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Abstract

We analyze a simple overlapping-generations model with two capital goods. The
dynamical system is de�ned by savings behavior and short-run perfect-foresight asset-
market clearing. Since lifetimes are �nite, there is no transversality condition. If
there is a bubble in asset pricing, it will burst in �nite time: expectations will eventu-
ally be frustrated, but this may take several generations. This raises the question of
whether (in�nite) long-run perfect foresight is a reasonable assumption for overlapping-
generations economies and hence whether bursting bubbles can occur in equilibrium.
Key Words: bubbles, capital gains, heterogeneous capital, irreversible investment,

overlapping generations, Tobin�s q

1 Introduction

Capital gains play an essential role in capitalist economies. Changes in asset prices signal

anticipated changes in relative scarcities. Capital gains can, however, fuel self-perpetuating

bubbles, some of which will eventually burst.

We need a dynamic general-equilibrium model with at least two assets in order to analyze

capital gains. We follow the two-capital growth model of Shell and Stiglitz (1967),1 where

given the initial endowment of capitals and labor there is one and only one assignment of

�We o¤er this paper as a token of our respect for Jean-Michel Grandmont. We thank Todd Keister,
Tapan Mitra, Neil Wallace, the IJET referee and the IJET editor for their insightful comments. We are
indebted to Huberto Ennis for laying the foundation for this project. Of course, only we are responsible for
the errors and other peculiarities.
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1See also Shell, Sidrauski, and Stiglitz (1969), Caton and Shell (1971), Burmeister, Caton, Dobell, and

Ross (1973), Shell (1972), and Burmeister and Graham (1974).
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initial prices that is consistent with long-run balanced growth, whenever the momentary

equilibrium is not unique there is one and only one allocation of investment consistent with

long-run balanced growth, and on trajectories not tending to the balanced growth path the

price of one of the capital goods becomes zero in �nite time.

Shell and Stiglitz made an assumption that is now old-fashioned: an aggregate consump-

tion function ungrounded in consumer optimization. In the present paper, we update their

model by positing instead utility-maximizing individuals in an overlapping-generations (OG)

model a la Diamond (1965) but extended to allow for the two capital goods. We also assume

that the capitals, once installed, cannot be directly consumed or changed into the other type

of capital. Therefore, investments are irreversible allowing for the prices of used machines

to fall below their reproduction costs, i.e. for a Tobin�s q which is less than 1.

We believe that the OGmodel is better suited for the analysis of capital gains and bubbles

in decentralized economies than is the in�nite-lifetime representative-agent (ILRA) model

often used in macroeconomics. The ILRA model (and other homogenous-agent models)

is essentially a planning model, in which prices, and hence capital gains, are merely dual

variables to the optimization problem. The OG structure, however, highlights how prices

today depend on expectations of future beliefs, including the beliefs about capital gains

by unborn generations. The ILRA model is closed (but not necessarily uniquely2) by a

transversality condition3, while it can be argued that the OG model is closed (not necessarily

uniquely) by boundary conditions such as the non-negativity of prices. The assumption of

long-run perfect foresight seems to us to be less appropriate in the OG setting where it

requires agents today to predict the market behavior of all future generations.

In the 2-capital, discrete-time OG model, we show that for each initial endowment of

capitals and labor, there is a unique competitive-equilibrium path on which expectations are

2See e.g. Benhabib and Nishimura (1998) for examples of non-uniqueness of the equilibrium path.
3See e.g. Shell (1969) for cases in which the so-called transversality conditions are inappropriate even in

planning and ILRA models.
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ful�lled in every period. On every other path, there is a bubble in that one of the capitals

is overvalued relative to the other. The bubble must burst in �nite time. Hence, even

though Shell and Stiglitz (1967) assume ad hoc consumption behavior, their basic results do

not depend on this assumption. However, because of their consumption function, Shell and

Stiglitz did not allow for cases in which gross investments are both zero. In the OG model,

we show that both investments are zero whenever capital-labor ratios are large. This de�nes

a region in which Tobin�s q is less than 1. We show that, on the long-run perfect-foresight

path, once the economy achieves q = 1 it will not switch back to the q < 1 regime.

We compute some trajectories for an example in which the technological parameters, the

depreciation rate, and the consumer time-discount rate are assigned reasonable values. We

assign initial capitals so that one is much scarcer (based on relative marginal products) than

the other, and both are above their steady state values, so that the economy is initially

wealthy.

On the path in which expectations are always realized, gross investments are zero in the

�rst few periods because the economy is rich in capital, which are followed by a few periods

in which investment is specialized to the scarcer capital good. After these two stages, the

marginal products of the two capitals are forever equalized. Asymptotically the economy

tends to the steady-state just as it does in the Diamond model. This is the bubble-free path.

We also compute two bubble trajectories for the same parameters and initial endowments,

but with initial prices that are slightly di¤erent from those on the bubble-free trajectory. For

the �rst few periods, gross investments are zero as on the bubble-free path, but eventually

investment is specialized to the �wrong" (lower marginal product) capital good. In about

120 years or so, the bubble bursts and it is revealed that this is a disequilibrium path in that

expectations are ultimately unful�lled.

