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Abstract. The currently used hemostatic agents are highly effective in stopping hemorrhages but 

have a limited role in the modulation of the wound healing environment. Herein, we propose an 

intrinsically bioactive hemostatic cryogel based on platelet lysate (PL) and aldehyde-

functionalized cellulose nanocrystals (a-CNC). PL have attracted great attention as an inexpensive 

milieu of therapeutically-relevant proteins, however its application as hemostatic agent exhibits 

serious constraints (e.g., structural integrity and short shelf-life). The incorporation of a-CNC 

showed to reinforce the low strength PL matrix by covalent cross-link its amine groups that 

exhibits an elastic interconnected porous network after full cryogelation. Upon blood immersion, 

the PL-CNC cryogels absorbed higher volumes of blood at a faster rate than commercial 

hemostatic porcine gelatin sponges. Simultaneously, the cryogels released biomolecules that 

increased stem cell proliferation, metabolic activity and migration as well as downregulated 

expression of markers of the fibrinolytic process. In a in vivo liver defect model, PL-CNC cryogels 

showed similar hemostatic performance in comparison with gelatin sponges and normal material-

induced tissue response upon subcutaneous implantation. Overall, owing to its structure and 

bioactive composition, the proposed PL-CNC cryogels provide an alternative off-the-shelf 

hemostatic and antibacterial biomaterial with the potential to deliver therapeutically-relevant 

proteins in situ. 
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Introduction 

Wound healing is a complex process orchestrated by the blood coagulation cascade and the 

cellular components of the immune system, which releases multiple cytokines, and induces crucial 

cellular and inflammatory pathways.1, 2 Immediately after an injury occurs, it is of utmost 

importance to prevent excessive bleeding, as well as bacterial infection.3 In healthy individuals, 

natural clotting process is relatively fast (within few minutes) and effective, even though severe 

bleeding accounts for approximately one third of total deaths in hospitals that occur due to 

traumatic injury events.3-6 Thus, a prompt arrest of hemorrhage is essential for initial survival and 

for an optimal recovery in civilian and military trauma emergencies.7, 8 Although the currently 

used polymeric and inorganic hemostatic formulations display good hemostatic capability, they 

still present several limitations.9 For example, QuikClot® generates heat that might induce a 

thermal injury, whereas fibrin dressings have shown xenotoxicity due to the use of bovine origin 

products (e.g., thrombin).10, 11 In addition, despite the versatility of the available hemostatic 

systems, the continued refinement of their composition should lead to formulations enabling not 

only effectively control hemorrhage and bacterial infection, but also promote tissue healing. 

Platelets contain thousands of proteins that, with numerous post-translational modifications, 

results in over 1,500 identified protein-based bioactive factors, involved in coagulation, 

hemostasis, wound repair and regeneration.12, 13  These factors include cytokines/chemokines (e.g., 

IL4, IL8), structural proteins (e.g., fibrinogen, fibronectin), and GFs (e.g., platelet-derived GF, 

vascular endothelial GF, transforming GF).14, 15 Several hemostatic strategies have relied on the 

use of coagulation proteins, lyophilized platelets, platelet-derived nanovesicles or synthetic 

platelets have been reported.16-18 Nevertheless, thrombotic complications, limited structural 

stability, variability, limited scalability or storage issues have been associated to these products.19 
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Among the different platelet-rich blood derivatives formulations, platelet lysate (PL) has a more 

reproducible preparation process and have shown comparatively lower batch-to-batch variability 

(when prepared from pools of samples/donors) than other blood derivatives formulations.14, 20  The 

biological activity of PL has been leveraged to develop bioactive wound dressing to promote the 

healing process.21, 22 However, sponge-like “dressings” showed limited structural integrity, which 

is necessary in hemostatic applications for a fast blood uptake, blood cells entrapment and stop 

bleeding.21  Up to now, to the best of our knowledge, there are no previous reports on the use of 

PL on the development of hemostatic agents. 

Different type of materials, such as injectable hydrogels23, 24 or cryogels25, are being proposed 

as hemostatic agents. In particular, cryogels can be defined as a class of hydrogels that introduced 

a new set of unique physical properties in the field of biomedical research.26 Several of these 

systems have been use  natural polymers (e.g., alginate and gelatin)27, 28 as well as synthetic 

polymers (e.g., polyethylene glycol).29 Their physical properties (e.g, interconnected macroporous 

structure and elasticity) play a key role on their large water absorption capability and fast shape 

recovery, which are crucial features for their application as hemostatic agents.26  Recent attention 

has been paid to the use of nanomaterials as crosslinkers to effectively improve cryogels 

mechanical strength.30, 31 For example, carbon nanotubes were used to reinforce chitosan cryogels 

and demonstrated the ability to quickly expand and mitigate bleeding in vivo.25 However, concerns 

on the potential cytotoxicity of these nanoparticles has justified the search for better alternatives.32 

In this field, rod-shaped cellulose nanocrystals (CNC), known as the ‘nature’ carbon nanotubes, 

have been extensively applied in tissue engineering and regenerative medicine due to their 

mechanical strength, biocompatibility and high surface area.31 Interestingly, 2,2,6,6-

Tetramethylpiperidine-1-oxyl (TEMPO)-oxidized CNC/alginate composites dressings exhibited 
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structural, mechanical, and chemical stability while absorb a large abundance of wound exudate 

and improved blood cells adhesion.33 More recently, nanocomposite based on oxidized bacterial 

nanocellulose have been shown to exhibit greater hemostatic capability and improved 

biocompatibility in comparison to unmodified oxidized bacterial nanocellulose or Surgicel 

gauze.34 Nevertheless, although these biomaterials effectively control the hemorrhage (i.e., 

physical process), they do not possess intrinsically bioactive properties (i.e., biological process). 

It has been previously shown that aldehyde-modified CNC reinforced PL-based hydrogel network, 

fine-tuned hydrogel physical and biochemical microenvironment, and thus positively modulated 

the behavior of encapsulated stem cell.35 Although these strategy demonstrated the outstanding 

biological properties of PL as an efficient engineered extracellular matrix (ECM) to promote 

regenerative wound healing outcomes, PL-CNC hydrogels approach do not exhibit a fast enough 

gelation nor the blood absorption capacity to be applied on the control of hemorrhages.26   

In this study, we aim to mimic the in vivo wound healing process through the creation of an off-

the-shelf intrinsically bioactive hemostatic PL-CNC cryogel. It is envisioned that the proposed 

hemostatic agent acts as a stable three-dimensional (3D) network to promote blood cells and blood-

clotting factors entrapment while locally delivering the therapeutically-relevant PL-derived 

proteins. The physical and microstructural properties of isotropic and anisotropic PL-CNC 

cryogels are characterized. Then, the protein release from PL-CNC cryogels, as well as their 

antibacterial efficacy is evaluated. The impact of bioactive molecules released from PL-CNC 

cryogels on stem cell proliferation, migration and gene expression was assessed. Furthermore, the 

cryogels hemostatic potential was analyzed both in vitro and in vivo along with the evaluation of 

the tissue inflammatory response. We anticipate that this strategy will introduce a new approach 



 6 

to manipulate the structural properties of blood-derived hemostatic materials, while potentiating 

the therapeutic effect of their biomolecules for promoting wound healing.  

