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Abstract 

The design of masonry infills is an issue that has attracted the attention of several 

researchers in the past, both from the experimental and analytical points of view. 

Nevertheless, the results are often questionable due to the large variability of masonry 

properties, the limited number of tests carried out and the large number of influencing 

factors. This paper addresses this limitation by using numerical analysis as a 

simulation of an experimental laboratory, and by performing a sensitivity analysis 

about the influence of the different influence factors. The modelling approach has been 

validated using the experimental results of two masonry walls subjected to horizontal 

loading. The parametric study subsequently carried out allowed to propose a strut-and-

tie model that provides a novel simplified expression for the failure of infill walls 

belonging to frames subjected to horizontal loading. The proposed model is compared 

with other models available in the literature exhibiting superior performance and 

constituting a simple and versatile tool for design. 
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1 INTRODUCTION 

 Masonry infill panels are usual present in steel and concrete framed structures. The 

masonry panels can be solid or with openings, even if, in most cases, they are considered as 

partition or enclosure walls, without any structural function. Such simplified procedure is, 

usually, excessively conservative, not economical and has several practical disadvantages for 

construction quality, namely: (a) damage in the partition walls because a low quality material 

is used and there is hardly a legal responsible for the building element; (b) insufficient 

detailing of masonry walls and masonry-frame connections; (c) severe damage and life losses 

in the case of earthquakes due to inadequate provisions. In fact, the interaction of the masonry 

infills with the surrounding frames has a major influence in the structural response of the full 

composite structure. 

The masonry infill is very stiff and has considerable strength, meaning that the load 

capacity of masonry infilled frames increases substantially.  In the case of horizontal loading 

due to wind or seismic action, it is usual to assume that an equivalent compression strut can 

replace the action of the masonry panels.  This concept was introduced originally by Polyakov 

(1960) and further developed by Holmes (1961), Stafford-Smith (1966), Stafford-Smith and 

Carter (1969) and Riddington and Stafford-Smith (1978). In particular, the last two authors 

proposed simplified formulas and charts that take into account the width of the strut, the 

stiffness of the panel and frame, the geometric relations, the constitutive behaviour of 

masonry and the possible failure modes of the masonry panel. The concept was further 

extended to include three struts, with the aim of better reproducing the forces developed in 

beams and columns, e.g. El-Dakhakhni (2003). 

 The finite element method is the most popular analysis tool for complex structural 

engineering problems. The method suffered enormous developments in the recent decades 

related to the mathematical representation of the complex experimental behaviour and several 
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researchers analysed the behaviour of masonry infilled frames with this technique. Since the 

pioneer work of Mallick and Severn (1967), several difficulties were evident from the 

simulations, namely the issues of modelling the separation between frame and panel, of the 

bond strength and friction of the connection between frame and panel, and of the mechanical 

constitutive behaviour of masonry itself. Riddington and Stafford-Smith (1978) found that the 

critical stresses for the masonry panel are located in the centre and are mostly associated with 

tensile and shear failure. In this case, the frame-panel interaction was modelled by using 

double nodes and normal springs at the interfaces, with contact/separation modelled in a 

simplified way.  King and Pandey (1978) further extended the numerical representation by 

adding interface elements capable of taking into account contact and friction for the frame-

panel interaction. This work was further extended with non-linear behaviour of the panel and 

frame, by Liauw and Kwan (1982) and Dhanasekar and Page (1986) in the framework of 

continuum modelling, and by Mehrabi and Shing (1997) in the framework of discontinuum 

modelling.  

Nevertheless, the usage of simplified rules in modern design of framed structures is 

unusual, partly due to the lack of a universally accepted theory and partly due to the fact that 

masonry is often considered today as a non-structural material. The present paper aims at 

providing a contribution for design based in a numerical parametric study and a simple strut-

and-tie model. The model proposed is compared with the numerical and experimental results, 

and also with other simplified approaches.  