What do we make of this? On the competitive equilibrium path in which expectations are

always ful�lled, the allocation of investment is correct and there are no bubbles. On other
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paths, where the allocation of investment is wrong, short-run markets clear and expectations

are ful�lled for a while (100-200 years), and there is a bubble that must eventually burst.

This suggests to us that the long-run perfect-foresight equilibrium concept might be too

rigid. In the absence of an in�nite spectrum of futures markets, what mechanism ensures that

prices today will be those that will never (even in the far-distant future) lead to frustrated

expectations? Bursting bubbles should not be ruled out entirely.

The model treated here is very special. The (�at) one-sector technology misses important

properties of the (possibly curved) multi-sector technology. Separable preferences are also

very special. In the present paper, there is no money. Money can be an important source

on non-bursting and bursting bubbles.

The one-sector model with money has been analyzed by Shell, Sidrauski, and Stiglitz

(1969) for the case with a simple savings function and by Tirole (1985) for the case of

utility-maximizing OG consumers. In these models, there is a unique path tending to the

non-monetary steady state. Other paths are either hyper-in�ationary, tending to the non-

monetary steady state on which the bubble vanishes but does not burst or they are paths

on which there are bubbles which eventually burst (in �nite time). In models with more

complicated technologies and preferences, market imperfections, externalities, or increasing

returns, we can have indeterminacy, dependence of long-run growth on initial endowments,

and sunspot equilibria. We do not want to suggest that indeterminacy, sunspots, non-

bursting bubbles, or history-dependent growth is unimportant. Quite the contrary. Our

exercise here is meant to focus the role of �bursting bubbles� in the macro economy. We

think that our simple model might help to isolate this phenomenon and to direct attention

to role of expectations in economies with no or limited futures markets.
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2 The Model

In each period, there is a generation of identical, old consumers and a generation of identical,

young consumers. Each young consumer inelastically supplies one unit of labor. The old do

not work. The labor force L grows at the rate n � 0, so we have

Lt+1 = (1 + n)Lt; (1)

where Lt is the number of consumers born in year t = 0; 1; ::: . Consumers have identical

utility functions

u(xyt ; x
o
t ) = log x

y
t + � log x

o
t ;

where xyt is Mr. t�s consumption when young and x
o
t is his consumption when old.

Production is given by the 1-sector, 3-output, 3-input model:

Ct + Z
1
t + Z

2
t = Yt =

�
K1
t

��1 �K2
t

��2 L�3t , (2)

where �1 > 0; �2 > 0; �3 > 0 and �1 + �2 + �3 = 1, Ki
t > 0 is the capital of type i, Yt > 0

is undi¤erentiated output, Ct � 0 is consumption, Zit � 0 is gross investment in Capital i,

all at time t; i = 1; 2: Investment is irreversible and capital goods are non-malleable (i.e.

machines of one type cannot be turned into machines of the other type): Zit � 0. Let � > 0

be the common rate of depreciation on each type of machinery. Capital accumulation is

given by

Ki
t+1 = (1� �)Ki

t + Z
i
t (3)

for i = 1; 2: Denote by lower case letters quantities normalized by L, e.g., kt = Kt=Lt, so

we have

ct + z
1
t + z

2
t = yt =

�
k1t
��1 �k2t ��2 (4)

and

(1 + n)kit+1 = (1� �)kit + zit (5)
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for i = 1; 2: Under competition, factors are rewarded by their marginal products, so we have

rit = �i
�
kit
��i�1 �kjt ��j > 0; (6)

for i = 1; 2; and

wt = �3
�
k1t
��1 �k2t ��2 ; (7)

where rit is the rental rate on type-i capital and wt is the wage rate.

We assume that individuals possess perfect foresight about price changes. Hence equilib-

rium in the used machinery market requires that the rate of return (including capital gains)

on each type of capital must be the same, or

(1� �)p1t+1 + r1t+1
p1t

=
(1� �)p2t+1 + r2t+1

p2t
= �t+1; (8)

where pi � 0 is the current price of machine i in terms of the consumption good and �

is the (common) rate of return. Equation (8) is the perfect-foresight asset-market-clearing

equation.

Mr. t chooses consumptions (xyt ; x
o
t ) and savings st � 0 to maximize

u(xyt ; x
o
t ) = log x

y
t + � log x

o
t

subject to

xyt = wt � st

and

xot = �t+1st;

where 0 < � < 1 is the discount factor, "log" denotes the natural logarithm, and st is savings.

The consumer�s problem can be stated more succinctly as

max
st

log(wt � st) + � log(�t+1st) (9)

subject to 0 � st � wt:The solution st to this problem is interior and given by

st =
�

1 + �
wt: (10)
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3 Equilibrium

Young consumers use their savings to buy capital that they will rent in period t and sell in

period t + 1. In equilibrium, the value of the supply of machinery must equal the value of

savings, or

(1 + n)
�
p1tk

1
t+1 + p

2
tk
2
t+1

�
=

�

1 + �
wt =

�

1 + �
�3
�
k1t
��1 �k2t ��2 : (11)

Consumption is always positive, so we can normalize prices by the price of current con-

sumption. Under competition, �rms will only produce goods with the highest market price.