 

Experimental section 

Precursors and cryogels production 

Preparation of PL. Platelet concentrate collections, obtained from volunteer donation from 

healthy donors as by 2005/62/CE, were performed at Serviço de Imuno-Hemoterapia – Centro 

Hospitalar de São João (Portugal) provided under an approved institutional board protocol (ethical 

commission of CHSJ/FMUP approved at 18/13/2018). A pool of twelve platelet concentrate 

batches were subject to three freeze/ thaw cycles (−196 °C and 37 °C), and stored at −80 °C. Just 

before use, PL was thaw at room temperature (RT), centrifuged at 4000 x g for 5 minutes and 

filtered through a 0.45 µm pore filter to remove any cell debris or clots.  

 

Preparation and characterization of aldehyde-modified CNC (a-CNC). CNC were extracted from 

microcrystalline cellulose powder (Sigma-Aldrich, USA) by sulfuric acid hydrolysis according to 

Bondeson et al. with minor modifications, as previously described.35, 36 Then, vicinal hydroxyl 

groups on CNC’s surface were converted to carbonyls by adding sodium periodate (NaIO4) at a 

1:1 molar ratio for 12 hours.37 The chemical modification on a-CNC was confirmed by FTIR and 

CNC morphology was imaged by atomic force microscopy (AFM), as previously described.35 The 

desired concentration of the working suspension was adjusted by concentrating it against 

poly(ethylene glycol) (average MW 20,000 kDa, Sigma-Aldrich, USA) using benzoylated 

cellulose dialysis membranes (2000 Da NMWCO, Sigma-Aldrich, USA). 
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PL-CNC cryogels production. PL-CNC cryogels were prepared blending PL with a-CNC at 1:1 

volume ratio. A double-barrel syringe L-system (1:1 from Medmix, Switzerland) with a static 

mixer tip (Medmix, Switzerland) was used to homogenously extrude the cryogels precursor 

solutions into square molds or into syringes with the tip cut to make it blunt (1 mL SOFT-JECT®, 

inner diameter of 4.7 mm). Barrel 1 was filled with PL and barrel 2 with a-CNC aqueous 

dispersions (1.2 to 2.4 wt.%). After casting into the molds or syringes, the cryogel precursors were 

frozen at -80ºC and subsequently freeze-dried until full cryogelation. Anisotropic structured 

cryogels were also prepared (described in supplementary information). Cryogels formulations 

were named according to their final a-CNC concentrations: 0 wt.% (PL-CNC 0), 0.6 wt.% (PL-

CNC 0.6) and 1.2 wt.% (PL-CNC 1.2).  

 

Physical characterization of cryogels  

Microstructure. PL-CNC cryogels were freeze-fractured in liquid nitrogen to expose their inner 

structures, and then sputter coated (30 seconds at 20 mA, Cressington) with gold prior observation 

in a scanning electron microscopy (SEM, JSM-6010LV, JEOL, Japan). Isotropic and anisotropic 

PL-CNC formulations (7 x 7 x 5 mm, n=5) were also scanned using X-ray scan micrograph (micro-

CT; SkyScan 1272; Bruecker, Kontich, Belgium), at a resolution of 10 µm, reconstructed using 

the software NRecon (Version: 1.6.6.0, Skyscan), and analyzed on CT analyzer (Version: 1.17.0.0, 

Skyscan) (for more information please see supplementary information). 

 

Mechanical characterization. Universal Mechanical Testing Machine (Instron 5540) equipped 

with a load cell of 1 kN was used to conduct unidirectional compression tests. The hydrated (2 

hours in PBS) anisotropic and isotropic PL-CNC specimens (7 x 7 x 5 mm, n=5) were set on the 
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lower plate and compressed by moving the upper plate at a compression rate of 1 mm per minute 

at RT. For cyclic tests, isotropic PL-CNC 1.2 formulation was subjected to three successive 

loading and unloading cycles at a compression rate of 1 mm per minute and ԑ = 50%. The obtained 

stress-strain curves were used to calculate the Young’s modulus (i.e. the average slope of the 

stress-strain curve in the initial linear region) in order to study cryogels structural integrity and 

their capacity for recovery.  

 

Weight loss. Isotropic and anisotropic PL-CNC cryogels were incubated in 1.5 mL of 

phosphate buffered saline (PBS) pH=7.4 at 37 °C for 2 hours. After removing the excess of PBS, 

the initial mass of the cryogel was measured (Mi) and successively weighed at different time points 

(Mf) to determine the weight loss (%), according to Equation 1. The results are expressed as an 

average of five samples.  

Weight loss =  
Mi−Mf

Mi
 x 100                                                                              (Equation 1) 

 

Protein release from cryogels 

Delivery of PL-CNC cryogels releasate.: PL-CNC cryogels (V= 0.3 mL) were incubated in 1 

mL of α-MEM with 1% antibiotic/antimycotic solution (i.e., without serum supplementation) at 

37 ºC. At different time points (5 minutes, 6 hours, 1, 3, 5 and 7 days of incubation), the supernatant 

was collected and replaced with fresh cell culture medium. The timepoints were named as follows: 

D0 (5 minutes), 6H (6 hours), D1 (1 day), D3 (3 days), D5 (5 day) and D7 (7 days). After 1 week, 

PL-CNC cryogels were digested in 200 U. mL-1 Trichoderma sp. Cellulase (Sigma-Aldrich, 

USA,3-10 U. mg-1 solid). Total protein content in the diluted supernatant of PL-CNC formulations 

(n=3) was quantified according to the manufacturer’s instructions using Coomassie (Bradford) 
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protein assay kit (Thermo Scientific, USA). Platelet-derived growth factor-BB (PDGF-BB) and 

vascular endothelial growth factor (VEGF) content in the releasates of PL-CNC cryogels at D0 

timepoint (n = 3) were quantified using a human PDGF-BB and VEGF DuoSet enzyme-linked 

immunosorbent assay (ELISA) kit (R&D systems, biotechne, USA), according to the 

manufacturer’s instructions. 

 

Antibacterial activity 

Escherichia coli and Staphylococcus aureus reduction analysis: The antibacterial activity of the 

cryogels was tested against Escherichia coli (E. coli; ATCC 25922 Gram negative bacteria) and 

Staphylococcus aureus (S. aureus; ATCC 25923, Gram positive bacteria), as previously 

described.38 Bacterial cultures were grown in Tryptic Soy Broth medium at 37 °C overnight with 

agitation (150 rpm). Bacterial cells were centrifuged at 9000 x g for 5 minutes at 4 °C and washed 

twice with sterile PBS. Then, 10 µL of 1-2 x 106 CFU. mL-1 bacterial suspension in PBS was added 

onto PL-CNC cryogels surface and incubated for 2 hours at 37 °C. Afterwards, 1 mL of PBS was 

added to each well and 10 µL of the suspension was plated on the Tryptic Soy Agar plates. CFUs 

were counted after 24 h of incubation at 37 ºC. 10 µL of bacterial suspension in PBS (1-2 x106 

CFU. mL-1) was used as a negative control. Tests were repeated three times for each group and the 

results were expressed as bacterial reduction (%), see Equation 2.  

Bacterial reduction =
colonies count of control−survivor count on sample

𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 x 100                  (Equation 2) 

 

Hemostatic properties 

Whole blood collection.  Human blood samples were drawn from healthy donors at Serviço de 

Imuno-Hemoterapia – Centro Hospitalar de São João (Portugal) provided under an approved 
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institutional board protocol (ethical commission of CHSJ/FMUP approved at 18/13/2018). It was 

collected in sterile BD Vacutainer® tubes (BD-Plymouth, UK), which contains 0.129 M sodium 

citrate at 9:1 ratio. The collected whole blood was stored at RT.  

