
 

 
«This paper is financed by National Funds of the FCT – Portuguese 

Foundation for Science and Technology within the project 
«UIDB/03182/2020» 

 
 

 
“Measuring and Hedging Geopolitical Risk” 

 
 

 
https://www.eeg.uminho.pt/pt/investigar/nipe 

 
 

2020 
 

#08 

WORKING PAPER 

Robert F. Engle 
Susana Campos-Martins 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Measuring and Hedging Geopolitical Risk

Robert F. Engle

New York Stern School of Business

Susana Campos-Martins

Nuffield College, University of Oxford

Centre for Research in Economics and Management,

University of Minho

Abstract

Geopolitical events can impact volatilities of all assets, asset classes, sectors and
countries. It is shown that innovations to volatilities are correlated across assets
and therefore can be used to measure and hedge geopolitical risk. We introduce
a definition of geopolitical risk which is based on volatility shocks to a wide range
of financial market prices. To measure geopolitical risk, we propose a statistical
model for the magnitude of the common volatility shocks. Accordingly, a test and
estimation methods are developed and studied using both empirical and simulated
data. We provide a novel explanation for why idiosyncratic volatilities comove based
on a new way to formulate multiplicative factors. Finally, we propose a new criterion
for portfolio optimality which is intended to reduce the exposure to geopolitical risk.

1 Introduction

Geopolitical risk has become an increasingly important component of risk analysis. It

is broadly defined as the exposure of one or more countries to political actions in other

countries. Clearly events such as the Brexit referendum in 2016 are considered geopolitical

events. However many other events such as military or terrorist actions and central bank

or regulatory actions can also be interpreted as geopolitical events. Even local financial

events, cyber attacks, trade wars and climate change can have global financial impacts.

In this paper we develop an empirical measure of geopolitical risk by defining it as

a common shock to the volatility of a very wide class of financial assets. Geopolitical

events are assumed to affect all countries, all asset classes, and all sectors. We will use

the term GEOVOL to refer to such shocks. These shocks can be described as political,
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regulatory, military, terrorist or natural disasters, but the key feature is that they move

financial prices of a very wide class of assets.

To measure geopolitical risk, we use financial market prices which are assumed to

incorporate all available information. A statistical approach to estimation is introduced

and examined theoretically, by simulation and by data analysis. The results are then

compared with other estimates which use different methodologies. Other major contri-

butions are derived from the GEOVOL model. It provides a novel explanation for why

idiosyncratic volatilities comove. It is also a new way to formulate multiplicative factors

for volatility rather than the more traditional additive decomposition.

It is well known that volatilities of asset returns comove. It is natural to observe

common variation when assets are all exposed to the same factors. If financial returns

are linear combinations of common factors, time-varying factors will imply a volatility

factor structure. However, whatever factors are taken out of the data, the idiosyncratic

returns still have correlated volatilities (Herskovic et al., 2016). Since volatility is also

well known to be predictable, the comovements of volatilities are most likely caused by

correlation between the shocks to volatility. The fundamental observation underlying the

GEOVOL model is that even though the volatility standardized residuals are orthogonal

in both times series and cross section with unit variances, their squares can be correlated.

This observation in time series was the key motivation for the original ARCH model of

Engle (1982) and is now the key motivation for the GEOVOL model in cross section. It

recognizes the fact that assets in different asset classes, sectors, or countries all respond to

geopolitical news. Results thus extend the literature on idiosyncratic volatility including

Connor et al. (2006) and Ang et al. (2006).

Comovements of innovations to volatilities are likely to be the primary source of the

comovements of volatilities. It is thus natural to detect volatility factors by observing

cross-sectional positive correlations between squared standardized innovations. This new

and testable observation is first presented in the baseline model as the motivation to

modeling and testing GEOVOL effects. The impacts of this common volatility factor

on the volatilities of the asset returns, despite being at the same time, may be different

across assets. To model this heterogeneity, the model is extended to allow for different

factors loadings on the GEOVOL factor. By allowing for heterogeneous volatility factors,

the GEOVOL model can be used in more general settings than geopolitical.

The increasing relevance of geopolitical risk and the need for quantifying it gave rise

to an increasing interest among not only practitioners but also academics. Several re-

searchers are now providing their own indicators of geopolitical risk. As for the methods

used, textual analysis (Baker et al., 2016, Caldara and Iacoviello, 2018) is becoming very

popular. Modelling multiplicative volatility factors using numerical methods is easy to

implement and to replicate. Another appealing feature of the multiplicative decomposi-

tion proposed is that it implies a one-factor structure of the squared innovation covariance

matrix to which factor or principal component analysis can be applied. This follows the
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literature on one-factor models to explain return variances; See Trzcinka (1986), Connor

and Korajczyk (1993) and Jones (2001) for references.

The modelling and estimation strategy of GEOVOL is applied to country equity in-

dices from 1996 until 2019. The results indicate that GEOVOL spikes around the 9/11

attack, financial and economic crises, and political voting. The country indices are af-

fected differently if the GEOVOL factor loadings differ across assets. Despite volatility

shocks that affect all portfolios, some assets are more sensitive to the volatility shocks

than others. Hence, there is a role for risk diversification.

Geopolitical risk is often the explanation for weak investment results. Conventional

Markowitz style portfolios are predicted to have low volatility but they may be very sen-

sitive to volatility shocks. Thus, assets that are not sensitive to volatility shocks are likely

to be attractive in a portfolio because they diversify geopolitical risk. Consequently, the

GEOVOL model also allows for a new criterion for portfolio optimality which complements

the mean-variance efficiency by reducing the exposure to geopolitical risk.

The paper is organized as follows. In the following section, the baseline model of

GEOVOL and the model with heterogeneous GEOVOL effects are presented and the es-

timation method is developed. Subsequently, in section 3, a new test of GEOVOL effects

is proposed and its properties in finite samples are investigated using Monte Carlo simu-

lations. An empirical application to country equity indices is provided in section 4 where

the empirical results are discussed and compared to other existing measures. Section

5 develops implications for portfolio formation and section 6 explores the forecasting of

geopolitical risk. Section 7 updates the estimates for the first 5 months of 2020 in order

to view the COVID-19 period. Finally, section 8 concludes the paper.

2 The model of GEOVOL

It is well known that volatilities of financial returns tend to rise and fall together. Multi-

plicative volatility factors are introduced to explain the variation of all random variables

in multivariate time series. They are assumed as the drivers of comovements of volatili-

ties and, primarily, of shocks to volatilities. We start by representing the baseline model

of GEOVOL and later the model is extended to accommodate heterogeneous impacts of

GEOVOL on the individual volatilities.