Hence we have

max(p1t ; p
2
t ) � 1:

If max(p1t ; p
2
t ) < 1, then z1t = z2t = 0: If max(p1t ; p

2
t ) = 1, then the machine with the

lower price will not be produced. If p1t = p2t = 1, then the composition of investment is

indeterminate. De�ne aggregate gross investment per worker z by

zt = z
1
t + z

2
t

and the allocation-of-investment fraction � by

�t = z
1
t =zt:

Then � is the upper hemi-continuous correspondence given by

�t

8>>>>>>>><>>>>>>>>:

= 1 if p1t > p
2
t and zt > 0

2 [0; 1] if p1t = p
2
t and zt > 0

= 0 if p1t < p
2
t and zt > 0

unde�ned if zt = 0

: (12)
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De�nition 1 Given initial per capita capital stocks (k10; k
2
0), a long-run perfect-foresight

equilibrium is given by the sequence of allocations
�
k1t+1; k

2
t+1; st; x

y
t ; x

o
t

	1
t=0

and the sequence

of non-negative prices fr1t ; r2t ; p1t ; p2tg1t=0 such that equations (7), (6) and (10), and the market-

clearing conditions (8) and (11) are satis�ed.

4 Steady State Growth

In the steady state, both capitals are produced,

zi = �ki for i = 1; 2 where � = n+ �; (13)

prices must be the same,

p1 = p2 = 1; (14)

and

y = (k1)
�1 (k2)

�2 (15)

To have p1 = p2 = 1; we must have r1 = r2 and hence k1=k2 = �1=�2: This, together with

equation (11), yields

k1 =

�
�

1 + �

�3
�1 + �2

1

1 + n

� 1
�3

�
1��2
�3
1 �

�2
�3
2 ; (16)

k2 =

�
�

1 + �

�3
�1 + �2

1

1 + n

� 1
�3

�
�1
�3
1 �

1��1
�3
2 ; (17)

and

� =
�1

�1 + �2
: (18)

The following proposition summarizes the results of this section.

Proposition 1 In the steady state, the capital to labor ratios k1and k2, output per worker

y; and the fraction � of gross investment directed to machinery of type-1 are uniquely deter-

mined.
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5 Dynamic Analysis

We assumed that once capital is installed it cannot be consumed. At the end of each period

t; the value of the capital stock per worker is p1t (1� �) k1t + p2t (1� �) k2t : The savings of

young workers, (�= (1 + �))�3 (k1t )
�1 (k2t )

�2 ; must be su¢ cient to buy the existing capital

stock. For zt � 0 to hold, we must have

p1t (1� �) k1t + p2t (1� �) k2t �
�

1 + �
�3
�
k1t
��1 �k2t ��2 : (19)

For the time being, we will assume that this constraint is not binding. If max (p1t ; p
2
t ) � 1; a

su¢ cient condition for (19) to hold is

(1� �)
�
k1t + k

2
t

�
� �

1 + �
�3
�
k1t
��1 �k2t ��2 : (20)

We will use this condition for now, but we relax it later.

Given our temporary assumption, there are three di¤erent regimes in which we can �nd

the economy:

Regime 1. 1 = p1t > p
2
t ;

Regime 2. 1 = p2t > p
1
t ;

or

Regime 3. 1 = p1t = p
2
t

It is redundant to analyze both Regime 1 and Regime 2. We focus on Regime 1 and

Regime 3.

Regime 1: 1 = p1t > p
2
t : Only capital of type 1 is produced, so we have z2t = 0: Using

the motion equations and the arbitrage condition, we have

k2t+1 =
(1� �)
(1 + n)

k2t ; (21)

k1t+1 =
�

1 + �

�3
1 + n

�
k1t
��1 �k2t ��2 � p2t 1� �1 + n

k2t ; (22)
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and

p2t+1 = p
1
t+1p

2
t +

r1t+1p
2
t � r2t+1
1� � (23)

From equation (23), we know that if r1t+1p
2
t < r2t+1; then the price of Capital 2 will

decrease (and hence we must have p1;t+1 = 1). In period t + 1; the price of Capital 2 will

decrease at a faster absolute rate, because only Capital 1 is produced, and the marginal

productivity of Capital 1 relative to Capital 2 will have decreased. With the decrease in the

price of Capital 2; the value of r1t+1p
2
t � r2t+1 will remain negative. It is easy to check that

in �nite time the price of Capital 2 will become negative. So this trajectory cannot be a

long-run equilibrium path, one on which expectations are realized at every date. So we can

easily conclude that

Proposition 2 If we have r1t+1 < r
2
t+1 there is no pair of prices (p

t
1; p

t
2) satisfying 1 = p

1
t > p

2
t

that can support a long-run competitive equilibrium in which expectations are always ful�lled.