 

Blood absorption rate. PL-CNC cryogels and commercial hemostatic porcine gelatin sponges 

(Gelita-Spon® Standard, Gelita® Medical, Germany) were weighed (Md), and incubated with 

whole blood for 5, 30, 60 and 180 seconds. The samples were immediately transferred to the clean 

gauze for 10 s to remove the unabsorbed blood and weighed (Mw). The adsorption rate (%) was 

calculated using Equation 3. Images of the samples after 180 seconds of incubation in whole blood 

were taken.  

Blood absorption rate =  
Mw−Md

Md
 x 100                                                      (Equation 3) 

 

Hemolytic activity assay. Whole blood was centrifuged at 116 x g for 10 minutes, washed three 

times with PBS, and then the obtained erythrocytes were diluted to a final concentration of 5 vol.% 

as previously reported.25, 39 Afterwards, 10 mg of each sample was added to 500 µL of erythrocyte 

suspension. PBS buffer (0% lysis) and 0.1 vol.% Triton X-100 (100% lysis) were also added to 

the erythrocyte suspension, and served as the negative and positive control, respectively. After 

incubation for 1 hour at 37 °C in a shaking incubator chamber, the mixture was centrifuged at 120 

x g for 10 minutes. 100 µL of the obtained supernatants were transferred into a 96-well clear plate, 

and the absorbance was measured at 540 nm to determine the hemolytic ratio (%), see Equation 4.  

Hemolytic ratio =  
Test sample−Negative control

Positive control−Negative control
 x 100                                         (Equation 4) 
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Blood cells adhesion. Whole blood was added dropwise into PL-CNC cryogels and commercial 

absorbable gelatin sponge hemostat (7 x 7 x 3 mm), and then incubated for 5 minutes at 37 °C as 

described in the literature.25, 33 In platelet adhesion studies, whole blood was centrifuged at 300 x 

g for 10 minutes and then the upper phase (i.e., platelet-rich plasma) was added dropwise to the 

sample and incubated for 1 hour at 37 °C. All samples were washed three times with PBS to 

remove the non-adherent and loosely attached cells, and then fixed with 2.5 vol.% glutaraldehyde 

(Merck, Germany) for 2 hours. After fixation, samples were solvent exchanged from water to 

ethanol (ethanol gradient 25, 50, 75 and 99.9 vol.%) for 4 hours, and then dried overnight at RT. 

Finally, the samples were sputter coated (30 seconds at 20 mA, Cressington) with gold prior 

observation in a SEM. 

 

Cellular experiments 

Cell isolation and expansion. Human adipose-derived stem cells (hASCs) were obtained from 

lipoaspirate samples of the abdominal region of healthy donors undergoing plastic surgery under 

the scope of an established protocol with Hospital da Prelada (Porto, Portugal), and with the 

approval of the Hospital Ethics Committee. The hASCs isolation were performed using a 

previously optimized protocol.40 hASCs were maintained in α-MEM supplemented with 10% fetal 

bovine serum (FBS) and 1% antibiotic/antimycotic solution at 37 ºC, 5% CO2.  

 

Cell viability. 5x105 hASCs were seeded on the cryogels surface. After 90 minutes, α-MEM 

with 1% antibiotic/antimycotic solution (i.e., without FBS supplementation) was added to the 

cryogel formulations and changed every two days. On days 3 and 7, cellular viability was assessed 

using 1:500 vol.% Calcein AM (Thermo Fisher Scientific, USA) and 1:1000 vol.% propidium 
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iodide (Thermo Fisher Scientific, USA) staining for 15 minutes at 37 °C. PL-CNC cryogels 

formulations were washed twice with PBS and visualized using confocal microscope TCS SP8 

(Leica Microsystems, Germany).  

 

Cell proliferation. 1.66 x 104 hASCs per 1 cm2 were seeded in 48-well plates for 24 hours in α-

MEM supplemented with 10% FBS and 1% antibiotic/antimycotic solution.  The medium was 

removed and replaced with 200 µL of PL-CNC cryogel and gelatin sponge releasates collected 

after D0, 6H, D1, D3, D5 and D7. After 24 hours, the metabolic activity and proliferation of hASCs 

were evaluated using Alamar Blue assay kit (Bio-Rad, USA) and Quant-iT PicoGreen dsDNA 

assay kit (Thermo Fisher Scientific, USA), respectively. Briefly, hASCs were incubated with 

alamar blue solution for 4 hours at 37 °C.  The alamar blue fluorescence was assayed at 535 

(excitation) and 600 (emission) nm. After washing twice with PBS, ultrapure water was added to 

the cell culture plate and frozen at -80 ºC. The released DNA was quantified following 

manufacturer’s instructions (Thermo Fisher Scientific, USA). Metabolic activity results (i.e. 

alamar blue fluorescence) were normalized with its respective cell number (i.e. DNA content) to 

quantify metabolic activity per cell.   

 

Scratch assay.  hASCs at a density of 7.7×104 per 1 cm2  were seeded on 96-well plates, as 

previously described.41 After 24 hours, a confluent cell monolayer was formed, and the monolayer 

was scraped with a 0.1–10 μL sterile pipette tip (0.57 mm) in a straight line to create a scratch. 

The medium was removed, the wells were washed with PBS, and replaced with 100 µL of PL-

CNC cryogel and gelatin sponge releasates collected at D0. Cell migration was imaged and 

monitored using an inverted phase-contrast microscope for 48 hours. The images were 
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quantitatively analyzed using Tscratch software to calculate open wound area (%), see Equation 

5.  

Open wound area =  
100 x open wound area at 48 hours

open wound area at 0 hours
                                                     (Equation 5) 

 

Gene expression analysis. After scratch assay analysis, the releasates were removed, and hASCs 

were washed with PBS. Then, total ribonucleic acid (RNA) was isolated using TriReagent® 

(Sigma-Aldrich, USA), according to the manufacturer’s protocol. Total RNA was quantified at 

260 nm using a NanoDrop spectrophotometer (Thermo Fisher Scientific, USA). The same amount 

of RNA (225 ng) was reverse transcribed to complementary DNA according to the protocol of the 

supplier (qScript cDNA Synthesis Kit, Quanta Biosciences, USA). Aliquots of each cDNA sample 

were frozen until the PCR reactions were carried out. Real-time PCR was performed for two 

reference genes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin and target 

genes (Table S1), as previously described.35 All samples were normalized by the geometric mean 

of the expression levels of β-actin and GAPDH as explained in 42. Finally, fold changes were 

expressed relative to the expression in the gelatin sponge control group.  

 

In vivo assay 

Housing and maintenance of animals. All animal procedures were based upon the ‘‘3Rs” policy 

(Replacement, Reduction and Refinement) and were carried out after approval by the Ethics 

Committee of University of Minho and Portuguese Licensing Authority (DGAV). Total of 16 

Sprague-Dawley male rat of 7 weeks old and average weight of 185–210 g (Envigo, UK) were 

used in this study. Each rat was anesthetized by intraperitoneal injection: Domitor INJ 1 mg. mL-
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1 (Medetomidine 1 mg. kg-1, Novavet, Braga, Portugal) and Imalgene 1000 INJ 100 mg. mL-1 

(Ketamine 75 mg. kg-1, Novavet, Braga, Portugal).  

