut follows

F(L)ut ¼ gt þ et (12)

where F(L) ¼ 1� f1L� � � � � fpLp is a stable autoregressive polynomial of order p, with

gt and et as defined previously. Under the null hypothesis of cointegration ut is a stationary

AR(p) process, whereas if sZ
2 > 0, ut becomes non-stationary, with an ARIMA( p,1,1)

representation (Leybourne and McCabe, 1994).

In order to implement the test, McCabe et al. (1997) advocate the use of Saikkonen’s

dynamic least squares method to estimate (1), but the autoregressive coefficients fj in (12)

should be obtained by maximum likelihood by fitting an ARIMA( p,1,1) model to ûu�t , the

residuals from (11). To select the order p, we follow Leybourne and McCabe (1999),

which propose a data-dependent selection criterion based on general-to-specific testing

approach, from an initial value of p ¼ 4.

The test statistic is then constructed with the ‘‘second stage’’ residuals

êet ¼ ûu�t �
Pp

i¼1 f̂fiûu
�
t�i from (12) as

MLS ¼ T�2

PT
t¼1 (

Pt
j¼1 êej)

2

ŝs2
(13)

with ŝs2 ¼ T�1
PT

i¼t êet being a consistent estimator of se
2. However, we use an alternative

estimator of ŝs2 suggested by Leybourne and McCabe (1999), ŝs2 ¼ ŝsx
2 � ŷy, where ŝsx

2 and

ŷy are the maximum likelihood estimates of the variance and MA coefficient of the

ARIMA( p,1,1) auxiliary regression.

This test has, at least theoretically, some advantages comparatively to other KPSS

versions. Indeed, the test is consistent at a faster rate, i.e., Op(T2), and does not depend on

any lag truncation parameter. As mentioned before, all previous statistics diverge at a rate

dependent on the chosen bandwidth for ôo1:2, under the alternative hypothesis. This should

be apparent even in terms of its finite sample performance. It also allows for cointegration

among the regressors, unlike other tests. However, according to Hobijn et al. (1998), this

test is not consistent for the alternative of a pure random walk, although this has recently

been disputed by Lanne and Saikkonen (2000) for its univariate version. The following

section will help to clarify this matter.

Tests for Null Hypothesis of Cointegration 419
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4. MONTE CARLO SIMULATIONS

To evaluate the finite sample performance of the null of cointegration tests discussed

above, we develop a series of Monte Carlo experiments. A cautionary note should be overtly

stated, however. Indeed, direct comparisons of the relative performances of the tests may be

questionable, since they are affected by the choice of the DGPs. In this particular case, a major

drawback is the fact that we are analyzing the behavior of several nonparametric tests in

a parametric framework. As pointed out in Sec. 2.2, the advantage of a nonparametric

formulation lies on the fact that no parametric assumptions on the error’s structure are

required. However, this robustness is likely to be overshadowed by a loss of efficiency in an

explicit parametric context, as in our Monte Carlo experiment. Bearing this caveat in mind, we

will try to provide some tentative remarks supported by the results of the simulation study.

4.1. Experimental Design

The general DGP is similar to Mc Cabe et al. (1997) and is based on the models

previously presented:

yt ¼ at þ xt þ et

at ¼ at�1 þ Zt, a0 ¼ 1, Zt � i:i:d:(0, sZ
2)

xt ¼ xt�1 þ zt, zt � i:i:d:(0, 1)

et ¼ ret�1 þ ot � yot�1, ot � i:i:d:(0, 1)

(14)

with Zt independent of zt and et. For size analysis, the model under the null hypothesis requires

sZ
2 ¼ 0, while under the alternative we choose the values sZ

2 ¼ {0:01, 0:1, 0:5} for power

analysis. The other parameters are allowed to take values r ¼ {0, 0:5, 0:9} and y ¼ 0:5 (with

r ¼ 0). Additionally to the random-walk-plus-noise model, we study the alternative of a pure

random walk, with r ¼ 1 and sZ
2 ¼ 0. We also considered the effects of correlation between

the errors (endogeneity of regressors), with corr(zt, ot) ¼ g ¼ 0:7 (with r ¼ 0 and y ¼ 0, for

simplicity). The selected sample sizes are T ¼ 100 and 200, most common in empirical

studies, and the number of replications is 5000. All simulations were programmed in GAUSS.j