The standard asset pricing model can be formulated for an (N × 1) vector of returns

rt ≡ (r1t, . . . , rNt)
′ as,

f t = w′t−1rt (1)

rt = rf + βf t + diag{
√
ht}et,

where β is an (N × K) matrix of risk exposures, f t is a (K × 1) vector of factors,

et ≡ (e1t, . . . , eNt)
′ is the vector of residuals from factors, and ht ≡ (h1t, . . . , hNt)

′ con-

tains the conditional variances. We define diag{a} as a matrix with the vector a on the
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diagonal and 0 elsewhere. If model (1) is correctly specified and factors fully explain

the cross sectional correlation, then et contains idiosyncratic returns and ht idiosyncratic

conditional variances. The standard assumptions on et state that the standardized resid-

uals are uncorrelated in both time series and cross section with unit variances. Hence, if

factors are sufficient to reduce the contemporaneous correlations to zero,

Et−1(ete
′
t) = I. (2)

Satisfying the assumptions does not imply that the elements of et are independent,

only that they are uncorrelated. If they were independent, then all functions of the

elements of et would also be independent and there would be no comovements of any

kind. Consequently, the square (or absolute value) of et may be correlated in the cross

section. Define ψit as a volatility shock in the univariate case as follows

ψit ≡ e2
it − 1 =

(rit − rf − β′if t)
2 − hit

hit
, (3)

where βi is a column vector containing the elements of the ith row of matrix β. The

volatility shock ψit represents the proportional difference between the squared ith id-

iosyncrasy and its expectation. In univariate settings, the realized e2
t , are on some dates

bigger than one and on others smaller than one. If many assets have e2
t bigger than one

at the same time, this can be interpreted as a common volatility shock which we associate

with geopolitical news (because of its broad impact on many assets).

2.1 The GEOVOL statistical model

There is very strong evidence that the squared standardized residuals of returns net of

factors are positively correlated. This observation in the time series was the motivation

for the original ARCH model, see Engle (1982), and now the same observation in the cross

section is the motivation for GEOVOL as a measure of geopolitical risk. GEOVOL will

be high when squared standardized residuals are high for a wide range of assets. Thus it

is a measure of the magnitude of shocks to volatility that are common to a collection of

assets.

To estimate GEOVOL we must introduce parametric assumptions on the form of this

relation. Let GEOVOL be represented by
√
x where x is a (T×1) vector of latent variables

and let s be an (N × 1) vector of parameters interpreted as factor loadings satisfying the

assumptions:

Et−1(xt) = 1, Et−1(xt − 1)2 = vt, xt > 0, t = 1, . . . , T, (4)

εt ∼ IIN(0, 1), (5)

si ∈ [0, 1], i = 1, . . . , N. (6)
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We can specify a function g(si, xt) that is a data generating process for the random

variables, eit from xt, si and εit. Throughout this paper we assume

eit =
√
g(si, xt)εit, g ≡ sixt + 1− si, (7)

but other specifications are certainly possible. Specification (7) implies that g is non-

negative with expected value 1 and therefore satisfies (2). It follows that

Ψijt = Et−1

[
ε2
itε

2
jt

(
sisj(xt − 1)2 + (si + sj)(xt − 1) + 1

)
− 1
]

= sisjvt (8)

Ψiit = Et−1

[
ε4
it

(
s2
i (xt − 1)2 + 1

)
− 1
]

= 3s2
i vt + 2.

From (8) the sample covariance matrix can be constructed by averaging over t,

Ψ =
1

T
E

[
T∑
t=1

e2
te

2′
t

]
=

1

T

T∑
t=1

Ψt = ss′v̄ +D, (9)

D = diag{2s2
i v̄ + 2},

where v̄ = (1/T )
∑T

t=1 vt. It is clear that Ψ is a factor matrix with x as the factor and

s as the vector of factor loadings. Thus principle components analysis of the empirical

version of Ψ will give preliminary estimates of both s and x.

2.2 Estimating the equal loading model

An important special case of the GEOVOL model is the version with equal factor loadings

for all the assets. In this case we consider the vector s = ι, a vector of ones. Equation

(9) becomes

Ψ = ιι′v̄ + 2(v̄ + 1)I. (10)

The heteroskedasticity model of equation (7) becomes

eit =
√
gtεit =

√
xtεit. (11)

Maximum likelihood estimation of xt will require simply a cross sectional estimate of

observations on date t. Thus the likelihood function is

L(x; e) =
T∑
t=1

Lt, (12)

Lt = −1

2

N∑
i=1

{
log(gt) +

e2
it

gt

}
= −1

2

{
N log(xt) +

∑N
i=1 e

2
it

xt

}
.
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The x which maximizes the log likelihood is just the maximum of each cross sectional

estimate of x. Differentiating equation (12) with respect to xt yields

x̂t =
1

N

N∑
i=1

e2
it. (13)

This estimator does not depend upon vt. It guarantees that xt is positive and has a

mean of one. It is presumably consistent as N goes to infinity with T finite or potentially

increasing more slowly than N .

2.3 Estimating the GEOVOL model

The covariance matrix in (9) is observable and has information on the parameters of

the model. However, it is not identified unless additional assumptions are made on the

unknown parameters s. Clearly if all the elements of s are multiplied by a scalar and

v is divided by the square of this scalar, the covariances will be unchanged. This is

hardly surprising as larger factor loadings would be associated with a factor with smaller

variance.

Remark 2.1. The covariances that identify the matrix of squared standardized innova-

tions will be unchanged if each si is multiplied by a scalar γ and the variance of x is

divided by γ2.

We therefore normalize the factor loadings by requiring that

s′s = 1. (14)

This normalization is consistent with the requirement that the loadings are in the unit

interval. It is also the normalization implicit in principal component analysis of (9).

To gain efficiency, we again want to use not just the unconditional covariances but

also the observed heteroscedasticity relationships as in equation (7). These equations can

be used to estimate s conditional on x̂ by time series analysis or to estimate x conditional

on ŝ from cross sectional analysis. The likelihood function can be written for this model

as follows.

L(s, x; e) = −1

2

N,T∑
i=1,t=1

{
log(g(si, xt)) +

e2
it

g(si, xt)

}
. (15)

This is not a classical likelihood function since x is considered a latent variable rather

than a parameter. However, a common approach to estimation is to use the likelihood

as if x were observed which is called data augmentation by Hastie et al. (2009). The
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iteration solves the first order conditions

∂L(s, x; e)

∂si
= 0, (16)

∂L(s, x; e)

∂xt
= 0

sequentially until parameters are found that solve both jointly.

This algorithm can be interpreted as an Expectation-Maximization (EM) algorithm

where the cross sectional regression estimates the unobserved value of x in the expectation

step and then the time series regression maximizes the likelihood function conditional

on the estimated latent variable. Since the expectation step is also a maximization,

this is called a Maximization-Maximization procedure by Hastie et al. (2009). Each step

therefore increases the likelihood function. The algorithm stops when the parameters

become constant and hence the likelihood function has reached an extremum which can be

verified to be a maximum. The initial estimates are given by principal components of the

empirical Ψ matrix; See Trzcinka (1986), Connor and Korajczyk (1993) or Jones (2001) for

one-factor models of return variances. For non-normal errors, we use the rank correlation

matrix. With the initial loadings obtained from the first principal component, we are

in the position to estimate the global volatility factor at each point in time using cross

section analysis. Convergence occurs typically after something like 15 to 30 iterations.