 

Hemostatic test on a standardized rat liver trauma model. The liver of the rat was exposed by 

abdominal incision. A pre-weighed filter paper on a paraffin film was placed beneath the liver and 

the liver bleeding was induced using an 18 G needle. Immediately after the injury, PL-CNC 0.6 

and 1.2 cryogels, and a commercial absorbable gelatin sponge (n=6) were applied on the site of 

lesion until bleeding stopped. The weight of the filter paper with absorbed blood (blood loss) was 

measured, as well as the time to restore hemostasis (hemostasis time). The rats were euthanized 

by intracardiac injection of excess Eutasil 200 mg. mL-1 (pentobarbital sodium, Novavet, Braga, 

Portugal). Samples were fixed with 2.5 % glutaraldehyde (Merck, Germany) for 2 hours. After 

fixation, samples were solvent exchanged from water to ethanol (ethanol gradient 25, 50, 75 and 

99.9 vol.%) for 4 hours and then dried overnight at RT. Finally, the samples were sputter coated 

(30 seconds at 20 mA, Cressington) with gold prior observation in a SEM.  

 

Host response evaluation. The rat hair was shaved at the implantation area, followed by 

disinfection with 70% ethanol and iodine. In each rat, four skin incisions (1 cm length) were made 

in the dorsal midline, two close to the head (CH) and the other two far from the head (FH). PL-

CNC 0.6 and 1.2 formulations, saline solution, and a commercial absorbable gelatin sponge were 

implanted into the respective pockets, followed by skin suturing. The rats were euthanized 7 and 

14 days postsurgery by intracardiac injection of excess Eutasil 200 mg. mL-1 (pentobarbital 

sodium, Novavet, Braga, Portugal). The implanted materials were retrieved along with the 

surrounding tissue to histological analysis. In the pockets where we did not observe any lesion in 
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the tissues, we collected samples of the normal skin and subcutaneous tissue. The explants were 

fixed with 10 vol.% formalin and transferred to histological cassettes for paraffin-embedding. 

Samples were then serially sectioned using a microtome and stained with hematoxylin & eosin 

(H&E) to further microscopic examination.  

 

Local biological effects assessment after samples implantation. The evaluation of fibrosis, 

necrosis and angiogenesis was performed according to ISO 10993-6, 2007 biological evaluation 

of medical devices. The results were expressed in ordinal scale units.  

   

Statistical analysis 

The statistical analysis of data was performed using GraphPad PRISM v 7.0. Shapiro-Wilk 

normality test and one-way analysis of variance (ANOVA) was used to analyze experimental data, 

followed by the Tukey post hoc or Krustal-Wallis test for multiple comparisons. Results are 

presented as mean ± standard deviation.  

 

Results and Discussion 

An ideal hemostatic agent should allow a high blood uptake capacity, a rapid blood triggered 

shape recovery and absorption speed, inherent antibacterial ability, robust mechanical strength, as 

well as, it should be biocompatible, ready and easy to use, lightweight, stable, and inexpensive.7 

In order to explore the full potential of PL-based cryogels for hemostatic applications, it is 

fundamental to improve their structural integrity and to extend their shelf life while preserving the 

therapeutic potential of PL-derived biomolecules such as cytokines, antimicrobial peptides, 

soluble adhesion molecules and coagulation factors.43 It is known that cryogels production 
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methods have impact on the material porous structure and lamella densification, and these 

properties directly affect their blood adsorption capability.44 Thus, to evaluate the impact of 

different microstructures on the functional material performance, cryogels with isotropic or 

anisotropic pore organization were produced by applying uniform or unidirectional temperature 

gradient during the cryogelation process, respectively.  

 

Preparation and physical characterization of PL nanocomposite cryogels 

During gelation at subzero temperatures, the aqueous component freezes and forms ice crystals 

that act as pore-forming agents, excluding solute (i.e., PL proteins and a-CNC) from the ice lattice 

into the space between the growing ice crystals.45 The application of non-directional or 

unidirectional temperature gradients, has been used to determine the anisotropy degree of the 

resulting porous structure upon freeze-drying.46 Herein, PL and a-CNC were homogeneously 

extruded into a square mold in equal parts and submitted to non-directional and unidirectional 

freeze-casting at −80 °C, and then PL-CNC formulations were freeze-dried, obtaining isotropic 

and anisotropic PL-CNC cryogels respectively. First, to assess the stability of PL-CNC 0, 0.6 and 

1.2 wt.% cryogels, the formulations were immersed in PBS and the changes in the shape of 

cryogels were recorded (Fig. 1a and Fig. S1a). The cryogel solely based on PL showed a fast 

solubilization, losing the preformed 3D structure (Fig. 1a), whereas PL-CNC formulations 

composed of 0.6 and 1.2 wt.% CNC content maintained their structure and showed a high mold 

fidelity (Fig. 1a and S1a). These findings suggest that two different factors are pivotal to provide 

cryogels structural integrity and to prevent their disintegration upon cryogel hydration; (1) the 

chemical covalent cross-linking between a-CNC and the amine groups of PL proteins through 

reversible Schiff base bonds.35, 47; and (2)the densification of a-CNC nanomaterials and PL-
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proteins (i.e., polymers) in the pore walls during ice crystals growth.48 , are pivotal factors to 

provide cryogels structural integrity and to prevent their disintegration.  

PL-CNC cryogels structure was evaluated by micro-computed tomography (µ-CT) and SEM 

(Fig. 1 and Fig. S1). In line with previous cryogelation studies, isotropic PL-CNC cryogels 

revealed a disordered pore structure (Fig. 1b), with a mean pore diameter around 110 µm (table 

S2), whereas anisotropic PL-CNC cryogels exhibited aligned pores along the freezing direction 

(Fig. S1b and S1c-i and ii). In addition, isotropic PL-CNC cryogels showed markedly larger pore 

diameter (around 110 µm) and a higher pore interconnectivity (around 95%) in comparison with 

anisotropic PL-CNC cryogels (Table S2 and S3). Interestingly, isotropic PL-CNC 0.6 and 1.2 

cryogels exhibit similar porosity (87.6 ± 3 vs. 88.9 ± 1.5 vol.%), pore diameter (112.3 ± 51.3 vs. 

105.6 ± 13.2 µm) and interconnectivity (96.88 ± 2.5 vs. 96.9 ± 2.5). These results indicate that 

fabrication conditions (e.g., freezing process) are the driving force for the observed structural 

differences, which are not changed by varying CNC concentration (0.6 vs. 1.2 wt.%). 

Since blood absorption capacity is crucial to accelerate blood cells entrapment to form a blood 

clot, the water uptake was evaluated in isotropic and anisotropic cryogels.25, 28 Regarding the 

ability to adsorb liquids, isotropic PL-CNC cryogels exhibited a faster water uptake capability 

(Fig. S1f). Most likely, it is a direct consequence of the above reported larger pore size and highly 

interconnected structure of the isotropic formulations. Therefore, isotropic PL-CNC cryogels were 

selected for further physical and biological characterization to be applied as a potential hemostatic 

agent.  

Cryogels often lack mechanical strength mainly due to their macroporous morphology, which is 

formed during the cryogelation process.48, 49 CNC have been used as biocompatible reinforcement 

nanofillers in low strength matrices due to its high stiffness (200-220 GPa) and axial elastic 
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modulus (110 to 220 GPa).30, 31 To confirm the benefits of CNC incorporation, the mechanical 

properties of PL-CNC cryogels were evaluated on swollen conditions (Fig. 1c to e, Fig. S1d). 

