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Abstract 

The initial premise of this research is that the relative efficiency of refurbishment 

solutions with architectural membranes needs to be measured in order to allow its 

comparison with conventional solutions, helping decision makers to select the 

most efficient solutions. The evaluation of this efficiency depends on economic 

features, but also on functional, technological and environmental ones. This study 

presents a model to solve this problem, using decision trees, multicriteria 

decision-making methods (SAW and AHP) and a sensitivity analysis. The 

selection of the criteria and the assignment of the corresponding weights was 

attained through an expert group survey for a baseline scenario, aiming 

maximizing functional performance (such as energy savings) and minimizing 

employed resources (materials, costs, etc.). The most efficient refurbishment 

solution among the set of alternatives was reached using the developed model. 

The methodology was applied to a case study – an old building from the 19th 

century, located in Portugal, which was refurbished with a vertical extension. The 

result reveals that the proposed model is successful and illustrates the potential of 

this evaluation methodology to compare and quantify the efficiency of a series of 

different lightweight constructive solutions. It also underlines the advantages of 

using lightweight building technologies, especially with architectural membrane 

materials, in building refurbishments.  

Keywords: multicriteria decision-support model; efficiency; vertical extensions; 

architectural membrane materials; refurbishment. 

1. Introduction 

Due to growing limitations on land use and sustainability issues consciousness, the 

building rehabilitation market has faced growing opportunities around the world. With 

the increasing local and global migration seeking better opportunities in cities, the 

current urban agendas have put forward compact city concept as a promising solution 

towards sustainable urban development. Vertical extension to existing buildings is 

considered an approach towards increasing cities’ density. However, rehabilitation 

projects are usually characterized by high levels of uncertainty and risk, due to the lack 



of information and the complexity of the operations (Lee & Gilleard, 2002). The 

decision-making process to select the best solution involves a wide range of divergent 

interests, including constructive (i.e. planimetric and volumetric changes, assembly 

time), functional/social/cultural (i.e. the improvement of architectural and aesthetic 

appearance and indoor comfort), economic, environmental aspects, etc. In particular, the 

increasing importance given today to the environmental compatibility leads designers to 

combine both the use of energy efficient materials and technical solutions to maximize 

savings. Thus, alternative solutions to conventional ones must be studied, especially 

when the costs and weight of refurbishment constructive solution are inhibiting factors 

(for owners, designers, investors and different parties involved). The available 

lightweight constructive systems to improve functional building’s performance (energy 

efficiency and interior comfort) are already numerous and, therefore, identifying the 

most appropriate rehabilitation options is a topic of great importance, considering the 

possible costs and other aspects involved. For instance, architectural membrane building 

technologies are interesting alternatives in cases where the use of 

conventional/traditional building options is limited, especially for its weight (Macieira, 

Mendonça & Guedes, 2017). 

Therefore, decision makers need decision support tools to help choosing the 

most advantageous option. The analysis of alternative refurbishment solutions is usually 

performed considering economic, environmental, technical, technological, comfort, 

among other aspects. Ideally, the efficiency level of rehabilitation solutions, configured 

in an evaluation model, should include criteria that allow the decision maker to perform 

a comprehensive analysis of the available alternatives, defining criteria’s goals – 

maximize or minimize, in order to make a proper choice. 



This research intends to evaluate, first, in what measure multicriteria evaluation 

models can be used to support refurbishment decision-making and, second, if membrane 

solutions can constitute an efficient alternative to conventional extensions solutions - 

which represent 68% of the 2015 refurbishment works in Portugal (INE, 2017) - in 

particular when it comes to add storeys to older buildings with structural limitations. 

For this, an old building from the 19th century, located in Porto (Portugal), was used as 

case study. A set of 6 lightweight solutions were studied to be applied to the building 

and a multicriteria evaluation model was adopted to support decision-making, namely to 

select the most efficient option, determining its relative efficiency. The results present a 

new outcome for the state of the art of lightweight design/building applications field. 

The case study and the multicriteria proposed model are described in the 

following sections (from section 2 till 7). 

1.1. Overview of decision support tools for refurbishment 

In order to design and implement an efficient building refurbishment, it is 

necessary to carry out an exhaustive search of solutions that may be applied. The 

efficiency level of a building refurbishment depends on a large number of factors. There 

has been a large development of models and methods used by different authors to 

support the best refurbishment measures under different perspectives i.e. that consider 

multiple criteria. These methodologies can be categorized into two main approaches: 

the models in which alternative refurbishment solutions are explicitly known a priori 

and the models in which alternative refurbishment solutions are implicitly defined in the 

setting of an optimization model (Asadi et al., 2014). The most common a priori 

approach is one in which the decision maker assigns weights to each criterion, and the 

weighted sum of the criteria makes it possible to find the best design solution. 



A large number of decision support tools were identified by Ferreira, Pinheiro 

and Brito (2013) research, covering 40 decision support tools for building’s 

refurbishment (including relevant Portuguese tools). Their research shows that 

environment and the economy are the most assessed areas. Social/society is mentioned 

less, and the main criteria assessed are related to thermal comfort. 

Decision support systems for building’s refurbishment can also be classified 

according to their methodologies: offline or on-line approaches (Ferreira et al., 2013). 

Offline approach constitutes a discrete decision problem (when a finite and not too wide 

group of alternatives is assessed) and on-line approaches use modern control systems 

connected via web to optimize the systems energy and the indoor comfort in real time 

building’s operation. 

Based on an analysis of offline decision support systems for the refurbishment 

of buildings, some examples can be found, such as: (a) a multicriteria ''knapsack'' model 

proposed by Alanne (2004) to help designers to select the most feasible renovation 

actions in the conceptual phase of a renovation project; (b) a novel assessment method 

that evaluates the real energy and economic savings of refurbishment actions, 

depending on different energy-related occupant scenarios, to enable comparisons with 

other buildings (Serrano-Jimenez et al., 2019); (c) a methodology to optimize 

combining artificial neural networks and life cycle cost (Almeida & De Freitas, 2016); 

(d) a multi-criteria assessment methodology for the environmental, economic and social 

evaluation of different residential energy refurbishment solutions, based on 

effectiveness indices (Lizana et al., 2016). 

Based on an analysis of on-line systems, some examples can also be found, such 

as: (a) BeSmart2 application (Tereso & Amorim, 2015) (developed in C#, it implements 

the AHP, SMART and Value Functions methods) that allows comparisons between 



several alternatives with several criteria, always keeping a permanent backup of both 

model and results, and provides a framework to incorporate new methods in the future; 

(b) XENIOS methodology and software (Dascalaki & Balaras, 2004) to assess 

refurbishment scenarios in hotels, permitting users to perform a preliminary audit and 

make a first assessment of cost-effective energy efficient renovation practices; (c) a 

multicriteria decision support system for construction (Kaklauskas et al., 2007); (d) 

MultiOpt decision support tool, a genetic algorithm (NSGA-II) coupled to TRNSYS 

and economic and environmental databases for the optimization of renovation 

operations based on existing assessment software and methods, was developed by 

Chantrelle et al. (2011); (e) Interactive Data Flow (IDF) system that takes advantage of 

Building Information Modelling (BIM), Building Energy Modelling (BEM) and 

Analytical Hierarchy Process (AHP) techniques, to focus on main clients’ building 

refurbishment needs - using them together, enhances the decision process and provides 

data to set up a strategic refurbishment plan (Tronchin, Manfrean & Tagliabue, 2016). 

Antipova et al. (2014) present a systematic tool for the optimal refurbishment of 

buildings based on a rigorous mixed-integer linear program (MILP) by means of Life 

Cycle Assessment (LCA) principles, which allow evaluating the impact of each 

alternative being assessed considering all the stages in its life cycle; it identifies, in a 

systematic manner, the best alternatives for reducing the environmental impact of 

buildings. The capabilities of this approach were illustrated using a case study from 

Portugal. 

Regarding the selection of vertical/rooftop extension building technologies, few 

studies are found. Dind, Lufkin and Rey (2018) presents a multicriteria evaluation of the 

architectural concept to design timber construction systems for vertical extensions of 

office buildings. According to Amer and Attia (2019), the selection of optimum roof 



stacking construction method is merely based on subjective evidence supported on 

architects’ or owners’ requirements. Therefore, they identified, categorized and ranked 

37 influential criteria behind the selection and decision making on roof stacking 

methods, based on sustainability triple bottom line, i.e. environmental, economic and 

social, using AHP technique. An intensive literature review and pilot surveys, to 

architects and building engineers, have been carried out. The outcomes of this research 

draw the line to develop a new tool that facilitates the construction of sustainable roofs 

in European cities. 