The normalizations are imposed after each step unless they are imposed in the step itself.

As N gets large, the average correlation becomes smaller. Other choices for scaling can

be derived from s′s = aN , where a is a constant between 1/N and 1. However, only

when a = 1/N we are guaranteed to have si, i = 1, . . . , N, smaller than one and g(si, xt)

positive for every (i, t).

Remark 2.2. In each iteration, si, i = 1, . . . , N , and xt, t = 1, . . . , T , are constrained to

be, respectively, in the interval [0, 1] and positive. Scaling is also imposed to guarantee

x̄t = (1/T )
∑T

t=1 xt = 1 and s′s = 1.

2.4 Monte Carlo simulations

In the Monte Carlo simulations, the innovations εt are generated as random standard

normal variables. The factor loadings si, i = 1, . . . , N, are fixed, i.e., the same factor

loadings are used across replications within the same dimension (N = 10 or N = 50).

Table 1 shows the true values of the factor loadings s for N = 10 (upper panel) and

N = 50 (lower panel). These values are generated by random draws from a uniform

distribution in the interval [0, 1].

The latent factor in the GEOVOL model can be assumed as either fixed or random.

To generate data on replication r of GEOVOL, xrt, t = 1, . . . , T, is computed as the

7
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Table 1: The true loadings si, i = 1, . . . , N , used in the Monte Carlo simulations.

N = 10 (s̄ = 0.253)

0.013 0.092 0.370 0.097 0.488 0.072 0.068 0.394 0.469 0.471

N = 50 (s̄ = 0.121)

0.007 0.202 0.118 0.186 0.187 0.116 0.008 0.031 0.149 0.221
0.173 0.233 0.109 0.029 0.108 0.246 0.016 0.186 0.076 0.069
0.092 0.142 0.206 0.145 0.163 0.108 0.175 0.016 0.054 0.168
0.257 0.075 0.063 0.210 0.126 0.167 0.094 0.054 0.070 0.233
0.029 0.143 0.145 0.002 0.187 0.088 0.023 0.082 0.238 0.009

exponential of a random normal variable as follows:

xrt = exp(φrt), (17)

where φrt is drawn from a normal distribution with mean zero and variance v2. Then,

scaling is imposed to guarantee 1/T
∑T

t=1 xrt = 1, r = 1, ..., R. The number of replications,

R, is 150.

To measure the accuracy of the estimator for any xt, t = 1, . . . , T , we compute an

equivalent to the R2 in regression analysis. This is done as follows:

MSEr(x− x̂) =
1

T

T∑
t=1

(xrt − x̂rt)2 (18)

MSEr(x− x̄) =
1

T

T∑
t=1

(xrt − x̄)2 (19)

R2
x =

1

R

R∑
r=1

{
1− MSEr(x− x̂)

MSEr(x− x̄)

}
, (20)

where x̄ = 1. A similar procedure is applied to obtain R2
s in which s̄ = 1/N

∑N
t=1 si. The

higher the R2 the more closely the estimated parameters match the simulated parameters.

The results for R2
x and R2

s using the baseline model and other statistics averaged across

the replications are reported in Table 2. In the simulations, v = 2. When assuming GEO-

VOL effects as random, the empirical variance of xt, v, is averaged across replications.

The first observation drawn from the simulations is that the average empirical correla-

tion of squared innovations ρ̄e2 appears to decrease with the number of series which is

consistent with the normalization (14). The results indicate that the estimator for the

factor loadings and the factor can potentially be improved by increasing the number of,

respectively, observations and series. In short samples, the precision of the estimator for

si, i = 1, . . . , N, can be adversely affected by an increasing number of series. Due to the

normalization, the loadings become smaller as N increases and so more difficult to esti-

8

Electronic copy available at: https://ssrn.com/abstract=3685213



Table 2: Estimated R2
s, R

2
x and other empirical statistics from the Monte Carlo simulations.

Random xt

T = 1000 T = 5000
N = 10 N = 50 N = 10 N = 50

R2
s 0.924 0.640 0.981 0.926

R2
x 0.810 0.885 0.820 0.895

ρ̄e2 0.147 0.076 0.154 0.096

v 28.79 27.61 37.53 36.66

Fixed xt

T = 1000 T = 5000
N = 10 N = 50 N = 10 N = 50

0.924 0.632 0.983 0.924

0.785 0.901 0.787 0.888

0.175 0.109 0.165 0.101

38.13 38.13 35.82 35.82

mate accurately. Increasing the number of observations does not seem to have a significant

impact on the accuracy of the estimator for xt, t = 1, . . . , T, since this also increases the

number of parameters. Results are robust to assuming either random or fixed GEOVOL

effects. Finally, the higher the average correlation of squared standardized innovations,

the more accurate is the proposed estimator and so higher R2
x and R2

s are to be expected.

3 Testing for GEOVOL effects

An observable implication of the GEOVOL model is that, even though the elements of

et are orthogonal in both times series and cross section, they may not be independent

meaning that their squares can be correlated in the cross section. These comovements

of e2
t are induced by a common volatility factor, GEOVOL. It follows that detecting

GEOVOL involves testing whether the squared standardized innovations are correlated.

Empirical evidence for GEOVOL is easy to find using the sample covariance matrix.

The null hypothesis of no correlation in et is given by (2). Similarly, the null hypothesis

for e2
t is simply (9) with v̄ = 0, which implies

H0 : Ψ = 2I. (21)

The two in this equation is a result of assuming normality. Otherwise it would be the

kurtosis of each return minus one. When the equal factor loading model is the alternative,

all pairs of assets are affected by the same shock, and they will have the same correla-

tion under the alternative. This is an equicorrelated panel and testing using the average

correlation is sufficient for detecting GEOVOL. The ”no GEOVOL effects” hypothesis

holds when xt is constant, that is when v = 0. In this setting, et are independent and

no comovements of any kind can be observed across the standardized residuals. The null

hypothesis H0 : v = 0 =⇒ ρ̄e2 = 0, where ρ̄e2 denotes the average empirical correlation

of e2
t . Under the alternative, the global volatility factor varies over time inducing comove-

ments and positive correlations between the squared standardized residuals are observed.

Hence, H1 : v > 0 =⇒ ρ̄e2 > 0.

