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a b s t r a c t 

Tendinopathies represent half of all musculoskeletal injuries worldwide. Inflammatory events contribute 

to both tendon healing and to tendinopathy conditions but the cellular triggers leading to one or the 

other are unknown. In previous studies, we showed that magnetic field actuation modulates human ten- 

don cells (hTDCs) behavior in pro-inflammatory environments, and that magnetic responsive membranes 

could positively influence inflammation responses in a rat ectopic model. 

Herein, we propose to investigate the potential synergistic action of the magnetic responsive mem- 

branes, made of a polymer blend of starch with polycaprolactone incorporating magnetic nanoparticles 

(magSPCL), and the actuation of pulsed electromagnetic field (PEMF): 5 Hz, 4mT of intensity and 50% of 

duty cycle, in IL-1 β-treated-hTDCs, and in the immunomodulatory response of macrophages. 

It was found that the expression of pro-inflammatory ( TNF α, IL-6, IL-8, COX-2 ) and ECM remodeling 

( MMP-1,-2,-3 ) markers tend to decrease in cells cultured onto magSPCL membranes under PEMF, while 

the expression of TIMP-1 and anti-inflammatory genes ( IL -4, IL -10 ) increases. Also, CD16 ++ and CD206 + 

macrophages were only found on magSPCL membranes with PEMF application. 

Magnetic responsive membranes show a modulatory effect on the inflammatory profile of hTDCs favor- 

ing anti-inflammatory cues which is also supported by the anti-inflammatory/repair markers expressed 

in macrophages. These results suggest that magnetic responsive magSPCL membranes can contribute for 

inflammation resolution acting on both resident cell populations and inflammatory cells, and thus signif- 

icantly contribute to tendon regenerative strategies. 

Statement of significance 

Magnetically-assisted strategies have received great attention in recent years to remotely trigger and 

guide cell responses. Inflammation plays a key role in tendon healing but persistent pro-inflammatory 

molecules can contribute to tendon disorders, and therefore provide a therapeutic target for advanced 

treatments. 

We have previously reported that magnetic fields modulate the response of human tendon cells (hT- 

DCs) conditioned to pro-inflammatory environments (IL-1 β-treated-hTDCs), and that magnetic responsive 

membranes positively influence immune responses. In the present work, we combined pulsed electro- 

magnetic field (PEMF) and magnetic responsive membranes to guide the inflammatory profile of IL-1 β- 

treated-hTDCs and of macrophages. The results showed that the synergistic action of PEMF and magnetic 

membranes supports the applicability of magnetically actuated systems to regulate inflammatory events 

and stimulate tendon regeneration. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Tendinopathy defines a multifactorial spectrum of multiple dis-

rders often resulting from overuse activities and/or excessive me-
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a  
chanical loading [ 1 , 2 ]. Tendinopathies are a significantly clinical

problem, accounting for almost 50% of all musculoskeletal afflic-

tions worldwide [ 3 , 4 ]. Clinical diagnosis of tendinopathy relies

on gradual onset of activity-related pain, decreased function and

sometimes localized swelling. Current therapies target pain re-

lief and consist of oral and locally administered anti-inflammatory

drugs. Severe injury often requires surgery but in either case, the

treatment is not effective, as it fails to reinstate tendon func-

tion following injury [ 1 , 2 , 5 ]. Inflammation is a necessary process

for healing, but chronic inflammation has been related to several

tendinopathies in tendons with different functions and anatomical

locations [5] . 

Macrophages modulate inflammatory cascades switching their

own phenotype to environmental stimuli. The balance between

pro-inflammatory and pro-repair macrophage populations (M1 and

M2, respectively) dictates inflammation regulation and resolution,

being critical for improved healing [6] . Although recent studies

show that macrophages are present in injured tendons, their in-

fluence on tendon resident cells and in tendon repair is unclear

[ 7 , 8 ]. Thus, studies aimed at finding appropriate tools for modulat-

ing inflammation and prospecting tissue regeneration, open posi-

tive perspectives for new therapeutic approaches to treat tendon

disorders. 

Pulsed electromagnetic field (PEMF) has been clinically applied

to manage pain and delayed wound healing via remote actuation

and minimally invasive approaches [ 9 , 10 ]. In a previous work, we

showed that a particular set of PEMF parameters modulated the

pro-inflammatory profile of IL-1 β-conditioned tendon cells influ-

encing intracellular communication associated to MAPK/Erk(1/2)

pathway and connexin-43 [11] . Other studies also showed that the

length of exposure, the field intensity and the number of PEMF

treatments differently affect tendon cell proliferation, gene expres-

sion and the kinetics released of pro- and anti-inflammatory cy-

tokines [12] .Furthermore, the impact of PEMF was reported to

enhance stem cells proliferation [13] and tenogenic differentia-

tion [ 14 , 15 ], likely providing mechanical cues to the cells [ 16 , 17 ],

strengthening the potential of magnetic stimuli to remotely trigger

and modulate cell responses. 

The combination of magnetic actuation with magnetic respon-

sive biomaterials has emerged as a platform enabling a precise

action over biological processes in tissue engineering and regen-

erative medicine (TERM) strategies [ 18 , 19 ], foreseeing sophisti-

cated, remotely controlled systems with higher therapeutic poten-

tial. Our group has recently demonstrated that magnetic responsive

fibrous scaffolds can improve in vitro tenogenesis of mesenchymal

stem cells through mechano-sensing mechanisms [20] , and that

the combination of magnetic responsive biomaterials and magnetic

stimuli favors immunomodulatory responses that may contribute

to tendon healing and to functional recovery [21,22] . Additionally,

strategies resourcing to magnetic responsive constructs are envi-

sioned to potentiate more effective and real time monitoring treat-

ments [18 , 22–25] . 