From the literature review, it can be oberserved that Multicriteria Criteria 

Decision Methods (MCDM) gain popularity in the selection process of refurbishment 

solutions. However, studies about selection of building solutions for rooftop extensions 

are recent and still limited. To overcome this limitation, authors propose to apply a 

methodology for selecting vertical extensions/rooftop building technologies for old 

buildings. 

2. Case study 

The old building taken as case study (Figure 1a) presents a constructive system with 

characteristics similar to the majority of the houses built in Porto, Portugal, during the 

19th century: single-leaf granite walls with lime and granitic sand-based mortar; timber 

floor structures; wooden window frames with single glass (3mm); light timber frame 

partition walls; plaster ceilings and sloping roof with timber structure and ceramic tiles. 

The top horizontal slab that will serve as support for the vertical extension is made of a 

timber structure, too. In the last 10 years, the building suffered significant degradation; 

the lack of maintenance allowed water to enter inside the building, causing deterioration 

of the wooden structure of the roof and the top slab. Because of it, there was the need to 

demolish both the roof and the slab and perform a new rooftop extension. Figure 1b 



presents the refurbishment project by the design office Anarchlab (2017), which 

considers timber structural elements. 

[Figure 1 near here] 

2.1. Lightweight building solutions for rooftop extensions 

The building case-study was used to evaluate and compare the efficiency of several 

lightweight vertical extension’s options, namely those presented in Figure 2, which 

include conventional reference models using timber or steel (CWood and CSteel), and 

proposed alternative solutions using membranes (Alternative Membrane base (AMb), 

namely: Alternative Membrane variant 1 (AMv1), variant 2 (AMv2) and variant 3 

(AMv3)). Because vertical extensions correspond to an increase of weight to the 

existing structure, it is important that they are conceived with lightweight structures, in 

particular when they are meant to be misaligned from the lower contour walls, i.e. from 

the main load bearing walls. The next sections refer to the characteristics of the 

lightweight vertical extension options that were analysed in this research and applied to 

the case study. 

2.1.1. Existent Traditional building Solution (Traditional Solution - TS). 

The original building presents a small rooftop extension volume, traditionally called 

"mirante" in Portuguese (Figure 1a and 2 - TS). It is made of exterior and interior 

lightweight framed timber walls (exterior ones covered with corrugated metal sheet 

from the outside and with lime and sand-based plaster from the inside), a timber ceiling 

and a roof timber structure covered with ceramic tiles. 

 

2.1.2. Conventional refurbishment building solutions 

The solution with Wood structures (Conventional Wood - CWood) considers the 

refurbishment using a conventional wood building solution (wood framing and OSB 



(Oriented Strand Board) panels) (Figure 1b and Figure 2). The exterior envelope is 

made of a ceramic tiles roof supported by a timber structure; the walls are covered with 

corrugated metal sheet on the outside and have internal thermal insulation and OSB in 

the middle, and plasterboard in the inner side (Table 4). 

The solution with Steel structures (Conventional Steel - CSteel) is a variant of 

the CWood solution. It has the same exterior envelope, but covering an LSF (Light 

Steel Framing) structure, i.e. using cold-formed galvanized steel profiles (Figure 2 and 

3). 

2.1.3. Alternative Membrane refurbishment building solutions (Alternative 

Membrane - AM).  

The alternative solutions correspond to the use of membrane materials in the 

construction system. Membranes are textile composite or foil materials that present low 

self-weight (approx. 1 kg/m2), high flexibility and resistance under tensile forces. In this 

study, a modular and prefabricated constructive solution AMb(ase) is proposed. 

However, as AMb is lightweight and, therefore, has reduced thermal mass, three 

variants, AMv1, AMv2 and AMv3 are proposed to overcome this limitation, namely by 

adding materials with phase change and/or vegetation that take advantage of the thermal 

mass of the building itself. All AM present a modular multilayer envelope system, with 

membranes in both sides (with low emissivity and self-cleaning coating, combined with 

a thermal/acoustic insulation material), an insulated core and a wood structure with 

modular and prefabricated elements (frames) connected with metal tubes, cables and 

fittings. All these elements can be easily transported manually and are assembled in situ 

(Figure 2). 

[Figure 2 near here] 



3. Framework of the proposed multicriteria decision model 

The literature shows that multicriteria methods have been used as a methodological 

approach to improve the decision process when choosing refurbishment solutions.  

Decision support models are developed from a constructivist paradigm where 

the participants in the decision-making process discover together the problem and 

obtain the model that best meets the group interests (Ribeiro & Tereso, 2016). 

The proposed decision model, schematically shown in Figure 3, is deterministic 

- it considers all variables to be known. Furthermore, as the decision problem (to select 

the most efficient lightweight vertical extension solution for old buildings) involves the 

consideration of several criteria, it becomes complex, requiring the definition of a 

multicriteria decision model. In this type of models, usually, it is not possible to find an 

alternative that is better than the others in all criteria, simultaneously. Therefore, it is 

necessary the intervention of the decision maker to reach a conclusion, by combining its 

preferences with the criteria considered for the various alternatives. In fact, multicriteria 

problems do not objectively have an optimal solution. There is only a preferred solution, 

which can vary for different decision makers, depending on the importance given to 

each criterion. 

The study of a problem within the generic Multi Criteria Decision Analysis 

(MCDA) approach includes three main phases: structuring, evaluation and 

recommendations, which constantly interact with each other (Clemen & Reilly, 2001). 

The implementation of the MCDA is a non-linear process comprising several steps. The 

steps can be summarized as follows (Clemen & Reilly, 2001): (1) identify the 

problem/objective, decision makers and criteria; (2) identify alternatives; (3) decompose 

and model the problem; (4) choose the best alternatives; (5) perform sensitivity analysis 

and; (6) give recommendations for the implementation of the chosen alternatives. 



The development of a model to support the decision of selecting the most 

efficient vertical extension option can be similar for different refurbishment’s problems 

and stakeholders, but it has to be adapted to each case. 

4. Proposed multicriteria decision model 

In the present research, a multicriteria framework was used as the methodological 

approach to the refurbishment choice process of the most efficient vertical extension. 

Briefly, the structure of the proposed decision model is presented in Figure 3 and some 

details about its implementation are explained in the following sections. Based on the 

previous mentioned steps 1 to 6, considering the specificity of this research problem, 

steps i to viii (Figure 3) were identified. The problem implementation is performed in a 

tripartite hierarchical way (Figure 3). The first hierarchical level consists in the decision 

problem definition and decision makers’ identification. The second hierarchical level 

corresponds to criteria definition and the third to the definition of alternatives. 

[Figure 3 near here] 

According to the classification proposed by Ferreira, Pinheiro and Brito (2013), for 

decision support systems (DSS) of building’s refurbishment, the proposed model 

constitutes an offline combined approach of a discrete decision problem (a finite group 

of alternatives is assessed) with a simulation-based approach (SMB), as it uses 

simulation models to calculate each solution’s performance value. 

When looking for the most environmentally beneficial solution, apart from the 

operational phase, it is also important to consider the embodied impacts at end-of-life. 

According to Ferreira, Pinheiro and Brito (2013) DSS’s classification in relation to their 

life cycle approach, the present decision model can be considered a Life Cycle Analysis 



(LCA)-based model, because it includes criteria associated with environmental and 

economic impact, in all life cycle phases, as presented in section 7. 

It is expected that the proposed model will be a basis to support future 

refurbishment decision making evaluations, involving vertical extensions. In the case 

studied, the decision maker evaluates 30 items (criteria) from different vertical 

extension’s options (alternatives), as presented in section 7.  

4.1. Methods/techniques used to support decision-making 

MCDM problems involve the evaluation and combination of two or more criteria, in 

order to classify, order or choose one among other available alternatives. In this 

research, based on a multicriteria approach, it was built, tested and validated a decision 

support model to determine the relative efficiency of available alternatives to functional 

refurbishments interventions. This model incorporates the AHP and Simple Additive 

Weighting (SAW) method. AHP and SAW have been selected because are simple, 

robust, repeatable, objective, commonly recognized as valid and eventually they have 

been used in many different researches in the construction industry (Zanakis, Solomon, 

Wishart & Dublish, 1998; Zheng, Jing, Huang, Shi & Zhang, 2010). According to 

Tupenaite et al. (2010) these methods allow considering the relative importance of the 

several criteria, by a decision group, in order to select the alternative that presents the 

best (major) global value. In the following sections, the adopted steps in this procedure 

are explained in detail, using as example the selected case study. 