9
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For N(N − 1)/2 correlations, the test statistic becomes

ξ =

√
NT

(N − 1)/2

∑T
i>j,j=1

∑T
t=1(e2

it − 1)(e2
jt − 1)∑N

i=1

∑T
t=1(e2

it − 1)2

d→ N(0, 1) under H0. (22)

We are in the position to state that there is very strong evidence that the squared

standardized residuals of returns net of factors are positively correlated. The finite sample

properties of this test as well as other similar tests for the average correlation in the

literature (for comparison) are studied by means of Monte Carlo simulations in section

3.1. A brief description of these alternative tests is presented in Appendix A.

3.1 Finite sample properties

To investigate how the test for global volatility factors performs in finite samples, we

run another Monte Carlo experiment with 100000 replications of samples with different

dimensions (N = 2, 5, 50 and T = 100, 1000). For each replication, we compute the test

statistic (22). Then, the empirical rejection frequencies are calculated for a particular

nominal significance level (α = 0.01, 0.05). For comparison, we also show the results for

alternative test statistics described in the Appendix A. In the simulations, we assume

v = 0 (ρ̄e2 = 0) and v > 0 (ρ̄e2 > 0) when studying, respectively, the size and the power

of the test statistics.

Under the null hypothesis of no GEOVOL, et is simply generated by random standard-

ized normal variables. These are naturally independent over time and across series which

imply they are also uncorrelated. The results from the size simulations are summarized

in Table 3. The size distortions are negligible even for the smallest samples (N = 2 or

N = 5). In general, the empirical rejection frequencies tend to approximate the nominal

significance levels when the number of either assets or observations increases.

For studying the power of the test, we start by considering the baseline model, i.e.

the GEOVOL model with equal unit factor loadings or si = 1 for i = 1, . . . , N . Then we

generalize to the model with heterogeneous loadings on the global volatility factor. We

generate xt as in (17). The simulations results for power under the baseline GEOVOL

model are shown in Table 4. Power is already high for low dimensional models (N = 5)

regardless of the number of observations. It increases by adding assets to the sample

and/or by considering longer times series.

The results from the power simulations with heterogeneous volatility factors are pre-

sented in Table 5. For each replication, the factor loadings s are drawn from a random

uniform distribution in the interval [0, 1] and normalized such that s′s = 1. Overall, power

tends to decrease for the model with heterogeneous volatility factors when compared to

the previous case with equal unit loadings. Moreover, there is almost no improvement

in power by increasing the number of assets. The percentage of variance explained by

GEOVOL is given by s′s/N . Due to the normalization s′s = 1, this ratio becomes 1/N .

10
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Table 3: Empirical rejection frequencies under H0 : ρ̄e2 = 0.

DGP T N tr1 tr2 tr3 tz ξ

α = 0.01

1 100 2 0.022 0.022 0.022 0.022 0.019
2 100 5 0.016 0.018 0.017 0.019 0.017
3 100 50 0.014 0.018 0.015 0.019 0.016
4 1000 2 0.015 0.015 0.015 0.015 0.015
5 1000 5 0.013 0.013 0.013 0.013 0.013
6 1000 50 0.012 0.012 0.012 0.012 0.012

α = 0.05

1 100 2 0.064 0.064 0.065 0.064 0.060
2 100 5 0.057 0.060 0.058 0.061 0.057
3 100 50 0.055 0.065 0.056 0.066 0.057
4 1000 2 0.056 0.056 0.056 0.056 0.055
5 1000 5 0.053 0.053 0.053 0.053 0.053
6 1000 50 0.052 0.052 0.052 0.052 0.052

Increasing N thus reduces the percentage of the variance of the standardized innovations

explained by GEOVOL. This is then reflected in lower correlations of squared standard-

ized innovations and consequently lower power. To increase power, an effective solution

is to use long series (say at least T = 1000, about four years of daily observations).

4 An application to country equity indices

4.1 The data

The All Country World Index (ACWI) is a global equity index maintained by MSCI

Inc. It is designed to measure the global equity-market performance, including stocks

from developed and emerging markets. The index covers approximately 85% of the global

investable equity opportunity set, including securities across mid- and large-cap size, style

and sector segments. As of March 2019, the ACWI tracks 2,771 stocks with a total market

capitalization of approximately 45,171 USD Billions. The top five constituent stocks in

decreasing order of market capitalization are Apple, Microsoft Corporation, Amazon.com,

Facebook and Johnson & Johnson. The top five countries by stock allocation are the

United States (55.05% of the total index market capitalization), Japan (7.23%), the United

Kingdom (5.15%), China (3.87%) and France (3.4%). This implies that all the other

countries account for the remaining 25.3% of the total index market capitalization. Using

the Global Industry Classification Standard method (GICS) taxonomy, most stocks are

classified as Financials (16.59%), followed foremost by Information Technology (15.71%),

Health care (11.65%) Consumer Discretionary (10.76%) and Industrials (10.44%).

The iShares MSCI World Exchange Traded Fund (ETF) tracks the ACWI and is

maintained by Blackrock Inc. It seeks to track the investment results of an index which
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Table 4: Empirical rejection frequencies under H1 : ρ̄e2 > 0 and GEOVOL model with
heterogeneous effects.

DGP T N tr1 tr2 tr3 tz ξ

α = 0.01

1 100 2 0.219 0.219 0.220 0.219 0.183
2 100 5 0.365 0.382 0.368 0.387 0.389
3 100 50 0.651 0.679 0.654 0.685 0.705
4 1000 2 0.737 0.737 0.737 0.737 0.704
5 1000 5 0.978 0.979 0.978 0.979 0.986
6 1000 50 1.000 1.000 1.000 1.000 1.000

α = 0.05

1 100 2 0.329 0.329 0.330 0.329 0.294
2 100 5 0.534 0.546 0.536 0.548 0.552
3 100 50 0.799 0.819 0.800 0.820 0.831
4 1000 2 0.820 0.820 0.820 0.820 0.794
5 1000 5 0.991 0.991 0.991 0.991 0.994
6 1000 50 1.000 1.000 1.000 1.000 1.000

v = 1 and si, i = 1, . . . , N, drawn from U(0, 1).

is composed by the shares of developed market companies around the world. The sample

covers daily closing prices of 42 individual country ETFs traded in the New York Stock

Exchange (NYSE). These are from March 18, 1996 to October 10, 2019 (total of 5933

observations). These assets have closing prices that are all observed at the same time so

there is no asynchrony in returns. Because assets were introduced on different dates, this

is an unbalanced panel. In fact, roughly 1/3 are missing at the beginning of the sample

period. The currency is the U.S. dollar. The closing prices are converted into log-returns

and, to avoid convergence problems in the estimation, extreme positive (negative) returns

are truncated to +10% (10%). The summary statistics for each country equity ETF in

the sample are reported in the Appendix B.

A factor model is estimated for each country equity ETF. A single factor, the cross

section average of returns, is used and sufficient to capture all the common variation in

the returns. The average correlation ρ̄ê = −0.026 which is not statistically different from

zero. An AR(1) model is also considered when time dependence is observed in the first

moment of the data. Given the strong evidence for the presence of ARCH effects, we

consider a GARCH(1, 1) model for modelling the second moment.

In fact, a first-order GARCH process is usually sufficient to capture the heteroskedastic

behaviour of the time series in financial applications. The test statistics and p−values

from Ljung-Box AR(1) and ARCH(1) tests can also be found in Appendix B.