Consequently, we hypothesized that magnetic responsive bio-

materials exposed to an external magnetic field could have a syn-

ergistic action in modulating the inflammatory profile of tendon

cells after IL-1 β stimulation. 

We and others have observed that IL-1 β stimulates pro-

inflammatory cues in tendon cells and could be used as an in vitro

model in tendon inflammation studies [ 7 , 26 , 27 ]. Thus, tendon cells

previously treated with IL-1 β were cultured on magnetic respon-

sive membranes made of a polymeric blend of poly- ε-caprolactone

and starch (SPCL) incorporating iron oxide nanoparticles (magSPCL)

and exposed to a magnetic field, whose intensity, frequency and

duty cycle were previously optimized [11] . These membranes were

previous studied, showing promising outcomes in modulating in-
 a  
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ammation and the growth of fibrous tissue in an ectopic rodent

odel [22] . 

The phenotype and inflammatory profile of tendon cells was

hen investigated and compared to non-PEMF conditions. We fur-

her hypothesized that PEMF actuated magSPCL membranes could

lso influence macrophage populations in pro-inflammatory envi-

onments. Thus, human macrophages were cultured on magSPCL

embranes and markers associated to pro-inflammatory (M1)

nd repair (M2) phenotypes were investigated to provide on the

mmuno-modulatory effect of the PEMF and magSPCL membranes

n inflammatory cells envisioning complementary and improved

riented strategies headed for tendon repair and regeneration. 

. Materials and methods 

.1. MagSPCL membranes preparation 

Membranes made of a 30:70 blend of starch and polycapro-

actone (SPCL, Novamont, Novara, Italy) were produced using the

olvent casting method as reported before [22,28] . Briefly, SPCL

ranules were dissolved in chloroform 20% (w/v) (VWR, Darm-

tadt, Germany). Then, the polymeric solution was doped with

ommercial iron oxide magnetic nanoparticles (Fe 3 O 4 , magnetite,

NPs) (Micromod, 45–00–252, Rostock, Germany). These MNPs

orm monodisperse magnetic aggregates ( ϕ 250 nm), exhibit a

lain surface and a polydispersity index < 0.2. MNPs are stable in

queous buffers with pH > 4, and present a magnetization value

f 46 emu/g iron ( H = 10 0 0 Oe), a saturation magnetization > 71

mu/g iron ( H > 10.0 0 0 Oe) and a coercive field Hc of 0.481 Ka/m.

NPs were thoroughly dispersed in the SPCL/chloroform solution

y sonication (DT100H SONOREX; VWR), which provided energy

o agitate and distribute particles in the membrane, and occa-

ional orbitation during 30 min at a temperature of 20 °C-25 °C,

efore casted in glass petri dishes. After detaching, membranes

ere washed with ultrapure water and dried. The magnetic for-

ulation was created with SPCL/1.8% MNPs (w/w). The casted

embranes, previously shown to display an average thickness of

.19 ± 0.02 mm [23] , were cut into 1 cm 

2 discs using a hollow

unch and sterilized by exposure to an UV lamp for 30 min before

he cell culture studies. 

.2. Cells isolation and expansion 

Human tendon derived cells (hTDCs) were isolated from surplus

issue samples collected from patients undergoing orthopedic re-

onstructive surgeries under protocols previously established with

ospital da Prelada (Porto, Portugal) and with informed consent

f the patients. The content of the written informed consent and

elated procedures were reviewed and approved by the Hospital

thics Committee (P.I. N. °005/2019 ) . The healthy nature of tendons

as confirmed by the orthopedic surgeon at the surgical theater

pon harvesting of tendon tissues. 

Human tendon derived cells were isolated and cultured as de-

cribed before [29–31] . Briefly, tissue explants were immersed in

 sterile solution of phosphate buffer saline (PBS, Sigma-Aldrich,

aint Louis, MO, USA) with 2% antibiotic/antimicotic solution (A/A,

lfagene, Life Technologies Limited, Paisley, UK). Then, tissue sam-

les were minced and digested in an enzymatic solution of 0.1%

v/v) of collagenase (Sigma-Aldrich, C6885, Saint Louis, MO, USA)

ith 2 M CaCl 2 (VWR, Darmstadt, Germany) (1:10 0 0) and 1%

ovine serum albumin (BSA, Sigma-Aldrich, Saint Louis, MO, USA)

or 1 h at 37 °C under agitation. After incubation, digested samples

ere filtered using a cell strainer (100 μm, Enzifarma, 352,360)

dapted for 50 ml conical tubes (Falcon), centrifuged three times

t 290 g for 5 min, and the supernatant discarded. hTDCs were ex-
t al., Magnetic responsive materials modulate the inflammatory 

i.org/10.1016/j.actbio.2020.09.028 

https://doi.org/10.1016/j.actbio.2020.09.028


A. Vinhas, M.T. Rodrigues, A.I. Gonçalves et al. / Acta Biomaterialia xxx (xxxx) xxx 3 

ARTICLE IN PRESS 

JID: ACTBIO [m5G; September 29, 2020;15:58 ] 

p  

v  

1  

A

2

 

t  

l  

m  

f  

a  

a  

p  

o  

i  

A  

3  

i  

c  

T  

c  

m  

M  

1  

w  

p  

t

2  

s

 

p  

n  

e  

n  

s  

d  

w  

m  

w  

n  

G  

t  

a  

w

 

a  

t  

i

 

p  

i

 

c  

c  

b  

c  

i  

(  

c

 

o  

c  

D  

d  

n

 

a  

t

2

m

 

s  

(  

a  

i  

i

L  

t  

g  

t

2

2

 

a  

a  

t  

w  

t  

3  

t  

a  

m  

b

 

P  

p  

t  

i  

(  

a

2

 

t  

n  

k  

t  

C  

u  

w  

a  

h  

m  

1  

V  

s

 

m  

L  

w  

(  

a  

d  
anded in basic culture medium composed of α-MEM (A-MEM, In-

itrogen, Life Technologies Limited, Paisley, UK) supplemented with

0% FBS (Alfagene, Life Technologies Limited, Paisley, UK) and 1%

/A solution (Alfagene, Life Technologies Limited, Paisley, UK). 