The MCDM, together with the AHP and SAW methods, has been used first to 

evaluate the criteria importance and after to pick the most suitable option, in which the 

whole process of the present research is outlined.  



5. Step i: Decision problem definition 

The decision problem consists in selecting the best alternative - constructive solution - 

for functional refurbishment interventions, with vertical extensions, of old buildings, in 

accordance with the criteria presented in Figure 4. These criteria were defined and 

discussed by the decision-making group, aiming to define the aspects on which the 

relative efficiency of functional refurbishment options should be measured (covering 

economic, social/aesthetics/patrimonial, constructive, security, functional and 

environmental aspects). To aid the choice of criteria to assess the options under 

consideration, it was considered the set of guidelines developed by Saaty (1980). Based 

on this and on literature review, the decision group agreed to select the 30 quantitative 

and qualitative decision criteria. 

The AHP hierarchy of criteria decomposes the refurbishment problem at hand 

into sub-problems (criteria), which are decomposed into sub-problems and so on, until 

the problem is represented as a decision tree of criteria (Figure 4). 

[Figure 4 near here] 

6. Step ii: Decision makers identification 

The decision makers were responsible for the criteria selection and its weight 

assignment. The decision group is composed by: 1 building physics specialist; 1 

structural engineering specialist and 1 architecture technician. Ideally, the decision 

group size should be larger, but in this case, it is only composed by 3 elements, because: 

(1) it is difficult to find a large number of available experts to do pairwise comparisons 

and (2), at same time, that know well the alternatives under analysis. However, in future 

works, the weight assignment can be updated in relation to the decision makers specific 

needs. Moreover, this weight list can be used in other related case studies, even if one or 



more parameters are excluded from the evaluation, without the need to redo the 

pairwise comparison, if specialists have similar preferences. 

7. Step iii: Criteria definition and hierarchical structure 

Criteria are tools that allow the comparison of various actions and alternatives in 

relation to the decision makers points of view. To make pairwise comparison, it is 

recommended that the number of the criteria be between three and seven, never 

exceeding nine, so that the result is coherent and not too extensive (Saaty, 1990). The 

criteria definition process was established by the decision group. 

In the next steps, AHP and SAW methods are applied. To do this, first, it is 

necessary to define all the criteria and priority levels. Table 1 presents the 7 selected 

criteria, which corresponds in total to 12 quantitative subcriteria and 18 qualitative 

subcriteria. The later ones are related with future community support frameworks, such 

as climate change adaptation, risk prevention/management, environmental impact 

reduction and efficient use of resources. 

[Table 1 near here] 

In order to speed up the performance evaluation of the six refurbishment 

projects, according to the selected quantitative criteria, a BIM of the building was 

created and used for quantities extraction, and as the starting point for a BEM used for 

estimating energy demands of the building in the six refurbishment scenarios. All 

criteria are evaluated for each refurbishment options project. The quantitative 

subcriteria, associated to functional, constructive and environmental aspects were 

measured through calculations with computer tools such as Design Builder® and One 

Click LCA®. The quantitative parameters associated to economic aspects were 

evaluated by consulting several databases, material suppliers, installers, etc. Only the 

cost associated with the end of life (recycling, landfill, etc.) was not considered in this 



study for two reasons: (1) enormous uncertainty in its calculation and; (2) expected 

reduced influence on total cost, meaning that its inclusion in the evaluation was not 

expected to provide results that were more accurate. 

For the qualitative subcriteria, the assessment was made by a score obtained 

from aggregation of judgments of a decision group, and associated to descriptions and 

evaluation scales, as presented in Table 2. 

[Table 2 near here] 

8. Step iv: Obtaining priority vector - assigning weights to criteria and 

subcriteria 

Ideally, it is considered appropriate to adopt a weighting system able to consider the 

relative importance of the criteria. Otherwise, all criteria would have the same 

importance, which does not correspond to the reality. Therefore, a pairwise comparison 

(inserted into AHP decision-making method) was made between the elements of the 

second hierarchical decision-support level. One of the most and widely applied method 

to derive criteria weights in multiple criteria analysis is AHP (Saaty, 1980). AHP is 

becoming quite popular in research due to the fact that its utility outweighs other 

methods (Cheng & Li, 2001). This method is proposed to be used in determining the 

weights of the criteria in this research; Tupenaite et al. (2010) algorithm is partially used 

(Figure 5). 

[Figure 5 near here] 

A very important issue in this research is the selection of decision makers; they should 

have appropriate knowledge about the alternatives under analysis, as well as experience 

in rehabilitation projects. As mentioned at section 6, three experts fully satisfied the 



requirements and participated on a survey. The questionnaires, consisting of judgment 

matrices, were prepared and provided to experts. 

To perform this pairwise comparison, a scale is required for normalization. 

Comparisons were made by the decision-making group, using the Saaty (1990) 

fundamental scale, which ranges from 1 to 9. Pairwise comparisons were made only 

among criteria and subcriteria (shown in Table 1), regarding the decision problem. It 

was made by a survey form – with Transparent Choice AHP tool (2018) – composed by 

1 pairwise matrix (for the 7 criteria) and 7 pairwise matrices (for the subcriteria of each 

criteria group). Then, the eigenvector method was employed to obtain the local priority 

vectors for the coupled comparison matrix (i.e. the weight for each criterion). The 

consistency of a pairwise comparison was tested applying the consistency ratio (CR). If 

the CR is less than 0.1, the pairwise comparison is considered acceptable (Saaty, 1980). 

According to this, the CR of these judgments was positively checked. Then, the 

collected judgments were aggregated, in a process involving their geometric mean, 

through which the local and global weight (the relative importance) of each criterion 

and subcriterion was calculated; the weighting/relative importance of each criterion and 

subcriterion was obtained individually (for each decision group element) and 

aggregated by the "Aggregation of Individual Judgments" (AIJ) technique, according to 

Forman and Peniwati (1998). 

The obtained results are presented at Table 3. It shows that the decision-making 

group attributed greater importance to functional aspects (C6), whose weight is 30%, 

among which stands out the building operational energy consumption in 60 years (47% 

local weight and 14% of overall weight). Criterion C4 (safety aspects) is weighted with 

22%, and criterion C1 (economic aspects) with 15%. 

[Table 3 near here] 



9. Step v: Alternatives 

Alternatives correspond to the available vertical (rooftop) extension options among 

which decision-maker can choose from. In summary, alternatives under analysis 

correspond to the constructive solutions presented in Table 4. Knowing that ultra heavy 

exterior envelope elements (walls and roof) present more than 500 kg/m2, heavy 

elements between 250 and 500kg/m2 and lightweight elements between 100 and 250 

kg/m2 (Mendonça & Bragança, 2007), one may consider that building elements with 

membrane technologies, as those proposed in this study, which weight less than 

100kg/m2 (Table 4), are ultra lightweight solutions. Thus, the relative efficiency 

evaluation performed in this study compares lightweight conventional constructive 

solutions with ultra lightweight alternative ones (Table 4), through a multicriteria model 

implementation. All alternatives presented at Table 4 have the same U-value. 

[Table 4 near here] 

10. Step vi: Criteria normalization and multicriteria evaluation 

After criteria and subcriteria weight assignment, the next step is to aggregate the score 

values over the entire set of criteria into a single score number, indicating the total 

utility caused by each refurbishment alternative. The use of a simple additive weighting 

function allows translating all criteria into a global value. The method used to solve this 

problem is referred as Simple Additive Weighting (SAW) method; a method of wide 

use where the final score is the result of the weighted sum of various criteria, namely by 

using a common numerical scale. Therefore, the general formula for the calculation of 

the scores in this method is: 

 

Vi – overall score for option i; 
wj – weight of criterion j; 
rij – score of option i on criterion j; 
n – number of criteria. 

(1) 



The score for each criterion under analysis (Table 3) was used to evaluate the 

weighted sum of the formula. To aggregate all criteria, it is necessary a scale 

conversion. The global scale used was a scale from 0 to 1 (0 being the worst and 1 the 

best). Considering that the objective is to minimize (equation 2) or maximize (equation 

3), the functions used to convert criteria values into the scale 0 to 1 were the following: 

 
(2) 

 

 
(3) 

 
where Cmax is the criterion maximum value; C is the criterion under evaluation; Cmin 

the criterion minimum value. 