4.2. Simulation Results

The results are organized as follows. Tables 1–3 present the estimates of rejection

frequencies of the different tests at the 5% level of significance, under the null and

alternative hypotheses, for QS and Parzen kernels. For sake of economy, we do not show

the results for the Bartlett kernel, since these were, in general, intermediate between the QS

and Parzen results. Also, results for sZ
2 ¼ 0:01 are not presented, given that powers are

very low for all DGPs, with very little differences in size-corrected power among the tests,

which is not surprising, since it is an alternative very close to the null. Nevertheless, the

full set of results is available upon request.

jOther DGPs were considered in initial exploratory simulations, namely cointegration with no

constant and with trend, but the results were not qualitatively different from the case studied here.
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The bandwidth selection method is indicated in either subscript or superscript as NW

for the Newey and West (1994) method, ACA (Andrews–Choi–Ahn) for the Choi and Ahn

(1995) modification of Andrews (1991) and AS (Andrews–Stock) for the suggestion of

Stock (1994), as discussed in Sec. 2.2. The latter is presented in parentheses only when it

produced different results from the ACA procedure. Table 4 displays the results for the

alternative hypothesis of a simple random walk.

By observing Table 1 (sZ
2 ¼ 0), we may analyze the size performance of the tests. As

regards the first test (MLS), it is relatively well behaved, except for the case of very

persistent errors. Note that the correction for endogeneity works quite well, although the

test tends to overreject in the MA case (y ¼ 0:5). This may have to do with the fact that

one is essentially using AR components to filter the residuals and the p-lags approximation

may not be long enough.

Concerning the remaining tests, we observe that in general the choice of kernel does not

seem to play an important role in terms of finite sample size, considering the not very substantial

differences between the results produced by each of them. However, the Parzen kernel, when

used in conjunction with the ACA approach and with strongly correlated errors (r ¼ 0:9),

displays considerable size distortions that do not decrease with the sample size, which is not the

case for the other kernels. In contrast, and for the other DGPs, this kernel appears to work

slightly better in terms of delivering sizes closer to the nominal significance level.

On the other hand, the method for the determination of the bandwidth may induce

distinct performances. In fact, the empirical sizes produced by the NW method tend to be

slightly higher than those obtained with Andrews’s procedure when r is less than 0:9.

Note, however, that the Choi–Ahn modification is generally the most affected in the case of

substantially correlated errors, while the AS approach presents less size distortions. An

Table 4. Random walk alternative.

r¼ 1, sZ
2
¼ 0

Tests T¼ 100 T¼ 200

MLS 0.782 0.888

QS NW ACA AS NW ACA AS

S 0.493 0.731 0.304 0.68 0.913 0.477

HI 0.447 0.794 0.214 0.679 0.933 0.421

LM 0.518 0.821 0.376 0.738 0.939 0.526

Lc 0.384 0.806 0.16 0.664 0.935 0.373

RT 0.356 0.785 0.114 0.618 0.932 0.349

J1 0.293 0.88 0.728 0.786 0.956 0.843

Parzen

S 0.442 0.939 0.447 0.625 0.995 0.678

HI 0.403 0.974 0.406 0.62 0.997 0.658

LM 0.479 0.976 0.516 0.676 0.996 0.725

Lc 0.313 0.977 0.386 0.595 0.998 0.653

RT 0.293 0.976 0.327 0.559 0.996 0.604

J1 0.285 0.988 0.832 0.73 0.996 0.924
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interesting result is that the size properties do not seem to automatically improve for larger

sample sizes. In fact, in many situations, distortions are more severe with T ¼ 200,

especially when the NW procedure is used.

Considering the different types of tests, we observe that the KPSS-type generally have

rejection frequencies closer to the nominal test level than other tests. Despite this, the

Harris–Inder test slightly underrejects in some occasions, while the Shin test is more liberal

than HI when r ¼ 0:9. Regarding the LM statistic, its empirical rejection frequencies tend

to deviate from the nominal size of 0:05 when computed with the NW method, and the

disadvantages of using OLS residuals become evident when correlation between zt and ot

is introduced. On the other hand, Hansen’s Lc test is always oversized, but not as badly as

Park’s J1 test computed with the NW method, which presents large distortions even for

r ¼ 0 and more dramatically so for r ¼ 0:9. In contrast, when using the Andrews

procedure the J1 statistic is far from rejecting as often as it should when r ¼ 0. Equally,

the RT fluctuation test is generally too conservative, except for the case of r ¼ 0:9.