 

2 BRIEF DESCRIPTION OF THE EXPERIMENTAL PROGRAM AND ADOPTED 

NUMERICAL SIMULATION 

The experimental program was carried out in steel frames, infilled with masonry made 

using aerated autoclaved concrete blocks and glued joints with a polymeric mortar, see 
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Alvarenga (2002) for details. The frame was made using a steel profile with an I-section of 

220 × 200 mm2. The masonry panels are made using blocks with dimensions 600 × 300 × 150 

mm3, with an average compressive strength of 4.5 N/mm2, and mortar with a strength of 8.9 

N/mm2. The strength characteristics of masonry are a compressive strength of 2.6 N/mm2 and 

a shear strength (racking test) of 0.17 N/mm2. Special care has been taken to ensure proper 

bond between the steel frame and the masonry panel, by pre-placement of a toothed layer of 

polymeric mortar around the complete frame in the day before building the infill. In addition, 

a 30 mm gap was left in the top of the panel, later filled with an expansive fluid mortar, so 

that full contact of between panel and frame was ensured. 

Two different steel frames with one single bay were used with a relation between 

height and length equal to 0.83 e 0.51, see Fig. 1. Two specimens have been made for each 

h / l relation and other aspects, not addressed here, have been considered in the experimental 

program (mortar composition, dowels in frame-panel connection and openings), Alvarenga 

(2002). A monotonically increasing horizontal load was then applied to the frame until 

collapse of the panel. Before and after the tests, the frame was tested, confirming that the 

behaviour of the steel frame is fully elastic.  

The typical results of the tests are shown in Fig. 2, in terms of failure patterns. Due to 

the very high bond of the polymeric mortar, the cracks cross units and joints in approximately 

straight lines. This is not in agreement with the typical stepped cracks observed in traditional 

masonry, built using strong units and weak mortars. The typical separation between frame and 

panel was nevertheless observed in several tests.  

The finite element model adopted in the simulation was obviously prepared taking into 

account the observed behaviour. Given the discontinuous nature of failure, non-linear 

interface elements were adopted to represent the cracks, the interface between frame and 

panel and the steel connections, while non-linear continuum elements were used to represent 
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the masonry panel. The steel frame was kept linear elastic. The material model adopted for 

the interfaces is detailed in Lourenço et al. (1997) and for the continuum is detailed in 

Lourenço et al. (1998). The masonry tensile and compressive strength necessary for the 

analysis read ft = 0.26 N/mm2 and fc = 2.6 N/mm2, respectively. For details of the data 

required for the numerical simulations are given in Alvarenga (2002). 

Fig. 3 illustrates the typical results of the numerical simulation, including deformed 

mesh and failure pattern, together with the compared load-displacement diagram. The 

separation between the steel frame and the masonry panel occurs very early because the bond 

is very weak. Afterwards, a first load drop is clear in the experiments, associated with the 

opening of the diagonal crack in the middle of the panel. This crack progresses almost 

instantaneously along the full size of the panel and leads to a small snap back in the numerical 

simulations (for a horizontal displacement of about 6 mm). In addition, it is also clear that the 

tests were stopped much before the final collapse load of the panel was reached as, in the 

numerical simulation, compressive failure of the masonry panel occurs in the corners at a 

much later stage. Nevertheless, for design purposes, it must be assumed that diagonal failure 

corresponds to the collapse load as the damage is not acceptable and requires costly repairs. 

In Alvarenga (2002), the experimental and numerical results are compared for all tested 

panels, in terms of failure load, failure pattern, length of frame-panel separation and 

deformation in the compressed masonry corners.  

 

3 PARAMETRIC STUDY USING NUMERICAL MODELLING 

In the experimental program only two different relations between height h and length l 

were considered. Moreover, the characteristics of the masonry panel and the steel frame were 

kept constant. Therefore, the experimental results are insufficient for the purpose of validating 

a simplified model for design. After the validation of the finite element simulation, a 
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parametric study was carried out taking into account: (a) different geometry; (b) different 

stiffness values for the steel frame connections; and (c) different stiffness ratio between steel 

frame and masonry panel. 

 

3.1 Influence of the geometry of the panel 

In order to evaluate the influence of the geometry in the response, the following 

relations between height h and length l have been considered: 0.51, 0.60, 0.70, 0.83 and 1.00. 

It is noted that the specimens tested experimentally had relations h / l equal to 0.51 and 0.83. 

The height of the masonry panel was kept constant and equal to 2.1 m, while the material 

parameters were kept constant in the analyses. 