The evaluation of different criteria with different units of measure and 

magnitude requires normalization. Criteria normalization aims: (1) avoiding scale 

effects in aggregating different criteria indicators and (2) solving the problem of some 

criteria being of the type "the bigger the better" and others "the bigger the worse". This 

process is effective because it normalizes the criteria by assigning them the value 1 for 

the best solution and 0 for the worst; it simplifies the whole selection process, avoiding 

errors and confusions. In this step, all values associated to each alternative, previously 

normalized according to the maximizing or minimizing function, must be multiplied by 

their global weight. Then, these values were modelled using a decision tree (Figure 6), 

where the best alternative will get the highest score. The computer tool, used to 

implement the model, was the Precision Tree, an add-in to Microsoft Office Excel, from 

Palisade Decision Tools (2018). 

Depending on the refurbishment stakeholders, the criteria weight assignment 

(priority vector) can be different, so a sensitivity analysis was made and presented in 

section 11. 



In this baseline decision-making scenario (Table 3), and after the application of 

SAW method (Table 5), it is concluded that alternative A4 (AM v1) is the most relevant 

to solve the decision problem (Figure 6), while alternative A2 (CSteel) is the least 

relevant. 

[Table 5 near here] 

[Figure 6 near here] 

11. Step vii: Sensivity analysis 

In the present study, the method adopted for the sensitivity analysis consists of a 

simulation with uniform criteria weigt distribution over multiple cycles. In each cycle, 

one fixed criterion varies in a range of 0% to 100% from the base value, in steps of 10% 

(as exemplified in Table 6) - each variation corresponds to a scenario. The procedure is 

as follows: each criterion is selected and its weight value is changed, creating a total of 

77 weighting scenarios, as presented at Table 7. For example, in C1 cycle, C1 

criterion’s weight range between 0 to 100%, while the remaining criteria present equal 

remaining weight; so, if C1 weight=X%, C2=C3=C4=C5=C6=C7= (100-X) % / 6. 

[Table 6 near here] 

[Table 7 near here] 

The efficiency of an alternative should be relative to the best option. To measure the 

efficiency of the worst option over the best, the smaller of the two is determined and the 

mean is calculated; if this average is low, it means that on average there is little 

efficiency of the second option in relation to the first one. So, the efficiency percentage 

for each alternative is obtained through equation (4). Table 7 presents the results and 

Figure 7 presents graphics with the efficiency variation of each alternative per cycle 

scenario, in relation to criteria weight variation. 



(4) 

 

where Ax is the alternative under evaluation for a Cy 
cycle; Ax% is the weighted and normalized 

alternative; Ax max is the best alternative of the 
considered Cy scenario. 

The application of this procedure shows that A4 alternative - AMv1 - is more efficient 

(being the dominant in scenarios majority) while A2 alternative - CSteel - is the least 

efficient. In 77 iterations, alternative A4 presents and average efficiency of 93%, being 

A4˃A5˃A6˃A3˃A1˃A2. Considering all weight variations for all criteria, the 

alternative A4 - AMv1 – is, on average, 1% to 45% better than the other solutions (A5 

and A2 respectively). 

[Figure 7 near here] 

The results in Table 7 indicate that A4 alternative (AMv1) maintains its 

efficiency as the functional aspects weight increases, up to 50%; from 70%, A6 

alternative (AMv3 - which has a vegetable membrane material in the exterior envelope) 

becomes the most efficient alternative. This last alternative contributes to: energy needs 

reduction (through thermal building insulation); urban heat islands mitigation and 

partial replacement of vegetation that has been destroyed to build the existing building. 

In addition, it has other benefits, such as: pollution levels reduction; carbon dioxide 

sequestration, particularly in urban environments, so GWP parameter is the lowest when 

compared to other alternatives; acoustic insulation increases and membrane material 

longevity increase: 30 years instead 15 for common membrane. 

Figure 7 shows graphical results of the sensitivity analysis carried out for each 

criterion considered. It can be found that A4 alternative (AMv1 – with 93% efficiency), 

together with A5 alternative, (AMv2 – with 92%) are the dominant alternatives in most 

weight range scenarios for each criterion. However, when C3 criterion - aesthetic 

aspects - presents a 60% weight, A4 alternative is no longer the chosen one, becoming 



A1 (CWood - conventional wood structure solution) the best one. When criteria C6 

(functional aspects) and C7 (environmental impact aspects) presents a weight of 70%, 

A6 alternative (AMv3) become the preferred one. 

12. Step viii: results discussion and recommendations 

This last step concerns the identification of aspects that can improve the performance of 

the selected alternative. Figure 7 points out that aesthetic (C3) and security (C4) aspects 

of Membranes Alternatives (A3, A4, A5 and A6) need to be improved in order to 

achieve a better overall performance, especially when it achieves an assigned weight 

above 30%. 

Analyzing the results obtained with the application of this multicriteria decision-

support model, according to the sample and analyzed criteria, one can verify that the 

most efficient refurbishment solution for the vertical extension is the A4 alternative - 

AMv1 - Alternative refurbishment solution using membrane materials, version 1. AMv1 

presents, for most of the analyzed criteria, better performance than the considered 

reference solutions. The final order (from worst to best) was: A2 (CSteel) ˂ A1 

(CWood) ˂ A3 (AMb) ˂ A6 (AMv3) ˂ A5 (AMv2) < A4 (AMv1).  

Thus, the less efficient alternative is A2 (CSteel) – conventional refurbishment 

building solution using Steel structures. Conventional A1 (CWood) and A2 (CSteel) 

alternatives proved to be less effective than Membrane alternatives (A3, A4, A5 and 

A6) due to all analysed criteria, except C3 (˃30%) and C4 (˃40%). Conventional 

building technologies present good aesthetic and security efficiency, but require a more 

rational use of materials to achieve good efficiency level on the remaining criteria. 

In summary, the relative efficiency of alternative membrane solutions (AMs) 

ranges from 45% to 20% (best and worst option, respectively), i.e. are 45% to 20% 

more efficient than conventional reference solutions (CSWood and CSteel). 



When it comes to refurbishment intervention with vertical extensions, all 

stakeholders involved in the rehabilitation process, such as architects and engineers, 

should pay particular attention to functional, economic and security aspects, because 

these criteria received the highest levels of priority in the efficiency evaluation. 

13. Conclusions 

The purpose of this research was to evaluate the relative efficiency of refurbishment 

actions with architectural membrane technologies, in comparison with conventional 

ones. To solve this problem, as there are several criteria to be analysed, a multicriteria 

decision-support model was used. 

The decision model was built using the AHP technique to prioritize and select 

the most relevant criteria (with a decision group of experts) and the SAW method, 

converting all criteira values in a scale from 0 to 1, using a maximization or a 

minimization linear function, later combined with weights, to obtain the overall value of 

each refurbishment alternative. The sensitivity analysis carried out allowed evaluating 

the robustness of the created model, as it evaluates the weight variation’s impact of each 

criterion in the final decision. Thus, it made possible to calculate the allowable variation 

ranges of weight’s values for each criterion in order to determine which is the 

dominant/most efficient alternative. 

This research concludes that alternative membrane options constitute an efficient 

alternative to conventional ones for building refurbishment’s scenarios with vertical 

extensions. 

Despite the benefits of the adopted multricriteria techniques (AHP and SAW) - 

such as flexibility, consistency and ease of understanding - their application is time-

consuming. At AHP classification, the difficulty increases as the number of parameters 

to be pairwise compared increases. 



Notwithstanding the complexity of this decision support model, it allows future 

stakeholders to speed up the process of evaluating different refurbishment alternatives 

for vertical extensions. The expectation of the present research is that the proposed 

multicriteria evaluation model could be used in different refurbishment scenarios. It 

serves as a basis for future evaluations, with the possibility to change criteria weights, 

as weights assigning can be updated in relation to specific decision-maker needs. 

As Internet and technology are in constant development, online systems will 

become increasingly relevant. Thus, in future works, developed methodologies can be 

simplifyed and translated to one interface user, expecting to be online – a simple tool 

that can be easily obtained and used by stakeholders; applications can be developed to 

make the connection between the developed model and a refurbishment system decision 

making software, not only for a portuguese context (as the present case study), but also 

for other countries or climate contexts. Improvements can be also made in the proposed 

model, by adding some input links from BIM, BEM, LCA and other models or 

databases, to flexiblize and speed up the decision process. 

In reality, this work can be seen as a first version of a database. Despite this 

research being more focused in functional, economic, environmental, social and 

constructive criteria, in further developments, this database can be increased with more 

criteria, such as quantitative structural performance ones, in order to complete the 

efficiency evaluation scenario. Turning this evaluation model into an online tool (such 

BeSmart2 application (Tereso & Amorim, 2015)) would make it easier: to redo the 

evaluation, considering other cases; to add more evaluation steps, criteria, subcriteria 

and alternatives to compare it with membrane alternatives, increasing confidence in 

membrane efficiency solutions. 
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Figure 1. Sections and exterior view of the building case study: (a) in its original state 

and (b) with the adopted refurbishment project using timber structures (designed by 

Anarchlab (2017)). 
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Figure 2. Axonometric (left) and front (right) virtual views of the case study with the 

different rooftop options considered. 