If r1t � r2t and 1 = p1t > p2t ; all new investment is directed towards k1; and hence we have

again, r1t+1 � r2t+1: This simple observation leads to the next corollary.

Corollary 1 If r1t � r2t there is no pair of prices (p
t
1; p

t
2) satisfying 1 = p1t > p2t that can

support a long-run competitive equilibrium in which expectations are always ful�lled.

These results tell us that to be on a long-run equilibrium path it must be the case that

the price of the relatively scarce type of machines cannot be lower than the price of the

relatively abundant type of machines.4

Regime 3: 1 = p1t = p
2
t : In this case we have:

k1t+1 =
1� �
1 + n

k1t +
1

1 + n
�tzt; (24)

4We use the term "scarce" as a synonym for higher marginal productivity.
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k2t+1 =
1� �
1 + n

k21 +
1

1 + n
(1� �t) zt; (25)

and

(1� �) p1t+1 + r1t+1 = (1� �) p2t+1 + r2t+1: (26)

If r1t+1 = r2t+1; we will have p
1
t+1 = p2t+1 = 1. If the economy stays in this regime, it

will then converge to the steady state. If rit+1 > r
j
t+1 then p

i
t+1 < p

j
t+1 = 1; with i; j = 1; 2

and i 6= j: By the previous corollary we know that this is not compatible with long-run

equilibrium in which expectations are always ful�lled. Hence we have the following result.

Proposition 3 If 1 = p1t = p
2
t ; only r

1
t+1 = r

2
t+1 is compatible with a long-run competitive

equilibrium trajectory.

So far we have argued that the price of the relatively scarce type of capital must be equal

to unity, so if we have r2t � r1t we must have 1 = p1t � p2t :

We also know that 1 = p1t � p2t and r
1
t+1 < r2t+1 are not compatible with long-run

competitive equilibrium, so if the initial conditions are such that Capital 1 is scarcer, it will

remain so, unless, of course, their marginal productivities become equal. So if r2t < r
1
t ; unless

r2t+1 = r
1
t+1; we must have 1 = p

1
t > p

2
t : If r

2
t+1 = r

1
t+1; then 1 = p

2
t+1 = p

1
t+1.

Once the economy is in a situation with 1 = p2t = p
1
t and r

2
t = r

1
t so that k

1
t =k

2
t = �1=�2; �t

should be such that the ratio of Capital 1 to Capital 2 remains constant, �t = �1= (�1 + �2).

Once the economy is in this path, with k1t = (�1=�2) k
2
t ; the analysis is basically as in the

typical Diamond OG economy. Simplifying equation (11), one can see that the dynamics

are reduced to the study of the di¤erence equation k2t+1 = A (k
2
t )
�,5 a well-known di¤erence

equation. Hence, we know that the economy will converge to the unique steady-state.

Suppose that in period zero we have k10=k
2
0 < �1=�2: Finding the initial prices that are

compatible with the long-run equilibrium trajectory is now reduced to the problem of �nding

5Where A = �=1 + � (�3= ((1 + n) (1 + �2=�1))) (�2=�1)
�2 > 0 and � = �1 + �2 < 1:
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the initial prices that guarantee that in some period t� = 0; 1; : : : ; we have p2t� = p
1
t� = 1 and

that in the next period we have r2t�+1 = r
1
t�+1. Suppose that t

� > 0: We would expect that,

in equilibrium, as Capital 1 becomes relatively less scarce, the price of Capital 2 increases.

This is easily con�rmed. If, for t < t�; p2t+1 � p2t we know that r
1
t+2=r

2
t+2 � r1t+1=r

2
t+1 �

1=p2;t � 1=p2t+1: But r
1
t+2=r

2
t+2 � 1=p2t+1 implies that p

2
t+2 � p2t+1; so the price of Capital 2

cannot approach 1, contradicting our initial assumption. Therefore, if an equilibrium exists

we will have p2t� > p
2
t��1 > � � � > p20.

This leads to the next proposition.

Proposition 4 Let k10 < (�1=�2) k
2
0. If there is a long-run equilibrium trajectory, it will be

unique.

Proof. Consider two equilibrium price sequences �p = f(�p10; �p20) ; (�p11; �p21) ; : : :g and ~p =

f(~p10; ~p20) ; (~p11; ~p21) ; : : :g

1. First we show that if �p20 > ~p20 and �p
2
0 < �p21 < � � � < �p2t��1 < �p2t� = 1; then we have

�p2t > ~p2t for t � t�. In period 0; the relevant arbitrage condition is p2t+1 = p2t +�
r1t+1p

2
t � r2t+1

�
= (1� �). All the new investment is devoted to Capital 1: The motion

equations for capital are

k21 =
(1� �)
(1 + n)

k20

k1;1 =
�

1 + �

(�3)

(1 + n)
k�11;0k

�2
2;0 � p2;t

(1� �)
(1 + n)

k2;0 :

If �p20 > ~p20 we have
�
�k21 =

~k21
�k11 <

~k11
which implies

�
�r21 < ~r

2
1

�r11 > ~r
1
1

which yields �r11 �p
2
0 � �r21 >

~r11 ~p
2
0 � ~r21; so we must have �p21 > ~p21. The same happens in the succeeding periods.