For the sake of saving space, we are only presenting the averaged estimated residuals

and volatilities across the 42 assets in the sample. These are shown in Figure 1. The

daily cross-sectional mean residual is computed as ¯̂et = (1/N)
∑N

i=1 êit and the daily

cross-sectional mean volatility as the square root of the mean variance
√

(1/N)
∑N

i=1 ĥit.
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Table 5: Empirical rejection frequencies under H1 : ρ̄e2 > 0 and the baseline GEOVOL
model.

DGP T N tr1 tr2 tr3 tz ξ

α = 0.01

1 100 2 0.149 0.149 0.150 0.149 0.131
2 100 5 0.638 0.650 0.641 0.657 0.630
3 100 50 1.000 1.000 1.000 1.000 1.000
4 1000 2 0.684 0.684 0.684 0.684 0.678
5 1000 5 1.000 1.000 1.000 1.000 1.000
6 1000 50 1.000 1.000 1.000 1.000 1.000

α = 0.05

1 100 2 0.264 0.264 0.266 0.264 0.245
2 100 5 0.807 0.813 0.809 0.815 0.797
3 100 50 1.000 1.000 1.000 1.000 1.000
4 1000 2 0.846 0.846 0.846 0.846 0.843
5 1000 5 1.000 1.000 1.000 1.000 1.000
6 1000 50 1.000 1.000 1.000 1.000 1.000

v = 0.5 and si = 1, i = 1, . . . , N,.

The late 1990’s and early 2000’s, and the global financial crisis mark periods of very large

shocks and very high volatility.

Then, the volatility standardized residuals are saved. The average correlation ρ̄ê =

0.061. A test of whether this average correlation of the squared standardized residuals is

significantly different from zero is given by ξ = 111.8 which should be a standard normal

if ρ̄e2 = 0. Even though the cross sectional correlation of standardized residuals is zero,

there is strong statistical evidence that the squares are in fact positively correlated.

4.2 Estimated GEOVOL and GEOVOL loadings

We now proceed to the estimation of the model with GEOVOL effects. Using the squared

standardized residuals, we apply principal component analysis and record the loadings on

the first principal component. The next steps include the estimation of xt, t = 1, . . . , T,

using cross sectional heteroskedasticity regressions, and by imposing xt > 0 for every t

and re-scaling according to the formula

¯̂xt ≡ x̂t/¯̂x where ¯̂x =
1

T

T∑
t=1

x̂t. (23)

The factor loadings si, i = 1, . . . , N, are estimated using time series heteroskedasticity

regressions, and by restricting 0 ≤ si ≤ 1 for every i and the re-scaling ŝi/
√∑N

i=1 ŝ
2
i .

Re-scaling means that, after each step, there is a normalization to guarantee that the

mean of xt, t = 1, . . . , T, is 1 and s′s = 1. These two steps complete the first iteration.

To gain efficiency, we iterate the two steps until convergence. For the sample analyzed,
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Figure 1: The estimated daily mean residuals from a factor model (upper panel) and daily
mean volatilities (bottom panel) averaged across the 42 country equity ETFs from March
18, 1996 to October 10, 2019.

the optimization algorithm converged after 11 iterations.

At this point we have estimates of both GEOVOL and the GEOVOL factor loadings.

After sorting GEOVOL, its largest estimated values are shown in Table 6. For comparison,

we also report the values of the average returns across the country assets on the same

day. It is clear the role of financial and political events in GEOVOL. These show that

the highest levels of GEOVOL over the last two decades happened on the day after the

United Kingdom European Union membership referendum with its decision in favor of

the Brexit on June 23, 2016, the two days after the United States presidential election

on November 8, 2016, the day which the NYSE opened after the 9/11 terrorist attacks,

the collapse of the Chinese stock market before the financial crisis and again in 2015, the

day after the first round of the French presidential on April 23, 2017, the global stock

market crash in October, 1997 (after the Asian financial crisis) with massive losses but

sharp rebounds (completely unexpected on October 28, 1997), the stock market downturn

in 2002, the day after oil prices crashed on November 27, 2014. Clearly some of these are

political and some are economic events, but they all move the market. From this table,

we can also see that the factor return on each day with high GEOVOL. Most of these are

negative suggesting that big volatility is associated with negative news. However, there
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Table 6: Largest values of the estimated GEOVOL factor (x̂t) and corresponding dates.
The average return over the cross section (r̄t) and the return on the S&P 500 index (rspxt )
on the same day are also shown.

x̂t r̄t rspxt

2016-06-24 29.764 −7.002 −3.658
2016-11-09 29.121 −1.229 1.102
2001-09-17 26.799 −6.722 −5.047
2007-02-27 25.460 −6.002 −3.534
2017-04-24 21.699 2.230 1.078
1997-10-28 20.870 3.910 4.989
1997-04-21 19.971 0.878 −0.782
2015-08-24 19.294 −4.098 −4.021
2011-08-05 17.506 0.399 −0.058
2008-10-10 16.395 −2.648 −1.183
1999-01-04 15.893 2.784 −0.092
2016-11-10 15.444 −1.645 0.195
2014-11-28 15.250 −1.623 −0.255
2010-05-10 15.042 6.495 4.303
2018-04-09 14.493 0.379 0.333

are some positive events as well.

These results allow an assessment of the level of geopolitical risk over time. From

plotting GEOVOL we can see how many events occurred and how big the shocks were.

Monthly averages of GEOVOL are presented in Figure 2. The main events are labeled.

It is clear the dimension of 9/11 terrorist attack to the World Trade Center. After that

comes the great financial crisis and the sovereign debt crises. Interestingly, the level of

geopolitical events in the recent period is rather low. This is contrary to common wisdom

consistent with other measures which considers the current period to be extremely per-

ilous. These additional measures are relatively high now in contrast to what is predicted

by GEOVOL. However, it is widely recognized that we are currently in a low volatility

period in financial markets.

The measure used in this paper is based on the common volatility shocks to financial

markets. Other measures are usually based either on textual analysis or expert opinion.

Thus GEOVOL is more likely to reflect what happened and the other measures what

people are worried might happen.

The global economic policy uncertainty index (GPU) of Baker et al. (2016) is a

newspaper- based index constructed using key terms pertaining to uncertainty, the econ-

omy, and policy. It is a monthly index developed for analyzing uncertainty in the United

States (US) and extended to other countries and to different policy dimensions. The text

search method applied to the US index is the same to each of the other eleven individ-

ual countries. Their results indicate higher economic policy uncertainty near presidential

elections, wars, terrorist attacks and major fiscal debates. As these country indices are

constructed based on textual analysis of newspapers distributed in a particular country,
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Figure 2: The estimated GEOVOL (monthly averages).

they tend to capture uncertainty driven by country-specific factors rather than common

global factors. The geopolitical risk index (GPR) of Caldara and Iacoviello (2018) is the

monthly ratio of the number of articles related to geopolitical tensions to the total number

of articles in eleven newspapers published in the US, the United Kingdom and Canada

since 1985. By using textual-analysis, the index may be biased by the category of words

selected. In the GPR, for instance, the words picked are associated with explicit mentions

of geopolitical risk and military-related tensions as well as nuclear tensions, war threats

and terrorist threats. It is presumably a better indicator of military risk. The correlation

between GEOVOL and the first differences of the GPU and the GPR is, respectively,

0.401 and 0.156.