 

Step i: Decision object/problem definition 
Select the best building technology option (alternatives) to realize a refurbishment intervention with a 

vertical extension, in an old building, located at an urban city centre - Porto city, Portugal. 1st 
level  

Step i: Decision-makers identification 
Decision-making group composed by: 1 expert in building physics and architecture; 1 expert in structural 

engineering with experience in rehabilitation projects; 1 architecture technician. 
  

Step iii: Criteria definition and hierarchical structure 
Adoption of the AHP pairwise comparison technique + verification of individual judgments consistency 

(using Transparent Choice® tool (2018)). Qualitative criteria obtained through AHP surveys and 
quantitative criteria obtained through numerical simulations based on a BIM of the building case study - 

used for quantities extraction for constructive, economic and environmental impact criteria and as the 
starting point for a BEM. 2nd 

level  
Step iv: Obtaining the priority vector - assigning weights to criteria and subcriteria - base scenario  
The weighting/relative importance of each criterion and sub criterion is obtained individually, for each 

element of the group and aggregated by "Aggregation of Individual Judgments" (AIJ) technique, 
according Forman and Peniwati (1998). 

  
Step v: Alternatives definition 

CWood; CSteel; AMb; AMv1; AMv2; AMv3.  
3rd 

level 
  

Step vi: Select the best alternatives 
Implementation of the Simple Additive Weighting (SAW) method. 

  
Step vii: Sensitivity analysis 

Simulation with uniform criteria’s weight distribution over multiple cycles. 
  

Step viii: Recommendations 

Figure 3. Flowchart of the adopted decision analysis process in the present case study 

(adapted from Clemen and Reilly (2001)). 
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Figure 4. Hierarchical AHP structure for selecting the best (most efficient) constructive 

solution for a refurbishment intervention with a vertical extension. 
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Figure 5. Algorithm for determination of criteria’s weights by pairwise comparison 

(adapted from Tupenaite et al. (2010)). 

 

Figure 6. Decision tree to solve the case study decision problem “choose the best 

vertical extension option for an old building”. Chart obtained by Precision Tree 

application from Palisade (2018) 
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Figure 7. Expected efficiency values for each alternative under analysis according to 

individual variation of each criterion. 



Table 11. Hierarchical decision problem structure – to consider at criteria weight 

assignment (using AHP method) and multicriteria evaluation (using SAW method). 
LEVEL 1 – Decision problem 

Select the best building technology option (alternatives) to realize a refurbishment intervention with a vertical extension, in an old 
building, located at an urban city centre - Porto city, Portugal. 

LEVEL 2 – criteria and subcriteria 
No. Criteria No. Code Subcriteria Type Objective Indicator 

C1 Economic 
aspects 

1 SC1.1 Construction cost. QN min. € 
2 SC1.2 Operational energy cost (heating and cooling for 60 years). QN min. € 
3 SC1.3 Maintenance cost (60 years). QN min. € 

4 SC1.4 Payback period of investment in vertical extension design 
option. QN min. years 

C2 

Social, cultural 
and 
patrimonial 
aspects 

5 SC2.1 Use of traditional building materials and techniques. QL Max. 0 a 5 
6 SC2.2 Ability to install in occupied sites. QL Max. 0 a 5 
7 SC2.3 Degree of intrusiveness. QL min. 0 a 5 
8 SC2.4 Impact of the constructive process on the neighbourhood. QL min. 0 a 5 

C3 
Aesthetic 
aspects 9 SC3.1 Aesthetic quality of intervention form exterior.  QL Max. 0 a 5 

C4 Security 
aspects 

10 SC4.1 Fire resistance of exterior envelope materials. QL Max. 0 a 4 
11 SC4.2 Fire resistance of interior envelope materials. QL Max. 0 a 4 
12 SC4.3 Risk to occupants during hurricanes / storms. QL min. 0 a 5 
13 SC4.4 Risk to occupants during seismic events. QL min. 0 a 5 

14 SC4.5 Risk to the occupants in case of explosive devices 
activation. QL min. 0 a 5 

15 SC4.6 Resistance to hail falling on the roof. QL Max. 0 a 5 

C5 Constructive 
aspects 

16 SC5.1 Total weight (exterior envelope + pavement floor of 
extended part). QN min. kg 

17 SC5.2 Ease of installation. QL Max. 0 a 5 
18 SC5.3 Estimated execution time. QN min. days 

19 SC5.4 Accessibility for diagnosis / ease of maintenance of exterior 
envelope. QL Max. 0 a 5 

20 SC5.5 Accessibility for diagnosis / ease of maintenance of interior 
envelope. QL Max. 0 a 5 

21 SC5.6 Average durability of outer skin materials of exterior 
envelope. QN min. years 

C6 Functional 
aspects 

22 SC6.1 Degree of adaptability for future changes QL Max. 0 a 5 
23 SC6.2 Degree of repeatability. QL Max. 0 a 5 
24 SC6.3 Degree of reversibility. QL Max. 0 a 5 
25 SC6.4 Average sound insulation (Rw) of outer envelope. QN Max. dB 

26 SC6.5 Total Operational Energy (OE) consumption of the 
refurbished building (with vertical extension) (60 years). QN min. KWh 

C7 Environmental 
impact aspects 

27 SC7.1 Total Embodied Energy (EE) in all life cycle (60 years). QN min. MJ 

28 SC7.2 Total Global Warming Potential (GWP) in all life cycle (60 
years). QN min. kgCO2e 

29 SC7.3 Solid waste generated in construction and maintenance 
phases (60 years). QN min. kg 

30 SC7.4 Contribution to local biodiversity. QL Max. 0 a 5 
LEVEL 3 - alternatives 

CWood; CSteel; AM b; AM v1; AM v2 and AM v3. 
Note: QN – quantitative; QL – qualitative 



Table 2. Measurement of subcriteria - type, scale and description. 
Subcriteria 

code 
(see Table 1) 

Units/Scale Type Description 

SC1.1 € QN It includes net cost of materials, transport and labour. 

SC1.2 € QN It includes the net cost of energy required for heating 
and cooling the extended building part over 60 years. 

SC1.3 € QN It includes the maintenance net cost of exterior 
envelope of extended part over 60 years. 

SC1.4 years QN It represents the number of years after which the 
vertical extension becomes profitable. 

SC2.1 
0 - It does not exist; 1 - very insufficient; 2 - 

insufficient; 3 - reasonable; 4 - good; 5 - 
very good. 

QL  

SC2.2 0 - It does not exist; 1 - very low; 2 - low; 3 
- medium; 4 - high; 5 - very high. QL Is it necessary to vacate the building, completely or in 

part, to carry out the extension? 

SC2.3 0 - It does not exist; 1 - very low; 2 - low; 3 
- medium; 4 - high; 5 - very high. QL Intrusiveness: ability to minimize marks or damage to 

the asset. 

SC2.4 0 - It does not exist; 1 - very low; 2 - low; 3 
- medium; 4 - high; 5 - very high. QL Noise, dust, temporary obstruction of the public road, 

arising from the vertical extension construction phase. 

SC3.1 
0 - It does not exist; 1 - very insufficient; 2 - 

insufficient; 3 - reasonable; 4 - good; 5 - 
very good. 

QL 

Scale, colour and form. Regarding existing building and 
its immediate surroundings. The visual impact should 
be low. The aesthetic quality is reflected in the degree 
of integration between new and the existing elements - 
harmony of the set - and the visual impact of new 
elements. 

SC4.1 
0 - It does not comply with legal 

requirements; 1- E; 2 - B, C or D; 3 - A2: 
combustible; 4 - A1: non-combustible. 

QL  

SC4.2 
0 - It does not comply with legal 

requirements; 1- E; 2 - B, C or D; 3 - A2: 
combustible; 4 - A1: non-combustible. 

QL  

SC4.3 0 - It does not exist; 1 - very low; 2 - low; 3 
- medium; 4 - high; 5 - very high. QL What is the risk to the occupants resulting from the 

implementation of each alternative option, regarding 
each event (seismic, storms, etc.). That is, to what 
extent each alternative may present increased risks to 
the occupant lives when risk events occur; there should 
be no out of plane material projection, dripping or 
uplift, etc. 