2. We have shown before that unless k11 = (�1=�2) k
2
1; only 1 = p10 > p10 is compatible

with long-run equilibrium. If k11 = (�1=�2) k
2
1; then we have 1 = p

1
0 = p

2
0 . Therefore,

focus on the �rst case. Assume that �p2;0 < �p2;1 < � � � < �p2;t� = 1 is compatible with
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the long-run equilibrium. We know that for this to be a part of a long-run equilibrium

trajectory we must have �k1t�+1 = (�1=�2) �k
2
t�+1: Also note that at time t

� � 1 we have

��t��1 = 1:

3. Suppose that the alternative sequence, ~p20 < ~p21 < � � � < ~p2t�� = 1, with 1 > ~p20 > �p20;

is also an equilibrium. Because of Step 1, we know that t�� < t�. Since, as long as

p2 < 1; there is no new investment in Capital 2; at t�� we have ~k2t�� = �k2t��. We also

have ~k1t�� < �k
1
t��. But we also know that �k

1
t��+1 � (�1=�2) �k2t��+1: Since �k2t��+1 � ~k2t��+1;

and ~k1t��+1 < �k
1
t��+1; we have ~k

1
t��+1 < (�1=�2)

~k1t��+1 implying that the price sequence

with ~p20 < ~p
2
1 < � � � ~p2t�� = 1 cannot be an equilibrium sequence.

With this result, we know that for any initial conditions if we �nd a long-run equilibrium

path it will be unique. Again, suppose, without loss of generality, that we have k10 �

(�1=�2) k
2
0: If only capital of type 1 is produced, it is easy to check that eventually this

inequality will be reversed. Given our previous results, we know that the equilibrium prices

must be such that exactly in the period before the inequality is reversed, say at t0; prices

are both equal to unity. therefore, �t may take any value between zero and one, and can be

appropriately chosen so that k1t0+1 = (�1=�2) k
2
t0+1:

Using equation (5), it is apparent that to have k1t0+1 = (�1=�2) k
2
t0+1 we must have at t

0

(1� �) k1t0 =
�1
�2
(1� �) k2t0 +

�
�1
�2
(1� �t0)� �t0

�
zt0 : (27)

With k1t0 � (�1=�2) k2t0 ; we would have �t0 � �1= (�1 + �2) : Therefore, �t0 2 [�1= (�1 + �2) ; 1].

Consider an initial endowment of capital of type 2, say k20 = �k20; with k
1
0 < (�1=�2)

�k20:

Is it possible to have k11 = (�1=�2) k
2
1? Using equation (27), we can con�rm that the lowest

value that k10 can take is k
1
0 = [((�1 + �2) =�2) ((1 + �) =�) ((1� �) =�3)]1=�1

�
�k20
�(1��2)=�1 :

So if k1;0 2
h
k10; (�1=�2) k2;0

i
; (p10; p

2
0) = (1; 1) is an equilibrium price.
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If k10 < k10; we have to check if it possible to have k
1
2 = (�1=�2) k

2
2: Noting that k

2
1 =

[(1� �) = (1 + n)] k20; and that we need (p11; p21) = (1; 1) ; we can use (27) again to conclude

that k11 = [((�1 + �2) =�2) ((1 + �) =�) ((1� �) =�3)]
1=�1

�
�k21
�(1��2)=�1 : So for (p11; p21) = (1; 1)

to be an equilibrium k11 2
h
k11; (�1=�2) ((1� �) = (1 + n)) �k20

i
. To �nd the values of k10 that are

compatible with k11 2
h
k11; (�1=�2) ((1� �) = (1 + n)) �k20

i
; we can use the arbitrage equation

p21 = p
2
0 + (r

1
1p
2
0 � r21) = (1� �) and p21 = 1 to solve for p20.

p20 =
(1� �) + �2 (k11)

�1 (k20 (1� �) = (1 + n))
�2�1

(1� �) + �1 (k11)
�1�1 (k20 (1� �) = (1 + n))

�2
: (28)

For k11 = (�1=�2) ((1� �) = (1 + n)) �k20 we have k10 = k10 and (p
1
0; p

2
0) = (1; 1) : It is im-

mediate that if k11 < (�1=�2) ((1� �) = (1 + n)) k20 we have p20; and the lower is k11 the

lower will be p20. It is a matter of algebra to check that for k11 = k11 we have k
1
0 =���

k11 + p
2
0
(1��)
(1+n)

�k20

�
=
�
�k20
��2� ((1 + �) =�) ((1 + n) =�3)�1=�1 and to �nd the corresponding

price p20 = p
2
0.

Putting everything together, for k10 2
h
k10; (�1=�2) k

2
0

i
; we have (p10; p

2
0) = (1; 1) : If

k1;0 2
h
k10; k

1
0

�
we have p10 = p

1
1 = 1, p

2
0 2

h
p20; 1

�
and p21 = 1.