In terms of power analysis, the rejection frequencies when the null is false at the 5%

level of significance are shown in Tables 2 and 3 (for sZ
2 ¼ 0:1 and 0:5). To avoid

misrepresenting power due to size distortions, size-adjusted powers are presented, based on

size-corrected critical values obtained from the corresponding results with sZ
2 ¼ 0.k For

alternatives farther away from the null, differences in the empirical rejection frequencies

are clearer. Comparing the use of the different kernels in the nonparametric-based tests, the

differences in the results are not substantial, at least up to sZ
2 ¼ 0:1. However, we observed

that the Bartlett kernel clearly delivers higher power with sZ
2 ¼ 0:5 for almost all cases,

while tests using the Parzen kernel perform worse. This is hardly explainable solely by the

Type I error probability results of Table 1 and may be related with the intrinsic weighting

scheme of each kernel. This will also be noted in further experiments later on.

Turning to the bandwidth estimation methods, the diversity of DGPs and respective

results does not allow a clear pattern to emerge from the simulations. Nevertheless, it is

possible to see that the NW method performs worse when sZ
2 ¼ 0:1 and r ¼ 0, but is better

for sZ
2 ¼ 0:5 with the QS and Bartlett kernels, except for r ¼ 0:9. In this case, the Choi–

Ahn modification is in general the best, more clearly so when the Parzen kernel is used.

Moreover, it is possible to see that, as expected, power declines with increasing r and

that errors with the MA structure considered here do not imply a sizeable reduction in the

power of all tests. The exception seems to be the situation where the ACA procedure is

used and r ¼ 0:5, since in this case the Parzen kernel performs clearly better, even when

compared with the case of r ¼ 0. By contrast, endogeneity of the regressor has no

substantial implications, except for the case of the LM test. Curiously, power with g ¼ 0:7
is occasionally larger than in the simple case of no correlation in the errors.

Analyzing the results across the different types of tests, we find that as sZ
2 increases the

differences in performance become more apparent. Indeed, the MLS test tends to dominate

all kernel-based tests, except for r ¼ 0:9, in which case we concluded before that the test

rejects too often. As for nonparametric-based tests, no clear ranking may be established,

since their performance varies not only with the long run variance estimation method, but

with the DGP as well. The observation of the simulation results reveals that the J1 test,

kHowever, we must not forget that in empirical practice asymptotic critical values are used, rather

than exact critical values obtained from simulations.
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e.g., presents the greatest variation and depending on the method, its performance may rank

first or last, well below the remaining tests. It is interesting to note that the LM test does very

well and generally slightly better than the other tests, with the expected exception of the

case of endogenous regressors. Therefore, an important conclusion that may be drawn is

that for distinct versions of the same test, differences in performance are frequently larger

than 20%, across kernels and bandwidth estimators.

In order to refine the previous analysis, we compute the power of the tests as a

function of the ratio of the disturbances variances, l ¼ sZ
2=se

2. As discussed by

Kwiatkowski et al. (1992), if l is close to zero, the process is stationary (which means

cointegration) and it will tend to an I (1) process (no cointegration) as l approaches

infinity. This allows us to examine the relative power of the tests in the continuum of the

alternative hypothesis, rather than concentrating only on three possible points

(sZ
2 ¼ 0:01, 0:1, 0:5), as in the previous experiments. We considered several values of

l ranging from 0.0001 to 106, and for simplicity we present nominal powers, setting r and

y equal to zero, with T ¼ 200.

Figures 1–6 show the results for the tests computed with the QS and Parzen kernels

and the different bandwidth estimation methods discussed in this paper. The results for the

MLS test are shown in each figure so that the comparison is clearer.l In line with the results

shown previously, the rejection frequencies are quite similar up to l equal to 0.1–0.15, the

distinct behavior becoming well defined for larger values of this parameter. It is also clear

that power stabilizes after l attains a given value. However, there are two striking features

in this set of experiments. First, and unlike the case where the Newey and West (1994)

estimator is used, the power of tests employing both modified methods of Andrews (1991)

is non-monotonic (with the exception of the Shin test). In fact, when l is larger than 0.2,

power is reduced, quite substantially in some cases. This is to be expected when the AS

approach is used, since for values of l away from the null, the estimated bandwidth will

correspond to the chosen upper bound, which is 12 in our study, and thus power will not

increase. In the case of the ACA procedure, power rises again after 0.4–0.6.