.3. Human peripheral blood mononuclear cells isolation 

Human peripheral blood mononuclear cells (PBMCs) were ob-

ained from blood donations of healthy adult volunteers and col-

ected into a heparin containing tubes to avoid coagulation. Human

acrophages were obtained from buffy coat fractions separated

orm blood donation units of healthy volunteers under an cooper-

tion agreement established with the Portuguese Institute of Blood

nd Transplantation (IPST, Instituto Português do Sangue e Trans-

lantação, Portugal). Then, the samples were diluted in 2–4 vol

f PBS containing BSA. PBMCs were isolated from buffy coats us-

ng a density gradient cell separation medium, Histopaque (Sigma-

ldrich, Saint Louis, MO, USA), after centrifugation at 800 g for

0 min at room temperature. The mononuclear cell layer, compris-

ng lymphocytes and monocytes, was collected into a tube already

ontaining a PBS/BSA solution and centrifuged at 350 g for 10 min.

he pellet was resuspended in PBS/BSA and centrifuged in 3 cy-

les at 4 °C at 350 g for 5 min. Then, cells were positively im-

unomagnetically sorted using human CD14 + beads (microBeads,

iltenyi Biotec, Bergish Gladbach, Germany) and cultured in RPMI-

640 medium (Sigma-Aldrich, Saint Louis, MO, USA) supplemented

ith 50 ng/mL of macrophage colony-stimulated factor (M-CSF, Pe-

rotech, Rocky Hill, NJ, USA) for 6 days to differentiate into M0-

ype macrophages. 

.4. Cell culture on magSPCL membranes (constructs) under magnetic

timulation 

Human TDCs cells were seeded at a density of 1 × 10 5 cells

er membrane in α-MEM medium (A-MEM, Invitrogen, Life Tech-

ologies Limited, Paisley, UK). hTDCs were treated for 24 h with

xogenous supplementation of IL-1 β (1 ng/mL, Alfagene, Life Tech-

ologies Limited, Paisley, UK) after cell attachment and 24 h after

eeding of tendon cells. Then, cells were cultured for 1, 3 and 7

ays, as previously established [11] . Similarly, human macrophages

ere seeded at 2 × 10 5 cells per membrane and cultured in RPMI

edium (Sigma-Aldrich, Saint Louis, MO, USA). Both experiments

ere conducted under both static (control, non-PEMF) and mag-

etic stimulation. A magneto therapy device (Magnum XL Pro,

lobus, Globus Corporation, Italy) was used to generate a con-

rolled magnetic field with a frequency of 5 Hz, 4mT of intensity

nd 50% of duty cycle in accordance to previous studies [11] . Cells

ere magnetically stimulated for a single 1 h period. 

The rationale behind the selection of these PEMF parameters

nd the exposure time was to stimulate the cells just enough time

o elicit a biological response, in this case, to modulate tendon cells

nflammatory profile. 

The stimulus provided was selected from a set of therapeutic

rogrammes used in health-rehab medical treatments, pre-defined

n the magnetotherapy device. 

Cell laden membranes were placed and cultured between two

oils (solenoids). The magnetic field was generated by the electric

urrent that goes through a coil (solenoid) with a vertical action

etween the coils. Afterwards, the system was moved inside an in-

ubator, where the temperature was maintained at 37 °C in humid-

fied 5% CO 2 atmosphere during the PEMF stimulation. The PEMF

5 Hz, 4mT and 50% of duty cycle) was applied directly over cell

ulture plates inside the incubator. 

Two experimental controls were considered: i) hTDCs seeded

n magSPCL membranes cultured in non- PEMF stimulating (static)
Please cite this article as: A. Vinhas, M.T. Rodrigues, A.I. Gonçalves e
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onditions to investigate PEMF vs non-PEMF conditions, and ii) hT-

Cs seeded on magSPCL membranes in non-PEMF stimulating con-

itions without IL-1 β treatment to assess tendon cell responses in

on-stimulated culture conditions. 

Cells-membrane constructs were further investigated for cell vi-

bility, proliferation and mRNA transcriptional levels of inflamma-

ory and tendon-associated markers. 

.5. Morphological characterization of magnetic responsive cell laden 

embranes 

After 1, 3 and 7 days in culture, cells laden onto magnetic re-

ponsive membranes were washed with phosphate buffer saline

PBS) and fixed in 4% formaldehyde for 30 min at room temper-

ture. Subsequently, samples were dehydrated using an ascend-

ng solution of ethanol (from 30 to 100%), followed by a 5 min

mmersion in hexamethyldisiloxane (HMSO, Sigma-Aldrich, Saint 

ouis, MO, USA). Next, samples were air-dried overnight and sput-

er coated (30 s at 20 mA, Cressington, C5219, Model 108A) with

old. Images of the constructs were acquired using a scanning elec-

ron microscope (SEM, JEOL, Japan). 

.6. Human TDCs (hTDCs) characterization 

.6.1. Metabolic activity and cell proliferation 

The metabolic activity and proliferation of hTDCs were evalu-

ted by MTS assay (CellTiter 96® AQueous One Solution, Promega)

nd Quant-It PicoGreen dsDNA assay Kit (Thermo Fisher Scien-

ific), respectively. For the MTS assay, cell laden membranes were

ashed with PBS and incubated with a mixture of serum-free cul-

ure medium without phenol red and MTS solution (5:1 ratio) for

 h at 37 °C and 5% CO 2 atmosphere, protected from light. Af-

er this period, the supernatant was transferred to a 96-well plate

nd the absorbance read at 490 nm (Synergy TM HT, BIO-TEK Instru-

ents, Winooski, Vermont). Samples were read in triplicates and a

lank sample (no cells) was assessed as control of the assay. 