Finally, the estimated factor loadings for the countries analyzed are reported in Table

7 in descending order of magnitude. The factor used in the mean equations (the cross

sectional average of returns) is also included in the sample. This is natural because

it is a weighted average of individual countries which are each exposed to GEOVOL

and presumably the factor would be especially exposed. Furthermore, the factor is by

assumption uncorrelated with the other idiosyncratic shocks. Results indicate that the

countries of France, Netherlands or Germany have higher loadings on the global volatility

factor and so are more sensitive to geopolitical shocks. On the other hand, countries with

lower factor loadings such as Poland, New Zealand or Pakistan appear to be less sensitive.

The factor return has the second highest loading on the GEOVOL factor. To diversify

geopolitical risk and reduce the impact of GEOVOL on portfolio variance, higher (lower)
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Table 7: Estimated GEOVOL factor loading ŝi for each country ETF.

Average 0.239
France 0.239
Netherlands 0.221
Germany 0.216
Spain 0.215
Italy 0.211
Belgium 0.202
Malaysia 0.190
Thailand 0.186
Austria 0.175
Korea 0.167
Indonesia 0.163
Singapore 0.160
Sweden 0.157
Finland 0.154

Portugal 0.154
Mexico 0.151
Hong Kong 0.145
China 0.140
United Kingdom 0.140
Japan 0.140
Denmark 0.139
Taiwan 0.138
United States 0.137
Colombia 0.136
Chile 0.135
Brazil 0.134
Canada 0.132
Switzerland 0.130
South Africa 0.129

Greece 0.128
Ireland 0.126
Australia 0.125
Turkey 0.125
Philippines 0.124
Norway 0.114
Israel 0.110
Russia 0.103
India 0.094
Peru 0.083
Poland 0.080
New Zealand 0.062
Pakistan 0.014

weights should be given to assets with smaller (larger) loadings on the global volatility

factor, i.e., on GEOVOL. This is discussed in section 5.

As a measure of the goodness of fit, we standardize the residuals by using not only

the conditional variances but also GEOVOL. If this common global factor captures the

common global shocks in the standardized residuals, then the standardized residuals

should be independent and no comovements should be observed. In practical terms,

this means that ε2
t should be uncorrelated. The test for detecting GEOVOL is thus ap-

plied to the square of the double standardized residuals (notice that ε2
t = e2

t/gt, where

gt ≡ (g(s1, xt), . . . , g(sN , xt))
′) using not only the conditional variances but also GEO-

VOL. Thus, the null hypothesis being tested becomes H′0 : ρ̄e2/gt
= 0. The empirical

average correlation ρ̄ê2/ĝt
= −0.002, where ĝt ≡ (g(ŝ1, x̂t), . . . , g(ŝN , x̂t))

′ and for which

the test statistic ξ = −2.711. This failure to reject the null hypothesis supports GEO-

VOL as a measure of the magnitude of common global shocks as it effectively captures

the contemporaneous correlation in the squared standardized residuals.

Even though our empirical results are useful for tracking geopolitical risk as just shown,

our approach does not exclude applications to assets of different classes or sectors within

a nation. Another empirical application to nine US sector equity ETFs shows remarkably

similar results for the largest GEOVOL events and for its monthly averages. These results

are available upon request.

5 Portfolio implications

Hedging geopolitical risk has practical benefits to investors and firms. As investors look

beyond their home market for the global investment opportunity set, it matters from

where risk is coming and to where it spreads. However, risk arising from a geopolitical

event is potentially very dangerous to investors since a single event can result in increased
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volatility for all assets in a portfolio or all lines of business for a conglomerate firm.

Conventional diversification does not reduce its impact. However, if the GEOVOL factor

loadings on assets differ, it is possible to reduce (but not eliminate) the exposure to

geopolitical risk. Thus a new criterion for portfolio optimality is introduced which we

label risk diversification.

As a simple illustration consider two uncorrelated assets with the same variance and

expected return but one is exposed to geopolitical risk. The Markowitz portfolio is equally

weighted. Using the following specification, we see that the kurtosis of the portfolio

depends on the variance of GEOVOL.

r1t =
√
xtε1t, r2t = ε2t, ε1t, ε2t ∼ IN(0, σ2), xt ∼ D(1, κ) (24)

V (πMarkowitz
t ) =

σ2

2
,

E
[
(πMarkowitz

t )4
]

V 2(πMarkowitz
t )

= 3 +
3

4
κ (25)

Clearly, by reducing the exposure to the first asset, the kurtosis of the portfolio can be

reduced to zero but the variance will be increased. If the variance of x is large, indicating

a long right tail in this non-negative random variable, it is likely to be preferable to reduce

exposure to the first asset.

The variance-covariance matrix of the vector of returns can be computed from (1)

conditional on xt. Because factors are linear combinations of asset returns, they will also

be affected by xt. We start by rewriting the equations for an (N × 1) vector of returns rt

and a (K × 1) vector of factors ft as a function of xt:

rjt =
K∑
k=1

βjkfkt +
√
hjt(sjxt + 1− sj)εjt (26)

fkt = µk +
√
hkt(skxt + 1− sk)εkt. (27)

The variance of factor k conditional on the past and on x is given by

Vt−1(fkt|xt) = hktskxt + hkt(1− sk) (28)

which depends linearly on x. On average, the effect of x on the variance of factor k is:

V (fkt|x) = σ2
ksk(x− 1) + σ2

k. (29)

denoting the unconditional variance of asset k as σ2
k. Thus the average exposure to

geopolitical risk from investing in factor k is σ2
ksk. We define for factor k:

Variance weighted GEOVOL loading: s̃k = skσ
2
k. (30)

A similar measure can be constructed for individual stocks. Because the factor error

and the idiosyncratic error are uncorrelated, the variance is obtained by squaring and
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summing these terms as follows:

Vt−1(rjt|x) = hjt(sj(xt − 1) + 1) +
K∑
k=1

β2
jkhkt(sk(xt − 1) + 1) (31)

and letting s̃j = sjσ
2
j ,

V (rjt|x) = (x− 1)

[
s̃j +

K∑
k=1

β2
jks̃k

]
+

[
σ2
j +

K∑
k=1

β2
jkσ

2
k

]
. (32)

The covariance matrix of returns can be expressed in matrix notation. For K orthogonal

factors and N individual assets the notation can be expressed as follows:

β : (N ×K) factor loadings,

s̃f : (K × 1) variance weighted GEOVOL loadings of factors,

σ2
f : (K × 1) unconditional variance of factors,

s̃i : (N × 1) variance weighted GEOVOL loadings of idiosyncracies,

σ2
i : (N × 1) unconditional variance of idiosyncracies

and

V (r|x) = (x− 1) [βdiag{s̃f}β′ + diag{s̃i}] + βdiag{σ2
f}β′ + diag{σ2

i }. (33)

Notice that this is just the unconditional variance of a factor model when x = 1. The

expression is linear in x so the impact of x on portfolio variance is easy to define.