SC4.4 0 - It does not exist; 1 - very low; 2- low; 3- 
medium; 4- high; 5- very high. QL 

SC4.5 0 - It does not exist; 1 - very low; 2- low; 3- 
medium; 4- high; 5- very high. QL 

SC4.6 
0 - It does not exist; 1 - very insufficient; 2 - 

insufficient; 3 - reasonable; 4 - good; 5 - 
very good. 

QL 

In the case of membrane surfaces, deformation caused 
by hail falling is recoverable over time through surface 
heating. In the case of glass, ceramic or metallic 
surfaces, deformation or cracking are only recoverable 
with repair works. 

SC5.1 kg QN  

SC5.2 
0 - impossible; 1 - very difficult; 2 - 

difficult; 3 - reasonably; 4 - easy; 5 - very 
easy. 

QL Installation should be quick, clean and safe. 

SC5.3 days QN 

It has repercussions in the exposure time of building 
parts to adverse climatic actions during refurbishment 
works, especially in cases where it is necessary to 
remove the original roof (as in this case study). 

SC5.4 
0 - It does not exist; 1 - very insufficient; 2 - 

insufficient; 3 - reasonable; 4 - good; 5 - 
very good. 

QL  

SC5.5 
0 - It does not exist; 1 - very insufficient; 2 - 

insufficient; 3 - reasonable; 4 - good; 5 - 
very good. 

QL  

SC5.6 years QN  

SC6.1 0 - It does not exist; 1 - very low; 2 - low; 3 
- medium; 4 - high; 5 - very high. QL 

Changes can be formal, concerning functional upgrades 
of materials/ components, etc. Removal/extension 
potential of added building elements in the future. 

SC6.2 0 - It does not exist; 1 - very low; 2 - low; 3 
- medium; 4 - high; 5 - very high. QL Repeatability: ability to disassemble and assemble the 

constructive solution in another place. 

SC6.3 0 - It does not exist; 1 - very low; 2 - low; 3 
- medium; 4 - high; 5 - very high. QL Reversibility: total or partial replacement capacity of 

the building solution components under analysis. 
SC6.4 dB QN  
SC6.5 kWh QN  
SC7.1 MJ QN  
SC7.2 kgCO2e QN  
SC7.3 kg QN  



SC7.4 0 - It does not exist; 1 - very low; 2 - low; 3 
- medium; 4 - high; 5 - very high. QL Integrating biological elements in the building system, 

such as vegetation. 

 

Table 3: Baseline decision-making scenario - weight assignment results to each criterion 

and sub criterion. 

No
. 

Weigh
t Criteria No

. Code 
Local 
Weigh

t 

Global 
Weigh

t 
Subcriteria 

C1 15% Economic 
aspects 

1 SC1.1 30% 5% Construction cost. 
2 SC1.2 30% 5% Operational energy cost (heating and cooling for 60 years). 
3 SC1.3 30% 5% Maintenance cost (60 years). 
4 SC1.4 10% 2% Payback period of investment in vertical extension design option. 

C2 8% 

Social, 
cultural and 
patrimonial 
aspects 

5 SC2.1 25% 2% Use of traditional building materials and techniques. 
6 SC2.2 11% 1% Ability to install in occupied sites. 
7 SC2.3 52% 4% Degree of intrusiveness. 
8 SC2.4 12% 1% Impact of the constructive process on the neighbourhood. 

C3 7% Aesthetic 
aspects 9 SC3.1 100% 7% Aesthetic quality of intervention form exterior.  

C4 22% Security 
aspects 

10 SC4.1 10% 2% Fire resistance of exterior envelope materials. 
11 SC4.2 10% 2% Fire resistance of interior envelope materials. 
12 SC4.3 20% 4% Risk to occupants during hurricanes / storms. 
13 SC4.4 20% 4% Risk to occupants during seismic events. 
14 SC4.5 20% 4% Risk to the occupants in case of explosive devices activation. 
15 SC4.6 20% 4% Resistance to hail falling on the roof. 

C5 12% Constructive 
aspects 

16 SC5.1 45% 5% Total weight (exterior envelope + pavement floor of extended 
part). 

17 SC5.2 10% 1% Ease of installation. 
18 SC5.3 20% 2% Estimated execution time. 

19 SC5.4 5% 1% Accessibility for diagnosis/ease of maintenance of exterior 
envelope. 

20 SC5.5 5% 1% Accessibility for diagnosis/ease of maintenance of interior 
envelope. 

21 SC5.6 15% 2% Average durability of outer skin materials of exterior envelope. 

C6 30% Functional 
aspects 

22 SC6.1 7% 2% Degree of adaptability for future changes 
23 SC6.2 7% 2% Degree of repeatability. 
24 SC6.3 12% 4% Degree of reversibility. 
25 SC6.4 27% 8% Average sound insulation (Rw) of outer envelope. 

26 SC6.5 47% 14% Total Operational Energy (OE) consumption of the refurbished 
building, (with vertical extension) (60 years). 

C7 6% 
Environmenta
l impact 
aspects 

27 SC7.1 40% 2% Total Embodied Energy (EE) in all life cycle (60 years). 

28 SC7.2 40% 2% Total Global Warming Potential (GWP) in all life cycle (60 
years). 

29 SC7.3 15% 1% Solid waste generated in construction and maintenance phases 
(60 years). 

30 SC7.4 5% 0,3% Contribution to local biodiversity. 



Table 4: Detailed description of alternatives under analysis: conventional and 

membrane building solutions for the rooftop’s external envelope. 

Conventional solutions Membrane solutions (alternative to conventional ones) 

ext.

int.

(1)
 

Roof with ceramic tiles covering, 
wood structure, OSB sandwich 
panel with extruded polystyrene 

(XPS) insulation; plasterboard inner 
side. 

+ 

 

int.ext.

(2)
 int.ext.

(3)
 int.ext.

(4)
 int.ext.

(5)  (6)
 int.ext.  int.ext.

(7)
 

A1 A2 A3 A4 A5 A6 
CWood CSteel AM b AM v1 AM v2 AM v3 

Wood frame 
structure. 
Exterior covered 
with painted 
corrugated metal 
sheet; XPS 
insulation; OSB 
panel; acoustic 
rockwool 
insulation and 
double 
plasterboard 
inner surface. 

LSF structure. 
Exterior 
covered with 
painted 
corrugated 
metal sheet; 
XPS insulation; 
OSB panel; 
acoustic 
rockwool 
insulation and 
double 
plasterboard 
inner surface. 

Laminated wood 
structure; exterior 
and interior 
covering in 
polytetrafluoroet
hylene (PTFE) 
coated fiberglass 
membrane, core 
with thermal and 
acoustic 
rockwool 
insulation; inner 
face with an open 
mesh polyester 
membrane. 

Laminated wood 
structure; exterior 
and interior covering 
in PTFE coated 
fiberglass 
membrane, core with 
thermal and acoustic 
rockwool insulation; 
inner face with PCM 
(Phase Change 
Material) membrane 
(only at roof) and an 
open mesh polyester 
membrane. 

Laminated wood 
structure; exterior 
and interior 
covering in PTFE 
coated fiberglass, 
core with thermal 
and acoustic 
rockwool 
insulation; inner 
face with PCM 
membrane (at roof 
and floor) and an 
open mesh 
polyester 
membrane. 

Laminated wood 
structure; exterior 
covered with a 
vegetal membrane; 
PTFE coated 
fiberglass membrane 
as inner covering; 
core with rockwool 
thermal and acoustic 
insulation; inner face 
with PCM membrane 
and an open mesh 
polyester membrane. 

Lightweight building systems 
Weight per square meter of building 

envelope elements 

Ultra Lightweight building systems 
Weight per square meter of building envelope elements 

115 kg/m2 126 kg/m2 19 kg/m2 20 kg/m2 23 kg/m2 48 kg/m2 



Table 5: Multicriteria evaluation results for each alternative to the Baseline decision-

making scenario. 