For the dsDNA quantification assay, samples were washed with

BS and then transferred to a microtube with 1 ml of sterile ultra-

ure water and kept at −80 °C until analysis. Samples were then

hawed, sonicated and analyzed according to the manufacturer’s

nstructions, at an excitation/emission wavelength of 485/528 nm

Synergy TM HT, BIO-TEK Instruments, Winooski, Vermont). Samples

nd standards were made in triplicate. 

.6.2. Immunofluorescence for tendon related-markers 

Cell laden membranes cultured for 1, 3 and 7 days were washed

hree times with PBS, before and after fixation with 10% (v/v)

eutral buffered formalin (Thermo Fisher Scientific) overnight and

ept in PBS at 4 °C until usage. To detect tendon ECM pro-

eins, antibodies against collagen type I (Rabbit polyclonal Anti-

ollagen I, ab9039, 1:500, Abcam, Cambridge, UK) and Tenomod-

lin (Rabbit anti-human, ab81328, 1:100, Abcam, Cambridge, UK)

ere used. The immunolocation of Scleraxis (Rabbit anti-human,

b58655, 1:100, Abcam, Cambridge, UK), NFkB p65 (Rabbit anti-

uman, F0514, 1:200, Santa Cruz Biotechnology, Heidelberg, Ger-

any), alpha smooth muscle Actin (Rabbit anti-human, ab32575,

:200, Abcam, Cambridge, UK) and Vinculin (Mouse anti-human,

9131, 1:300, Sigma-Aldrich, Saint Louis, MO, USA) were also as-

essed. 

The cells cultured on the magSPCL membranes were firstly per-

eabilized with 0.025% (v/v) Triton X-100 (Sigma-Aldrich, Saint

ouis, MO, USA) prepared in PBS for 10 min. Then, constructs were

ashed three times with PBS, blocked with Normal Horse Serum

RTU Vectastain Kit, PK-7200, Vector, Burlingame, California USA)

nd incubated overnight with the antibodies diluted in antibody

iluent with background reducing components (Dako, Santa Clara,
t al., Magnetic responsive materials modulate the inflammatory 
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CA, USA) at 4 °C. Afterwards, samples were rinsed in PBS, following

by inactivation of endogenous peroxidase activity with hydrogen

peroxide solution (0.3% w/v, Panreac). The samples were incubated

for 1 h at room temperature with fluorescent secondary antibodies

Alexa fluor 488 donkey anti-rabbit (2072687, 1:10 0 0, Alfagene, Life

Technologies Limited, Paisley, UK) or Alexa fluor 488 rabbit anti-

mouse (20 05937, 1:10 0, Alfagene, Life Technologies Limited, Pais-

ley, UK), according to the host species of the primary antibodies.

Constructs were rinsed in PBS and stained with 4,6-Diamidino-2-

phenyindole, dilactate (DAPI, 5 mg/ml, D9564, Sigma-Aldrich, Saint

Louis, MO, USA) for 10 min. Finally, samples were incubated with

a Phalloidin–Tetra- methylrhodamine B isothiocyanate (Phalloidin,

P1951, 1:200, Sigma-Aldrich, Saint Louis, MO, USA) solution, which

was prepared according to manufacturer’s instructions. 

Surface specific markers for macrophage phenotype were

assessed using conjugated antibodies: CD14 PE (Anti-human,

B244291, Biolegend), CD16 APC (anti-human, B2128291, Biolegend),

CD45 FITC (anti-human, 555482, BD Biosciences), CD68 APC (anti-

human, B178818, Biolegend), CD169 (alexa fluor 647 mouse anti-

human 565295, BD Biosciences) and CD206 FITC (anti-human,

5253911). Controls were incubated in Dako diluent without the

primary antibody. 

2.6.3. Cytokine analysis 

Cell supernatants were collected 1, 3 and 7 days after hTDCs

treatment with IL-1 β and PEMF stimulation and stored at −80 °C
until analysis. The supernatants were tested using commercially

available enzyme immunoassay kit for IL-6 (Human IL-6 Standard

ABTS ELISA Development Kit, 900-K16, Peprotech, Rocky Hill, NJ,

USA) and for TNF α (Human TNF α ELISA Kit, EK0525, Tebu-Bio, Fre-

mont, CA, USA), according to the manufacturer’s instructions. Data

was normalized to control conditions: hTDCs without IL-1 β treat-

ment. 

2.7. RNA isolation and gene expression analysis 

Total RNA was extracted using TRI reagent R © RNA Isolation

Reagent (T9424, Sigma) following the manufacturer’s instruc-

tions. RNA was quantified using a Nanodrop R © ND-10 0 0 spec-

trophotometer (Wilmington, DE, USA) at 260/280 nm. The first-

strand complementary DNA was synthesized from 1 μg of RNA of

each sample (qScript TM cDNA Synthesis Kit, Quanta Biosciences,

Gaithersburg, MD, USA) in a 20 μL reaction using a Mastercycler R ©
ep realplex gradient S machine (Eppendorf, Hamburg, Germany). 

The quantification of the transcripts was carried out by quanti-

tative polymerase chain reaction (qPCR) using the PerfeCTA SYBR

Green FastMix kit (Quanta Biosciences, Gaithersburg, MD, USA)

following the manufacturer’s protocol, in a Real-Time Mastercy-

cler ep realplex thermocycler (Eppendorf, Hamburg, Germany). The

primers were designed with Primer 3 software (Supplementary

Figure 1) and synthesized by MWG Biotech. The 2 −��Ct method

was used to evaluate the relative expression level for each target

gene [32] . 

The transcript expression of target genes was analyzed and

normalized to the expression of endogenous housekeeping gene

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and then to

the samples collected at day 0 ( n = 3). 