Fig. 4 illustrates the results obtained from the numerical simulations, in terms of 

force-displacement diagrams (only three diagrams are shown for the sake of keeping the 

clarity). It can be observed that the variation in the stiffness of the structure with the geometry 

is minor, both before and after diagonal cracking. This is due to the fact that the steel 

connections are rather flexible and the height of the structure is kept constant in the analysis. 

The failure mode is constant for all the analyses even if dramatic changes in the value of the 

cracking load are found (maximum of 308 kN and minimum of 138 kN, i.e. 55% variation). 

The cracking load decreases with increasing h/l ratio. The final collapse load due to crushing 

of the masonry corners is less sensitive to the geometry (maximum of 358 kN and minimum 

of 308 kN, i.e. 14% variation). The crushing load increases with increasing h/l ratio. 

 

3.2 Influence of the connections stiffness 

All the analyses presented in the previous section were repeated using different 

stiffness for the steel frame connections. The original analysis assumed semi-rigid 

connections, calibrated with experimental results obtained in the tests using the steel frame 
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alone. In addition, fixed and hinged connections are now assumed for the steel frame. Fig. 5 

illustrates the numerical analysis typical results, in terms of load-displacement diagrams. It 

can be observed that the variation in the response of the structure with the stiffness of the 

frame connections is moderate, both before and mostly after diagonal cracking. This is due to 

the fact that the beam stiffness becomes more relevant for the global structural stiffness upon 

increasing stiffness of the connections. The failure mode is no longer constant for all the 

analyses because, in the case of h/l equal to 0.51 and a hinged frame, crushing in the corners 

occurs before diagonal cracking. It is also noted that the variation in the cracking load with 

the stiffness of the connection is low but the variation in the crushing load with the stiffness 

of the connection is moderate. This is evident from Fig. 6, which shows the cracking and 

crushing load for all analyses (with the single exception where crushing load occurred before 

cracking load, meaning that cracking of the panel is no longer possible). The crushing load 

decreases with increasing stiffness of the steel frame connections. 

 

 

3.3 Influence of the stiffness ratio between steel frame and masonry panel 

All the analyses presented regarding the influence of the geometry of the panel were 

repeated using different stiffness for the masonry panel, with the objective of assessing the 

influence of the ratio between the stiffness of the steel frame and the stiffness of masonry. 

The elasticity modulus of masonry was changed with respect to the original experimental E0 

value, by multiplying it by a factor equal to 0.5; 0.75; 1.0; 1.5; and 2.0. Fig. 7 illustrates 

typical results obtained from the numerical simulations, in terms of force-displacement 

diagrams (again only three diagrams are shown for the sake of keeping the clarity). The 

failure mode is also not constant for all the analyses and it can be observed that the variation 

in the stiffness of the structure with the connection stiffness is low before diagonal cracking 
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and moderate after diagonal cracking. It is also noted that the variation in the cracking load in 

significant but the variation in the crushing load is only moderate. This is evident from, which 

shows the cracking and crushing load for all analyses (with the single exception where 

crushing load occurred before cracking load, meaning that cracking of the panel is no longer 

possible). The cracking load decreases with increasing masonry stiffness, while the crushing 

load can both increase or decrease with increasing masonry stiffness. 

 

4 PROPOSED DESIGN MODEL FOR MASONRY INFILLED FRAMES 

From the failure modes observed in the tests and in the numerical simulations, the 

failure of masonry panels can be essentially attributed to diagonal cracking and corner 

crushing. In order to replicate such failures modes, the traditional equivalent single 

compression strut needs to be replaced by a slightly more complex strut-and-tie model 

(STM). STMs are limit analysis methods based on the plasticity theory, currently used in 

most reinforced concrete codes, e.g. Eurocode 2 (CEN, 2003). The reader is referred to 

Schlaich (1990) for details. It is noted that no reinforcement is present in the present case, but 

unidirectional tension fields can be defined and, at least, in the case of stepped diagonal 

cracks it is certain that masonry possesses some degree of plastic behaviour.  