While it was impossible to determine Young’s modulus of PL-CNC 0 due to its fast solubilization 

(Fig. 1a), PL-CNC 1.2 modulus (4.4 ± 1.1 kPa) was almost the double of the modulus of PL-CNC 

0.6 (2.3 ± 0.3 kPa). As expected, at higher concentration of a-CNC, there is an increase of total 

cryogel crosslinking density, which results in stiffer cryogels.47   

Intense efforts have been made to design hemostatic agents that are able to control irregularly 

shaped, deep and noncompressible wounds while applied in a minimally invasive strategy.50 

Therefore, a hemostatic agent that once applied to the wound, absorb blood, rapidly expand and 

gently provides an outward pressure within the wound cavity is still highly needed. Accordingly 

the obtained mechanical properties results, the shape memory capacity of isotropic PL-CNC 1.2 

formulation was evaluated (Fig. 1d-i and e, and Movie 1). PL-CNC 1.2 cryogels could be 

compressed up to 50% strain level without being mechanically or structurally damaged. Upon load 

removal, the elastically deformed cryogels recovered their original shape as the surrounding water 

was reabsorbed, exhibiting a fast deformation reversion (~on the order of seconds), Fig. 1e. Then, 

PL-CNC 1.2 cryogels were subjected to three successive compression cycles with a deformation 

speed of 1 mm per minute (Fig. 1d-i). Even though the cryogel exhibited hysteresis loops 

comprising the loading and unloading phases that indicates energy dissipation, there is an overlap 

of the cyclic stress-strain curves with comparable and reproducible compressive strength values. 

These results confirmed that PL-CNC cryogels possess a good mechanical strength and high 

compression resilience under continuous and dynamic compression as well as withstand extensive 

deformations without being destroyed. These findings are in agreement with previous results 

where the incorporation of high aspect ratio and high stiffness nanoparticles such as carbon 
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nanotubes in cryogels composition led to nanocomposite materials displaying similar unique 

mechanical characteristics.25, 26 Remarkably, after 6-month of storage at RT, cryogels high elastic 

behavior was still evident, demonstrating its structural resilience to long-term storage (Fig. 1d-ii). 

When PL-CNC cryogels were extruded from a syringe, they also showed an immediately water 

absorption capability while maintaining its strength and easy handling (Movie 2 and 3). These 

findings demonstrate the versatile applications of PL-CNC cryogels. They exhibit a fast shape 

recovery capacity, property of interest to rapidly cease deep and noncompressible wounds, as well 

as a high structural integrity that allows a simple handling and its easy removal from the wound 

bed (if required).    
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Figure 1. Physical properties of the cryogels formulations. (a) Cryogels stability after immersion 

in PBS. (b) Microstructure evaluation by SEM (i-ii) and µ-CT (iii-iv). (c) Young’s modulus from 

the uniaxial compression stress–strain curves. (d) Three successive loading and unloading cycles 

of PL-CNC 1.2 at ԑ = 50% in fresh (i) and 6 months stored samples (ii). (e) Photographs 
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representing the shape memory property and rapid recovery speed of PL-CNC 1.2 cryogels after 

absorbing water. Statistical significance: **, P < 0.01. Scale bar: 50 µm (b-iii and iv). 

 

Protein release from PL-CNC cryogels 

Wound healing is a complex process that involves the interplay of multiple cell populations and 

soluble mediators in a highly organized and orchestrated manner.1, 2 Generally, upon injury, 

platelets in wound site suffer degranulation through the activation by any thrombogenic agent, 

which induce morphological changes and the release of bioactive factors from their α- and dense 

granules, and lysosomes into the local wound environment.51 These factors include clotting agents 

(e.g., thrombin, von Willebrand factor), cytokines/chemokines (e.g., IL4, IL8), structural proteins 

(e.g., fibrinogen, fibronectin), microbicidal  proteins (e.g., β-lysin, complement proteins), ions 

(e.g., calcium), membrane proteins (e.g., CD63) and GFs (e.g., platelet-derived GF, vascular 

endothelial GF, transforming GF) mediate several wound healing stages.14, 15 Besides the 

recruitment of immune cells and the initiation of the clot formation during hemostasis, platelet-

derived biomolecules have also been shown to be crucial mediators in several further wound 

healing stages, for example immunomodulatory processes, antibacterial activity, inflammatory 

response, and tissue repair and regeneration.14 In a biomimetic approach, platelet concentrate units 

were mechanically disrupted to promote the release of these biomolecules milieu in a reproducible 

large scale and cost-effective manufacturing. Upon full cryogelation, a-CNC act as crosslinkers of 

PL proteins to produce a scaffold that close resembles fibrin network physical support.  

Once PL-CNC cryogels are applied in the wound site, it is crucial the adequate maintenance of 

its mechanical strength and porosity, blood cells infiltration and local delivery of PL-derived 

proteins at the bleeding site.7, 52 Thus, the structural integrity of PL-CNC cryogels over 7 days was 
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evaluated by measuring the weight loss and total protein content release assays, Fig. 2a. First, 

weight losses were monitored as a measure of cryogels degradation (Fig. 2a-i). Both formulations 

undergo weight decrease over the time, though PL-CNC 0.6 showed a markedly higher weight 

loss (45.1 ± 6.2 %) in comparison with PL-CNC 1.2 (19.4 ± 2.7 %). As previously anticipated, the 

formulation with high precursor content (1.2 wt.%) led to an increase of crosslinking degree 

between the a-CNC and amine groups of PL-derived proteins (i.e., chemical crosslinking) as well 

as to a more tightly packed structure that increased nanomaterial/protein interactions (i.e., physical 

crosslinking), which is sufficient to maintain its initial structural integrity.  

The release of the protein cryogels content was quantified to evaluate the potential of cryogels 

as biomolecules delivery systems (Fig. 2a-ii). Upon incubation for 5 minutes (D0), both conditions 

exhibited an initial burst release, followed by an apparent “plateau” profile. This protein release 

profile can be explained by the simple diffusion of the proteins non-bound to the cryogel at the 

first minutes, as previously demonstrated in other PL crosslinked scaffolds.53, 54 At the end of the 

experiment, PL-CNC 0.6 cryogel released 73.9 ± 11.3 wt. % of total protein content whereas PL-

CNC 1.2 delivered 85.4 ± 5.9 wt. % of total protein content. Considering the low amount of CNC 

used and the open macroporous cryogel structure, this initial burst release of biomolecules into the 

solution was expectable. Then, it was quantified the release of PL-derived chemotactic and 

proangiogenic GFs, namely platelet-derived GF and vascular endothelial GF, respectively (Figure 

2b). The immunodetection of both GFs demonstrates that their bioactivity is preserved during the 

cryogelation process. These GFs are known to plays a pivotal role on boosting the cells mitogenic 

activity and to favor endothelial sprouting, which are crucial to promote wound healing in vivo.55, 

56 Together, these results contribute to further demonstrate the bioactivity of the proposed PL-CNC 

cryogel system.  
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It is worth to mention that the weight assay was conducted after 2 hours of incubation in PBS, 

thus considering the burst proteins release and the remained water, it is expected a difference on 

cryogels weight and protein release assays. Accordingly, this material should not be infused into 

an aqueous solution prior to use, since it exhibited an initial burst release of the bioactive 

molecules, envisioning improved functionalities when applied dry. 