If k10 < k10; then using the same procedure we have to check if it is possible to have

k13 = (�1=�2) k
2
3;derive k

1
0 and p

2
0 and so on. We know that at some date, say t

0 + 1; it will

be possible to have the equality k1t0+1 = (�1=�2) k
2
t0+1 and (p

1
t0 ; p

2
t0) = (1; 1). Hence we have

the following result.

Proposition 5 For any initial vector (k10; k
2
0) of capitals per worker there is one initial price

vector (p10; p
2
0) compatible with the long-run competitive equilibrium in which expectations are

always ful�lled.

6 Tobin�s q < 1

So far we have assumed that savings are su¢ cient to buy the existing capital stock, namely,

p1t (1� �) k1t + p2t (1� �) k2t �
�

1 + �
�3
�
k1t
��1 �k2t ��2
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at prices satisfying max (p1t ; p
2
t ) = 1:

Figure 1: Region in which Tobin�s q = 1

If the above constraint is not binding, we know that max (p1t ; p
2
t ) = 1: A su¢ cient condition

for the above inequality to hold with max(p1; p2) = 1 is

k1t + k
2
t �

�

1 + �

�3
1� �

�
k1t
��1 �k2t ��2 ; (29)

which implicitly de�nes the convex Region A in Figure 1. The slope of the frontier of A,

when k1 and k2 are close to zero, is zero or in�nity, depending on whether k2 > k1 or k2 < k1:

In this section, we assume that we are outside region A. Again, without loss of generality,

we assume k10 < (�1=�2) k
2
0: If we determine p

2
0 using the algorithm described in the previous

section and we get (1� �) k10 + p20 (1� �) k20 � (�= (1 + �))�3 (k10)
�1 (k20)

�2 ; then the results

described before still apply. But, if instead, we conclude that

(1� �) k10 + p20 (1� �) k20 >
�

1 + �
�3
�
k10
��1 �k20��2 (30)

holds, p20 cannot be an equilibrium price. If no new investment can be made in period zero,

then in period 1 we will have ki1 = ((1� �) = (1 + n)) ki0; for i = 1; 2: If the same happens

15



again, we will have ki2 = ((1� �) = (1 + n))
2 ki0; and so on. Eventually the inequality will be

reversed (otherwise we enter in region A, where we know for sure that the inequality will be

reversed).

Suppose that in period 1 the inequality is reversed, meaning that �p21 is an equilibrium

price and

(1� �) k11 + �p21 (1� �) k21 �
�

1 + �
�3
�
k11
��1 �k21��2 :

In period zero, which prices lead to (p11; p
2
1) = (1; �p

2
1)?

In equilibrium, the Inequality (30) cannot hold, so prices will have to adjust, so that

�p10 (1� �) k10 + �p20 (1� �) k20 =
�

1 + �
�3
�
k10
��1 �k20��2 ; (31)

with max (�p10; �p
2
0) < 1:

The arbitrage condition must hold, which implies

(1� �) + r11
�p10

=
(1� �)�p21 + r21

�p20
�p20
�p10

=
(1� �)�p21 + r21
(1� �) + r11

< 1 (32)

Since we know that ki1 = ((1� �) = (1 + n)) ki0; for i = 1; 2; we can use equations (31)

and (32) to uniquely determine (�p10; �p
2
0) :

This analysis can be extended to an arbitrary number of periods. E.g., if only in period

2 Inequality (30) is reversed, then, using the same algorithm, we can determine the prices of

period 1. Knowing these, we can determine the prices in period 0.

7 Computed Examples - How long before the bubble
must burst?

Our numerical exercises are inspired in part by Atkinson (1969)6. The parameter values used

in our experiments are given in Table 1.

6See pages 144-148.

16



Table 1: Assumed Parameter Values

�1 �2 � � n k10 k20
0:2 0:2 0:6 0:55 0 1 5

In the 2-period-lifetime OG model, we identify "youth" with the working years and "old age"

with the retirement years. One period in the OG model corresponds to roughly 20 years,

so � = 0:6 corresponds to an annual discount factor on the order of 97:5%, while � = 0:55

corresponds to an annual depreciation rate of about 4%.

For the economy described by Table 1, the unique bubble-free growth is displayed in

Table 2 and Figures 2 �4. By assumption k20 > k
1
0 and hence r

1
0 > r

2
0, meaning that type-1

capital is scarcer then type-2 capital. This is re�ected in the capital-goods prices: p1t=p
2
t > 1

for t = 0; : : : ; 5. By assumption, (k10 + k
2
0) is large for this economy. This is re�ected in