2.8. Statistical analysis 

Results are expressed as mean ± standard error of the mean

(SEM). The statistical analysis was performed using GraphPad

Prism6 software. Data was obtained from 3-independent experi-

ments ( n = 3) analyzed in triplicate, and evaluated by Two-way

ANOVA followed by Bonferroni post-hoc test for multiple compari-

son tests. A difference was considered significant with a confidence
Please cite this article as: A. Vinhas, M.T. Rodrigues, A.I. Gonçalves e
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nterval of 95% for different degrees of confidence, p < 0.05, p < 0.01,

 < 0.001 and p < 0.0001. 

. Results 

In this work, we explored the synergism of magnetic actuation

nd magSPCL membranes in IL-1 β treated hTDCs to be further ex-

lored as tools to promote tendon healing and regeneration. 

.1. Cytocompatibility and morphological characterization 

The metabolic activity of IL-1 β treated hTDCs laden on

agSPCL membranes was assessed by MTS assay ( Fig. 1 Ai).

etabolic activity increases in IL-1 β primed cells stimulated with

EMF on day 1 and day 3 in comparison to control conditions (ab-

ence of IL-1 β and PEMF stimulation, p < 0.01). Furthermore, an in-

rement in IL-1 β primed cells was observed upon PEMF stimula-

ion after 1 and 7 days in culture ( p < 0.05). In terms of DNA con-

ent ( Fig. 1 Aii), IL-1 β primed cells stimulated with PEMF showed

he highest dsDNA concentration among all conditions studied

 p < 0.05) and for all time points studied. However, the increment

n the cell content with time was not statistically relevant sug-

esting that IL-1 β primed cells become metabolic more active but

ot more proliferative. 

The morphology of hTDCs was analysed by SEM ( Fig. 1 Aiii),

howing a homogeneous distribution of hTDCs with an elongated

hape on the surface of magSPCL membranes (day 1). The density

f hTDCs increases with time in culture, and by day 7 several lay-

rs of hTDCs are observed, covering the magSPCL membranes. As

xpected, the PEMF does not negatively affect the metabolic activ-

ty neither the cell distribution on magSPCL membranes. 

.2. Extracellular matrix and cytoskeletal organization 

The extracellular matrix (ECM) and the proteins actin and vin-

ulin were evaluated in IL-1 β treated hTDCs on magSPCL mem-

ranes ( Fig. 1 Bii). Independently of the time in culture, the appli-

ation of PEMF causes a decrease in the MMP-1, −2, −3 expres-

ion ( p < 0.0 0 01, p < 0.01, p < 0.05) ( Fig. 1 Bi). Nevertheless, PEMF ac-

uation increases TIMP-1 expression in stimulated cells ( p < 0.0 0 01).

he higher expression values of TIMP-1 in comparison to the ones

f the MMPs analysed, suggests a potential effect of PEMF actua-

ion in the ECM remodeling process. 

Staining of actin filaments ( α-actin) and focal adhesions (vin-

ulin) were also investigated ( Fig. 1 Bii) to assess the contribution

f PEMF and PEMF actuated membranes in cell mechano-sensing

nd cell adhesion processes. Vinculin immunodetection is observed

n all conditions and in both static (non-PEMF) and PEMF condi-

ions without significant variations. However, the expression of α-

ctin tends to decrease in IL-1 β treated hTDCs under PEMF condi-

ion in comparison to untreated hTDCs after 7 days in culture. 

.3. Expression of tendon related markers in cell laden magSPCL 

embranes 

Tendon related proteins were analysed on IL-1 β treated hTDCs

aden in magSPCL membranes, namely scleraxis (SCX), tenomod-

lin (TNMD), and collagen type I (COL1), ( Fig. 2 A, B, C) to assess a

ossible influence of pro-inflammatory factors on the maintenance

f the tenogenic phenotype of hTDCs under magnetic stimulation.

he expression of SCX, an early tendon marker, was increased un-

er PEMF stimulation compared to non-stimulated (static) cells,

hile for the late tendon markers, TNMD and COL1, only TNMD

ollowed this trend. Additionally, the expression of tenogenic tran-

cription factors; SCX and Mohawk ( MKX ) as well as of ECM

roteins; collagen type I and type III ( COL1A1, COL3A1 ), decorin
t al., Magnetic responsive materials modulate the inflammatory 
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Fig. 1. Response of hTDCs laden on magnetic actuated membranes after IL-1 β treated hTDCs and PEMF exposure. Ai) The metabolic activity was determined by the MTS 

assay and Aii) the cell content was determined by the PicoGreen assay. hTDCs viability and cell content was assessed on PEMF actuated membranes after 1, 3 and 7 days 

in culture. Aiii) Morphological analysis by SEM in hTDCs on day 1 and 7 (on upper and bottom images, respectively). Insets are representative images of hTDCs without 

IL-1 β treatment (control). Bi) Relative gene expression of ECM remodeling genes ( MMP-1, MMP-2, MMP-3 and TIMP-1 ). Bii) Immunodetection of alpha-actin (green) and 

vinculin (red), respectively expressed by hTDCs after 7 days in culture (confocal microscopy x63, scale bar 20 μm). Data on the graphs are presented as mean ± SEM ( n = 3, 

3 experimental replicates from 3 biological replicates) and data analysed using 2-way ANOVA followed by multiple comparisons tests. Control condition (Ctrl) refers to the 

absence of IL-1 β . Static condition refers to the absence of PEMF stimulation. Statistically significant differences are shown with different degrees of confidence. Symbols $, 

#, γ , α, &, p, denote statistical differences ∗ for p < 0.05; ∗∗ for p < 0.01; ∗∗∗ for p < 0.001; and ∗∗∗∗ for p < 0.0 0 01, respectively. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.). 
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 DCN ), and tenascin C ( TNC ) were also investigated ( Fig. 2 D). Over-

ll, the genetic expression of MKX ( p < 0.001), DCN ( p < 0.01), TNC

 p < 0.0 0 01) and collagens ( p < 0.0 0 01 for COL1A1 and p < 0.0 0 01 for

OL3A1 , respectively) increased under PEMF application, in com-

arison to non-stimulated cell laden magSPCL membranes, inde-

endently of the IL-1 β treatment. These results indicate that PEMF

ctuated membranes influence the gene and protein expression of

endon related-markers supporting the tenogenic phenotype in IL-

 β treated hTDCs. 