 

Antibacterial properties 

Conferring antibacterial properties to hemostatic sponges might bring several benefits since the 

continued presence of a high bacterial load in wounds increases inflammation and delays the 

healing process.2 Interestingly, platelets have a significant and direct role in the antimicrobial host 

defense, mainly due to the release of a wide variety of host defense peptides (including 

antimicrobial peptides) in response to injury, namely platelet factor-4, RANTES, connective tissue 

activating peptide 3, platelet basic protein, thymosin β-4, fibrinopeptide B, fibrinopeptide A and 

thrombocidins, which are able to kill bacteria by cytoplasmatic membrane permeation and cell 

lysis.57-59 Moreover, our group has previously demonstrated that genipin-crosslinked PL patches 

exhibited an antibacterial effect by preventing the adhesion, proliferation and biofilm formation 

by S. aureus, which can be related to PL proteins presence.60 Therefore, the antibacterial activity 

of the cryogels developed in this study was assessed against Gram positive S. aureus and Gram 

negative E. coli bacteria (Fig. 2b). Remarkably, PL-CNC cryogels showed significant reduction of 

S. aureus and E. coli survival. The reduction of S. aureus survival in the presence of PL-CNC was 

73.1 ± 16.4 % (PL-CNC 0.6) and 96.3 ± 1.3 % (PL-CNC 1.2), Fig. 2b-i and iii. Moreover, the 

inhibitory effect of PL-CNC cryogels against E. coli bacteria was found to be similar between PL-

CNC 0.6 (91.4 ± 7.9 %) and PL-CNC 1.2 (91.2 ± 8.2 %) groups, Fig. 2b-ii and iv. Recently, we 
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have shown that upon contact with PL, a “hard” corona is formed on CNC’s surface, which 

contains, among other proteins, different host defense peptides.61 The solid-phase presentation of 

protein and peptide signaling molecules is recognized to increase the half-life and boost the 

bioactivity of these liable molecules.62 Based on these concepts, we hypothesize that the 

sequestration/retention and solid-phase presentation of these peptides might contribute to observed 

antibacterial activity upon contact with S. aureus, which is higher in cryogels with higher CNC 

content. Thus, PL-CNC cryogels might be used as prophylactic agents to impede bacterial 

infection, although further investigation is needed to fully understand how to modulate the 

observed antibacterial activity. 

 

 



 25 

 

Figure 2. Release of bioactive molecules from PL-CNC cryogels. (a) Weigh loss (i) and release 

kinetics of bioactive proteins from PL-CNC cryogels over 7 days (ii). (b) Release of VEGF and 

PDGF-BB in cell culture medium at D0 (5 minutes). (c) Antibacterial activity of the PL-CNC 0.6 

(0.6), PL-CNC 1.2 (1.2) and 10 µL of bacterial suspension in PBS (CTR) against S. aureus (i-iii) 

and E. coli (ii-iv), photographs of agar plates (i and ii) and bacterial reduction quantification (iii 

and iv). Statistical significance: **, P < 0.01. 
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In vitro hemostatic potential 

In order to manage an uncontrolled post-traumatic hemorrhage, it is critical a rapid blood 

absorption to accumulate blood cells and to activate coagulation factors, which, ultimately, will 

effectively control an in vivo hemorrhage.7  Hence, the hemostatic properties of PL-CNC cryogels 

in vitro were studied and compared with a commercial hemostatic porcine gelatin sponge (Gelita-

Spon® Standard, Gelita® Medical, Germany).  

As a first screening for hemostatic potential, both PL-CNC cryogel and gelatin sponge control 

formulations were immersed in whole blood. PL-CNC cryogels revealed a homogeneous 

absorption and maintenance of initial shape integrity (Fig. 3a). On the other hand, commercial 

gelatin sponges of the same size (7 x 7 x 3 mm) exhibited a structural collapse without the recovery 

of its original shape that was exacerbated when gelatin samples were handled. As previously 

observed in water absorption test, it seems that the interconnectivity of PL-CNC cryogels is 

adequate to promote blood cells infiltration. During the first 5 seconds, gelatin sponges showed 

the lowest absorption potential, reaching a maximum of 354.5 ± 77.1 %, which was significantly 

lower than the cryogels absorption capacity. PL-CNC 0.6 cryogels showed a faster blood 

absorption than PL-CNC 1.2 cryogels, and after 30 seconds they reached a blood absorption 

plateau at 1158.2 ± 156.7 wt. % and 1260.6 ± 40.8 wt. % of their initial dry weight, respectively 

(Fig. 3b). It is worth mentioning the importance of the large surface area, macroporous morphology 

and high pore interconnectivity in the obtained swelling capacity of the control and test samples, 

which are undoubtedly much higher than those of traditional hydrogels.26 Moreover, PL-CNC 

groups exhibited higher blood absorption capacity than other hemostatic agents, for example 

mesoporous chitosan sponge.39 Remarkably, the macrostructural integrity of PL-CNC cryogels is 

decisive to obtain a higher blood uptake than the water-soluble gelatin sponge.  
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Once hemostatic agents are applied at the bleeding site, blood is the first component to interact 

with them. The material-to-blood direct contact can promote the loss of red blood cells (RBC) 

membrane integrity (hemolysis) leading to the leakage of hemoglobin into blood plasma, which 

can trigger specific pathophysiologies.63 Thus, the hemocompatibility of materials was evaluated 

by in vitro hemolysis ratio (Fig. 3c) as well as RBC (Fig. 3d) and platelets (Fig 3e) adhesion and 

morphology on the different cryogel formulations. Upon incubation with a RBC suspension, 

hemolysis ratios of PL-CNC cryogels, gelatin sponge, PBS (positive control) and Triton X-100 

(negative control) were determined (Fig. 3c). PL-CNC cryogels and gelatin sponge supernatants 

exhibited a light yellow color similar to PBS, whereas Triton-X was bright red due to the release 

of hemoglobin into the liquid (Fig. 3c-i). For the quantitative hemolysis ratio, gelatin sponge 

showed the lowest value of 1.9 ± 0.5 %, but not statistically significant to PL-CNC 0.6 (3.7 ± 2.0 

%) and PL-CNC 1.2 (2.5 ± 0.6 %) groups (Fig. 3c-ii), indicating that these are non-harmful for 

RBC. The obtained hemolysis ratios values are comparable with previously reported hemostatic 

materials, thus confirming cryogels hemocompatibility.25 

The three groups showed a large number of blood cells (i.e. RBC and platelets) adhering to their 

surfaces (Fig. 3d and e). High-magnification SEM images of blood cells clearly display two type 

of cells: (1) round cells with an indented center and biconcave disc shape (normal RBC) that tend 

to form aggregates (“rouleaux”) 64 and (2) spherical cells covered with abundant fine uniform 

crenations (echinocytes or altered RBC), Fig. 3d-iii, vi and ix. The presence of echinocytes can be 

explained by  the exposure to anticoagulants or staining techniques, but RBC are able to recover 

their discoid shape when re-introduced into fresh plasma.65 Concerning platelet adhesion on 

hemostats surface, PL-CNC cryogels and gelatin sponge were incubated for 1 hour with PRP (Fig. 