         Normalized decision 1 

Range: 0=worst till 1=best 
C 
* 

CW 
** 

SC*** 
no. & code 

Local 
weight Global Weight Goal Min. Max. A1 A2 A3 A4 A5 A6 

C1 15% 

1 SC1.1 30% 5% min. 23648 31778 0,72 0,41 1,00 0,76 0,67 0,00 
2 SC1.2 30% 5% min. 16872 21570 0,00 0,00 0,00 0,89 1,00 0,92 
3 SC1.3 30% 5% min. 4800 13869 0,00 0,00 1,00 1,00 1,00 0,07 
4 SC1.4 10% 2% min. 21 59 0,00 0,00 0,39 1,00 0,92 0,50 

C2 8% 

5 SC2.1 25% 2% MAX 0 4 1,00 0,64 0,18 0,09 0,09 0,00 
6 SC2.2 11% 1% MAX 3 4 0,00 0,00 1,00 1,00 1,00 0,50 
7 SC2.3 52% 4% min. 2 3 0,00 0,00 1,00 1,00 1,00 1,00 
8 SC2.4 12% 1% min. 2 3 0,00 0,00 1,00 1,00 1,00 1,00 

C3 7% 9 SC3.1 100% 7% MAX 3 4 1,00 1,00 0,25 0,25 0,25 0,00 

C4 22% 

10 SC4.1 10% 2% MAX 3 4 1,00 1,00 0,00 0,00 0,00 0,00 
11 SC4.2 10% 2% MAX 1 3 0,00 0,00 1,00 1,00 1,00 1,00 
12 SC4.3 20% 4% min. 3 3 1,00 1,00 0,00 0,00 0,00 0,00 
13 SC4.4 20% 4% min. 1 3 0,00 0,00 1,00 1,00 1,00 1,00 
14 SC4.5 20% 4% min. 3 3 1,00 1,00 0,00 0,00 0,00 1,00 
15 SC4.6 20% 4% MAX. 4 5 0,67 1,00 0,00 0,00 0,00 0,33 

C5 12% 

16 SC5.1 45% 5% min. 39737 52633 0,10 0,00 1,00 0,99 0,96 0,73 
17 SC5.2 10% 1% MAX 3 4 0,00 0,00 1,00 1,00 1,00 0,50 
18 SC5.3 20% 2% min. 30 120 0,00 0,33 1,00 1,00 1,00 1,00 
19 SC5.4 5% 1% MAX 3 3 1,00 1,00 1,00 1,00 1,00 0,00 
20 SC5.5 5% 1% MAX 4 5 0,00 0,00 1,00 1,00 1,00 1,00 
21 SC5.6 15% 2% min. 30 60 0,00 0,00 1,00 1,00 1,00 0,00 

C6 30% 

22 SC6.1 7% 2% MAX 3 4 0,00 0,00 1,00 1,00 1,00 1,00 
23 SC6.2 7% 2% MAX 3 4 0,00 0,00 1,00 1,00 1,00 0,50 
24 SC6.3 12% 4% MAX 3 4 0,00 0,00 1,00 1,00 1,00 0,67 
25 SC6.4 27% 8% MAX 41 53 1,00 1,00 0,00 0,08 0,08 0,83 
26 SC6.5 47% 14% min. 15561 34236 0,00 0,00 0,00 1,00 0,92 0,92 

C7 6% 

27 SC7.1 40% 2% min. 58339 152006 0,04 0,00 0,22 0,98 0,97 1,00 
28 SC7.2 40% 2% min. 734833 2229639 0,02 0,00 0,18 0,97 0,97 1,00 
29 SC7.3 15% 1% min. 23 800 0,00 0,31 1,00 1,00 1,00 1,00 
30 SC7.4 5% 0,3% MAX 0 5 0,00 0,00 0,00 0,00 0,00 1,00 

 
Notes:  
* C – Criteria; ** CW – Criteria’s weight; *** SC – Sub criteria; 
1 Applied formula to sub criteria values normalization: to maximize:  y= (X-Min) / (MAX-min); To minimize: y= (MAX-X) / (MAX-min). 

Table 6: Considered scenarios for the sensitivity analysis – weight range per criteria. 

 

Weight assignment for each criterion – BASELINE SCENARIO (local group decision makers) 
C1 C2 C3 C4 C5 C6 C7 

Economic 
aspects 

Social, cultural and 
patrimonial aspects 

Aesthetic 
aspects 

Security 
aspects 

Constructive 
aspects 

Functional 
aspects 

Environmental 
impact aspects 

15% 8% 7% 22% 12% 30% 6% 

It
er

at
io

ns
 n

um
be

r   Weight range cycles 
  C1 cycle C2 cycle C3 Cycle till C7 cycle 

 

 

C1 
Weight per each 

remaining criterion 
(C2 – C7) 

C2 

Weight per each 
remaining 

criterion (C1; 
C3 – C7) 

C3 

Weight per 
each 

remaining 
criterion (C1; 
C2; C4 – C7) 

… C7 

1  Scenario 1 0% 16,7% 0% 16,7% 0% 16,7% 

… 

2  Scenario 2 10% 15,0% 10% 15,0% 10% 15,0% 
3  Scenario 3 20% 13,3% 20% 13,3% 20% 13,3% 
4  Scenario 4 30% 11,7% 30% 11,7% 30% 11,7% 
5  Scenario 5 40% 10,0% 40% 10,0% 40% 10,0% 
6  Scenario 6 50% 8,3% 50% 8,3% 50% 8,3% 
7  Scenario 7 60% 6,7% 60% 6,7% 60% 6,7% 
8  Scenario 8 70% 5,0% 70% 5,0% 70% 5,0% 
9  Scenario 9 80% 3,3% 80% 3,3% 80% 3,3% 
10  Scenario 10 90% 1,7% 90% 1,7% 90% 1,7% 
11  Scenario 11 100% 0,0% 100% 0,0% 100% 0,0% 

 



Table 7: Sensitivity analysis results – ranking. 

  Efficiency results – BASELINE SCENARIO  

 

Max. A1 A2 A3 A4 A5 A6 Min. CWood CSteel AMb AMv1 AMv2 AMv3 

AMv1 53% 51% 68% 100% 99% 91% CSteel 

It
er

at
io

ns
 n

o.
 

  

 Relative efficiency results – RANGE CYCLES SCENARIOS  

   Max. A1 A2 A3 A4 A5 A6 Min. 
1 

C
1 

cy
cl

e 
w

ei
gh

t r
an

ge
 o

f e
co

no
m

ic
 

as
pe

ct
s 

Scenario 1 0,67 56,9% 57,3% 72,9% 100,0% 98,7% 93,3% 56,9% 
2 Scenario 2 0,69 52,7% 51,6% 72,7% 100,0% 98,8% 86,2% 51,6% 
3 Scenario 3 0,71 48,7% 46,3% 72,5% 100,0% 98,9% 79,6% 46,3% 
4 Scenario 4 0,74 45,0% 41,3% 72,3% 100,0% 99,0% 73,4% 41,3% 
5 Scenario 5 0,76 41,5% 36,7% 72,2% 100,0% 99,1% 67,6% 36,7% 
6 Scenario 6 0,78 38,2% 32,2% 72,0% 100,0% 99,2% 62,1% 32,2% 
7 Scenario 7 0,80 35,1% 28,1% 71,9% 100,0% 99,3% 56,9% 28,1% 
8 Scenario 8 0,83 32,1% 24,2% 71,8% 100,0% 99,4% 52,0% 24,2% 
9 Scenario 9 0,85 29,4% 20,4% 71,6% 100,0% 99,4% 47,4% 20,4% 

10 Scenario 10 0,87 26,7% 16,9% 71,5% 100,0% 99,5% 43,0% 16,9% 
11 Scenario 11 0,90 24,2% 13,6% 71,4% 100,0% 99,6% 38,8% 13,6% 

   Max. A1 A2 A3 A4 A5 A6 Min. 
12 

C
2 

cy
cl

e 
w

ei
gh

t r
an

ge
 fo

r 
so

ci
al

, 
cu

ltu
ra

l a
nd

 p
at

ri
m

on
ia

l 
as

pe
ct

s 

Scenario 1 0,69 54,4% 54,7% 66,9% 100,0% 98,6% 82,1% 54,4% 
13 Scenario 2 0,70 51,9% 50,9% 70,9% 100,0% 98,8% 83,0% 50,9% 
14 Scenario 3 0,70 49,6% 47,2% 74,8% 100,0% 98,9% 83,8% 47,2% 
15 Scenario 4 0,71 47,2% 43,6% 78,6% 100,0% 99,1% 84,6% 43,6% 
16 Scenario 5 0,72 45,0% 40,1% 82,4% 100,0% 99,2% 85,5% 40,1% 
17 Scenario 6 0,73 42,7% 36,6% 86,0% 100,0% 99,3% 86,2% 36,6% 
18 Scenario 7 0,74 40,6% 33,3% 89,5% 100,0% 99,5% 87,0% 33,3% 
19 Scenario 8 0,75 38,4% 30,0% 93,0% 100,0% 99,6% 87,8% 30,0% 
20 Scenario 9 0,76 36,4% 26,8% 96,4% 100,0% 99,7% 88,5% 26,8% 
21 Scenario 10 0,76 34,3% 23,7% 99,7% 100,0% 99,9% 89,2% 23,7% 
22 Scenario 11 0,80 31,4% 20,0% 100,0% 97,1% 97,1% 87,4% 20,0% 