Portfolios with weights w can be constructed based on this covariance matrix and an

assumed vector of expected returns, µ. A portfolio with weights w will thus have variance

conditional on x and given by

V (π|x) = w′
[
(x− 1) (βdiag{s̃f}β′ + diag{s̃i}) + βdiag{σ2

f}β′ + diag{σ2
i }
]
w. (34)

By considering both a variance criterion and a geopolitical risk criterion, a more stable

portfolio can be constructed. The optimization could be as follows:

Max w′µ (35)

subject to w′
[
βdiag{σ2

f}β′ + diag{σ2
i }
]
w < θ1

and w′ [βdiag{s̃f}β′ + diag{s̃i}]w < θ2.

for parameters (θ1, θ2). If the second constraint is binding, then the portfolio will reduce

the impact of geopolitical shocks by over-weighting assets and factors with smaller s̃.
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6 Forecasting GEOVOL

The structure of this model suggests that GEOVOL is not predictable. However, there

may be some channels for prediction. Although the mean of GEOVOL is always 1, the

variance of GEOVOL can change over time. In this case, the probability distribution

changes its tail properties over time. The higher the variance the greater the probability

of a large geopolitical event. The probability can be measured by standard tail constructs

such as the VaR which might be called GV aR for Geopolitical Value at Risk. Because x

is a variance, it is defined for probability α as

P (x > GV aR2) = α. (36)

The tail properties of non-negative random variables with a mean of one are naturally

investigated by assuming a distribution and here we use the gamma. There are only

two parameters to adjust - the mean and variance of the random variable in the forecast

period. Then quantiles can be computed; we will use the 1% quantile for GV aR.

In order to calculate the GV aR it is natural to assume that vt has a rather smooth time

series which can be estimated by computing the conditional variance of x using some type

of volatility model. The process does not look very much like a typical GARCH model

because volatility does not cluster. Thus a GARCH model will indicate little persistence

and give predictions which are sensitive to the previous event.

There is however an additional effect which is observed in empirical models which

suggests an extension of the statistical specification. There is autocorrelation in the

estimated series of x which suggests that

E(xt|xt−1) 6= 1. (37)

The autocorrelation in the estimated x would also be available for predicting geopolitical

risk.

From equation (4) it is assumed that

Et−1(xt) = 1. (38)

However, this does not contradict equation (37) since lagged x is not in the public infor-

mation set. More precisely, xt is not measurable with respect to rt. A slightly weaker

version of equation (38) can extend this point. A natural assumption is:

Ej
t−1(xt) = 1 for j = 1, . . . , N, where Ej

t−1(xt) ≡ E(xt|rj,t−1, . . . , rj,1). (39)

The expectation of x is one from each of the N data sets, one at a time. This still allows

the possibility of forecasting x based on joint evidence from the collection of all assets.

20

Electronic copy available at: https://ssrn.com/abstract=3685213



2000 2005 2010 2015 2020

2.
5

3.
0

3.
5

4.
0

4.
5

Figure 3: GV aR2 : Geopolitical Value at Risk for GEOVOL at 1% level.

Nevertheless from the point of view of each of these N information sets,

Ej
t−1(ete

′
t) = I for all j = 1, . . . , N. (40)

Thus there is the possibility of forecasting x based on a multivariate indicator such as

xt−1 even though no single asset or factor could provide this information.

In the data set used in this paper, the time series first order autocorrelation of x̂t

is 0.222 and it declines monotonically to 0.060 after 5 days. We estimate the mean

of (x̂t − 1) as an ARMA(1,1) with a variance exponentially smoothed with parameter

λ = 0.995 implying a half life of six months.

The 1% upper tail quantile of geopolitical volatility one day in the future assuming

that it is a gamma random variable with this mean and variance, is called GV aR2. The

square root is plotted in Figure 3. It should be interpreted as a proportional increase in

all asset volatilities that will only be exceeded one day in 100.

It is clear that asset volatilities more than 3 times current levels are on average likely

to be exceeded 1% of the time. At the highest levels, this is 10 times. The risk of high

geopolitical events fluctuates over time. It was high during 9/11, the financial crisis and

in 2016 but falls through October 2019 which is the end of this data set and which was a

time of low financial volatility.
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7 Update 2020

This model has been updated through the first 5 months of 2020 - the first part of the

COVID-19 pandemic. The overall estimates are very similar. However there are several

new dates that are in the top 20 events of the last three decades. These dates are March 9,

12, 13 in 2020. The pandemic has sparked dramatic increases in financial market volatility

and these three events are among the most severe and universal shocks to the financial

system. Interestingly, March 9 is also the day on which Russia and Saudia Arabia failed

to limit oil production and oil futures prices fell dramatically.

This model is now publicly available on V-Lab. It is now possible to see the current

state of GEOVOL and the historical estimates from prior data sets. Further research is

underway to examine the same model for exchange rates, sovereign bond markets and

broad classes of asset prices.

8 Conclusions

When factors capture all the cross sectional correlation of financial returns, standardized

innovations are orthogonal. Despite being uncorrelated, they may not be independent.

The key motivation for the GEOVOL model comes from the fact that square standardized

innovations are correlated in the cross section. A novel explanation for why idiosyncratic

volatilities comove is thus provided and a new way to formulate multiplicative factors for

volatility is introduced.

The model assumes a multiplicative decomposition of the innovations to idiosyncratic

volatilities. The global volatility factor, or GEOVOL, captures the common variation in

the innovations to volatilities. It is a measure of the magnitude of common volatility

shocks and, due to its broad impact on a wide range of assets, is linked to geopolitical

news. In order to account for heterogeneous GEOVOL effects, assets are allowed to have

different loadings on the GEOVOL factor.

Using country equity indices, we identify GEOVOL effects arising from political, fi-

nancial, economic and terrorist events. Country indices around the world have different

loadings on the global volatility factor meaning they have different exposures to GEO-

VOL. Risk diversification can thus be improved by including GEOVOL as an additional

criterion in portfolio optimization.
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A Alternative test statistics

For averaging correlation coefficients, we propose three alternative methods based on

z−transformations. The idea is to transform each sample correlation coefficient ri, i =

1, . . . ,m, where m = N(N − 1)/2 is the number of unique correlation coefficients, to a

Fisher’s z and then take the average. The average z−transformed correlation has standard

deviation equal to 1/
√
m(T − 3) and is computed as follows:

z̄ =
1

m

m∑
i=1

zi, (41)

where zi = 0.5 ln{(1 + ri)/(1− ri)} follows a normal distribution with standard deviation

1/
√
T − 3. The test statistic to check H0 : z̄ = 0 is simply given by

tz =
z̄

1/
√
m(T − 3)

(42)

which follows a standard normal distribution under the null hypothesis.