Tobin�s q: qt = max(p1t ; p
2
t ) < 1 and z1t = z2t = 0 for t = 0; 1; 2; qt = 1 = p1t > p2t for

t = 3; 4; 5; qt = p
1
t = p

2
t = 1 for t = 6; 7; : : :. In period 6, prices are equal q6 = p

1
6 = p

2
6 = 1,

but marginal products are unequal r16 > r
2
6 since k

2
6 > k

1
6, and investments are positive but

unequal. After period 6, we have balanced investment: qt = p1t = p
2
t = 1, z

1
t = z

2
t , k

1
t = k

2
t ,

and r1t = r2t for t = 7; 8; : : :.Asymptotically the economy tends to balanced growth with

k1 = k2 = 0:026234. There are no bubbles.
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Table 2: Bubble-free growth path

t k1t k2t p1t p2t z1t z2t

0 1 5 0:341401 0:069692 0:000000 0:000000
1 0:45 2:25 0:541100 0:114554 0:000000 0:000000
2 0:2025 1:0125 0:82821 0:194055 0:000000 0:000000
3 0:091125 0:455625 1:000000 0:322857 0:011875 0:000000
4 0:052882 0:205031 1:000000 0:543669 0:017076 0:000000
5 0:040873 0:092264 1:000000 0:902200 0:017850 0:000000
6 0:036243 0:041518 1:000000 1:000000 0:014355 0:011981
7 0:030665 0:030665 1:000000 1:000000 0:014113 0:014113
8 0:027913 0:027913 1:000000 1:000000 0:014321 0:014321
9 0:026882 0:026882 1:000000 1:000000 0:014384 0:014384
10 0:026481 0:026481 1:000000 1:000000 0:014405 0:014405
11 0:026322 0:026322 1:000000 1:000000 0:014414 0:014414
12 0:026259 0:026259 1:000000 1:000000 0:014417 0:014417
13 0:026234 0:026234 1:000000 1:000000 0:014418 0:014418

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

p1 p2 p1/p2 (right axis)

Figure 2: Prices on the bubble-free path
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Figure 3: Savings and gross investments on the bubble-free path
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Figure 4: Capital/labor ratios on the bubble-free path

For Table 3 and Figure 5, we adopt the same economy as in the previous example (the

one de�ned in Table 1), but we slightly perturb the initial prices from their bubble-free

values. In particular p10 is slightly larger than its bubble-free value. In the �rst 3 periods:

1 > qt = p1t > p2t ; z
1
t = z2t = 0 for t = 0; 1; 2 just as on the bubble-free path. In the next

periods, Tobin�s q = 1 and investment is specialized to type-1 capital: 1 = qt = p1t > p2t ,

z1t > 0, and z
2
t = 0 for t = 3; 4; 5. By period 6, type-2 capital is scarcer, but the economy is

investing only in type-1 capital: k16 > k
2
6, r

2
6 > r

1
6, 1 = q6 = p

1
6 > p

2
6: The growth path cannot

be extended to period 7, because p27 < 0 would be impossible because with free disposal

the rate of return on type-1 capital would exceed the rate of return on type-2 capital. The

bubble must burst before period 7.
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Table 3: Bubble-path-I

t k1t k2t p1t p2t z1t z2t

0 1 5 0:341441 0:069684 0 0:000000
1 0:45 2:25 0:541281 0:114518 0 0:000000
2 0:2025 1:0125 0:829027 0:193893 0 0:000000
3 0:091125 0:455625 1:000000 0:321334 0:012188 0:000000
4 0:053194 0:205031 1:000000 0:530791 0:018232 0:000000
5 0:042169 0:092264 1:000000 0:786965 0:022513 0:000000
6 0:041489 0:041519 1:000000 0:150000 0:041538 0:000000
7 0:060208 0:018683 1:000000 < 0 � �

0
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0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

4

8

12

16

20

p1 p2 p1/p2 (right axis)

Figure 5: Prices on bubble-path-I

In Table 4 and Figures 6 � 7, we display Bubble-path-II. This is based on the same

economy as analyzed in the previous examples (and described in Table 1) except that we set

p10 slightly below (rather than slightly above) its value on the bubble-free path. In the �rst 3

periods, we have 1 > qt = p1t > p
2
t and z

1
t = z

2
t = 0 for t = 0; 1; 2, just as on the bubble-free

path. But here p2t is increasing faster than on the bubble-free path. By period 5 (instead

of period 6), we have p52 = 1 = q5, p
1
5 < 1; z

5
2 > 0, z

5
1 = 0, k

2
5 > k

1
5 and hence r

1
5 > r

2
5. In

period 6, there is a switch in regimes from producing the relatively scarce capital good to

producing the relatively abundant capital good. On this path, p16 would become negative,

which is impossible if there is free disposal of capital. Hence in period 5, the rate of return
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on machinery of type-1 would exceed that for machinery of type-2. Hence the bubble must

burst before period 6.