In case of masonry infilled frames subjected to horizontal loading the flow of internal 

loads is well known and the definition of an appropriate strut-and-tie model is 

straightforward. The compressive stresses form a strut oriented along the panel diagonal. The 

small contact between the frame and masonry panel leads to a fan in each panel corner, which 

might lead to diagonal cracking if the tensile strength of masonry is reached. Fig. 9 shows the 

load transfer mechanisms observed and the strut-and-tie model proposed, which consists of 

the replacement of a single equivalent strut by a set of four diagonal fanned struts and one tie 

normal to the equivalent strut. A horizontal force F is applied to the structure, leading to a 

 



 9

compression force in the strut given by F/cosθ, where θ is the angle of the panel diagonal 

defined with the horizontal. The contact length between the frame and the panel is assumed 

equal to α. 

The forces in the compressed struts (C) and tensioned tie (T) can be obtained from the 

equilibrium of the nodes, leading to  

 

θγ coscos2 ××
=

FC  (1) 

 

θ
γ

cos
tan×

=
FT  (2) 

 

where the angle between the struts is given by 2γ, with  

 

l
θαγ cos

2
2tan ×=  (3) 

 

and l is equal to the length of the masonry panel. 

 

4.1 Tensile failure check (diagonal cracking) 

In order to obtain the tensile stress at the panel centre, a constant stress distribution is 

assumed in a central band equal to half the size of the diagonal, see Fig. 10a.  The need to 

consider a smaller part of the equivalent strut is obvious from the experiments and numerical 
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simulation, as the corners are subjected to biaxial compression. The maximum tensile force 

Tmax in the tie is then given by 

 

θcos2max
tlf

T t ××
=  (4) 

 

where ft is the masonry tensile strength and t is equal to the width of the masonry panel. From 

Eq. (2), the maximum horizontal force Fcrack that can be applied to the masonry infilled frame, 

leading to diagonal failure, is then given by 

 

γtan2
tlf

F t
crack

××
=  (5) 

 

 

 

4.2 Compressive failure check (corner crushing) 

For the compressive failure check, only the corners are considered as the verification 

at the centre of the panel is less severe. At the corners, a triangular distribution of stresses is 

assumed in the contact zone between frame and panel, see Fig. 10b. Here, ph and pv are the 

maximum stress levels found in the contact length α, in the horizontal and vertical directions, 

respectively. The maximum stress level values are given by 

 

t
Fph ×

=
α
2  (6) 
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t
Fpv ×
×

=
α

θtan2  (7) 

 

Given the fact that the corners are subjected to biaxial compression, the maximum 

stress can be obtained in a simplified way by assuming an isotropic material (in the case of 

highly anisotropic masonry, a specific failure criterion must be adopted). Here, the expression 

from the Model Code 90 (CEB-FIP, 1992) is adopted, meaning that the maximum biaxial 

compressive strength is given by 

 

c
biax ff

c 2)tan1(
tan65.31
θ

θ
+

×+
=  (8) 

 

where fc is the uniaxial compressive strength. Moreover, in the framework of limit analysis of 

concrete structures it is usual to adopt the concept of effective stress, which is a value lower 

than the uniaxial compressive strength that takes into account the load redistributions and the 

non-uniform distributions of stresses. The value for the effective stress , Nielsen (1999), 

can be assumed equal to 

*
cf

 

2
*

* N/mmin  with            
200

70.0  cc
c

c ff
f

f ×⎥
⎦

⎤
⎢
⎣

⎡
−=  (9) 

 

Finally, from Eqs. (6-7), the maximum horizontal force Fcrush that can be applied to the 

masonry infilled frame, leading to corner failure, is then given by 

 

 



 12

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

θ
α

α

tan2
 

2
 

min ,*

,*

tf

tf

F biax
c

biax
c

crush  (10) 

                          

4.3 Influence of the frame connection stiffness 

The parametric study carried out indicates that the force leading to corner failure of the infill, 

under compression, is directly proportional to the connection stiffness. As shown above, the 

rigid connection provides a horizontal force 35% larger than the hinged connection. On the 

contrary, the force leading to diagonal cracking does not exhibit considerable variation with 

the stiffness of the connection. Therefore, it is proposed that Eq. (10) is affected by a 

coefficient (1+0.3β), given 

 

crushcrush FF ) 3.01(' β+=  (11) 

 

where β indicates the stiffness of the connection, such as 0 ≤ β ≤ 1. For a hinged connection 

β = 0, for a semi-rigid connection ( 0 < β < 1) and for a rigid connection  β = 1.  