Secondly, the MLS test does very well and is unequivocally better for l greater than

0:1 than all other tests, with the exception of the tests computed with the Parzen–ACA

procedure and only for l larger than 0.9 in Fig. 6. Furthermore, the NW estimator seems to

work better with the QS kernel, while the Parzen kernel suits better Andrews-type

methods. These results, therefore, confirm our previous conclusions. Also note that the

local power of the Shin test is in general lower than the other tests for near-cointegration

alternatives. We should mention the fact that we were unable to closely replicate the results

of McCabe et al. (1997), which report higher powers for the MLS and Shin test, although

this could be explained by some differences in the computation of the test procedures and

in the DGPs. Nevertheless, our conclusion is similar to theirs, in that the MLS test

generally outperforms the Shin test.

Finally, we also consider the case of a pure random walk as the alternative hypothesis,

when r ¼ 1 and sZ
2 ¼ 0, which is the standard setting for the study of null of no

cointegration tests. This will allow us to check the claim of Hobijn et al. (1998) regarding

the inconsistency of the McCabe et al. (1997) test. Size-adjusted power is calculated from

lThe graphs are truncated for larger values of l since the results do not change significantly after

unity.
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Figure 1. Power as a function of l (NW, QS kernel, T ¼ 200).

Figure 2. Power as a function of l (ACA, QS kernel, T ¼ 200).
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Figure 3. Power as a function of l (AS, QS kernel, T ¼ 200).

Figure 4. Power as a function of l (NW, Parzen kernel, T ¼ 200).
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Figure 5. Power as a function of l (ACA, Parzen kernel, T ¼ 200).

Figure 6. Power as a function of l (AS, Parzen kernel, T ¼ 200).
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the results with r ¼ 0 and sZ
2 ¼ 0. From Table 4 it is easily seen that the MLS does not

appear to be inconsistent, with very reasonable power, growing with the sample size.

Moreover, this test performs better than kernel-based tests when computed with the NW

and AS procedures. However, if the ACA estimator is used, the power of these tests tends

to be higher, especially if the Parzen kernel is used. It is also worth mentioning the

performance of Park’s J1 test, which seems to be the best test in this set of simulations.

Although this may suggest that this specific combination of methods would be useful in

empirical practice, we must bear in mind the results from Table 3, where size distortions

are very severe when r ¼ 0:9. This means that the ability to distinguish no cointegration

from cointegration with strongly correlated errors is virtually null.

5. CONCLUSION

Although less often used, tests for the null hypothesis of cointegration may be a useful

instrument in the analysis of economic time series. Unlike tests for the null of no

cointegration, there is no evidence on the properties of the different tests and their relative

merits. This study tries to fill this gap by analyzing the performance of several tests that

have been recently proposed. Conducting a series of Monte Carlo experiments, we found

that no test dominates the others in every situation under analysis. However, some

conclusions may be extracted from this study, despite the shortcomings pointed out earlier.

As could be seen from our experiments, the performance of nonparametric-based tests

depends heavily on the method chosen for the estimation of the long run variance.

Furthermore, and unlike previous studies, we found that the specific chosen kernel seems

to matter in terms of the finite sample power performance of the tests, mainly for

alternatives away from the null hypothesis. As pointed out earlier, this gives rise to

substantial differences for distinct versions of the same test. Nevertheless, it is not possible

to state which kernel-bandwidth estimator combination is preferable, given the irregular

performances displayed in our simulation study. On the other hand, KPSS-type tests seem

to have an overall better performance than the other approaches studied here.

In view of this, it seems that there are some advantages in the use of the MLS test,

given its reasonable and well-balanced overall performance. Although our study is

somewhat biased towards favoring this parametric version, as mentioned earlier, this test

has, at least theoretically, some advantages, namely a faster rate of convergence. Moreover,

its computation is free of the problems associated with all the kernel-based tests, i.e., the

choice of method to obtain the scaling long run variance. Nevertheless, there is still room

for improvements on the performance of this parametric version of the KPSS statistic,

namely in terms of reducing size distortions, as the attempts of Lanne and Saikkonen

(2000) in the univariate case indicate. Another issue that clearly merits future attention is

the performance of tests for the null of cointegration in systems of equations.
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