Table 4: Bubble-path-II: Regime switching

t k1t k2t p1t p2t z1t z2t

0 1 5 0:341229 0:069727 0:000000 0:000000
1 0:45 2:25 0:540329 0:114709 0:000000 0:000000
2 0:2025 1:0125 0:824758 0:194747 0:000000 0:000000
3 0:091125 0:455625 1:000000 0:329376 0:010539403 0:000000
4 0:051545 0:205031 1:000000 0:600000 0:012016138 0:000000
5 0:035212 0:092264 0:677374 1 0:000000 0:019284287
6 0:015845 0:060803 < 0 1 � �
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1
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Figure 6: Prices on bubble-path-II
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Figure 7: Investments on bubble-path-II
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We have also investigated economies with parameter values di¤erent from those given in

Table 1. Qualitatively, the results remain the same, although there are some di¤erences. For

example, the higher the depreciation rate the quicker the bubble will burst. The larger are

the depreciation rates the smaller are the capital gains. Therefore, changes in the prices will

have to be even greater to compensate for the di¤erences in yields, leading to shorter-lived

bubbles. If the depreciation rate were 100% , there would be no capital gains and hence there

would be no perfect-foresight bubbles. Similarly, if expectations about prices were static,

there would be no expected capital gains and hence no bubbles.

8 Summary

We have investigated asset prices and capital gains in a perfect-foresight economy. Our model

is essentially a combination of the Shell and Stiglitz (1967) growth model with the Diamond

(1965) OG model. We assume that investment is irreversible, allowing used machines to be

sold for less than their replacement values: Tobin�s q can be less than unity.7 Just as the

basic results of Shell, Sidrauski and Stiglitz (1967) for the money-and-single-capital growth

model carry over in the Tirole (1985) OG model, the main results of Shell and Stiglitz

are unchanged in the OG environment. There is a unique competitive-equilibrium path in

which expectations are always ful�lled. Complete futures markets in machinery imply that

this bubble-free path is the only one that will be pursued. Even if future markets are not

complete (as in the real world), the bubble trajectories will be revealed to be disequilibrium

paths, but only after some decades, or centuries, or more. Bubble trajectories are not

equilibrium trajectories in the usual sense, but they test the usual de�nition of long-run

perfect-foresight in the OG environment.

Comparing the analysis of the present paper with that of Shell and Stiglitz (1967) also

reveals that introducing agent optimization and discrete time allows for a richer dynamics.

7See Magill and Quinzii (2003).
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For example, in Shell and Stiglitz the prices of the two capitals on the bubble-free path would

be the same (and equal to unity) only when their marginal productivities are the same on

the bubble-free path. In the present model, prices become the same (and equal to unity)

exactly one period before the marginal productivities are equalized.

The present paper is our second attempt to analyze capital gains in an OG economy

with 2 capitals and perfect foresight. In Aguiar-Conraria and Shell (2006), we focused on

the degenerate case in which the 2 machines can be distinguished only by their colors (blue

or red): their productivities and their replacement costs if newly produced are independent

of their color, but their market prices are allowed to depend on color. We showed that, on

the unique bubble-free trajectory, the prices of the 2 capitals are always equal, but it can

take several generations before the bubble must burst.

9 Concluding Remarks

Capital gains are at the heart of the capitalist economy, but they are suspected of being

a source of instability. Keynes certainly mistrusted capital gains. He even went so far as

to suggest that to reduce instability capital ownership be made �like marriage in his time

� indissoluble except for grave cause. One interpretation of the Great Depression is that

expected capital gains on holding money were very high (i.e. the general price level was

falling rapidly) so that Tobin�s q was driven below unity leading to drying up of investment.

Frank Hahn once concluded that the unstable dynamical system that results from the short-

run perfect-foresight market-clearing equation is the golden nail in the co¢ n of capitalism.8

The analysis of capital gains raises fundamental questions about the formation of expec-

tations and the nature of temporary equilibrium. These are subjects in which Jean-Michel

Grandmont is the master9 There may also be a role for sunspots. Our formal analysis shows

8See F. H. Hahn (1966), the seminal paper on the "Hahn problem".
9E.g., see Grandmont (1974, 1977, 1983, 1985) and Grandmont and Hildenbrand (1974).
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that in our particular (non-monetary!) model, the only fully equilibrium path is bubble free.

But on our calculated trajectories, the bubble is revealed only after several decades. In a

technical sense, bubble paths are not perfect-foresight equilibrium paths, but bubbles that

burst in the far future beyond current lifetimes stretch the equilibrium concept. Perhaps the

informational and strategic foundations of the expectations process should be re-examined.

Individuals perceive capital gains as part of income, as they do dividend and interest

receipts. Individuals perceive capital gains as accretions to wealth and hence part of sav-

ing. Traditional measures of income and saving that do not include capital gains can be

misleading.

Our model is special. It is non-monetary. Money allows for non-bursting bubbles. It

exhibits saddlepoint dynamics. Not all multi-asset dynamics are of this type10. Our goal

was merely to study a simple example in some detail to partially redirect the macro literature

from the ILRA model to one (such as the heterogeneous agent, OG model) that might allow

for destabilizing e¤ects from capital gains.

10See e.g. Cass and Shell (1976) for conditions under which the optimal trajectory is unique. See e.g. Ben-
habib and Rustichini (1994), Benhabib and Nishimura (1998), and Wen (1998) for examples of indeterminacy
of the equilibrium, history dependence, and sunspots.
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