.4. The impact of PEMF in NF-KB signaling 

The potential effect of magnetic responsive magSPCL mem-

ranes on inflammatory signaling mechanisms of IL-1 β was inves-

igated by analysing the gene expression of IL-1 β receptor ( IL1R1 )

nd NF- k B ( Fig. 3 A, B). In the canonical NF-kB signaling path-

ay IL-1 β activates the IL-1R1 receptor, leading to an activation

f IKK β complex and this results in a translocation of NF-kB to

he nucleus and further activation of target gene transcription of

ro-inflammatory factors (TNF α, IL-1 β , IL-6) ( Fig. 3 Ai) . The expres-

ion of IL1R1 decreased on IL-1 β treated cells when PEMF is ap-

lied ( Fig. 3 Aii). As expected, IL-1 β treatment increased the ex-

ression of NF- k B ( p < 0.01 in comparison to non-treated hTDCs)

 Fig. 3 Bii). The effect of the IL-1 β treatment seems to be antago-
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ized by PEMF actuation which decreases the expression of NF- k B ,

eing more evident after 3 days of culture ( p < 0.0 0 01). 

Additionally, IL-1 β increased the phosphorylation of NF- k B

howed by a nuclear immunodetection, especially in static (non-

EMF) conditions at day 3 ( Fig. 3 Bi). However, when IL-1 β treated

TDCs were stimulated with PEMF (day 3), the NF- k B seems to be

ore concentrated in the cytoplasm ( Fig. 3 Bii). 

The activation of NF- k B signaling results in the production and

elease of pro-inflammatory molecules such as TNF α, IL-6, IL-8 and

OX-2. The gene expression of these cytokines ( Fig. 4 A) tends to

ecrease on PEMF stimulated constructs with or without IL-1 β .

he release of IL-6 and TNF α was diminished following this ten-

ency, especially after IL-1 β treatment ( p < 0.0 0 01 for both IL-6

nd TNF α, in comparison to control condition) ( Fig. 4 C). Interest-

ngly, IL-6 release was significantly diminished at day 7, in com-

arison to day 1 and 3 ( p < 0.05), while TNF α release was main-

ained from day 3 to day 7 ( p > 0.05). Conversely, the expression of

nti-inflammatory cytokines (IL-4, IL-10) tends to increase in hT-

Cs laden on PEMF actuated magSPCL membranes ( p < 0.001 for

L-4 and p < 0.0 0 01 for IL-10, in comparison to control condition)

 Fig. 4 B). 

Thus, PEMF seems to inhibit the expression of NF- k B in IL-1 β
reated cells, influencing the cytokine profile of hTDCs laden in

agSPCL membranes. 
t al., Magnetic responsive materials modulate the inflammatory 
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Fig. 2. Protein and gene expression of tenogenic markers in IL-1 β treated hTDCs cultured on magnetic actuated membranes. A) Fluorescence microscopy of tenogenic-related 

markers (green), scleraxis (day 1), tenomodulin and collagen type I (day 3) (confocal microscopy x63, scale bar 20 μm). Insets are representative images of hTDCs without 

IL-1 β treatment (control). Nuclei and cytoskeleton were counterstained with DAPI (blue) and phalloidin (red), respectively. B) Gene expression analysis of Scleraxis, Mohawk, 

Decorin, Tenascin-C, Collagen type I and III by RT-PCR. Expression of target genes was normalized against GAPDH housekeeping gene. Data on the graphs are presented as 

mean ±SEM ( n = 3, 3 experimental replicates from 3 biological replicates) and data analysed using 2-way ANOVA followed by multiple comparisons tests. Control condition 

refers to the absence of IL-1 β treatment. Static condition refers to the absence of PEMF stimulation. Symbols $, #, γ , α, &, p, denote statistical differences ∗ for p < 0.05; ∗∗

for p < 0.01; ∗∗∗ for p < 0.001; and ∗∗∗∗ for p < 0.0 0 01, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.). 
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3.5. Immunomodulatory potential of PEMF actuated magSPCL 

membranes 

The immunomodulatory action of PEMF combined with

magSPCL membranes was assessed in human macrophages ( Fig. 5 ).

Macrophages under PEMF show a more elongated shape on the

surface of magSPCL membranes ( Fig. 5 A), which is a feature as-

sociated to a pro-healing phenotype. Further, macrophages laden

on PEMF actuated magSPCL membranes were CD45 + and CD14 + .

Cells also expressed CD169 + , a cell adhesion molecule associated

to M2-type and CD68 + , a M1 marker, in static conditions. Inter-

estingly, CD16 ++ and CD206 + (M2-type) were only detected in

macrophages cultured on PEMF actuated magSPCL membranes. 

Altogether, results show that hTDCs and macrophages respond

to the combination of PEMF stimulus and magSPCL membranes. 
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. Discussion 

The increasing attention given to magnetic actuation and mag-

etic responsive biomaterials has gathered promising outcomes for

mproving repair and regenerative mechanisms, challenges to over-

ome in the TERM field and in current tendon treatment regimens.

aving this in mind, the combination of both could accomplish

ore favorable biological responses and modulate symptoms as-

ociated to impair healing. 