   Max. A1 A2 A3 A4 A5 A6 Min. 
23 

C
3 

cy
cl

e 
w

ei
gh

t r
an

ge
 fo

r 
ae

st
he

tic
 

as
pe

ct
s 

Scenario 1 0,77 32,1% 30,4% 71,1% 100,0% 98,8% 87,8% 30,4% 
24 Scenario 2 0,72 44,9% 43,2% 72,1% 100,0% 98,8% 84,8% 43,2% 
25 Scenario 3 0,67 59,6% 58,0% 73,3% 100,0% 98,9% 81,3% 58,0% 
26 Scenario 4 0,62 76,9% 75,4% 74,6% 100,0% 98,9% 77,1% 74,6% 
27 Scenario 5 0,56 97,3% 95,9% 76,3% 100,0% 99,0% 72,3% 72,3% 
28 Scenario 6 0,62 100,0% 99,0% 64,1% 82,0% 81,3% 54,4% 54,4% 
29 Scenario 7 0,70 100,0% 99,3% 52,9% 65,7% 65,2% 38,9% 38,9% 
30 Scenario 8 0,77 100,0% 99,5% 43,9% 52,6% 52,2% 26,3% 26,3% 
31 Scenario 9 0,85 100,0% 99,7% 36,5% 41,8% 41,5% 16,0% 16,0% 
32 Scenario 10 0,92 100,0% 99,9% 30,3% 32,7% 32,6% 7,4% 7,4% 
33 Scenario 11 1,00 100,0% 100,0% 25,0% 25,0% 25,0% 0,0% 0,0% 

   Max. A1 A2 A3 A4 A5 A6 Min. 
34 

C
4 

cy
cl

e 
w

ei
gh

t r
an

ge
 fo

r 
se

cu
ri

ty
 

as
pe

ct
s 

Scenario 1 0,77 40,5% 37,3% 70,8% 100,0% 98,8% 76,4% 37,3% 
35 Scenario 2 0,72 47,6% 45,5% 72,0% 100,0% 98,8% 81,1% 45,5% 
36 Scenario 3 0,67 55,7% 54,8% 73,4% 100,0% 98,9% 86,5% 54,8% 
37 Scenario 4 0,63 65,0% 65,5% 75,0% 100,0% 98,9% 92,6% 65,0% 
38 Scenario 5 0,58 75,8% 77,9% 76,9% 100,0% 99,0% 99,7% 75,8% 
39 Scenario 6 0,58 81,9% 85,6% 73,1% 92,5% 91,7% 100,0% 73,1% 
40 Scenario 7 0,57 87,8% 93,1% 69,1% 84,7% 84,0% 100,0% 69,1% 
41 Scenario 8 0,58 93,2% 100,0% 64,7% 76,4% 75,9% 99,4% 64,7% 
42 Scenario 9 0,62 92,1% 100,0% 56,5% 63,7% 63,4% 92,4% 56,5% 
43 Scenario 10 0,66 91,3% 100,0% 49,2% 52,6% 52,5% 86,3% 49,2% 
44 Scenario 11 0,70 90,5% 100,0% 42,9% 42,9% 42,9% 81,0% 42,9% 

   Max. A1 A2 A3 A4 A5 A6 Min. 
45 

C
5 

cy
cl

e 
w

ei
gh

t r
an

ge
 fo

r 
co

ns
tr

uc
tiv

e 
as

pe
ct

s 

Scenario 1 0,65 61,4% 58,9% 65,5% 100,0% 98,8% 88,5% 58,9% 
46 Scenario 2 0,68 53,9% 52,0% 70,6% 100,0% 98,8% 84,8% 52,0% 
47 Scenario 3 0,72 47,1% 45,9% 75,2% 100,0% 98,8% 81,5% 45,9% 
48 Scenario 4 0,75 41,0% 40,2% 79,4% 100,0% 98,8% 78,4% 40,2% 
49 Scenario 5 0,79 35,3% 35,1% 83,2% 100,0% 98,8% 75,7% 35,1% 
50 Scenario 6 0,82 30,2% 30,4% 86,7% 100,0% 98,8% 73,1% 30,2% 
51 Scenario 7 0,86 25,5% 26,1% 90,0% 100,0% 98,8% 70,8% 25,5% 
52 Scenario 8 0,89 21,1% 22,1% 92,9% 100,0% 98,8% 68,6% 21,1% 
53 Scenario 9 0,92 17,0% 18,4% 95,7% 100,0% 98,8% 66,6% 17,0% 
54 Scenario 10 0,96 13,3% 14,9% 98,3% 100,0% 98,8% 64,8% 13,3% 
55 Scenario 11 1,00 9,7% 11,7% 100,0% 99,4% 98,2% 62,6% 9,7% 

   Max. A1 A2 A3 A4 A5 A6 Min. 
56 

C
6 

cy
cl

e 
w

ei
gh

t r
an

ge
 fo

r 
fu

nc
tio

na
l a

sp
ec

ts
 Scenario 1 0,69 53,7% 51,8% 79,5% 100,0% 99,6% 78,1% 51,8% 

57 Scenario 2 0,70 51,7% 50,0% 74,7% 100,0% 99,1% 81,8% 50,0% 
58 Scenario 3 0,70 49,8% 48,4% 69,9% 100,0% 98,6% 85,4% 48,4% 
59 Scenario 4 0,71 48,0% 46,7% 65,2% 100,0% 98,1% 88,9% 46,7% 
60 Scenario 5 0,72 46,2% 45,1% 60,6% 100,0% 97,6% 92,4% 45,1% 
61 Scenario 6 0,72 44,4% 43,5% 56,1% 100,0% 97,1% 95,8% 43,5% 
62 Scenario 7 0,73 42,6% 41,9% 51,6% 100,0% 96,6% 99,2% 41,9% 
63 Scenario 8 0,75 39,9% 39,4% 46,1% 97,6% 93,9% 100,0% 39,4% 
64 Scenario 9 0,78 37,1% 36,7% 40,6% 94,6% 90,5% 100,0% 36,7% 



65 Scenario 10 0,81 34,5% 34,3% 35,5% 91,8% 87,5% 100,0% 34,3% 
66 Scenario 11 0,84 32,0% 32,0% 30,8% 89,3% 84,6% 100,0% 30,8% 

   Max. A1 A2 A3 A4 A5 A6 Min. 
67 

C
7 

cy
cl

e 
w

ei
gh

t r
an

ge
 fo

r 
en

vi
ro

nm
en

ta
l i

m
pa

ct
 

as
pe

ct
s 

Scenario 1 0,66 62,2% 59,7% 81,9% 100,0% 98,6% 77,7% 59,7% 
68 Scenario 2 0,69 54,2% 52,3% 75,3% 100,0% 98,8% 81,7% 52,3% 
69 Scenario 3 0,71 46,7% 45,5% 69,2% 100,0% 98,9% 85,4% 45,5% 
70 Scenario 4 0,74 39,8% 39,1% 63,6% 100,0% 99,0% 88,9% 39,1% 
71 Scenario 5 0,77 33,4% 33,2% 58,3% 100,0% 99,2% 92,1% 33,2% 
72 Scenario 6 0,80 27,4% 27,7% 53,4% 100,0% 99,3% 95,1% 27,4% 
73 Scenario 7 0,82 21,8% 22,6% 48,9% 100,0% 99,4% 97,9% 21,8% 
74 Scenario 8 0,85 16,5% 17,7% 44,3% 99,4% 98,9% 100,0% 16,5% 
75 Scenario 9 0,90 11,3% 12,8% 39,4% 97,1% 96,6% 100,0% 11,3% 
76 Scenario 10 0,95 6,6% 8,5% 34,9% 94,9% 94,6% 100,0% 6,6% 
77 Scenario 11 1,00 2,5% 4,6% 30,9% 93,0% 92,7% 100,0% 2,5% 

 
Alternatives ranking 

 
Efficiency 

A1 A2 A3 A4 A5 A6 
CWood CSteel AMb AMv1 AMv2 AMv3 

Average of relative efficiency 49% 48% 68% 93% 92% 78% 
Relative average efficiency (from 
scenarios set) of each alternative 
to the best one 

-44% -45% -25% 0% -1% -15% 

Efficiency ranking (1st best) 5th 6th 4th 1st 2nd 3rd 

 