 

4.4 Definition of the contact length 

The contact length between the frame and the panel was analysed in all numerical 

simulations, see Alvarenga (2002). The expressions proposed by Stafford-Smith and Carter 

(1969) fit reasonably well the values found numerically and can be used with the proposed 

model, given a contact length λL' 

 

4

pp

panel in2
hI4E
tEL =L θλ s'' ×  (12) 
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'' L2L ⋅
=

λ
πα  (13) 

            

where Epanel, t and h are the Young’s modulus, thickness and height of the masonry panel, and  

Ep,Ip and L' are the Young’s modulus, moment of inertia and length of the column (measured 

between the axes of the top and bottom beams), respectively. 

 

5 VALIDATION OF THE PROPOSED DESIGN MODEL 

In this section, the proposed simplified model is validated against the numerical parametric 

study and experimental results. The model is also compared with the predictions from the 

models from Stafford-Smith and Carter (1969) and Stafford-Smith and Riddington (1977). 

Fig. 11 illustrates the results of the comparison between the numerical parametric 

study and the experimental results (it is noted that in the experiments, load application was 

stopped after diagonal cracking and crushing could not be found). For the proposed model, 

the value of the tensile strength ft and the compressive strength fc were the same as in the 

numerical simulations, as given above. The average error between the proposed model and 

the numerical simulations is equal to 14% (diagonal cracking) and 12% (corner crushing), 

which is rather acceptable for a simplified design model. Fig. 11 presents also a comparison 

with the simplified models of Stafford-Smith and Carter (1969), with an average error of 39% 

(diagonal cracking) and 24% (corner crushing), and Stafford-Smith and Riddington (1977), 

with an average error of 14% (diagonal cracking) and 23% (corner crushing). It can be 

observed that the proposed model provides better results. 

As addressed in the previous section, crushing of the compressed corners is influenced 

by the stiffness of the beam-column connection. Fig. 12 presents the comparison between the 
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simplified model and the numerical parametric study for the different h / l ratios considered. 

The average error between the proposed model and the numerical simulations reads only 

11%, which is again acceptable for a simplified design model. 

The influence of the relation between the stiffness of the panel and the frame is 

analysed using Table 1. Even if moderate to large variations between the models and the 

parametric numerical study can be found, the average error for the proposed model is only 

16%, which compares to an average error of 24% in Stafford-Smith and Carter (1969) and an 

average error of 20% in Stafford-Smith and Riddington (1977). 

Finally, the proposed model is further compared with the experimental results from 

Braguim (1989). This author carried out twelve experimental tests in steel frames infilled with 

concrete block masonry. The masonry panel had dimensions of 3200 × 2800 mm2, with a 

modulus of elasticity of 5000 N/mm2, a compressive strength of 3.1 N/mm2, a tensile strength 

of 0.31 N/mm2 and a thickness of 115 mm. The contact length calculated according to the 

proposal is 957 mm, for a relative stiffness parameter  (λL') equal to 4.92. The values 

obtained from the proposal are 210.08 kN (diagonal cracking) and 242.48 kN (corner 

crushing), which compare to 174 / 167 kN and 217 / 217 kN for the tests, respectively. These 

results further validate the proposed design model. 
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6 CONCLUSIONS 

The contribution of masonry panels for stiffness and strength of masonry infilled frames is 

significant. Nevertheless, their favourable effect is usually not taken into account because 

masonry partitions walls are assumed non-structural and reliable design tools are lacking. 

 In the present paper, advanced finite element simulations are validated from 

experimental results and, then, used to perform a parametric study on the response of masonry 

infilled frames. The parameters varied include the geometry, the stiffness of the steel frame 

connections and the relative stiffness between the steel frame and the masonry panel. 