In this work, we selected a set of PEMF parameters that an-

agonize pro-inflammatory cues expressed by IL-1 β treated ten-

on cells [11] to be combined with magnetic responsive magSPCL

embranes to enhance the pro-regenerative response of cell pop-

lations exposed to persistent inflammatory cues. MagSPCL blend

as been studied in our group using various processing techniques
t al., Magnetic responsive materials modulate the inflammatory 
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Fig. 3. Activation of NF-kB signaling pathway by hTDCs on PEMF actuated membranes. Ai) Schematic representation of NF-kB signaling pathway. Aii) Gene expression 

analysis of IL-1R1 upon hTDCs treatment with IL-1 β by RT-PCR analysis . Bi) Confocal images of NF-kB (green) and nuclei (DAPI, blue) after 3 days in culture on PEMF 

actuated membranes (confocal microscopy x63, scale bar 20 μm). Arrows point the intracellular localization of NF-kB protein. Bii) Gene expression analysis of NF-kB upon 

hTDCs treatment with IL-1 β by RT-PCR analysis. Data on the graphs are presented as mean ± SEM ( n = 3, 3 experimental replicates from 3 biological replicates) and data 

analysed using 2-way ANOVA followed by multiple comparisons tests. Control condition refers to the absence of IL-1 β treatment. Static condition refers to the absence of 

PEMF stimulation. Symbols $, #, γ , α, &, p, denote statistical differences ∗ for p < 0.05; ∗∗ for p < 0.01; ∗∗∗ for p < 0.001; and ∗∗∗∗ for p < 0.0 0 01, respectively. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.). 
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o fabricate different shapes and architectures for magnetic based

endon tissue engineering. magSPCL matrices have shown to be

iocompatible and hold immunomodulatory properties [22] in cell-

ree strategies. 

The results obtained here showed that IL-1 β treated tendon

ells were able to colonize the magSPCL membranes, increasing

heir metabolic activity, especially under PEMF stimulation in the

ays of culture. 

More importantly, the gene expression of MMPs ( −1, −2 and −3 )

ncreased in IL-1 β treated hTDCs but, when cells were exposed

o PEMF the MMPs levels decreased. The expression of MMPs, en-

ymes implicated in cell responses to the environmental cues, in-

luding cell proliferation, migration, differentiation and in the dy-

amic process of ECM turnover, with relevant implications in the

nflammatory and remodeling phases of healing [33] , suggest that

EMF actuation can modify hTDCs behavior, decreasing the expres-

ion of MMPs associated to collagen degradation, which may con-

ribute to inflammatory pain and tendon lesions. As cytoskeleton

hanges often precede MMP modulation during tissue remodeling,

ctin dynamics might be linked to the expression of MMP genes

34] . In our study the detection of vinculin and α-actin [ 35 , 36 ] is

ot compromised by the PEMF stimulation. The actin expression is

hus in accordance to the outcomes from MMPs, whose expression

s decreased with PEMF actuation ( Fig 1 Bi and Bii). 

The detection of both actin and vinculin also confirms the typi-

al elongation of hTDCs and surface adhesion of hTDCs to magSPCL

embranes, independently of IL-1 β treatment or PEMF stimula-

ion. 

Overall, magSPCL membranes stimulated by PEMF maintain hT-

Cs viability, enable hTDCs adhesion and influence the turnover of

he ECM antagonizing IL-1 β effects on ECM enzymes. Afterwards,

e investigated the tenogenic phenotype of hTDCs laden in PEMF

esponsive membranes after IL-1 β treatment. The combination of

EMF and magSPCL membranes did not significantly change the

xpression of DCN, TNC and SCX during the time in culture, but

timulated an increment in MKX and in collagens expression. The
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ncrement of collagen type III stimulated by PEMF may relate to its

ole in the regulation of collagen type I fibrillogenesis and in tis-

ue repair. Collagen III stabilizes the repair site and contributes to

he ECM remodeling process highlighting the importance of colla-

en type III to promote a regenerative response [37] . Thus, PEMF

ctuation on hTDCs/magSPCL constructs contributes to the main-

enance of a tenogenic phenotype at the gene and protein level.

he synergistic action of PEMF and magSPCL membranes on the

xpression of tendon genes blurs the pro-inflammatory stimuli of

xogenous IL-1 β supplementation to the cells. 

To elucidate the mechanisms associated to the hTDCs response

o PEMF and magSPCL membranes, we searched for key mediators

f the IL-1 β intracellular signaling. The NF- k B pathway regulates

enes involved in multiple immune processes and prolonged acti-

ation of NF- k B may lead to inflammatory diseases [ 38 , 39 ]. In the

anonical NF- k B signaling pathway IL-1 β activates the IL-1 β re-

eptor (IL1R1) ultimately resulting in rapid and transient nuclear

ranslocation of NF- k B, as schematically represented in Fig. 3 Ai.

he NF- k B translocation to the nucleus causes the activation of tar-

et gene transcription of pro-inflammatory factors as TNF α, IL-1 β
nd IL-6 [39] . Our results indicated that IL-1 β treatment on hTDCs

ncreases the expression of IL1R1 , promotes the activation of NF-

 B after 3 days in culture and induces up-regulation of TNF α, IL-6,

L-8 and COX-2 and downregulation of IL-10 and IL-4 . Interestingly,

F- k B signaling was counteracted by magSPCL membranes stimu-

ated by PEMF. Other studies also reported significant changes in

he downregulation of TNF- α and NF- k B in cells continuously ex-

osed to a PEMF at 5 Hz [40] . Altogether, these results highlight

he relevance of PEMF and magnetic responsive materials to mod-

late hTDCs response to environments with inflammatory signa-

ures. 