3e). Platelets of 2-3 µm diameter adhered to the material’s surface and exhibit a flattened 
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morphology with projections of pseudopodia and lamellipodia, which is an indicator of platelet 

activation.25, 33, 66 The adhesive interactions mediated platelet to platelet aggregation that produced 

a tenaciously adherent mass of platelets, being more evident on PL-CNC 0.6 cryogel formulation 

(Fig. 3e-ii). We hypothesize that the observed fast blood absorption of PL-CNC 0.6 cryogel 

promoted an initial higher adhesion of platelets and produced a more evident platelet aggregate in 

comparison with the other two tested formulations. Altogether, the results indicate that PL-CNC 

cryogels have a higher uptake of blood than the control, which enhances blood cells adhesion, 

platelets activation and aggregation, and possible release of coagulation factors that will clearly 

contribute to their in vivo blood-clotting capability.43  



 29 

 

Figure 3.  In vitro hemostatic capacity evaluation of PL-CNC cryogels compared to commercial 

gelatin-based hemostatic sponges (control). After 3 minutes immersion in whole blood, (a) 

structural shape maintenance and (b) blood absorption rate were evaluated. (c) Photographs from 

hemolytic activity assay (i) and hemolysis ratio (ii) of the tested formulations. SEM images of (d) 
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adhesion and morphology of blood cells and (e) platelets on the cryogels and commercial gelatin 

sponge surface. Statistical significance: &, P < 0.01, Control vs PL CNC 0.6 and #, P < 0.0001, 

Control vs PL CNC 0.6-1.2. Hemolysis ratio: P = 0.6331, PL-CNC 0.6 vs. PL-CNC 1.2; P = 

0.3984, PL-CNC 0.6 vs. Control; and P = 0.8949, PL-CNC 1.2 vs Control. Scale bar: 100 µm (d-

i, iv and vii), 50 µm (d-ii, v and viii), 10 µm (d-iii, vi and ix) and 5 µm (e). 

 

In vitro cell behavior 

The response of hASCs to PL-CNC cryogels and to their leachable compounds was evaluated 

to assess their cytocompatibility (Fig 4a and b). For this purpose, hASCs were seeded/cultured 

onto the cryogels without serum supplementation (i.e., FBS), Fig. 4a. Three days after seeding, 

live/dead assay results showed a high cell viability (> 90 %) in both PL-CNC groups, which is 

maintained until the end of the experiment (7 days). Moreover, hASCs presented a spindle-like 

morphology and were distributed within the entire cryogel network, mainly due to the structural 

support of PL-CNC cryogels for hASCs attachment. After 21 days in culture, hASCs exhibited 

high cytoskeleton elongation and extended cell spreading area, showing that the cryogels enabled 

an appropriate microenvironment for cells that led to well-developed cellular networks formation 

(Fig. S2).  

hASCs were also challenged with supernatants obtained from PL-CNC 0.6, PL-CNC 1.2 and 

commercial gelatin formulations for 24 hours, Fig. 4b. The obtained results indicated that PL-CNC 

cryogel releasates collected from D0 (5 min of incubation), D0–6H and 6H–D1 significantly 

enhanced cell proliferation in comparison with gelatin sponge group releasates (Fig. 4b-i). At an 

early time interval (D0), 66 ± 13.3  %  (PL-CNC 0.6) and 74.4 ± 6.6 %  (PL-CNC 1.2) of PL 

protein content was released (Fig. 2a-ii), which likely contains relevant GFs (e.g., mitogenic 
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platelet-derived GF) that are able to induce cell proliferation. 67 At the subsequent time points, 

lower amounts of protein were released from the cryogels, resulting in minimal cell proliferation 

when compared with the cultures using the initial PL-CNC cryogels releasates. Moreover, cells 

cultured with PL-CNC cryogels supernatants at D0 exhibited a lower metabolic activity per cell in 

comparison with gelatin sponge (control) releasates at D0, values that are leveled for the cultures 

performed with the releasates of the subsequent time points, Fig. 4b-ii. Although not completely 

clear, we hypothesize that gelatin control releasates exhibited higher metabolic activity than PL-

CNC cryogels due to their possible entrance in quiescence state, possibly induced by nutrients 

depravation due to the lack of FBS in the culture media.68-70 However, further cell cycle studies 

would be needed to fully understand these cell behavior. Strikingly, the unique open porous 

structure and structural stability of PL-CNC cryogels along with bioactive cues (e.g., GFs and 

cytokines) presence are crucial to their excellent cytocompatibility and biofunctionality.   

The effect of the soluble factors in cryogel releasates on stem cell migration and gene expression 

was evaluated using a scratch assay (Fig. 4c). Interactions among endogenous stem cells, tissue-

resident cells and immune cells are essential factors for wound healing and regulation of the 

regenerative processes.71 First, a scratch was performed in a hASCs monolayer to mimic the in 

vivo wound healing process, and subsequently the cells were treated for 48 hours with the 

releasates collected at D0 (Fig. 4c-I and S3). hASCs migrated faster in the presence of PL-CNC 

0.6 releasates (open wound area of 0 %) when compared to hASCs in PL-CNC 1.2 (14.8 ± 29.6 

%) and gelatin sponge (32.5 ± 37.6 %) releasates. We hypothesize that hASCs migrated faster in 

PL-CNC cryogels formulations possibly influenced by soluble PL-derived GFs that are known to 

promote an efficient wound closure (e.g., platelet-derived GF or stromal cell–derived factor 1α).14, 

72, 73. 
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The precise regulation of the wound healing response is determinant for the heathy new tissue 

formation.1, 74 The process requires an adequate and controlled transition from repair to 

regeneration in order to avoid abnormal production of inflammatory mediators, fibrosis and 

ultimately promote tissue repair.71 To evaluate the potential of our cryogels to modulate this 

response, the expression of α-smooth muscle actin (ACTA2), matrix metalloproteinase 9 (MMP9) 

and tissue inhibitor matrix metalloproteinase 1 (TIMP1) was evaluated. These makers were 

selected due to their importance on the degradation and turnover of the ECM that is tightly 

regulated by MMPs and their inhibitors (TIMPs).75 Moreover, ACTA2 marker is associated with 

myofibroblast differentiation and fibrogenic conditions.76 The gene expression results revealed 

that PL-CNC cryogels groups, although not statistically significant, showed a downregulation 

trend of scarring markers compared with gelatin group including ACTA2 and MMP9, and similar 

mRNA expression of TIMP1. Thus, the gene levels of the fibrosis-associated mediators ACTA2 

and MMP9 tend to decrease for hASCs cells while TIMP1 is maintained, which suggests a more‐

regenerative and less‐scarring response.  
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Figure 4. In vitro evaluation of cell supportive properties. (a) Live/Dead staining with Calcein 

AM and propidium iodide (green: live cells; red: dead cells) of hASCs seeded in PL-CNC cryogels 

after 3 and 7 days in culture. (b) DNA content (i) and metabolic activity fluorescence normalized 

by total DNA content (ii) of hASCs cultured with releasates of PL-CNC cryogel and gelatin sponge 

control (α - gelatin sponge group degraded after one day). (c) Wound healing photographs after 48 

hours in culture (β - PL-CNC 0.6 formulation (n=3) showed an open wound area of 0%) (i) and 

gene expression of hASCs on the different formulations (ii). α-smooth muscle actin (ACTA2), 

matrix metalloproteinase 9 (MMP9) and tissue inhibitor matrix metalloproteinase 1 (TIMP1). 
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Statistical significance: *, P < 0.1, **, P < 0.01 and ***, P < 0.001. Scale bar: 200 µm (a) and 250 

µm (b). 