 From the parametric study, a simplified model able to represent the collapse of 

masonry infills was proposed. The model is based on a decomposition of the usual diagonal 

strut in multiple struts and one tie. The proposed expressions for diagonal cracking and corner 

crushing are then compared with the parametric study and experimental results available in 

the literature, showing good agreement. The proposed tool is therefore a simple and useful 

approach for the design of masonry infilled panels. 
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Fig. 6 – Influence of the geometry and connection stiffness: (a) cracking load; (b) crushing 

load 
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Fig. 8 – Influence of the geometry and masonry stiffness: (a) cracking load; (b) crushing load 
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Fig. 9 – Design model for masonry infill subjected to a horizontal load F: (a) composite 

frame-panel; (b) proposed strut-and-tie model 
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Fig. 10 – Safety checks for the strut-and-tie model: (a) tensile check for diagonal cracking; 

(b) compressive check for corner crushing 
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Fig. 11 – Comparative analysis between the results obtained for the different h / l ratio: 

(a) force leading to cracking of the diagonal; (b) force leading to crushing of the 

compressed corner 
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Fig. 12 – Comparative analysis between the results obtained for the force leading to crushing 

of the compressed corner, in the case of different h / l ratios and different connection stiffness 

(_M indicates the proposed model and _A indicates the numerical analysis) 
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Table 1 – Comparative analysis between the results obtained for the force leading to diagonal 

cracking and crushing of the compressed corner, in the case of different h / l ratios and 

different stiffness values for the masonry panel (n/a indicates that the failure mode did not 

occur in the numerical analysis) 

   H / l ratio 

   0.51 0.6 0.7 0.83 1.0 

Model 332.7 247.0 190.3 138.2 99.1 

Analysis n/a n/a 234.0 185.0 150.0 

S&C (1969) 408.3 356.7 292.9 234.2 173.1 

Diagonal 

cracking 

S&R (1977) 321.4 271.0 228.6 186.9 150.6 

Model 355.0 256.0 410.8 314.7 355.1 

Analysis 350.3 251.0 379.8 304.5 350.3 

S&C (1969) 334.6 264.0 416.5 260.2 334.6 

E = 875 

Corner 

crushing 

S&R (1977) 322.1 320.0 406.0 224.9 322.1 

Model 368.2 273.3 210.6 153.0 109.7 

Analysis n/a 243.0 209.0 171.0 139.0 

S&C (1969) 443.1 356.7 290.4 231.8 173.1 

Diagonal 

cracking 

S&R (1977) 321.4 271.0 228.6 186.9 150.6 

Model 320.8 316.6 302.4 291.0 278.5 

Analysis 261.0 250.0 276.0 321.0 316.0 

S&C (1969) 376.9 371.5 377.1 370.3 352.8 

E = 1312.5 

Corner 

crushing 

S&R (1977) 288.4 278.6 238.1 205.6 170.0 

Model 395.2 293.7 225.6 164.4 117.9 

Analysis n/a 230.0 195.0 165.0 133.0 

S&C (1969) 436.4 347.5 287.9 229.5 170.9 

Diagonal 

cracking 

S&R (1977) 321.4 271.0 228.6 186.9 150.6 

E = 1750 

Corner Model 298.9 294.6 282.2 270.8 259.2 
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Analysis 265.0 257.0 280.0 318.0 312.0 

S&C (1969) 352.7 359.2 366.6 342.0 338.2 

crushing 

S&R (1977) 270.7 261.7 223.0 192.7 159.4 

Model 437.8 325.1 250.4 181.9 130.5 

Analysis n/a 215.0 186.0 155.0 127.0 

S&C (1969) 428.2 347.5 279.1 227.1 167.7 

Diagonal 

cracking 

S&R (1977) 321.4 271.0 228.6 186.9 150.6 

Model 269.8 266.2 254.3 244.7 234.2 

Analysis 271.0 263.0 284.0 319.0 319.0 

S&C (1969) 330.0 325.0 318.0 311.3 303.4 

E = 2625 

Corner 

crushing 

S&R (1977) 247.2 239.2 242.0 176.6 172.2 

Model 251.1 247.7 236.6 227.7 218.0 

Analysis 274.0 265.0 286.0 318.0 306.0 

S&C (1969) 314.5 298.8 295.6 291.6 290.0 

Diagonal 

cracking 

S&R (1977) 232.2 224.8 191.8 165.5 137.0 

Model 251.1 247.7 236.6 227.7 218.0 

Analysis 274.0 265.0 286.0 318.0 306.0 

S&C (1969) 314.5 298.8 295.6 291.6 290.0 

E = 3500 

Corner 

crushing 

S&R (1977) 232.2 224.8 191.8 165.5 137.0 
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