In the simplest test, we use the arithmetic average of the correlation coefficients as

follows:

r̄1 =
1

m

m∑
i=1

ri. (43)

Because this estimator for the each of the alternative average correlation is negatively

biased, we can back-transform z̄ and test using the average correlation r̄2 which equals

r̄2 =
e2z̄ − 1

e2z̄ + 1
. (44)

This is a less biased (but still with positive bias) alternative but with larger standard

deviation. Thus, a superior estimator can be obtained by

r̄3 =
1

m

m∑
i=1

{
ri +

ri(1− r2
i )

2(T − 3)

}
. (45)

To test the null hypothesis that each of the alternative average correlations is zero, we

compute the statistic

tri =
r̄i
√
m(T − 2)√
1− r̄2

i

, (46)

which has a t distribution with T − 2 degrees of freedom under the null hypothesis,

H0 : r̄i = 0, i = 1, 2, 3.
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B Summary statistics

Table 8: Summary statistics for the country index returns. Results from the Ljung-Box
(L.B.) AR(1) and ARCH(1) tests are also shown.

Austria Australia Belgium Brazil Canada Switzerland

Min. −10 −10 −10 −10 −10 −8.627
Mean 0.019 0.028 0.022 0.032 0.029 0.026
Max. 10 10 10 10 10 10
S.D. 1.623 1.631 1.512 2.315 1.405 1.354
Rob. Kr. 0.323 0.220 0.269 0.165 0.325 0.202
Rob. Sk. 0.099 0.094 0.074 −0.018 0.041 0.074
L.B. AR(1) 73.825 197.743 108.594 1.612 123.447 219.805
p−value 0.000 0.000 0.000 0.204 0.000 0.000
L.B. ARCH(1) 462.447 348.429 701.590 158.336 214.923 276.313
p−value 0.000 0.000 0.000 0.000 0.000 0.000

Chile China Colombia Germany Denmark Spain

Min. −10 −8.568 −8.591 −10 −7.835 −10
Mean −0.002 0.012 −0.032 0.019 0.048 0.027
Max. 10 8.955 8.583 10 4.351 10
S.D. 1.535 1.476 1.474 1.609 1.039 1.693
Rob. Kr. 0.110 0.089 0.392 0.206 0.116 0.212
Rob. Sk. −0.021 0.015 −0.048 0.007 −0.002 0.030
L.B. AR(1) 2.025 6.534 5.284 75.464 11.328 35.870
p−value 0.155 0.011 0.022 0.000 0.001 0.000
L.B. ARCH(1) 100.262 225.558 45.025 314.171 15.345 343.532
p−value 0.000 0.000 0.000 0.000 0.000 0.000

Finland France United Greece Hong Indonesia
Kingdom Kong

Min. −10 −10 −10 −10 −10 −10
Mean 0.030 0.024 0.018 −0.008 0.018 0.011
Max. 6.654 10 10 10 10 9.265
S.D. 1.208 1.566 1.418 2.491 1.760 1.700
Rob. Kr. 0.161 0.212 0.204 0.222 0.243 0.111
Rob. Sk. 0.041 0.036 0.064 −0.005 0.045 −0.023
L.B. AR(1) 18.270 117.353 202.508 0.000 67.455 10.105
p−value 0.000 0.000 0.000 0.992 0.000 0.001
L.B. ARCH(1) 35.919 164.996 330.214 148.655 584.206 127.678
p−value 0.000 0.000 0.000 0.000 0.000 0.000
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Table 8: Continued from previous page.

Ireland Israel India Italy Japan Korea

Min. −10 −10 −6.872 −10 −10 −10
Mean 0.035 0.010 0.014 0.016 0.002 0.023
Max. 8.799 10 6.265 10 10 10
S.D. 1.318 1.375 1.352 1.716 1.460 2.034
Rob. Kr. 0.179 0.225 0.073 0.191 0.112 0.165
Rob. Sk. 0.024 0.022 0.046 0.003 0.009 −0.022
L.B. AR(1) 77.061 11.687 0.451 31.882 21.529 19.798
p−value 0.000 0.001 0.502 0.000 0.000 0.000
L.B. ARCH(1) 84.907 71.961 109.509 113.681 176.146 193.184
p−value 0.000 0.000 0.000 0.000 0.000 0.000

Mexico Malaysia Netherlands Norway New Peru
Zealand

Min. −10 −10 −10 −9.774 −8.107 −10
Mean 0.030 0.001 0.022 0.007 0.045 0.023
Max. 10 10 10 5.863 6.314 9.792
S.D. 1.855 1.801 1.528 1.333 1.079 1.310
Rob. Kr. 0.138 0.304 0.254 0.172 −0.018 0.139
Rob. Sk. 0.017 0.012 0.012 0.020 0.023 −0.030
L.B. AR(1) 7.371 9.108 160.988 55.836 7.534 14.702
p−value 0.007 0.003 0.000 0.000 0.006 0.000
L.B. ARCH(1) 211.365 536.415 243.279 157.314 4.608 96.069
p−value 0.000 0.000 0.000 0.000 0.032 0.000

Philippines Pakistan Poland Portugal Russia Sweden

Min. −8.388 −5.506 −10 −10 −10 −10
Mean 0.016 −0.055 0.004 −0.012 0.005 0.028
Max. 6.950 6.567 8.630 5.449 10 10
S.D. 1.318 1.268 1.693 1.278 1.929 1.908
Rob. Kr. 0.105 0.237 0.117 0.191 0.122 0.259
Rob. Sk. −0.024 −0.082 −0.058 −0.029 −0.017 0.079
L.B. AR(1) 5.695 0.977 0.076 5.718 27.865 95.245
p−value 0.017 0.323 0.783 0.017 0.000 0.000
L.B. ARCH(1) 37.654 7.045 43.877 20.294 196.910 390.750
p−value 0.000 0.008 0.000 0.000 0.000 0.000

Singapore Taiwan Thailand Turkey United South
States Africa

Min. −10 −10 −10 −10 −10 −10
Mean 0.009 0.007 0.030 −0.012 0.032 0.033
Max. 10 10 10 10 10 10
S.D. 1.777 1.852 1.709 2.375 1.192 2.050
Rob. Kr. 0.321 0.248 0.210 0.163 0.329 0.111
Rob. Sk. 0.016 −0.013 −0.023 0.009 −0.004 −0.009
L.B. AR(1) 85.127 29.068 0.213 0.046 36.018 7.381
p−value 0.000 0.000 0.645 0.830 0.000 0.007
L.B. ARCH(1) 462.481 281.786 49.424 168.386 231.794 80.013
p−value 0.000 0.000 0.000 0.000 0.000 0.000
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