 

In vivo hemostatic performance 

The hemostatic performance of PL-CNC cryogels and gelatin sponge was evaluated by bleeding 

time and hemorrhage volume until hemostasis was achieved (Fig 5). Liver exhibits an extremely 

abundant blood supply and it is susceptible to severe traumatic hemorrhaging, thus a defect in the 

rat lobe liver was induced, 77 and then treated with the tested formulations (Fig S3). The bleeding 

was controlled in 102.9 ± 31.2, 84.5 ± 58.9 and 113.6 ± 28.6 seconds after gelatin, PL-CNC 0.6 

and PL-CNC 1.2 groups application, respectively (Fig. 5a-i). Until hemorrhage control, there was 

a blood loss of 115.8 ± 182.0 mg, 93.6 ± 38.9 mg and 65.6 ± 34.8 mg in gelatin, PL-CNC 0.6 and 

PL-CNC 1.2 groups, respectively (Fig. 5a-ii). Comparing the hemostasis time observed with PL-

CNC cryogels to other reported hemostatic products, the improvement exceeds oxidized cellulose 

(Surgicel® and oxidized bacterial cellulose) and was similar to the recorded values for gelatin-

based products (Kuai Kang Gelatin Sponge® and Gelita-Spon® Standard), (Fig. 5a-iii), which 

highlights the good hemostatic performance of PL-CNC cryogels.29, 34  

The formulations were successfully removed from the treated injuries without rebleeding and 

then the adsorbed blood cells and clotting factors were analyzed (Fig. 5b). As previously observed 

in the in vitro hemocompatibility studies, a large number of RBC and platelets are rapidly recruited 

to the site of injury and adhered to the material surface. It is worth noticing that a fibrin network 

was formed in all the three formulations, which clearly enhanced blood cells absorption, platelet 

aggregation and effectively controlled the in vivo hemorrhage. The hemostatic mechanism of PL-

CNC cryogels is mainly mediated by two key material features. First, human-based nanocomposite 
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cryogels contain an enriched milieu of platelet-derived clotting molecules that trigger platelet 

activation, and quickly induce blood cells adhesion, accumulation and agglomeration at the 

bleeding site. Moreover, PL-CNC cryogels showed a burst delivery of proteins (~70% of their 

initial protein content is released upon 5 minutes of incubation in an aqueous solution) containing 

relevant biological factors that play a significant role in antimicrobial activity and intracellular 

communications, thereby strengthening the blood clotting process.14  

Remarkably, cellulose-based products have been widely applied in post-traumatic bleedings, 

specifically non-regenerated oxidized cellulose (e.g., Oxycel®) or regenerated oxidized cellulose 

(e.g., Surgicel®) gauzes.78, 79 Here, by combining minor CNC amounts with PL-derived proteins, 

we are able to reproduce the strength of such materials to stop hemorrhage. These results suggest 

that the nanocomposite cryogels improved the hemostasis capability of such cellulose-based 

materials while promoting the sustained release of therapeutically-relevant proteins.  

 

In vivo host response 

When hemostatic agents are applied in the injury site, they can leave residues in the wound that 

can induce a severe foreign-body reaction leading to inflammation or/and thrombus.7 PL-CNC 0.6, 

PL-CNC 1.2 and commercial gelatin groups were subcutaneously implanted in rats for 7 and 14 

days to evaluate their in vivo biological response (saline solution was used as control), namely 

cellular infiltration and degradation behavior (Fig. 5c, d, S4 and S5). At the end of the defined 

timepoints, the implanted conditions and surrounding tissue were excised for histologic evaluation 

(Fig. 5c). After implantation for 1 week, gelatin sponges were completely absorbed, although its 

life-time was specified to be less than 4 weeks. Due to fast degradation, the in vivo response of 

gelatin sponge was comparable to the saline control group, thus only PL-CNC cryogels local 
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biological effect was evaluated (Fig. 5d). Histologic evaluation showed that both PL-CNC 

formulations induced inflammatory tissue reactions with different magnitudes. At day 7, the tissue 

reaction to the PL-CNC 0.6 formulation included a narrow band of fibrosis without fatty infiltrate 

(Fig. 5d-i), groups of 4-7 capillaries with supporting fibroblastic structures (Fig. 5d-ii) and 

moderate necrosis (Fig. 5d-iii). In contrast, the formulation with the highest CNC content induced 

a tissue reaction involving a moderately thick band of fibrosis without fatty infiltrate (Fig. 5d-i), 

minimal vascularization of its implant beds (Fig. 5d-ii) and a more severe necrosis (Fig. 5d-iii). 

After 14 days of implantation, both formulations showed a minimal local inflammatory response 

in the subcutaneous space (Fig. 5d). Interestingly, both formulations showed a low fibrosis degree, 

and a very low number of foreign body giant cells and neutrophils, then the overall tissue 

inflammatory response was significantly diminished. Our findings are in agreement with previous 

studies showing that CNC exhibited a mild acute inflammatory response (2 days) that was 

attenuated over time (30 days), indicating a good tolerance in vivo.80 Although the host 

response was the result of the normal material-induced inflammatory tissue reaction, the observed 

initial inflammatory response might also be potentially caused by human PL-derived proteins. In 

summary, these results indicated that PL-CNC cryogels could be used as biocompatible hemostatic 

agents for in vivo application. 

 



 37 

 



 38 

Figure 5. In vivo hemostatic capacity and host response evaluation of the cryogels compared to 

commercial gelatin hemostatic sponges and saline solution. (a) blood loss (i), hemostatic time (ii) 

in the standardized liver defect model, and comparison of hemostasis time for PL-CNC cryogel 

and commercial products (  Surgicel® and  oxidized bacterial cellulose34; and  Kuai Kang 

Gelatin Sponge® 29) (iii), (b) SEM images of surface adhesion of blood cells at the bleeding site. 

(c) H&E staining results of PL-CNC 0.6 and PL-CNC 1.2 cryogels, gelatin sponge and saline 

solution on day 7 and 14. (d) Frequency distribution of the fibrosis (i), angiogenesis (ii) and 

necrosis (iii) score of PL-CNC 0.6 (A) and PL-CNC 1.2 (B) groups on day 7 and 14. Scale bar: 

500 µm (b) and (c). 

 

Conclusions 

The incorporation of rod-shaped CNC (0.6 to 1.2 wt.%) into the low strength PL-based network 

improves cryogel structural integrity, increases bulk cryogel mechanical properties and enhances 

the antibacterial activity against S. aureaus. In addition, PL-CNC 0.6 cryogels show a faster blood 

absorption rate and higher initial adhesion of platelets in comparison with PL-CNC 1.2 and gelatin 

formulations. Interestingly, porosity and structural integrity of PL-CNC cryogels together with the 

ability to deliver PL-derived bioactive molecules enables cells adhesion, increases cells migration 

and proliferation. The hASCs behavior upon exposure to PL-CNC cryogels releasates indicates a 

likely more‐regenerative and less‐scarring response. In a standardized liver defect model, 

nanocomposite cryogels showed similar hemostatic performance compared to commercial 

products. PL-CNC cryogels composed of small amounts of nanocellulose were not completely 

degraded in vivo due to the lack of cellulase enzymes in mammalians, but it can be incorporated 

in the formulations as a bioorthogonal strategy to modulate their degradation profiles. Overall, 
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results suggest that although the reinforcement effect of the CNC nanofillers was higher in PL-

CNC 1.2, PL-CNC 0.6 cryogels showed a better hemostatic performance and might therefore be a 

more favorable option as hemostatic agents.  In summary, the proposed PL-CNC cryogels allow 

the use of PL not only as a source of signaling biological factors involved in wound healing, but 

also as a user-friendly off-the-shelf hemostatic biomaterial with potential to promote regenerative 

wound healing outcomes. 
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hASCs, human adipose-derived stem cells; MMP, matrix metalloproteinase; µ-CT, micro-
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