Macrophages are IL-1 β producing cells and major orchestra-

ors of the inflammation process. Macrophages are present in ten-

on niches after tendon injury and in tendinopathy conditions, and

ontribute with inflammatory cues, which may prolong the inflam-

atory phase and influence proper healing. Magnetic stimulation
t al., Magnetic responsive materials modulate the inflammatory 
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Fig. 4. Gene expression and release of pro and anti-inflammatory factors from hTDCs laden on PEMF actuated membranes. Relative gene expression of A) TNF α, IL -6, IL -8, 

COX-2 , and B) IL-10 and IL-4, on PEMF actuated membranes upon treatment with IL-1 β by RT-PCR analysis. Control condition refers to the absence of IL-1 β . C) Release of 

IL-6 and TNF αquantified in cultured medium 1, 3 and 7 days after IL-1 β and PEMF stimulation. Data on the graphs are presented as mean ± SEM ( n = 3, 3 experimental 

replicates from 3 biological replicates) and data analysed using 2-way ANOVA followed by multiple comparisons tests. Control condition refers to the absence of IL-1 β

treatment. Symbols $, #, γ , α, &, p, denote statistical differences ∗ for p < 0.05; ∗∗ for p < 0.01; ∗∗∗ for p < 0.001; and ∗∗∗∗ for p < 0.0 0 01, respectively. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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seems to induce changes in macrophage morphology as these cells

exhibit a more elongated shape, which has been associated to the

process of macrophage polarization [41] , in particular to the M2

phenotype. 

Furthermore, macrophages laden in magSPCL membranes stim-

ulated by PEMF were CD68 + , a M1 marker, but were also CD206 ++ 

and CD163 ++ , which are established markers for M2 phenotype,

suggesting the presence of different macrophage populations. For

healing to occur, M1 macrophages should be present for the in-

flammatory phase and M2 macrophages are required at later stages

to promote repair. Our findings suggest that PEMF responsive

magSPCL membranes favor M1/M2 balance towards M2-phenotype

without obliterating M1 macrophage populations. PEMF is thought

to influence a number of cell-membrane processes and to acti-

vate intracellular signaling transduction. PEMF was shown to assist

tenogenic phenotype [ 42 , 43 ], accelerate cell differentiation [44] , in-

fluence the activation of cell surface receptors [45] , act on voltage-

gated calcium channels [46] and in cell resting potential [46] ,
Please cite this article as: A. Vinhas, M.T. Rodrigues, A.I. Gonçalves e
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hich is also affected by inflammation. PEMF has also been related

o inflammation kinetics, to participate in the control of tissue in-

ammation [47] and in the downregulation of TNF- α and NF-kB

40] , contributing for tissue repair. The specific mechanisms in im-

unomodulation are outshined by the complex inflammatory cas-

ades and intricate biological reactions mediated by different sig-

aling pathways. Some studies also suggest a PEMF action on both

ranscriptional and posttranscriptional regulatory mechanisms. The

nvolvement of PEMF in epigenetic programming [41] , could ex-

lain the switch in macrophage polarization, and consequently the

mpact on the gene expression of mediators of the inflammatory

esponse. 

Although magSPCL membranes were approached as an in vitro

odel for studying cell responses under external magnetic fields

nd in pro-inflammatory conditions, the immunomodulatory po-

ential of these biomaterials could be further assessed on lesions

o orient cell responses, regulate pro-inflammatory events and, ul-

imately improve healing outcomes. Furthermore, the investigation
t al., Magnetic responsive materials modulate the inflammatory 
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Fig. 5. Human macrophages response to PEMF actuated membranes. A) SEM micrographs of macrophages adhered to the magSPCL membranes after 24 and 48 h in culture. 

Scale bar, 10 μm. B) Immunodetection of macrophage polarization markers. Confocal microscopy images of immunostaining against M0 phenotype, CD14 (yellow), CD45 

(green) and CD16 (red); M1 phenotype, CD68 (red) and M2 phenotype, CD169 (red) and CD206 (green) after 24 h in culture in macrophage laden magSPCLmembranes 

(confocal microscopy x63, scale bar 20 μm). Static condition refers to the absence of PEMF stimulation. Insets are representative images of hTDCs without IL-1 β treatment 

(control). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). 
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f cell and molecular mechanisms using commercial magnetother-

py devices used in the clinics, in which the parameters of mag-

etic fields are known to be safe and with therapeutic value in hu-

ans, potentially facilitates a faster translation of advanced strate-

ies into therapeutics. 

Despite the contributions of this study to the understanding of

agnetic stimulation impact driving immunomodulatory cell be-

avior, there are some limitations to be overcome. IL-1 β model is

 widely-used model of inflammation for prospective studies but

uite simplistic when compared to the pathological niches and to

he intricate immune networks of living organisms. Also, the in-

olvement of NF-kB signaling requires further investigation focus-

ng on the precise molecules, receptors and impact on immune

ells to design better strategies to address persistent inflamma-

ory environments. In sum, PEMF and magnetic responsive mate-

ials contribute for modulating and guiding biological responses

n inflammatory compromised environments associated to tendon

athologies, whose mechanisms should be deeper explored in fu-

ure studies. This study highlights the complementary value of

agnetic stimulus on cell laden magnetic responsive materials in
 s
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uiding immunomodulatory events, controlling the perpetuation of

nflammatory cues and towards resolving inflammation envisioning

endon regenerative platforms. 

. Conclusions 

PEMF actuated magSPCL membranes have a modulatory effect

n intracellular inflammatory signals and in controlling the cy-

okine profile of IL-1 β treated hTDCs. The influence of magnetic

orces and magnetic elements may trigger IL1R1/NF-kB signaling

lthough it requires deeper investigation. Moreover, PEMF actuated

agSPCL membranes showed an immunomodulatory effect on in-

ammatory cells guiding macrophages towards M2 functional pro-

rams, highlighting the potential of magnetic stimulation for ten-

on healing strategies. 

This work contributes with new perspectives on cellular re-

ponses to pro-inflammatory environments and to the potential

pplicability of magnetic responsive systems as alternative thera-

eutic tools for the treatment of tendinopathy and for remotely

timulating tendon regeneration. 
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